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Preface

The book contains selected papers presented at the 8th International Conference "De-
sign, Modelling and Experiments of Advanced Structures and Systems" (DeMEASS)
which was held in Moscow, Russia in May 2017. The topics of this conference series
centers on Advanced Structures and Intelligent Systems in its various aspects:

• Smart Materials: Piezoelectric, Ferroelectric, Ferroelastic and Magnetostrictive
Materials, Shape Memory Alloys and Active Polymers,

• Functionally Graded Materials,
• Multi-Functional Materials and Structures,
• Coupled Multi-Field Problems,
• Design and Modelling of Sensors and Actuators
• Adaptive Structures

The spirit of the conference is to collect international experts in one single venue and
to promote intensive and fruitful discussions among the participants.

After the reviewing process 16 papers were accepted. These contributions have
been prepared by authors from different countries, among them Austria, Belarus,
France, Germany, Italy, Poland and Russia. The papers are printed in alphabetical
order with respect to the surname of the first author.

We gratefully acknowledge the efforts put in by all contributors for the suc-
cessful completion of the book at hand. In addition, we are indebted to Dr.-Ing.
Sascha Duczek and Dr.-Ing. Fabian Duvigneau (Institute für Mechanik, Otto-von-
Guericke-Universität Magdeburg) for their technical support concerning different
LATEX applications. Last but not least, we want to sincerely thank Dr. Christoph
Baumann (Springer Publisher) for supporting this book project.

Magdeburg, Torino, Tambov Holm Altenbach
October 2017 Erasmo Carrera

Gennady Kulikov
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Chapter 1

Bending of a Three-Layered Plate

with Surface Stresses

Holm Altenbach and Victor A. Eremeyev

Abstract We discuss here the bending deformations of a three-layered plate taking
into account surface and interfacial stresses. The first-order shear deformation plate
theory and the Gurtin-Murdoch model of surface stresses will be considered and
the formulae for stiffness parameters of the plate are derived. Their dependence on
surface elastic moduli will be analyzed.

1.1 Introduction

Recently with respect to developments in the technologies of nanostructured materials
the interest grows to surface elasticity and models which explicitly take into account
surface stresses. For example, the model presented in Gurtin and Murdoch (1975,
1978) found many applications in micro- and nanomechanics, see Duan et al (2009);
Wang et al (2011); Javili et al (2013); Altenbach et al (2013); Eremeyev (2016) and
the reference therein. In particular, it can forecast the positive size-effect (Altenbach
et al, 2011) that is stiffening at the nanoscale. The Gurtin-Murdoch model is also
used for modification of models of plates and shells to the nanoscale, see for example
Altenbach et al (2010a); Altenbach and Eremeyev (2011); Altenbach et al (2012);
Ru (2016).

Here we discuss the dependence of elastic properties including bending stiffness
of an elastic three-layered plate with interfacial and surface stresses acting on layer
interfaces and plate faces. First we briefly introduce the Gurtin–Murdoch model

Holm Altenbach
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2 Holm Altenbach and Victor A. Eremeyev

of surface elasticity. Than we apply it to a three-layered plate-like solid. Finally,
using the through-the thickness procedure we derive the modified two-dimensional
constitutive equations.

1.2 Surface Elasticity

Following Gurtin and Murdoch (1975, 1978) let us briefly introduce the surface
elasticity model. This model is the generalization of the surface tension known in
the theory of capillarity (Rowlinson and Widom, 2003). From the physical point
of view the Gurtin–Murdoch model corresponds to an elastic solid with an elastic
membrane perfectly glued on its surface. The stress resultants acting in the membrane
are the surface stresses. So, for the model it is necessary to introduce constitutive
equations both in the bulk and at the surface. Considering layered media or media
with inclusions one can also introduce interfacial stresses acting on the interfaces
between layers or between inclusions and matrix material.

For infinitesimal deformations the equilibrium equations and the boundary condi-
tions of the surface elasticity take the following form:

• equilibrium for the bulk material

∇∇∇ ·σσσ+ρf = 0 (1.1)

• equilibrium for the surface

(n ·σσσ−∇∇∇S ·τττ)|ΩS = t (1.2)

• boundary conditions for the displacements

u|Ωu = u0 (1.3)

• boundary condition for the traction (surface force vector)

n ·σσσ|Ωt = t . (1.4)

Here σ is the stress tensor, ∇∇∇ the three-dimensional (3D) nabla operator, ∇∇∇S the
surface (2D) nabla operator, τττ the surface stress tensor acting on the surfaces ΩS, u

the displacement vector, f and t the body force and surface force vectors, respectively,
and ρ the mass density. On Ωu the displacements are given, whereas on Ωt the surface
stresses S are absent, Ω ≡ ∂V = Ωu ∪ΩS ∪Ωt, V is the body volume, and r is the
position vector. Equation (1.2) is the extension of the Young-Laplace equation. In
fact, the presence of surface stresses in (1.2) may change dramatically the behaviour
of solutions of the boundary-value problem (1.1)–(1.4). Note that hereinafter we use
the direct tensor calculus Lebedev et al (2010).

For an interface ΩI with interfacial stresses τττI we have the following compatibility
conditions
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(n · [[σσσ]]−∇∇∇S ·τττI)|ΩI = 0, [[u]]|ΩI = 0, (1.5)

where [[σσσ]] denotes a jump of discontinuity in stresses across the interfaces. Here we
consider perfect interfaces that is without slipping or delamination at the interface.
Other models are discussed, for example, in Nazarenko et al (2017).

In what follows we consider isotropic materials only and neglect residual surface
stresses. In this case the stress and surface stress tensors are given by the following
constitutive equations

σσσ = 2μεεε+λItrεεε, (1.6)
τττ = 2μSe+λSAtreee (1.7)

with

εεε =
1
2

[
∇∇∇u+ (∇∇∇u)T

]
, (1.8)

e =
1
2

[
∇∇∇Su ·A+A · (∇∇∇Su)T

]
, (1.9)

where εεε and e are the strain and surface strain tensors, respectively, λ and μ are
the Lamé parameters, λS and μS, which are called the surface Lamé parameters,
A ≡ I−n⊗n with the unit normal n, ⊗ is the tensor (diadic) product, and I is the 3D
unit tensor.

1.3 Equilibrium of a Symmetric Three-Layered Plate

1.3.1 Static Equations for a Three-Dimensional Plate-Like Solid

Let us consider an equilibrium state of an elastic plate of thickness H shown in
Fig. 1.1. For simplicity we discuss the symmetric in the thickness direction plate.
Here hf is the thickness of faces, hc is the thickness of the plate core, so H = 2hf +hc.
The orientation of normal vectors to faces and interfaces is shown in Fig. 1.1. We
introduce the Cartesian coordinates x, y, z and the corresponding unit base vectors ik.
In what follows we apply the Einstein summation rule over repeating indices. The
Latin indices take as usual values 1,2,3 whereas the Greek indices are equal to 1,2.
The surface stresses act on the faces Ω± whereas the interfacial stresses are given on
the interfaces Ω1 and Ω2. Thus, ΩS = Ω+∪Ω−, ΩI = Ω1∪Ω2.

Summarizing all static equations for the plate-like solid we become the following
system of equations

• equilibrium for the bulk
∇∇∇ ·σσσ+ρf = 0 , (1.10)

• equilibrium on the surfaces
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Fig. 1.1: Three-layered plate with surface and interfacial stresses.

(n± ·σσσ−∇∇∇S ·τττ±)|Ω± = t± , (1.11)

• boundary conditions
u|Ωu
= u0 , n ·σσσ|Ωt

= t , (1.12)

• jump conditions

(nα · [[σσσ]]−∇∇∇S ·τττα)|Ωα = 0, [[u]]|Ωα = 0, α = 1,2. (1.13)

Here we introduce surface stresses τττ± and interfacial stresses τττα. For the latter we
use the following constitutive relations

τττ± = 2μ±eee+λ±Atreee, (1.14)
τττα = 2μαeee+λαAtreee. (1.15)

where λ± and μ±, λα and μα are the surface and interfacial elastic moduli, respectively.
From the positive definiteness of the surface and interface strain energy densities

it follows the restrictions (Altenbach et al, 2010b)
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μ± > 0, λ±+μ± > 0, μα > 0, λα+μα > 0, α = 1,2.

With the classic inequalities μ > 0, 3λ+2μ > 0 the latter constraints result in existence
and uniqueness of weak solutions of surface elasticity.

1.3.2 Transition to the Two-Dimensional Static Equations

In the literature are known various 3D into 2D reduction techniques, see, e.g., Al-
tenbach and Eremeyev (2017a). Here we consider the through-the-thickness integra-
tion procedure described in detail in Libai and Simmonds (1998); Chróścielewski
et al (2004); Lebedev et al (2010). This technique was applied for plates and shells
at the nanoscale, see Altenbach et al (2010a); Altenbach and Eremeyev (2011);
Altenbach et al (2012); Altenbach and Eremeyev (2017b).

First, integrating over the thickness (1.10) and taking into account (1.11) and
(1.13) we obtain 2D equilibrium vectorial equation

∇∇∇S ·T+∇∇∇S ·τττ+ +∇∇∇S ·τττ−+
2∑
α=1

∇∇∇S ·τα+q = 0, (1.16)

where q = 〈ρf〉+ t+ + t−, T = 〈A ·σσσ〉, and

〈(. . .)〉 =
H/2∫
−H/2

(. . .)dz ≡
3∑

i=1

zi∫
zi−1

(. . .)dz.

The tensor T is the classical stress resultant tensor. Here zi (the Latin index only in
this case takes the values i = 0,1,2,3) are the coordinates of the interfaces counted
from the middle surface of the plate, see Fig. 1.1,

z0 = −H/2, z1 = −hc/2, z2 = hc/2, z3 = H/2, H = 2hf +hc.

Then, cross-multiplying 3D equilibrium equation (1.10) by z i3 from the left and
again integrating the result over the thickness we obtain

∇∇∇S ·M+T×+
3∑

i=0

zii3× (∇∇∇S ·τττi)+ c = 0, (1.17)

where
c = i3× (t+− t−)H/2+ 〈zρi3× f〉, M = −〈zA ·σσσ× i3〉,

and T× is the vectorial invariant of T. For example, for a diad it is defined as follows
(a⊗b)× = a×b, where × stands for the cross product. In (1.17) for consistency we
denote τ+ = τ3 and τ− = τ0.
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Equations (1.16) and (1.17) are the local balance equations for the momentum
and the moment of momentum. The presence of surface and interfacial stresses result
in additional terms in (1.16) and (1.17). Introducing the effective stress resultant and
couple stress tensors by formulae

T∗ = T+TS, M∗ =M+MS,

where

TS =

3∑
i=0

τττi, MS = −
3∑

i=0

ziτττi× i3,

we transform the equilibrium equations into the form

∇∇∇S ·T∗+q = 0, ∇∇∇S ·M∗+T∗×+ c = 0. (1.18)

Note that (1.18) have a form of the equilibrium equations within the first-order
shear-deformable plate theory (Altenbach, 2000; Altenbach and Eremeyev, 2017a).

1.3.3 Effective Stiffness Parameters

Using the typical ansatz of the first-order shear-deformable plate theory we assume
that

u(x,y,z) = v(x,y)− zϑϑϑ(x,y), i3 ·ϑϑϑ = 0. (1.19)

This approximation means that we consider a five-parameter plate theory with three
translations and two rotations. With (1.19) we obtain

e = E− zK, (1.20)

E =
1
2

[
∇∇∇Sv ·A+A · (∇∇∇Sv)T

]
, (1.21)

K =
1
2

[
∇∇∇Sϑϑϑ+ (∇∇∇Sϑϑϑ)T

]
. (1.22)

In what follows for simplicity we consider the plate with equal surface and
interfacial properties, so λα = λI, μα = μI, λ± = λS and μ± = μS.

For T and M we use the standard constitutive equations (Altenbach et al, 2010a;
Altenbach and Eremeyev, 2017a)

T = C1E+C2AtrE+Γγγγ⊗ i3, (1.23)
M = − (D1K+D2AtrK)× i3. (1.24)

Here Cα and Dβ are the tangent and bending stiffness parameters, whereas Γ is the
transverse shear stiffness. In particular, C1+C2 and D1+D2 give the classic tangent
and bending stiffness, respectively,
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C =C1+C2, D = D1+D2.

The stiffness parameters for a three-layered plate are given by formulae (Altenbach,
2000)

C1 = 2C22, C2 =C11−C22,

D1 = 2D22, D2 = D33−D22,

Γ = �2D22,

C11 =
1
2

(
2Efhf

1− νf
+

Echc

1− νc

)
, C22 =

1
2

(
2Efhf

1+ νf
+

Echc

1+ νc

)
,

D22 =
1
24

[
Ef (H3−h3

c)
1+ νf

+
Ech3

c

1+ νc

]
, D33 =

1
24

[
Ef (H3−h3

c)
1− νf

+
Ech3

c

1− νc

]
,

where � is the minimal positive root of the following equation

μ0 cos�
hf

2
cos�

hc

2
− sin�

hf

2
sin�

hc

2
= 0, μ0 = μc/μf ,

Ec and Ef , νc and νf , μc and μf are the Young moduli, Poisson ratios, and shear
moduli of the shell core and faces, respectively. As a result, the tangent and bending
stiffness parameters for a three-layered plate are

C =
2Efhf

1− ν2
f

+
Echc

1− ν2
c
, D =

1
12

⎡⎢⎢⎢⎢⎢⎣Ef (H3−h3
c)

1− ν2
f

+
Ech3

c

1− ν2
c

⎤⎥⎥⎥⎥⎥⎦ .
Calculating TS and MS we get

TS = 4(μS+μI)E+2(λS+λI)AtrE,

MS = −
[
(H2μS+h2

cμI)K+
1
2

(H2λS+h2
cλI)AtrK

]
× i3.

As a result, T∗ and M∗ take the form of (1.23) and (1.24) with effective stiffness
parameters

C∗1 = C1+2μS+2μI, C∗2 =C2+2λS+2λI,

D∗1 = D1+H2μS+
1
2

h2
cμI, D∗2 = D2+

1
2

H2λS+
1
2

h2
cλI.

The effective tangent and bending stiffness take the values

C∗ = C∗1+C∗2 =C+4μS+2λS+4μI+2λI, (1.25)

D∗ = D∗1+D∗2 = D+H2μS+
1
2

H2λS+h2
cμI+

1
2

h2
cλI. (1.26)



8 Holm Altenbach and Victor A. Eremeyev

Obviously, the presence of surface and interfacial stresses leads to the stiffening of
the plate that is to the positive size-effect. Let us note that surface stresses do not
affect Γ. The stiffening is significant if the shell thickness has the same order as
the characteristic length parameter d = (2μS+λS)/Ef,c, i.e. when H ∼ d. Note that
for the three-layered plate there are few length-scale parameters related to surface
and interfacial elastic moduli. Let us for simplicity assume that μα = μ± = μS and
λα = λ± = λS that is when the interfacial and surface moduli are equal. In addition as
an example we consider t hf = hc = h, so H = 3h, and Ec = Ef = E, νc = νf = ν. Then
we get

C =
3Eh

1− ν2 , D =
9
4

Eh3

1− ν2 ,

C∗ = C+8μS+4λS, D∗ = D+10h2μS+5h2λS.

As a result, the ratios of stiffness parameters at the nanoscale and at the macroscale
have the form

C∗

C
= 1+K1

d
h
,

D∗

D
= 1+K2

d
h
, (1.27)

where K1 =
4
3

(1−ν2), K2 =
20
9

(1−ν2). The hyperbolic form of Eqs (1.27) coincides
with the scaling law proposed for nanomaterials by Wang et al (2006). For a general
case the qualitative dependencies of C∗/C and D∗/D on d/h are similar to considered
simplified case.

1.4 Conclusions and Future Steps

Here we discussed the statics for a three-layered elastic plate undergoing small defor-
mations taking into account surface and interfacial stresses. The Gurtin–Murdoch
model of surface elasticity was applied. For the derivation of the two-dimensional
constitutive equations for stress resultants we utilized the through-the-thickness inte-
gration procedure. Finally, we found the expressions for effective stiffness parameters.
It is interesting that the surface elastic moduli influence on the tangent and bending
stiffness but do not affect the transverse shear stiffness.

The presented results can be generalized in few directions. In particular, inelastic
behavior such as surface viscoelasticity could be considered as in Altenbach et al
(2012). The residual/initial surface stresses may significantly change the elastic
response (Altenbach et al, 2013; Altenbach and Eremeyev, 2017b), for example,
this may lead to self-instabilities (Wang and Zhao, 2009). In addition, non-perfect
surfaces and interfaces with surface elasticity can be considered as in Eremeyev
(2016); Eremeyev et al (2016). Modelling of surface and interfacial phenomena
is also possible on the base of the strain gradient elasticity (Mindlin, 1965), see
also dell’Isola and Seppecher (1995, 1997); dell’Isola et al (2012) for description
of contact interactions. This unified approach could also useful for description of
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surface and interfacial stresses in layered structures. In particular, similar the theory
of capillarity (Rowlinson and Widom, 2003; de Gennes, 1981) this approach may
lead to the derivation of the constitutive equations for surface and interfacial stresses.

Acknowledgements V.A.E. acknowledges financial support from the Russian Science Foundation
under the grant Methods of microstructural nonlinear analysis, wave dynamics and mechanics of
composites for research and design of modern metamaterials and elements of structures made on its
base (No 15-19-10008).
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Chapter 2

A Numerical Study on the Potential of Acoustic

Metamaterials

Fabian Duvigneau and Sascha Duczek

Abstract In the present contribution we are going to investigate a special class of
acoustic metamaterials, i.e. synthetic foams with spherical inclusions. This study
is motivated by the need for an improved acoustical behavior of engines and vehi-
cles which is one important criterion for the automotive industry. In this context,
innovative materials offering a high damping efficiency over a wide frequency range
are becoming more and more important. Since there is an innumerable selection of
different absorbing materials with an equally large range of properties numerical
studies are inevitable for their assessment. In the paper at hand, we look at a special
class of such materials in which the influence of the inclusions on the acoustical
behavior is examined in detail. To this end, we vary the size, mass density, number
and position of spherical inclusions. Here, the main goal is to improve the damping
properties in comparison to conventional materials which can be bought off the shelf.
In that regard, the lower frequency range is of special interest to us. The results show
that a random distribution of the inclusions should be favored while for the other
parameters values that are centered within the investigated interval are recommended.

2.1 Introduction

In general, there are two main approaches for improving the acoustic behavior of
arbitrary parts: (i) active and (ii) passive methods. Active methods require an external
energy supply in order to drive actuators that are able to excite the structure and
create destructive interferences of elastic and acoustic waves (Gabbert et al, 2017). To
achieve an efficient damping the vibrations of the structure have to be measured first
before a suitable control strategy can be applied. A wide variety of control concepts
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with automotive applications can be found in the literature, e.g., active structural
acoustic control (ASAC) of an oil pan (Ringwelski et al, 2011), active noise control
(ANC) of the cabin noise within a car (Schirmacher et al, 2007) or active vibration
control (AVC) of a rear axle to avoid gear whining (Troge et al, 2016). However,
today passive concepts are still more popular in industrial applications due to their
inherent simplicity, the absence of an additional energy supply, the costs, the failure
safety and the fact that active concepts are only efficient in the low frequency range.

In the context of passive methods the geometry of the part is often modified to
eliminate sound transmission paths and hence, to reduce the resulting sound radiation
of the structure. This can be achieved by adding mass or stiffeners to specific locations
where also alternative materials, such as synthetic or metal foams (Schrader et al,
2015), are employed. In the wide body of literature also more exotic approaches
such as the use of granular materials (Duvigneau et al, 2016a) can be found. Here, a
sandwich panel with a honeycomb core was utilized to intelligently distribute the
granular material. This methodology leads to an improved damping behavior in
conjunction with a high stiffness to mass ratio (Koch et al, 2017b). In this context, it
was shown that a granular medium made of light and highly elastic rubber is very
effective for vibration damping (Koch et al, 2017a).

Even today it is unfortunately still common practice to focus on targets such as
fuel consumption, power output, mass and design aspects when optimizing automo-
tive parts. In this context the acoustic performance of vehicles is often neglected and
therefore, we need concepts to tackle this issue after the final design has already been
approved. Typically acoustic problems are only detected experimentally when an
expensive prototype has been build and an extensive testing campaign is conducted.
At this stage in the development process it is, however, almost prohibitive to propose
fundamental changes in the design and hence, alternative methods need to be em-
ployed until the acoustic behavior is finally part of initial considerations. First steps
in this direction are taken in Duvigneau et al (2016b,d), where a holistic workflow
for the acoustic evaluation of a combustion engine is developed. However, nowadays
it is still common practice to mitigate observed acoustic problems of prototypes by
applying damping materials to acoustically conspicuous components. In Duvigneau
et al (2016c) it is exemplarily shown that an encapsulation of an engine is a very
efficient approach to significantly reduce the noise emission of a vehicle. Here, the
main challenge is to balance the need for an improved acoustic emission behavior
with mass considerations. The additional mass caused by the installation of an encap-
sulation should be naturally as low as possible. An additional consideration is the
available space which is in modern vehicles rather limited such that the dimensioning
of the encapsulation needs to be adapted to these requirements.

Due to the mentioned issues one important aspect when designing passive noise
reduction approaches is to improve the damping properties of the deployed mate-
rials. They need to have a high damping ratio over a wide frequency range while
being both light and thin. The classical approach for noise control applications is to
utilize homogeneous heavy foils made of high density viscoelastic materials such
as bitumen or butyl rubber. These foils are mainly applied at locations where the
noise emission is rather high such as large planar faces. Here, they increase the
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transmission loss through material damping (described by the loss factor) and the
additional mass (lower vibration amplitudes). Because of the large-area application
of these materials there is still quite some room for improvement left. Therefore,
heterogeneous materials have been in the focus of investigations recently. Such
material systems include polyurethane (PUR) and melamine foams or microfiber
materials which provide a high material damping due to the additional interactions at
the fluid-solid-interface. Their advantage compared to previously discussed materials
is the comparably low density (which naturally leads to low mass gains). Generally
speaking, the characteristic value of the acoustic effect, provided by homogeneous
materials, is governed by the thickness only, whereas porous (heterogeneous) mate-
rials offer much more freedom to be tailored for specific applications. Parameters
such as the mean pore size, the porosity (volume fraction) and the reticulation rate
can significantly influence the acoustic performance. These influence parameters
can be adjusted by chemists or process engineers during the manufacturing process.
By adding an additional mass layer at the surface of the heterogeneous material the
dissipation effect is increased even further. Now, the material system represents a
mass-spring-damper system. These bimaterial foam systems have been extensively
investigated in a previous study (Schrader et al, 2016). A remarkable feature of the
investigated foams is that the added mass layer is created by impregnating only a part
of the base material. This procedure is very flexible in terms of penetration depth and
achievable density.

Special classes of heterogeneous materials are the so-called acoustic metamateri-
als. In the following, we discuss an important group of these metamaterials, which is
made of locally resonant structures. Generally, they consist of a soft matrix phase fea-
turing stiff mass inclusions with different weights and sizes. In various studies it has
been shown that the mass inclusions within the elastic matrix cause frequency bands
with high transmission losses or absorption coefficients (Liu et al, 2000, 2005; Fuller
and Saux, 2012; Idrisi et al, 2010; Deymier, 2013; Sheng et al, 2017; Lu et al, 2009);
this behavior is analogous to bandgap phenomena in phononic crystals (Jensen, 2011;
Zhang et al, 2006; Zhao et al, 2013). The frequency bands with increased transmis-
sion losses depend on both the mass of the inclusion and its location (Fuller and Saux,
2012; Idrisi et al, 2010; Deymier, 2013). One important feature that is demonstrated
in the cited literature is the ability to increase the transmission loss especially in the
low frequency range where classical passive approaches do not work satisfactorily.
Therefore, a simple inclusion of “resonant” masses within a conventional damping
material can lead to significant gains in terms of the suppression of sound emission.
In general, it is suggested to distribute inclusions with different masses at various
locations within the elastic matrix to achieve a notable sound energy dissipation in a
broader frequency range.

Another approach to design metamaterials has been introduced in Sui et al (2015).
Here, a lightweight honeycomb structure was covered with an elastic membrane. This
material shows a high transmission loss at low frequencies which can be attributed
to the effect of the membrane. In Schrader et al (2017a) this method was seized and
combined with two additional metamaterial concepts. First, only the honeycomb-
membrane system was investigated to obtain reference measurements. In a second
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step the honeycombs were filled with PUR foam. Finally, mass inclusions were placed
in the honeycomb cells before filling these cells with foam as in the previous step.
Honeycomb structures combined with PUR foam show significant sound pressure
level reductions in a frequency range from 0.5 to 2 kHz. These reductions are notably
higher than the ones gained with a simple PUR foam of the same thickness. The
honeycomb plate with the surface membrane alone does not show these effects
either. A further improvement is gained by the use of the mass inclusions within
the honeycombs, especially the concept with a large number of small-sized mass
inclusions surrounded by the PUR foam shows a high sound pressure level reduction.

In Schrader et al (2017a) also another concept which is inspired by applications in
room acoustics has been proposed. The fundamental idea is based on the application
of perforated acoustic panels which contain large air cavities beyond the interface.
In this concept the energy is dissipated by friction between the moving air particles
and the solid perforated plate. Schrader et al (2017a) applied this idea to PUR
foams. In their approach large cavities were introduced into the foam structure
and covered by micro-perforated membranes. The membrane was micro-perforated,
as the perforations have to be rather small in order to devise an efficient material
system (Fuchs, 2007). The operating principle is based on the physical concept
of a Helmholtz resonator whose efficiency depends on the friction losses in the
micro-perforations. The theory of noise reduction by micro-perforated absorbers
was originally developed by Maa (1998). This idea was further extended by Zhang
and Gu (1997) who suggested employing a structure featuring a double-layered
micro-perforated absorber. The specific feature of such a design is that it exhibits
two absorption maxima.

In the present contribution a metamaterial based on spherical inclusions that com-
bines the benefits of a low mass density with an improved noise absorption compared
to conventional damping materials (especially at low frequencies) is proposed and
studied in detail. In Fig. 2.1 a possible design of the proposed metamaterial which
is attached to a rectangular plate is shown. Here, three layers of inclusions which
are distributed in a structured fashion are depicted. The investigated material system
increases the energy dissipation within the polyurethane base material (foam) by
adding additional masses. The basic idea is to create a local mass-spring-damper
system which is able to attenuate the vibrations. In the following sections the acous-
tic efficacy of the proposed metamaterial is investigated for several configurations
differing in weight, size and location of the spherical inclusions within the PUR
foam.

2.2 Models for the Parametric Studies

In this section the road map for our numerical investigations is explained, the used
models are presented and in the following Sect. 2.3 selected results that are rep-
resentative of the behavior for the proposed metamaterial are discussed. The re-
sults are obtained by numerical simulations using the finite element method (FEM)
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(Zienkiewicz and Taylor, 2000; Hughes, 1987) which is the dominating tool to solve
partial differential equations arising in many different branches of engineering.

In Fig. 2.2 the setup for the numerical experiments is depicted. On the left hand
side the FE-model of the plate with the metamaterial attached to its surface is shown.
The dimensions of the model are compiled in Table 2.1. In this model structural

Table 2.1: Dimensions of the structural model

length width thickness t

Aluminum plate 440 mm 240 mm 5 mm
Metamaterial 400 mm 200 mm 40 mm

damping is used, which assumes that the damping forces FD are opposed to the
velocity and are proportional to the forces FS caused by stressing the structure. The
damping forces are FD = i ·δ ·FS wherein δ is the structural damping factor and i is
the imaginary unit. The corresponding damping factors δ of the different materials,
which are used within the FE-model, are listed in Table 2.2. As Dirichlet boundary
conditions we fixed the displacements in all spatial directions at the four corner nodes

Fig. 2.1: Example of an acoustic metamaterial attached on a rectangular plate

Table 2.2: Material properties of the numerical reference model

aluminium foam inclusions

Young’s modulus 70000 N/mm2 5 N/mm2 5000 N/mm2

Density 2.7 g/cm3 0.05 g/cm3 0.5 g/cm3

Poisson ratio 0.3 0.3 0.3
Structural damping 0.01 0.05 0.0



16 Fabian Duvigneau and Sascha Duczek

of the backside of the aluminum plate. In experiments the excitation is typically
applied by means of a shaker and therefore, we introduce the Neumann boundary
conditions by attaching an aluminum cylinder (height: 10 mm, radius 5 mm) at the
centroid of the backside of the aluminum plate. This procedure is identical to the
experimental setup that was used in a previous study (Schrader et al, 2017b). A
white noise signal with an amplitude of 1 N is generated to excite the structure in
the whole frequency range of interest. The numerical analysis is executed in the
frequency domain due to the computational costs of a fully transient analysis in the
time domain.

On the right hand side of Fig. 2.3 the FE-model of the air volume surrounding
the structure is depicted. The spherical air volume needed to compute the sound
pressure distribution has a radius of 330 mm. Consequently, for frequencies higher
than 1.55 kHz the far field assumption (approximately 1.5 times the wavelength)
already holds within the discretized domain. To reduce the computational effort the
surrounding fluid volume is modeled only as a hemisphere. Due to the geometric
complexity of the micro-structure of metamaterials both the structural and the acous-
tic domain are discretized by means of tetrahedral finite elements with quadratic
shape functions (10-node tetrahedra). The maximum element size of the structural
model is set to 8 mm which corresponds to 8 nodes per wavelength of the maximum

excitation in z-direction 
(white noise) 

boundary conditions 

    interface between structure and air 

absorbing boundaries 

aluminum plate 

foam 

air 

Fig. 2.2: Simulation model of the plate, foam and air including interface and
boundary conditions
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Fig. 2.3: FE-models of the aluminum plate with the attached foam layer and the
surrounding air

frequency. At the interface between both models (structural-acoustic interface) a
conforming mesh is generated and the element size is then slowly increased towards
the periphery of the hemisphere where a maximum element size of 30 mm is reached.
In Duvigneau (2017) it was shown that this discretization is still reasonable due to
the much finer discretized interface. For the acoustic problem free-field conditions
are assumed and therefore, the outer boundary of the air volume are modeled as ab-
sorbing boundaries (impedance based absorbing boundary conditions(Givoli, 2008)).
At the structural-acoustic interface the air is excited through the surface velocities
of the vibrating structure, which have been calculated in a previous analysis step.
Due to the conformal interface mesh the interpolation of the results is trivial. To
further reduce the computational effort an uncoupled acoustic simulation is executed,
i.e. the influence of the vibrating air on the aluminum plate and the metamaterial
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is neglected. The geometrical dimensions, the mesh parameters, the boundary and
loading conditions are identical for all investigated configurations. Thus, we ensure
that the results are comparable as the only influence is now related to the changes
made with respect to the metamaterial. Here, we primarily change the geometry
(volume), distribution (number, location) and material properties (density, Young’s
modulus) of the spherical inclusions.

In Table 2.2 the material properties of aluminum, PUR foam and the initial data
for the inclusions are compiled. If not stated otherwise this data set is used in all
numerical simulations. For the sake of clarity, all important parameters describing the
models used in our numerical analyses in Sect. 2.3 are compiled in Table 2.3. Here,
all details such as the number of spherical inclusions, their diameter and their material
properties (mass density �, Young’s modulus E) are listed. Note, that the Poisson’s
ration ν is set to 0.3 for all constituents (see Table 2.2). From these information
the additional mass can be computed, although we have to bear in mind that the
mass of the fully foam filled structure needs to be taken into consideration. That
means that we have to compute the mass of the inclusions and subtract the mass of
the foam that originally occupied this space. The values Δx, Δy and Δz describe the
spacing between adjacent spheres measured from centroid to centroid (for structured
arrangements only). If only one layer of spheres is deployed Δz gives the distance
between the centroid of the sphere and the bottom surface of the foam structure.

2.3 Numerical Results

In the current section we comprehensively discuss selected results of our numerical
investigations that are representative of the behavior of the proposed metamaterial.

2.3.1 Influence of the Distribution of the Spherical Inclusions

In this section we investigate six different configurations which are depicted in
Fig. 2.4. All models contain 50 spherical inclusions with a diameter of 15 mm while
only their distribution (with respect to the location) is varied. One important question
we want to answer by executing this study is whether the positioning with respect
to the out-of-plane direction (z-axis, height) or the in-plane positioning (x-y-plane)
is more significant for the damping behavior. In a previous investigation (Schrader
et al, 2017b) it was suggested that the former effect would be dominant.
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(e) (f) 

(a) (b) 

(c) (d) 

Fig. 2.4: Investigated configurations (top and side view of the sphere position in
the foam). The models from Table 2.3 which are used for the analyses are: configu-
ration 1 (a), configuration 2 (b), configuration 3 (c), configuration 4 (d), configura-
tion 5 (e), configuration 6 (f)

Configuration 1 (see Fig. 2.4) is used to generate a reference solution against
which all other numerical results are compared in the remainder of the chapter. The
results for the sound power level, computed using configuration 1 and a pure PUR
foam, are summarized in Fig. 2.5. We observe that the resulting sum level of the A-
weighted sound power is decreased by 5 dB(A) when using this simple metamaterial.
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Fig. 2.5: Sound power levels of configuration 1 in comparison to a foam without
mass inclusions

The value of the sound power level is calculated on the surface of the hemispherical
air volume. Although, a significant overall reduction is generally observed, but there
are also small frequency bands where the amplitudes of the sound power level are
actually increased by introducing spherical inclusions.

Still the overall results are quite satisfactory with a large amplitude reduction of
more than 10 dB(A) between 2 and 3 kHz. If we look at the results of the aluminum
plate that is covered with PUR foam only we observe that this frequency band is
actually the most critical due to the high amplitudes that are exhibited. Consequently,
we were able to achieve the best reduction in amplitudes in a range where it is of
special significance for the chosen structure. These remarkable results have been
obtained by simply adding inclusions in a structured fashion to an existing damping
material.

In the following paragraphs we will settle what advantages can be gained by
introducing more advanced arrangements of the spherical inclusions. To this end, the
distribution of the 50 spheres is now varied in different steps.

In Fig. 2.6 the computed sound power levels for all six different configurations
(see Fig. 2.4) within the frequency interval from 0 to 8 kHz are depicted. In the
legend important information such as the distribution of the inclusions and the sum
level of the A-weighted sound power are listed. First, we compare the three regular
arrangements of the inclusions (see Fig. 2.4 (a) to (c) – configuration 1, 2, 3). In
this case, we observe that the best results over the investigated frequency range are
obtained, if the spheres are located in the midplane of the plate. Furthermore, we
note that a larger distance to the aluminum plate for configuration 3 is advantageous
compared to configuration 2 where the spheres are located almost directly above the
base plate. However, if we merely consider the sum levels the random distribution in
configurations 4 to 6 lead to an improved noise radiation behavior. In our example
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(a) configuration 1, 50 spheres,        0.5 height        , sum level 138.28 dB(A)
(b) configuration 2, 50 spheres,       0.25 height       , sum level 139.87 dB(A)
(c) configuration 3, 50 spheres,       0.75 height       , sum level 138.96 dB(A)
(d) configuration 4, 50 spheres,   random in plane   , sum level 136.94 dB(A)
(e) configuration 5, 50 spheres,   random in height  , sum level 136.50 dB(A)
(f) configuration 6, 50 spheres, random distribution, sum level 136.47 dB(A)

Fig. 2.6: Sound power levels of the configurations 1, 2, 3, 4, 5 and 6

a random distribution over the height while a regular one within the plane is used
seems to be a viable choice, as the sum level of configuration 5 is actually almost
the same as that of configuration 6. This highlights the fact that the distribution over
the height of the damping material is more important than the in-plane one. These
findings are also supported by the experimentally drawn conclusions (Schrader et al,
2017b). From a manufacturing point of view (automation of the process) it is also
advantageous if a random distribution only needs to be achieved over the height while
the in-plane one is structured. Therefore, from our point of view this arrangement
constitutes the best choice. In addition, it is remarkable that the behavior in the low
frequency range, below 1 kHz, is hardly influenced by the inclusions at all. In the
frequency range from 1 kHz to 5 kHz a significant variation in the results can be
seen. This is the frequency range where an optimized design can lead to a notable
reduction in noise radiation. Above 6 kHz there is again no significant difference
between the individual configurations in Fig. 2.6.

2.3.2 Influence of the Material Properties of the Spherical
Inclusions

In the current subsection we are going to investigate the influence of the material
properties on the noise radiation behavior of the acoustic metamaterial. To this end,
the Young’s modulus and the mass density of the spherical inclusions are varied for
configuration 1 (see Table 2.3). Consequently, configurations 1, 7, 8 ,9 ,10 and 11
are in the focus of this section.
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Fig. 2.7: Sound power levels of the configurations 1, 7, 8, 9, 10 and 11 (density
and Young’s modulus variations based on configuration 1)

In Fig. 2.7 the numerical results for the variation of the material properties are
shown. The first conclusion that can be drawn is that the variation of the Young’s
modulus does not seem to have any notable influence on the results. This behavior
can be attributed to the fact that the difference in stiffness between the foam and the
inclusions is too large such that the inclusions act as rigid bodies even if the Young’s
modulus is decreased to only 500 N/mm2. A second conclusion is that higher density
values show an influence on the radiated sound power for frequencies below 4.5 kHz.
Only if the density is drastically decreased an effect over the whole investigated
frequency range is visible. For our example the lowest chosen density leads to the
worst results but also an increased density compared to the initial configuration
leads to deteriorated results. This is caused by the fact that these inclusions (with
higher density) elevate some resonance peaks in the critical frequency range. This, of
course, results in a higher sum level, even if the amplitudes in other frequency ranges
are significantly reduced. This behavior is nicely observed in the frequency range
from 1.2 to 2.2 kHz where the sound power level is reduced up to 35 dB(A) for the
configuration with 10-times the density (dashed red line) and still the computed sum
level is rather unsatisfactorily high, as the sum level is dominated almost only by the
most important peaks.

2.3.3 Influence of a Fixed Density-Volume-Product

In the next step, the product of density times volume is kept constant, i.e. the added
mass is identical for all five different configurations depicted in Fig. 2.8. In our
example the additional mass amounts to 39.8 g. The aim of the current investigations
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(a) (b) 

(c) (d) 

(e) 

Fig. 2.8: Five different configurations with a fixed density-volume-ratio (top and
side view of the sphere position in the foam). The models which are used for the
analyses are: configuration 12 (a), configuration 13 (b), configuration 1 (c), config-
uration 14 (d), configuration 15 (e)

is to answer the question, whether the added mass or the geometrical dimension
of the spherical inclusions exerts the dominant influence on the vibration behavior
of the structure. If the volume of the sphere is changed, so is the spring constant,
assuming that we interpret the inclusion and the foam as a spring-mass-system.
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(a) configuration 12,   5 mm diameter, density = 13.5 g/cm³    , sum level 137.97 dB(A)
(b) configuration 13, 10 mm diameter, density = 1.6875 g/cm³, sum level 137.44 dB(A)
(c) configuration 1  , 15 mm diameter, density = 0.5 g/cm³      , sum level 138.28 dB(A)
(d) configuration 14, 20 mm diameter, density = 0.2109 g/cm³, sum level 138.57 dB(A)
(e) configuration 15, 25 mm diameter, density = 0.108 g/cm³  , sum level 140.36 dB(A)

Fig. 2.9: Sound power levels of the configurations 12, 13, 1, 14 and 15 (constant
density-volume-product based on configuration 1)

In Fig. 2.9 the computed A-weighted sound power levels for the five configurations
depicted in Fig. 2.8 are plotted. It can easily be seen that the qualitative behavior is
rather similar, but in some frequency ranges there are significant differences. It can
be inferred that larger spheres (with a lower density) seem to be disadvantageous as
they considerably reduce the volume of the absorbing foam layer. This in turn also
leads to a stiffer spring which increases the eigenfrequency of the single spring-mass
system. In the current investigation the spheres with a diameter of 10 mm deliver the
best results.

2.3.4 Influence of the Volume of the Inclusions

In the current subsection the five different configurations that have been introduced
in Sect. 2.3.3 are studied again, but this time the mass density is fixed to 0.5 g/cm3

which corresponds to the value of configuration 1 (see Fig. 2.8 (c)). Since now
the mass density is constant and volume is different for each example, so are the
additional masses. Therefore, the values of the added masses are also given in the
legend of Fig. 2.10.

When evaluating the results that are plotted in Fig. 2.10 we note that the configu-
rations 16 and 17 are almost without effect which can be attributed to the negligible
additional mass in comparison to the pure foam. Especially in the critical frequency
range between 2.0 and 2.8 kHz the vibration behavior is quite poor. However, the
two configurations 18 and 19 exhibit large amplitude reductions of up to 20 dB(A)
compared to the reference configuration 1. For all that the higher additional masses
still cause elevated amplitudes at some other frequencies (e.g. at 2.9, 3.3 or 4.1 kHz).
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(a) configuration 16,   5 mm diameter, 1.47 g  , sum level 145.71 dB(A)
(b) configuration 17, 10 mm diameter, 11.8 g  , sum level 145.56 dB(A)
(c) configuration   1, 15 mm diameter, 39.8 g  , sum level 138.28 dB(A)
(d) configuration 18, 20 mm diameter, 94.2 g  , sum level 142.15 dB(A)
(e) configuration 19, 25 mm diameter, 184.1 g, sum level 142.75 dB(A)

Fig. 2.10: Sound power levels of the configurations 16, 17, 1, 18 and 19 (constant
density with different volumes of the spherical inclusions)

This effect can be explained by the fact that large inclusions significantly reduce
the volume of the absorbing foam. Thus, the energy dissipation caused by the foam
is also decreased. For this reason, we conclude that the spherical inclusions with a
diameter of 15 mm are an acceptable compromise for our example.

2.3.5 Influence of the Number of Layers with Different Material
Properties

In the current section we investigate the effect of three layers of inclusions where in
each layer the spheres are made of a different material. The models are illustrated
in Fig. 2.11. In the top and bottom layers again 5x10 spherical inclusions are added
to the foam, while in the middle layer 6x11 spheres are used. Consequently, the
inclusions in adjacent layers are shifted. The diameter of the inclusions is set to 6 mm
for configuration 20 and 21, whereas the two arrangements only differ in the densities
of the spheres. Considering the second model, configuration 22 and 23 (different
densities of the inclusions), the diameter of all spheres that are in the middle layer is
increased to 10 mm. The material properties of the added masses can be taken from
Table 2.2. However, note that the density is varied between 0.5 and 5.0 g/cm3. The
actual parameters for each simulation are listed in Table 2.3. In Fig. 2.12 the results
for the sound power are depicted. Since the additional mass is an important aspect
for such materials, as mentioned in the introduction, it is also given in the legend of
that figure.
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Surprisingly the results depicted in Fig. 2.12 convey that there is no increased
attenuation of the resulting sound radiation due to the number of additional layers
and consequently a much higher number of spherical inclusions. Compared to the
reference configuration the sound power level is not even slightly reduced but in
contrast always elevated for the tested setups. It might be concluded that inclusions
with a diameter of only 6 or 10 mm are too small and light (the mass density is
0.5 g/cm3) to have a significant effect. In the reference configuration spheres with a
diameter of 15 mm have been utilized. When the density of the spherical inclusions
is increased from 0.5 to 5.0 g/cm3 they are actually heavier than the inclusions in
the reference model and therefore, one might conclude that this distribution of the
spheres is detrimental. However, to verify this assumption additional parametric
studies need to be conducted. In case the mass density is increased for the outer or
the middle layer the damping results are improved but they are still worse than the
reference configuration and hold another disadvantage as more mass is added to the
system.

2.3.6 Discussion

The conducted parametric studies show that each parameter such as the position,
the mass density, the volume and the number of inclusions can have a significant
effect on the resulting sound power level. Moreover, we observed that too many or
too large inclusions have a negative influence on the radiated sound power. As the
overall mass of a passive damping approach is naturally limited, the added mass
is also restricted. To find an optimal solution for the presented problem we are

(a) (b) 

Fig. 2.11: Configurations with three layers of regular positioned mass inclusions,
which differ in the material properties and the size of the middle layer. The models
which are used for the analyses are: configurations 20, 21 (a) and configurations
22, 23 (b)
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Fig. 2.12: Sound power levels of the configurations 1, 20, 21, 22 and 23

going to deploy computational optimization techniques for future studies. Here, the
distribution, the material properties and the geometry of the inclusions will be varied
under the constraint of a restricted additional mass and volume. Thus, the potentials
and limits of this type of metamaterials can be assessed with respect to its lightweight
potential and achievable sound reduction.

The observations reported in the contribution at hand are supported by experi-
mental findings that have been published in Schrader et al (2017a). In comparable
experimental measurements it was shown that an arrangement of inclusions far
from the damped surface leads to an increased damping effect in a higher frequency
range (Schrader et al, 2017a). Furthermore, a concept with a large number of added
masses was rejected as being inefficient (Schrader et al, 2017a) similar to the results
presented in Sect. 2.3.5.

2.4 Conclusions

In this contribution we investigated the potential of a special class of acoustic metama-
terials by means of numerical simulations (FEM). Our focus lay on locally resonant
structures consisting of an elastic matrix material in combination with spherical
inclusions (added masses). Our exemplary application case is a soft synthetic foam
made of polyurethane with much stiffer inclusions within. These inclusions have
been varied in size, material properties, number and position. Here, it was shown
that this type of acoustic metamaterials is well suited to increase the damping effect
compared to that of the base material. Depending on the tuned arrangement of inclu-
sions it is both possible to influence the damping properties only in certain frequency
bands or over the whole frequency range of interest. A strong correlation between
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the influence parameters of the spherical mass inclusions (size, material properties,
number and position) and the resulting sound power level was observed. That is
to say, we have to be careful when designing such an acoustic metamaterial as an
arbitrary distribution of inclusions with arbitrary parameters could result in a worse
performance compared to the base material. Consequently, it is of utmost importance
to design efficient and robust numerical tools for the dimensioning of these materials.
A first step in this direction was made in this contribution.

In the parametric studies we observed that the stiffness of the inclusions has
a negligible effect on the achieved sound absorption. Due to the vastly different
mechanical impedances of both materials all investigated inclusions acted as rigid
bodies within the soft elastic foam. On the other hand, a variation of the mass density
of the spherical inclusions or their location cause a significant difference in the
radiated sound power in a frequency range between 1 and 5 kHz. Both below 1 kHz
and above 6 kHz the different tested configurations displayed hardly any changes
in the resulting sound power levels. For our example problem the sound radiation
is deteriorated if the mass density is chosen too high or too low. Consequently, this
parameter should be optimized for future applications. Moreover, it was verified that
the product of mass density and volume has an influence on the sound absorption.
In this context, it has been found that the spherical inclusions should be neither
to small nor to big as the obtained results have been much worse compared to
our reference configuration. For this reason, the size of the inclusions is a second
parameter that calls for an optimization. In regard to the positioning of the inclusions
we can state that the out-of-plane direction is seemingly more important than the
in-plane directions. Therefore, the position might be a third parameter that should
be investigated by means of a numerical optimization technique, although random
distributions have in general attained favorable results in our parametric studies.

Finally, the presented results have been validated with experimental measurements
that have been published previously. The most important conclusions that we have
drawn from the parametric studies are supported by the experimental evidence. With
the help of the knowledge derived from the observations of this contribution initial
design proposals for this class of acoustic metamaterials can be given. Therewith, we
are able to achieve an improved damping behavior with a minimum gain in mass.

Future research activities in the direction of acoustic metamaterials will include a
fully automated numerical optimization to determine the optimal configuration. To
this end, a sophisticated python script has been developed to automatically generate
the finite element model for arbitrary arrangements. The parameters that should
be included in the optimization process are the number of inclusions, the number
of layers, the size, the position and the material properties of the inclusions. The
objective function will be the resulting sound power level of the overall system. We
hope that the results of the optimization process will help us to answer the following
questions:

1. How many inclusions should be added to the base material?
2. How many layers of inclusions should be added?
3. Which distribution of inclusions should be deployed to obtain the best possible

results?
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4. Which material should be chosen for the inclusions?

In the current study it was demonstrated that one layer featuring 50 spherical in-
clusions performs better than several layers with a much greater number of added
masses. In general, this might not be true considering that the randomly distributed
configurations lead to the best overall results.

After the numerical optimization has been executed a prototype of the optimal
configuration will be produced and compared to both the best configurations deter-
mined in the current contribution and to the foam material without any modifications.
The experimental measurements will be conducted in an acoustic far field room
which is equipped with a microphone array and far field microphones. The aim
is to validate that the computed optimal solution exhibits a significantly improved
damping behavior compared to all other previous configurations.

Another interesting point for future studies is naturally the investigation of the
influence of the inclusion shape on the damping behavior. Therefore, different simple
shapes such as arbitrary ellipsoids could be studied in contrast to arbitrarily shaped
(convex) inclusions generated by means of Voronoi diagrams.
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Chapter 3

Electromechanical Degradation of Piezoelectric

Patches

Hassan Elahi, Marco Eugeni, and Paolo Gaudenzi

Abstract Piezoelectric materials (PZT) are widely used as smart structure in various
aerospace applications because of their sensing, actuating and energy harvesting
abilities. In this research work, the degradation of the electromechanical properties
of a PZT material after various mechanical and thermal shocking conditions is
experimentally studied. In particular, the relationship between resistance and peak
to peak voltage of Lead Zirconate Titanate (PZT-5A4E) to the degradation factor
at variable frequencies and thermo-mechanical shocking conditions is considered.
This research provides novel mechanism for characterizing smart structures using
Mechanical Quality Factor.

3.1 Introduction

Degradation of electromechanical properties in a piezoelectric material is of great
interest for design engineers as well as for maintenance engineer. Energy harvesting
using a piezoelectric patch is the process in which energy is generated from external
stresses and utilized as electrical energy for powering sensors or actuators or stored
in batteries for lateral tasks. Electrostatics, electromagnetic and piezoelectric are
most famous mechanisms of electricity generation via vibration energy; among them
piezoelectricity is the best one because of performance and their manufacturability
in nano, micro and macro scales (Gaudenzi, 2009; Cook-Chennault et al, 2008).
Generation of electric potential from mechanical stress i.e., direct piezoelectric effect
and generation of mechanical vibrations from applied electric potential i.e., converse
piezoelectric effect is discovered by Jacques Curie and Pierre Curie in 1880 (Safari
and Akdogan, 2008). For the application of a piezoelectric patch as a sensor is an
application of direct piezoelectric effect whereas usage of piezoelectric patch as
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a transducer is an application of converse effect (Gaudenzi, 2009). From last few
decades a large quantity of research works have been done on piezoelectric materials
because of their voltage actuation abilities and their applications in fields of smart
structures, micro electro-mechanical systems, aerospace, structural health monitoring,
etc. (Paliwal et al, 2015; Gaudenzi et al, 2015; Gaudenzi and Facchini, 2013).

Piezoelectric energy harvesters, vibrators, strain gauges, accelerometers that trans-
form one form of energy into another as well as work as transducer can be used
for remote sensing and electronic embedded devices. For electro-mechanical actu-
ation like solenoid operating valves, piezoelectric materials play a vital role and
their maintenance or replacement in a given equipment is critical (Chen et al, 2012;
Waqar et al, 2017; Sasaki and Shimamura, 2001). Experimentation on piezoelectric
patches was begin from 1984 which lead base for this phenomenon Häsler et al
(1984). Experimentation on polyvinylidene diflouride (PVDF) specimen was done
to know the effect of frequency loading at high and low amplitude (Schmidt, 1992;
Gull et al, 2017). Various studies has been performed to harvest energy from smart
structures using human body and to drive low power electronic equipments from
these piezoelectric harvesters (Antaki et al, 1994). The effect of electromechanical
degradation is declared as one of the most important phenomenon in piezoelectricity
for characterizing smart structures, energy harvesters, integration of sensors and
actuators for structural health monitoring specially for aerospace field (Facchini et al,
2015; Gaudenzi et al, 2014). In 2014 an experimental investigation was carried out
by using piezoelectric patch over wide range of variable electrical loading conditions
to harvest energy (Xiao et al, 2014).

In designing of piezoelectric sensors and actuators mechanical quality factors play
a vital role because it indicates energy loss in the form of impedance over resistance
in a piezoelectric patch (Montero De Espinosa et al, 1992; Liu et al, 2015). With
increase in frequency the mechanical quality factor of PZT patch decrease i.e., varies
from 3700 to 930 with frequency variation of 158 kHz to 1.18 MHz (DeVoe, 2001;
Elahi et al, 2014). A new class of piezoelectric ceramics has been reported having
higher mechanical quality factor which vibrates at frequency loading of 1.7 MHz and
have greater applications in ultrasonics transducers (Butt et al, 2017; Elahi et al, 2016).
Till date the manufacturing and maintenance of piezoelectric patches is on hit and
trial method which not only takes a longer time as well as is more expensive. These
practices are not in accordance to the modern industry development, these practices
can be carried out with some computerized numerical solution software for theoretical
prediction of properties for transducers. Currently, Finite Element Analysis (FEA) is
acting as important tool for researchers for prediction of electromechanical properties
and mechanical quality factor (Gaudenzi and Bathe, 1995; Lampani et al, 2012;
Tralli et al, 2005). Modeling capabilities have been also developed which allow finite
element techniques to simulate the behavior the coupled electro-elastic behavior of
these materials with increasing accuracy both in the linear and non linear case for
3D solids, and for structural elements like plates and shells (Pasquali and Gaudenzi,
2012, 2015).

The prediction of electrical and mechanical properties plays a vital role in charac-
terizing the piezoelectric material and they are influenced by operating and testing
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conditions (Uchino et al, 2011). The aim of this research is to investigate and analyze
the degradation and mechanical quality factor of a rectangular shaped piezoelectric
patch i.e., Lead Zirconate titanate at variable frequency, resistance and mechanical
loading conditions with respect to mechanical characteristics and electronic response.
The response of peak to peak voltage generated by the piezoelectric patch and factors
effecting it are also analyzed. Experimental campaign and experimental setup are ex-
plained in Sect. 3.2. In Sect. 3.3 the experimental results are presented and discussed.
Finally, in Sect. 3.4 some final remarks are given.

3.2 Experimentation

Experimentation was performed in specifically designed test rig. The samples are
all rectangular PZT-patch of 1.20cm length, 0.60cm width and 0.3cm thickness. The
selected material is the Lead Zirconate Titanate (PZT-5A4E) because of its good
dielectric, ferroelectric and piezoelectric properties, see Table 3.1 for a resume of its
mechanical and electrical properties.

Table 3.1: Lead Zirconate Titanate (PZT-5A4E) mechanical and electrical proper-
ties

C11 121.0 ·109 Pa C12 75.4 ·109 Pa
C13 75.2∗109 Pa C33 111.0 ·109 Pa
C44 21.1 ·109 Pa d15 584.0 ·10−12 m/V
d31 −171.0 ·10−12 m/V d33 374 ·10−12 m/V
e31 −5.4 C/m2 e33 15.8 C/m2

e15 12.3 C/m2 ε11 8.1 ·109 F/m
ε33 7.346 ·109 F/m

Experimental setup was designed in such a way that load cell was mounted on the
base composite structure that was used for the construction of satellite to calculate
the force or load acting on a piezoelectric patch. Piezoelectric patches were placed
between copper electrodes that were surrounded by mica sheet to provide thermal
and electrical insulation. For the sake of thermal shocking heat filament element
was used and to analyze temperature at any instance or spot, laser temperature gun
was used. To shock piezoelectric electrically at various frequency and resistances,
function generator and decade box were used. For mechanical loading DC motor
was used with a screw mechanism to control the amount of force acting on it. To
analyze the overall result digital oscilloscope was used with data acquisition system.
We used the function generator (HAMEG-8150) to measure the performance of the
commercial PZT patch at various sinusoidal frequencies and voltage amplitudes and
a 25 N electromagnetic shaker(Model-F10/Z820WA) with a wide frequency range to
provide sinusoidal vibrating load conditions so that we could measure the dynamic
and static responses of the material. We monitored the applied load using a load cell



38 Hassan Elahi, Marco Eugeni, and Paolo Gaudenzi

(HYTEK) placed at the bottom layer of the specimen. We also used an impedance
analyzer(HP-4294A) connected with a switch box circuit to measure the impedance,
resonance, and anti-resonance frequency. We prepared an oscillator circuit to produce
a very low distortion frequency signal and used a simple energy harvesting circuit
(AC to DC converter) to measure the DC voltage across the harvester. Figure 3.1
shows a rectifier circuit consisting of four diodes connected to the piezoelectric ring.
To measure the current through the ring, we stored in a capacitor a 1 kΩ resistor
connected in series and the generated electrical potential. To avoid any noise or other
adjacent environment effects, we placed the experimental setup on an insulated bench
and monitored the dynamic and static response of the piezoelectric material on a
digital oscilloscope (GPS-1072B). Experimental setup is shown in Fig. 3.2, circuit
diagram is shown in Fig. 3.3 while Fig. 3.1 represents controlling mechanism of
mechanical load shocking to PZT patch via DC motor respectively Elahi et al (2014).
Boundary conditions of piezoelectric patch are considered to be fixed at one end and
alternating stress is applied from other end as shown in Fig. 3.4.

Mechanical stimulus is applied on alternate basis to the PZT. For this purpose
a circuit is specifically designed to alternate the stress via DC Motor by setting its
RPM and geometry of shaft as shown in Fig. 3.5. Resonating frequency ( fa) and anti-
resonating frequency ( fb) was determined by a circuit method Elahi et al (2014). The
capacitance (C) was determined via capacitance meter and the mechanical quality

Fig. 3.1: Circuit diagram for controlling the mechanical load via DC Motor

Fig. 3.2 Experimental Setup
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Fig. 3.3: Circuit diagram for experimental campaign

Fig. 3.4 Schematic diagram
of experimentation

factor (Qm) was calculated by using equations 3.1 to 3.4 Elahi et al (2014)

Qm =
Xc

R
(3.1)

As impedance is given by

Xc =
1

2π fC
(3.2)

the Mechanical Quality Factor is defined as

Qm =
1

2πδ f RC
(3.3)

where:
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Fig. 3.5 Experimental setup
for alternate mechanical stress
application

δ f = fb− fa (3.4)

3.3 Results and Discussions

During the experimentation it is observed that by increasing temperature, the peak to
peak voltage increases but by increasing frequency the output peak to peak voltage
decreases. For maximum results optimization has to be done by increasing tempera-
ture, decreasing resistance, and decreasing frequency. Experimentation is performed
at temperatures varying from 20o C to 180o C temperature, resistance varies from
0 Ω to 90 Ω, and frequency ranges from 50 Hz to 250 Hz. The results obtained are
shown in the figures of this section.

Extensive experimentation has been performed to analyze degradation of elec-
tromechanical properties. For each data point, 23 times experiments have been
performed with new piezoelectric patch of the same geometry in order to cater the
effect of polarization. These experiments were performed up 2500 stress cycles
in order to analyze the phenomenon of degradation. The response was negligible
before 300 stress cycles and it shows pretty fast response after this limit up to 1500
stress cycles. After 1498 stress cycles within given conditions material degraded it is
electromechanical properties. So for maintenance engineer it is necessary to replace
piezoelectric patches before this level of stress in described conditions.

Figure 3.6 represents the experimental data on electrical resistance shocking (0
Ω to 100 Ω) verses peak to peak voltage at various Frequency loading (50 Hz to
250 Hz) at room temperature (25oC) under stress cycles from 300 to 1500. It can be
analyzed that with increase in stress cycles, frequency and resistance the degradation
of properties starts and because of this factor the peak to peak voltage of piezoelectric
patch decreases. It exhibits a negative linear behavior.

Figure 3.7 represents the experimental data on electrical resistance shocking (0 Ω
to 100 Ω) verses peak to peak voltage at various Frequency loading (50 Hz to 250 Hz)
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Fig. 3.6 Experimental data on
Electrical Resistance Shocking
vs. Pk-Pk voltage at various
Frequency shocking at room
temperature

at 100o C temperature under stress cycles from 300 to 1500. It can be analyzed that
with increase in stress cycles, frequency and resistance the degradation of properties
starts and because of this factor the peak to peak voltage of piezoelectric patch
decreases. It exhibits some disruption between 30 Ω to 50 Ω resistance shocking
because of some irruption in polarization of piezoelectric patch.

Figure 3.8 represents the experimental data on electrical resistance shocking (0 Ω
to 100 Ω) verses peak to peak voltage at various Frequency loading (50 Hz to 250 Hz)
at 180o C temperature under stress cycles from 300 to 1500. It can be analyzed that
with increase in stress cycles, frequency and resistance the degradation of properties
starts and because of this factor the peak to peak voltage of piezoelectric patch
decreases. It exhibits some disruption between 30 Ω to 50 Ω resistance shocking
at 150 Hz and 250 Hz of frequency because of some irruption in polarization of
piezoelectric patch.

Fig. 3.7 Experimental data on
Electrical Resistance Shocking
vs Pk-Pk voltage at various
Frequency shocking at 100oC
Thermal Shocking
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Fig. 3.8 Experimental data on
Electrical Resistance Shocking
vs Pk-Pk voltage at various
Frequency shocking at 180¢C
Thermal Shocking

Fig. 3.9 Experimental data on
Mechanical Quality Factor vs.
Mechanical Load

Figure 3.9 represents the Mechanical Quality Factor as well as peak to peak voltage
generated by a piezoelectric patch increases with the increase in load (kNm−2). It
reaches up to it’s maximum value of 7900 at 150 (kNm−2) at room temperature and
at constant frequency loading of 50 Hz.

3.4 Conclusions

In this research work electromechanical degradation of piezoelectric materials is
analyzed experimentally as well as numerically. On the basis of the results obtained
following conclusions can be made. On increasing the resistance from 0 Ohm to
100 Ohm the voltage generated by piezoelectric patch i.e., Lead Zirconate Titanate
decreases at variable frequency shocking conditions from 50Hz to 250Hz. The
maximum drop of voltage generated was observed at 100 Ohm of resistance and
250 Hz of frequency. The relationship between voltage generated and electrical
resistance shocking at variable fixed frequency is negative linear behavior. Voltage
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generated goes on increasing with increase in mechanical loading with the increase in
resistance which depicts output voltage is mainly dependent on mechanical loading
rather than resistance or frequency shocking. The efficiency of piezoelectric patch
increase with mechanical loading because of the in mechanical quality factor. No
significant degradation was observed before 50 Hz of frequency shocking and 300
stress cycles. Experimentation and numerical simulations were within 10 percent of
error, FEM model is correct and good for future studies.
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Chapter 4

Hybrid-Mixed Solid-Shell Element for Stress

Analysis of Laminated Piezoelectric Shells

through Higher-Order Theories

Gennady M. Kulikov, Svetlana V. Plotnikova, and Erasmo Carrera

Abstract A geometrically exact hybrid-mixed four-node piezoelectric solid-shell
element by using the sampling surfaces (SaS) method is developed. The SaS formu-
lation is based on choosing inside the layers the arbitrary number of SaS parallel to
the middle surface and located at Chebyshev polynomial nodes in order to introduce
the displacements and electric potentials of these surfaces as basic shell unknowns.
The external surfaces and interfaces are also included into a set of SaS because of
the variational formulation. Such a choice of unknowns with the consequent use of
Lagrange polynomials in the through-thickness approximations of displacements,
strains, electric potential and electric field leads to a very compact piezoelectric
shell element formulation. To implement the efficient analytical integration through-
out the element, the enhanced assumed natural strain (ANS) method is employed.
The proposed hybrid-mixed four-node piezoelectric shell element is based on the
Hu-Washizu variational equation and exhibits a superior performance in the case of
coarse meshes. It could be useful for the three-dimensional (3D) stress analysis of
thick and thin doubly-curved laminated piezoelectric shells since the SaS formulation
gives the possibility to obtain the numerical solutions with a prescribed accuracy,
which asymptotically approach the exact solutions of piezoelectricity as the number
of SaS tends to infinity.
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4.1 Introduction

A large number of works has been carried out on 3D continuum-based finite elements
(Sze and Yao, 2000; Sze et al, 2000; Lee et al, 2003; Zheng et al, 2004; Klinkel and
Wagner, 2006, 2008; Kulikov and Plotnikova, 2008; Lentzen, 2009) that can handle
the analysis of thin laminated piezoelectric shells satisfactorily. These elements
are typically defined by two layers of nodes at the bottom and top surfaces with
three translational and one electric degrees of freedom (DOF) per node and known
as 6-parameter piezoelectric solid-shell elements because of the total number of
translational DOF. Unfortunately, the 6-parameter solid-shell element formulation
based on the complete 3D constitutive equations of piezoelectricity is deficient
because thickness locking occurs. This is due to the fact that the linear displacement
field in the thickness direction results in a constant transverse normal strain, which
in turn causes artificial stiffening of the shell element in the case of non-vanishing
Poisson’s ratios. To prevent thickness locking, the 3D constitutive equations have
to be modified employing the generalized plane stress conditions (Lee et al, 2003;
Kulikov and Plotnikova, 2008). The hybrid stress method (Sze and Yao, 2000; Sze
et al, 2000) in which the transverse normal stress is constant through the shell
thickness and the enhanced assumed strain method in which the transverse normal
strain is enriched in the thickness direction by a linear term (Zheng et al, 2004;
Klinkel and Wagner, 2006, 2008; Lentzen, 2009) can be also utilized.

An efficient way of using the complete 3D constitutive equations for the analysis
of piezoelectric shells is to employ the first-order equivalent single layer (ESL)
theory with seven translational DOF (Kulikov and Plotnikova, 2010, 2011a). The
7-parameter ESL shell model is based on choosing six displacements and two electric
potentials of the bottom and top surfaces and a transverse displacement of the middle
surface as basic shell unknowns. Such a model is optimal with respect to the number
of DOF. The more general 9-parameter ESL shell model is based on considering the
external and middle surfaces and choosing the displacements and electric potentials of
these surfaces as shell unknowns (Kulikov and Plotnikova, 2011b, 2015). Such choice
of unknowns with the consequent use of Lagrange polynomials of the second order in
the through-thickness approximations of displacements, strains, electric potential and
electric field leads to a robust piezoelectric shell formulation. Moreover, this approach
allows the derivation of the objective strain-displacement equations, which exactly
represent all rigid-body shell motions in any convected curvilinear coordinate system.
Taking into account that the displacement vectors of reference surfaces are resolved
in the middle surface frame, the higher-order shell formulation with nine DOF is
very promising for developing the exact geometry or geometrically exact (GeX)
piezoelectric solid-shell elements. The term GeX implies that the parametrization of
the middle surface is known a priori and, therefore, the coefficients of the first and
second fundamental forms are taken exactly at element nodes.

Note that the above solid-shell elements (Sze and Yao, 2000; Sze et al, 2000;
Lee et al, 2003; Zheng et al, 2004; Klinkel and Wagner, 2006, 2008; Kulikov and
Plotnikova, 2008; Lentzen, 2009; Kulikov and Plotnikova, 2010, 2011a,b, 2015)
do not describe properly the transverse stresses in a laminated piezoelectric shell.
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To calculate them a post-processing stress recovery technique has to be employed.
However, to evaluate the distribution of transverse stresses through the thickness
of the laminated piezoelectric shell, higher-order layer-wise (LW) models have
to be utilized. Robust GeX nine-node piezoelectric shell elements with a variable
number of DOF per node have been developed in contributions (Carrera et al, 2011,
2014; Cinefra et al, 2015; Carrera and Valvano, 2017) through Carrera’s unified
formulation (Carrera, 1999, 2003). The shear and membrane locking phenomena
(Carrera et al, 2014; Cinefra et al, 2015; Carrera and Valvano, 2017) are prevented
by using the MITC technique (Bathe and Dvorkin, 1986; Bathe et al, 2003). These
finite elements exhibit an excellent performance and can be recommended for the 3D
stress analysis of piezoelectric shells. At the same time, Cinefra et al (2015) report
that the piezoelectric shell element based on the fourth-order LW theory does not
provide the continuity of the transverse normal stress and electric displacement on
interfaces especially in the case of thin shells.

The present paper is intended to overcome the aforementioned difficulties and
develop a piezoelectric solid-shell element that makes it possible to evaluate all
stress and electric displacement components effectively for thick and very thin
shells. To solve such a problem, the GeX four-node solid-shell element using the
sampling surface (SaS) method (Kulikov and Plotnikova, 2013) is proposed. The
SaS formulation is based on choosing inside the nth layer In not equally spaced
surfacesΩ(n)1, Ω(n)2, . . . , Ω(n)In parallel to the middle surface in order to introduce the
displacements and electric potentials of these surfaces as basic shell variables, where
In ≥ 3. Such choice of unknowns with the consequent use of Lagrange polynomials of
degree In−1 in the assumed distributions of displacements, strains, electric potential
and electric field through the thickness yields a very compact piezoelectric shell
formulation. Recently, the SaS formulation has been employed to analyze analytically
the electroelastic and thermoelectroelastic stress fields in laminated and functionally
graded shells (Kulikov and Plotnikova, 2014; Kulikov et al, 2015; Kulikov and
Plotnikova, 2017). However, the piezoelectric shell elements via the SaS technique
have not been developed yet.

The origin of the SaS concept can be traced back to contributions (Kulikov, 2001;
Kulikov and Carrera, 2008) in which three, four and five equally spaced SaS are
utilized. The SaS formulation with an arbitrary number of equispaced SaS is con-
sidered in (Kulikov and Plotnikova, 2011d). The more general approach with the
SaS located at Chebyshev polynomial nodes (roots of the Chebyshev polynomial)
(Bakhvalov, 1977) was developed later (Kulikov and Plotnikova, 2013, 2014) be-
cause the SaS formulation with equispaced SaS does not work properly with the
higher-order Lagrange interpolation. The use of the Chebyshev polynomial nodes
improves significantly the behavior of the higher-degree Lagrange polynomials since
such choice makes possible to minimize uniformly the error due to the Lagrange in-
terpolation. This fact gives an opportunity to calculate the displacements and stresses
with a prescribed accuracy employing the sufficiently large number of SaS. Thus,
the solutions based on the SaS concept can asymptotically approach the 3D exact
solutions of piezoelectricity as the number of SaS tends to infinity.
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Here, the GeX hybrid-mixed four-node piezoelectric solid-shell element formula-
tion is developed with the SaS located inside the layers at Chebyshev polynomial
nodes (Kulikov and Plotnikova, 2013). To circumvent shear and membrane lock-
ing, the assumed interpolations of displacement-independent strains and stresses
are utilized through the Hu-Washizu variational principle. Such an approach ex-
hibits an excellent performance in the case of coarse mesh configurations and has
computational advantages compared to conventional isoparametric hybrid-mixed
piezoelectric solid-shell element formulations (Sze and Yao, 2000; Sze et al, 2000;
Lee et al, 2003; Zheng et al, 2004; Klinkel and Wagner, 2006, 2008), because it
reduces the computational cost of the numerical integration in the evaluation of the
element stiffness matrix. This is due to the fact that all element matrices require
only direct substitutions, i.e., no expensive numerical matrix inversion is needed.
Second, the GeX four-node solid-shell element formulation is based on the effective
analytical integration throughout the finite element by using the enhanced ANS
method (Kulikov and Plotnikova, 2015, 2011c). The latter has a great meaning for
the numerical modeling of doubly-curved shells with variable curvatures.

4.2 Sampling Surface Shell Formulation

Consider a laminated shell of the thickness h. Let the middle surface Ω be described
by orthogonal curvilinear coordinates θ1 and θ2, which refer to the lines of principal
curvatures of its surface. The coordinate θ3 is oriented along the unit vector e3(θ1, θ2)
normal to the middle surface. We introduce the following notations: eα(θ1, θ2) are
the orthonormal base vectors of the middle surface; Aα(θ1, θ2) are the coefficients
of the first fundamental form; kα(θ1, θ2) are the principal curvatures of the middle
surface; cα = 1+ kαθ3 are the components of the shifter tensor; c(n)in

α (θ1, θ2) are the
components of the shifter tensor at SaS defined as

c(n)in
α = cα(θ(n)in

3 ) = 1+ kαθ
(n)in
3 , (4.1)

where θ(n)in
3 are the transverse coordinates of the SaS inside the nth layer given by

θ(n)1
3 = θ[n−1]

3 , θ(n)In
3 = θ[n]

3 , (4.2)

θ(n)mn
3 =

1
2

(θ[n−1]
3 + θ[n]

3 )− 1
2

hn cos
(
π

2mn−3
2(In−2)

)
, (4.3)

in which θ[n−1]
3 and θ[n]

3 are the transverse coordinates of interfaces Ω[n−1] and Ω[n]

depicted in Fig. 4.1; hn = θ
[n]
3 −θ[n−1]

3 is the thickness of the nth layer. Here and in the
following derivations, the index n identifies the correspondence of any quantity to the
nth layer and runs from 1 to N, where N is the number of layers; NSaS =

∑
n In−N +1

is the total number of SaS; the indices in and introduced later jn, kn identify the
correspondence of any quantity to the SaS of the nth layer and run from 1 to In; the
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Fig. 4.1: Geometry of the laminated shell

index mn identifies the belonging of any quantity to the inner SaS of the nth layer
and runs from 2 to In − 1; Latin indices i, j, k, l range from 1 to 3; Greek indices
α, β range from 1 to 2.

Remark 4.1. It is seen from Eq. (4.3) that the transverse coordinates of inner SaS
θ(n)in

3 coincide with the coordinates of Chebyshev polynomial nodes This fact has a
great meaning for the convergence of the SaS method

The through-thickness SaS approximations (Kulikov and Plotnikova, 2013) can
be written as[

u(n)
i ε(n)

i j σ
(n)
i j ϕ

(n) E(n)
i

]
=

∑
in

L(n)in
[
u(n)in

i ε(n)in
i j σ(n)in

i j ϕ(n)in E(n)in
i

]
, (4.4)

where u(n)
i , ε

(n)
i j , σ

(n)
i j , ϕ

(n), E(n)
i are the displacements, strains, stresses, electric po-

tential and electric field of the nth layer; u(n)in
i (θ1, θ2), ε(n)in

i j (θ1, θ2), σ(n)in
i j (θ1, θ2),

ϕ(n)in(θ1, θ2) and E(n)in
i (θ1, θ2) are the displacements, strains, electric potential and

electric field of SaS of the nth layer Ω(n)in ; L(n)in(θ3) are the Lagrange basis polyno-
mials of degree In−1 related to the nth layer:

L(n)in =
∏
jn�in

θ3− θ(n) jn
3

θ(n)in
3 − θ(n) jn

3

. (4.5)

In the orthonormal basis ei, the relations between strains and displacements of
SaS of the nth layer are written as
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2ε(n)in
αβ =

1

c(n)in
β

λ(n)in
αβ +

1

c(n)in
α

λ(n)in
βα ,

2ε(n)in
α3 =

1

c(n)in
α

λ(n)in
3α +β

(n)in
α , ε(n)in

33 = β(n)in
3 , (4.6)

where λ(n)in
iα (θ1, θ2) are the strain parameters of SaS of the nth layer; β(n)in

i (θ1, θ2) are
the values of the derivative of displacements with respect to thickness coordinate on
SaS:

λ(n)in
αα =

1
Aα

u(n)in
α,α +Bαu(n)in

β + kαu(n)in
3 for β � α,

λ(n)in
βα =

1
Aα

u(n)in
β,α −Bαu(n)in

α for β � α,

λ(n)in
3α =

1
Aα

u(n)in
3,α − kαu(n)in

α , Bα =
1

AαAβ
Aα,β for β � α, (4.7)

β (4.8)

where the symbol (. . .),i stands for the partial derivatives with respect to coordinates
θi; M(n) jn = L(n) jn

,3 are the derivatives of Lagrange basis polynomials, which are
calculated at the SaS as follows:

M(n) jn (θ(n)in
3 ) =

1

θ
(n) jn
3 − θ(n)in

3

∏
kn�in, jn

θ(n)in
3 − θ(n)kn

3

θ
(n) jn
3 − θ(n)kn

3

for jn � in,

M(n)in (θ(n)in
3 ) = −

∑
jn� in

M(n) jn (θ(n)in
3 ) . (4.9)

In the orthonormal basis ei, the relations between the electric field and electric
potentials of the SaS of the nth layer (Kulikov and Plotnikova, 2013) are expressed as

E(n)in
α = − 1

Aαc(n)in
α

ϕ(n)in
,α ,

E(n)in
3 = −

∑
jn

M(n) jn (θ(n)in
3 )ϕ(n) jn . (4.10)

4.3 Hu-Washizu Variational Equation

The proposed hybrid-mixed piezoelectric solid-shell element is based on the modified
Hu-Washizu variational equation of piezoelectricity in which displacements, strains,
stresses and electric potential are utilized as independent variables (Kulikov and
Plotnikova, 2015):
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δJ = 0, (4.11)

J =
�

Ω

∑
n

θ[n]
3∫

θ[n−1]
3

[
1
2
η(n)

i j C(n)
i jklη

(n)
kl −E(n)

k e(n)
ki jη

(n)
i j −

1
2

E(n)
i ε

(n)
i j E(n)

j

− σ(n)
i j

(
η(n)

i j −ε(n)
i j

)]
dV −W, (4.12)

where dV = A1A2c1c2dθ1dθ2dθ3 is the infinitesimal volume element; ε(n)
i j and η(n)

i j
are the displacement-dependent and displacement-independent strains of the nth
layer; C(n)

i jkl, e(n)
ki j and ε(n)

i j are the elastic, piezoelectric and dielectric constants of the
nth layer; W is the work done by external electromechanical loads. As usual, the
summation on repeated Latin indices is implied.

Following the SaS technique (4.4), we introduce the next assumption of the hybrid-
mixed solid-shell element formulation. Assume that the displacement-independent
strains are distributed through the thickness of the nth layer by

η(n)
i j =

∑
in

L(n)inη(n)in
i j , (4.13)

where η(n)in
i j (θ1, θ2) are the displacement-independent strains of SaS of the nth layer.

Substituting the through-thickness distributions (4.4) and (4.13) in Eq. (4.12) and
introducing

Λ(n)in jn =

θ[n]
3∫

θ[n−1]
3

L(n)in L(n) jnc1c2dθ3, (4.14)

one can write the Hu-Washizu mixed functional in terms of SaS variables as

J =
�

Ω

∑
n

∑
in

∑
jn

Λ(n)in jn

[
1
2

(η(n)in )TC(n)η(n) jn − (E(n)in )Te(n)η(n) jn

− 1
2

(E(n)in )Tε(n)E(n) jn − (σ(n)in )T(η(n) jn −ε(n) jn )
]
A1A2dθ1dθ2−W, (4.15)

where
ε(n)in =

[
ε(n)in

11 ε(n)in
22 ε(n)in

33 2ε(n)in
12 2ε(n)in

13 2ε(n)in
23

]T
,

η(n)in =
[
η(n)in

11 η(n)in
22 η(n)in

33 2η(n)in
12 2η(n)in

13 2η(n)in
23

]T
,

σ(n)in =
[
σ(n)in

11 σ(n)in
22 σ(n)in

33 σ(n)in
12 σ(n)in

13 σ(n)in
23

]T
,

E(n)in =
[
E(n)in

1 E(n)in
2 E(n)in

3

]T
,
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C(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(n)
1111 C(n)

1122 C(n)
1133 C(n)

1112 0 0
C(n)

2211 C(n)
2222 C(n)

2233 C(n)
2212 0 0

C(n)
3311 C(n)

3322 C(n)
3333 C(n)

3312 0 0
C(n)

1211 C(n)
1222 C(n)

1233 C(n)
1212 0 0

0 0 0 0 C(n)
1313 C(n)

1323
0 0 0 0 C(n)

2313 C(n)
2323

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 e(n)

113 e(n)
123

0 0 0 0 e(n)
213 e(n)

223
e(n)

311 e(n)
322 e(n)

333 e(n)
312 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

ε(n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ε(n)

11 ε
(n)
12 0

ε(n)
21 ε

(n)
22 0

0 0 ε(n)
33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4.16)

4.4 Hybrid-Mixed Solid-Shell Element Formulation

The finite element formulation is based on a simple interpolation of the shell via GeX
four-node piezoelectric solid-shell elements

u(n)in
i =

∑
r

Nru
(n)in
ir , ϕ(n)in =

∑
r

Nrϕ
(n)in
r , (4.17)

where Nr (ξ1, ξ2) are the bilinear shape functions of the element; u(n)in
ir and ϕ(n)in

r are
the displacements and electric potentials of SaS Ω(n)in at element nodes; ξ1, ξ2 are
the normalized curvilinear coordinates θ1, θ2 (Fig. 4.2); the nodal index r runs from
1 to 4.

To implement the efficient analytical integration throughout the finite element, the
enhanced ANS method (Kulikov and Plotnikova, 2011c) is adopted

ε(n)in =
∑

r

Nrε
(n)in
r , (4.18)

ε(n)in
r =

[
ε(n)in

11r ε(n)in
22r ε(n)in

33r 2ε(n)in
12r 2ε(n)in

13r 2ε(n)in
23r

] T
,

E
(n)in
=

∑
r

NrE
(n)in
r , (4.19)

E
(n)in
r =

[
E(n)in

1r E(n)in
2r E(n)in

3r

] T
,

where ε(n)in
i jr and E(n)in

ir are the strains and electric field of SaS of the nth layer at
element nodes.
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Fig. 4.2: Biunit square in (ξ1, ξ2)-space mapped into the middle surface of the GeX
four-node solid-shell element in (x1, x2, x3)-space

Remark 4.2. The main idea of such approach can be traced back to the ANS method
developed by many scientists for the isoparametric finite element formulation (Bathe
and Dvorkin, 1986; Hughes and Tezduyar, 1981; Macneal, 1982; Park and Stanley,
1986; Ko et al, 2017; Betsch and Stein, 1995). In contrast with above formulation,
we treat the term ANS in a broader sense. In the proposed GeX four-node solid-shell
element formulation, all components of the displacement-dependent strain tensor
and electric field are assumed to vary bilinearly throughout the biunit square in
(ξ1, ξ2)-space. This implies that instead of the expected non-linear interpolations due
to Eqs. (4.6), (4.7) and (4.10) the more suitable bilinear interpolations (4.18) and
(4.19) are utilized.

The strain vectors of the SaS at element nodes can be expressed as

ε(n)in
r = B

(n)in
ur U , (4.20)
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where B
(n)in
ur are the constant inside the finite element matrices of order 6×12NSaS;

U is the element displacement vector given by

U =
[
UT

1 UT
2 UT

3 UT
4

]T
,

Ur =

[(
u

[0]
r

)T (
u

(1)2
r

)T
. . .

(
u

(1)I1−1
r

)T (
u

[1]
r

)T (
u

(2)2
r

)T

. . .
(
u

(N−1)IN−1−1
r

)T (
u

[N−1]
r

)T (
u

(N)2
r

)T
. . .

(
u

(N)IN−1
r

)T (
u

[N]
r

)T
]T
,

u
[m]
r =

[
u[m]

1r u[m]
2r u[m]

3r

]T
, u

(n)mn
r =

[
u(n)mn

1r u(n)mn
2r u(n)mn

3r

]T
, (4.21)

where u[m]
ir are the displacements of external surfaces and interfaces at element nodes

(m = 0, 1, ..., N).
The electric field vectors of SaS at element nodes are

E
(n)in
r = −B

(n)in
ϕr Φ, (4.22)

where B
(n)in
ϕr are the constant inside the finite element matrices of order 3×4NSaS; Φ

is the element electric field vector defined as

Φ =
[
ΦT

1 Φ
T
2 Φ

T
3 Φ

T
4

] T
,

Φr =
[
ϕ[0]

r ϕ(1)2
r . . . ϕ

(1)I1−1
r ϕ[1]

r ϕ(2)2
r

... ϕ
(N−1)IN−1−1
r ϕ[N−1]

r ϕ(N)2
r . . . ϕ

(N)IN−1
r ϕ[N]

r

]T
, (4.23)

where ϕ[m]
r are the electric potentials of external surfaces and interfaces at element

nodes.
From a computational point of view, it is convenient to write the ANS interpolation

(4.18) in the following form:

ε(n)in =
∑
r1,r2

(ξ1)r1 (ξ2)r2 ε(n)in
r1r2 , ε(n)in

r1r2 = B
(n)in
ur1r2U, (4.24)

where
ε(n)in

r1r2 =
[
ε(n)in

11r1r2
ε(n)in

22r1r2
ε(n)in

33r1r2
2ε(n)in

12r1r2
2ε(n)in

13r1r2
2ε(n)in

23r1r2

] T
,

B
(n)in
u00 =

1
4

(
B

(n)in
u1 +B

(n)in
u2 +B

(n)in
u3 +B

(n)in
u4

)
,

B
(n)in
u01 =

1
4

(
B

(n)in
u1 +B

(n)in
u2 −B

(n)in
u3 −B

(n)in
u4

)
,

B
(n)in
u10 =

1
4

(
B

(n)in
u1 −B

(n)in
u2 −B

(n)in
u3 +B

(n)in
u4

)
,
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B
(n)in
u11 =

1
4

(
B

(n)in
u1 −B

(n)in
u2 +B

(n)in
u3 −B

(n)in
u4

)
. (4.25)

Here, and below the indices r1 and r2 run from 0 to 1. The same concerns the ANS
interpolation (4.19), that is,

E(n)in =
∑
r1,r2

(ξ1)r1 (ξ2)r2 E
(n)in
r1r2 , with E

(n)in
r1r2 = −B

(n)in
ϕr1r2Φ, (4.26)

where
E

(n)in
r1r2 =

[
E(n)in

1r1r2
E(n)in

2r1r2
E(n)in

3r1r2

] T
,

B
(n)in
ϕ00 =

1
4

(
B

(n)in
ϕ1 +B

(n)in
ϕ2 +B

(n)in
ϕ3 +B

(n)in
ϕ4

)
,

B
(n)in
ϕ01 =

1
4

(
B

(n)in
ϕ1 +B

(n)in
ϕ2 −B

(n)in
ϕ3 −B

(n)in
ϕ4

)
,

B
(n)in
ϕ10 =

1
4

(
B

(n)in
ϕ1 −B

(n)in
ϕ2 −B

(n)in
ϕ3 +B

(n)in
ϕ4

)
,

B
(n)in
ϕ11 =

1
4

(
B

(n)in
ϕ1 −B

(n)in
ϕ2 +B

(n)in
ϕ3 −B

(n)in
ϕ4

)
. (4.27)

To overcome shear and membrane locking and introduce no spurious zero energy
modes, the robust displacement-independent strain and stress interpolations are
utilized:

η(n)in =
∑

r1+r2<2

(ξ1)r1 (ξ2)r2 Qr1r2η
(n)in
r1r2 , (4.28)

η(n)in
00 =

[
ψ(n)in

1 ψ(n)in
2 ψ(n)in

3 ψ(n)in
4 ψ(n)in

5 ψ(n)in
6

] T
,

η(n)in
01 =

[
ψ(n)in

7 ψ(n)in
9 ψ(n)in

11

] T
, η(n)in

10 =
[
ψ(n)in

8 ψ(n)in
10 ψ(n)in

12

] T
,

σ(n)in =
∑

r1+r2<2

(ξ1)r1 (ξ2)r2 Qr1r2σ
(n)in
r1r2 , (4.29)

σ(n)in
00 =

[
μ(n)in

1 μ(n)in
2 μ(n)in

3 μ(n)in
4 μ(n)in

5 μ(n)in
6

]T
,

σ(n)in
01 =

[
μ(n)in

7 μ(n)in
9 μ(n)in

11

] T
, σ(n)in

10 =
[
μ(n)in

8 μ(n)in
10 μ(n)in

12

] T
,

where Qr1r2 are the projective matrices given by

Q00 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q01 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Q10 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.30)
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Remark 4.3. The assumed interpolations (4.28) and (4.29) provide a correct rank of
the element stiffness matrix.

Substituting interpolations (4.17), (4.24), (4.26), (4.28) and (4.29) in the Hu-
Washizu variational equation (4.11) and (4.15), replacing the metric product A1A2
in surface integrals by its value at the element center and integrating analytically
throughout the finite element, the following equilibrium equations of the GeX hybrid-
mixed four-node solid-shell element are obtained:

η(n)in
r1r2 =QT

r1r2
B

(n)in
ur1r2U for r1+ r2 < 2, (4.31)

σ(n)in
r1r2 =QT

r1r2

(
C(n)Qr1r2η

(n)in
r1r2 + (e(n))TB

(n)in
ϕr1r2Φ

)
for r1+ r2 < 2, (4.32)

∑
n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(B(n)in
ur1r2 )TQr1r2σ

(n) jn
r1r2 = Fu, (4.33)

∑
n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(B(n)in
ϕr1r2 )T

(
e(n)Qr1r2η

(n) jn
r1r2

−ε(n)B
(n) jn
ϕr1r2Φ

)
= Fϕ, (4.34)

where Fu and Fϕ are the element-wise mechanical and electric surface vectors.
Eliminating vectors η(n)in

r1r2 and σ(n)in
r1r2 from Eqs. (4.31)-(4.34), one arrives at the

system of linear equations [
Kuu Kuϕ
Kϕu Kϕϕ

] [
U

Φ

]
=

[
Fu
Fϕ

]
, (4.35)

where Kuu, Kuϕ, Kϕu =KT
uϕ and Kϕϕ are the mechanical, piezoelectric and dielectric

stiffness matrices defined as

Kuu =
∑

n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ur1r2

)T
Qr1r2QT

r1r2
C(n)Qr1r2 QT

r1r2
B

(n) jn
ur1r2 ,

Kuϕ =
∑

n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ur1r2

)T
Qr1 r2QT

r1 r2
(e(n))TB

(n) jn
ϕr1r2 ,

Kϕϕ = −
∑

n

∑
in

∑
jn

Λ(n)in jn
∑

r1+r2<2

1
3r1+r2

(
B

(n)in
ϕr1r2

)T
ε(n)B

(n) jn
ϕr1r2 . (4.36)

Remark 4.4. It is worth noting that all stiffness matrices are evaluated without the
expensive numerical matrix inversion that is impossible in available isoparametric
hybrid-mixed finite element formulations.
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4.5 Numerical Examples

The performance of the developed GeX four-node piezoelectric solid-shell element
denoted by GeXPS4 element is evaluated with the help of several exact solutions of
piezoelectricity extracted from the literature (Heyliger, 1997; Chen et al, 2001).

4.5.1 Three-Layer Piezoelectric Cylindrical Shell

Consider a simply supported three-layer cylindrical shell with equal ply thicknesses
under the imposed transverse deformation on the top surface

u+3 = u0 sin
πθ1

L
cos2θ2, (4.37)

where L is the length of the shell and u0 = 10−8 m. The both outer layers are composed
of PZT-4 with the material properties presented in Table 4.1 and Heyliger (1997).
The middle layer is made of fictitious material (Heyliger, 1997) with elastic constants
exactly half of PZT-4 and the piezoelectric and dielectric constants exactly double of
those of PZT-4. The bottom and top surfaces are assumed to be electrically grounded
and traction free.

Table 4.1: Elastic, piezoelectric and dielectric properties of materials∗

Material PZT-4 PZT-4 BaTiO3
(Heyliger, 1997) (Dunn and Taya, 1994) (Dunn and Taya, 1994)

C1111, GPa 139.0 139.0 150.0
C2222, GPa 139.0 139.0 150.0
C3333, GPa 115.0 115.0 146.0
C1122, GPa 77.8 77.8 66.0
C1133, GPa 74.3 74.3 66.0
C2233, GPa 74.3 74.3 66.0
C1313, GPa 25.6 25.6 44.0
C2323, GPa 25.6 25.6 44.0
C1212, GPa 30.6 30.6 42.0
e311, C/m2 -5.2 -5.2 -4.35
e322, C/m2 -5.2 -5.2 -4.35
e333, C/m2 15.08 15.1 17.5
e113, C/m2 12.72 12.7 11.4
e223, C/m2 12.72 12.7 11.4
ε11/ε0 1475 730 1115
ε22/ε0 1475 730 1115
ε33/ε0 1300 635 1260

* Vacuum permittivity ε0=8.854 pF/m
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Due to symmetry of the problem, only one octant of the shell (L/2 ≤ θ1 ≤ L,
0 ≤ θ2 ≤ π/2) is modeled by a regular mesh consisting of 48× 96 GeXPS4
elements. To compare the results with the exact solution of Heyliger (1997), we take
L = R+ = 0.01m and introduce the scaled variables as functions of the dimensionless
thickness coordinate as follows:

ū1 = 1011×u1(L, 0, z), ū3 = 1011×u3(L/2, 0, z),
σ̄11 = 10−3×σ11(L/2, 0, z), σ̄22 = 10−3×σ22(L/2, 0, z),
σ̄13 = 10−3×σ13(L, 0, z), σ̄23 = 10−3×σ23(L/2, π/4, z),
σ̄33 = 10−3×σ33(L/2, 0, z),
ϕ̄ = ϕ (L/2, 0, z), D̄3 = 106×D3(L/2, 0, z), z = θ3/h ,

(4.38)

where R+ is the radius of the top cylindrical surface.
Tables 4.2 and 4.3 list the results of the convergence study due to increasing the

number of SaS In inside each layer for two values of the slenderness ratio S = R+/h.
A comparison with the exact SaS solution (Kulikov and Plotnikova, 2013) is also
given. Fig. 4.3 shows the distributions of displacements, transverse stresses, electric
potential and electric displacement through the thickness for different slenderness
ratios by taking five SaS for each layer. These results demonstrate convincingly the
high potential of the proposed GeX hybrid-mixed solid-shell element formulation.
This is due to the facts that the boundary conditions on external surfaces for the
transverse stresses and the continuity conditions on interfaces for the transverse
stresses and electric displacement are satisfied for thick and thin shells properly.

The results of the convergence study due to mesh refinement are presented in
Fig. 4.4. The analytical answer is provided by the exact SaS solution (Kulikov and
Plotnikova, 2013). In this study, we consider five regular meshes with 3×6, 6×12,
12×24, 24×48 and 48×96 finite elements, which are characterized by the mesh
parameter k running from 1 to 5. It is seen that the GeXPS4 element behaves well
even in the case of coarse meshes except for the transverse normal stress for thin
shells.

Table 4.2: Results for a three-layer cylindrical shell with S = 2 under mechanical
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄22(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 -251.6 740.2 2.849 -136.3 -56.80 -40.70 40.48 15.22
4 -254.6 742.2 2.851 -131.2 -57.71 -40.98 42.50 16.11
5 -254.3 742.1 2.851 -127.9 -57.57 -41.20 42.23 15.98
Exact -254.3 742.1 2.851 -127.7 -57.59 -41.21 42.25 15.98

Next, we study the same three-layer piezoelectric cylindrical shell subjected to
electric loading on the top surface whereas the bottom surface is electrically grounded

ϕ− = 0, ϕ+ = ϕ0 sin
πθ1

L
cos2θ2, (4.39)
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Fig. 4.3: Through-thickness distributions of displacements, transverse shear
stresses, electric potential and electric displacement for a three-layer cylindri-
cal shell subjected to mechanical loading for I1 = I2 = I3 = 5: GeXPS4 element
(—), exact SaS solution (Kulikov and Plotnikova, 2013) (◦) and Heyliger’s exact
3D solution (Heyliger, 1997) (�)
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Fig. 4.4: Convergence study due to mesh refinement for a three-layer cylindrical
shell subjected to mechanical loading for I1 = I2 = I3 = 5; the reference solution (—)
is provided by the exact SaS solution (Kulikov and Plotnikova, 2013)
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Table 4.3: Results for a three-layer cylindrical shell with S = 10 under mechanical
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄22(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 -139.7 1026. 0.1780 -1.784 -5.352 -3.168 1.691 -7.452
4 -139.7 1026. 0.1779 -1.591 -5.445 -3.216 1.659 -7.444
5 -139.7 1026. 0.1779 -1.574 -5.443 -3.220 1.656 -7.445
Exact -139.7 1026. 0.1779 -1.564 -5.440 -3.221 1.656 -7.449

where ϕ0 = 10V. The external surfaces are assumed to be traction free. Here, again
one octant of the shell is modeled by a regular mesh with 48×96 GeXPS4 elements.

Table 4.4 lists the results of the convergence study for the moderately thick
shell by increasing the number of SaS In inside each layer. The obtained results
are compared with the exact SaS solution (Kulikov and Plotnikova, 2013). Figure
4.5 shows the through-thickness distributions of displacements, transverse stresses,
electric potential and electric displacement (4.38) for different slenderness ratios S
by choosing five SaS for each layer. It is seen that the boundary conditions on bottom
and top surfaces and the continuity conditions at interfaces for transverse stresses
and electric displacement are satisfied again correctly.

Table 4.4: Results for a three-layer cylindrical shell with S = 10 under electric
loading

In ū1(−0.5) ū3(−0.5) ϕ̄ (0) σ̄11(−0.5) σ̄13(0) σ̄23(0) σ̄33(0) D̄3(0)

3 216.2 1664. 5.239 -12.12 -9.910 -5.866 -1.527 -221.2
4 216.1 1664. 5.239 -12.14 -10.11 -5.979 -1.535 -221.1
5 216.1 1664. 5.239 -12.14 -10.11 -5.977 -1.535 -221.1
Exact 216.2 1665. 5.239 -12.15 -10.11 -5.979 -1.545 -221.2

4.5.2 Three-Layer Piezoelectric Spherical Shell

Consider a three-layer piezoelectric spherical shell with ply thicknesses [0.4h/0.2h/0.4h]
subjected to a localized uniform pressure symmetrically distributed on the top surface
by

p+3 = −p0 for 0 ≤ θ1 ≤ θ0, π− θ0 ≤ θ1 ≤ π and 0 ≤ θ2 ≤ 2π, (4.40)

where θ1 and θ2 are the spherical coordinates of the middle surface; p0 = 1N/m2 and
θ0 = arccos(0.75). The bottom and top layers are made of the BaTiO3 whereas the
middle layer of the PZT-4 with the material properties given in Table 4.4 and (Dunn
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Fig. 4.5: Through-thickness distributions of displacements, transverse shear
stresses, electric potential and electric displacement for a three-layer cylindri-
cal shell subjected to electric loading for I1 = I2 = I3 = 5: GeXPS4 element (—) and
exact SaS solution (Kulikov and Plotnikova, 2013) (◦)
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Table 4.5: Results for a three-layer piezoelectric spherical shell with R/h = 1.5

In ū1(0.5) ū3(0.5) ϕ̄ (0.5) σ̄11(0.5) σ̄22(0.5) σ̄13(0) σ̄33(0) D̄3(0)

3 -0.7592 -3.572 4.131 -10.98 -9.862 -0.5407 -4.367 -1.062
5 -0.7655 -3.582 4.119 -10.78 -9.725 -0.5491 -4.370 -1.097
7 -0.7655 -3.582 4.120 -10.79 -9.738 -0.5490 -4.370 -1.096
9 -0.7655 -3.582 4.120 -10.79 -9.738 -0.5490 -4.370 -1.096

and Taya, 1994). This problem is a good benchmark to test the proposed analytical
integration scheme because in the literature an exact 3D solution is available (Chen
et al, 2001).

Owing to symmetry, we consider a part of the shell (θ∗ ≤ θ1 ≤ 90◦, 0 ≤ θ2 ≤
10◦) depicted in Fig. 4.6, which is modeled by a fine mesh with 450×1 GeXPS4
elements to describe correctly the boundary conditions on external surfaces and the
continuity conditions at interfaces for transverse components of stresses and electric
displacement, where θ∗ = 0.001◦. To analyze the results efficiently, we introduce the
following dimensionless variables as functions of the thickness coordinate:

ū1 = 10c44u1(π/6, 0, z)/RS p0, ū3 = 10c44u3(π/6, 0, z)/RS p0,
σ̄11 = 10σ11(π/6, 0, z)/S p0, σ̄22 = 10σ22(π/6, 0, z)/S p0,
σ̄13 = 10σ13(π/6, 0, z)/p0, σ̄33 = σ33(π/6, 0, z)/p0,
ϕ̄ = 100e33ϕ(π/6, 0, z)/Rp0, D̄3 = 10S c44D3(π/6, 0, z)/e33 p0, z = θ3/h,

(4.41)

where S = R/h is the slenderness ratio; R = 1m is the radius of the middle surface;
c44 = 44.0GPa and e33 = 17.5C/m2 are the representative moduli.

The data listed in Table 4.5 show that the GeXPS4 element allows reproducing
the 3D solution of piezoelectricity (Chen et al, 2001) for a thick spherical shell with a
high accuracy by using the sufficiently large number of SaS inside the layers. Figures

Fig. 4.6 A part of the three-
layer piezoelectric spherical
shell modeled by regular k×1
meshes



64 Gennady M. Kulikov, Svetlana V. Plotnikova, and Erasmo Carrera

Fig. 4.7: Through-thickness distributions of displacements, electric potential and
electric displacement for a three-layer piezoelectric spherical shell for I1 = I2 = I3 =

9: GeXPS4 element (—) and exact 3D solution (Chen et al, 2001) (◦)

4.7 and 4.8 display the distributions of displacements, electric potential, electric
displacement and stresses (4.41) through the thickness for various slenderness ratios
by choosing nine SaS inside each layer. A comparison with the exact 3D solution
(Chen et al, 2001) is also presented. One can see that the results for a thick shell are
very close.

Figure 4.9 shows the results of the convergence study through the use of the
normalized transverse displacement, electric potential and stresses for thick and thin
shells with nine SaS for each layer. The regular 30k×1 meshes are utilized with the
mesh parameter k that runs from 1 to 5. The reference values for the displacement,
electric potential and stresses are listed in Table 4.6. They have been obtained by
using a fine 450×1 mesh. As can be seen, the GeXPS4 element demonstrates again
good convergence characteristics.
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Table 4.6: Reference values of basic variables for a three-layer piezoelectric spheri-
cal shell for I1 = I2 = I3 = 9 by using a fine 450×1 mesh

S ūref
3 (0.5) ϕ̄ref (0.5) σ̄ref

11 (0.5) σ̄ref
33 (0)

1.5 -3.582 4.120 -10.79 -0.5490
4 -3.486 4.607 -8.748 -0.4539
10 -3.638 2.970 -8.544 -0.4037
100 -4.239 5.429 -5.589 -0.4870

4.6 Conclusions

The paper presents a geometrically exact hybrid-mixed four-node piezoelectric solid-
shell element (GeXPS4) based on the SaS formulation in which displacements and
electric potentials of SaS are utilized as fundamental shell unknowns. The SaS are
located at Chebyshev polynomial nodes inside the layers and interfaces as well that
improves significantly the behavior of the higher-order Lagrange interpolations. To
implement the efficient analytical integration throughout the element, the enhanced
ANS method for all components of the strain tensor and electric field is employed.
The feature of the GeXPS4 element is that the element stiffness matrices are evaluated
without the use of expensive numerical matrix inversion. As a result, the GeXPS4
element exhibits a superior performance in the case of coarse mesh configurations.
Therefore, it can be recommended for the 3D stress analysis of thick and thin doubly-
curved shells.
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Chapter 5

Finite Element Approach for Composite

Magneto-Piezoelectric Materials Modeling in

ACELAN-COMPOS Package

Natalia V. Kurbatova, Dmitry K. Nadolin, Andrey V. Nasedkin, Pavel A. Oganesyan,
and Arcady N. Soloviev

Abstract The problem of material properties identification for modern active compos-
ites is closely connected to the state of the art methods of design and manufacturing
using composite and smart materials. This chapter deals with computer design of
multiscale two-phase piezomagnetoelectric (magnetoelectric) bulk composites in
finite element software ACELAN-COMPOS. These composites consist of piezomag-
netic and piezoelectric fractions of irregular structures. The complex approach for the
homogenization problem of such composites include the effective moduli method,
computer modeling of the representative volumes with microstructure features, and
the finite element technologies for solving the static problems for the representative
volumes. Representative volumes are widely used as geometrical models for such
problems. The three-dimensional application is demonstrated for piezomagnetoelec-
tric and piezoelectric materials. A specific set of boundary conditions applied to the
representative volume enables us to determine effective moduli of the material. The
first step of such modeling consists in describing a material distribution inside the
representative volumes with a known percentage of each material. Three algorithms
were created to simulate random material distribution for specific patterns: biphasic
composite with connectivity of each phase, granules of predefined size and regular
rods.
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5.1 Introduction

Inhomogeneous and porous active materials are widely used in modern material
science and technique. Thus, two-phase piezomagnetoelectric (magnetoelectric)
composites consisting of active piezoelectric and piezomagnetic phases demonstrate
the ability to mutual transformation of magnetic and electric fields, although each
separate phase does not have such property. Modern magnetoelectric composites have
high effectiveness of the magnetoelectric transformation, relatively high temperatures
of phase transitions and long process life (Nan et al, 2008).

Piezoceramic composite materials and, in particular, porous piezoceramic ma-
terials also have been actively developed in the last years (Ringgaard et al, 2015;
Rybyanets, 2010, 2011). Porous piezoceramics have a lower impedance than dense
ceramics. Therefore, the impedance mismatch between the piezoelectric device and
the surrounding acoustic medium is decreased. On the other hand, its longitudinal
piezomodulus d33, which determines the efficiency of mechanical and electrical
energy transformations for thickness vibrations, remains almost the same as for
the dense piezoceramics. This properties allows to create high-intensity ultrasound
transducers.

Recently magnetoelectric composites became of interest to many researchers
which resulted in considerable increase in the number of works devoted to the
modeling of the effective properties of these composites (see Lee et al, 2005; Li,
2000; Nan et al, 2008; Tang and Yu, 2008; Zhang and Soh, 2005, etc.). Piezoelectric
composites are studied much better (see Bowen et al, 2001; Iyer and Venkatesh, 2014;
Martínez-Ayuso et al, 2017; Nguyen et al, 2016; Ramesh et al, 2005; Rybyanets,
2010; Rybyanets et al, 2015; Topolov and Bowen, 2009, etc.). Example of such
materials can be seen in Figs. 5.1 and 5.2.

Mathematical models of such materials are complicated and usually require
additional modeling step to define physical properties of composite. In this paper
we consider homogenization models and the finite element method as a tool for

Fig. 5.1 Scanning electron
microscope (SEM) picture of
a high-porous PZT material
with 95 % of porosity syn-
thesized by foam reticulation
technique.



5 Finite Element Approach for Composite Magneto-Piezoelectric Materials Modeling 71

Fig. 5.2: Piezoceramics with different size of pores and pores percentage.

representative volume modeling and properties identification of piezoelectric and
magnetoelectric materials.

5.2 Piezomagnetoelectric Boundary Problems

In ACELAN we use the original models of piezomagnetoelectric (magnetoelectric)
materials with damping similar described in Nasedkin et al (2014).

Let Ω be a region occupied by a piezomagnetoelectric material; Γ = ∂Ω is the
boundary of the region; n is the vector of the external unit normal to Γ; x= {x1, x2, x3};
t is the time; u = u(x, t) is the vector of mechanical displacements; ϕ = ϕ(x, t) is the
electric potential; φ = φ(x, t) is the magnetic potential. The system of differential
equations for piezomagnetoelectric body with damping effects in Ω can be written in
the following vector–matrix form

L∗(∇) ·T+ρ f = ρ (ü+αdu̇), ∇ ·D = σΩ, ∇ ·B = 0 , (5.1)

T = c · (S+βdṠ)− e∗ ·E−h∗ ·H , (5.2)

D+ ζdḊ = e · (S+ ζdṠ)+κ ·E+α ·H , (5.3)

B+γdḂ = h · (S+γdṠ)+α∗ ·E+μ ·H , (5.4)

S = L(∇) ·u, E = −∇ϕ, H = −∇φ, (5.5)

L∗(∇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (5.6)

Here L(a) is a matrix operator for the vector a, L∗(a) is the transposed operator,
T = {σ11,σ22,σ33,σ23,σ13,σ12} denotes the array of the stress components; S = {ε11,
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ε22, ε33, 2ε23, 2ε13, 2ε12} is the array of the strain components; D and E are the
electric flux density vector or the electric displacement vector and the electric field
vector; B and H are the magnetic flux density vector and the magnetic field vector; ρ is
the mass density of the material; c= cE,H is the 6×6 matrix of elastic stiffness moduli;
e = eH is the 3×6 matrix of piezoelectric moduli; h = hE is the the 3×6 matrix of
magnetostriction moduli (piezomagnetic moduli); κ = κS ,H = εS ,H is the the 3× 3
matrix of dielectric permittivity moduli; α = αS is the 3×3 matrix of magnetoelectric
coupling coefficients; μ = μS ,E is the 3×3 matrix of magnetic permeability moduli;
αd, βd, ζd, γd are the damping coefficients; f is the vector of mass forces; σΩ is the
density of free electric charges (usually, σΩ = 0); (...)∗ is the transpose operation;
(...) : (...) is the double scalar product operation.

We suppose that the material moduli have the usual symmetry properties: cαβ = cβα,
κkl = κ lk, μkl = μlk. In addition to this for the positive definiteness of the intrinsic
energy for the piezomagnetoelectric medium the following inequalities must be
satisfied (∀ S, E, H), ∃W0 > 0:

S∗ · c ·S+E∗ ·κ ·E+2E∗ ·α ·H+H∗ ·μ ·H ≥W0(S∗ ·S+E∗ ·E+H∗ ·H) .

In Eqs. (5.1)–(5.6) for the piezomagnetoelectric material, we use a generalized
Rayleigh method of damping evaluation, see Belokon et al (2002); Nasedkin (2010)
for the case of piezoelectric material and Nasedkin et al (2014) for the case of ther-
mopiezomagnetoelectric material with equations in tensor form. When ζd = γd = 0 in
Eqs. (5.3), (5.4), we have the model for taking into account of mechanical damping in
piezomagnetoelectric media which is adopted in the case of elastic and piezoelectric
materials in several well-known finite element packages. A more complicated model
(5.2)–(5.4) extends Kelvin’s model to the case of piezomagnetoelectric media. It
has been shown that the model (5.1)–(5.6) with βd = ζd = γd satisfies the conditions
of the energy dissipation and has the possibility to apply the mode superposition
method for transient and harmonic problems.

The boundary and the initial conditions should be added to the system of differen-
tial equations (5.1)–(5.6). The boundary conditions are of three types: mechanical,
electric and magnetic. To formulate the mechanical boundary conditions we assume
that the boundary Γ is divided in two subsets Γσ and Γu (Γ = Γσ ∪Γu). We will
assume that at the part of the boundary Γσ the vector of mechanical stress pΓ is
known

L∗(n) ·T = pΓ, x ∈ Γσ . (5.7)

On the remaining part Γu of the boundary Γ we pose known the mechanical displace-
ments vector uΓ

u = uΓ, x ∈ Γu, (5.8)

where L∗(n) is the matrix as in (5.6) with replace ∂k by nk. To set the electric
boundary conditions we assume that the surface Γ is also subdivided in two subsets:
ΓD and Γϕ (Γ = ΓD∪Γϕ). The regions ΓD does not contain electrodes and hold the
following conditions

n ·D = −σΓ, x ∈ ΓD , (5.9)
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where σΓ is the known surface density of electric charge, and usually, σΓ = 0.
The subset Γϕ is the union of M + 1 regions Γϕ j ( j ∈ JQ ∪ JV , JQ = {1,2, ...,m},
JV = {0,m,m+ 1, ...,M}), that does not border on each other and are covered with
infinitely thin electrodes. At these regions we set the following boundary for the
electrical field conditions

ϕ =Φ j, x ∈ Γϕ j, j ∈ JQ , (5.10)

∫
Γϕ j

n ·DdΓ = −Q j, I j = ±Q̇ j, x ∈ Γϕ j, j ∈ JQ , (5.11)

ϕ = V j, x ∈ Γϕ j, j ∈ JV , Γ j0 � ∅ , (5.12)

where the variables Φ j, V j do not depend on x; Q j is the overall electric charge on
Γϕ j, and the sign "±" in (5.11) is chosen in accordance with the accepted direction of
the current I j in the electric circuit. For magnetic boundary condition we suppose
that on the boundary Γ hold the following condition

n ·B = 0, x ∈ Γ . (5.13)

For transient problems it is also necessary to pose initial conditions, which can be
written as

u = u∗(x), u̇ = v∗(x), ϕ = ϕ∗(x), φ = φ∗(x), t = 0, x ∈ Ω, (5.14)

where u∗(x), v∗(x), ϕ∗(x), φ∗(x) are the known initial values of the corresponding
fields.

Equations (5.1)–(5.14) represent the statement of the transient problem for piezo-
magnetoelectric body with the generalized Rayleigh damping. We can also consider
the particular cases of this model without tacking into account the connectivity
between some physical fields (models of piezoelectric, piezomagnetic, and elastic
materials).

5.3 Finite Element Approximations

For solving problems for the piezomagnetoelectric body in weak forms we will
use classical finite element approximation techniques (Bathe and Wilson, 1976;
Zienkewicz and Morgan, 1983). Let Ωh be a region of the corresponding finite
element mesh Ωh ⊆ Ω, Ωh = ∪kΩ

ek, where Ωek is a separate finite element with
number k. On the finite element mesh Ωh = ∪kΩ

ek we will find the approximation to
the weak solution {uh ≈ u, ϕh ≈ ϕ, φh ≈ φ} for the transient problem in the form

uh(x, t) = N∗u(x) ·U(t), ϕh(x, t) = N∗ϕ(x) ·Φ(t), φh(x, t) = N∗φ(x) ·A(t) , (5.15)
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where N∗u is the matrix of the shape functions for the displacements, N∗ϕ is the
row vector of the shape functions for the electric potential, N∗φ is the row vector
of the shape functions for the magnetic potential, U(t), Φ(t), A(t) are the global
vectors of the nodal displacements, the electric potential, and the magnetic potential,
respectively.

In accordance with conventional finite element technique we approximate the con-
tinuous weak formulation by the problem in finite-dimensional spaces. Substituting
(5.15) and similar representations for project functions into the weak formulation
of the problem for the magnetoelectric body on Ωh, without taking into account the
principal boundary conditions we obtain

Muu · Ü+Cuu · U̇+Kuu ·U+Kuϕ ·Φ+Kuφ ·A = Fu , (5.16)

−K∗uϕ · (U+ ζdU̇)+Kϕϕ ·Φ+Kϕφ ·A = Fϕ+ ζdFt
ϕ , (5.17)

−K∗uφ · (U+γdU̇)+K∗ϕφ ·Φ+Kφφ ·A = 0 , (5.18)

with the initial conditions

U(0) = U0, U̇(0) = Ut
0, Φ(0) =Φ0, A(0) = A0 , (5.19)

where the vector of the nodal initial displacements U0, the vector of the nodal
initial velocities Ut

0, the vector of the nodal initial electric potentials Φ0, and the
vector of the nodal initial magnetic potentials A0 are derived from the corresponding
continuous initial conditions (5.14).

Here, Muu =
∑a Mek

uu, Cuu =
∑a Cek

uu, Kuu =
∑a Kek

uu, Kuϕ =
∑a Kek

uϕ, Kuφ =
∑a Kek

uφ
etc. are the global matrices, obtained from the assembly of the corresponding element
matrices. The element matrices are provided in the following form:

Mek
uu =

∫
Ωek

ρNe
u ·Ne∗

u dΩ, Cek
uu = αdMek

uu+βdKek
uu , (5.20)

Kek
uu =

∫
Ωek

Be∗
u · c ·Be

u dΩ, Kek
uϕ =

∫
Ωek

Be∗
u · e∗ ·Be

ϕ dΩ, (5.21)

Kek
ϕϕ =

∫
Ωek

Be∗
ϕ ·κ ·Be

ϕ dΩ, Kek
ϕφ =

∫
Ωek

Be∗
ϕ ·α ·Be

φ dΩ, (5.22)

Kek
φφ =

∫
Ωek

Be∗
φ ·μ ·Be

φ dΩ, Be
u = L(∇) ·Ne∗

u , Be
ϕ = ∇Ne∗

ϕ , Be
φ = ∇Ne∗

φ , (5.23)
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where Ne∗
u , Ne∗

ϕ , Ne∗
φ are the matrices and the row vectors of approximate shape

functions, respectively, defined on separate finite elements. The vectors Fu, Fϕ, Ft
ϕ

in (5.16), (5.17) are obtained from the boundary conditions, the corresponding right
parts of the weak statements, and the finite element approximations.

Note that in ACELAN we use an effective algorithm for symmetric positive def-
inite and quasi-definite matrices (Belokon et al, 2000, 2002; Nasedkin, 2010) for
solving finite element Eqs. (5.16)–(5.18) (Benzi et al, 2005; Benzi and Wathen, 2008;
Vanderbei, 1995). For example we can use the Newmark method for integrating
Cauchy problem (5.16)–(5.19) with symmetric quasidefinite effective stiffness matri-
ces in a formulation where the velocities and the accelerations at the time layers are
not given explicitly (Belokon et al, 2002; Nasedkin, 2010). We can also implement in
a symmetric form the most important procedures of finite element technologies such
as the rotations of the degrees of freedom, the realizations of mechanical and electric
boundary conditions, etc. ACELAN package also provides a two-dimensional version
(Fig. 5.3) for non-homogeneously polarized materials.

5.4 Homogenization of Two-Phase Piezomagnetoelectric

Materials

Let Ω be a representative volume of a two-phase composite heterogeneous body
composed of two materials Ωe and Ωm (Ω = Ωe∪Ωm), where the phase Ωe has the
piezoelectric properties and the phase Ωm has the piezomagnetic properties. Both
phases Ωe and Ωm can consist of separate, generally speaking, disjointed subregions
Ωe = ∪iΩei, Ωm = ∪ jΩe j, that in the aggregate have common boundaries and do not

Fig. 5.3: 2D ACELAN package graphical user interface.
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overlap each other. Thus, here we consider a two-phase mixture composite with
piezoelectric and piezomagnetic fractions.

We assume that the both phases separately do not have magnetoelectric coupling.
Then, for static homogenization problem we have the following system of equations

L∗(∇) ·T = 0, ∇ ·D = 0, ∇ ·B = 0 , (5.24)

T = c ·S− e∗ ·E−h∗ ·H , (5.25)

D = e ·S+κ ·E+α ·H , (5.26)

B = h ·S+α∗ ·E+μ ·H , (5.27)

S = L(∇) ·u, E = −∇ϕ, H = −∇φ , (5.28)

where c = ca, e = ea, h = ha, κ = κa, α = αa, μ = μa for x ∈ Ωa, a = e,m.
We note that em = 0 and αm = 0 for x ∈ Ωm, he = 0 and αe = 0 for x ∈ Ωe, that is

both phases separately do not have magnetoelectric coupling. However for composite
magnetoelectric medium due to the coupling of the magnetic and mechanical fields at
the piezomagnetic phase Ωm and the coupling of the electric and mechanical fields at
the piezoelectric phase Ωe as the result we get the coupling of magnetic and electric
fields that does not exist at each separate phase.

We will determine the effective moduli c̃, ẽ, h̃, κ̃, α̃, μ̃ by the following technique
(Nasedkin, 2014a,b) similarly for elastic and piezoelectric composites. Let us put
some “equivalent” homogeneous piezomagnetoelectric medium Ω with the effective
moduli c̃, ẽ, h̃, κ̃, α̃, μ̃ into correspondence with initial heterogeneous medium. The
constitutive equations for “equivalent” medium, similar to (5.25)–(5.27) for static
problem, are given in the forms (with (5.28)):

T = c̃ ·S− ẽ∗ ·E− h̃∗ ·H , (5.29)

D = ẽ ·S+ κ̃ ·E+ α̃ ·H , (5.30)

B = h̃ ·S+ α̃∗ ·E+ μ̃ ·H . (5.31)

We consider the static magnetoelectroelastic problems for representative volume
with Eqs. (5.24)–(5.28) for composite medium and with Eqs. (5.24), (5.29)–(5.31),
(5.28) for homogeneous medium, and with the following boundary conditions at the
external boundary Γ = ∂Ω

u = L∗(x) ·S0, ϕ = −x ·E0, φ = −x ·H0, x ∈ Γ , (5.32)
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where S0 = {ε011, ε022, ε033, 2ε023, 2ε013, 2ε012}; ε0i j are some constant values that
do not depend on x; E0 and H0 are some constant vectors.

Thus, the static problem for an “equivalent” medium is the problem with the
effective moduli. It is obvious that the solution of the problem (5.24), (5.29)–(5.31),
(5.28), (5.32) has the following form: u = u0, u0 = L∗(x) ·S0, ϕ = ϕ0, ϕ0 = −x ·E0,
φ = φ0, φ0 = −x ·H0, S = S0, E = E0, H =H0, T = T0, T0 = c̃ ·S0 − ẽ∗ ·E0 − h̃∗ ·H0,
D = D0, D0 = ẽ ·S0+ κ̃ ·E0+ α̃ ·H0, B = B0, B0 = h̃ ·S0+ α̃

∗ ·E0+ μ̃ ·H0.
From the solution of problem (5.24)–(5.28), (5.32) for a heterogeneous repre-

sentative volume we find the fields ε, E, H, σ, D and B. We note that for problem
for a heterogeneous medium the equalities 〈ε〉 = ε0, 〈E〉 = E0 and 〈H〉 = H0 hold
(Kurbatova et al, 2017; Nasedkin, 2014a,b; Nasedkin and Shevtsova, 2011), where
the broken brackets denote the volume-averaged quantities

〈(...)〉 = 1
|Ω|

∫
Ω

(...)dΩ. (5.33)

For problem for the heterogeneous medium we accept the following equations for
the determination of effective moduli: 〈T〉 = T0, 〈D〉 = D0, 〈B〉 = B0. Note that due
to Kurbatova et al (2017); Nasedkin (2014a,b); Nasedkin and Shevtsova (2011) the
average energies are equal for both heterogeneous and “equivalent” homogeneous
piezomagnetoelectric media: 〈T ·S+D ·E+B ·H〉/2 = (T0 ·S0 +D0 ·E0 +B0 ·H0)/2.

Now, by using Eqs. (5.32), we can select such boundary conditions, that enable us
to obtain obvious expressions for the effective moduli. Indeed, setting in (5.32)

S0 = S 0pζ , ζ = 1,2, ...,6, S 0 = const, E0 = 0, H0 = 0 , (5.34)

where ζ is fixed index ranging from 1 to 6; pζ is the vector from six-dimensional
basic set for the components of the strain tensor basic set; p j = e je j, j = 1,2,3;
p4 = (e2e3 + e3e2)/2; p5 = (e1e3 + e3e1)/2; p6 = (e1e2 + e2e1)/2; e j are the basic
vectors of the Cartesian coordinate system. From the solution of problem (5.24)–
(5.28), (5.32), (5.34) we obtain the calculation formulas for the effective elastic
stiffness moduli, piezoelectric moduli and piezomagnetic moduli:

c̃βζ = 〈Tβ〉/S 0, β = 1, ...,6, ẽ jζ = 〈D j〉/S 0, h̃ jζ = 〈Bj〉/S 0, j = 1,2,3 . (5.35)

If we assume that E0 = const in Eq. (5.32)

S0 = 0, E0 = E0em, m = 1,2,3, H0 = 0 , (5.36)

then from the solution of problem (5.24)–(5.28), (5.32), (5.36) we find the effective
piezoelectric moduli, dielectric permittivity moduli and magnetoelectric coupling
coefficients

ẽmβ = −〈Tβ〉/E0, β = 1,2, ...,6, κ̃ jm = 〈D j〉/E0, α̃ jm = 〈Bj〉/E0, j = 1,2,3 .
(5.37)

If we assume that H0 = const in Eq. (5.32)
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S0 = 0, E0 = 0, H0 = H0el l = 1,2,3 , (5.38)

then from the solution of problem (5.24)–(5.28), (5.32), (5.38) we find the effective
piezomagnetic moduli, magnetoelectric coupling coefficients and magnetic perme-
ability moduli

h̃lβ =−〈Tβ〉/H0, β= 1,2, ...,6, α̃ jl = 〈D j〉/H0, μ̃ jl = 〈Bj〉/H0, j= 1,2,3 . (5.39)

Thus, we can find the full set of the effective moduli of piezomagnetoelectric com-
posite mediim with arbitrary anisotropy class. For that we solve six problems (5.24)–
(5.28), (5.32), (5.34), obtain the solutions of these problems, calculate the averaged
by (5.33) mechanical stresses, electric flux densities, magnetic flux densities, and
find the moduli from (5.35). Similarly, we solve three problems (5.24)–(5.28), (5.32),
(5.36), obtain the solutions of these problems, and find the moduli from (5.37). Fi-
nally we solve three problems (5.24)–(5.28), (5.32), (5.38), obtain the solutions of
these problems, and find the moduli from (5.39). Note, that the quantities 〈Tβ〉, 〈D j〉
and 〈Bj〉 in ((5.35), (5.37), (5.39) are different, since they are calculated from the
solutions of the problems (5.24)–(5.28), (5.32) with different boundary conditions
(5.32): (5.34), (5.36) and (5.38).

For the homogenization problems for two-phase piezomagnetoelectric composites
in ACELAN-COMPOS package we can also use other less popular boundary condi-
tions. Namely, instead of principal boundary conditions (5.32) with linear functions
we can accept natural boundary conditions with constant quantities T0, D0 and B0

L∗(n) ·T = L∗(n) ·T0, n ·D = n ·D0, n ·B = n ·B0, x ∈ Γ , (5.40)

and the mixed boundary conditions from (5.32), (5.40)

L∗(n) ·T = L∗(n) ·T0, ϕ = −x ·E0, n ·B = n ·B0, x ∈ Γ , (5.41)

or
u = L∗(x) ·S0, n ·D = n ·D0, n ·B = n ·B0, x ∈ Γ , (5.42)

or the other boundary conditions with use the relation φ = −x ·H0 instead of n ·B =
n ·B0 in (5.32), (5.40)–(5.42).

In ACELAN-COMPOS package we can also consider the particular cases of this
model without taking into account the connectivity between some physical fields.
For example, we can obtain the model of piezoelectric material, if we assume h = 0,
α in (5.24), (5.25), and if we ignore the equations for magnetic fields.

5.5 Inhomogenious Polarization

The possibility to solve polarization definition problems in package ACELAN is
based on the study by A.S. Skaliukh (Belokon and Skaliuh, 2010; Skaliukh et al,
2015; Soloviev et al, 2015). In this study a representative volume of polycrystalline
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Fig. 5.4: Structure of perovskite-type polycrystalline ferroelectric material on ex-
ample of barium titanate ceramic: a – ceramic sample; b – representative volume; c
– dipoles in the crystallite; d – nuclear cell (Belokon and Skaliuh, 2010).

ferroelectric continuum which contains a great number of crystallites is analyzed.
Each crystallite contains a great number of domains, and each domain has a set of
cells with the same direction of spontaneous polarization, as shown in Fig. 5.4.

Each of the domains in the ferroelectric phase has the spontaneous polarization
ps and the spontaneous deformation εs, and one of the principal axes coincides with
the direction of the spontaneous polarization. The domain switching process begins
inside all crystallites when the electric field E is applied to the sample. All domains
are arranged in a direction close to the direction of the electric field as the internal
crystalline structure allows them. Fig. 5.5a shows a representative volume in the
depolarized state, and Fig. 5.5b shows the pattern distribution of the domains after
polarization. It was established experimentally that the domain switching begins only
when the electric field reaches certain "threshold" values.

Numerical experiments were conducted with plain piezoelectric transducer (see
Fig. 5.6) with stress free boundaries and with electrodes on upper and lower surfaces
on the transducer. Material was PZT-4, the model included a study of damping
with coefficients α = 2.7 ·10−2, β = ζ = 3.84 ·10−8. Length of the rod was 1 cm, its
thickness changed in numerical experiments from 0.025 to 0.200 cm. Oscillations
were excited by the voltage of 200 V.

The first part of the study consisted in analyzing mode shapes of the rod. In this
research the longitudinal oscillations with coupled electro-mechanical fields were
observed. We suggested that the polarization field corresponded to the strain field.
This type of functions can be described as F(x) = sin(πkx/l), where l is the length of
the rod. Effectiveness of piezoelectric device can be estimated by electro-mechanical
coupling coefficient. We used the following representation:

Fig. 5.5 Direction of the
vectors of spontaneous polar-
ization in domains: a – before
polarization; b – after polar-
ization Belokon and Skaliuh
(2010).



80 Natalia V. Kurbatova et al.

Fig. 5.6 Scheme of piezoelec-
tric rod.

K2 =
f 2
a − f 2

r

f 2
a

, (5.43)

where fr is the resonance frequency and fa is the antiresonance frequency. Some of
observed polarization fields are present in Fig. 5.7.

Three resonance and antiresonance frequencies were analyzed for each case of
polarization field. We estimated effectiveness of the transducer by comparing electro-
mechanical coupling coefficient of the heterogeneously polarized specimen with a
uniformly polarized one. Frequency differences between different cases were less
than 5 %, but electro-mechanical coupling coefficient growth was large in some cases.
For the first eigenmode no better scheme was found than the case of polarization
field shown in Fig. 5.7 (top). Fig. 5.7 (middle) shows the most effective polarization
field obtained for the second mode, and Fig. 5.7 (bottom) shows the best field for the
third mode. In all cases the specimens of different thickness were analyzed.

In most cases the polarization of porous ceramics is considered as uniform over
the body, directed along the applied electric field. However numerical experiments
with finite element models in ACELAN package showed that in some cases these
observation do not take place. Let us consider some example of the representative
volumes. Top and bottom sides of the bodies have electrodes. Potentials applied to
these electrodes creates polarization field in the material, transforming ceramics into

Fig. 5.7: Some inhomogeneous polarization fields.



5 Finite Element Approach for Composite Magneto-Piezoelectric Materials Modeling 81

Fig. 5.8: Polorized porous ceramics with round pores.

Fig. 5.9: Polorized porous ceramics with different types of pores.

piezoceramics. Pores are modeled as void areas without any material. Figures 5.8
and 5.9 shows examples of polarization field in bodies with different geometry and
porosity percentage.

These models demonstrates that there are areas in the bodies where polarization
direction is not the same with applied external field. In some areas there are no
polarization at all. This fact has significant influence on piezoelectric properties of
the bodies. Detailed study is presented in Vernigora et al (2011).

5.6 Three-Dimensional Models for Composite Materials

In 3D models the most common way to build a representative volume is to simulate a
cube with predefined or randomized geometrical entities inside (Skaliukh et al, 2015).
Representative volume technique is widely used in material science. Specialized mod-
ule ACELAN-COMPOS consists of common finite element library, representative
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volume generator and graphical user interface (GUI) for user interaction. The user
has possibilities to choose among one of three basic two-phase models of material
distribution in ACELAN package (Fig. 5.10): granules in the matrix, composites
with two connected phases and rods (pillars) in the matrix. Each model is based on
the enumeration algorithm which decides if the finite element belongs to material A
or to material B.

ACELAN package was developed using .NET platform and C#. ACELAN has
advanced program interfaces for exporting and importing models and meshes in .stl,
.inp, .gmsh formats, and internal binary format developed for the package. ACELAN
package has fully functional models for finite element analysis of generic meshes,
but the main feature of new ACELAN-COMPOS package concern to design of active
composites with tacking into account their internal structures.

In case of different types of materials in single composite (e.g. elastic and piezo-
electric, piezomagnetic and piezoelectric, etc.) the number of degrees of freedom for
each material can be different. This fact is taken into account during the assembly of
global stiffness matrix to reduce its size.

Three algorithms were created to describe random material distribution for specific
patterns: biphasic composite with connectivity of each phase, granules of predefined
size, and rods of the second material in the matrix. Both patterns are inspired by
well-known classes of composites: the first one can be classified as 3-3 or mixed
(bulk) composite, the second one – as 3-0 composite, and last case as 3-1 composite
(rods in polymer) in terms described by Newnham et al (1978).

Let us assume that the representative volume consists of clusters, each cluster
consists of 512 equal cubes which are elements with regular distribution. Each
cluster is randomly generated and placed in the representative volume. The number
of clusters can vary from 1 to 8n, as far as we suggest that all clusters are of the

Fig. 5.10: 3D ACELAN package graphical user interface.
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same size and the shape of the volume is predefined. The presented algorithms can
be modified by changing assumptions about cluster size. Let’s also state that the
connectivity of material is a possibility to reach any element of the phase from any
other element of the phase by passing through planes of elements. Connection of
edges or nodes is not regarded as connectivity. Key point is considered as an element
with predefined materials that cannot be changed. To make a random distribution
of a biphasic composite made from materials A and B, we place 8 key points of the
material A near each of the cube vertices and a starting point somewhere inside the
cluster.

The connectivity of material B inside the cluster is guaranteed by the algorithm,
the connectivity between clusters is achieved by adding 6 key points of material B,
one for each external plane of cluster (Fig. 5.11). After that we make the shortest
path between the starting point and the key point of the material A. The shortest path
gives us about 15 % of the material A (Fig. 5.12). After that we add more elements
to the path until the needed percentage reached.

The iterative process of adding new elements to the material A selects possible
candidates on each step. The candidate element is an element that does not belong to
the material A and can be removed from material B without disrupting the connectiv-
ity of the materials. Selecting such candidates is a basic problem of the graph theory.
After the set of candidates is build, the algorithm randomly selects one candidate,
adds it to the material A and starts the next iteration. A 2D example of a single step of
this process is presented in Fig. 5.13. Examples of different representative volumes
are shown in Fig. 5.14.

The described algorithm can be used independently in each part of the repre-
sentative volume starting from d = 4. This fact allows us to use simple parallel
computational techniques to increase the speed of numerical calculations. The sec-

Fig. 5.11: Green elements represent material B, gray elements represent material
A. The key points of the material B guarantee that the neighboring elements are
connected by both phases.
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Fig. 5.12: Green elements represent material A, gray elements represent material B.
Initial distribution (up to 15 % of material A).

Fig. 5.13 The layer of the
representative volume during
some algorithm step of mate-
rials distribution. Dark blue
color denotes the material A,
light blue color denotes the
candidates to be added to the
material A, red color denotes
the candidates that would
disrupt the connectivity of the
material B if added to A, and
white denotes the material B.

ond algorithm is designed for the cases where material or pores are distributed in the
form of isolated areas in the shape of granules. Granular composites are widely used
in engineering and industry. As an example we consider granular composite polyester
resin with the addition of calcium carbonate with mixtures of magnesium carbonate
in the form of granules. The maximal and minimal sizes and overall percentage of
granules can be set as input. On each step of iteration process, we select random key
point in the cluster, with restriction that forbids the merging of granules (Fig. 5.15).
Using this restriction, we select candidates for the next element to join the granule.
There are up to six possible directions (Fig. 5.16) in which we can add new element.
Random distribution for each candidate allows us to construct granules of natural
form. 3D examples shown in Fig. 5.17.

The third type of representative volume contains rods placed in the skeleton of
the main material. This is a straightforward algorithm based on placing 2D pattern
on the bottom of the volume and extruding it through the body (Fig. 5.18).
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Fig. 5.14: Different representative volumes with two phases for composites of 3–3
connectivities.

Fig. 5.15: Granules are distinguished by 1 element thick area.

Fig. 5.16: Adding elements to the granule in 2D case.
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Fig. 5.17: Example: granular composite polyester resin with the addition of cal-
cium carbonate with mixtures of magnesium carbonate in the form of granules.
The maximal and minimal sizes and overall percentage of granules can be set as
user input.

Fig. 5.18: Rods of different size in representative volumes with different meshes.

5.7 Conclusions

In the current paper we have described the models of active (piezomagnetoelectric
and piezoelectric) composites and the possibilities of their simulation in the finite
element software ACELAN and ACELAN-COMPOS.

The presented methods and programs are capable of solving the problems of
definition of effective material characteristics for representative volumes with elec-
troelastic and magnetoelastic properties. Both 2D and 3D cases we considered in
the developed algorithms. Different types of the material distribution inside the
representative volume were simulated in the mesh generating module. ACELANs
program interfaces allows us to use generated meshes and models from external
software packages and to use the imported meshes from other CAD/CAE software.
ACELAN-COMPOS package allows us to determine the properties of two-phase
active materials with 3–0, 3–3 and 3–1 connectivities.

Future possibilities of ACELAN-COMPOS package will be associated with the
other types of the representative volumes and with the modeling of surface effects
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and surface finite elements for piezoelectric and piezomagnetoelectric composite
media on the micro- and nanoscale (Eremeyev and Nasedkin, 2017; Nasedkin, 2017).

Acknowledgements This work was supported by the Ministry of Education and Science of Russia,
competitive part of state assignment, No. 9.1001.2017/PCh.

References

Bathe K, Wilson EL (1976) Numerical Methods in Finite Elements Analysis. Prentice-Hall, Engle-
wood Cliffs, N

Belokon AV, Skaliuh AS (2010) Mathematical Modeling of Irreversible Processes of Polarization
(in Russ.). FIZMATLIT, Moscow

Belokon AV, Eremeyev VA, Nasedkin AV, Solov’yev AN (2000) Partitioned schemes of the finite-
element method for dynamic problems of acoustoelectroelasticity. Journal of Applied Mathe-
matics and Mechanics 64(3):367–377

Belokon AV, Nasedkin AV, Solov’yev AN (2002) New schemes for the finite-element dynamic
analysis of piezoelectric devices. Journal of Applied Mathematics and Mechanics 66(3):481–490

Benzi M, Wathen AJ (2008) Some preconditioning techniques for saddle point problems. In:
Schilders WHA, van der Vorst HA, Rommes J (eds) Model Order Reduction: Theory, Research
Aspects and Applications, Springer, Berlin, Heidelberg, Mathematics in Industry, vol 13, pp
195–211

Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numerica
14:1–137

Bowen CR, Perry A, Kara H, Mahon SW (2001) Analytical modelling of 3-3 piezoelectric compos-
ites. Journal of the European Ceramic Society 21(10):1463–1467

Eremeyev VA, Nasedkin AV (2017) Mathematical models and finite element approaches for nano-
sized piezoelectric bodies with uncoulped and coupled surface effects. In: Sumbatyan MA (ed)
Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials,
Springer, Singapore, Advanced Structured Materials, vol 59, pp 1–18

Iyer S, Venkatesh TA (2014) Electromechanical response of (3-0,3-1) particulate, fibrous, and porous
piezoelectric composites with anisotropic constituents: A model based on the homogenization
method. International Journal of Solids and Structures 51(6):1221–1234

Kurbatova NV, Nadolin DK, Nasedkin AV, Nasedkina AA, Oganesyan PA, Skaliukh AS, Soloviev
AN (2017) Mathematical models and finite element approaches for nanosized piezoelectric
bodies with uncoulped and coupled surface effects. In: Sumbatyan MA (ed) Models of active
bulk composites and new opportunities of ACELAN finite element package. In: Methods of
wave dynamics and mechanics of composites for analysis of microstructured materials and
metamaterials, Springer, Singapore, Advanced Structured Materials, vol 59, pp 133–158

Lee J, Boyd JG, Lagoudas DC (2005) Effective properties of three-phase electro-magneto-elastic
composites. International Journal of Engineering Science 43(10):790–825

Li JY (2000) Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applica-
tions in composite materials. International Journal of Engineering Science 38(18):1993–2011

Martínez-Ayuso G, Friswell MI, Adhikari S, Khodaparast HH, Berger H (2017) Homogenization of
porous piezoelectric materials. International Journal of Solids and Structures 113(Supplement
C):218–229

Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G (2008) Multiferroic magnetoelectric
composites: Historical perspective, status, and future directions. Journal of Applied Physics
103(3):031,101

Nasedkin A (2014a) Modeling of magnetoelectric composites by effective moduli and finite element
methods. theoretical approaches. Ferroelectrics 461(1):106–112



88 Natalia V. Kurbatova et al.

Nasedkin A (2017) Size-dependent models of multiferroic materials with surface effects. Ferro-
electrics 509(1):57–63

Nasedkin AV (2010) Some finite element methods and algorithms for solving acousto-piezoelectric
problems. In: Paronov IA (ed) Piezoceramic Materials and Devices, Nova Science Publ., NY, pp
177–218

Nasedkin AV (2014b) Multiscale computer design of piezomagnetoelectric mixture composite
structures. AIP Conference Proceedings 1627(1):64–69

Nasedkin AV, Shevtsova MS (2011) Improved finite element approaches for modeling of porous
piezocomposite materials with different connectivity. In: Paronov IA (ed) Ferroelectrics and
Superconductors: Properties and Applications, Nova Science Publ., NY, pp 231–254

Nasedkin AV, Skaliukh AS, Soloviev AN (2014) New models of coupled active materials for finite
element package ACELAN. AIP Conference Proceedings 1637(1):714–723

Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites.
Materials Research Bulletin 13(5):525–536

Nguyen BV, Challagulla KS, Venkatesh TA, Hadjiloizi DA, Georgiades AV (2016) Effects of porosity
distribution and porosity piezoelectric foams. Smart Materials and Structures 25(12):125,028

Ramesh R, Kara H, Bowen CR (2005) Finite element modelling of dense and porous piezoceramic
disc hydrophones. Ultrasonics 43(3):173–181

Ringgaard E, Lautzenhiser F, Bierregaard LM, Zawada T, Molz E (2015) Development of porous
piezoceramics for medical and sensor applications. Materials 8(12):8877–8889

Rybyanets AN (2010) Ceramic piezocomposites: modeling, technology, characterization. In:
Paronov IA (ed) Piezoceramic Materials and Devices, Nova Science Publ., NY, pp 115–174

Rybyanets AN (2011) Porous piezoceramics: theory, technology, and properties. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 58(7):1492–1507

Rybyanets AN, Nasedkin AV, Naumenko AA, Shvetsova NA, Lugovaya MA, Petrova EI (2015)
Optimization of finite element models for porous ceramic piezoelements by piezoelectric
resonance analysis method. In: Paronov IA, Chang SH, Theerakulpisut S (eds) Advanced
Materials – Studies and Applications, Nova Science Publ., NY, pp 147–168

Skaliukh AS, Soloviev AN, Oganesyan PA (2015) Modeling of piezoelectric elements with inhomo-
geneous polarization in acelan. Ferroelectrics 483(1):95–101

Soloviev AN, Oganesyan PA, Skaliukh AS (2015) Modeling of piezoelectric elements with inho-
mogeneous polarization by using acelan. In: Paronov IA, Chang SH, Theerakulpisut S (eds)
Advanced Materials – Studies and Applications, Nova Science Publ., NY, pp 169–192

Tang T, Yu W (2008) Variational asymptotic homogenization of heterogeneous electromagnetoelas-
tic materials. International Journal of Engineering Science 46(8):741–757

Topolov VY, Bowen CR (2009) Electromechanical Properties in Composites Based on Ferroelectrics.
Springer, London

Vanderbei RJ (1995) Symmetric quasidefinite matrices. SIAM Journal on Optimization 5(1):100–
113

Vernigora GD, Lupeiko TG, Skaliukh AS, Soloviev AN (2011) About polazarition and effective
properties identification for porous ceramics. DSTU Herald (Russ edition) 11(4 (55)):462–469

Zhang ZK, Soh AK (2005) Micromechanics predictions of the effective moduli of magnetoelectroe-
lastic composite materials. European Journal of Mechanics - A/Solids 24(6):1054–1067

Zienkewicz OC, Morgan K (1983) Finite Elements and Approximation. John Wiley and Sons, N.Y.



Chapter 6

Robust Displacement and Mixed CUF-Based

Four-Node and Eight-Node Quadrilateral Plate

Elements

Thi Huyen Cham Le, Michele D’Ottavio, Philippe Vidal, and Olivier Polit

Abstract This paper presents two classes of new four-node and eight-node quadri-
lateral finite elements for composite plates. Variable kinematics plate models are
formulated in the framework of Carrera’s Unified Formulation, which encompass
Equivalent Single Layer as well as Layer-Wise models, with the variables that are
defined by polynomials up to 4th order along the thickness direction z. The two
classes refer to two variational formulations that are employed to derive the finite ele-
ments matrices, namely the Principle of Virtual Displacement (PVD) and Reissner’s
Mixed Variational Theorem (RMVT). For the PVD based elements, the main novelty
consists in the extension of two field compatible approximations for the transverse
shear strain field, referred to as QC4 and CL8 interpolations, which eliminate the
shear locking pathology by constraining only the z−constant transverse shear strain
terms, to all variable kinematics plate elements. Moreover, for the first time the QC4
and CL8 interpolations are introduced for the transverse shear stress field within
RMVT based elements. Preliminary numerical studies are proposed on homogeneous
isotropic plates that demonstrate the absence of spurious modes and of locking prob-
lems as well as the enhanced robustness with respect to distorted element shapes. The
new QC4 and CL8 variable kinematics plate elements display excellent convergence
rates and yield accurate responses for both, thick and thin plates.

6.1 Introduction

Composite laminates and sandwich structures are increasingly used in engineering
application because of their excellent mechanical properties such as high specific
stiffness and strength. Due to geometric considerations, these structures are often
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described by two-dimensional plate or shell models for the design and simulation
aspects. It is necessary to develop the computational models for accurate knowledge
of both global and local response. However, the classical approaches, i.e., the Classi-
cal Laminate Plate Theory (CLPT) and the First-order Shear Deformation Theory
(FSDT) (Reddy, 2004), are not sufficient for a predictive and accurate modeling
due to complicating effects, such as anisotropy, heterogeneity and transverse shear
compliance. Based on Kirchhoff-Love assumptions, CLPT neglects transverse shear
deformation in the laminates. FSDT is based on Reissner-Mindlin plate theory and
the transverse shear strain is assumed to be constant over the entire plate thickness.
A shear correction factor is thus required to tune the accuracy of transverse shear
deformation of the model.

Various two-dimensional plate theories categorize into two groups as (i) Equiva-
lent Single Layer (ESL) and (ii) Layer-Wise (LW) models (Reddy, 1993). In the ESL
approach, the number of unknowns is independent of the number of layers constitut-
ing the plate. CLPT, FSDT and the high-order shear deformation theories (HSDT)
are mostly used for ESL models. HSDT are constructed by enhancing the kinematics
for the transverse shear deformation and retaining the plane stress condition. No
shear correction factors are required in HSDT. Several representative HSDT have
been developed, e.g., Reddy’s third-order theory (Reddy, 1984) and the Sinus model
of Touratier (1991). An overview of ESL models can be found in Sayyad and Ghugal.
(2015).

By employing a single approximation for the displacement field across all layers of
the laminate, the continuity of the transverse shear and normal stress at the interface
between adjacent layers with different material properties cannot be fulfilled. Zig-
Zag theories describe a piece-wise continuous displacement field in the thickness
direction and are, hence, able to satisfy the interlaminar continuity condition for
the transverse stresses (Demasi, 2012). Note that several Zig-Zag theories have
been proposed, which do not exactly fulfill the interlaminar continuity of transverse
stresses, see, e.g., Barut et al (2013). The paper by Carrera (2003a) reviews several
independent ways of introducing Zig-Zag theories proposed for the analysis of
multilayered plates and shells. An interesting approach relies on the use of Reissner’s
Mixed Variational Theorem (RMVT) (Reissner, 1984), which allows to introduce
independent approximations for the displacement and transverse stress fields (Carrera,
2001). Tessler (2015) proposed a Zig-Zag theory by employing RMVT in a two-step
procedure. In the context of RMVT, the so-called Murakami’s Zig-Zag function
(MZZF) provides a simple means for representing displacement fields with a slope
discontinuity at the layers’ interfaces (Murakami, 1986). More recently, MZZF has
been used to enhance displacement-based ESL models (Carrera, 2004; Vidal and
Polit, 2011).

More accurate predictions of short wavelength responses, however, require an
explicit representation of individual layers, which calls for a LW approach, see, e.g.,
the seminal paper by Sun and Whitney (1973) and the comprehensive discussion
by Robbins Jr and Reddy (1993). Several works develop the LW models within a
displacement-based approach (Reddy, 1987; Ferreira, 2005) and within the mixed
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RMVT formulation (Toledano and Murakami, 1987; Carrera, 1998, 2000; Rao and
Desai, 2004).

The resulting computational model of a LW approach has a number of unknowns
that depends on the number of constituting layers, which can become very large.
Several approaches have been thus proposed in order to reduce the computational
cost by limiting the use of the expensive high-order models to small regions hosting
the local stress gradient of interest, while lower-order models are used for large
portions of the structure characterized by smooth, long wavelength gradients. In the
framework of the finite element method we can mention the direct interface coupling
(Robbins Jr and Reddy, 1996; Carrera et al, 2013), which can be enhanced on the
basis of an extended variational formulation (Wenzel et al, 2014), the transition
element approach (Feng and Hoa, 1998; Carrera et al, 2017), and the overlapping
mesh approach based on Arlequin method (Hu et al, 2009).

A flexible manner for introducing a general description of two-dimensional formu-
lations for modeling the composite structures has been proposed by Carrera thanks
to a dedicated Unified Formulation (Carrera, 2003b). By an extensive use of com-
pact index notations, Carrera’s Unified Formulation (CUF) permits to implement a
series of hierarchical, variable kinematics models within a single program by using
a limited number of model-invariant 3×3 fundamental nuclei. In CUF, the model
is constructed by using the order N for the polynomial expansion for all unknown
functions; different models can be then obtained upon penalizing some specific terms
(Carrera et al, 2014, 2015). Further generalizations of CUF have been proposed in
Demasi (2008, 2010, 2013); Botshekanan Dehkordi et al (2013); D’Ottavio (2016);
D’Ottavio et al (2016).

The first FEM application of variable kinematics CUF models has been pro-
posed by Carrera and Demasi (2002a,b), where the matrices of plate elements have
been obtained by referring to the weak forms expressed by the Principle of Virtual
Displacement (PVD) and Reissner’s Mixed Variational Theorem (RMVT). The dis-
placement field can be described in an ESL or LW manner, with the possibility of
superposing MZZF to an ESL description, whereas transverse stresses are always
described in an LW sense. Four-, eight- and nine-node elements have been presented
with C0 isoparametric interpolations for all unknown functions.

A robust finite element (FE) should overcome numerical pathologies, i.e., it should
have only six rigid body modes without spurious zero-energy modes and it should
be free from numerical lacks that could degrade the solution’s accuracy in case of
distorted element geometries or extreme thickness ratios.

It is well known that C0 isoparametric displacement approximations for shear
deformable plates cause a spurious over-constraint in the thin-plate limit, which
dramatically underestimates the bending deformation: the transverse shear locking.
Several techniques have been proposed in order to prevent this pathology affecting
FSDT-based plate/shell element, most of which can be stated from hybrid-mixed
approaches (Pian and Sumihara, 1995). The most commonly used techniques are
reduced integration methods, which, however, entail spurious zero-energy modes
(Belytschko et al, 2000), and so-called B-bar techniques (Hughes, 1987), which
employ a specific constraint for transverse shear strain field. Examples of such B-bar
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methods are given by the so-called Kirchhoffmode (Hughes and Tezduyar, 1981), the
Assumed Natural Strain (ANS) method (MacNeal, 1982; Park et al, 1989), the Mixed
Interpolation of Tensorial Components (MITC) approach (Bathe and Dvorkin, 1985),
the interpolations constructed using the field-consistency paradigm (Somashekar
et al, 1987), the Discrete Shear elements (Batoz and Lardeur, 1989) or the Discrete
Shear Gap (DSG) elements (Bletzinger et al, 2000).

All methods mentioned above were developed for FSDT kinematics and only few
works are available on variable kinematics models. A selective reduced quadrature has
been used in Robbins Jr and Reddy (1993); Carrera and Demasi (2002a); D’Ottavio
et al (2006). Rectangular four- and nine-node elements have been proposed upon
extending the MITC approach to CUF-based displacement-based models (Carrera
et al, 2010; Cinefra et al, 2013). Kulikov and Plotnikova (2016) proposed a four-node
quadrilateral plate element employing a hybrid-mixed ANS approach in conjunction
with a variable kinematics approach formulated in terms of Sampling Surfaces (SaS).
In these works, all transverse shear strain terms issued from the high-order kinematics
are constrained according to the adopted MITC or ANS approach. However, since
high-order shear deformation terms depend on the plate thickness and will vanish in
thin-plate limit, the locking behavior is produced by the first-order Reissner-Mindlin
kinematics only. As a matter of fact, the convergence rates of CUF elements do not
depend on the polynomial order N defining the plate kinematics (D’Ottavio et al,
2006).

Concerning RMVT-based elements, it is worth reporting the hybrid-mixed devel-
opments by Li (1989); Pian and Li (1990); Hoa and Feng (1998), whose assumed
transverse stress fields lead to robust finite elements for laminated plates. More
recently, nine-node plate/shell element have been proposed in which the MITC tech-
nique is employed to interpolate the transverse shear stresses (Chinosi et al, 2013;
Cinefra et al, 2014).

Based on the classical CUF-based FEM of Carrera and Demasi (2002a,b), the
authors have recently proposed a new robust four-node quadrilateral plate element
(Le et al, 2017): a special transverse shear locking correction, denoted QC4, is
formulated by referring to the field consistency paradigm and applied only to the
thickness-independent part of the transverse shear strain. This method was firstly
proposed by Polit et al for FSDT (Polit et al, 1994), and subsequently extended to
a refined Sinus-based kinematics (Polit et al, 2012). The previous paper (Le et al,
2017) was limited to four-node elements and to displacement-based CUF models.
The purpose of this paper is to extend the methodology for obtaining robust FE to
eight-node finite elements as well as to variable kinematics CUF models based on
the mixed RMVT formulation.

This paper is organized as follows: the CUF-based variable kinematics approach
is recalled in Sect. 6.2 and the QC4 and CL8 FE approximations are presented for
displacement- and mixed-based formulations in Sect. 6.3. The numerical results
are discussed in Sect. 6.4, where a comprehensive investigation is proposed that
concerns the rank of the stiffness matrix, the robustness of the element with respect
to length-to-thickness ratio and mesh distortion. Finally, Sect. 6.5 summarizes the
main conclusions and proposes an outlook towards further studies.
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6.2 Variable Kinematics Plate Model

Let us consider a multilayered plate occupying the domain V = Ω×
{
− e

2 ≤ x3 ≤ e
2

}
in

a Cartesian coordinate system (x,y,z) = (xi), see Fig. 6.1. Unless otherwise stated,
Latin indices range in {1,2,3}, Greek indices range in {1,2} and tensorial repeated
index convention is employed. Ω is the reference surface of arbitrary shape lying
in the (x1, x2)−plane located for convenience at x3 ≡ z = 0. The plate has constant
thickness e, which is composed of k = 1,2, . . .NL orthotropic, elastic and perfectly
bonded layers, each with a thickness e(k) and with an orientation of the material
orthotropy axes defined by the rotation angle θ(k) about the thickness direction z.

6.2.1 Variational Statements

The weak forms of the governing equations suitable for obtaining the FE matrices are
derived from variational statements. The plate models are constructed by referring
to the displacement-based approach expressed by the PVD as well as to the mixed
approach expressed by the RMVT.

6.2.1.1 The Principle of Virtual Displacements

The displacement-based approach is expressed in terms of admissible virtual dis-
placement δui as

�

Ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e/2∫
−e/2

δε(G)
αβ σ

(H)
αβ +δε

(G)
i3 σ(H)

i3 dz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dx dy =
�

Ω

δui t̄i dx dy (6.1)

Fig. 6.1: Coordinates and notation used for the description of the composite plate.
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where the imposed surface loads are denoted by t̄i. Eq. (6.1) yields the weak form of
the equilibrium equations and traction boundary conditions once the strain field is
related to the displacement by the geometric relations (superscript G)

ε(G)
αβ =

1
2

(
uα,β +uβ,α

)
; ε(G)

i3 =
1
2

(
ui,3 +u3,i

)
(6.2)

and the in-plane and transverse stresses are defined by means of the linear elastic
constitutive law in terms of the actual strains (superscript H)⎡⎢⎢⎢⎢⎢⎢⎣�σ

(H)
αβ

�σ(H)
i3

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ C̃αβλμ C̃αβ j3

C̃i3λμ C̃i3 j3

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣�ε

(G)
λμ

�ε(G)
j3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (6.3)

Exploiting the symmetry of the stress and strain tensors, Voigt compact notation
is introduced for using the conventional matrix notation instead of the more cum-
bersome tensor notation for the description of the constitutive law Eq. (6.3). The
constitutive law is obviously defined for each layer k for it depends on the layer’s
orthotropic elastic properties C(k)

PQ (P,Q ∈ {1,6} according to Voigt notation) and on
the orientation angle θ(k). The generic layer k is thus assumed to have a monoclinic
material symmetry in the plate’s reference frame (xα,z).

6.2.1.2 Reissner’s Mixed Variational Theorem

In the framework of RMVT, the transverse stresses σi3 are assumed as independent
variables. The weak form of the problem can be written in terms of admissible virtual
displacement δui and of virtual transverse stresses δσi3 as

�

Ω

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e/2∫
−e/2

δε(G)
αβ σ

(H)
αβ +δε

(G)
i3 σi3+δσi3

(
ε(G)

i3 − ε(H)
i3

)
dz

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dx dy =
�

Ω

δui t̄i dx dy

(6.4)
where the transverse strains denoted by ε(H)

i3 and in-plane stresses σ(H)
αβ are evaluated

by the following mixed constitutive law⎡⎢⎢⎢⎢⎢⎣�σ(H)
αβ

�ε(H)
i3

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ Cαβλμ Cαβ j3

Ci3λμ Ci3 j3

⎤⎥⎥⎥⎥⎥⎦
[
�ε(G)
λμ

�σ j3

]
(6.5)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cαβλμ = C̃αβλμ− C̃αβi3 C̃−1
i3 j3 C̃ j3λμ

Cαβi3 = C̃αβ j3 C̃−1
j3i3

Ci3αβ = −C̃−1
i3 j3 C̃ j3αβ

Ci3 j3 = C̃−1
i3 j3

(6.6)
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Voigt notation is again employed to express Eq. (6.5) and Eq. (6.6) in terms of
matrices instead of fourth-order tensors. Eq. (6.4) yields the weak form of the
equilibrium equations, of the traction boundary conditions and of the constitutive
equations related to only the transverse stresses, i.e., the second row of Eq. (6.5).
Subsidiary conditions are the geometric relations Eq. (6.2) and the constitutive
equations associated to the in-plane stresses, i.e., the first row of Eq. (6.5).

6.2.2 Variable Kinematics Assumptions

According to Carrera’s Unified Formulation (CUF), the two-dimensional variable
kinematics plate model is formulated upon separating the in-plane variables xα
from the thickness direction z, along which a generic variable g, which may be a
component of the displacement field or of the transverse stress field, i.e., g ∈ {ui,σi3},
is a priori postulated by known functions F(z):

g(xα,z) = Fτ(z) ĝτ(xα), (6.7)

where τ = 0,1, . . . ,N is the summation index and the order of expansion N is a free
parameter of the formulation. In this work N can range from 1 to 4, in agreement
with the classical CUF implementation (Carrera and Demasi, 2002a).

In order to deal with both ESL and LW descriptions within a unique notation, it is
convenient to refer to a layer-specific thickness coordinate zk ∈ {z(k)

b ,z
(k)
t } that ranges

between the z-coordinates of the bottom (subscript b) and top (subscript t) planes
delimiting the kth layer, see Fig. 6.1. Equation (6.7) can thus be formally re-written
for each layer as

g(k)(xα,zk) = Ft(zk)ĝ(k)
t (xα)+Fb(zk)ĝ(k)

b (xα)+Fr(zk)ĝ(k)
r (xα) (6.8)

with τ = t,b,r and r = 2, . . .N. The variable g for the whole multilayered stack is then
defined through an opportune assembly procedure of the layer-specific contributions
g(k), which depends on the ESL or LW description.

In an ESL approach, the thickness functions are defined as Taylor-type expansion
and only one variable ĝτ is used for the whole multilayer, i.e., the layer index (k) in
Eq. (6.8) may be dropped off and the following thickness functions are used:

Fb = 1, Ft = zN , Fr = zr (r = 2, . . .N −1) (6.9)

The ESL description can be enhanced by including the Zig-Zag function FZZ(z)
proposed by Murakami (1986) in order to allow slope discontinuities at layers’
interfaces. In this case, the Zig-Zag function replaces the highest expansion order
and the following functions are used:

Fb = 1, Ft = FZZ(z), Fr = zr (r = 2, . . .N −1) (6.10)
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where Murakami’s ZigZag Function (MZZF) is defined as

FZZ(z) = (−1)k ζk(z) with ζk(z) =
2

z(k)
t − z(k)

b

⎛⎜⎜⎜⎜⎜⎜⎝z− z(k)
t + z(k)

b

2

⎞⎟⎟⎟⎟⎟⎟⎠ (6.11)

Note that FZZ(z) is expressed in terms of the non-dimensional layer-specific coordi-
nate −1 ≤ ζk ≤ +1 and it provides a linear piecewise function of bi-unit amplitude
across the thickness of each layer k.

The assumptions for a LW description are formulated in each layer k as in Eq.
(6.8), where the thickness functions are defined by linear combinations of Legendre
polynomials Pr(ζk) as follows:

Ft(ζk) =
P0(ζk)+P1(ζk)

2
; Fb(ζk) =

P0(ζk)−P1(ζk)
2

;

Fr(ζk) = Pr(ζk)−Pr−2(ζk) (r = 2, . . .N)
(6.12)

where ζk is the non-dimensional coordinate introduced in Eq. (6.11). The Legendre
polynomials of degree 0 and 1 are P0(ζk) = 1 and P1(ζk) = ζk, respectively; higher-
order polynomials are defined according to the following recursive formula:

Pn+1(ζk) =
(2n+1)ζk Pn(ζk)−nPn−1(ζk)

n+1
(6.13)

which leads to the following expressions for the polynomials employed if N = 4:

P2(ζk) =
3ζ2

k −1
2

; P3(ζk) =
5ζ3

k −3ζk

2
; P4(ζk) =

35ζ4
k

8
− 15ζ2

k

4
+

3
8

(6.14)

It is finally emphasized that the chosen thickness functions for a LW model satisfy
the following properties

ζk = 1 : Ft = 1, Fb = 0, Fr = 0
ζk = −1 : Ft = 0, Fb = 1, Fr = 0

(6.15)

Therefore, ĝ(k)
t and ĝ(k)

b are the physical displacement or transverse stress components
at the top and bottom of the kth layer, respectively, and Ft(ζk) and Fb(ζk) are the
corresponding linear Lagrange interpolation functions.

6.2.3 The Stress and Strain Fields

The contributions to the strain and stress fields in each layer k are identified with
respect to the in-plane (p), i.e., membrane and bending, transverse normal (n) and
transverse shear (s) deformation of the plate:
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�ε(k)
p =

[
ε(k)

1 ε(k)
2 ε(k)

6

]
; �ε(k)

n = ε
(k)
3 ; �ε(k)

s =
[
ε(k)

5 ε(k)
4

]
�σ(k)

p =
[
σ(k)

1 σ(k)
2 σ(k)

6

]
; �σ(k)

n = σ
(k)
3 ; �σ(k)

s =
[
σ(k)

5 σ(k)
4

] (6.16)

where Voigt notation has been used.

6.2.3.1 PVD Formulation

Recalling the separation of the in-plane variables from the thickness direction, em-
ployed for expressing the assumed displacement field as in Eq. (6.8), the bending,
transverse normal and transverse shear components of the strains in the displacement-
based formulation are recast in the following matrix notation

�εp(xα,zk) = F puτ(zk) �V (k)
τ (xα)

�εn(xα,zk) = Fnuτ(zk) �V (k)
τ (xα)

�εs(xα,zk) = Fsuτ(zk) �V (k)
τ (xα)

(6.17)

where �V (k)
τ (xα) is the generalized strain vector of each layer defined as

�V (k)
τ (xα) =

[
û(k)

1τ
û(k)

1τ,1
û(k)

1τ,2

... û(k)
2τ

û(k)
2τ,1

û(k)
2τ,2

... û(k)
3τ

û(k)
3τ,1

û(k)
3τ,2

]T

(6.18)

In order to introduce the transverse shear locking correction proposed in the next
section, the transverse shear strain field given in Eq. (6.17) is split into the classical
z−constant contribution �γ0 of standard FSDT, and a contribution �γh that depends on
the thickness coordinate z and is related to high-order terms:

�εs(xα,zk) = γ0(xα)+γh(xα,zk) = Fs0
uτ
�V (k)
τ (xα)+Fsh

uτ(zk) �V (k)
τ (xα) (6.19)

Note that Fs0
uτ is a matrix containing only constant values for all z−dependency is

contained in the matrix Fsh
uτ(zk) = Fsuτ(zk)−Fs0

uτ. The explicit expressions for the
matrices F puτ,Fnuτ, Fsuτ and Fs0

uτ can be found in Le et al (2017). The stress field
is obtained by the linear elastic constitutive law Eq. (6.3).

6.2.3.2 RMVT Formulation

In addition to the compatible strains defined by Eq. (6.17), the transverse stress
components are expressed in CUF as follows

�σn(xα,zk) = Fnστ(zk) �S (k)
τ (xα)

�σs(xα,zk) = Fsστ(zk) �S (k)
τ (xα) (6.20)

where �S (k)
τ (xα) is the generalized transverse stress vector of each layer defined as
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�S (k)
τ (xα) =

[
σ̂(k)

13τ

... σ̂(k)
23τ

... σ̂(k)
33τ

]T

(6.21)

and

Fnστ =
[
0 0 Fτ

]
, Fsστ =

[
0 Fτ 0

Fτ 0 0

]
(6.22)

The conjugated in-plane stresses as well as the transverse strains defined in terms
of the in-plane strains and of the transverse stresses are expressed by the mixed
constitutive law Eq. (6.5).

6.3 Finite Element Approximations

It is well known that the isoparametric interpolation for the transverse shear field ap-
plied to the classical displacement-based formulation leads to a locking phenomenon
because of the incompatibility of the polynomial spaces defined by the sum of ûατ
and the in-plane derivative û3τ,α (α = 1,2 for γ0

13 and γ0
23, respectively) (Polit et al,

2012). The locking pathology is associated only to the z−constant part, because
higher-order contributions depend on the plate thickness and vanish naturally in the
thin plate limit. Thus a new field-compatible interpolation for the four-node element
is constructed for the z−constant part �γ0: this is an extension to arbitrary variable
kinematics plate models of the approach proposed in Polit et al (1994) for FSDT
plate elements and in Polit et al (2012) to a refined plate element.

The formulation for the four-node quadrilateral FE for PVD-based CUF plate
models has been reported in Le et al (2017). Therefore, this section presents at first
the eight-node quadrilateral FE approximation, referred to as CL8 approximation, for
avoiding transverse shear locking problems and minimizing the convergence rate loss
for distorted meshes in the framework of PVD-based plate models. Subsequently,
the QC4 and CL8 interpolations are employed to approximate the transverse shear
stresses in the context of RMVT-based plate elements.

6.3.1 Displacement-Based Finite Elements

The CL8 interpolation is constructed as follows:

• In order to enhance the element’s robustness for distorted shapes, the z−constant
part of transverse shear strain components is written in the element’s natural
coordinate system (ξ,η) ∈ [−1,+1]2 as:

[
γ0
ξ (ξ,η)
γ0
η(ξ,η)

](k)

= Fs0
uτ
�U(k)
τ (ξ,η) (6.23)

where
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�U(k)
τ (ξ,η) =

[
û(k)
ξτ

û(k)
ξτ,ξ

û(k)
ξτ,η

... û(k)
ητ û(k)

ητ,ξ û(k)
ητ,η

... û(k)
3τ

û(k)
3τ,ξ

û(k)
3τ,η

]T

(6.24)

is the projection onto the reduced natural coordinates ξ,η of the generalized strain
vector �V (k)

τ .
• The field-compatible approximation shall be constructed upon enhancing the

polynomial space of the transverse deflection û(k)
3τ

so that its derivative matches

the serendipity quadratic approximation of the in-plane displacements û(k)
ξτ

and

û(k)
ητ that contribute to the z−constant reduced transverse shear strains γ0

ξ and γ0
η.

For this, a cubic polynomial interpolation is assumed for û(k)
3τ

by introducing four

supplementary DOFs, (û3τ,ξ )
(k)
5 , (û3τ,η )

(k)
6 , (û3τ,ξ )

(k)
7 and (û3τ,η )

(k)
8 , which correspond

to the tangential derivatives of û3τ with respect to the natural coordinates at the
mid-side nodes of the reference domain, see Fig. 6.2. The supplementary DOFs
are subsequently expressed in terms of the DOFs at the nodes by imposing a linear
variation of the z−constant reduced tangential transverse shear strain at each side
of the elementary domain: γ0

ξ should be linear along ξ at η = ±1 and γ0
η should be

linear along η at ξ = ±1. The resulting eight-node FE shall be denoted CL8 due
to the initial Cubic approximation for û3τ and the subsequent Linear constraint
imposed on the tangential transverse shear strains at the element’s edges Polit
et al (1994).

• The new field-compatible interpolation for γ0
ξ ,γ

0
η is defined by the polynomial

basis obtained from the intersection sets of monomial terms in ξ and η:

B(γ0
ξ ) = B(uξτ )∩B(u3τ,ξ ) =

{
1, ξ,η,ξη,η2

}
B(γ0

η) = B(uητ )∩B(u3τ,η ) =
{
1, ξ,η,ξη,ξ2

} (6.25)

Fig. 6.2: Eight-node element in the physical Cartesian frame x1, x2 and in the
natural frame ξ,η.
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Fig. 6.3: Sampling points for CL8 finite element.

• According to the polynomial basis, five sampling points are required for each
reduced transverse shear strains as illustrated in Fig. 6.3, see also Polit et al (1994).
The z−constant reduced transverse shear strains are then obtained as follows

γ0
ξ (ξ,η) =

5∑
I=1

CξI(ξ,η)γ0
ξI ; γ0

η(ξ,η) =
5∑

J=1

CηJ(ξ,η)γ0
ηJ (6.26)

where the interpolating functions CξI and CηJ are given Appendix 1.
• The physical transverse shear strains are finally deduced from the reduced trans-

verse shear strains in the reference domain as[
γ0

13(xα)
γ0

23(xα)

]
= J−1

[
γ0
ξ (ξ,η)
γ0
η(ξ,η)

]
(6.27)

where

J =
[
x1,ξ x2,ξ
x1,η x2,η

]
(6.28)

is the Jacobian matrix that will be evaluated at the 3×3 Gauss points used for
integrating the stiffness matrix.

The expression for the CL8 approximation for the z−constant transverse shear strain
field can be finally written as

�γ0 = J−1 Fs0
uτ B̄i �q

(k)
τ i (6.29)

where �q(k)
τ i = [u(k)

1τ
u(k)

2τ
u(k)

3τ
]T
i is the DOF vector of the node i related to the layer k and

the expansion order index τ. B̄i (i = 1,8) is the matrix containing the modified CL8
interpolation functions and their derivatives with respect to the physical coordinates
xα. The explicit expression of the B̄i matrices can be found in Appendix 2.
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Starting from the integral expression Eq. (6.1), the isoparametric FE interpolations
are introduced for the in-plane and transverse normal strain energy contributions,
and the QC4/CL8 interpolations are introduced for the transverse shear strain en-
ergy contributions. The integral over the thickness is carried out upon assembling
all layers’ contributions in the appropriate manner depending on the ESL or LW
description (Carrera and Demasi, 2002a,b); the integral over the in-plane domain of
each finite element constituting the mesh is carried out numerically. The weak form
of the equilibrium equations issued from the PVD yields thus the following standard
matrix system for each finite element

K �q = �f (6.30)

where �q and �f are the vectors of the nodal displacements and nodal forces. These
elemental arrays are subsequently assembled over the whole mesh following the
standard FEM procedure.

6.3.2 RMVT-Based Finite Elements

After introducing FE interpolations for the displacement and transverse stress fields,
carrying out the integrals across the thickness (including the assembly over all layers)
and the integrals over the element domain Ωe, the RMVT integral Eq. (6.4) yields
the following matrix system for each finite element[

Kuu Kuσ
Kuσ

T Kσσ

] [
�q
�g

]
=

⎡⎢⎢⎢⎢⎣ �f�0
⎤⎥⎥⎥⎥⎦ (6.31)

where �q and �g are the vectors of the nodal displacements and nodal transverse stresses,
respectively, and �f is the nodal force vector, see also Carrera and Demasi (2002a,b).
The first hyper-row corresponds to the virtual variations of the displacements and
represents the weak form of the equilibrium equation for the finite element, the
second hyper-row corresponds to the virtual variation of the transverse stresses and
represents the weak form of the transverse part of the constitutive equation of the
finite element. The element contributions expressed by Eq. (6.31) can be directly
assembled for the whole FE mesh, which leads to a mixed system whose unknowns
are the displacements and transverse stresses at each node of the mesh.

An alternative strategy consists in statically condensing out the nodal stress
unknowns of each finite element according to

�g = −Kσσ−1 Kuσ
T�q (6.32a)

which defines a mixed-hybrid formulation with only displacement DOF according to

�KC �q = �f with �KC = �Kuu− �Kuσ �Kσσ
−1 �Kuσ

T
(6.32b)
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The mixed-hybrid formulation Eq. (6.32) yields an element that suffers transverse
shear locking if isoparametric interpolations are used for both, the displacement and
the transverse stress fields (Zienkiewicz and Taylor, 2000). In order to enhance the el-
ement robustness, several strategies may be devised. One of these consists in adopting
the previously discussed QC4/CL8 interpolation for the z−constant transverse shear
strains inside the Kuu matrix, i.e., in correcting the compatible transverse shear strain
field as in the conventional displacement-based FEM. A more interesting approach is
to take profit of the mixed nature of the RMVT statement and to adopt an opportune
interpolation scheme for the transverse shear stresses in conjunction with standard
isoparametric interpolations for the displacement and transverse normal stress fields.
It turns out that adopting the QC4 and CL8 interpolations for the transverse shear
stresses yields a shear-locking-free mixed-hybrid finite element, see also Hoa and
Feng (1998); Li (1989); Zienkiewicz and Taylor (2000). Therefore, the following
interpolation is used in the natural reference frame for the reduced transverse shear
stresses

σξ(ξ,η) =
np∑
I=1

CξI(ξ,η)σξI ; ση(ξ,η) =
np∑

J=1

CηJ(ξ,η)σηJ (6.33)

where np (np = 2 for QC4 and np = 5 for CL8) is the number of sampling points,
which are located at the mid-sides of the edges for the four-node element (Le et al,
2017) and as illustrated in Fig. 6.3 for the eight-node element. An opportune tensorial
transformation by means of the Jacobian matrix is required to map the reduced
transverse shear stresses onto the physical domain.

6.4 Numerical Results

Several numerical benchmark problems are considered for displaying the accuracy
and robustness of the proposed QC4 and CL8 CUF-based plate elements. The clas-
sical CUF acronyms are used for naming the various plate models: the polynomial
order N is appended to a string that identifies whether the description of the displace-
ment field is ESL (E{D,M}N), Zig-Zag (E{D,M}ZN) or LW (L{D,M}N). A capital
“D” is used for PVD-based elements, while capital “M” identifies RMVT-based
elements. In these latter models, the transverse stress field is always described in a
LW sense. If the mixed-hybrid formulation is used for RMVT-based elements, a “c”
is appended at the end of the model acronym.

Since the objective of this paper is focused on the performance of the FE ap-
proximation, the problems involve a simple homogeneous and isotropic plate. At
first, the properties of the stiffness matrix are considered via an eigenvalue analysis.
Subsequently, the convergence rate for thin and thick plates is investigated. Finally,
the sensitivity with respect to distorted element shapes is assessed through numerical
tests conducted on a square plate with distorted mesh and a circular plate. Most of
the numerical tests are performed with an ESL model with expansion order N = 2,
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which retains the three-dimensional constitutive law and avoids the occurrence of
spurious Poisson locking. Table 6.1 lists the acronyms used for denoting the vari-
ous configurations of boundary conditions and type of loading. Whenever possible,
the computational model is reduced through application of opportune symmetry
boundary conditions on the displacement field.

Present results are compared against solutions obtained with the following isopara-
metric approaches:

ISO full-integrated isoparametric element
ISO-SI isoparametric element with selective integration

All elements are implemented as user subroutines into the commercial ABAQUS
software. A dedicated pre-processing tool allows to prepare the FE model within the
ABAQUS/CAE graphical interface. Therefore, the conventional shell elements of
ABAQUS will be included in the comparison, which are the general-purpose four-
node elements S4 and S4R and the thick-shell eight-node element S8R. It should
be noted that the S4 and S4R elements can be used for modeling thin and thick
shells and both use the same transverse shear treatment, which consists in a modified
version of the MITC4 assumed strain method with one Gauss point evaluation plus
hourglass stabilization; the primary difference between the S4 and S4R elements is
in their membrane strain field treatment (N., 2016). According to N. (2016), the use
of the the S8R element should be limited to shells with non-negligible transverse
shear flexibility and within a regular mesh.

6.4.1 Eigenvalues of the Stiffness Matrix

The eigenvalues of the stiffness matrix of a square element are analyzed for a thin
and a thick plate, according to the following configuration

geometry square element a×a (a = 1), thickness e = 10−n (n = 1,3)
material properties isotropic with E = 10.92 and ν = 0.3

The eigenvalues of four-node displacement-based elements (ED2 model) are
reported for thick and thin plates in Figs. 6.4 and 6.5, respectively. The eigenvalues
of the ABAQUS general-purpose elements S4 and S4R (FSDT model) are also
presented. The proposed graphics allow to recognize at a glance the eigenvalues
associated to rigid-body modes as well as the gap between them and those associated
to deformation modes. It is apparent that the present full integrated QC4 and ISO

Boundary conditions Loading

(SA) Simply supported (P) Uniform load q0 at top surface
(CL) Clamped (C) Concentrated force P̄ at plate center

Table 6.1: Acronyms for boundary conditions and type of loading.
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Fig. 6.4: Eigenvalues of the stiffness matrix for thick plate (S = 10): ED2 model,
four-node FE.
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Fig. 6.5: Eigenvalues of the stiffness matrix for thin plate (S = 1000): ED2 model,
four-node FE.

elements have the correct number of rigid-body modes (i.e., 6) regardless of the
element’s slenderness S = a/e. Similarly, the ABAQUS elements S4 and S4R do not
show hourglass modes. On the contrary, the selective reduced integration scheme
entails 3 spurious zero-energy modes, which indicates the possibility of an unstable
behavior of both, thick and thin elements.

The same analysis is conducted on the eight-node PVD-based finite elements
and the eigenvalues obtained for the thick (S = 10) and thin (S = 103) elements are
reported in Figs. 6.6 and 6.7, respectively. As expected, the full integrated CL8 and
ISO elements have six rigid-body modes independently of the plate thickness. The
selective integrated eight-node element appears to have a correct rank in the thick
plate case, but shows several spurious zero-energy modes in the thin plate case.The
stiffness matrix of the ABAQUS S8R element shows two spurious zero-energy modes
for both, the thick and the thin plate cases.

The eigenvalues of the stiffness matrix of a four-node mixed RMVT-based element
are reported in Fig. 6.8 for a thick plate case and an EM2 model. The resulting FE
has 36 transverse stress DOF and 36 displacement DOF, the mixed matrix has thus 72
eigenvalues. The left graphic of Fig. 6.8 reports the 36 eigenvalues that are negative
and associated to the transverse stress DOF, which are thus shown to play the role
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Fig. 6.6: Eigenvalues of the stiffness matrix for thick plate (S = 10): ED2 model,
eight-node FE.
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Fig. 6.7: Eigenvalues of the stiffness matrix for thin plate (a/e = 1000): ED2 model,
eight-node FE.

of Lagrange multipliers. The graphic on the right of Fig. 6.8 displays the positive
eigenvalues that are associated to the displacement DOF and shows that the proposed
mixed FE with a QC4 interpolation of the transverse shear stresses has a correct
rank with 6 eigenvalues that are numerically zero. It may be noted that mixed finite
elements derived from Hellinger-Reissner principle possess negative eigenvalues
that are related to displacement DOF, see, e.g., Mijuca (2004). Figure 6.9 reports the
eigenvalues of the stiffness matrices for a mixed-hybrid 4-node element in which
the transverse shear stresses are approximated either with the isoparametric or with
the QC4 interpolation (the displacement field and the transverse normal stress are
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Fig. 6.8: Negative (left) and positive (right) eigenvalues of the stiffness matrix for
thick plate (S = 10) for the full mixed EM2 model with QC4 interpolation for the
transverse shear stresses.

interpolated with an isoparametric scheme). In either case, 36 positive eigenvalues
are recovered, 6 of which are numerically zero. It is worth noticing that the spectra
of the ISO-EM2c and of the ISO-ED2 stiffness matrices are very similar.

6.4.2 Transverse Shear Locking Test

A numerical test is carried out to assess the sensitivity of the proposed QC4 and CL8
elements to the transverse shear locking. The test is described as follows:

geometry square plate a×a (a = 1), thickness e = 10−n with n ∈ {0,4}
boundary conditions (SA) on all sides

loading (P)

material properties isotropic with E = 10.92 and ν = 0.3

mesh regular with N = 1,2,4,8,16,32 (see Fig. 6.10)

Fig. 6.9 Eigenvalues of the
stiffness matrices of a mixed-
hybrid 4-node EM2c element
with QC4 and ISO approxima-
tions for the transverse shear
stresses (S = 10).
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results transverse displacement U3 at the center of the plate

reference values Kirchhoff-Love theory (Timoshenko and Woinowsky-Krieger,
1959):
Ua

3(a/2,a/2,0) = 0.00406 q0
da4

dt e3 D (with D = E
12(1−ν2) )

The results are summarized in the two different ways.

1. Investigation of the accuracy of the FEM for a constant mesh density and varying
slenderness ratio. In this case, the quarter plate is regularly meshed with N = 4
four-node elements or N = 2 eight-node elements (see Fig. 6.10). The result is the
ratio between the deflection U3 obtained by the present FEM and the reference
thin plate solution Ua

3 for an increasing length-to-thickness (slenderness) ratio
S = a/e.

2. Investigation of the convergence of the FEM for a thin plate (S = 100). In this
case, the result is reported in terms of relative error |U3−Ua

3 |/Ua
3 with respect to

the number N of elements used for the regular mesh of the quarter plate.

6.4.2.1 PVD Based Elements: ED2 Model

Figure 6.11 reports the ratio between the deflection U3 obtained by the present
FEM with an ED2 model and the reference thin plate solution Ua

3 for an increasing
length-to-thickness (slenderness) ratio S = a/e. Results for four-node elements and a
regular mesh with N = 4 are given on the left, those for eight-node elements and a
regular mesh with N = 2 are illustrated on the right.

The full integrated ISO elements are shown to suffer a very strong locking as the
plate becomes thin: the linear four-node element locks severely already for S ≥ 102,
while the quadratic eight-node element delays the severe locking for S ≥ 103. An
excellent agreement with the reference Kirchhoff-Love solution is found with the
new interpolation schemes QC4 and CL8, which are thus locking-free. The selective
reduced quadrature scheme is shown to be effective for the linear Lagrangean four-
node element, but it does not eliminate the locking pathology for the quadratic

Fig. 6.10: Regular meshes for a quarter of the plate.
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Fig. 6.11: Accuracy for a fixed mesh for thick to very thin plates: four-node (left)
and eight-node (right) elements, ED2 model.

serendipity eight-node element: a severe locking is still found for ISO-SI eight-node
element as S ≥ 103. This difficulty is probably at the origin for the ABAQUS element
S8R to be reported as suitable only for thick plates, for which the transverse shear
flexibility is non-negligible.

Convergence curves for a thin plate (S = 100) are reported in Fig. 6.12 for the four-
node elements (on the left) and the eight-node elements (on the right). Concerning
the four-node FE, the locking pathology is clearly visible for the isoparametric
formulation (ISO) and a good convergence rate is recovered by resorting to the
selective quadrature scheme (ISO-SI) and by the present QC4 interpolation. Accurate
results, with relative errors of approximately 10−3 in the transverse displacement, are
obtained with N = 8 elements for the quarter plate. Concerning the eight-node FE
(Fig. 6.12, right), a rather satisfying convergence rate is found for S = 100 and for all
element formulations (ISO, ISO-SI and CL8). The new CL8 element is shown to be
more accurate than the isoparametric elements, as it provides accurate results already
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Fig. 6.12: Convergence of the transverse displacement for a thin plate (S = 100):
four-node (left) and eight-node (right) elements, ED2 model.
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with a N = 2 mesh for the quarter plate. As can be inferred from the right graphic of
Fig. 6.11, the convergence rate of eight-node ISO and ISO-SI elements will be worse
for thinner plates (S ≥ 103).

6.4.2.2 RMVT Based Elements: EM2 and EM2c Models

The same analysis is carried out for RMVT based mixed-hybrid elements (EM2c
model) and full mixed elements (EM2 model), where only results for the four-node
elements are given for the sake of brevity. Results obtained by the mixed-hybrid
approach are reported in terms of accuracy with respect to the plate slenderness and in
terms of convergence towards the reference Kirchhoff-Love solution in Fig. 6.13 left
and right, respectively. These results confirm that the element locks if the isoparamet-
ric interpolation is used for the displacement field and the same bi-linear interpolation
is employed for the transverse shear stresses. Indeed, the EM2c ISO element behaves
in exactly the same manner as the ED2 ISO element. The locking pathology can
be thus corrected by resorting to a selective quadrature scheme, as first pointed
out in Carrera and Demasi (2002a). More interesting, the locking pathology of the
mixed-hybrid elements is eliminated by adopting the QC4 interpolation scheme for
the transverse shear stresses and a full quadrature.

Results obtained by the full mixed elements EM2 are reported in Fig. 6.14. These
demonstrate that the ISO element does not suffer transverse shear locking if the
transverse stress DOF are not condensed out at element level. ISO elements are here
shown to be merely slightly less accurate than the locking-free QC4 and ISO-SI
elements.
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Fig. 6.13: Results of the shear locking test for the mixed-hybrid EM2c model.
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Fig. 6.14: Results of the shear locking test for the full mixed EM2 model.

6.4.2.3 Effectiveness of the QC4/CL8 Approach for Variable Kinematics

Models

The shear locking test is carried out for various CUF-based elements in order to
demonstrate the effectiveness of the proposed QC4 and CL8 approach irrespective of
the employed plate kinematics. Only results for the four-node are shown, the very
similar results obtained for the CL8 elements are omitted for the sake of brevity.
Figure fig:validCUF-ShearLock illustrates the results obtained with several LW as
well ESL models, formulated in the framework of PVD and RMVT, with the new
QC4 finite element approximations. All curves are sensibly overlapped, which thus
validates the proposed approach for all CUF-based variable kinematics models. In
particular, for displacement-based elements, it is clearly sufficient to correct only
the z−constant part of the transverse shear strain in order to eliminate the locking
pathology. The independence of the FE approximation from any refinement of the
FSDT kinematics has been already pointed out in D’Ottavio et al (2006).
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Fig. 6.15: Results of the shear locking test for various CUF models and QC4 ap-
proximation.
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6.4.3 The Distortion Tests

In this section, the sensitivity of the present FE to the mesh distortion is illustrated on
two test cases widely used in open literature, namely the square plate with distorted
mesh and the circular plate.

6.4.3.1 The Square Plate Test

This standard test is classically used in order to investigate the mesh sensitivity in
plate bending problems. The data are given as follows:

geometry square plate a×a with a = 100 and thickness e = 1

boundary conditions (SA) on all sides

loading (C)

material properties isotropic with E = 10.92 and ν = 0.3

mesh N = 2 for the quarter plate, with the distortion parameter
s ∈ {−12,−8,−4,0,4,8,12} – see Fig. 6.16

results transverse displacement U3 = u3(a/2,a/2,0)

reference value transverse displacement U(0)
3 for the regular mesh (s = 0)

The distorted meshes are characterized by the parameter s defining the coordinates
of the mid-node of the quarter plate, which is located in the undistorted mesh (s = 0)
at X1 = X2 = a/4. The parameter s may be positive or negative, as illustrated in
Fig. 6.16, and it defines the coordinates of the mid-node as (a/4+ s,a/4+ s): by
taking a = 100, for the most distorted meshes (s = ±12) the mid-node is hence
located at (±37,±37). Note that it is not usual in open literature to consider positive
and negative values for the parameter s. Since a concentrated load is applied at
X1 = X2 = a/2, the results obtained for positive and negative values of s may not be
symmetric.

Fig. 6.16: Mesh for the quarter plate with distortion defined by the parameter s.
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The transverse displacement U3 at the center node is normalized with respect to
the value U0

3 obtained with the regular, undistorted mesh (s = 0). Fig. 6.17 shows the
results obtained by the ED2 model: on the left are reported the curves obtained by
the four-node elements while on the right those obtained by the eight-node elements.
The ABAQUS finite elements S4R and S8R, are included in the comparison. The
results show that the proposed QC4 and CL8 are the most robust elements with
respect to mesh distortion, in particular CL8 results to be practically insensitive to
the mesh distortion parameter. The highest distortion sensitivity is displayed by the
full-integrated ISO elements. Selective reduced quadrature elements ISO-SI perform
better than the ISO elements: in the four-node case the enhancement is seen only
for s > 0. The ABAQUS S4R element has very similar performances of the QC4
element, whereas the S8R element closely follows the behavior of the eight-node
ISO-SI element and is thus outperformed by the proposed CL8 element.

6.4.3.2 The Circular Plate Test

Another mesh distortion sensitivity test is considered, which concerns the bending of
a clamped circular isotropic plate subjected to a uniform pressure load according to
the following data:

geometry circular plate of radius R = 5 and thickness e = 0.1

boundary conditions (CL) on the external perimeter

loading (P)

material properties isotropic with E = 1.7472 107 and ν = 0.3

mesh N = 3,12,28,60 elements for a quarter plate – see Fig. 6.18

results deflection U3 = u3(0,0,0) at the center of the plate
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Fig. 6.17: Square plate test (SA-C): variation of the normalized central deflection
with respect to the mesh distortion parameter s. Four-node (left) and eight-node
elements (right), ED2 model.
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Fig. 6.18: FE meshes with N = 3,12,28 elements for a quarter of the circular plate:
8-node elements (continuous line) and 4-node elements (dotted line).

reference value Kirchhoff-Love theory Uref
3 = 0.61147 10−6 Batoz and Dhatt

(1990)

The evolution of the ratio between the central deflection and the Kirchhoff-Love
solution with respect to the mesh density is reported in Fig. 6.19. The ED2 kinematics
is again used and the results obtained by ABAQUS finite elements S4R and S8R are
also shown for comparison.

Concerning the four-node elements (Fig. 6.19, left), it has been already shown
that the ISO element suffers the distorted shapes, and for the present case it shows
errors exceeding 90% even with the more refined mesh. It can be noticed that the
QC4 element has a good convergence rate and its accuracy is very satisfactory. In
particular, the error becomes less than 3% for N ≥ 30, whereas the converged result
of the four-node ISO-SI FE is still affected with an error of about 10%. The ABAQUS
S4R element shows a higher accuracy than the present QC4 element for coarser
meshes, but the differences between S4R and QC4 are negligible as the mesh is
refined.

Observing the results for the eight-node elements (Fig. 6.19, right), it is noted that
the ISO element suffers the distorted shapes, but the deflection tends towards the
solution as the mesh is refined (N ≥ 28). It is further confirmed that the CL8 element
is very robust, with performances that in this case are slightly better compared to
those of the ABAQUS S8R element.

6.5 Conclusion

This paper has introduced robust FE interpolations for four-node and eight-node
quadrilateral plate elements with variable kinematics expressed through Carrera’s
Unified Formulation. A previous work focused on four-node PVD-based elements Le
et al (2017), has been thus extended to eight-node serendipity FE approximations
as well as to RMVT-based plate models. In the framework of displacement-based
models, two field-consistent transverse shear strain approximations referred to as QC4
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Fig. 6.19: Convergence study of the central deflection for the circular plate. Four-
node (left) and eight-node elements (right), ED2 model.

and CL8 Polit et al (1994) have been extended to plate models of arbitrary kinematic
order, including ESL and LW descriptions, by modifying only the z−constant part of
the transverse shear strain. In the framework of RMVT based models, it has been
shown that the full mixed formulation with isoparametric approximations does not
show any shear locking pathology, but that the corresponding mixed-hybrid FEM
requires an opportune correction. An enhanced mixed-hybrid FEM has been thus
proposed by adopting for the transverse shear stress field the interpolation schemes
resulting from the QC4 and CL8 formulations.

First results have been presented in view of assessing the robustness and accuracy
of the proposed elements. For this, a number of numerical tests have been considered
that are recommended whenever FE applications are proposed: eigenvalue counts to
ensure the proper rank of the stiffness matrices, convergence behavior for thin and
thick plates, as well as two case studies involving distorted meshes. The numerical
results confirmed the superiority of the proposed FEs in comparison to classical
isoparametric approaches with full or reduced integrations, i.e., they have a correct
rank, are free of transverse shear locking and are less sensitive to distorted element
shapes. The proposed variable kinematics FEs, implemented as a user subroutine
into ABAQUS, provide a robust tool for the analysis of composite laminates, for
which different models may be used for adapting the computational cost in case of
thin or thick plates or whether a global or local response is required.

The preliminary results shown in this paper shall be completed by further anal-
yses of RMVT based elements and of composite plates, including laminates and
sandwich configurations. Furthermore, the optimization of the computational cost
for FE models of composite structures shall be considered: on the one hand, the
FE implementation of a more general variable kinematics modeling approach will
be considered D’Ottavio (2016); the variable kinematics models shall, on the other
hand, be effectively employed within a global-local approach that limits the use of
expensive, highly accurate and quasi-3D models to small model portions.
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Appendix 1

The interpolation functions on the elementary domain are defined as follows

Cξ1(ξ,η) =
1
4

(−η− √3ξ)(1−η); Cη1(ξ,η) =
1
4

(−ξ− √3η)(1− ξ)

Cξ2(ξ,η) =
1
4

(−η+ √3ξ)(1−η); Cη2(ξ,η) =
1
4

(ξ− √3η)(1+ ξ)

Cξ3(ξ,η) =
1
4

(η+
√

3ξ)(1+η); Cη3(ξ,η) =
1
4

(ξ+
√

3η)(1+ ξ)

Cξ4(ξ,η) =
1
4

(η− √3ξ)(1+η); Cη4(ξ,η) =
1
4

(−ξ+ √3η)(1− ξ)
Cξ5(ξ,η) = 1−η2; Cη5(ξ,η) = 1− ξ2

(6.34)

Appendix 2

The non-zero terms of the 9 x 3 matrices B̄i (i = 1,8) defining the CL8 interpolation
for �γ0 as in Eq. (6.29) are

B̄i(1,1) =
5∑

I=1

CξI
(
Ni(ξI ,ηI) J(I)

11 (ξI ,ηI)+NRT
i,ξ (ξI ,ηI)

)

B̄i(1,2) =
5∑

I=1

CξI
(
Ni(ξI ,ηI) J(I)

12 (ξI ,ηI)+NS T
i,ξ (ξI ,ηI)

)

B̄i(8,3) =
5∑

I=1

CξI Ni(ξI ,ηI)

B̄i(4,1) =
5∑

J=1

CηJ
(
Ni(ξJ ,ηJ) J(J)

21 (ξJ ,ηJ)+NRT
i,η (ξJ ,ηJ)

)

B̄i(4,2) =
5∑

J=1

CηJ
(
Ni(ξJ ,ηJ) J(J)

22 (ξJ ,ηJ)+NS T
i,η (ξJ ,ηJ)

)

B̄i(9,3) =
5∑

J=1

CηJ Ni(ξJ ,ηJ)

(6.35)

where J(p)
αβ (p = 1,5) is the Jacobian at sampling points. The isoparametric interpola-

tion functions for node i are denoted Ni. The functions NRT
i and NS T

i are given as
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NRT
i (i=1,2,3,4)(ξ,η) =

1
12

[
−JNi

11 ξ
(
ξ2−1

)
(1+ηiη)− JNi

21 (1+ ξiξ) η
(
η2−1

)]
NRT

i (i=5,7)(ξ,η) =
1
6

[
JNi

11 ξ
(
ξ2−1

)
(1+ηiη)

]
NRT

i (i=6,8)(ξ,η) =
1
6

[
JNi

21 (1+ ξiξ) η
(
η2−1

)]
NS T

i (i=1,2,3,4)(ξ,η) =
1
12

[
−JNi

12 ξ
(
ξ2−1

)
(1+ηiη)− JNi

22 (1+ ξiξ) η
(
η2−1

)]
NS T

i (i=5,7)(ξ,η) =
1
6

[
JNi

12 ξ
(
ξ2−1

)
(1+ηiη)

]
NS T

i (i=6,8)(ξ,η) =
1
6

[
JNi

22 (1+ ξiξ) η
(
η2−1

)]

(6.36)

where JNi
αβ (i = 1,8) is the Jacobian at nodes i.
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Chapter 7

Effect of Magnetic Field on Free and Forced

Vibrations of Laminated Cylindrical Shells

Containing Magnetorheological Elastomers

Gennadi Mikhasev, Ihnat Mlechka, and Svetlana Maevskaya

Abstract Free and forced vibrations of thin medium-length laminated cylindrical
shells and panels assembled from elastic materials and magnetorheological elastomer
(MRE) embedded between elastic layers are studied. The equivalent single layer
model based on the generalized kinematic hypotheses of Timoshenko is used for the
dynamic simulation of laminated shells. The full system of differential equations tak-
ing into account transverse shears, written in terms of the generalized displacements,
is used to study free vibrations of long sandwich cylindrical shells with the MRE
cores. To predict free and forced vibrations of medium-length sandwich cylindrical
shells and panels, the simplified equations in terms of the force and displacement
functions are utilized. The influence of an external magnetic field on the natural fre-
quencies and logarithmic decrement for the MRE-based sandwich cylindrical shells
is analyzed. If an applied magnetic field is nonuniform in the direction perpendicular
to the shell axis, the natural modes of the medium-length cylindrical sandwich with
the homogeneous MRE core are found in the form of functions decreasing far away
from the generatrix at which the real part of the complex shear modulus has a local
minimum. The high emphasis is placed on forced vibrations and their suppressions
with the help of a magnetic field. Damping of medium-length cylindrical panels with
the MRE core subjected to an external vibrational load is studied. The influence of
the MRE core thickness, the level of an external magnetic field and the instant time
of its application on the damping rate of forced vibrations is examined in details.
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7.1 Introduction

Magnetorheological elastomers (MREs) belong to a new class of smart materials
which due to their unique properties are gaining high interest in various areas of the
structural mechanics (Gibson, 2010). MREs are composite materials consisting of a
matrix (either rubbery polymer or deformed inorganic polymer) and magnetizable
particles molded in this matrix. The principal mechanical characteristics of these
materials are the storage and loss moduli, represented by the complex shear mod-
ulus, which are varied in a wide range when subjected to a magnetic field (Ginder,
1996; Jolly et al, 1999; Davis, 1999; Ginder et al, 2001). The MREs controllable
viscoelastic properties as well as a light weight make these materials ideal to use
as damping treatments or core elements in thin-walled structures experiencing an
external vibrational load.

For the recent fifteen years, a considerable number of research has been carried
out to observe the controllable properties and the vibration suppression capabilities
of MREs embedded between elastic layers in sandwich or multilayered beams (see,
among many others, Sun et al, 2003; Zhou and Wang, 2005; Howson and Zare, 2005;
Zhou and Wang, 2006; Banerjee et al, 2007; Lara-Prieto et al, 2010; Korobko et al,
2012). There are much less papers on free and forced vibrations of MRE-based plates.
Yeh (2013, 2014) studied the effect of different magnetic field on the modal damping
and the natural frequencies for sandwich plates containing MRE cores and Aguib
et al (2014); Ying et al (2014) considered forced vibrations of magnetorheological
(MR) sandwich plates excited by deterministic and stochastic forces, respectively.

To the authors’ best knowledge, there are only a few available papers related to
the dynamic analysis of laminated shells containing cores made of a smart material
with controllable elastic and rheological properties. In Yeh (2011), a three layered
orthotropic cylindrical shell with an electrorheological (ER) core and outer con-
straining layers was considered. Introducing the complex shear modulus for the ER
core and utilizing the discrete layer finite element method, the author studied the
vibration and damping characteristics of the smart sandwich under different levels
of applied electric fields. Mikhasev et al (2011a), applying the equivalent single
layer (ESL) model for multilayered cylindrical shells, studied free vibrations of thin
laminated circular cylinders with MR layers under different levels of magnetic fields.
The authors concluded that an applied magnetic filed may have a significant effect on
the vibration characteristics of thin MRE-based laminated cylinders. An interesting
effect of distortion of natural modes in a thin medium-length cylindrical sandwich
containing a polarized MRE core has been captured in Mikhasev et al (2014): an
applied magnetic field may result in localization of natural modes near some lines
where the real part of the reduced complex shear modulus reaches a local minimum.
Recently, Mikhasev et al (2011b) studied a response of a MRE-based laminated
cylindrical shell with local disturbances in their surface to an applied not stationary
magnetic field. It has been shown that slowly growing magnetic fields may be used
with success in order to ensure the soft suppression of running localized vibrations
in thin-walled structures.
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In our view, a large range of problems on free and forced vibrations of MRE-based
laminated shells is not studied yet. In particular, the effect of a magnetic field on free
low-frequency vibrations of medium-length cylindrical sandwich panels with MRE
cores is worthy of close attention owing to a wide application of laminated panels
as members of many engineering structures. Problems on the modal damping of
oscillations of laminated shells with controllable MRE cores subjected to a harmonic
vibrational load deserves also special attention.

A lack of detailed studies on the aforementioned and many other problems may
be explained by the complexity of available models for laminated shells assembled
from elastic and viscoelastic MRE laminas. In the most general terms, the known
theories for multilayered shells proceed from the order of shell equations depending
on a number of stacked layers (Hsu and Wang, 2005; Bolotin and Novichkov, 1980).
These theories as well as available high accurate layer-wise theories (Carrera, 1999,
2002, 2003; Ferreira et al, 2011)) are rather sophisticated for practical application.
The additional complexity is introduced by the coupling of the mechanical and
physical (magnetic or electric) fields.

In our paper, we proceed from the idea to replace an original laminated shell
containing a MRE core or layers by an equivalent single layer shell with the reduced
complex moduli affected by an external magnetic field. The ESL model is expected
to be more perspective for the dynamic simulation of tunable laminated thin-walled
structures containing MR layers (survey articles and monographs devoted to ESL
theories are, e.g., Grigolyuk and Kulikov, 1988a,b; Toorani and Lakis, 2000; Reddy,
2003; Qatu, 2004; Qatu et al, 2010). Based on the assumptions of the generalized
kinematic hypothesis of Timoshenko for a whole package of a laminated shell
(Grigolyuk and Kulikov, 1988b), we assume differential equations written in terms
of displacements (or in terms of the force and shear functions where it is required)
for the reference surface of a laminated shell as the governing equations. These
equations contain coefficients depending on the complex Young’s and shear moduli
and the magnetic field induction as well, they being the generalization (Mikhasev
et al, 2011a) of analogous equations derived in Grigolyuk and Kulikov (1988b) for
elastic laminated shells. The basic purpose of the paper is to study free vibrations of
sandwich cylindrical shells and panels with the MRE cores under various levels of
applied external magnetic fields. The effect of a nonuniform magnetic field on the
natural modes corresponding to low-frequency vibrations of a thin medium-length
circular cylindrical sandwich shell containing the MRE core is also analyzed. The
special attention is focused on the problem of suppression of forced vibrations in
MRE panels subjected to a harmonic vibrational load under an external magnetic
field.

7.2 Structure of Laminated Shell

Consider a thin laminated package in the form of a circular cylinder or panel of the
length L (see Fig. 7.1). Let it consist of N isotropic or transversely isotropic layers
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Fig. 7.1: Laminated cylindrical shell with a curvilinear coordinate system

characterized by thickness hk, density ρk, Young’s modulus Ek, shear modulus Gk
and Poisson’s ratio νk, where k = 1,2, . . . ,N, and N is an odd number. The middle
surface of any fixed layer is taken as the reference surface. We introduce a local
orthogonal coordinate system by means of unit vectors e1,e2 and n = e1 × e2 with
an origin in the point O at the reference surface as shown in Fig. 7.1. Let α1 and α2
be the axial and circumferential coordinates, respectively, and α3 = z is the normal
coordinate. The radius of curvature of the reference surface is R = 1/k22.

Laminas with odd numbers (numbering begins with the innermost layer) are made
of an elastic material, while layers with even numbers are made of a magnetorhe-
ological elastomer (MRE) whose rheological properties depend on intensity of an
applied magnetic field. For layers made of a MRE, the Young’s and shear moduli,
Ek,Gk, are assumed to be complex functions of the magnetic field induction B:

Ek = E′k(B)+ iG′′k (B), Gk =G′k(B)+ iG′′k (B), (7.1)

where i =
√−1 is the imaginary unite. If the MRE layer is considered as an isotropic

material, then

Gk =
Ek

2(1+ νk)
,

otherwise (for a transversally isotropic layer), Ek and Gk are independent magnitudes.
Here, each viscoelastic MRE layer is considered as the isotropic material with
Poissons’s ratio (White and Choi, 2005) νv = 0.4 and the shear modulus Gv =G′v+ iG′′v
specified in Korobko et al (2012). For this MRE, the dependence of the storage and
loss moduli, G′v, G′′v , on the magnetic field induction B are shown in Fig. 7.2. If
an applied magnetic field is non-homogeneous, then Ev[B(α1,α2)], Gv[B(α1,α2)]
corresponding to the MRE layers are functions of coordinates α1,α2.
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Fig. 7.2: Storage and loss moduli G′v,G′′v (kPa) of the MRE vs. the magnetic field
induction B (mT)

7.3 Basic Hypotheses

To study vibrations of multilayered shells, we will use the ESL model (Grigolyuk
and Kulikov, 1988b) based on the generalized hypothesis of Timoshenko. Let z = δk
be the coordinate of the upper bound of the kth layer, ui and w the tangential and
normal displacements of the reference surface points, respectively, u(k)

i the tangential
displacements of points of the kth layer, σi3 the transverse shear stresses, Θi the
angles of rotation of the normal n about the vector ei (see Fig. 7.1). Here i = 1,2;k =
1,2, . . . ,N.

Let us assume the following hypothesis (Grigolyuk and Kulikov, 1988b):

1. The distribution law of the transverse tangent stresses across the thickness of the
kth layer is assumed to be of the form

σi3 = f0(z)μ(0)
i (α1,α2)+ fk(z)μ(k)

i (α1,α2) , (7.2)

where f0(z), fk(z) are continuous functions introduced as follows

f0(z) =
1
h2 (z−δ0)(δN − z),

fk(z) =
1
h2

k

(z−δk−1)(δk − z)
(7.3)
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2. Normal stresses acting on the area elements parallel to the reference one are
negligible with respect to other components of the stress tensor.

3. The normal deflection w does not depend on the co-ordinate z.
4. The tangential displacements are distributed across thickness of the layer package

as follows:

u(k)
i (α1,α2,z) = ui(α1,α2)+ zΘi(α1,α2)+g(z)ψi(α1,α2) (7.4)

where

g(z) =

z∫
0

f0(x)dx.

In Eq. (7.4), ψi are required parameters characterizing the transverse shears in
the shell. Hypothesis (7.4) permits to describe the non-linear dependence of the
tangential displacements on z; at g ≡ 0 it turns into the linear Timoshenko hypothesis
coinciding with the classical Kirchhoff-Love hypothesis since θi are functions of the
tangential displacements and derivatives of the normal deflection. Assumption (7.4)
is called the generalized kinematic hypothesis of Timoshenko.

7.4 Governing Equations

7.4.1 Governing Equations in Terms of Stress Resultants and
Couples

Using the variational principle and based on the aforementioned hypotheses,
Grigoliuk and Kulikov have derived the equations in terms of the membrane stress
resultants Ti j and the reduced stress couples L̂i j, M̂i j (Grigolyuk and Kulikov, 1988b):

T1i,1+T2i,2 = qi(α1,α2, t)−
N∑

k=1

ρkhk
∂2ûi

∂t2 = 0, i = 1,2,

L̂1i,1+ L̂2i,2 = Q0i, i = 1,2,

M̂11,11+2M̂12,12+ M̂22,22− k22T22 = qn(α1,α2, t)−
N∑

k=1

ρkhk
∂2w
∂t2 = 0,

(7.5)

where Z, i designates the derivative of a function Z by αi, t is time, qi,qn are the
tangential and normal components of an external force, Q0i is the generalized shear
stress resultant. The stress resultants and couples Ti j, Q0i, L̂i j, M̂i j are linked with
the normal, tangential and shear displacements w, ui,ψi by the following equations:
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Tii =
Eh

1− ν2

[
ûi, i+ ν

(
û j, j+ k22w

)]
, Ti j =

Eh
2(1+ ν)

(
ûi, j+ û j, i

)
,

M̂ii = − Eh3

12(1− ν2)

[
η3(w, ii+ νw, j j)−η2(ψi, i+ νψ j, j)

]
,

M̂i j = − Eh3

12(1+ ν)

[
η3w, i j− 1

2
η2(ψi, j+ψ j, i)

]
,

L̂ii = − Eh3

12(1− ν2)

[
η2(w, ii+ νw, j j)−η1(ψi, i+ νψ j, j)

]
,

L̂i j = − Eh3

12(1+ ν)

[
η2w, i j− 1

2
η1(ψi, j+ψ j, i)

]
, Q0i = q44ψi,

(7.6)

where

h =
N∑

k=1

hk, E =
1− ν2

h

N∑
k=1

Ekhk

1− ν2
k

, ν =

N∑
k=1

Ekhkνk

1− ν2
k

⎛⎜⎜⎜⎜⎜⎜⎝ N∑
k=1

Ekhk

1− ν2
k

⎞⎟⎟⎟⎟⎟⎟⎠
−1

(7.7)

are the total thickness, reduced Young’s modulus and Poisson’s ratio, respectively,

ûi = ui− 1
2

hc13w, i− 1
2

hc12ψi (7.8)

is the generalized displacements, and parameters η1,η2,η3,c12,c13 are introduced as
follows:

c12 =

N∑
k=1

ξ−1
k π3kγk, c13 =

N∑
k=1

(ζk−1+ ζk)γk,

1
12

h3π1k =

δk∫
δk−1

g2(z)dz,
1
12

h3π2k =

δk∫
δk−1

zg(z)dz,

1
2

h2π3k =

δk∫
δk−1

g(z)dz, η1 =

N∑
k=1

ξ−1
k π1kγk −3c2

12,

η2 =

N∑
k=1

ξ−1
k π2kγk −3c12c13, η3 = 4

N∑
k=1

(
ξ2

k +3ζk−1ζk
)
γk −3c2

13,

hξk = hk, hζn = δn (n = 0, k), q44 =

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

⎛⎜⎜⎜⎜⎜⎝λk −
λ2

k0

λkk

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
2

N∑
k=1

(
λk − λ

2
k0
λkk

)
G−1

k

+

N∑
k=1

λ2
k0

λkk
Gk,

λk =

δk∫
δk−1

f 2
0 (z)dz, λkn =

δk∫
δk−1

fk(z) fn(z)dz, (n = 0,k).

(7.9)
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In what follows, the magnitude G = q44/h will be called the reduced shear modulus
for the laminated package. Here, the reduced moduli E, ν,G and parameters η1,η2,η3
are functions of the induction B.

From all variants of boundary conditions, we consider here the simply supported
edges with diaphragms. In terms of displacements, stress resultants and stress couples
these conditions read:

w = û2 = ψ2 = M̂11 = T11 = L̂11 = 0 at α1 = 0,L. (7.10)

7.4.2 Governing Equations in Terms of Displacements

Let the MRE be a homogeneous and isotropic material, and an applied magnetic field
is uniform. Then the substitution of Eqs. (7.11), (7.6) into Eqs. (7.5) results in the
following system of differential equations:

∂2û1

∂α2
1

+
1− ν

2
∂2û1

∂α2
2

+
1+ ν

2
∂2û2

∂α1∂α2
+ νk22

∂w
∂α1
+
ρ0(1− ν2)

E
∂2û1

∂t2 = q1,

1+ ν
2

∂2û1

∂α1∂α2
+

1− ν
2
∂2û2

∂α2
1

+
∂2û2

∂α2
2

+
∂(k22w)
∂α2

+
ρ0(1− ν2)

E
∂2û2

∂t2 = q2,

η2
∂(�w)
∂α1

−η1

⎛⎜⎜⎜⎜⎜⎝∂2ψ1

∂α2
1

+
1+ ν

2
∂2ψ2

∂α1∂α2
+

1− ν
2
∂2ψ1

∂α2
2

⎞⎟⎟⎟⎟⎟⎠+ 12(1− ν2)q44

Eh3 ψ1 = 0,

η2
∂(�w)
∂α2

−η1

⎛⎜⎜⎜⎜⎜⎝∂2ψ2

∂α2
2

+
1+ ν

2
∂2ψ1

∂α1∂α2
+

1− ν
2
∂2ψ2

∂α2
1

⎞⎟⎟⎟⎟⎟⎠+ 12(1− ν2)q44

Eh3 ψ2 = 0,

h2

12(1− ν2)
�
[
η3�w−η2

(
∂ψ1

∂α1
+
∂ψ2

∂α2

)]

+
k22

1− ν2

(
ν
∂û1

∂α1
+
∂û2

∂α2
+ k22w

)
+
ρ0

E
∂2w
∂t2 = qn,

(7.11)

where

ρ0 =

N∑
k=1

ρkξk

is the reduced density of the laminated shell.
When introducing the stress-displacement relations (7.6) into (7.10), one obtains

the boundary conditions in terms of displacements:
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w = û2 = ψ2 = 0,

η3

⎛⎜⎜⎜⎜⎜⎝∂2w
∂α2

1

+ ν
∂2w
∂α2

2

⎞⎟⎟⎟⎟⎟⎠−η2

(
∂ψ1

∂α1
+ ν
∂ψ2

∂α2

)
= 0,

∂û1

∂α1
+ ν
∂û2

∂α2
+
ν

Rw
= 0,

η2

⎛⎜⎜⎜⎜⎜⎝∂2w
∂α2

1

+ ν
∂2w
∂α2

2

⎞⎟⎟⎟⎟⎟⎠−η1

(
∂ψ1

∂α1
+ ν
∂ψ2

∂α2

)
= 0 at α1 = 0,L.

(7.12)

Equations (7.11) are sufficiently complicated for analyzing both free and forced
vibrations of MRE-based cylindrical shells. However, they will be useful to study
free axisymmetric vibrations of circular cylindrical shells or beam-like modes of
length cylinders. To predict eigenmodes corresponding to low-frequency vibrations
of thin medium-length cylindrical shells, we will apply to equations of the technical
shell theory.

7.4.3 Equations of Technical Shell Theory

Let us introduce the index of variation ι of the stress-strain state as

max
{|Z,1|, |Z,2|} ∼ h−ι∗ Z, (7.13)

where h∗ = h/R is the dimensional thickness which is assumed as a small parameter.
We will consider here the stress state which is characterized by the index of variation
ι = 1/2 and the following asymptotic estimates:

w ∼ h∗R, k22 ∼ R−1, ui� w. (7.14)

It is obvious that ûi� w also. Let

max{ûi} ∼ hζu∗ R, max{ψi} ∼ hζψ∗ , G ∼ hζG∗ E, (7.15)

where ζu, ζψ are the indexes of intensity of the quantities ûi,ψi, respectively, and hζG∗
is the order of the reduced shear modulus G with regard to the reduced Young’s
modulus E. Then, analyzing the orders of all terms in Eqs. (7.11), we find

ζu = 3/2, ζψ = 1/2, ζG = 1. (7.16)

Let qi = 0 and the inertia forces in the tangential directions be very small. Then
the first two equations of system (7.5) or (7.11) become homogeneous. They are
identically satisfied by the following functions:

Ti j = δi j�F −F, i j, (7.17)
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where δi j is the Kronecker delta, and F is the required stress function.
To couple the introduced stress function with the unknown displacements, we con-

sider the strain compatibility conditions. They results in the well-known differential
equation

�2F −Ehk22w,11 = 0. (7.18)

Considering the residual equations from (7.5), Grigolyuk and Kulikov (1988b)
have derived the following equations:

D
(
1− θh

2

β
�
)
�2χ− k22F,11 = qn−ρ0h

∂2

∂t2

(
1− h2

β
�
)
χ,

w =
(
1− h2

β
�
)
χ,

(7.19)

where

D =
Eh3η3

12(1− ν2)
,

β =
12(1− ν2)q44

Ehη1

(7.20)

are the reduced bending stiffness and shear parameter, respectively.
From the third and fourth equations of (7.11), one can find the shear displacements

ψ1 = a,1+φ,2,
ψ2 = a,2−φ,1, (7.21)

where

a = −η2

η1

h2

β
�χ, (7.22)

and φ is the shear function which is defined from the additional equation

1− ν
2

h2

β
�φ = φ. (7.23)

Equation (7.23) describes the shear edge effect and should be taken into account
if a simply supported edge is free of a diaphragm preventing transverse shears
(Mikhasev and G., 2017). If all simply supported edges have the diaphragms, one
can assume (Grigolyuk and Kulikov, 1988b) φ ≡ 0. The correspondent boundary
conditions in terms of functions χ, F read

χ = �χ = �2χ = F = �F = 0 at α1 = 0,L1. (7.24)

If the shell is not closed in the circumferential direction, then the boundary conditions
for the simply supported edges α2 = 0,L2 with diaphragms are the same.
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7.4.4 Error of Governing Equations

The determination of an exact error of the above equations based on the ESL model
is a complicated problem. One way to estimate their error is to compare eigenvalues
of some boundary-value problem on buckling or vibrations with results obtained
with the help of the 3D FEM simulation. Similar comparative analysis (Mikhasev
et al, 2001) has shown that accuracy of these equations is satisfactory if a shell is
sufficiently thin and its vibrations occur with minor sizes of deflections or wave
length. In this subsection, we aim only to give some asymptotic estimations of errors.

It is known that an error δe of the Kirchhoff-Love hypotheses has the order
δe ∼ h∗. It maybe expected that accepted here the generalized Timoshenko hypotheses
improves an accuracy of the governing equations and results in the error δe ∼ hq

∗,
where q ≥ 1. However, as has been shown by Gol’denveiser (1961); Koiter (1966), the
index of variation ι of an expected solution may give the conclusive contribution in
the estimation of an error. If ι < 1, then within the framework of the Kirchhoff-Love
hypotheses, this estimation is found as

δe ∼max
{
h∗,h2−2ι∗

}
.

For Eqs. (7.11) based on the generalized Timoshenko hypotheses, we have

δe ∼max
{
hq
∗,h2−2ι∗

}
, (7.25)

where q ≥ 1. The peculiarity of Eqs. (7.11) is that due to shears they have solutions
with very high index of variation. So, for an elastic, isotropic and homogeneous shell
with Young’s and shear moduli E, G of the same asymptotic order (E ∼ G), one
obtains additional integrals which account for shears and have the index of variation
ι= 1. Then δe ∼ 1 and Eqs. (7.11) as well as Eqs. (7.18)-(7.23) become asymptotically
incorrect. But if

Gr ∼ hζG∗ Er,

where ζG > 0, then ι = 1− ζG/2 < 1. Here, Er =�E,Gr =�G are the real parts of
the complex moduli E,G for viscoelastic shells.

Now, consider Eqs. (7.18)-(7.23) which are analogous to the well-known Mushtari-
Donnell-Vlasov type equations (Mushtari and Galimov, 1961; Donnell, 1976; Wlas-
sow, 1958). They were obtained after significant simplifications which introduced
the error of an order h2ι∗ . It is seen that the error of these equations is

δe ∼max
{
h2ι∗ ,h2−2ι∗

}
. (7.26)

We remind that Eqs. (7.18)-(7.23) were derived under assumptions that ι = 1/2,
ζG = 1. Hence, for vibration modes with the index ι = 1/2, one obtains the error
δe ∼ h∗. However, Eqs. (7.18)-(7.23) can be also used to describe the semi-momentless
dynamic stress state characterized by the index of variation ι = 1/4 for a shear pliable
shell with ζG ≥ 1. However, for solutions having the index of variation ι = 1/4 (at
ζG = 3/2), the error increases and reaches the order δe ∼ h1/2

∗ .
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Note also that Eqs. (7.11) and Eqs. (7.18)-(7.23) as well have been derived
for cases when all the reduced moduli are constant (not dependent of coordinates
α1,α2). However, Eqs. (7.18)-(7.23) may be utilized for the analysis of low-frequency
vibrations of medium-length thin laminated cylindrical shell if MRE layers are
nonhomogeneous and/or an applied magnetic field is nonuniform. In Mikhasev et al
(2011a) have generalized Eqs. (7.18)-(7.23) for the case when the reduced moduli
E,G, ν and shear parameters ηk,β are functions of coordinates α1,α2 and the magnetic
field induction B and time t. It has been also shown that if

y ∼ R
∂y
∂αi

,

where y is any of the functions E,G, ν,ηk,β of coordinates α1,α2, and ι = 1/4, then
the generalized equations (with variable coefficients) written in terms of functions
χ,F,φ (Mikhasev et al, 2011a) may be substituted by the simplified Eqs. (7.18)-(7.23)
derived in Grigolyuk and Kulikov (1988b), these simplified equations giving the
error of an order h1/4

∗ . In what follows, Eqs. (7.18)-(7.23) will be used to analyse free
vibrations of MRE sandwiches in a nonuniform magnetic field.

7.5 Free Vibrations of MRE-based Laminated Cylindrical Shells

and Panels

7.5.1 Lengthy Simply Supported Cylinders

At first, let us consider Eqs. (7.11) at qn = 0. They allow to describe any type of free
vibrations of a shell of an arbitrary length. We will study here vibrations of long
MRE-based cylindrical shells and show the effect of a magnetic field on the long
wave modes.

For free linear vibrations, the solution of Eqs. (7.11) is written as

{ûi,ψi,w} = R {Ui(α1,α2),Ψi(α1,α2),W(α1,α2)}exp(iΩt), (7.27)

where Ω = ω+ iα is the required complex natural frequency, and functions Ui,Ψi,W
satisfying the boundary conditions (7.12) are as follows:

U1 = U◦1 cos
πnα1

L
cos

mα2

R
, U2 = U◦2 sin

πnα1

L
sin

mα2

R
,

W =W◦ sin
πnα1

L
cos

mα2

R
,

Ψ1 = Ψ
◦
1 cos

πnα1

L
cos

mα2

R
, Ψ2 = Ψ

◦
2 sin

πnα1

L
sin

mα2

R
,

(7.28)

where n is a number of semi-waves in the axial direction, m is a number of waves in
the circumferential direction, and U◦i ,W

◦,Ψ◦i are constant values.
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The substitution of (7.25), (7.26) into Eqs. (7.11) yields the system of algebraic
equations

AXT = 0, (7.29)

where X = (U◦1 ,U
◦
2 ,W

◦,Ψ◦1 ,Ψ
◦
2 ) is the five-dimensional vector, and A is the 5× 5

matrix with the elements ai j:

a11 = −δ2
n−

1− ν
2

m2− (1− ν2)
d

Ω2

ω2
0

, a12 =
1+ ν

2
δnm,

a13 = νδn, a14 = a15 = 0, a21 =
1+ ν

2
δnm,

a22 = −1− ν
2
δ2

n−m2− (1− ν2)
d

Ω2

ω2
0

, a23 = −m, a24 = a25 = 0,

a31 = a32 = 0, a33 = −η2δn(δ2
n+m2),

a34 = η1

(
δ2

n+
1− ν

2
m2

)
+

q44R2η3

D
,

a35 = −η1(1+ ν)
2

δnm, a41 = a42 = 0, a43 = −η2m(δ2
n+m2),

a44 = −η1(1+ ν)
2

δnm, a45 = η1

(
m2+

1− ν
2
δ2

n

)
+

q44R2η3

D
,

a51 = − ν

1− ν2 δn, a52 =
m

1− ν2 ,

a53 = ε
8 g (δ2

n+m2)2+
1

1− ν2 −
Ω2

ω2
0 d
,

a54 = −ε
8 gη2

η3
δn(δ2

n+m2), a55 =
ε8 gη2m
η3

(δ2
n+m2),

(7.30)

where

δn =
πn
l
, l =

L
R
, d =

E

E(0)
r

, g =
η3[1− (ν(0)

r )2]

η(0)
3r (1− ν2)

,

ε8 =
h2∗η

(0)
3r

12[1− (ν(0)
r )2]

,

ω2
0 =

E(0)
r

ρ0R2 .

(7.31)

Here, ε is a small parameter, ω0 is the characteristic frequency, and E(0)
r , ν

(0)
r ,η

(0)
3r are

the real parts for the complex Young’s modulus E, Poisson’s ratio ν and parameter η3,
respectively, calculated at the zeroth level of an applied magnetic field (B = 0 mT).
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The equation
detA = 0 (7.32)

serves as the existence condition of a nontrivial solution of the homogeneous sys-
tem (7.26). In the general case, it is a cubic equation with respect to the required
frequency parameter

Λ =
(1− ν2)Ω2

dω2
0

. (7.33)

As a particular case, we consider the axisymmetric vibrations for which

m = U◦2 = Ψ
◦
2 = 0.

Then, the cubic equation (7.32) degenerates into the quadratic one:

Λ2+
(
δ2

n−1−μ1δ
4
nrn

)
Λ−

[
(1− ν2)δ2

n+μ1δ
6
nrn

]
= 0, (7.34)

where

μ1 = (1− ν2)ε8 g, rn =
π2+ θKδ2

n

π2+Kδ2
n
, K =

π2h2∗
β
, θ = 1− η2

2

η1η3
. (7.35)

For any fixed number n, there is only one the positive root

Λ =
1
2

{
1−δ2

n+μ1rnδ
4
n+

[
(1−δ2

n+μ1rnδ
4
n)2+4(1− ν2)δ2

n+4μ1rnδ
6
n

]1/2
}
. (7.36)

If μ1→ 0, one obtains the simple formula

Λ = 1−δ2
n+

√
(1−δ2

n)2+4(1− ν2)δ2
n (7.37)

corresponding to the membrane shell theory. It is seen that the natural frequencies
for the membrane modes do not depend on the shear parameter K.

As K→ 0, Eq. (7.36) gives the frequency parameter for an isotropic shell without
taking into account shears. Because a parameter θ is small, it may be concluded that
the incorporation of the shear parameter K into the shell model results in the reduction
of the natural frequencies for any δn, the influence of K on eigenfrequencies being
very weak for modes with small parameter δn and becoming essential at large δn
and, particularly, for modes with very large number of waves n in the axial direction
(and/or for a very short cylindrical shell). We note that the influence of a magnetic
field on the reduced Young’s modulus E is very weak and the shear parameter K
is more affected by the variation of B (Mikhasev et al, 2014). Thus, changing the
induction B and, in such a way, the complex shear parameter K, we can effect slightly
low-frequency modes and high-frequency ones to a greater extent.

Example 7.1. Consider a cylindrical sandwich shell assembled from two stiffen
outermost and innermost sheets and a soft MRE core. The face sheets are made of
the ABS-plastic SD-0170 which is treated as an elastic material with the Young’s
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modulus E1 = E3 = 1.5 ·109 Pa, Poison’s ratio ν1 = ν2 = 0.4 and density ρ1 = ρ3 =

1.4 ·103 kg/m3. Viscoelastic properties of the MRE are as specified in Fig. 7.2, and
density is ρ2 = 2.65 ·103 kg/m3.

In Fig. 7.3, the real and imaginary parts of the reduced Young’s modulus, Er =�E,
Ei = �E, are plotted as the functions of the magnetic field induction B for the sand-
wiches with the thickness h1 = h2 = 0.5 mm of the face sheets and different thicknesses
h2 = 3,5,8,11 mm for the MRE core. Figure 7.4 demonstrates the behaviour of the
real and imaginary parts Kr =�K,Ki = �K of the parameter K versus the induction
B for the same sandwiches with the thicknesses h1,h2 specified above. Here, the
imaginary magnitudes Ei and Ki characterize the damping capability of the MRE
core embedded between two elastic sheets. It is seen that the effect of a magnetic
field on Er is very weak for all thicknesses h2 of the MRE core considered. And the
function Ei(B), demonstrating the visible dependence on B, is small with respect to
Er and its contribution to damping of vibrations is expected to be minor. Also, it may
be concluded from Fig. 7.4: the thicker the MRE core is, the stronger the effect of an
applied magnetic field on the shear parameter becomes.
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Figure 7.5 shows the influence of the induction B on the natural frequencyω=�Ω
and logarithmic decrement

Dl =
ωi√
ω2−ω2

i

(7.38)

corresponding to the axially symmetric modes (m = 0), where ωi = �Ω. The calcula-
tions were performed by Eq. (7.36) for h2 = 11 mm, R = 1 m and different values
of a dimensionless parameter δn = 0.5;1;3;5;8;11. It is seen that the effect of a
magnetic field on modes corresponding to small values of δn (here, for δn = 0.5;1;3)
is negligibly small, and it reveals itself for modes beginning approximately with
δn ≥ 5, see Fig. 7.5 (b).

7.5.2 Medium-Length Cylindrical Panels

Consider a medium-length circular cylindrical panel with edges bounded by the
curves α1 = 0,L1 and generatrices α2 = 0,L2, where L1,L2 are the panel length in the
axial and circumferential directions, respectively. Physical parameters for all layers
are assumed to be not dependent of coordinates α1,α2. To analyse free low-frequency
vibrations, we consider Eqs. (7.18), (7.19), where qn = 0.

Let all edges be simply supported and contain diaphragms.Then the natural modes
with n and m semi-waves in the axial and circumferential directions are readily
written down:

χ = χa exp(iΩt) sin
πnα1

L1
sin
πmα2

L2
,

F = Fa exp(iΩt) sin
πnα1

L1
sin
πmα2

L2
,

(7.39)
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Fig. 7.5: Natural frequency ω (a) and logarithmic decrement Dl (b) vs. induc-
tion B for the axially symmetric modes and different values of a parameter
δn = 0.5 (line 1); 1 (2); 3 (3); 5 (4); 8 (5); 11 (6)



7 Vibrations of Laminated Shells Containing Magnetorheological Elastomers 135

where i =
√−1, and Ω is the required complex natural frequency. The substitution

of (7.39) into Eqs. (7.18), (7.19) results in the following formula for eigenfrequency:

Ω = Ωnm =

√√
E
ρR2

⎧⎪⎪⎨⎪⎪⎩ E
ρR2

[1+ θK�nm]�2
nm

1+K�nm
+

n4

l41�2
nm

⎫⎪⎪⎬⎪⎪⎭, (7.40)

where

η =
π4η3

(1− ν2)
, �nm =

(
n
l1

)2

+

(
m
l2

)2

, l j =
L j

R
. (7.41)

Example 7.2. The series of calculations of the natural frequencies ω and logarithmic
decrements Dl for cylindrical MRE-based sandwich panels with different opening
angles ϕ2 = L2/R and the same length L1 = 1 m and radius R = 0.5 m were performed.
The material properties of the face sheets and MRE core are the same as in Exam-
ple 7.1. Thicknesses of elastic layers and viscoelastic core are h1 = h3 = 0.5 mm and
h2 = 11 mm, respectively. Figures from 7.6 to 7.8 show the influence of the induction
B on ω and Dl corresponding to natural modes with one semi-wave (n = 1) in the
axial direction and m = 1;2;3;4;5 semi-waves in the circumferential direction for
the three panels with ϕ2 = π/3,π/2,π.

As seen, for the panel with a small opening angle ϕ2, the mode corresponding to
the lowest eigenfrequency has the one semi-wave in both the axial and circumferential
directions, and the effect of magnetic field on this mode turns out to be weak (see
Fig. 7.6). For medium-length panels with a large value of ϕ2 as well as for closed
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semi-wave (n = 1) in the axial direction and m = 1; 2; 3; 4; 5 semi-waves in the
circumferential direction (lines 1, 2, 3, 4, 5, respectively)

cylindrical shells, the natural modes corresponding to the lowest eigenfrequencies
are characterized by a number of the circumferential semi-waves of the order m ∼
h1/4
∗ (Mikhasev and Tovstik, 2009); so, for ϕ2 = π, one has m = 4, although for
ϕ2 = π/3, m = 1. As expected, the influence of a magnetic field on modes with a large
number of semi-waves m are more essential than on modes with a small index of
variation ι. The damping capability of the MRE core is different for panels with small
and large opening angles and depends on the level of an applied magnetic field: for
ϕ2 = π/3, the logarithmic decrement of low-frequency vibrations (m = 1) is a slowly
increasing function of B and reaches its maximum Dl ≈ 8 · 10−3 at large value of
B = 200 mT; and for ϕ2 = π/3, the decrement for the mode with m = 4 has the local
maximum Dl ≈ 13 · 10−3 at a low level of an applied magnetic field (B ≈ 35 mT).
This conclusion is important and may be used in problems on suppression of low-
frequency vibration of medium-length MRE-based cylindrical panels and shells.

7.5.3 Vibrations of Medium-Length Cylindrical Shells in
Nonuniform Magnetic Field

If any layer in a sandwich or multilayered cylindrical shell is made of a polarized
MRE, then the effect of an applied magnetic may be different in various parts of
a shell. Indeed, an angle between the force lines of magnetic field and alignment
of magnetizable particles in a polarized MRE varies from point to point in the MR
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Fig. 7.8: Natural frequency ω (a) and logarithmic decrement Dl (b) for cylindrical
panel with the opening angle ϕ2 = π vs. induction B for modes with one semi-
wave (n = 1) in the axial direction and m = 1; 2; 3; 4; 5 semi-waves in the circumfer-
ential direction (lines 1, 2, 3, 4, 5, respectively)

layer (Boczkowska et al, 2012). Even if a magnetic field is uniform, the complex shear
modulus of the polarized MRE turns out to be a function of curvilinear coordinates.
In this case, an applied magnetic field may result in strong distortion of eigenmodes
and, particularly, in localization of natural modes in the neighborhood of a generatrix
where the real part of the shear modulus has a local minimum (Mikhasev et al,
2014). In this subsection, we aim to show that a nonuniform magnetic field may
lead to the same effect, that is the localization of the natural modes corresponding to
low-frequency vibrations of the medium-length sandwich cylindrical shell containing
a homogeneous and isotropic MRE.

Let the applied magnetic field be nonuniform so that the induction B(ϕ) in the
MRE core is a function of an angle ϕ = α2/R. Then all the magneto-sensitive com-
plex magnitudes ν,η3,E, θ,β appeared in Eqs. (7.19), (7.20) are functions of ϕ. We
introduce a small parameter

ε8 =
h2∗η

(0)
3r

12
[
1−

(
ν(0)

r

)2
] , (7.42)

and assume that the shell is sufficiently thin so that h∗ is a quantity of the order ∼ 0.01
or less. In Eq. (7.42) and below, the superscript (0) means that an appropriate param-
eter is calculated at B = 0. Here, η3r =�η3, νr =�ν, ν(0)

r ≈ 0.4. It is also assumed
that the thickness h2 of the MRE corer is not less then 70% from the total thickness
h of the shell. Then the analysis of the the magneto-sensitive complex magnitudes
for the sandwich under consideration implies the following estimations (Mikhasev



138 Gennadi Mikhasev, Ihnat Mlechka, and Svetlana Maevskaya

et al, 2014)

ν = ν(0)
r

[
1+ε4δν(ϕ)

]
, θr ∼ ε3, θi ∼ ε4,

η3 = η
(0)
3r

[
1+ε2δη3(ϕ)

]
, η(0)

3r = π
−4η(0)

r

[
1− (ν(0)

r )2
]
,

Er = E(0)
r d(ϕ) = E(0)

r [1+εd1(ϕ)], Ei/E
(0)
r ∼ ε4,

π−2K = ε2κ(ϕ) = ε2[κ0(ϕ)+ iεκ1(ϕ)]

(7.43)

at ε→ 0. In Eqs. (7.43), δν,δη3 and d1, κ0, κ1 are the complex and real functions of
ϕ, respectively, so that their absolute magnitudes are quantities of the order O(1) at
ε→ 0. In (7.43), the last estimate for K means that ζG = 3/2 (see relation (7.15)).

The solution of Eqs. (7.19), (7.20) at qn = 0 with the boundary conditions (7.24)
is readily represented in the form

χ = ε−4Rχ∗(s,ϕ)exp(iΩt), F = E(0)
r hR2F∗(s,ϕ)exp(ıΩt), (7.44)

where s = α1/R is a dimensionless axial co-ordinate, Ω is an unknown complex
natural frequency, and χ∗,F∗ are dimensionless displacement and stress functions.

The substitution of (7.44) into Eqs. (7.19), (7.20) results in the following system
of differential equations with respect to χ∗,F∗:

ε4d(ϕ)�2
ϕχ
∗ −δ2

nF∗ −Λ[1−ε2κ(ϕ)�ϕ]χ∗ = 0,

ε4�2
ϕF∗+δ2

n[1−ε2κ(ϕ)�ϕ]χ∗ = 0,
(7.45)

where

�ϕ =
(

d2

dϕ2 +δ
2
n

)
. (7.46)

δn is defined by (7.31) and

Λ =
ρR2Ω2

ε4E(0)
r

is a dimensionless frequency parameter. When deriving Eqs. (7.45) from Eqs. (7.19),
(7.20), we have omitted the operator KθΔ3χ because of smallness of the coefficient
Kθ and disregarded by very small dimensionless parameters ε4δν,ε2δη3,Ei/E

(0)
r .

Let ϕ = ϕ0 be a generatrix where the function B(ϕ) has a local minimum. Because
the storage modulus G′v of the MRE is the increasing function of the induction B (see
Fig. 7.2), then the dimensionless shear parameter κ satisfies the following conditions:

κ′0(ϕ0) = 0, κ′′0 (ϕ0) < 0. (7.47)

The problem is to find the minimum eigenvalue�Λ for Eq. (7.45) satisfying the
conditions

|χ∗|, |F∗| → 0 at |ϕ−ϕ0| → ∞. (7.48)
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The generatrix ϕ = ϕ0 is called the weakest one. The required eigenfunctions χ∗,F∗
satisfying (7.48) may be found in the form of asymptotic series (Mikhasev and
Tovstik, 2009):

χ∗ =
∞∑
j=0

ε j/2χ j(ζ)exp
{
i
(
ε−1/2 pζ +1/2bζ2)},

F∗ =
∞∑
j=0

ε j/2F j(ζ)exp
{
i
(
ε−1/2 pζ +1/2bζ2)}, (7.49)

Λ = Λ0+εΛ1+ . . . , , (7.50)

where ζ = ε−1/2(ϕ−ϕ0), p is the real wave parameter, b is the complex number with a
positive imaginary part (�b > 0), and χ j,F j are polynomials in ζ. Here the parameter
b characterizes the width of an area where more intensive vibrations occur.

The substitution of (7.49), (7.50) into Eqs. (7.45) generates the sequence of
algebraic equations with respect to unknown χ j,F j,Λ j. The stepwise consideration
of these equations (see the details of this procedure in Tovstik and Smirnov, 2001;
Mikhasev and Tovstik, 2009) results in the following formulae:

F0 = −δ2
n p−4[1+ p2κ0(ϕ0)]χ0,

λr =�Λ = f 1/2+
ε

2 f 1/2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(1+2m)p3

√
− fppκ

′′
0 (ϕ0)

2[1+ p2κ0(ϕ0)]
+d1(ϕ0)p4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+O(ε2),

λi = �Λ = − ε f 1/2κ1(ϕ0)p2

2[1+ κ0(ϕ0)p2]
+O(ε2), b =

i p3

1+ p2κ0(ϕ0)

√
−κ
′′
0 (ϕ0)

fpp
,

(7.51)

where

f (p,ϕ0;n) =
δ4

n

p4 +
p4

1+ κ0(ϕ0)p2 , (7.52)

and the wave number p is determined from the equation

δ−4
n κ0(ϕ0)p10+2p8−2κ2

0(ϕ0)p4−4κ0(ϕ0)p2−2 = 0. (7.53)

In Eq. (7.51), m is a nonnegative integer number, χ0(ζ) is the Hermitian polynomial
of the mth degree, (. . .)′ means differentiation with respect to ϕ0, the subscript p
denotes the partial derivatives of f with respect to p. For the mode corresponding to
the lowest frequencies, one needs to assume m = 0, and χ0 ≡ 1.

The magnitude

κ′′0 (ϕ0) =
B′′(ϕ0)
π2ε2

dKr

dB

∣∣∣∣∣
B=B(ϕ0)

(7.54)

depends on the rate of inhomogeneity of an applied magnetic field. The derivative
dKr/dB is calculated using the data presented in Fig. 7.4 (a). As seen form Eq. (7.51),
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it influences on both the correction for the natural frequency and the parameter b,
while the parameter κ1(ϕ0) defines the damping ratio of vibrations localized near the
generatrix ϕ = ϕ0 with the lowest level of the applied magnetic field.

The following example illustrates the effect of a nonuniform magnetic field on the
lowest natural frequencies and modes.

Example 7.3. Let the MRE-based sandwich cylindrical shell of the length L = 1.5 m
and radius R = 1 m be in the nonuniform magnetic field. The mechanical properties
and thicknesses of the face sheets and MRE core are the same as in Example 7.2.
In the domain occupied by the core, the magnetic induction is assumed to be the
function

B(ϕ) = B0
[
1− ξ exp(−cϕ2)

]
, (7.55)

where B0 > 0, 0 < ξ ≤ 1, c > 0. Then the weakest generatrix is the line ϕ = ϕ0 ≡ 0.
Table 7.1 shows the behaviour of parameters p, λr0, λr, λi, �b, Dl with increas-

ing the induction (parameter B0) and constant parameters c, ξ characterizing the
rate of the magnetic field inhomogeneity. Here, λr0 =

√
f (p,0;1) gives the zeroth

approximation for the eigenvalue Λ. Then Ω0 =

√
ε4E(0)

r λr0/(ρR2) is the lowest
natural frequency for the shell placed in the uniform magnetic field of the induc-
tion B = B0(1− ξ) mT. It may be seen that increasing the magnetic field with fixed
parameters c, ξ (defining the rate of inhomogeneity of magnetic field ) results in
increasing all parameters except the wave parameter p which shows slight decreasing.
As expected, the parameter �b, damping ratio λi and logarithmic decrement Dl are
monotonically increasing functions of the induction.

Table 7.2 demonstrates the influence of a parameter c on p, λr0, λr, λi, �b, Dl at
the fixed value of B0 = 80 mT. A parameter c specifies the rate of inhomogeneity of
the applied magnetic field. As seen, it does not effect on the wave parameter p and
zeroth approximation λr0 of the eigenvalue. But it essentially affects the parameter
�b, correction Λ1 and the frequency parameter λr in the end. As opposed to the data
from Table 7.1, the damping ratio λi and logarithmic decrement Dl are monotonically
decreasing functions of c.

The above examples allow concluding that a nonuniform magnetic field may es-
sentially disturb the low-frequency modes in thin medium-length sandwich cylinders
containing a MRE core. In particular, a magnetic field not uniformly distributed in

Table 7.1: Parameters p, λr0, λr, λi, �b, Dl vs. induction B0 for the MRE shell in
nonuniform magnetic field with parameters ξ = 0.9, c = 2

B0, mT p λr0 λr λi �b Dl

20 1.509 2.799 3.446 0.0114 0.197 0.0208
40 1.506 2.808 3.657 0.0126 0.262 0.0216
80 1.500 2.823 3.893 0.0143 0.331 0.0230
100 1.497 2.830 3.968 0.0148 0.351 0.0234
200 1.488 2.855 4.173 0.0159 0.394 0.0239
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Table 7.2: Parameters p, λr0, λr , λi, �b, Dl vs. parameter c for the MRE shell in
nonuniform magnetic field with parameters B0 = 80 mT, ξ = 0.9

c p λr0 λr λi �b Dl

0.5 1.500 2.823 3.409 0.0163 0.165 0.0301
1 1.500 2.823 3.617 0.0153 0.234 0.0267
2 1.500 2.823 3.893 0.0143 0.331 0.0230
3 1.500 2.823 4.091 0.0136 0.405 0.0208
4 1.500 2.823 4.250 0.0131 0.468 0.0193

the circumferential direction can result in strong localization of modes in the shell
areas where the effect of a magnetic field is weak.

7.6 Forced Vibrations

In this section, we consider forced vibrations of a thin medium-length sandwich
cylindrical panel containing the MRE-core under the external harmonic force

qn = Q+(α1,α2) exp(iωe t)+Q−(α1,α2) exp(−iωe t), (7.56)

where 0 < ωe is the frequency of excitation, and Q±(α1,α2) are complex functions of
the curvilinear coordinates α1,α2.

Let all the edges α1 = 0,L1, α2 = 0,L2 be simply supported and have diaphragms
preventing the edge shears, see Eqs. (7.24). Then the solution of the governing
equations (7.19) may be represented in the form:

χ(α1,α2, t) =
∞∑

n=1

∞∑
m=1

sin
πnα1

L1
sin
πmα2

L2
χnm(t),

F(α1,α2, t) =
∞∑

n=1

∞∑
m=1

sin
πnα1

L1
sin
πmα2

L2
fnm(t),

(7.57)

Let us expend the functions Q± into the double Fourier series

Q±(α1,α2) =
∞∑

n=1

∞∑
m=1

q±nm sin
πnα1

L1
sin
πmα2

L2
, (7.58)

where

q±nm =
4

L1L2

L1∫
0

L2∫
0

Q±(α1,α2) sin
πnα1

L1
sin
πmα2

L2
dα1dα2. (7.59)
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The substitution of Eqs. (7.56)-(7.58) into Eqs. (7.19) leads to the sequence of
differential equations

q̈±nm+Ω
2
nm q±nm = q̂±nm e±iωet, (n = 1,2, . . . ; m = 1,2, . . .) (7.60)

where Ωnm are the complex natural frequencies defined by (7.40), and

q̂±nm =
q±nm

ρh(1+K�nm)
(7.61)

are the complex magnitudes depending on the complex shear parameter K introduced
by Eq. (7.35).

The partial solution of Eq. (7.60) reads

q±p =
q̂±nm

Ω2
nm−ω2

e
e±iωet. (7.62)

Then the general solution of Eqs. (7.19) is

χ = χg+χp,

χg =

∞∑
n=1

∞∑
m=1

(
c+nmeiΩnm t + c−nme−iΩnm t

)
sin
πnα1

L1
sin
πmα2

L2
,

χp =

∞∑
n=1

∞∑
m=1

(
q̂+nmeiωe t + q̂−nme−iωe t

Ω2
nm−ω2

e

)
sin
πnα1

L1
sin
πmα2

L2
,

(7.63)

where c±nm are arbitrary complex constants which are determined from the initial
conditions. If ωe =�Ωnm for any fixed n,m, then one has resonance vibrations by the
mode with numbers n,m. As Ωnm is complex, the amplitude of resonance vibrations
is always a bounded magnitude.

Example 7.4. Consider a MRE sandwich with the opening angle ϕ2 = π and thickness
h2 = 11mm of the MRE core. Other geometrical and physical properties are as
specified in Example 7.2. The sandwich is assumed to be motionless at t ≤ 0 so that

χ|t=0 = χ̇|t=0 = 0. (7.64)

Let the external force be the pulsing hydrostatic pressure qn = qa sinωet (here,
Q± = ∓1/2iqa) which will excite vibrations in the MRE sandwich at t > 0. On
account of the linearity of equations and nil initial conditions, the amplitude qa is
not specified here. Figure 7.9 shows the scaled maximum amplitude A of forced
vibrations for ωe = 40 Hz and different values of the magnetic field induction B =
0(a),40(b),200(c) mT applied at t = 0. In all cases, the double infinite series in (7.63)
were replaced by double finite series with 20 terms in each series. As seen, the
applied external harmonic force excites the intensive vibrations in the form of the
superposition of natural modes and forced vibrations. Due to viscosity of the MRE



7 Vibrations of Laminated Shells Containing Magnetorheological Elastomers 143

Fig. 7.9 Scaled maximum
amplitude A of forced vibra-
tions of MRE sandwich vs.
time t(s) for different values
of induction B of magnetic
field applied at t = 0: (a) -
B = 0 mT, (b) - B = 40 mT,
(c) - B = 200 mT
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core, the excited natural modes attenuates during time with damping rate depending
on the intensity of applied magnetic field, the higher the level of magnetic field is, the
faster decaying of natural modes becomes. Suppression of forced vibrations of the
frequency ωe = 40 Hz are also influenced by the induction B. However, the nature
of this vibration damping is another: increasing the magnetic field induction leads
to increasing eigenfrequencies for all modes, see Fig. 7.6 (b), and results in fast
decreasing the amplitudes

∞∑
n=1

∞∑
m=1

q̂±nm(|Ω2
nm| −ω2

e)−1

in the end.

In the above calculations, the magnetic field and external force were applied at
once. Consider the next example illustrating the response of the MRE sandwich to
the magnetic field and external force applied at different points of time.

Example 7.5. Let the initial conditions be again given by (7.64), the harmonic force
qn = qa sinωet is applied at t = 0, while the magnetic field of the induction B= 200 mT
is supplied at t = tk > 0. The frequency ωe is the same as in Example 7.4. Let
χ(1)(α1,α2, t) be the solution of the initial value problem (7.19), (7.64) at the interval
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0 ≤ t ≤ tk. Consider the following initial conditions:

χ|t=tk = χ
(1)(α1,α2, tk), χ̇|t=tk = χ̇

(1)(α1,α2, tk). (7.65)

The solution of the initial value problem (7.19), (7.65) at t ≥ tk and B = 200 mT is
designated by χ(2)(α1,α2, t). After applying the magnetic field at t = tk the viscoelastic
properties of the sandwich are changed instantaneously. So, to use formula (7.63) at
t ≥ tk, one needs to recalculate at first all natural frequencies for the sandwich and
then complex magnitudes (7.61) at B = 200 mT. The parametric impact caused by
the suddenly applied magnetic field is not taking into account here (see an example
in Korobko et al, 2012).

Figure 7.10 shows the response of the MRE sandwich in two cases, when t =
t1 = 0.1s (a) and t = t2 = 0.2s (b). The drawn lines at 0 ≤ t < tk represent the scaled
maximum amplitudes for the displacement functions χ(1) without a magnetic field,
while the lines for t ≥ tk correspond to χ(2) calculated at B = 200 mT. In the both
cases, the application of a magnetic field results in the rapid and effective suppression
of vibrations consisting of the superposition of the natural modes and the essential
reduction of the forced vibrations as well. The comparison of Figs. 7.10(a) and
(b) allows to conclude: for the effective suppression of excited natural modes the
magnetic field should be supplied as soon as possible.

Fig. 7.10 Response of MRE
sandwich to harmonic force
and magnetic field applied at
different points of time tk: (a) -
tk = 0.1 s, (b) - tk = 0.2 s
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7.7 Conclusions

The equivalent single layer theory based on the assumptions of the generalized
kinematic hypotheses of Timoshenko for laminated shells was used to study both
free and forced vibrations of sandwich cylindrical shells and panels containing MRE
cores under various levels of applied magnetic fields. To analyze free vibrations
of length cylindrical shells, the system of five differential equations accounting
transverse shears and written in terms of generalized displacements was assumed as
the system of governing equations. To predict free and forced vibrations of medium-
length cylindrical shells and panels, the simplified equations with respect to the
displacement and force functions were used.

Assuming the boundary conditions of simply supported edges with diaphragms,
formulae for complex natural frequencies for both length and medium-length cylin-
drical shells and panels were obtained. The analysis of performed calculations for a
long sandwich cylinder has shown that the influence of an applied magnetic field on
the natural frequencies corresponding to modes with small numbers of waves in the
axial and circumferential directions is weak. In particular, the damping effect of the
MRE core turns out to be small for axially symmetric modes with number of waves
in the axial direction varying from one to four. The analysis of the natural modes for
medium-length cylindrical panels has revealed that the damping capability of the
MRE core is different for panels with small and large opening angles and strongly
depends on the level of an applied magnetic field. It has been also displayed that a
nonuniform magnetic field may result in the localization of the low-frequency natural
modes in the medium-length circular sandwich cylinder containing the MRE core,
the localization taking place in the neighborhood of the generatrix at which the real
part of the reduced shear modulus has a local minimum.

The special attention has been given to the analysis of forced vibrations of the
MRE-based sandwich cylindrical panels subjected to the external pulsing pressure.
The initial conditions for displacement and velocities were assumed to be zero. A
solution of the initial nonhomogeneous boundary-value problem has been found
in the form of series by the natural modes of the shell and represented by the
sum of the general solution of homogeneous equations and the partial solution of
nonhomogeneous equations. In the first example, the external force and magnetic
field were applied simultaneously. Due to controllable viscosity of the MRE core,
the excited natural modes corresponding to the general solution of the homogeneous
equations attenuated with the damping rate depending on the induction of an applied
magnetic field. The attenuation of amplitudes of forced vibrations given by the partial
solution of the nonhomogeneous equations is also governed by the magnetic field,
however the nature of this damping is another: it is explained by increasing the
storage modulus of the MRE core under increasing the magnetic field induction.
In the second example, the magnetic fields were applied at different points of time
tk. The solutions found at the segment 0 ≤ t ≤ tk and calculated for t = tk were
assumed then as the initial conditions for another problem considered for t ≥ tk.
At that, to predict the response of the sandwich at t ≥ tk, the natural modes were
recalculated taking into account the new viscoelastic properties acquired by the
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shell after switching the magnetic field on. The comparative analysis of performed
calculations has shown that for the effective suppression of excited vibrations the
magnetic field should be supplied as soon as possible, the damping rate depending
on the level of the applied magnetic field.
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Chapter 8

Impact-Induced Internal Resonance Phenomena

in Nonlinear Doubly Curved Shallow Shells with

Rectangular Base

Yury A. Rossikhin (†), Marina V. Shitikova, and Mohammed Salih Khalid

Abstract The problem of the low-velocity impact of an elastic sphere upon a non-
linear doubly curved shallow shell with a rectangular platform is investigated. The
approach utilized in the present paper is based on the fact that during impact only
the modes strongly coupled by some internal resonance condition are initiated. Such
an approach differs from the Galerkin method, wherein resonance phenomena are
not involved. Since is it assumed that shell’s displacements are finite, then the lo-
cal bearing of the shell and impactor’s materials is neglected with respect to the
shell deflection in the contact region. In other words, the Hertz’s theory, which is
traditionally in hand for solving impact problems, is not used in the present study;
instead, the method of multiple time scales is adopted, which is used with much
success for investigating vibrations of nonlinear systems subjected to the conditions
of the internal resonance. The influence of impactor’s mass on the phenomenon of
the impact-induced internal resonance is revealed.

8.1 Introduction

Doubly curved panels are widely used in aeronautics, aerospace and civil engineering
and are subjected to dynamic loads that can cause vibration amplitude of the order of
the shell thickness, giving rise to significant non-linear phenomena (Amabili, 2005;
Alijani and Amabili, 2012; Leissa and Kadi, 1971; Volmir, 1972). A review of the
literature devoted to dynamic behavior of curved panels and shells could be found
in Amabili and Paidoussis (2003); Amabili (2005), wherein it has been emphasized
that free vibrations of doubly curved shallow shells were studied in the majority of
papers either utilizing a slightly modified version of the Donnell’s theory taking into
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account the double curvature (Chia, 1988; Leissa and Kadi, 1971) or the nonlinear
first-order theory of shells (Abe et al, 2000; Kobayashi and Leissa, 1995).

Large-amplitude vibrations of doubly curved shallow shells with rectangular
base, simply supported at the four edges and subjected to harmonic excitation were
investigated in Amabili (2005), while chaotic vibrations were analyzed in Alijani and
Amabili (2012). It has been revealed that such an important nonlinear phenomenon as
the occurrence of internal resonances in the problems considered in Amabili (2005);
Alijani and Amabili (2012) is of fundamental importance in the study of curved
shells.

In spite of the fact that the impact theory is substantially developed, there is
a limited number of papers devoted to the problem of impact over geometrically
nonlinear shells. Literature review on this subject could be found in Kistler and Waas
(1998a,b). An analysis to predict the transient response of a thin, curved laminated
plate subjected to low velocity transverse impact by a rigid object was carried out by
Ramkumar and Thakar (1987), in so doing the contact force history due to the impact
phenomenon was assumed to be a known linear-dependent input to the analysis.
The coupled governing equations, in terms of the Airy stress function and shell
deformation, were solved using Fourier series expansions for the variables.

A methodology for the stability analysis of doubly curved orthotropic shells with
simply supported boundary condition and under impact load from the viewpoint of
nonlinear dynamics was suggested in Zhang et al (2001). The nonlinear governing
differential equations were derived based on a Donnell-type shallow shell theory, and
the displacement was expanded in terms of the eigenfunctions of the linear operator
of the motion equation. To analyze the influence of each single mode on the response
to impact loading, only one term composed of two half-waves was used in developing
the governing equation, whereas the contact force was proposed to be a sine function
during the contact duration.

The review of papers dealing with the impact response of curved panels and shells
shows that a finite element method and such commercial finite element software as
ABAQUS or LS-DYNA and its modifications are the main numerical tools adopted
by many researchers, among them: Chandrashekhara and Schoeder (1995); Liu and
Swaddiwudhipong (1997); Cho et al (2000); Fu et al (2008); Fu and Mao (2008); Fu
et al (2010); Gong et al (1995); Goswami (1998); Antoine and Batra (2015).

Thus, the nonlinear impact response of laminated composite cylindrical and
doubly curved shells was analyzed using a modified Hertzian contact law in Chan-
drashekhara and Schoeder (1995) via a finite element model, which was developed
based on Sander’s shell theory involving shear deformation effects and nonlinearity
due to large deflection. The nonlinear time dependent equations were solved using
an iterative scheme and Newmark’s method. Numerical results for the contact force
and center deflection histories were presented for various impactor conditions, shell
geometry and boundary conditions.

Later large deflection dynamic responses of laminated composite cylindrical shells
under impact have been analyzed in Cho et al (2000) by the geometrically nonlinear
finite element method based on a generalized Sander’s shell theory with the first
order shear deformation and the von Kármán large deflection assumption.
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Nonlinear dynamic response for shallow spherical moderate thick shells with
damage under low velocity impact has been studied in Fu and Mao (2008) by using
the orthogonal collocation point method and the Newmark method to discrete the
unknown variable function in space and in time domain, respectively, and the whole
problem is solved by the iterative method. Further this approach was generalized
for investigating dynamic response of elasto-plastic laminated composite shallow
spherical shell under low velocity impact (Fu et al, 2010), and for functionally graded
shallow spherical shell under low velocity impact in thermal environment (Mao et al,
2011).

The nonlinear transient response of laminated composite shell panels subjected to
low velocity impact in hygrothermal environments was investigated in Swamy Naidu
and Sinha (2005) using finite element method considering doubly curved thick shells
involving large deformations with Green-Lagrange strains. The analysis was carried
out using quadratic eight-noded isoparametric element. A modified Hertzian contact
law was incorporated into the finite element program to evaluate the impact force.
The nonlinear equation was solved using the Newmark average acceleration method
in conjunction with an incremental modified Newton-Raphson scheme. A parametric
study was carried out to investigate the effects of the curvature and side to thickness
ratios of simply supported composite cylindrical and spherical shell panels.

The impact behavior and the impact-induced damage in laminated composite
cylindrical shell subjected to transverse impact by a foreign object were studied
in Kumar et al (2007); Kumar (2010) using three-dimensional non-linear transient
dynamic finite element formulation. Non-linear system of equations resulting from
non-linear strain displacement relation and non-linear contact loading was solved
using Newton-Raphson incremental-iterative method. Some example problems of
graphite/epoxy cylindrical shell panels were considered with variation of impactor
and laminate parameters and influence of geometrical non-linear effect on the impact
response and the resulting damage was investigated.

The Sander’s shallow shell theory in conjunction with the Reissner-Mindlin shear
deformation theory was employed in Maiti and Sinha (1996a) to develop a finite
element analysis procedure to study the impact response of doubly curved laminated
composite shells, in so doing the nine-noded quadratic isoparametric elements of
Lagrangian family were utilized. Modified Hertzian contact law is used to calculate
the contact force. Numerical results were obtained for cylindrical and spherical shells
to investigate the effects of various parameters, such as radius to span ratio, span to
thickness ratio, boundary condition and stacking sequence on the impact behavior of
the target structure (Maiti and Sinha, 1996c,b).

A 4-noded 48 degree-of-freedom doubly curved quadrilateral shell finite element
based on Kirchhoff-Love shell theory was used in Ganapathy and Rao (1998) for
the nonlinear finite element analysis to predict the damage of laminated composite
cylindrical and spherical shell panels subjected to low velocity impact. The large
displacement stiffness matrix was formed using Green’s strain tensor based on total
Lagrangian approach with further utilization of an iterative scheme for solving
resulting nonlinear algebraic equation by Newton-Raphson method. The load due to
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low velocity impact was treated as an equivalent quasi-static load and Hertzian law
of contact was used for finding the peak contact force.

Recently a new approach has been proposed for the analysis of the impact in-
teractions of nonlinear doubly curved shallow shells with rectangular base under
the low-velocity impact by an elastic sphere (Rossikhin et al, 2014). It has been
assumed that the shell is simply supported and partial differential equations have been
obtained in terms of shell’s transverse displacement and Airy’s stress function. The
local bearing of the shell and impactor’s materials has been neglected with respect to
the shell deflection in the contact region. The equations of motion have been reduced
to a set of infinite nonlinear ordinary differential equations of the second order in time
and with cubic and quadratic nonlinearities in terms of the generalized displacements.
Assuming that only two natural modes of vibrations dominate during the process
of impact and applying the method of multiple time scales, the set of equations has
been obtained, which allows one to find the time dependence of the contact force and
to determine the contact duration and the maximal contact force.

In the present paper, the approach proposed by Rossikhin et al (2014) has been
generalized for studying the influence of the impact-induced internal resonances
on the low velocity impact response of a nonlinear doubly curved shallow shell
with rectangular platform. Such an additional nonlinear phenomenon as the internal
resonance could be examined only via analytical treatment, since any of existing
numerical procedures could not catch this subtle phenomenon. Impact-induced
internal resonance phenomena should be studied as their initiation during impact
interaction may lead to the fact that the impacted shell could occur under extreme
loading conditions resulting in its invisible and/or visible damage and even failure.

8.2 Problem Formulation and Governing Equations

In this section, first of all we recall the problem formulation following reasoning
presented in Rossikhin et al (2014, 2015). Assume that a sphere (or a body of arbitrary
shape but with a rounded end) of mass M moves along the z-axis towards a thin-
walled doubly curved shell with thickness h, curvilinear lengths a and b, principle
curvatures kx and ky and rectangular base, as shown in Fig. 8.1. Impact occurs at the
moment t = 0 with the low velocity εV0 at the point N with Cartesian coordinates
x0,y0, where ε is a small dimensionless parameter.

According to the Donnell-Mushtari nonlinear shallow shell theory, the equations
of motion could be obtained in terms of lateral deflection w and Airy’s stress function
φ (Mushtari and Galimov, 1957)

D
h

(
∂4w
∂x4 +2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
=
∂2w
∂x2

∂2φ

∂y2 +
∂2w
∂y2

∂2φ

∂x2 −2
∂2w
∂x∂y

∂2φ

∂x∂y

+ky
∂2φ

∂x2 + kx
∂2φ

∂y2 +
F
h
−ρẅ, (8.1)
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Fig. 8.1 Geometry of a doubly
curved shallow shell.

1
E

(
∂4φ

∂x4 +2
∂4φ

∂x2∂y2 +
∂4φ

∂y4

)
= −∂

2w
∂x2

∂2w
∂y2 +

(
∂2w
∂x∂y

)2

− ky
∂2w
∂x2 − kx

∂2w
∂y2 , (8.2)

where D = Eh3

12(1−ν2) is the cylindrical rigidity, ρ is the density, E and ν are the elastic
modulus and Poisson’s ratio, respectively, t is time, F = P(t)δ(x− x0)δ(y− y0) is the
contact force, P(t) is yet unknown function, δ is the Dirac delta function, x and y are
Cartesian coordinates, overdots denote time-derivatives, φ(x,y) is the stress function
which is the potential of the in-plane force resultants

Nx = h
∂2φ

∂y2 , Ny = h
∂2φ

∂x2 , Nxy = −h
∂2φ

∂x∂y
. (8.3)

The equation of motion of the sphere is written as

Mz̈ = −P(t) (8.4)

subjected to the initial conditions

z(0) = 0, ż(0) = εV0, (8.5)

where z(t) is the displacement of the sphere, in so doing

z(t) = w(x0,y0, t). (8.6)

Considering a simply supported shell with movable edges, the following condi-
tions should be imposed at each edge:
at x = 0, a
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w = 0,

b∫
0

Nxydy = 0, Nx = 0, Mx = 0, (8.7)

and at y = 0, b

w = 0,

a∫
0

Nxydx = 0, Ny = 0, My = 0, (8.8)

where Mx and My are the moment resultants.
The suitable trial function that satisfies the geometric boundary conditions is

w(x,y, t) =
p̃∑

p=1

q̃∑
q=1

ξpq(t) sin
( pπx

a

)
sin

(qπy
b

)
, (8.9)

where p and q are the number of half-waves in x and y directions, respectively, and
ξpq(t) are the generalized coordinates. Moreover, p̃ and q̃ are integers indicating the
number of terms in the expansion. Substituting (8.9) in (8.6) and using (8.4), we
obtain

P(t) = −M
p̃∑

p=1

q̃∑
q=1

ξ̈pq(t) sin
( pπx0

a

)
sin

(qπy0

b

)
. (8.10)

In order to find the solution of the set of Eqs. (8.1) and (8.2), it is necessary first
to obtain the solution of Eq. (8.2). For this purpose, let us substitute (8.9) in the
right-hand side of Eq. (8.2) and seek the solution of the equation obtained in the form

φ(x,y, t) =
m̃∑

m=1

ñ∑
n=1

Amn(t) sin
(mπx

a

)
sin

(nπy
b

)
, (8.11)

where Amn(t) are yet unknown functions.
Substituting (8.9) and (8.11) in Eq. (8.2) and using the orthogonality conditions

of sines within the segments 0 ≤ x ≤ a and 0 ≤ y ≤ b, we have

Amn(t) =
E
π2 Kmnξmn(t)+

4E
a3b3

(
m2

a2 +
n2

b2

)−2 ∑
k

∑
l

∑
p

∑
q

Bpqklmnξpq(t)ξkl(t),

(8.12)
where

Bpqklmn = pqklB(2)
pqklmn− p2l2B(1)

pqklmn,

B(1)
pqklmn=

a∫
0

b∫
0

sin
( pπx

a

)
sin

(qπy
b

)
sin

(
kπx
a

)
sin

(
lπy
b

)
sin

(mπx
a

)
sin

(nπy
b

)
dxdy,

B(2)
pqklmn=

a∫
0

b∫
0

cos
( pπx

a

)
cos

(qπy
b

)
cos

(
kπx
a

)
cos

(
lπy
b

)
sin

(mπx
a

)
sin

(nπy
b

)
dxdy,
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Kmn =

(
ky

m2

a2 + kx
n2

b2

)2 (m2

a2 +
n2

b2

)−2

.

Substituting then (8.9)–(8.12) in Eq. (8.1) and using the orthogonality condition
of sines within the segments 0 ≤ x ≤ a and 0 ≤ y ≤ b, we obtain an infinite set of
coupled nonlinear ordinary differential equations of the second order in time for
defining the generalized coordinates

ξ̈mn(t)+Ω2
mnξmn(t)+

8π2E
a3b3ρ

∑
p

∑
q

∑
k

∑
l

Bpqklmn

(
Kkl−1

2
Kmn

)
ξpq(t)ξkl(t)

+
32π4E
a6b6ρ

∑
r

∑
s

∑
i

∑
j

∑
k

∑
l

∑
p

∑
q

Brsi jmnBpqkli jξrs(t)ξpq(t)ξkl(t)

+
4M

abρh
sin

(mπx0

a

)
sin

(nπy0

b

)∑
p

∑
q

ξ̈pq(t) sin
( pπx0

a

)
sin

(qπy0

b

)
=0, (8.13)

where Ωmn is the natural frequency of the mnth mode of the shell vibration defined
as

Ω2
mn =

E
ρ

⎡⎢⎢⎢⎢⎢⎣ π4h2

12(1− ν2)

(
m2

a2 +
n2

b2

)2

+Kmn

⎤⎥⎥⎥⎥⎥⎦ . (8.14)

The last term in each equation from (8.13) describes the influence of the coupled
impact interaction of the target with the impactor of the mass M applied at the point
with the coordinates x0, y0.

Note that at M = 0 Eqs. (8.13) are reduced to the equations describing free
vibrations of shallow shells with a rectangular platform, which have been proposed in
Kobayashi and Leissa (1995); Leissa and Kadi (1971) and wherein curvature effects
on shallow shell vibrations, and in particular on natural frequencies (8.14), have been
studied.

It is known (Anderson et al, 1994; Nayfeh, 1973a) that during nonstationary
excitation of thin bodies not all possible modes of vibration would be excited.
Moreover, the modes which are strongly coupled by any of the so-called internal
resonance conditions are initiated and dominate in the process of vibration, in so
doing the types of modes to be excited are dependent on the character of the external
excitation.

Thus, in order to study the additional nonlinear phenomenon induced by the
coupled impact interaction due to Eq. (8.13), we suppose that only two natural modes
of vibrations are excited during the process of impact, namely, Ωαβ and Ωγδ.

Then the set of Eqs. (8.13) is reduced to the following two nonlinear differential
equations (Rossikhin et al, 2014):

p11ξ̈αβ+ p12ξ̈γδ+Ω
2
αβξαβ+ p13ξ

2
αβ+ p14ξ

2
γδ+ p15ξαβξγδ+ p16ξ

3
αβ+ p17ξαβξ

2
γδ = 0,

(8.15)
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p21ξ̈αβ+ p22ξ̈γδ+Ω
2
γδξγδ+ p23ξ

2
γδ+ p24ξ

2
αβ+ p25ξαβξγδ+ p26ξ

3
γδ+ p27ξ

2
αβξγδ = 0,

(8.16)
where

p11 = 1+
4M
ρhab

s2
1, p22 = 1+

4M
ρhab

s2
2, p12 = p21 =

4M
ρhab

s1s2,

s1 = sin
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sin
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a
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sin
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δπy0
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)
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8π2E
a3b3ρ

Bαβαβαβ
1
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8π2E
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Bγδγδαβ
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Kαβ
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8π2E
a3b3ρ

Bαβαβγδ
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2
Kγδ

)
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8π2E
a3b3ρ

Bγδγδγδ
1
2

Kγδ,

p25 =
8π2E
a3b3ρ

[
Bαβγδγδ

1
2

Kγδ+Bγδαβγδ

(
Kαβ− 1

2
Kγδ

)]
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p16 =
32π2E
a3b3ρ

∑
i

∑
j

Bαβi jαβBαβαβi j, p26 =
32π2E
a3b3ρ

∑
i

∑
j

Bγδi jγδBγδγδi j,

p17 =
32π2E
a3b3ρ
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i

∑
j

(
Bαβi jαβBγδγδi j+Bγδi jαβBαβγδi j+Bγδi jαβBγδαβi j

)
,

p27 =
32π2E
a3b3ρ

∑
i

∑
j

(
Bαβi jγδBγδγδi j+Bγδi jγδBαβγδi j+Bγδi jγδBγδαβi j

)
.

8.3 Method of Solution

In order to solve a set of two nonlinear Eqs. (8.15) and (8.16), we apply the method
of multiple time scales (Nayfeh, 1973b) via the following expansions:

ξi j(t) = εX1
i j(T0,T1,T2)+ε2X2

i j(T0,T1,T2)+ε3X3
i j(T0,T1,T2), (8.17)

where i j = αβ or γδ, Tn = ε
nt are new independent variables, among them: T0 = t

is a fast scale characterizing motions with the natural frequencies, and T1 = εt and
T2 = ε

2t are slow scales characterizing the modulation of the amplitudes and phases
of the modes with nonlinearity.

Considering that

d2

dt2 = D2
0+2εD0D1+ε

2
(
D2

1+2D0D2
)
,
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where i j = αβ or γδ, and Dn
i = ∂

n/∂T n
i (n = 1,2, i = 0,1), and substituting the

proposed solution (8.17) in (8.15) and (8.16), after equating the coefficients at like
powers of ε to zero, we are led to a set of recurrence equations to various orders:
to order ε

p11D2
0X1

1 + p12D2
0X1

2 +Ω
2
1X1

1 = 0, (8.18)

p21D2
0X1

1 + p22D2
0X1

2 +Ω
2
2X1

2 = 0; (8.19)

to order ε2

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = −2p11D0D1X1
1 −2p12D0D1X1

2

− p13(X1
1)2− p14(X1

2)2− p15X1
1 X1

2 , (8.20)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = −2p21D0D1X1
1 −2p22D0D1X1

2

− p23(X1
1)2− p24(X1

2)2− p25X1
1 X1

2 , (8.21)

to order ε3

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = −2p11D0D1X2
1 −2p12D0D1X2

2

− p11
(
D2

1+2D0D2
)
X1

1 − p12
(
D2

1+2D0D2
)
X1

2 −2p13X1
1 X2

1

− 2p14X1
2 X2

2 − p15
(
X1

1 X2
2 +X2

1 X1
2

)
− p16

(
X1

1

)3− p17X1
1

(
X1

2

)2
, (8.22)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = −2p21D0D1X2
1 −2p22D0D1X2

2

− p21
(
D2

1+2D0D2
)
X1

1 − p22
(
D2

1+2D0D2
)
X1

2 −2p23X1
2 X2

2

− 2p24X1
1 X2

1 − p25
(
X1

1 X2
2 +X2

1 X1
2

)
− p26

(
X1

2

)3− p27
(
X1

1

)2
X1

2 , (8.23)

where for simplicity is it denoted X1
1 = X1

αβ, X1
2 = X1

γδ, X2
1 = X2

αβ , X2
2 = X2

γδ, Ω1 =Ωαβ,
and Ω2 = Ωγδ.

8.3.1 Solution of Equations at Order of ε

We seek the solution of (8.18) and (8.19) in the form:

X1
1 = A1 (T1,T2) eiω1T0 +A2 (T1,T2)eiω2T0 + cc, (8.24)

X1
2 = α1A1 (T1,T2) eiω1T0 +α2A2 (T1,T2)eiω2T0 + cc, (8.25)

where A1(T1,T2) and A2(T1,T2) are unknown complex functions, cc is the complex
conjugate part to the preceding terms, and Ā1(T1,T2) and Ā2(T1,T2) are their complex



158 Yury A. Rossikhin (†), Marina V. Shitikova, and Mohammed Salih Khalid

conjugates, ω1 and ω2 are unknown frequencies of the coupled process of impact
interaction of the impactor and the target, and α1 and α2 are yet unknown coefficients.

Substituting (8.24) and (8.25) in (8.18) and (8.19) and gathering the terms with
eiω1T0 and eiω2T0 yield(
−p11ω

2
1− p12α1ω

2
1+Ω

2
1

)
A1eiω1T0+

(
−p11ω

2
2− p12α2ω

2
2+Ω

2
1

)
A2eiω2T0+cc= 0,

(8.26)

(
−p21ω

2
1− p22α1ω

2
1+α1Ω

2
2

)
A1eiω1T0+

(
−p21ω

2
2− p22α2ω

2
2+Ω

2
2α2

)
A2eiω2T0+cc= 0.

(8.27)
In order to satisfy Eqss (8.26) and (8.27), it is a need to vanish to zero each bracket

in these equations. As a result, from four different brackets we have

α1 = −
p11ω

2
1−Ω2

1

p12ω
2
1

, (8.28)

α1 = −
p21ω

2
1

p22ω
2
1−Ω2

2

, (8.29)

α2 = −
p11ω

2
2−Ω2

1

p12ω
2
2

, (8.30)

α2 = −
p21ω

2
2

p22ω
2
2−Ω2

2

. (8.31)

Since the left-hand side parts of relationships (8.28) and (8.29), as well as (8.30)
and (8.31) are equal, then their right-hand side parts should be equal as well. Now
equating the corresponding right-hand side parts of (8.28), (8.29) and (8.30), (8.31),
we are led to one and the same characteristic equation for determining the frequencies
ω1 and ω2: (

Ω2
1 − p11ω

2
) (
Ω2

2 − p22ω
2
)
− p2

12ω
4 = 0, (8.32)

hence it follows that

ω2
1,2 =

(
p22Ω

2
1 + p11Ω

2
2

)
±

√(
p22Ω

2
1 − p11Ω

2
2

)2
+4Ω2

1Ω
2
2 p2

12

2
(
p11 p22− p2

12

) . (8.33)

Reference to relationships (8.33) shows that the frequencies of the mechanical
system "target+impactor", ω1 and ω2, depend on the natural frequencies of the target,
Ω1 and Ω2, and coefficients p11, p12 and p22, which in their turn depend on the
impactor’s mass M and coordinates of the point of impact. Therefore, as the impactor
mass M→ 0, the frequencies ω1 and ω2 tend to the natural frequencies of the shell
vibrations Ω1 and Ω2, respectively. Coefficients s1 and s2 depend on the numbers of
the natural modes involved in the process of impact interaction, αβ and γδ, and on
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the coordinates of the contact force application x0, y0, resulting in the fact that their
particular combinations could vanish coefficients s1 and s2 and, thus, coefficients
p12= p21= 0.

8.3.2 Solution of Equations at Order of ε2

Now substituting (8.24) and (8.25) in (8.20) and (8.21), we obtain

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = −2iω1(p11+α1 p12)eiω1T0 D1A1

−2iω2(p11+α2 p12)eiω2T0 D1A2− (p13+α
2
1 p14+α1 p15)A1

[
A1e2iω1T0 + Ā1

]
−(p13+α

2
2 p14+α2 p15)A2

[
A2e2iω2T0 + Ā2

]
−2

[
p13+α1α2 p14+ (α1+α2)p15

]
A1

[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc,

(8.34)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = −2iω1(p21+α1 p22)eiω1T0 D1A1

−2iω2(p21+α2 p22)eiω2T0 D1A2−(p23+α
2
1 p24+α1 p25)A1

[
A1e2iω1T0 + Ā1

]
−(p23+α

2
2 p24+α2 p25)A2

[
A2e2iω2T0 + Ā2

]
−2

[
p23+α1α2 p24+ (α1+α2)p25

]
A1

[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc.

(8.35)
Reference to Eqs. (8.34) and (8.35) shows that the following two-to-one internal
resonance could occur:

ω1 = 2ω2. (8.36)

8.3.3 Impact-induced internal resonance ω1 = 2ω2

Suppose that, when the frequencies ω1 and ω2 are coupled by the two-to-one in-
ternal resonance (8.36), the functions A1 and A2 depend only on the time T1. Then
Eqs. (8.34) and (8.35) could be rewritten in the following form:

p11D2
0X2

1 + p12D2
0X2

2 +Ω
2
1X2

1 = B1 exp(iω1T0)+B2 exp(iω2T0)+Reg+ cc, (8.37)

p21D2
0X2

1 + p22D2
0X2

2 +Ω
2
2X2

2 = B3 exp(iω1T0)+B4 exp(iω2T0)+Reg+ cc, (8.38)

where all regular terms are designated by Reg, and

B1 = −2iΩ2
1ω
−1
1 D1A1−

(
p13+α

2
2 p14+α2 p15

)
A2

2,
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B2 = −2iΩ2
1ω
−1
2 D1A2−2[p13+α1α2 p14+ (α1+α2) p15]A1Ā2,

B3 = −2iΩ2
2ω
−1
1 α1D1A1−

(
p23+α

2
2 p24+α2 p25

)
A2

2,

B4 = −2iΩ2
2ω
−1
2 α2D1A2−2[p23+α1α2 p24+ (α1+α2) p25]A1Ā2.

Let us show that the terms with the exponents exp(±iωiT0) (i = 1,2) produce
circular terms. For this purpose we choose a particular solution in the form

X2
1 p =C1 exp(iω1T0)+ cc,

X2
2 p =C2 exp(iω1T0)+ cc, (8.39)

or
X2

1 p =C′1 exp(iω2T0)+ cc,
X2

2 p =C′2 exp(iω2T0)+ cc, (8.40)

where C1, C2 and C′1, C′2 are arbitrary constants.
Substituting the proposed solution (8.39) or (8.40) in (8.37) and (8.38), we are led

to the following sets of equations, respectively:⎧⎪⎪⎨⎪⎪⎩p12ω
2
1 (α1C1−C2) = B1,

p21ω
2
1

(
−C1+

1
α1

C2
)
= B3,

(8.41)

or ⎧⎪⎪⎨⎪⎪⎩p12ω
2
2

(
α2C′1−C′2

)
= B2,

p21ω
2
2

(
−C′1+

1
α2

C′2
)
= B4.

(8.42)

From the sets of Eqs. (8.41) and (8.42) it is evident that the determinants comprised
from the coefficients standing at C1, C2 and C′1, C′2 are equal to zero, therefore, it is
impossible to determine the arbitrary constants C1, C2 and C′1, C′2 of the particular
solutions (8.39) and (8.40), what proves the above proposition concerning the circular
terms.

In order to eliminate the circular terms, the terms proportional to eiω1T0 and eiω2T0

should be vanished to zero putting Bi = 0 (i = 1,2,3,4). So we obtain four equations
for defining two unknown amplitudes A1(t) and A2(t). However, it is possible to show
that not all of these four equations are linear independent from each other. For this
purpose, let us first apply the operators (p22D2

0 +Ω
2
2) and (−p12D2

0) to (8.37) and
(8.38), respectively, and then add the resulting equations. This procedure will allow
us to eliminate X2

2. If we apply the operators (−p12D2
0) and (p11D2

0 +Ω
2
1) to (8.37)

and (8.38), respectively, and then add the resulting equations. This procedure will
allow us to eliminate X2

1 . Thus, we obtain[
(p11 p22−p2

12)D4
0+(p11Ω

2
2+p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

1

=
[
(p22D2

0+Ω
2
2)B1− p12D2

0B3
]
exp(iω1T0)

+
[
(p22D2

0+Ω
2
2)B2− p12D2

0B4
]
exp(iω2T0)+Reg+ cc,

(8.43)



8 Impact-Induced Internal Resonances in Doubly Curved Shallow Shells 161

[
(p11 p22−p2

12)D4
0+(p11Ω

2
2+p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

2

=
[
−p12D2

0B1+ (p11D2
0+Ω

2
1)B3

]
exp(iω1T0)

+
[
−p12D2

0B2+ (p11D2
0+Ω

2
1)B4

]
exp(iω2T0)+Reg+ cc.

(8.44)

To eliminate the circular terms from Eqs. (8.43) and (8.44), it is necessary to vanish
to zero the terms in each square bracket. As a result we obtain⎧⎪⎪⎨⎪⎪⎩(Ω2

2 − p22ω
2
1)B1+ p12ω

2
1B3 = 0

p12ω
2
1B1+ (Ω2

1 − p11ω
2
1)B3 = 0

(8.45)

and ⎧⎪⎪⎨⎪⎪⎩(Ω2
2 − p22ω

2
2)B2+ p12ω

2
2B4 = 0

p12ω
2
2B2+ (Ω2

1 − p11ω
2
2)B4 = 0

(8.46)

From Eqs. (8.45) and (8.46) it is evident that the determinant of each set of
equations is reduced to the characteristic Eq. (8.32), whence it follows that each
pair of equations is linear dependent, therefore for further treatment we should take
only one equation from each pair in order that these two chosen equations are to be
linear independent. Thus, for example, taking the first equations from each pair and
considering relationships (8.29) and (8.31), we have

B1+α1B3 = 0, (8.47)

B3+α2B4 = 0. (8.48)

Substituting values of B1-B4 in (8.47) and (8.48), we obtain the following solv-
ability equations:

2iω1k1D1A1+b1A2
2 = 0, (8.49)

2iω2k2D1A2+b2A1Ā2 = 0, (8.50)

where

ki =
Ω2

1 +α
2
iΩ

2
2

ω2
i

(i = 1,2), b1 = p13+α
2
2 p14+α2 p15+α1(p23+α

2
2 p24+α2 p25),

b2 = 2 {p13+α1α2 p14+ (α1+α2)p15+α2[p23+α1α2 p24+ (α1+α2)p25]} .
Let us multiply Eqs. (8.49) and (8.50) by Ā1 and Ā2, respectively, and find their

complex conjugates. After adding every pair of the mutually adjoint equations with
each other and subtracting one from another, as a result we obtain

2iω1
(
Ā1D1A1−A1D1Ā1

)
+

b1

k1

(
A2

2Ā1+Ā2
2A1

)
=0, (8.51)
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2iω1
(
Ā1D1A1+A1D1Ā1

)
+

b1

k1

(
A2

2Ā1−Ā2
2A1

)
=0, (8.52)

2iω2
(
Ā2D1A2−A2D1Ā2

)
+

b2

k2

(
A1Ā2

2+Ā1A2
2

)
=0, (8.53)

2iω2
(
Ā2D1A2+A2D1Ā2

)
+

b2

k2

(
A1Ā2

2−Ā1A2
2

)
=0. (8.54)

Representing A1(T1) and A2(T1) in Eqs. (8.51)–(8.54) in the polar form

Ai(T1) = ai(T1)eiϕi(T1) (i = 1,2), (8.55)

we are led to the system of four nonlinear differential equations in a1(T1), a2(T1),
ϕ1(T1), and ϕ2(T1)

(a2
1). = − b1

k1ω1
a1a2

2 sinδ, (8.56)

ϕ̇1− b1

2k1ω1
a−1

1 a2
2 cosδ = 0, (8.57)

(a2
2). =

b2

k2ω2
a1a2

2 sinδ, (8.58)

ϕ̇2− b2

2k2ω2
a1 cosδ = 0, (8.59)

where δ = 2ϕ2−ϕ1, and a dot denotes differentiation with respect to T1.
From Eqs. (8.56) and (8.58) we could find that

b2

k2ω2
(a2

1).+
b1

k1ω1
(a2

2). = 0. (8.60)

Multiplying Eq. (8.60) by MV0 and integrating over T1, we obtain the first integral
of the set of Eqs. (8.56)–(8.59), which is the law of conservation of energy,

MV0

(
b2

k2ω2
a2

1+
b1

k1ω1
a2

2

)
= K0, (8.61)

where K0 is the initial energy. Considering that K0 =
1
2 MV2

0 , Eq. (8.61) is reduced to
the following form:

b2

k2ω2
a2

1+
b1

k1ω1
a2

2 =
V0

2
. (8.62)

Let us introduce into consideration a new function ξ(T1) in the following form:

a2
1 =

k2ω2

b2
E0ξ(T1), a2

2 =
k1ω1

b1
E0

[
1− ξ(T1)

]
, (8.63)

where E0 = V0/2.
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It is easy to verify by the direct substitution that Eqs. (8.63) satisfy Eq. (8.62),
while the value ξ0 = ξ(0) (0 ≤ ξ(0) ≤ 1) governs the energy distribution between two
subsystems, X1

1 and X1
2 , at the moment of impact. Substituting (8.63) in (8.56) yields

ξ̇ = −b
√
ξ(1− ξ) sinδ, (8.64)

where

b =

√
b2

k2ω2

√
E0.

Subtracting Eq. (8.57) from the doubled Eq. (8.59), we have

δ̇ = −b
1−3ξ
2
√
ξ

cosδ. (8.65)

Equation (8.65) could be rewritten in another form considering that

δ̇ =
dδ
dξ
ξ̇,

or with due account for (8.64)

δ̇ = −dδ
dξ

b
√
ξ(1− ξ) sinδ. (8.66)

Substituting (8.66) in Eq. (8.65) yields

√
ξ(1− ξ)d cosδ

dξ
+

1−3ξ
2
√
ξ

cosδ = 0. (8.67)

Integrating (8.67), we have

cosδ =
G0√
ξ(1− ξ) , (8.68)

where G0 is a constant of integration to be determined from the initial conditions.
Based on relationship (8.68), it is possible to introduce into consideration the

stream function G(δ,ξ) of the phase fluid on the plane δξ such that

G(δ,ξ) =
√
ξ(1− ξ)cosδ =G0, (8.69)

which is one more first integral of the set of Eqs. (8.56)–(8.59). It is easy to verify
that the function (8.69) is really a stream function, since

vδ = δ̇ = −b
∂G
∂ξ
, vξ = ξ̇ = b

∂G
∂δ
. (8.70)

It is interesting to note that the stream function G(δ,ξ) (8.69) obtained for the doubly
curved shallow shell being under conditions of the two-to-one internal resonance
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coincides with that for a suspension bridge subjected to the two-to-one internal
resonance analyzed in Rossikhin and Shitikova (1995).

In order to find the T1-dependence of ξ, it is necessary to express sinδ in terms of
ξ in Eq. (8.64) with a help of relationship (8.68). As a result we obtain

ξ̇ = −b
√
ξ(1− ξ)2−G2

0,

or
ξ∫

ξ0

dξ√
ξ3−2ξ2+ ξ−G2

0

= −bT1, (8.71)

where ξ0 is the initial magnitude of the function ξ = ξ(T1). In other words, the
calculation of the T1-dependence of ξ is reduced to the calculation of the incomplete
elliptic integral in the left hand-side of (8.71).

For the case of two-to-one internal resonance (8.36), the stream-function G(ξ,δ)
is constructed according to (8.69), and its phase portrait showing the stream-lines of
the phase fluid in the phase plane ξ− δ is presented in Fig. 8.2, which for the first
time was presented in Rossikhin and Shitikova (1995) for the two-to-one internal
resonance during nonlinear vibrations of suspension bridges. Magnitudes of G are

Fig. 8.2: Phase portrait: ω1 = 2ω2.

indicated by digits near the curves which correspond to the stream-lines; the flow
direction of the phase fluid elements are shown by arrows on the stream-lines.
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Figure 8.2 shows that the phase fluid flows within the circulation zones, which
tend to be located around the perimeter of the rectangles bounded by the lines ξ = 0,
ξ = 1, and δ = ±(π/2)±2πn (n = 0,1,2, ...). As this takes place, the flow in each such
rectangle becomes isolated. On all four rectangle sides G = 0 and inside it, the value
G preserves its sign. The function G attains its extreme magnitudes at the points with
the coordinates ξ = 1

3 , δ = ±πn (n = 0,1,2, ...). Stream-lines give a pictorial estimate
of the connection of G with all types of the energy-exchange mechanism. Thus,
the points with the coordinates ξ0 =

1
3 , δ0 = ±πn (n = 0,1,2, ...) correspond to the

stationary regime, since δ̇ = 0 and ξ̇ = 0 according to (8.64) and (8.65). The stationary
points ξ0 =

1
3 , δ0 = ±πn are centers, as with a small deviation from a center, a phase

element begins to move around the stationary point along a closed trajectory. Closed
stream-lines correspond to the periodic change of both amplitudes and phases.

Along the lines δ = ±(π/2)±2πn (n = 0,1,2, ...) pure amplitude modulated aperi-
odic motions are realized, since with an increase in time t from 0 to ∞ the value ξ
increases from ξ0 to 1 (along the line δ = −π/2) or decreases from ξ0 to 0 (along the
line δ = π/2), and from Eq. (8.64) it follows that

ξ =

[
1+
√
ξ0− (1− √ξ0)exp(−b

√
E0 T1)

1+
√
ξ0+ (1− √ξ0)exp(−b

√
E0 T1)

]2

, (8.72)

δ(T1) = δ0 =
π

2
±πn, n = 0,1,2, ...

Along the line ξ = 1 only phase modulated motions are realized, because when
ξ = ξ0 = 1 the amplitudes a1 = const and a2 = 0, and from (8.64) and (8.65) we could
find that

b
√

E0 T1 = ln
tan

(
δ
2 +

π
4

)
tan

(
δ0
2 +

π
4

) , ξ(T1) = ξ0 = 1. (8.73)

The transition of fluid elements from the points ξ = 0, δ = π/2±2πn to the points
ξ = 0, δ = −π/2±2πn proceeds instantly, because according to the distribution of the
phase velocity (8.70) along the section δ = 0 the magnitude of v tends to infinity as
ξ→ 0. The distribution of the velocity along the vertical lines δ = ±πn (n = 0,1,2, ...)
has the aperiodic character, while in the vicinity of the line ξ = 1/3 it possesses the
periodic character.

8.3.3.1 Initial Conditions

In order to construct the final solution of the problem under consideration, i.e. to
solve the set of Eqs. (8.56)–(8.59) involving the functions a1(T1), a2(T1), or ξ(T1),
as well as ϕ1(T1), and ϕ2(T1), or δ(T1), it is necessary to use the initial conditions

w(x,y,0) = 0, (8.74)
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ẇ(x0,y0,0) = εV0, (8.75)

b2

k2ω2
a2

1(0)+
b1

k1ω1
a2

2(0) = E0. (8.76)

The two-term relationship for the displacement w (8.9) within an accuracy of ε
according to (8.17) has the form

w(x,y, t) = ε
[
X1
αβ(T0,T1)sin

(
απx

a

)
sin

(
βπy
b

)
+X1

γδ(T0,T1)sin
(
γπx

a

)
sin

(
δπy
b

)]
+O(ε2).

(8.77)

Substituting (8.24) and (8.25) in (8.77) with due account for (8.55) yields

w(x,y, t) = 2ε
{
a1(εt)cos

[
ω1t+ϕ1(εt)

]
+a2(εt)cos

[
ω2t+ϕ2(εt)

]}
sin

(
απx

a

)
sin

(
βπy
b

)
+2ε

{
α1a1(εt)cos

[
ω1t+ϕ1(εt)

]
+α2a2(εt)cos

[
ω2t+ϕ2(εt)

]}
sin

(
γπx

a

)
sin

(
δπy
b

)]
+O(ε2).

(8.78)

Differentiating (8.78) with respect to time t and limiting ourselves by the terms of
the order of ε, we could find the velocity of the shell at the point of impact as follows

ẇ(x0,y0, t) = −2ε
{
ω1a1(εt) sin

[
ω1t+ϕ1(εt)

]
+ω2a2(εt) sin

[
ω2t+ϕ2(εt)

]}
s1

−2ε
{
α1ω1a1(εt) sin

[
ω1t+ϕ1(εt)

]
+α2ω2a2(εt) sin

[
ω2t+ϕ2(εt)

]}
s2+O(ε2).

(8.79)
Substituting (8.78) in the first initial condition (8.74) yields

a1(0)cosϕ1(0)+a2(0)cosϕ2(0) = 0, (8.80)

α1a1(0)cosϕ1(0)+α2a2(0)cosϕ2(0) = 0. (8.81)

From Eqs. (8.80) and (8.81) we find that

cosϕ1(0) = 0, cosϕ2(0) = 0, (8.82)

whence it follows that
ϕ1(0) = ±π

2
, ϕ2(0) = ±π

2
, (8.83)

and
cosδ0 = cos

[
2ϕ2(0)−ϕ1(0)

]
= 0, (8.84)

i.e.,
δ0 = ±π2 ±2πn. (8.85)
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The signs in (8.83) should be chosen considering the fact that the initial amplitudes
are positive values, i.e. a1(0) > 0 and a2(0) > 0. Assume for definiteness that

ϕ1(0) = −π
2
, ϕ2(0) = −π

2
. (8.86)

Substituting now (8.79) in the second initial condition (8.75) with due account for
(8.86), we obtain

ω1(s1+α1s2)a1(0)+ω2(s1+α2s2)a2(0) = E0. (8.87)

From Eqs. (8.76) and (8.87) we could determine the initial amplitudes

a2(0) =
E0

ω2(s1+α2s2)
− ω1(s1+α1s2)
ω2(s1+α2s2)

a1(0), (8.88)

c1a2
1(0)+ c2a1(0)+ c3 = 0, (8.89)

where

c1 = 1+
b1k2ω1(s1+α1s2)2

b2k1ω2(s1+α2s2)2 , c2 = −b1k2(s1+α1s2)2E0

b2k1ω2(s1+α2s2)2 ,

c3 =
b1k2E2

0

b2k1ω1ω2(s1+α2s2)2 −
k2ω2E0

b2
.

From Eqs. (8.88) and (8.89) it is evident that the initial magnitudes depend on the
mass and the initial velocity of the impactor, on the coordinates of the point of impact,
as well as on the numbers of the two modes induced by the impact.

Considering (8.84), from (8.68) we find the value of constant G0

G0 = 0. (8.90)

Reference to (8.69) shows that G0 could be zero in three cases: at ξ0 = 0, ξ0 = 1, or
when cosδ0 = 0. The above analysis of the phase portrait has revealed that the case
ξ0 = 0 is not realized. As for the case ξ0 = 1, then the solution for the phase modulated
motion takes the form of (8.73). However, for the found magnitudes of the initial
phase difference δ0 (8.85), the value of tan

(
δ0
2 +

π
4

)
in (8.73) is either equal to zero

or to infinity, what means that this case could not be realized as well. That is why
in further treatment we will analyze only the third case, resulting in the amplitude
modulated motion (8.72) with

δ(T1) = δ0 = const. (8.91)

Thus, we have determined all necessary constants from the initial conditions, there-
fore we could proceed to the construction of the solution for the contact force.
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8.3.3.2 Contact Force and Shell’s Deflection at the Point of Impact

Substituting relationship (8.79) differentiated one time with respect to time t in (8.4),
we could obtain the contact force P(t)

P(t) = 2εM
{
ω2

1a1(εt)cos
[
ω1t+ϕ1(εt)

]
+ω2

2a2(εt)cos
[
ω2t+ϕ2(εt)

]}
s1

+2εM
{
α1ω

2
1a1(εt)cos

[
ω1t+ϕ1(εt)

]
+α2ω

2
2a2(εt)cos

[
ω2t+ϕ2(εt)

]}
s2+O(ε2).

(8.92)
From Eqs. (8.57) and (8.59) with due account for (8.91) it follows that

ϕ1(T1) = const = ϕ1(0), ϕ2(T1) = const = ϕ2(0). (8.93)

Considering (8.93) and (8.86), Eq. (8.92) is reduced to

P(t) = 2εMω2
2

{
8(s1+α1s2)a1(εt)cosω2t+ (s1+α2s2)a2(εt)

}
sinω2t. (8.94)

Substituting (8.63) in (8.94), we finally obtained

P(t) = 2εMω2
2
√

E0
{
8(s1+α1s2)

√
k2ω2

b2

√
ξ(εt)cosω2t

+(s1+α2s2)
√

k1ω1
b1

√
1− ξ(εt)

}
sinω2t,

(8.95)

where the function ξ(εt) is defined by (8.72).
Since the duration of contact is a small value, what is evident from experimental

data (Kistler and Waas, 1998a; Kunukkasseril and Palaninathan, 1975; Rossikhin and
Shitikova, 2007), then P(t) could be calculated via an approximate formula, which is
obtained from (8.94) at εt ≈ 0

P(t) ≈ 16εMω2
2

(
cosω2t+

1
8
κ
)
(s1+α1s2)a1(0)sinω2t+O(ε2), (8.96)

where the dimensionless parameter κ

κ =
(s1+α2s2)
(s1+α1s2)

a2(0)
a1(0)

(8.97)

is defined by the parameters of two impact-induced modes coupled by the two-to-one
internal resonance (8.36), as well as by the coordinates of the point of impact and the
initial velocity of impact. The deflection of the shell at the point of impact could be
determined from (8.78) with due account for the found initial values of the phases

w(x0,y0, t) ≈ 4ε
(
cosω2t+

1
2
κ
)
(s1+α1s2)a1(0)sinω2t+O(ε2). (8.98)

The dimensionless time τ =ω2t dependence of the dimensionless contact force P∗
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P∗(τ) ≈
(
cosτ+

1
8
κ

)
sinτ, (8.99)

where
P∗(t) =

P(t)
16εMω2

2(s1+α1s2)a1(0)
,

and the dimensionless deflection of the target at the point of impact

w∗(τ) =
(
cosτ+

1
2
κ

)
sinτ, (8.100)

where
w∗(t) =

w(x0,y0, t)
4ε(s1+α1s2)a1(0)

,

are shown, respectively, in Figs. 8.3 (a) and (b) for the different magnitudes of the
parameter κ: 0, 2, 4, and 8. Figures 8.3 (a) and (b) show that the increase in the
parameter κ results in the increase of the maximal contact force, the duration of
contact, and the maximal deflection of the target at the point of impact. In other
words, from Figure 3 it is evident that the peak contact force, the duration of contact
and shell’s deflection depend essentially upon the parameters of two impact-induced
modes coupled by the two-to-one internal resonance (8.36).

Fig. 8.3: Dimensionless time dependence of (a) the dimensionless contact force
and (b) the target deflection at the point of impact for the case of the internal reso-
nance ω1 = 2ω2.
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8.3.4 Solution of Equations at Order of ε3

In order to study internal resonances of the order of ε3, in further treatment we
assume that ω1 � 2ω2. In this case in order to eliminate secular terms in Eqss (8.34)
and (8.35), it is sufficient to fulfill the following equations:

D1A1 = 0, D1A2 = 0, (8.101)

whence it follows that the functions A1 and A2 are T1-independent, i.e.,

A1 = A1(T2), A2 = A2(T2). (8.102)

To solve Eqs. (8.34) and (8.35) with due account for (8.101) and (8.102), let us
first apply the operators (p22D2

0+Ω
2
2) and (−p12D2

0) to (8.34) and (8.35), respectively,
and then add the resulting equations. This procedure will allow us to eliminate X2

2 . If
we apply the operators (−p12D2

0) and (p11D2
0 +Ω

2
1) to (8.34) and (8.35), respectively,

and then add the resulting equations. This procedure will allow us to eliminate X2
1 .

Thus, we obtain[
(p11 p22− p2

12)D4
0+ (p11Ω

2
2 + p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

1

= −
[
(p13+α

2
1 p14+α1 p15)(p22D2

0+Ω
2
2)

−(p23+α
2
1 p24+α1 p25)p12D2

0

]
A1

[
A1e2iω1T0 + Ā1

]
−
[
(p13+α

2
2 p14+α2 p15)(p22D2

0+Ω
2
2)− (p23+α

2
2 p24+α2 p25)p12D2

0

]
×A2

[
A2e2iω2T0 + Ā2

]
−2

{[
p13+α1α2 p14+ (α1+α2)p15

]
(p22D2

0+Ω
2
2)

− [
p23+α1α2 p24+ (α1+α2)p25

]
p12D2

0

}
×A1

[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc,

(8.103)

[
(p11 p22− p2

12)D4
0+ (p11Ω

2
2 + p22Ω

2
1)D2

0+Ω
2
1Ω

2
2

]
X2

2

= −
[
(p23+α

2
1 p24+α1 p25)(p11D2

0+Ω
2
1)

−(p13+α
2
1 p14+α1 p15)p12D2

0

]
A1

[
A1e2iω1T0 + Ā1

]
−
[
(p23+α

2
2 p24+α2 p25)(p11D2

0+Ω
2
1)− (p13+α

2
2 p14+α2 p15)p12D2

0

]
×A2

[
A2e2iω2T0 + Ā2

]
−2

{[
p23+α1α2 p24+ (α1+α2)p25

]
(p11D2

0+Ω
2
1)

− [
p13+α1α2 p14+ (α1+α2)p15

]
p12D2

0

}
×A1

[
A2ei(ω1+ω2)T0 + Ā2ei(ω1−ω2)T0

]
+ cc.

(8.104)

The solution of (8.103) and (8.104) has the form
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X2
1 = F1 (T2) eiω1T0 +F2 (T2)eiω2T0 +N1A2

1e2iω1T0 +N2A2
2e2iω2T0

+N3A1Ā1+N4A2Ā2+N5A1A2ei(ω1+ω2)T0 +N6A1Ā2ei(ω1−ω2)T0 + cc,
(8.105)

X2
2 = α1F1 (T2) eiω1T0 +α2F2 (T2)eiω2T0 +E1A2

1e2iω1T0 +E2A2
2e2iω2T0

+E3A1Ā1+E4A2Ā2+E5A1A2ei(ω1+ω2)T0 +E6A1Ā2ei(ω1−ω2)T0 + cc,
(8.106)

where F1(T2) and F2(T2) are unknown complex functions, and coefficients Ni and
Ei (i = 1,2, ...,6) are presented in Appendix.

Now substituting (8.24), (8.25), (8.105), and (8.106) in (8.20) and (8.21), we
obtain (Rossikhin et al, 2015)

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = −
[
2iω1(p11+α1 p12)D2A1

+K1A2
1Ā1+K2A1A2Ā2

]
eiω1T0

−
[
2iω2(p11+α2 p12)D2A2+L1A2

2Ā2+L2A1Ā1A2
]
eiω2T0

−
{
M1A3

2e3iω2T0 +M2A1Ā2
2ei(ω1−2ω2)T0

}
−R1A2

1Ā2ei(2ω1−ω2)T0 +Reg+ cc,

(8.107)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = −
[
2iω1(p21+α1 p22)D2A1

+K3A2
1Ā1+K4A1A2Ā2

]
eiω1T0

−
[
2iω2(p21+α2 p22)D2A2+L3A2

2Ā2+L4A1Ā1A2
]
eiω2T0

−
{
M3A3

2e3iω2T0 +M4A1Ā2
2ei(ω1−2ω2)T0

}
−R2A2

1Ā2ei(2ω1−ω2)T0 +Reg+ cc,

(8.108)

where all regular terms are designated by Reg, and coefficients Ki, Li, Mi, and Ri
(i = 1,2,3,4) are given in Appendix.

Reference to Eqs. (8.107) and (8.108) shows that the following three-to-one
internal resonance could occur on this step:

ω1 = 3ω2. (8.109)

8.3.4.1 Impact-Induced Three-to-One Internal Resonance

Suppose that ω1 ≈ 3ω2 (8.109). Then Eqs. (8.107) and (8.108) could be rewritten in
the following form:

p11D2
0X3

1 + p12D2
0X3

2 +Ω
2
1X3

1 = B1 exp(iω1T0)+B2 exp(iω2T0)+Reg+cc, (8.110)

p21D2
0X3

1 + p22D2
0X3

2 +Ω
2
2X3

2 = B3 exp(iω1T0)+B4 exp(iω2T0)+Reg+cc, (8.111)
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where

B1 = −2iω1(p11+α1 p12)D2A1−K1A2
1Ā1−K2A1A2Ā2−M1A3

2,

B2 = −2iω2(p11+α2 p12)D2A2−L1A2
2Ā2−L2A1Ā1A2−M2A1Ā2

2,

B3 = −2iω1(p21+α1 p22)D2A1−K3A2
1Ā1−K4A1A2Ā2−M3A3

2,

B4 = −2iω2(p21+α2 p22)D2A2−L3A2
2Ā2−L4A1Ā1A2−M4A1Ā2

2.

It could be shown in the same manner, as it has been done above for the case of the
two-to-one internal resonance, that the terms with the exponents
exp(±iωiT0) (i = 1,2) produce circular terms in Eqs. (8.110) and (8.111).

In order to eliminate them, the terms proportional to eiω1T0 and eiω2T0 should be
vanished to zero putting Bi = 0 (i = 1,2,3,4). So we obtain four equations for defining
two unknown amplitudes A1(t) and A2(t). However, it is possible to show, once again
similarly to the above case of the two-to-one internal resonance, that not all of these
four equations are linear independent from each other, and therefore to obtain the
following solvability equations:

2iω1D2A1+ p1A2
1Ā1+ p2A1A2Ā2+ p3A3

2 = 0, (8.112)

2iω2D2A2+ p4A2
2Ā2+ p5A1Ā1A2+ p6A1Ā2

2 = 0, (8.113)

where

p1 =
K1+α1K3

k1
, p2 =

K2+α1K4

k1
, p3 =

M1+α1M3

k1
, p4 =

L1+α2L3

k2
,

p5 =
L2+α2L4

k2
, p6 =

M2+α2M4

k2
, k1 =

Ω2
1 +α1Ω

2
2

ω2
1

, k2 =
Ω2

1 +α2Ω
2
2

ω2
2

.

Let us multiply Eqs. (8.112) and (8.113) by Ā1 and Ā2, respectively, and find their
complex conjugates. After adding every pair of the mutually adjoint equations with
each other and subtracting one from another, as a result we obtain

2iω1
(
Ā1D2A1−A1D2Ā1

)
+2p1A2

1Ā2
1+2p2A1Ā1A2Ā2+ p3

(
Ā1A3

2+A1Ā3
2

)
= 0,
(8.114)

2iω1
(
Ā1D2A1+A1D2Ā1

)
+p3

(
Ā1A3

2−A1Ā3
2

)
=0, (8.115)

2iω2
(
Ā2D2A2−A2D2Ā2

)
+2p4A2

2Ā2
2+2p5A1Ā1A2Ā2+ p6

(
A1Ā3

2+ Ā1A3
2

)
= 0,
(8.116)

2iω2
(
Ā2D2A2+A2D2Ā2

)
+p6

(
A1Ā3

2−Ā1A3
2

)
=0. (8.117)
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Representing A1(T2) and A2(T2) in Eqs. (8.114)–(8.117) in the polar form

Ai(T2) = ai(T2)eiϕi(T2) (i = 1,2), (8.118)

we are led to the system of four nonlinear differential equations in a1(T2), a2(T2),
ϕ1(T2), and ϕ2(T2)

(a2
1). = − p3

ω1
a1a3

2 sinδ, (8.119)

2ϕ̇1− p1

ω1
a2

1−
p2

ω1
a2

2−
p3

ω1
a−1

1 a3
2 cosδ = 0, (8.120)

(a2
2). =

p6

ω2
a1a3

2 sinδ, (8.121)

2ϕ̇2− p5

ω2
a2

1−
p4

ω2
a2

2−
p6

ω2
a1a2 cosδ = 0, (8.122)

From Eqs. (8.119) and (8.121) we could find that

p6

ω2
(a2

1).+
p3

ω1
(a2

2). = 0 (8.123)

Multiplying (8.123) by MV0 and integrating over T2, we obtain the first integral of
the set of Eqs. (8.119)–(8.122), which is the law of conservation of energy,

MV0

(
p6

ω2
a2

1+
p3

ω1
a2

2

)
= K0, (8.124)

where K0 is the initial energy. Considering that K0 =
1
2 MV2

0 , Eq. (8.124) is reduced
to the following form:

p6

ω2
a2

1+
p3

ω1
a2

2 =
V0

2
. (8.125)

Let us introduce into consideration a new function ξ(T2) in the following form:

a2
1 =

ω2

p6
E0ξ(T2), a2

2 =
ω1

p3
E0

[
1− ξ(T2)

]
. (8.126)

It is easy to verify by the direct substitution that formulas (8.126) satisfy Eq. (8.125),
while the value ξ(0) (0 ≤ ξ(0) ≤ 1) governs the energy distribution between two
subsystems, X1

1 and X1
2 , at the moment of impact.

Substituting (8.126) in (8.119) yields

ξ̇ = −bE0(1− ξ) √ξ(1− ξ) sinδ, (8.127)

where

b =
√
ω1 p6

ω2 p3
.

Subtracting Eq. (8.120) from the triple Eq. (8.122), we have
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δ̇ = bE0

(
3
2
ξ− 1

2
(1− ξ)

) √
1− ξ
ξ

cosδ+E0

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
ξ

+E0

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
(1− ξ). (8.128)

Equation (8.128) could be rewritten in another form considering that

δ̇ =
dδ
dξ
ξ̇,

or with due account for (8.127)

δ̇ = −bE0(1− ξ) √ξ(1− ξ) dδ
dξ

sinδ. (8.129)

Substituting (8.129) in Eq. (8.128) yields

d cosδ
dξ

+
1−4ξ

2ξ(1− ξ) cosδ− Γ1√
ξ(1− ξ) −

Γ2

1− ξ

√
ξ

1− ξ = 0, (8.130)

where

Γ1 =
1
b

(
3p4

2ω2
− p2

2ω1

)
ω1

p3
, Γ2 =

1
b

(
3p5

2ω2
− p1

2ω1

)
ω2

p6
.

Integrating (8.130), we have

cosδ =
G0

(1− ξ) √ξ(1− ξ) − Γ1

2

√
1− ξ
ξ
+
Γ2

2
ξ

(1− ξ)

√
ξ

1− ξ , (8.131)

where G0 is a constant of integration to be determined from the initial conditions.
Based on relationship (8.131), it is possible to introduce into consideration the stream
function G(δ,ξ) of the phase fluid on the plane δξ such that

G(δ,ξ) = (1− ξ) √ξ(1− ξ)cosδ+
Γ1

2
(1− ξ)2− Γ2

2
ξ2 =G0, (8.132)

which is one more first integral of the set of Eqs. (8.119)–(8.122).
It is easy to verify that the function (8.132) is really a stream function, since

vδ = δ̇ = −bE0
∂G
∂ξ
, vξ = ξ̇ = bE0

∂G
∂δ
. (8.133)

In order to find the T2-dependence of ξ, it is necessary to express sinδ in terms of ξ
in Eq. (8.127) with a help of relationship (8.131). As a result we obtain

ξ̇ = −bE0

√
ξ(1− ξ)3−

[
G0−Γ1

2
(1− ξ)2+

Γ2

2
ξ2

]2
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or
ξ∫

ξ0

dξ√
ξ(1− ξ)3−

[
G0− Γ1

2 (1− ξ)2+
Γ2
2 ξ

2
]2
= −bE0T2, (8.134)

where ξ0 is the initial magnitude of the function ξ = ξ(T2). In other words, the
calculation of the T2-dependence of ξ is reduced to the calculation of the incomplete
elliptic integral in the left hand-side of (8.134).

8.3.4.2 Phase Portraits

The qualitative analysis of the case of the three-to-one internal resonance (8.109)
could be carried out with the be constructed according to (8.132) depends essentially
on the magnitudes of the coefficients Γ1 and Γ2. Let us carry out the phenomenologi-
cal analysis of the phase portraits constructing them at different magnitudes of the
system parameters.

• The case when Γ1 = Γ2 = 0.
Let us first consider the case when Γ1 = Γ2 = 0. Then (8.132) is reduced to

G(δ,ξ) = (1− ξ) √ξ(1− ξ)cosδ =G0, (8.135)

and the stream-lines of the phase fluid in the phase plane ξ−δ for this particular
case are presented in Fig. 8.4. Magnitudes of G are indicated by digits near the
curves which correspond to the stream-lines; the flow direction of the phase fluid
elements are shown by arrows on the stream-lines.
Reference to Fig. 8.4 shows that the phase fluid flows within the circulation zones,
which tend to be located around the perimeter of the rectangles bounded by the
lines ξ = 0, ξ = 1, and δ = ±(π/2)±2πn (n = 0,1,2, ...). As this takes place, the
flow in each such rectangle becomes isolated. On all four rectangle sides G = 0
and inside it the value G preserves its sign. The function G attains its extreme
magnitudes at the points with the coordinates ξ = 1

4 , δ = ±πn (n = 0,1,2, ...).
Along the lines δ = ±(π/2)±2πn (n = 0,1,2, ...) the solution could be written as

ξ =

[
1+

1
[c0+ f (T2)]2

]−1

, δ(T2) = δ0 =
π

2
±πn, n = 0,1,2, ...

where

f (T2) = −bE0T2, c0 =

√
ξ0

1− ξ0
.

Along the line ξ = 1 the stationary boundary regime is realized, because when
ξ = ξ0 = 1 the amplitudes a1 = const and a2 = 0, and from (8.127) and (8.129) it
follows that ξ̇ = δ̇ = 0. The transition of fluid elements from the points ξ = 0, δ =
π/2±2πn to the points ξ = 0, δ = −π/2±2πn (n = 0,1,2...) proceeds instantly,
because according to the distribution of the phase velocity along the section δ = 0
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Fig. 8.4: Phase portrait for the case of 1:3 internal resonance at Γ1 = Γ2 = 0.

(see Fig. 8.4) the magnitude of v tends to infinity as ξ→ 0. The distribution of the
velocity along the vertical lines δ = ±πn has the aperiodic character, while in the
vicinity of the line ξ = 1/4 it possesses the periodic character.

• The case when Γ1 = 0 and Γ2/2 = 1.
In this case, the stream-function is defined as

G(ξ,δ) = ξ1/2(1− ξ)3/2 cosδ+ (1− ξ)2 =G(ξ0, δ0),

and Fig. 8.5 shows the streamlines of the phase fluid in the phase plane.
As in the previous case, the phase fluid flows in an infinitely long channel, the
boundaries of which are the straight lines ξ = 0 and ξ = 1, corresponding to
the phase modulated motions. In one part the streamlines are non-closed, what
corresponds to the periodic change of amplitudes and the aperiodic change of
phases; in another part they are closed, what corresponds to the periodic change
of both amplitudes and phases. The aperiodic regime lines are the boundaries of
the closed and unclosed streamline areas. From the phase portrait in Figure 5 it is
seen that the circulation zones are located in a staggered arrangement by the right
and left channel sides (this configuration resembles that of von Kármán staggered
vortex tracks).
Each zone by the side ξ = 1 is surrounded by a line with the value G = 0. This
line consists of two parts connected with each other at the branch points with the
coordinates ξ = 1, δ = π/2±πn (n = 0,1,2...). One branch of this line corresponds
to the phase-modulated regime ξ = 1, and the other to the aperiodic regime,
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Fig. 8.5 Phase portrait for the
case of 1:3 internal resonance
at Γ1 = 0, and Γ2/2 = 1.

wherein ξ varies from ξmin = 0.5 to ξmax = 1. At the branch point itself, the phase
fluid flow velocity is equal to zero. Along the separatrix, the analytic solution can
be constructed in the following form:

2
√

2
1− ξ

√
(1− ξ)(2− ξ)

∣∣∣∣ξ
ξ0
= −bE0T2, cosδ = −

√
1− ξ
ξ
.

The circulation zones by the side ξ = 0 are surrounded by the line with the value
G = 1. However, only those parts of the line G = 1 which bound these zones from
above and come closer to the side ξ = 0 at the points ξ = 0, δ = π/2±πn belong
to the domain of the fluid flow. The transition of fluid elements from the points
ξ = 0, δ = (π/2)±πn to the points ξ = 0, δ = (3π/2)±πn proceeds instantly. The
line G = 1 conforms to the periodic change of the amplitudes and the aperiodic
change of the phase. The separatrix G = 1 is defined by the following equations:

ξ∫
ξ0

dξ√
ξ(1−7ξ+7ξ2−2ξ3)

=

ξ∫
ξ0

dξ√
ξ(0.170515− ξ)(2ξ2−6.659ξ+5.865)

= −bE0T2, cosδ =
2− ξ
1− ξ

√
ξ

1− ξ ,

wherein ξ varies from ξmin = 0 to ξmax = 0.170515.
Inside the both circulation zones there are points with the extreme values of the
stream-function: maximal Gmax = 1.11 and minimal Gmin = −0.0475, respectively.
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These points are the centers corresponding to the stable stationary regimes ξ =
ξ0 = 0.0443, δ = δ0 = ±2πn and ξ = ξ0 = 0.7057, δ = δ0 = π±2πn, respectively.
Between the lines corresponding to G = 0 and G = 1, unclosed streamlines are
located which are in accordance with the periodic change of the amplitudes and
the aperiodic change of the phase difference.

• The case when Γ1/2 = Γ2/2 = 1.
In this case, the stream-function is defined as

G(ξ,δ)=ξ1/2(1− ξ)3/2 cosδ− ξ2+ (1− ξ)2=G(ξ0, δ0),

and Fig. 8.6 shows the streamlines of the phase fluid in the phase plane.
From Fig. 8.6 it is seen that, unlike the previous case presented in Fig. 8.6, the
circulation zones by the side ξ = 1 and the aperiodic regime disappear. If ξ→ 1,
then the streamlines level off and tend to the line ξ = 1 where G = −1. If ξ→ 0,
then the streamlines tend to the piecewise continuous line G = 1 determined on
the segments [−(π/2)±2πn, (π/2)±2πn]. The transition of fluid elements from
the points ξ = 0, δ = (π/2)±2πn to the points ξ = 0, δ = (3π/2)±2πn proceeds
instantly. The line G = 1 conforms to the periodic change of the amplitudes and
the aperiodic change of the phase difference. The separatrix G = 1 is defined by
the following equations:

ξ∫
ξ0

dξ√
ξ(1−7ξ+3ξ2− ξ3)

=

ξ∫
ξ0

dξ√
ξ(0.1523− ξ)(ξ2−2.8477ξ+6.5663)

Fig. 8.6 Phase portrait for the
case of 1:3 internal resonance
at Γ1/2 = Γ2/2 = 1.
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= −bE0T2, cosδ =
2

1− ξ

√
ξ

1− ξ ,

wherein ξ varies from ξmin = 0 to ξmax = 0.1523.
Inside each circulation zone there is a point with the maximal value of the stream-
function Gmax = 1.108. These points are the centers corresponding to the stable
stationary regimes ξ = ξ0 = 0.04, δ = δ0 = ±2πn.
Between the lines corresponding to G = −1 and G = 1, unclosed streamlines are
located which are in accordance with the periodic change of the amplitudes and
the aperiodic change of the phase difference.

• The case when Γ1 = −21.84 and = Γ2 = 0.01.
In this case, the stream-function is defined as

G(ξ,δ) = ξ1/2(1− ξ)3/2 cosδ−0.005ξ2−10.92(1− ξ)2 =G(ξ0, δ0),

and Fig. 8.7 shows the streamlines of the phase fluid in the phase plane. Figure
8.7 illustrates the phase portrait with only unclosed phase fluid streamlines along
which the fluid flows in the direction of an increase in δ. With ξ→ 0 and ξ→ 1,
the streamlines level off and tend, respectively, to the lines ξ = 0 with G =Gmin =

Γ1/2 = −10.92 and ξ = 1 with G =Gmax = −Γ2/2 = −0.005.

Fig. 8.7: Phase portrait for the case of 1:3 internal resonance at Γ1 = −21.84 and
Γ2 = 0.01.
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8.3.4.3 Initial Conditions

In order to construct the final solution of the problem under consideration, i.e. to
solve the set of Eqs. (8.119)-(8.122) involving the functions a1(T2), a2(T2), or ξ(T2),
as well as ϕ1(T2), and ϕ2(T2), or δ(T2), it is necessary to use the initial conditions

w(x,y,0) = 0, (8.136)

ẇ(x0,y0,0) = εV0, (8.137)

p6

ω2
a2

1(0)+
p3

ω1
a2

2(0) = E0. (8.138)

The two-term relationship for the displacement w (8.9) within an accuracy of ε
according to (8.17) has the form

w(x,y, t) = ε
[
X1
αβ(T0,T2)sin

(
απx

a

)
sin

(
βπy
b

)
+X1

γδ(T0,T2)sin
(
γπx

a

)
sin

(
δπy
b

)]
+O(ε3).

(8.139)

Substituting (8.24) and (8.25) in (8.139) with due account for (8.118) yields

w(x,y, t) = 2ε
{
a1(ε2t)cos

[
ω1t+ϕ1(ε2t)

]
+a2(ε2t)cos

[
ω2t+ϕ2(ε2t)

]}
sin

(
απx

a

)
sin

(
βπy
b

)
+2ε

{
α1a1(ε2t)cos

[
ω1t+ϕ1(ε2t)

]
+α2a2(ε2t)

×cos
[
ω2t+ϕ2(ε2t)

]}
sin

(
γπx

a

)
sin

(
δπy
b

)
+O(ε3).

(8.140)

Differentiating (8.140) with respect to time t and limiting ourselves by the terms
of the order of ε, we could find the velocity of the shell at the point of impact as
follows

ẇ(x0,y0, t)= −2ε
{
ω1(s1+α1s2)a1(ε2t)sin

[
ω1t+ϕ1(ε2t)

]
+ω2(s1+α2s2)

×a2(ε2t) sin
[
ω2t+ϕ2(ε2t)

]}
+O(ε3).

(8.141)

Substituting (8.140) in the first initial condition (8.136) and assuming that a1(0) >
0 and a2(0) > 0, we have

cosϕ1(0) = 0, cosϕ2(0) = 0, (8.142)

whence it follows that
ϕ1(0) = ±π

2
, ϕ2(0) = ±π

2
, (8.143)

and
cosδ0 = cos

[
3ϕ2(0)−ϕ1(0)

]
= ∓1, (8.144)
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i.e.,
δ0 = ±π(n+1) (n = 0,1,2, ...). (8.145)

The signs in (8.143) should be chosen considering the fact that the initial ampli-
tudes are positive values, i.e. a1(0) > 0 and a2(0) > 0. Assume for definiteness that

ϕ1(0) = −π
2
, ϕ2(0) = −π

2
. (8.146)

Substituting now (8.141) in the second initial condition (8.137) with due account
for (8.146), we obtain

ω1(s1+α1s2)a1(0)+ω2(s1+α2s2)a2(0) = E0. (8.147)

From Eqs. (8.138) and (8.147) we could determine the initial amplitudes

a2(0)=
E0

ω2(s1+α2s2)
− ω1(s1+α1s2)
ω2(s1+α2s2)

a1(0), (8.148)

d1a2
1(0)+d2a1(0)+d3 = 0, (8.149)

where

d1 = 1+
ω2

1(s1+α1s2)2

b2ω2
2(s1+α2s2)2

, d2 = −2E0ω1(s1+α1s2)
b2ω2

2(s1+α2s2)2
,

d3 =
E2

0

b2ω2
2(s1+α2s2)2

− E0ω2

p6
.

It should be noted that the initial amplitudes depend not only on the initial
velocity of the impactor, but according to (8.148) and (8.149) they are defined also
by the parameters of two impact-induced modes coupled by the three-to-one internal
resonance (8.109).

Considering (8.144), from (8.132) we find the value of constant G0, which defines
the trajectory of a point on the phase plane

G0 =
4

V2
0

⎡⎢⎢⎢⎢⎢⎣± p3

ω1

√
p3 p6

ω1ω2
a1(0)a3

2(0)+
Γ1 p2

3

2ω2
1

a4
2(0)− Γ2 p2

6

2ω2
2

a4
1(0)

⎤⎥⎥⎥⎥⎥⎦ . (8.150)

Thus, we have determined all necessary constants from the initial conditions,
therefore we could proceed to the construction of the solution for the contact force.

8.3.4.4 The Contact Force and Shell’s Deflection at the Point of Contact

Now knowing a1(0), a2(0), ϕ1(0), and ϕ2(0), it is possible to calculate the value P(t),
which within an accuracy of ε has the form:

P(t)=−εM
[
Ẍ1

1(t)s1+ Ẍ1
2(t)s2

]
+O(ε3), (8.151)
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or with due account for (8.141)

P(t) = 2εM
{
ω2

1 (s1+α1s2)a1(ε2t)cos
[
ω1t+ϕ1(ε2t)

]
+ω2

2 (s1+α2s2)a2(ε2t)cos
[
ω2t+ϕ2(ε2t)

]}
+O(ε3).

(8.152)

Considering (8.146) and (8.109), Eq. (8.152) is reduced to

P(t) = 2εMω2
2[9a1(0)(s1+α1s2)sin3ω2t+a2(0)(s1+α2s2)sinω2t]

= 18Mε(s1+α1s2)ω2
2a1(0)sinω2t

(
3−4sin2ω2t+

1
9
κ

)
+O(ε3), (8.153)

where the dimensionless coefficient κ is calculated according to (8.97) and is defined
by the parameters of two impact-induced modes coupled by the three-to-one internal
resonance (8.109), as well as by the coordinates of the point of impact and the initial
velocity of impact.

The deflection of the shell at the point of impact could be determined from (8.140)
with due account for the found initial values of the phases

w(x0,y0, t) ≈ 2ε
(
sinω1t+ κ sinω2t

)
(s1+α1s2)a1(0)+O(ε2). (8.154)

The contact force in the dimensionless form could be written as

P∗(τ) =
(

3
4
+

1
36
κ− sin2 τ

)
sinτ, (8.155)

where
P∗(t) =

P(t)
72εMω2

2(s1+α1s2)a1(0)
,

while the dimensional deflection for the case of the three-to-one internal resonance
has the form

w∗(τ) =
(

3
4
+

1
4
κ− sin2 τ

)
sinτ, (8.156)

where
w∗(t) =

w(x0,y0, t)
2ε(s1+α1s2)a1(0)

.

The dimensionless time τ = ω2t dependence of the dimensionless contact force
P∗ defined by (8.155) and of the dimensionless deflection of the target at the point of
impact w∗ governed by (8.156) are shown, respectively, in Fig. 8.8 (a) and (b) for the
different magnitudes of the parameter κ: 0, 3, 6, and 9.

Reference to Fig. 8.8 shows that the increase in the parameter κ results in the
increase of the maximal contact force, the duration of contact, as well as the peak of
the shell deflection. In other words, from Figure 8 it is evident that the peak contact
force and the duration of contact depend essentially upon the parameters of two
impact-induced modes coupled by the three-to-one internal resonance (8.109).
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Fig. 8.8: Dimensionless time dependence of (a) the dimensionless contact force
and (b) deflection of the target at the point of impact for the case of the internal
resonance ω1 = 3ω2.

8.4 Conclusion

In the present paper, a new approach has been proposed for the analysis of the impact
interactions of nonlinear doubly curved shallow shells with rectangular base under
the low-velocity impact by an elastic sphere. It has been assumed that the shell is
simply supported and partial differential equations have been obtained in terms of
shell’s transverse displacement and Airy’s stress function. The equations of motion
have been reduced to a set of infinite nonlinear ordinary differential equations of
the second order in time and with cubic and quadratic nonlinearities in terms of the
generalized displacements.

The approach utilized in the present paper is based on the fact that during impact
only two modes strongly coupled by the two-to-one or three-to-one internal resonance
are initiated by the impactor. The influence of impactor’s mass on the phenomenon
of the impact-induced internal resonance is revealed.

Such an approach differs from the Galerkin method, wherein resonance phenom-
ena are not involved (Zhang et al, 2001). Since it is assumed that shell’s displacements
are finite, then the local bearing of the shell and impactor’s materials is neglected
with respect to the shell deflection in the contact region. In other words, the Hertz’s
theory, which is traditionally in hand for solving impact problems, was not used
in the present study; instead, the method of multiple time scales has been adopted,
which is used with much success for investigating vibrations of nonlinear systems
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subjected to the conditions of the internal resonance, as well as to find the time
dependence of the contact force.

It has been shown that the time dependence of the contact force depends essen-
tially on the position of the point of impact and the parameters of two impact-induced
modes coupled by the internal resonance. Besides, the contact force depends es-
sentially on the magnitude of the initial energy of the impactor. This value governs
the place on the phase plane, where a mechanical system locates at the moment of
impact, and the phase trajectory, along which it moves during the process of impact.

It is shown that the intricate P(t) dependence at impact-induced internal resonance
(8.92) gives way to rather simple sine dependence, what is an accordance with a
priori assumption of some researchers about a sine character of the contact force with
time (Goldsmith, 1960; Gong et al, 1995; Kunukkasseril and Palaninathan, 1975;
Lennertz, 1937; Zhang et al, 2001).

Table 8.1 summarizes the assumptions and principles which are the basis of the
theory of impact on thin nonlinear bodies proposed in the present paper. It shows
also its distinctive features in comparison with the traditional impact theory for
linear thin bodies (a comprehensive review of papers in the field could be found
in Rossikhin and Shitikova (2007)), which is based on the principles suggested by
Timoshenko in his classical paper on the impact of an elastic sphere upon an elastic
beam (Timoshenko, 1913).

Table 8.1: Comparison of main assumptions and principles used in the theories of
low-velocity impact upon linear and nonlinear thin bodies

Linear thin body (target) Nonlinear thin body (target)

1. Displacement of an impactor during the pro-
cess of impact is the sum of two displacements:
displacement of a target at the point of impact
and local bearing of impactor and target’s mate-
rials, i.e. impactor’s indentation into the target

1. Displacement of an impactor during the pro-
cess of impact coincides with target’s displace-
ment at the point of impact; local bearing is
ignored, since it is assumed that target displace-
ment is much larger than local bearing

2. Local bearing is defined via the Hertzian
theory

2. Local bearing is equal to zero

3. It is assumed that all natural modes of vibra-
tions are generated during impact, and there-
fore target’s displacement is expanded over all
modes

3. Under nonstationary excitation, only those
modes, the natural frequencies of which sat-
isfy certain resonant relationships (conditions
of internal resonances), are generated and dom-
inate, resulting in energy interchange between
coupled modes

4. In order to obtain the solution, the method
of expansion in terms of eigen functions and
Hertz contact theory are employed

4. In order to obtain the solution, the method
of multiple time scales in combination with
different conditions of internal resonances is
utilized

5. Contact force and local bearing of the im-
pactor and target’s materials are determined
from nonlinear integro-differential equations

5. Contact force and target displacement at the
place of contact are defined by a set of nonlin-
ear algebraic equations
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The procedure suggested in the present paper could be generalized for the analysis
of impact response of plates and shells when their motions are described by three or
five nonlinear differential equations.
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Chapter 9

Ferrous Material Fill: Magnetization Channels,

Layer-by-Layer and Average Permeability,

Element-to-Element Field

Anna A. Sandulyak, Darya A. Sandulyak, Vera A. Ershova, and Alexander V.
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Abstract For the magnetic samples of heterogeneous (including bulk) ferrous-
materials, a qualitative, and according to the data on the demagnetization factor
N of finely dispersed samples quantitative assessment of the volume fraction is
provided for the characteristic intervals γ of the ferrous component. There are three
intervals: the first one is γ ≤ 0.2, the second one is 0.2 < γ ≤ 0.4−0.45, and the third
one is γ > 0.4−0.45 (up to γ � 0.6 for a material filled with "densely packed" gran-
ules or grains). It should be noted that samples of heterogeneous ferrous materials
within the third interval γ, according to the stabilization of N and its proximity to
the N-value for a uniform sample (which indicates a "magnetic splicing" of the fer-
roelements in the heterogenous material), possess the features of a uniform magnetic
sample and, therefore, they fully correspond to the notion of a quasi-uniform object.
Special attention is paid to filling of granules or grains (with their inherently stable
value of γ) as a completely independent class of heterogeneous ferrous materials.

In order to solve the actual problems related to the determination of magnetic
properties for the filling of ferroelements (granules, grains), it is preferable to use the
model of selective, channeled magnetization. At the same time, the concept of this
model implies obtaining necessary theoretical and experimental solutions both for
the channel as a whole and for its parts (conditional cores and tube layers of different
radius). In addition, such key parameters of the model as magnetic permeability
of channel tube layers μ̃ and their cores < μ̃ > (averaged data of μ̃) depending on
their radius and intensity of magnetization field will be analyzed. It is shown the
compliance of experimental data with theoretical data. The physical meaning of
the parameter μ̃ reveals: it corresponds to the relative field strength h in the pores
between granules.
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9.1 Introduction. Qualitative Assessment of Typical Intervals for

the Volume Fraction of a Ferrous Component

Progressive multi-purpose use of various heterogeneous ferrous materials (dispersed,
with a ferrous magnetic component) (Ravnik and Hriberšek, 2013; Nielsch et al,
2002; Lacoste and Lubensky, 2001; Diguet et al, 2010; Anhalt et al, 2008; Anhalt
and Weidenfeller, 2007; Schulz et al, 2010; Bottauscio et al, 2009), including solid
composite and bulk (granular, acinose, powder) materials, magnetic suspensions
and colloids, requires the solution of a number of physical problems. One of those
problems is the determination of the averaged magnetic properties of these materials,
for example, averaged (per volume) magnetic permeability and susceptibility (Ravnik
and Hriberšek, 2013; Nielsch et al, 2002; Diguet et al, 2010; Anhalt et al, 2008;
Anhalt and Weidenfeller, 2007; Ngo and Pileni, 2001; Schulz et al, 2010; Hultgren
et al, 2005; Daniel and Corcolle, 2007; Bottauscio et al, 2009). Furthermore, the
problem of obtaining information on the field between the elements of a ferrous
magnetic material (in particular, between mutually contacting ferrous granules) is
also in high demand, especially for magnetophoresis when magnetizable granular fill
media are used as filter matrices of magnetic separators, analyzers of filter matrices
of magnetic separators and analyzers of ferroimpurities disperse phase of various
media (Sandulyak et al, 2015c, 2017a,c).

From the standpoint of these problems, the issue of universal modeling of such
ferrous materials and their magnetization with obtaining theoretical and experimental
solutions, which simultaneously cover the entire range of volume concentration of
the ferrous magnetic component γ, i.e. within 0 ≤ γ ≤ 1, is recognized as complex,
and hardly solvable. This is due to specific features of ferrous material magnetization
at those or other values of γ, i.e. at any mutual distancing of elements in the ferrous
magnetic component (what determines the degree of mutual magnetic influence for
the ferroelements).

More preferable is to make separately the task definition and solution of specified
problems for the certain characteristic γ intervals. Based on the existing concepts,
there should be three basic γ intervals that are different in their roles. The two of
these are the intervals below and above the critical, percolation transition between
the states of so-called "giant magnetoresistance" and "total" metallic conductivity.
Another one interval corresponds to this very (not abrupt) transition. In this case, the
"giant magnetoresistance" (we should note that this term is not traditional concept
of conventional magnetic resistance but high electrical resistance of a heterogenous
ferrous material sample in a magnetic field exposure) is inherent, of course, to
samples with relatively low γ-values, i.e. with guaranteed mutual separation of
ferroelements in it. And the state of metallic conductivity is caused by the occurrence
and further increase (with increasing γ) in the number of direct contacts between
the ferrous elements, the emergence and increase in the number of "through target"
chains of ferrous granules and ensembles of such chains, up to the limit (inherent in
filling) coordination number of ferroelements.
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9.2 Quantitative Assessment of Characteristic Intervals for the

Volume Fraction of a Ferrous Component and its Values for

the Filling Materials

Convincing concretization of three characteristic intervals for the volume fraction
of ferrous component γ, mainly quantitative, directly follows from the results of
the determination of demagnetization factor N for a fine-grained material sample
(ferrous particles sizes are 3-100 μm Mattei and Floc’h, 2003). Thus, this factor, as
an inherent property of any magnetic sample of certain sizes and shapes, can serve
as a kind of indicator for the mutual magnetic influence of ferroelements during
magnetizing the sample of a heterogenous ferromaterial.

The results (Mattei and Floc’h, 2003) indeed indicate the three typical intervals
of γ, which are given below. The first: γ ≤ 0.2, where N = 0. The second: 0.2 <
γ ≤ 0.4− 0.45, where N is a variable increasing from zero to a certain value. The
third: γ > 0.4−0.45 (and up to the limit value for granular or grained filling medium:
γ � 0.6), here N maintains a stable N-value which is achieved at the end of the
previous γ interval.

Let us give some comments to these statements.

• In the first interval with γ ≤ 0.2 the ferroelements are clearly at a significant mutual
distance within the sample: for the ferroelements of conventionally spherical shape
(π/6γ)1/3 = 1.4 and more times greater than their own size. As a consequence,
they are magnetized fully autonomously, practically without affecting magnetic
influence on each other - with the demagnetizing factor inherent to each individual
ferroelement (rather than the sample as a whole). The absence of such an influence
caused by the segregation of ferroelements does not give reasons to speak here
that such a sample is a magnetic body (due to the absence of N which means the
lack of features for this). In this case it is just a sample representing a "set" of
individual, spatially and functionally scattered ferroelements.

• In the second interval with 0.2 < γ ≤ 0.4−0.45 (characterized by mutual approach
of ferroelements, by appearing of contacts with each other), mutual magnetic
influence already manifests itself judging by the fact that here N � 0. With in-
creasing γ it is amplified and since in this interval the value of N is not yet stable
(varies), we can speak here only that one gets a sample formation as a magnetic
body.

• In the third interval with γ > 0.4−0.45 (characterized by forming a plurality of
mutual contacts between the ferroelements until reaching a maximum possible
coordination number here), the mutual magnetic influence becomes so significant
that, in fact, "magnetic splicing" of ferroelements takes place in the sample. In
this case, it is quite possible to speak already about the fact of magnetic body
formation. Such a sample according to N = const acquires properties of a uniform
magnetic body (a body of a certain shape, for example, cylindrical - with a certain
ratio of length to diameter). Moreover, in studies (Mattei and Floc’h, 2003) with a
fine-grained sample of cylindrical shape (length l = 2 cm and diameter d = 0.4 cm,
hence: l/d = 5) the obtained values of N = 0.058−0.066 were comparable with
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the values of N = 0.04−0.05 for a uniform sample of the same relative dimensions
l/d (Sandulyak et al, 2015a). Such a sample can also be described as a kind of
"uniform" (more accurately - quasi-uniform) sample. In this third interval there
are the so-called "densely packed" (formed during filling into a container) granular
or grained media, constituting a rather extensive class of industrial purpose media.

The structures of granular (grained), in particular, classical poly-spherical media lend
themselves to modeling, especially for known versions of their artificial ordering.
At the same time, basic parameters of such structures are determined in the most
rational way, for example, packing density, porosity, co-ordination number, equivalent
diameter of pores, their tortuosity, etc., only on the basis of a model with fractional
(allowing the presence of conditionally fractional parts of pellet balls) cells of such
structures (Sandulyak et al, 2008, 2016a,b, 2017b,d). These are the quasi-bound
parallelepiped cells with vertices at the centers of eight neighboring pellet balls
which completely satisfy the principle of the structure block layout as a whole. Thus,
for example, the model provides quite expected (in accordance with other models)
values of the volume fraction γ of spheres: from γ � 0.52 for the simplest cubic
packing of spheres to γ = 0.74 for the packing of spheres with a more complex
geometry of their relative position. Hence, the interval of possible γ variation for the
granular (grained) packages, even for artificially ordered ones, is relatively small.

As for the actual and widely used filling of granules (grains), γ interval for them
is further narrowed and it actually equals γ = 0.55− 0.64 (Sandulyak et al, 2008,
2016a,b, 2017b,d; Bennacer et al, 2013; Zhang and M., 2003; Kim and Whittle, 2006).
And within this narrowed γ interval the value of γ has only a weak dependence on
the overall dimensions (diameter D) of the container, where the pellet balls with
a diameter d - ranged as D/d = 4− 30 are filled (Sandulyak et al, 2016b, 2017b).
For a specific value of D/d the said γ interval, essentially, ceases to be such, and
it is degenerated into one or another particular γ-value. In this case, according to
the obtained γ values (average γ � 0.6), there is an objective reason to consider the
filling of granules (grains) close to one of the ordered granules, not the most dense
packing of spheres - with a simple chess-corridor order of their mutual arrangement
(Sandulyak et al, 2008, 2016a,b, 2017b,d).

9.3 Selective (in the Form of Chains of Channels) Magnetization

of Ferrous Material. Concept of Layer-Tube Channels

In order to solve the above-stated problems with respect to the ferrous material in
the form of filling granules or grains ("densely packed", contacting each other), it
is expedient to use the model of channeled magnetization of this ferrous material.
In Sandulyak (1983, 1982, 1984) it was shown that granular ferrous material, in
particular, the poly-ball medium is magnetized in a selective manner through efficient
"elementary" channels in accordance with magnetization direction. Among the set of
granules-links of the branched skeletal structure of the granular medium there are
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always real straight or sinuous chains of granules corresponding to this direction. In
other words, such a medium is a kind of bundle of effective "elementary" channels
that penetrate the fill medium along magnetization direction.

The development of such a model is the concept in Sandulyak (1983, 1984); San-
dulyak et al (2009, 2007, 2010), according to which the effective elementary channels
of magnetization are not equivalent in cross-section but have a definite magnetization
profile (by analogy with the profile of the fluid flow rate in a pipe). So, this channel
(conducting magnetic flux), although it can in principle be characterized by averaged
values of magnetic induction and permeability (Sandulyak, 1982). Nevertheless, in
the cross-section significant differences in the values of these parameters can be
observed.

In other words, if the effective channel is conventionally represented in the form of
concentric layer-tubes, then as the radius increases, the ability to conduct the magnetic
flux decreases. This is due to the fact that the magnetic resistance of each of these
artificially isolated, quasi-uniform tubular layers of the channel’s cross section (Fig.
9.1) is clearly not the same1 (Sandulyak, 1983; Sandulyak et al, 2009). Thus, as the
radius of the "incremental" tubular layer increases, its magnetic resistance increases
due to the increasing distance between the surfaces of adjacent granules-links (Fig.
9.1). As a consequence, the average magnetic permeability of the layer-tubes (and
induction in them) decreases, and, therefore, their ability to conduct magnetic flux
decreases.

Suppose that one thin tube (Fig. 9.1a) of arbitrary radius r is selected artificially
from such effective channel and is considered as quasi-uniform in length. Then we
can operate with such a characteristic as the magnetic permeability of this thin tube
(Sandulyak, 1983, 1984; Sandulyak et al, 2009, 2007). Naturally, tubes of different
radius r will be characterized by different permeability μ̃ (due to a variable thickness
of the space between the balls surfaces), which increases as the channel axis is
approached and decreases as it moves away from it (Fig. 9.1b). This determines the

Fig. 9.1 The module (seg-
ment) of the chain of the balls
with dedicated elementary
layered tube of the effective
magnetization channel (a) and
illustration of the extreme
permeability profile (b) of the
channel in its cross section (in
the radial direction).

1 Hereinafter we mean the magnetic resistance in its classical definition, i.e. as the ratio of the
magnet length to its cross-section and absolute magnetic permeability, but not in the often used,
mentioned earlier, interpretation of the "giant magnetoresistance" - as the relative change in the
electrical resistivity under magnetic conditions.
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presence of a radial, extreme by shape permeability profile μ̃ (and corresponding
induction B) for the effective channel. In this case, according to the mentioned
formal analogy with the velocity profile of a fluid flow in a pipe, the analog of
velocity here is, of course, magnetic induction (as the magnetic flux per area unit).
As for the magnetic permeability - as induction, referred to the product μ0H (where:
μ0 = 4π10−7 H/m - magnetic constant, H - magnetizing field strength), then such a
comparison is valid up to a multiplier 1/μ0H.

The parameters here and hereinafter (in the framework of the channeled magne-
tization model), namely the average permeability of the layer-tubes of an effective
magnetization channel, its cores (and associated average induction in the layer-
tubes and core) are amenable to the corresponding experimental determination and
theoretical calculation.

9.4 Data of the In-Channel (Core and Layer-Tube) Magnetic

Flux, Average Induction, and Permeability

To obtain the necessary information on the magnetization channel and its features one
can experimentally use, for example, magnetizable straight chain of balls (Sandulyak,
1983, 1984; Sandulyak et al, 2007, 2009). It should be like any magnet used to
study the magnetic properties of its material (in this case quasi-uniform material)
sufficiently long, self-sufficient to minimize the demagnetizing factor (as experiments
show - with a number of balls not less than 8-10) magnetized in the solenoid with
greater length.

Then, using the concentric flow-measuring loops of this or that radius r (section
s) placed in the middle of this chain (Fig. 9.2) between adjacent balls of radius R,
and micro-webermeter, one can obtain the data of the corresponding magnetic flux Φ
through each of these loops (Fig. 9.3). However, because of the limited dimensions
of the inter-ball area where the loops are placed from considerations of obtaining
data it is advisable to use balls with increased radius also as close as possible to the
contact point of the granule-balls, for example, R = 16.65 mm (Sandulyak, 1983,
1984; Sandulyak et al, 2007, 2009).

Measured data Φ are the starting point for calculating the average induction
B =Φ/s in the core of a certain radius r and magnetic permeability < μ̃ >= B/μ0H =
Φ/sμ0H of this core (Fig. 9.4). The use hereinafter of unusual designation of the

Fig. 9.2 Magnetizable chain
of the balls with a system of
concentric flow loops located
on the plane of symmetry
between two central balls.
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Fig. 9.3 The magnetic flow
data obtained through the
use of loops in the core of
different cross-section (rela-
tive radius) of the effective
channel of magnetization of
the chain of the balls - for
different values of the intensity
of the magnetizing field H, 1 -
H = 18 kA/m, 2 - 36, 3 - 70, 4
- 105, 5 - 140, 6 - 175.

effective magnetization channel quasi-uniform core magnetic permeability, i.e. < μ̃ >,
is semantic. It corresponds to the result of averaging of this channel magnetic
permeability radial profile μ̃ within limits of one or another of its cores.

In connection with the obtaining of field dependencies of induction B and perme-
ability < μ̃ > for various (by radius r and section s) cores (Fig. 9.4, curves 1-4), the
field dependencies of induction B and permeability μm for granular filling media are
of interest (Fig. 9.4, curves 5), as well as the known field dependencies of induction
B and permeability μ for a material close to the ball material - low-alloyed steel (Fig.
9.4, curves 6).

The comparison of all these dependencies clearly illustrates the quite expected
fact: curves B and < μ̃ > for the magnetization channel cores as if fill the vast "vacant"
area between the curves 6 and 5 for poly-ball medium (Fig. 9.4a) and the curves 6
and 5 for the balls material (Fig. 9.4b). Indeed, as the core radius r (relative to the
radius r/R) increases, the induction and permeability curves 1-4 become similar to
the corresponding curves 5 for the poly-ball medium, since in this case the core more
and more reproduces the effective channel of the poly-ball medium. With decreasing
r/R these curves 1-4 approach the corresponding curves 6 for the uniform metal,
since for an increasingly thin core the gap between the granules decreases. In this
case, in the limit (r/R→ 0), a complete concordance of the curves can be expected.
In this case, in order to obtain curves 6 in Fig. 9.4 it would be necessary to use (as it
is hardly possible) such a control uniform sample that would accurately reproduce
the alternation of real untempered and hardened areas (as in balls), or carry out
investigations using annealed balls. At the same time, the available known curve for
B (Fig. 9.4a, curve 6) is an acceptable approximation to the specific curve of our
interest.

Having the field dependencies of induction B and permeability < μ̃ > for various
in-channel cores (Fig. 9.4, curves 1-4), we note a remarkable fact of the decrease
in the values of B and < μ̃ > with an increase in the radius r (relative radius r/R)
of the cores. Thus, already here, i.e. at the stage of the corresponding quantitative
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Fig. 9.4 Field dependencies
of the average induction (a)
in the core of radius r of the
effective magnetization chan-
nel and average permeability
(b) of this core (1 - r/R =
0.17, 2 - 0.42, 3 - 0.59, 4 -
0.87), and here are the corre-
sponding dependencies for the
polishing environment (5) and
low-alloyed steel (6).

characterization of the cores of the magnetization channel magnetic properties (which
deteriorate as they thicken) one can ascertain the existence of the radial profile of this
channel magnetic properties. This is illustrated visually (in particular, in coordinates
< μ̃ > vs. r/R) in Fig. 9.5a (points).

In addition, an indicative evidence (even more visually) of the existence of the
channel magnetic properties profile is the layer-by-layer (for artificial tubes of this
channel) field dependencies B and μ̃ (Fig. 9.6). They characterize the local (corre-
sponding to a certain radius r of layer-tube) level of effective channel magnetization.
To obtain these layer-by-layer field dependencies B and μ̃ (Fig. 9.6) one need, us-
ing the experimental data of magnetic fluxes Φ (Fig. 9.3), just find the difference
data (Φi+1 −Φi) of fluxes between adjacent, i.e. (i+ 1)th and ith concentric loops
of radius ri+1 and ri (cross-section si+1 and si). On the basis of these data it is easy
to obtain the values B = (Φi+1 −Φi)/(si+1 − si), as well as μ̃ = B/μ0H (hereinafter
the previously introduced designation of the layer-tube magnetic permeability is
used: μ̃). Just such local data of induction B and permeability μ̃ at one or another
distance r (relative distance r/R) from the axis of the effective magnetization channel,
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Fig. 9.5: The radial profile of the magnetic permeability of quasi-uniform effective
magnetization channel (a) and average permeability of the core (of a certain radius)
of this channel (b): 1 - H = 18 kA/m, 2 - 36, 3 - 70, 4 - 105, 5 - 140, 6 - 175; points
- experimental data (Figs. 9.4b and 9.6b), lines - calculation from Eqs. (9.1) and
(9.5).

as already stated, reflects the very important property of the channel itself - radial
profile of its magnetization. In particular, as it indirectly follows from the family
of curves B and μ̃ decomposing by r/R (Fig. 9.6), values B and μ̃ for the effective
magnetization channel decreases with increasing of r/R.

More clearly (in particular, in coordinates μ̃ of r/R) the radial profile of the
magnetic properties of the effective magnetization channel can be traced in Fig.
9.5b (points). In this case, note that despite the formal similarity, here the parameter
r/R characterizes not the relative radius of the core-magnet, as it was before, but
the average relative radius of the layer-tube of the effective magnetization channel
(including the minimum in the experiments of a tube with zero internal radius).

9.5 Magnetizing Channel Layer Tubes: Local Permeability,

Radial Profile

To obtain the calculated dependencies characterizing the magnetic properties of quasi-
uniform layer-tubes (in particular, their magnetic permeability μ̃) we first note that in
the space between the adjacent balls of the magnetizable chain of balls, especially at
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Fig. 9.6 The field dependen-
cies of the average induction
(a) in the layer-tube of medium
radius r (between the radiuses
of the cores, including the
smallest core with zero in-
ternal radius) of the effective
magnetization channel and the
average permeability (b) of the
tube layer (1 - r/R = 0.09, 2 -
0.3, 3 - 0.51, 4 - 0.73).

elevated values r/R, of course, there is a barrel-like course of magnetic force lines
(Fig. 9.1a, dashed lines). In this case, according to the law of their refraction, because
of relatively high values of the magnetic permeability of the balls metal these lines
emerge from the ball (and enter to the ball) almost normally to its surface. At the
same time, the magnetic induction vector, which is tangent to the force line, as it
is known, varies not only in direction but also in magnitude. As for the numerical
values of induction, at the output of the magnetic force lines from certain ball points
located at a distance r from the channel axis (Fig. 9.1a) they practically correspond to
the numerical values of induction at the same distance in the middle of the inter-ball
space. In this sense the "form" of magnetization channel layer-tubes is actually close
to cylindrical. Consequently, if we proceed from this justified simplification (Fig.
9.1a), then the problem of obtaining the calculated dependence for the radial profile
of permeability μ̃ becomes completely solvable (Sandulyak, 1983, 1984; Sandulyak
et al, 2007, 2009).

To do this, first, from an infinite set of thin (conditional) concentric layer-tubes of
the effective magnetization channel you should select one tube (Fig. 9.1a) with radius
r and small cross-section s̃, likening it to such a quasi-uniform (along the length) tube
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whose magnetic resistance is equivalent to the total resistance of the corresponding
real areas. In this case, the magnetic resistances of a typical link (between adjacent
balls centers) of the quasi-uniform tube, section (sections) of the tube in the body of
adjacent balls and section of this tube between the balls are, respectively,

2R/μ0μ̃s̃, (2R− l)/μ0μs̃, l/μ0 s̃,

where l - tube length between adjacent balls’ surfaces (Fig. 9.1a). Secondly, it is
necessary to take into account the purely geometrical constraint (Fig. 9.1a):

l/2R = 1− [1− (r/R)2]0.5

Then simple transformations of indicated condition for the equivalence of mag-
netic resistances give an expression reflecting the regularity of the change in the
magnetic permeability of quasi-uniform effective magnetization channel in its radial
direction

μ̃ =
μ

μ− √
1− (r/R)2(μ−1)

(9.1)

or, in other words, an expression for the radial profile of the channel magnetic
permeability.

Figure 9.5b shows the calculated data μ̃ (lines) obtained by Eq. 9.1, revealing a
bell-shaped profile μ̃ (outwardly similar to the Gaussian normal probability law).
It can be seen that these calculated data μ̃ (lines) are in a good agreement with the
experimental data μ̃ (points), thereby confirming validity of Eq. 9.1 that followed
from the model under consideration.

It must also be said that the value l (Fig. 9.1a) for simplicity can also be expressed
in terms of the distance rx from the point of contact of the balls to the point of
tube intersection with the ball surface, i.e. l = r2

x/R, and for relatively small r it is
often convenient to assume that rx � r. Then an alternative to Eq. (9.1), somewhat
simplified version of the formula for calculating the radial profile of the magnetic
permeability of the effective magnetization channel, will follow:

μ̃ =
μ

1+0.5(r/R)2(μ−1)
(9.2)

Values μ̃ calculated by Eqs. (9.1) and (9.2) are close, especially when r/R ≤ 0.5 and
their difference does not exceed 3-6%.

9.6 Magnetization Channel Core: Average Magnetic

Permeability

The calculated dependencies for the average magnetic permeability < μ̃ > of the
core with the arbitrary radius r of the effective magnetization channel can be found
by typical averaging for such cases, in this case - by averaging the local (for tube
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layers) values of the magnetic permeability μ̃. In this case we can use two obvious
and independent expressions for the magnetic flow through the core:

Φ = μ0 < μ̃ > Hπr2, Φ = μ0H2π

r∫
0

μ̃rdr, (9.3)

from which follows necessary expression for the averaging:

< μ̃ >=
2
r2

r∫
0

μ̃rdr (9.4)

After the corresponding integration, taking into account Eq. (9.1) for μ̃, follows
the formula for the determining of the magnetic permeability < μ̃ > of the certain
core (radius r) of the effective magnetization channel:

< μ̃ >=
2μ

(r/R)2(μ−1)

⎧⎪⎪⎨⎪⎪⎩ μ

μ−1
ln

⎡⎢⎢⎢⎢⎢⎣μ− (μ−1)

√
1−

( r
R

)2
⎤⎥⎥⎥⎥⎥⎦+

√
1−

( r
R

)2
−1

⎫⎪⎪⎬⎪⎪⎭ (9.5)

Figure 9.5a shows the calculated data < μ̃ > (lines) obtained with the use of Eq. (9.5).
It can be seen that these data match previously discussed experimental data < μ̃ >
(points), thereby confirming the validity of this calculation Eq. (9.5), which followed
from the model considered.

A similar integration can also be performed taking into consideration the simplified
Eq. (9.2) for μ̃, this leads to a simplified formula for < μ̃ >:

< μ̃ >�
2μ

(r/R)2(μ−1)
ln

[
1+

1
2

( r
R

)2
(μ−1)

]
(9.6)

Values < μ̃ > calculated in accordance with Eqs. (9.5) and (9.6) are close to each
other. For example, for r/R = 0.5, they differ by 1-2% and even for r/R = 1 - by up
to 7-9%. This indicates the possibility of using (where it makes sense) a simpler Eq.
(9.6) in a wide range of r/R.

If the values of the magnetic permeability of a metal μ ≥ 10−20 are really high
(as it is seen in Fig. 9.4b), Eq. (9.6) can be even more simplified by taking μ � (μ−1),
then

< μ̃ >�
2μ

(r/R)2 ln
[
1+

μ

2

( r
R

)2
]

(9.7)

In this case the values < μ̃ > calculated by the simplified Eq. (9.7) and the original
Eq. (9.5) are sufficiently close to each other; up to the limiting experimental values
r/R = 0.87 they differ for not more than 3-4%.
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Fig. 9.7 Illustration of the
generalization of the data in
Fig. 9.3 in the coordinates
according to Eq. (9.8).

9.7 Generalized Dependencies for Comparison of the Calculated

and Experimental Data

The above-mentioned relevance between calculated and experimental data is witness-
ing the accuracy of the model, it can be also judged by the generalized (common)
dependence. Thus, based on the first of the expressions (9.3) and obtained convenient
simplified Eq. (9.7), simplified but still acceptable for the description of all the pri-
mary experimental data which is shown in Fig. 9.3, the expression for the magnetic
flow Φ in the core of the channel is written. The obtained expression presented later
as: [

2
μ

(
exp

Φ

2πR2μ0H
−1

)]0.5

�
r
R

(9.8)

is quite suitable for the generalization of the whole data array.
For the illustration of such generalization (in the form of common dependence)

all the numerous primary experimental data of magnetic flows Φ (Fig. 9.3) and other
data included in (9.8), such as the radius of the flow-measuring loops r, the radius
of balls R, the intensity of the magnetizing field H, magnetic permeability of the
material of the balls μ must be processed in the specific coordinates on which the left
and right parts of Eq. (9.8) point out. In fact, the coordinates here (dimensionless) are
tied to the radius of the flow-measuring loop, as seen by the right side of expression.

Indeed, in such coordinates the experimental and calculated data must obey (and
in fact obey, as seen in Fig. 9.7) to the bisectrix of the right angle of this coordinate
system, and this fact with such a generalized analysis confirms the validity of the
considered model.
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Another example of a demonstrative proof of generalization is similar to the
previous one and here can be used similar approach, also using the first of Eqs. (9.3)
and simplified Eq. (9.7) - to obtain such an expression:

Φ

πR2 � 2μ0H ln
[
1+

μ

2

( r
R

)2
]

(9.9)

As seen from the left side of Eq. (9.9), the coordinates of this variant of generalization
are tied to some formal induction (as a magnetic flow through a loop with radius r
and which is related to the cross section of the ball).

Figure 9.8 shows that in such generalizing coordinates, the experimental and
calculated data (here, in contrast to the previous version, in a more dispersed form),
too, are expectedly comply with the bisectrix of the right angle of this coordinate
system, which one more time confirms the validity of the considered model.

Fig. 9.8 Illustration of the
generalization of the data in
Fig. 9.3 in the coordinates
according to Eq. (9.9).

9.8 Magnetization Channel and Harness of the Channels (in the

Ferromaterial Filling): Average Magnetic Permeability

One of the important consequences of Eqs. (9.5)-(9.7) is that they can be used to
obtain the values of the magnetic susceptibility < μ̃ > of the entire effective channel of
magnetization (here - the straightened chain of the pellet balls). For this, in (9.5)-(9.7),
we only need to take r/R = 1, i.e. to use any of these formulas:
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< μ̃ > =
2μ
μ−1

(
μ

μ−1
lnμ−1

)
,

< μ̃ > �
2μ
μ−1

ln
(
μ+1

2

)
,

< μ̃ > � 2ln
(
1+

μ

2

)
(9.10)

Equations (9.10) can become the basis for obtaining formulas that allow the cal-
culation of the magnetic susceptibility of the dispersed ferromaterial μm (filling of
granules or grains) - as a harness of the magnetization channels. For this, in Eq.
(9.9) the factor 1.44 (Sandulyak et al, 2007) should be used, taking into account the
difference (note - up to a constant) of the harness of the branched chain channels
(in filling, for example, pellet balls, i.e. in the structure of meandering chains of
granules) in the comparison with the analyzed solitary channel here (in the chain of
rectified pellet balls). Then the desired formulas will be:

μm =
2.9μ
μ−1

(
μ

μ−1
lnμ−1

)
, μm �

2.9μ
μ−1

ln
(
μ+1

2

)
, μm � 2.9ln

(
1+

μ

2

)
(9.11)

Consequently, it becomes possible to describe analytically the magnetization curve
(B vs. H) of such a material - based on the well-known expression

B = μmμ0H, (9.12)

but with the use of Eq. (9.11) for μm. Of course, we must bear in mind that shown
in (9.11) and, consequently, in the corresponding ones, written according to (9.12)
with respect to (9.11), in formulas for the desired average induction B, the magnetic
permeability of the substance of the balls (low-carbon steel) μ has an individual
relationship with the intensity of the magnetizing field H. This can be seen, in
particular, from curve 6 in Fig. 9.4b, the data of which should be taken into account
directly or by means of an additional calculation from the formula:

μ = (Hμ/H)0.9 (9.13)

on the basis that the field dependencies of the magnetic permeability of steels in
the post-extremal region are subject to a power-law coupling of the type (9.13)
(Sandulyak et al, 2010, 2015b), up to the parameter Hμ (here Hμ = 24.4 ·105 A/m).

The calculated field dependencies of the induction B (magnetization curves of
the spherical environment) obtained using Eqs. (9.11) - (9.13) agree with the experi-
mental dependence (Fig. 9.4a, curve 5), which confirms the validity of these (and
preceding) calculation formulas that followed from the considered model.

We note that the representation of the scattered formulas (9.11)-(9.13) in the form
of one or another desired common expression was not realized here because of the
obvious cumbersomeness of this expression. At the same time, it is possible to avoid
such defect if in Eqs. (9.11) it is justified (as for the actually high values of μ, as
seen in Fig. 9.4b), as before, assume that (μ−1) � μ, and also (μ+1) � μ. Then, in
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particular, using Eq. (9.12), the first and the second of Eqs. (9.11) and also Eq. (9.13),
one can obtain such compact original formulas for calculating the magnetization
curve of a granular (grainy) filling environment:

B = 2.9μ0H
(
0.9ln

Hμ
H
−1

)
, B = 2.6μ0H ln

(
0.46

Hμ
H

)
(9.14)

9.9 The Physical Meaning of the Profile Permeability. Relative

Field Strength Between Ferroelements

Equations (9.1) and (9.2) for the magnetic permeability of a layer-tube μ̃ with radius
r, as a matter of fact, turn to become passing decisions of one more key problem.
Thus, they are formulas for calculating the field strength between ferroelements h
(related to the magnetizing, i.e. external field H) at a particular point at a distance r
from the point of contact of ferroelements-balls of radius R in the area between them,
and more exactly:

h
H
= μ̃ =

μ

μ− √
1− (r/R)2(μ−1)

,
h
H
= μ̃ �

μ

1+0.5(r/R)2(μ−1)
(9.15)

This, in particular, follows from the identical expressions for magnetic induction: in
the quasi-uniform tube such as B = μ0μ̃H and in the inter-sphere region as B = μ0h.

Actually, the simple expression (relation) obtained here μ̃ = h/H also reveals the
physical meaning of a such parameter, inherent exclusively to the model of channeled
magnetization, as a profile (local, characterizing quasi-uniform layer-tubes) magnetic
permeability μ̃. As already noted, the parameter μ̃ characterizes the relative field
strength in the area between the ferroelements (granules, grains).

On the basis of (9.15), it is not difficult to verify (also using the data in Fig. 9.5b)
which is located in the vicinity of the point of contact of the ferroelements (up to
r/R = 0.4− 0.5): h� H (Fig. 9.9a). In this case, the values of the field strength
between the ferroelements h can significantly differ (Fig. 9.10a) even at relatively
moderate values of the magnetizing (external) field strength H.

Having the calculated Eqs. (9.15), it is not difficult to find the dependencies of the
heterogeneity in the area between ferroelements (they are particular necessary for
magnetophoresis problems), to be more specific, in the radial direction of the plane of
symmetry, i.e. moving away along (by r) from the point of contact of ferroelements
(Fig. 9.1a) - as the derivative dh/dr:∣∣∣∣∣dh

dr

∣∣∣∣∣ R
H
=

μ(μ−1)(r/R)√
1− (r/R)2

[
μ− √

1− (r/R)2(μ−1)
]2 (9.16)

∣∣∣∣∣dh
dr

∣∣∣∣∣ R
H
=

μ(μ−1)(r/R)[
1+0.5(r/R)2(μ−1)

]2 (9.17)
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Fig. 9.9 The relative values
of the field strength h/H
(a) and the heterogeneities
|dh/dr|R/H (b) between the
balls-elements of the chain
of balls - as r is moved away
from the point of contact of
the balls for different magnetic
field strength H (magnetic
permeability of the metal of
the balls μ), 1 - H = 40 kA/m
(μ � 40), 2 - H = 55 kA/m
(μ � 30), 3 - H =85 kA/m
(μ � 20).

Fig. 9.10 The same as in Fig.
9.9 but for absolute values of
the field strength h (a) and
heterogeneity |dh/dr| (b) -
with a radius of ferroelements-
balls R = 3 mm.
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An illustration of the dependencies (9.16) and (9.17) which indicates their extreme
form, is shown in Fig. 9.9b. Moreover, from the simplified formula (9.17), and also
using the link (9.13) and assuming, as before (μ−1) � μ, followed by convenient
expressions for the abscissa and the ordinates of the extreme:

( r
R

)
extr
=

1√
1.5(μ−1)

� 0.82
(

H
Hμ

)0.45

, (9.18)

(
dh
dr

R
H

)
extr
= 0.46μ

√
μ−1 � 0.46

(
Hμ
H

)1.35

, (9.19)

Equations (9.15)-(9.19) allow us to obtain important information (and to analyze
it) about the field strength and its heterogeneity both in the relative, dimensionless
(written here and shown in Fig. 9.9a, b), as well as in dimensional form (Fig. 9.10a,
b). In the latter case, i.e. at the corresponding values of the characteristic dimensions
of the ferroelements, in particular, the radius R of the pellet balls (Fig. 9.10a, b),
the user receives an additional amount of necessary information: about the actual
current values of the field strength and its heterogeneity, about the individual values
of the ordinates and abscissas of the extremal values of heterogeneity, the width of
the bands in the area of extremes, etc.

9.10 Conclusions

An attempt has been made to classify heterogenous, disperse ferromaterials based on
the characteristic values of the volume fraction of the ferrocomponent γ. An estimate
was made for the three expressed (especially from the position of the behavior of the
demagnetizing factor of the "short" sample of such material) intervals of γ. In this
case, such classification is due to the corresponding location of the ferroelements
(including contact-less and contact), on which the degree of their mutual magnetic
influence depends.

It has been established that materials in the form of fillings of ferroelements
(granules, grains), as a widespread class of such ferromaterials, are characterized
by practically constant value of γ � 0,6. These materials are of independent interest
for research, in particular, for the purpose of determining the averaged magnetic
properties (magnetic permeability, induction) and obtaining information (especially
important in the field of filtering magnetophoresis) about the field between ferroele-
ments.

Conceptually and in details (on the example of a chain of contacting balls) the
productive model of the channeled magnetization of these "tightly packed" ferro-
materials is stated. It allows us to establish analytical expressions and calculated
dependencies (consistent with the experimental data) for the average magnetic per-
meability of the magnetization channel and its parts (cores, tube layers of different
radius r), and also dispersed ferromaterial as a whole (as a "harness" of branched
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channels). The compliance of the results of the experiments and calculations is also
illustrated in the form of generalizing dependencies.

It is shown that in the physical sense the magnetic permeability of a layer-tube
with radius r of the magnetization channel characterizes the relative (related to the
intensity of the magnetizing field) field strength between contacting ferroelements
(for example, balls) at a distance r from their point of contact. This also makes it
possible to obtain expressions characterizing the heterogeneity of the field between
ferroelements.
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Chapter 10

Modeling and Simulation of a Chemically

Stimulated Hydrogel Bilayer Bending Actuator

Martin Sobczyk and Thomas Wallmersperger

Abstract Polyelectrolyte hydrogels are a class of smart materials which show a
reversible swelling or deswelling behavior if subjected to an external stimulus, such
as pH, temperature or ion concentration. Stacked layers of different hydrogels, often
referred to as hydrogel layer composites, offer new possibilities to create sophisticated
sensor and actuator systems on the microscale.

The numerical investigation of these systems is essential to predict and understand
their complex behavior and develop devices based on hydrogel layer systems. In this
contribution, a chemo-electro-mechanical multifield theory is adopted to describe
the complex processes inside of the hydrogels, including migrative and diffusive
ion fluxes, electrical fields and mechanical deformation due to a osmotic pressure
difference.

The respective time-dependent field equations are solved on a two-dimensional
domain using the Finite Element Method.

The study includes the analysis of the bending behavior of a hydrogel bilayer
giving an insight into the relevant inner processes. The obtained results match with
previous findings and are in excellent agreement with analytical investigations.

10.1 Introduction

Hydrogels are soft materials which are able to reversibly swell and deswell in water
under the influence of various external stimuli. Examples for relevant stimuli are
changes in pH, temperature, magnetic fields, ion concentration and electric fields
as e.g described by Qiu and Park (2001); Jeong and Gutowska (2002); Wu et al
(2004); Osada and Gong (1998); Wallmersperger et al (2007). The structure of a
polyelectrolyte hydrogel may be regarded as an interconnected polymer network with
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interstitial fluid within the void of the polymer backbone. Attached to the polymer
backbone polyelectrolyte ionic side chains are present, which are only able to move
in connection with the overall polymer backbone. The attatched ionic side chains (or
functional groups) are in a large degree responsible for the swelling and deswelling
properties of the hydrogel due to an osmotic pressure difference between the gel
and the surrounding solution bath. As a result of the osmotic pressure difference,
an uptake or release of water is observed. The microstructure of a polyelectrolyte
hydrogel is schematically depicted in Fig. 10.1.

The sensoric and actoric capabilities of hydrogels are favorable for many applica-
tions, such as chemical sensors, as developed by Gerlach et al (2005) or microfluidic
actuator systems as shown by Richter et al (2004, 2008). The combination of different
hydrogel layers offers further possibilities to create sophisticated actuator systems
like bilayer bending actuators or sensor systems which are able to respond to multiple
input signals, such as temperature and salt concentration.

In the past, different groups aimed to describe the swelling and deswelling be-
havior of polyelectrolyte hydrogels under external stimuli theoretically. Models
describing the behavior of polyelectrolyte hydrogel swelling are for example the
Statistical Theory (Flory and Rehner, 1943a,b; Flory, 1956), the Theory of Porous
Media (Acartürk, 2009; Ehlers et al, 2003; Leichsenring and Wallmersperger, 2017;
Bluhm et al, 2016) and other continuum models (Doi, 2009; Shahinpoor, 1995;
Drozdov and de Claville Christiansen, 2015; Nardinocchi and Puntel, 2017). For
a review of numerical models applied to investigate the behavior of hydrogels, the
reader is referred to Wu et al (2004); Ganji et al (2010). A numerical simulation
to describe hydrogel layer composites was conducted by Lucantonio et al (2014),
describing the bending deformation of a hydrogel composite structure where the
deformation was multiplicative split into a uniform free-swelling stretch and an
elastic component. Another approach to describe the hydrogel’s swelling behavior is
the so-called multifield theory (Wallmersperger and Ballhause, 2008; Attaran et al,
2015; Sobczyk and Wallmersperger, 2016b). This model was introduced to compute
the response of hydrogels to electric fields and was later adopted to also account
for chemical stimulation. Within the framework of continuum mechanics, a coupled
system of equations is formulated in order to describe the interaction of the electrical
field, the movement of ions and the resulting mechanical deformation.

Goal of this paper is to predict the chemo-electro-mechanical behavior of a thin
hydrogel-layer system in the configuration of a bending actuator under chemical
stimulation. For this, the field equations are solved using the Finite Element Method

Fig. 10.1 Schematic represen-
tation of the microstructure of
a polyelectrolyte hydrogel.

fixed anions

mobile anions

mobile cations

polymer (with crosslink)

interstitial water
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on a two-dimensional domain. The time discretization is conducted adopting the
implicit Euler Method, for the spatial discretization rectangular finite elements with
linear shape functions are used.

For the description of the ion concentration distribution, a Nernst-Planck-like
equation is used. The electric field and the distribution of the electric potential
is evaluated using the Poisson equation for electrostatics. In order to predict the
mechanical behavior of the hydrogel-layer-system, the balance of momentum is
adopted.

In Sect. 10.2, the multifield theory as proposed by Sobczyk and Wallmersperger
(2016b,a) is summarized. In Sect. 10.3, numerical results for the testcase of a bending
actuator are given and discussed. In Sect. 10.4, a brief conclusion is drawn.

10.2 Chemo-Electro-Mechanical Field Formulation

In the multifield theory it is assumed, that at a local point of the hydrogel all its con-
stituents are entirely mixed. The relevant constituents are the polymer backbone, the
functional groups, interstitial fluid and free ions, cf. Fig. 10.1. Using the framework
of continuum mechanics, the properties of the discrete matter (atoms) are averaged
over one element and described using continuous fields. The investigated body is
represented by continuously distributed material points, where at each local point
only a single material point may be present.

The material behavior of hydrogels depends on the interaction of different interact-
ing physical fields. The field variables are therefore interdependent on each other and
cannot be evaluated neglecting the other. As a result, multiple field variables need
to be calculated on every local point. The material properties represent the material
properties of the whole representative volume element and may also be dependent
on the local field variables.

The balance relations are obtained by balancing forces and moments as well as
fluxes acting on a representative volume element and are evaluated in the framework
of classical continuum mechanics. The balance equations are the balance of mass, the
balance of linear and angular momentum balance as well as the Maxwell equations.
The material laws are given by Hookean material behavior, the Poisson-Nernst-
Planck equation and a linear relation between the electrical displacement and the
electric field. The swelling of the hydrogel is accounted for by a decomposition of
the total strain into an elastic strain and a stress-free swelling one, induced by an
osmotic pressure.

In the following, the used field equation are briefly described. For further details,
the reader is referred to Sobczyk and Wallmersperger (2016a,b); Wallmersperger
et al (2008, 2004, 2007); Doi (2009); Doi et al (1992); Attaran et al (2015); Ballhause
and Wallmersperger (2008).
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10.2.1 Chemical Field

The distribution of mobile ions is influenced by concentration gradients and gradients
of the electric potential, which lead to diffusive and migrative fluxes, respectively.
The mass balance for the ion species α is formulated as

ċα = −Jα,i = −(Jdiffα+ Jmigrα),i (10.1)

with the migrative flux Jmigrα and the diffusive flux Jdiffα described as

Jmigrα = −Dα
F

RT
zαcαΨ,i, (10.2)

Jdiffα = −Dαcα,i . (10.3)

Here, c denotes the ion concentration, D the Diffusion coefficient, F = 96487 C/mol
the Faraday constant, R = 8.3143 J/(mol·K) the universal gas constant, T the absolute
temperature, z the valence of the ions and Ψ the scalar electric potential. The index α
displays the affiliation to the respective mobile ion species. Here, we consider mobile
anions (-) and mobile cations, therefore α = {+,−}. Throughout this contribution, the
operators (),i and (̇) denote the derivatives d()/dxi and d()/dt, respectively.

10.2.2 Electrical Field

In order to describe the electrical field the Poisson equation for electrostatics

Ψ,ii = − ρe

ε0εr (10.4)

is used, in which the volume charge density ρe is described by

ρe = F
∑
γ

(zγcγ). (10.5)

Here, ε0 = 8.8542 · 10−12 As/(Vm) denotes the vaccuum permittivity and εr the
relative permittivity of the material. The index γ is used for all mobile and fixed
ions. In this contribution, γ = {+,−, fc−} denotes the indices of the mobile cations
(+), mobile anions (-) and fixed anions (fc-). In order to use Eq. (10.4), it is assumed,
that the time derivative of the magnetic induction Bi vanishes. This assumption is
adequate to use, as the propagation velocity of the electric field is much higher
than the transport processes occurring in the chemical field. Therefore, the Poisson
equation for electrostatics is sufficient. Magnetostatic effects are not considered in
this contribution.
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10.2.3 Mechanical Field

To determine the displacement field in the gel system, the local form of momentum
balance is adopted, neglecting body forces as well as inertia terms:

σi j, j = 0. (10.6)

It is assumed, that Hookean material behavior

σi j = Ei jklε
el
kl (10.7)

can be used in a first approximation. In order to couple the mechanical field with the
electrical and the chemical field, the total strain εtot is decomposed into an elastic
strain and a stress-free swelling strain contribution, induced by an osmotic pressure
difference:

εtot
kl = ε

el
kl+ε

π
kl (10.8)

The swelling strain επi j is assumed to be proportional to the osmotic pressure differ-
ence Δπosm calculated by introducing the reference concentration cref, which is an
artificial degree of freedom. The swelling strain is then obtained by

επkl = ΓδklΔπ
osm (10.9)

and

Δπosm = RT
∑
α

(Δcα−Δcα0) with

⎧⎪⎪⎨⎪⎪⎩Δcα = cα− cref

Δcα0 = cα− cref0 (10.10)

where Γ is the swelling coefficient, δkl the Kronecker Delta, R the universal gas
constant, T the absolute temperature and cα and cα0 the concentration of ion species
α at actual and initial time. The reference concentration at initial time is denoted by
cref0. It should be noted, that by definition an osmotic pressure difference can only
occur, if the free movement of ions is restricted, e.g. by a semi-permeable membrane.

The reference concentration is obtained solving the equation

ċrefα =

(
Drefαcrefα

,i

)
,i
, (10.11)

where Drefα denotes the Diffusion constant of the reference concentration of the
mobile ion species α. The initial value of the reference concentration equals the
concentration of the respective ions in the solution bath in initial state. For an
illustration of the reference concentration in equilibrium, please refer to Fig. 10.2.
Using this approach, the osmotic pressure difference equals the osmotic pressure
difference given by the Van’t Hoff law (Van’t Hoff, 1888; Weiss, 1996) in equilibrium
state, while the temporal development of the osmotic pressure difference is diffusion-
like.
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Fig. 10.2: Schematic representation of the ion concentration of positive (c+) and
negative (c−) ions (a) and the respective reference concentrations (cref0+,cref0+) (b)
in equilibrium state. The concentrations of mobile cations and anions within the
solution bath are equal; inside the gel they are unequal due to the presence of fixed
charges and thus governed by the Donnan equilibrium.

Within this model, the water content or the water fluxes are not evaluated explicitly,
but the swelling and deswelling behavior of the hydrogel is calculated by evaluating
the osmotic pressure difference between the hydrogel and its environment.

Since the movement of the surrounding solution bath is not of interest, the balance
of momentum is evaluated only in the gel domain. For this, suitable boundary
conditions need to be prescribed at the interface between gel and solution bath.

10.2.4 Numerical Solution Procedure

In the previous section, the field equations describing the coupled chemical, electrical
and mechanical behaviour of polyelectrolyte gels are formulated. In this section, a
very brief description on the solution procedure is given.

To solve this coupled initial boundary value problem a numerical solution proce-
dure is chosen. For this, the Finite Element Method is adopted. The respective field
equations are formulated in the weak form using the standard continuous Galerkin
procedure in space. Here, the variations of the primary variables, that are δcα, δcαref,
δΨ and δui are utilized as weighting functions. Due to the nonlinear terms in the
formulation, a linearization of the field problem is carried out using the standard
Newton-Raphson scheme.

For the temporal discretization the unconditionally stable implicit Euler method is
adopted. For the spatial discretization bilinear eight-node rectangular shell elements
are implemented. The primary variables which are solved at each node are the
concentration of mobile anions and cations cα, the concentration of reference anions
and cations cαref, the scalar electric potential as well as the displacement field ui in x-
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and y-direction. The meshing is carried out using a logarithmic mesh refinement, as
e.g. described by Wallmersperger (2010).

10.3 Numerical Simulation of a Chemically Stimulated Bilayer

In this section the chemical stimulation of a hydrogel bending actuator with the
dimensions L× (b1+b2), where L = 5 mm and b1 = b2 = b = 0.3 mm is investigated.
This configuration may for example be used as soft gripper or flapper. For this, the
hydrogel-layer system is composed of two different hydrogels, each with a size
of (L× b). The geometry parameters are summarised in Table 10.1. The gel 1 of
the hydrogel-layer system is a polyelectrolyte hydrogel with a concentration of
fixed anions cfc- = 1 mM (Wallmersperger, 2010) and a swelling coefficient Γ =
1 · 10−4 Pa−1. Gel 2 is a neutral gel and it is assumed, that it will not change its
swelling state under chemical stimulation. Therefore gel 2 may be considered as an
ion conducting passive structure, with cfc- = 0 and Γ = 0. The Young’s modulus of
both layers is chosen as E = 10 kPa (Matzelle et al, 2003). The diffusion inside of
the gels is governed by the diffusion constants D+ = D− = 5×10−10 m2/s (Acartürk,
2009) and inside of the solution bath D+ = D− = 5×10−9 m2/s (Acartürk, 2009). The
relative permittivity of the gel and the solution bath is set to εr = 80 (permittivity of
water) (Catenaccio et al, 2003; Drozdov and de Claville Christiansen, 2015). The
used material parameters are summarised in Table 10.2.

The bending actuator is placed in a NaCl solution bath with an ion concentra-
tion of c+ = c− = 1 mM (Wallmersperger et al, 2007; Wallmersperger, 2010). It is

Table 10.1: Used geometry parameters.

parameter value (mm)
L 5

LS 2 ·10−4

bS 2 ·10−4

b1 0.3
b2 0.3

Table 10.2: Used material parameters.

material parameter solution bath gel 1 gel 2
Young’s modulus E (kPa) - 10 10
Poisson ration ν (-) - 0.499999 0.499999
expansion coefficient Γ (1/Pa) - 1 ·10−4 0
diffusion coefficient D+ (m2/s) 5 ·10−9 5 ·10−10 5 ·10−10

diffusion coefficient D− (m2/s) 5 ·10−9 5 ·10−10 5 ·10−10

relative permittivity εr (-) 80 80 80
fixed charge concentration cfc- (mM) 0 1 0
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asumed, that the system is in the respective equilibrium state. At time t = 0, the
bending actuator is placed in another NaCl solution with an ion concentration of
c+ = c− = 0.5 mM and therefore is chemically stimulated. No external electric field
is applied to the system. Throughout this investigation, one side of the bending
actuator is mechanically restricted, while the other side may move freely, as depicted
in Fig. 10.3a. Due to the chemical stimulation, a deflection of the bilayer actuator
is anticipated as depicted in Fig. 10.3b. The numerical simulation is conducted in
order to predict the bending behavior of the actuator as well as to investigate the
electro-chemo-mechanical processes inside of the system.

In order to numerically analyze the described experimental setup, suitable bound-
ary and initial conditions have to be prescribed. Around the gel system only a thin
layer of solution bath is modeled, which is sufficient if the presence of the gel does
not alter the concentration inside of the solution bath. Then, the concentration at
the outer boundary of the thin layer of the solution bath is prescribed as Dirichlet
boundary conditions with fixed values of the concentrations in the large solution bath.
A mobile ion concentration c+ = c− = 0.5 mM, as well as a reference concentration
c+ref = c−ref = 0.5 mM is prescribed there. The thin layer of the solution bath needs
to be larger than the electro-chemical double layer between the gel and the solu-
tion bath, that is the respective Debye length, i.e. larger than the area in which the
steep gradient between the inner and outer concentration in the numerical simulation
occurs. Here, a thin layer of solution bath with a thickness of LS = bS = 2 ·10−7 m
is chosen. By using this approach it is further prevented, that transport processes
inside of the solution bath have a relevant influence on the response behavior of the
hydrogel layer system. The boundary of the gel layer in contact to the solution bath
is free of stress, that means σi jni = 0, where ni denotes the normal vector - which
is positive in outwards direction - of the respective domain. On its left side, the gel
system is mechanically restricted using the boundary conditions uy(x = 0,y = 0) = 0
and ux(x = 0) = 0. The momentum balance is only evaluated on the domain of the
gel layers, and not in the solution bath. The electric potential at the outer boundary
of the solution bath is set to Ψ = 0 V.

y

x

b2
b1

L LS

bS

bS

(a)

y

x

utip
y

gel 1

gel 2

solution bath

(b)

Fig. 10.3: Schematic representation of the investigated hydrogel layer system: (a)
the system in the initial state is depicted, (b) the system during actuation is shown.
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The system is defined as undeformed in initial state, that is ux(t = 0)= uy(t = 0)= 0.
The initial conditions for the ion concentrations and the electric potential of the
investigated system are being calculated in a foregoing stationary simulation. For this,
inside of the solution bath and inside of gel 2 an ion concentration c+ = c− = 1 mM
is prescribed. In gel 1 c+ = 1.618 mM and c− = 0.618 mM is set as initial condition.
These values correlate with the Donnan equilibrium of the investigated system, in
which however no information on the formation of the electro-chemical double
layer is included. To obtain the initial condition of the system, on the left outer
boundary of the system a no flux condition for both the positive and negative ions
J+ = J− = 0 is stipulated. On all other outer boundaries of the system a concentration
of c+ = c− = 1 mM is prescribed. The electric potential is given by Ψ = 0 V in gel 2
and in the solution bath, whereas in gel 1 the electric potential is set to Ψ =−0.0121 V.
At the outer boundaries of the system, the electric potential is set to Ψ = 0 V.

In Fig. 10.4, the development over time at t = 0,1,10,70,800 s of the distribution
of mobile ion concentrations, the reference concentration and the electric potential
are depicted over y at x = 2.5 mm. In Fig. 10.4a and 10.4b the concentration of positve
and negative ions is given. With progressing time, the concentrations inside gel 1
and gel 2 are reduced from the initial equilibrium state towards the new equilibrium
state. This new equilibrium state is governed by the Donnan equilibrium with respect
to the concentration of fixed anions in the gel and the ion concentrations in the
solution bath. Outside the boundary regions and inside gel 1 the ion concentrations
in the new equilibrium yield c+ = 1.207 mM and c− = 0.207 mM with a constant
electric potential Ψ = −0.0223 V. Since no fixed charges are present in gel 2, the ion
concentrations as well as the electric potential in initial state and in equilibrium state
are the same as in the solution bath, i.e. c+ = c− = 1 mM and Ψ = 0 V in initial state
and c+ = c− = 0.5 mM and Ψ = 0 V in equilibrium state. In Fig. 10.4c, the evolution
of the reference concentration is depicted for the times t = 0, 1, 10, 70 and 800 s.

The electric potential, as depicted in Fig. 10.4d, exhibits a constant value in each
solution and each gel domain outside the boundary layers in equilibrium state. At
the intermediate states, the electric potential in the respective domains is almost
linear. Electroneutrality is fulfilled in each domain outside of the boundary layer, and
therefore the curvature of the electric potential equals zero in these regions. In Fig.
10.5 it can be observed, that the electric potential differences between the solution
bath and gel 1 and the differences of the electric potential between gel 1 and gel 2
are only equal for the equilibrium states, but not for the intermediate states, compare
Figs. 10.5a and 10.5b. The potential differences between adjacent regions is governed
by the concentration of fixed charges and mobile ions at the respective interface.
Since the mobile ions need more time to reach the interface between gel 1 and gel
2 than they need to arrive at the interface between the solution bath an gel 1, the
gradient of the electric potential occurs during intermediate states.

In Fig. 10.6, the steady state solution for the ion concentrations and the electric
potential is given. In the steady state, gradients in the electric potential or in the
concentrations disappear outside of the boundary regions. Therefore, no migrative
flux Jmig or diffusive flux Jdiff occurs there. Within the boundary layer, gradients in
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Fig. 10.4: Concentration of (a) positive, (b) negative and (c) reference ions and (d)
electric potential over y at x = 2.5 mm for the times t = 0,1,10,70,800 s.

the electric potential, as well as in the concentration are present. Due to Eq. (10.1),
the migrative and the diffusive flux must cancel out in steady state.

The osmotic pressure difference inside the hydrogels is calculated using Eq.
(10.10). The occurring osmotic pressure difference versus y at x = 2.5 mm is depicted
in Fig. 10.7a for the times t = 0,1,10,70,800 s. In initial state, the osmotic pressure
difference is by definition equal to zero. Due to the concentration differences at the
gel and solution interface, the osmotic pressure difference rises there first. Then, it
propagates diffusion-like through gel 1 until it reaches its new equilibrium value

lim
t→∞Δπ

osm = 441.393Pa.
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Fig. 10.5: Electric potential at the boundaries (a) at the left and (b) at the right side
of gel 1 for the times t = 0,70,800 s. For the chemo-electrical equilibrium states
(t = 0 and approximately at t = 800 s), the electric potential difference between the
solution bath and gel 1 is equal to the electric potential difference between gel 1
and gel 2. This is not the case for nonequilibrium states (t = 70 s).

During the swelling process a negative osmotic pressure difference is observed close
to gel 2. This is caused by migrative ion fluxes due to the gradient in the electric
potential, compare Fig. 10.4d. With further progressing time, this effect becomes
secondary compared to the diffusional fluxes and ultimately disappears due to the
vanishing gradient of the electric potential. In gel 2 no osmotic pressure difference
occurs, since no fixed charges are present which could restrict the free movement of
ions.

With progressing time, gel 1 expands, while gel 2 is not subjected to a volumetric
change. Due to this, the bending actuator behaves similar to a bi-metal subjected to
thermal heating and therefore reacts with a deflection. The deflection of the gel tip
utip

y is depicted versus time in Fig. 10.7b. For the steady state, the deflection of the
gel layer yields

lim
t→∞utip

y = 0.9636mm.

After approximately 10 minutes 95% of this maximum deflection is observed.
Due to the volumetric expansion of gel 1 and the resulting deflection of the

hydrogel layer system, mechanical stresses inside the gel beam arise. In Fig. 10.8a
the normal stress σxx is depicted on the deformed geometry for equilibrium state.
Since gel 1 wants to expand and gel 2 restricts this expansion, gel 1 is subjected to a
compressive and gel 2 to a tensile stress in x-direction in close proximity to the gel
layer interface. A nonzero normal stress in y-direction occurs only at the tip of the
bilayer as shown in Fig. 10.8b. Also shear stresses σxy are present only near the tip
of the hydrogel layer system as can be seen in Fig. 10.8c. These results are in good
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Fig. 10.6: 2D representation of the steady state solution for (a) the mobile cation
concentration, (b) the mobile anion concentration, (c) the reference concentration
and (d) the electric potential after chemical stimulation.
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agreement with the results stated by Timoshenko investigating the stress distribution
in a bi-metal thermostat (Timoshenko, 1925).

(a)

(b)

(c)

Fig. 10.8: Distributions of the stresses σxx (a), σyy (b) and σxy (c) depicted on the
deformed geometry. In each picture, the upper gel is denoted as gel 1, the lower
gel is denoted as gel 2, as also seen in Fig. 10.3.
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10.4 Conclusion

In this contribution the bending as well as the electro-chemical behavior of a simple
hydrogel layer composite consisting of two layers is described based on a coupled
multi-field model. For this the composite - which is immersed in a solution bath -
is numerically investigated in a clamped configuration and subjected to a chemical
stimulation.

The multi-field model allows to investigate the reversible swelling behavior of
polyelectrolyte hydrogels in time. The respective field equations describe the chem-
ical, the electrical and the mechanical field using the electric potential, the ion
concentrations and the mechanical displacements as primary variables. A simple
approach to evaluate the osmotic pressure difference during swelling is presented.

It could be shown, that the bending behavior due to swelling of the hydrogel is
strongly influenced by the processes in the electrical and the chemical field. The
used model is able to capture the behavior of hydrogel layer composites for chemical
stimulation. With this, important predictions - like the occurring stress distribution or
the deformation behavior during swelling - can be evaluated. The obtained results are
in excellent agreement with the analytical solution of the Donnan equilibrium. Also,
the obtained results are in good agreement with previous numerical results revealing
the strength of the used method. By using the proposed model, further investigations
of more complex hydrogel layer systems may be obtained.
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Chapter 11

Mathematical Modelling of Piezoelectric

Generators on the Base of the Kantorovich

Method

Arkadiy N. Soloviev, Valerii A. Chebanenko, and Ivan A. Parinov

Abstract In this chapter, applied semi-analytical theories were constructed, allow-
ing preliminary estimations of the output characteristics of piezoelectric generators
(PEG) of various configurations. The developed theories are based on the Hamil-
tonian principle, extended to the theory of electroelasticity. In the first part of the
work, within the framework of the Euler-Bernoulli hypotheses, a model for a can-
tilever PEG was developed. The main model’s peculiarity is the consideration of the
structural features of cantilever PEGs. In the second part, a model was developed
for multilayer stacked PEGs, where the energy generation process was considered as
forced oscillations of an electroelastic rod. Solutions for both cases were carried out
using the Kantorovich method. The adequacy of the theories obtained in both cases
was verified by comparison with finite-element calculations.

11.1 Introduction

In recent years, research of piezoelectric transducers that convict mechanical energy
into electrical energy has been actively developed. This type of transducers is called
piezoelectric generator (PEG). The basic information about PEG, as well as the

Arkadiy Nikolaevich Soloviev
Don State Technical University, Gagarin sq., 1 &
I. I. Vorovich Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Milchakov st., 8A, Rostov-on-Don, Russia
e-mail: solovievarc@gmail.com

Valerii Alexandrovich Chebanenko
Southern Scientific Center of Russian Academy of Science, Chekhov st., 41, Rostov-on-Don, Russia
e-mail: valera.chebanenko@yandex.ru

Ivan Anatolievich Parinov
I. I. Vorovich Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal
University, Milchakov st., 8A, Rostov-on-Don, Russia
e-mail: parinov_ia@mail.ru

© Springer Nature Singapore Pte Ltd. 2018
H. Altenbach et al. (eds.), Analysis and Modelling of Advanced
Structures and Smart Systems, Advanced Structured Materials 81,
https://doi.org/10.1007/978-981-10-6895-9_11

227

solovievarc@gmail.com
valera.chebanenko@yandex.ru
parinov_ia@mail.ru


228 Arkadiy N. Soloviev, Valerii A. Chebanenko, and Ivan A. Parinov

problems arising in different development stages of energy harvesting devices, are
given in the review papers Liu et al (2009); Liao and Sodano (2009); Han et al (2013);
Chebanenko et al (2015), as well as in the monographs Erturk and Inman (2011);
Elvin and Erturk (2013).

PEGs are divided into two configurations: stack and cantilever. Most of the works
are devoted to the study of the characteristics of cantilever type PEGs. There are
several ways of modeling PEGs: a mathematical model with lumped parameters,
a mathematical model with distributed parameters and a finite element model. In
Dutoit et al (2005); Dutoit and Wardle (2007); Adhikari et al (2009); Roundy and
Wright (2004) the focus is on the construction of PEG models based on oscillations
of a mechanical system with lumped parameters. The use of such systems is a
convenient modeling approach, since it allows obtaining analytical dependencies
between the output parameters of PEG (potential, power, etc.) and the electrical and
the mechanical characteristics as well as the resistance of the external electric circuit.

The modeling with the use of lumped parameters provides initial representations
on the problem, allowing one to use simple expressions for the description of the
system. However, it is approximate and restricted to only one oscillation mode. This
description does not take into account important aspects of the system.

Another type of modelling is distributed parameter modeling. Based on the Euler-
Bernoulli hypotheses for beams, analytical solutions of the coupled problem have
been obtained in Erturk and Inman (2008); Deng et al (2014); Soloviev et al (2017)
for different configurations of cantilever type PEGs. They obtained explicit expres-
sions for the output voltage on resistive electric loads and for console displacements.
In addition, the authors studied in detail behavior of PEGs with short-circuited and
open-circuited electric circuits, and the influence of piezoelectric coupling effects
and flexoelectric effects Deng et al (2014); Soloviev et al (2017). Nevertheless, in
these studies, the case where the piezoelectric element does not completely cover
the substrate has not been considered. In Nechibvute et al (2012); Soloviev et al
(2013); Solovyev and Duong (2016); Yu et al (2010) the finite element modeling of
the different types of cantilever PEGs are discussed. The case where the piezoelectric
element does not completely cover the substrate is easily solved by this modelling ap-
proach. Nevertheless, obtaining a semi-analytical solution for the case of incomplete
covering of the substrate by a piezoelectric element is of interest.

Several papers are devoted to the investigation of stack-type PEGs based on finite
element modelling Feenstra et al (2008); Baker et al (2005); Cavallier et al (2005);
Shevtsov et al (2016); Solovyev et al (2016) and lumped parameter modeling Dutoit
et al (2005); Zhao and Erturk (2014); Goldfarb and Jones (1999). Recently, attention
has been directed to analytical studies of stack type generators. Due to the fact
that the stack PEGs can carry high compression levels that allows their integration
in different infrastructure objects (for example, transportable roads and rail-roads.
Therefore, the necessity arises to develop mathematical models for prediction of
output characteristics of PEGs.

Various models of stack type PEGs have been proposed in Zhao and Erturk (2014);
Wang et al (2013). The model submitted in Zhao and Erturk (2014) depends on the
initial experimental data and does not provide information about displacements. The
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model proposed in Wang et al (2013) does not have such disadvantages. However, it
is very tedious for analysis due to its recursive type

The above brief analysis of known works has shown that the problem of modeling
PEG of various configurations with the help of analytical methods in full is not yet
solved, although it is quite relevant.

11.2 Mathematical Modelling of PEG

11.2.1 The Boundary-Value Problem in the Theory of
Electroelasticity

Consider a piezoelectric body of volume V bounded by a surface S , subjected to
external loads and located in an electromagnetic field. External loads include mass
forces X and surface loads p. The basic equations in the theory of electroelasticity
are the equations of motion and the electric field equations (Vatulyan and Soloviev,
2009):

σ ji, j+Xi = ρüi ,

Di,i = 0 , x ∈ V , t > 0 , (11.1)

where σi j denotes the components of the stress tensor, Xi represents the components
of the vector of mass forces, ui is a components of the displacement vector, Di
stands for a component of the electric displacement vector. To these equations the
constitutive laws (Vatulyan and Soloviev, 2009) are added:

σi j = cE
i jklεkl− eki jEk ,

Di = eiklεkl+ �
s
ik Ek , (11.2)

where cE
i jkl is the tensor of elastic moduli measured at a constant electric field, εkl the

components of the linear deformation tensor, eki j the tensor of piezoelectric constants,
Ekthe components of the electric field vector, and �s

ik the tensor of dielectric constants
measured at constant displacement. The components εkl and Ek are given by:

εi j =
1
2

(
ui, j+u j,i

)
,

Ei = −ϕ,i , (11.3)

where ϕ electrical potential.
Substituting (11.2) and (11.3) into (11.1) we obtain a system of coupled equations

in which the unknowns are the displacements ui and the electric potential ϕ:

cE
i jkluk,l j+ eki jϕ,k j+Xi = ρüi ,

eikluk,li− �s
ik ϕ,ki = 0 . (11.4)
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The first equation describes the motion, and the second describes the quasistatic
electric field.

Mechanical and electrical boundary conditions are added to these equations
(Vatulyan and Soloviev, 2009). In the case when the electrodes are connected to an
external circuit, the following condition must be added:

ϕ|S E
= v ,�

S E

Ḋinids = I , (11.5)

where S E is the area of the electrode, v denotes the unknown potential, which is
found from the second condition, I is the electric current. Thus, we have completed
the formulation of the linear problem of electroelasticity.

11.2.2 Modeling of Cantilever Type PEGs

We consider the functional Soloviev and Vatulyan (2011)

Π =

�
V

(H−Xiui)dV −
�

S

(piui+σϕ)dS , (11.6)

where H is the electric enthalpy. The Hamiltonian principle, generalized to the theory
of piezoelectricity, has the form

δ

t2∫
t1

(K −Π)dt = 0 , (11.7)

where K is the kinetic energy, and t2− t1 stands for the time interval.
Substituting (11.6) into (11.7), we obtain the following expression for the Hamil-

tonian principle:

t2∫
t1

dt
�

V

(δK −δH)dV +

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

XiδuidV +
�

S

(piδui+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.8)
The variation of the electric enthalpy in linear electroelasticity is:

δH = σi jδεi j−DiδEi . (11.9)

The variation of the kinetic energy is
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δ

t2∫
t1

Kdt = −ρ
t2∫

t1

dt
�

V

üiδuidV . (11.10)

To these equations we add the constitutive equations (11.2).
Let us consider the case when there are no mass forces, external loads, and surface

charge densities are applied. Then, taking into account the governing equations (11.2)
and the equations (11.3), as well as the expressions for the variations (11.9) and
(11.10), the Hamiltonian principle (11.8) takes the form

t2∫
t1

dt
�

V

[
−
(
ci jkluk,l+ eki jϕ,k

)
δui, j− (

eikluk,l− �ik ϕ,k
)
δϕ,i

]
dV−

−
t2∫

t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

ρüiδuidV +
�

S

σδϕdS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.11)

Let us consider the simplest bimorph design of cantilever PEG, presented in Fig. 11.1.
The cantilever bimorph PEG consists of two piezoelements (Fig. 11.1 points 1 and 3)
glued to the substrate (Fig. 11.1 point 2), which is clamped at one end. The thickness
of the electrodes and the adhesive layer, due to the smallness of their values, can be
neglected.

Since this construction is nothing more than a laminated beam, to simplify the
problem, we introduce the Euler-Bernoulli hypotheses The excitation of oscillations
in PEGs, shown in Fig. 11.1, occurs through the movement of the base with respect
to a certain plane. Therefore, the absolute displacement of the cantilever along the x3
coordinate will consist of displacement of the base wc(t) and relative movement of
the cantilever w(x1, t). Taking into account the foregoing, the displacement vector u
takes the following form:

u =
{
−x3

∂w(x1, t)
∂x1

,0,w(x1, t)−wc(t)
}T

. (11.12)

The transition to the consideration of the one-dimensional case also simplifies the
governing equations (11.2)

Fig. 11.1 Bimorph cantilever
PEG: 1 and 3 — piezoele-
ments, 2 — substrate
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σ11 = cE∗
11 ε11− e∗31E3 ,

D3 = e∗31ε11+ �
S ∗
33 E3 , (11.13)

where the material constants are expressed as follows:

cE∗
11 =

1
sE

11

, e∗31 =
d31

sE
11

, �S ∗
33=�

T
33 −

d2
31

sE
11

. (11.14)

Substituting (11.12) into (11.11), taking into account (11.13) we obtain:

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝−cE∗

11 x2
3
∂2w(x1, t)
∂x2

1

+ e∗31x3ϕ,3

⎞⎟⎟⎟⎟⎟⎠δ
⎛⎜⎜⎜⎜⎜⎝∂2w(x1, t)

∂x2
1

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝e∗31x3

∂2w(x1, t)
∂x2

1

+ �S ∗
33 ϕ,3

⎞⎟⎟⎟⎟⎟⎠δϕ,3
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρ (ẅ(x1, t)− ẅc(t))δw(x1, t)}dV +
�

S

σδϕdS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.15)

In the PEG under investigation, the polarization vector is directed along the x3
coordinate axis (see Fig. 11.2). Electrodes are applied to large sides perpendicular
to the x3 axis, and therefore, it makes sense to consider only the components of the
electric potential along the axis x3.

Since the piezoelectric element is assumed to be thin and there are no free charges
inside, we suggest that the electric field is distributed linearly along the thickness of
the piezoceramic element:

ϕ =
v(t)x3

h
, ϕ,3 =

v(t)
h
, (11.16)

where v(t) denates the potential difference between the upper and lower electrode of
the piezoelectric element, h is the thickness of the piezoelectric element.

Taking into account (11.16), the expression (11.15) takes the form:

Fig. 11.2 Wiring diagram of
PEG
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t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝−cE∗

11 x2
3
∂2w(x1, t)
∂x2

1

+ e∗31x3
v(t)
h

⎞⎟⎟⎟⎟⎟⎠δ
⎛⎜⎜⎜⎜⎜⎝∂2w(x1, t)

∂x2
1

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt
�

V

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝e∗31x3

h
∂2w(x1, t)
∂x2

1

+ �S ∗
33

v(t)
h2

⎞⎟⎟⎟⎟⎟⎠δ (v(t))

⎤⎥⎥⎥⎥⎥⎦dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρ (ẅ(x1, t)− ẅc(t))δw(x1, t)}dV +
�

S

σx3

h
δv(t)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.17)

To solve the problem of forced oscillations of cantilever bimorph PEGs, we will
use the Kantorovich method (Kerr and Alexander, 1968). We represent the relative
displacements of a beam as a series expansion:

w(x1, t) =
N∑

i=1

ηi(t)φi(x1) , (11.18)

where N is the number of modes considered, ηi(t) are the unknown generalized coor-
dinates, φi(x1) denotes the known test functions that satisfy the boundary conditions.

Substituting the representation (11.18) in (11.17) and equating the coefficients
with independent variations of δv and to zero δη, we obtain a system of differential
equations describing the forced oscillations of the bimorph PEG connected to the
resistor:

Mη̈(t)+Dη̇(t)+Kη(t)−Θv(t) = p,

Cpv(t)+ΘTη(t) = −q , (11.19)

where D = μM+γK is the Rayleigh-type damping matrix, and the remaining coeffi-
cients are:
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Cp =
bL
h
�

S ∗
33 ,

Mi j =

L∫
0

mφi(x1)φ j(x1)dx1,

Ki j =

L∫
0

EIφ′′i (x1)φ′′j (x1)dx1,

pi = −ẅc(t)

L∫
0

mφi(x1)dx1,

θi =

L∫
0

Jpφ
′′
i (x1)dx1 ,

(11.20)

where Cp is the electric capacity, Mi j denotes the elements of the mass matrix, Ki j
are the elements of the stiffness matrix, θi represents the elements of the electrome-
chanical coupling vector, pi are the elements of the effective mechanical load vector,
m is the specific weight, EI stands for the bending stiffness, M denotes the proof
mass.

Differentiating with time the second equation in system (11.19), taking into
account the fact that q̇ = I, we will satisfy condition (11.5). Using Ohm’s law, we
obtain the equation for the electric circuit in the following form:

Cpv̇(t)+ΘT η̇(t)+
v(t)
R
= 0 , (11.21)

where R is the electrical resistance (the resistor on which the voltage is measured see
Fig. 11.2).

Figure 11.1 shows the simplest case of a bimorph cantilever PEG, but in reality
the production of such a structure is rather difficult. It becomes necessary to take into
account such design features as incomplete covering of the piezoelectric element of
the substrate. In addition, to adjust the resonance frequency and increase the output
power, proof mass is often used. In view of the foregoing, we will consider the PEG
shown in Fig. 11.3. Hereinafter, the subscripts p, s and m will denote that the variable
corresponds to the piezoelectric element, substrate and mass, respectively.

Fig. 11.3 Bimorph cantilever
PEG with piezoelement and
proof mass displaced relative
to the clamp
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The search for a solution for this design is associated with the need to divide
the beam into four segments. The first segment begins at the clamp and contains to
the beginning of the piezoelement. The second segment is the part of the substrate
covered with a piezoelectric element. The third segment is the free part of the beam,
following the piezoelement up to the attachment point of the proof mass (mass is
considered as a point). The fourth segment starts right after the proof mass and
contains to the end of the beam. Taking into account the division of the beam
described above, the piecewise-defined function φi(x1) takes the following form:

φi (x1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
φ(1)

i (x1) , x1 ≤ L0

φ(2)
i (x1) ,L0 < x1 ≤ Lp+L0

φ(3)
i (x1) ,Lp+L0 < x1 ≤ Lm

φ(4)
i (x1) , x1 > Lm

, (11.22)

where φ(1)
i , φ(2)

i , φ(3)
i , φ(4)

i correspond to the modes of oscillation of the first, second,
third and fourth segments, respectively. We write the solution in a general form for
each part of the beam:

φ(1)
i (x1) = a1,i sin(βi x1)+a2,i cos(βi x1)+a3,i sinh(βi x1)+a4,i cosh(βi x1)

φ(2)
i (x1) = a5,i sin(βi x1)+a6,i cos(βi x1)+a7,i sinh(βi x1)+a8,i cosh(βi x1)

φ(3)
i (x1) = a9,i sin(βi x1)+a10,i cos(βi x1)+a11,i sinh(βi x1)+a12,i cosh(βi x1)

φ(4)
i (x1) = a13,i sin(βi x1)+a14,i cos(βi x1)+a15,i sinh(βi x1)+a16,i cosh(βi x1) .

(11.23)

Next, we write down the boundary conditions:

φ(1)
i (0) = 0 ,φ

′(1)
i (0) = 0 , φ

′′(4)
i (L) = 0 ,φ

′′′(4)
i (L) = 0 . (11.24)

In addition, we will need the conjugation conditions for the beam segments:
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φ(1)
i (L0) = φ(2)

i (L0)

φ
′(1)
i (L0) = φ

′(2)
i (L0)

φ
′′(1)
i (L0) =

EI(2)

EI(1) φ
′′(2)
i (L0)

φ
′′′(1)
i (L0) =

EI(2)

EI(1) φ
′′′(2)
i (L0)

φ(2)
i

(
L0+Lp

)
= φ(3)

i

(
L0+Lp

)
φ
′(2)
i

(
L0+Lp

)
= φ

′(3)
i

(
L0+Lp

)
φ
′′(2)
i

(
L0+Lp

)
=

EI(1)

EI(2) φ
′′(3)
i

(
L0+Lp

)
φ
′′′(2)
i

(
L0+Lp

)
=

EI(1)

EI(2) φ
′′′(3)
i

(
L0+Lp

)
φ(3)

i (Lm) = φ(4)
i (Lm)

φ
′(3)
i (Lm) = φ

′(4)
i (Lm)

φ
′′(3)
i (Lm) = φ

′′(4)
i (Lm)

φ
′′′(3)
i (Lm) = φ

′′′(4)
i (Lm)−αβ4φ(3)

i (Lm)

α =
M
mL

,

(11.25)

where EI(1) and EI(2) are bending stiffness of segments.
Adding a proof mass to the model requires considering its effect on the system of

equations (11.19), since it is an additional inertial load that affects the kinetic energy.
Taking into account the proof mass, the expressions for some components of (11.20)
change as follows:

Mi j =

L∫
0

mφi(x1)φ j(x1)dx1+Mφi(Lm)φ j(Lm),

pi = −ẅc(t)

L∫
0

mφi(x1)dx1+Mφi(Lm) .

(11.26)

Satisfying the boundary conditions, we obtain a homogeneous system of 16
equations with 16 unknowns:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 . . . a1,16
...
. . .

...
a16,1 · · · a16,16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (11.27)

The specific weight m(x1), for the case under consideration, is calculated as
follows:
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m(x1) = ρsAs+2ρpAp
(
H(x1−L0)−H(x1−L0−Lp)

)
, (11.28)

where H(x1) is the Heaviside function.
The bending stiffness EI for the model under consideration is calculated as follows:

EI(x1) = cp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
�
S p1

x2
3dS +

�
S p2

x2
3dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(
H(x1−L0)−H(x1−L0−Lp)

)
+ cs

�
S s

x2
3dS ,

(11.29)
where cp and cs are elastic constants of piezoelements and substrate, respectively, S p1,
S p1 and S s are cross-section areas of upper and lower piezoelements and substrate,
respectively. The function Jp(x1) is equal to

Jp(x1) =
e∗31

hp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
�
S p1

x3dS +
�
S p2

x3dS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
H(x1−L0)−H(x1−L0−Lp)

)
. (11.30)

After all the preliminary steps have been taken, we proceed directly to solving the
system of equations (11.19). We assume that the excitation is harmonic:

wc (t) = w̃ceiωt

p = p̃eiωt .
(11.31)

Then we seek the solution in the form

η (t) = η̃eiωt

v (t) = ṽeiωt .
(11.32)

A tilde above a variable indicates the amplitude. After substituting (11.31) and
(11.32), the system of equations (11.19) takes the form[

−ω2M+ iω (μM+γK)+K
]
η̃−Θṽ = p̃,(

iωCp+
1
R

)
ṽ+ iωΘT η̃ = 0 .

(11.33)

From the second equation in system (11.33) we obtain ṽ

ṽ = − iωΘT η̃

iωCp+
1
R

. (11.34)

Then we substitute (11.34) into the first equation of the system (11.32) and express η̃

η̃ =

⎡⎢⎢⎢⎢⎢⎢⎣−ω2M+ iω (μM+γK)+K +
iωΘΘT

iωCp+
1
R

⎤⎥⎥⎥⎥⎥⎥⎦
−1

p̃ . (11.35)
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Substituting expression for η̃ back into (11.34), we get a new expression for ṽ

ṽ = − iωΘT

iωCp+
1
R

⎡⎢⎢⎢⎢⎢⎢⎣−ω2M+ iω (μM+γK)+K +
iωΘΘT

iωCp+
1
R

⎤⎥⎥⎥⎥⎥⎥⎦
−1

p̃ . (11.36)

The obtained expressions (11.35) and (11.36) are solutions of the system of
equations (11.33).

11.2.2.1 Numerical Experiment

We will consider a bimorph cantilever PEG, manufactured using the PKR-7M ce-
ramic, which has the geometric and physical properties given in Table 11.1. The
excitation of the system is given by a harmonic displacement of the base wc = w̃ceiωt,
whose amplitude is w̃c = 0.1 mm, and the coefficients of the modal damping are equal
ξ1 = ξ2 = 0.02.

The first step in the research is the construction of amplitude-frequency charac-
teristics (AFC) of displacements, potentials arising on electrodes, etc. Figure 11.4
shows the frequency response of the voltage, on the external electrodes, and the
displacement of the end of the beam. In the literature (Erturk and Inman, 2011; Elvin
and Erturk, 2013), the main performance characteristics of PEGs are the depen-
dence of voltage and power on electrical resistance. Here are dependencies of the
main characteristics of the PEG on the electrical resistance. All characteristics were
investigated at the first resonant frequency.

Figure 11.5 is a typical dependence of the output electric voltage on electrical
resistance. With increasing resistance, the voltage rises to a certain limiting value.
This limit value corresponds to the open circuit condition.

The output power is calculated by the formula:

P =
v2

R
. (11.37)

Table 11.1: PEG Parameters

Substrate Piezoelement

Geometrical dimensions (L0 ×b×h) 110×10×1 mm3 56×6×0.5 mm3

Density (ρ) 1650 kg/m3 8000 kg/m3

The Young’s modulus and Poisson’s ratio (E, ν) 15 GPa and 0.12 —
Elastic compliance

(
sE

11

)
— 17.5×10−12 Pa

Relative permittivity
(
εS

33/ε0
)

— 5000
Piezoelectric module (d31) — -350 pC/N



11 Mathematical Modelling of Piezoelectric Generators 239

0

0,5

1

1,5

2

2,5

3

0
2
4
6
8

10
12
14
16
18

0 100 200 300 400

D
is

pl
ac

em
en

t,
m

m

V
ol

ta
ge

, V

Frequency, Hz

Voltage Displacement

Fig. 11.4: Amplitude-frequency response of the voltage and the displacement of
the beam’s end
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Fig. 11.5: Dependence of voltage on electrical resistance

In addition to the dependence of the output power on the electrical resistance, we
shall construct the dependence of the displacement of the end of the beam on the
electrical resistance.

Figure 11.6 shows a typical dependence of output power on electrical resistance.
This dependence for power is characterized by the presence of a maximum, the
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Fig. 11.6: Dependencies of output power and displacement of the beam’s end from
resistance

position of which depends on the electrical capacity of the piezoelements and the
excitation frequency of the PEG. The dependence of the displacement of the free end
of the beam on the electrical resistance has a minimum, the position of which coin-
cides with the maximum of power. This indicates that the conversion of mechanical
energy into electrical energy, at a given value of electrical resistance, is maximized.

11.2.2.2 Comparison with Finite Element

In the literature there are mathematical models of PEGs with lumped parameters.
They are convenient for describing the stack type PEGs. In the case of generators of
the cantilever type, they give inaccurate results. There is work in which corrective
coefficients for these models are given, but they are suitable for the case when the
piezoelectric element completely covers the surface of the substrate. In the case of
incomplete coverage, preliminary experiments are required to identify the parameters
of the five model parameters. This is the obstacle to design. Therefore, we compare
the obtained mathematical model with a finite element model (cf. Fig. 11.7).

Soloviev et al (2013) deals with the finite element modeling of the laboratory
model of cantilever PEG. The calculation was made for the cantilever model de-
scribed at the beginning of previous paragraph. The value of the proof mass was 5 g.

Measurements were made in conditions of an open circuit when the cantilever
base was excited by a displacement of 0.1 mm. Dependencies for the first resonant
frequencies and the output electric potential were obtained, depending on the thick-
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Fig. 11.7 Finite element
model in ANSYS
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Fig. 11.8: Dependence of the first resonance frequency on the thickness of the
substrate: dashed line —- model, solid — finite element simulation

ness of the substrate. We perform similar calculations and compare the obtained data.

As can be seen from Fig. 11.8 with increasing substrate thickness, the value of
the first resonant frequency also increases. The difference between the finite element
calculation and the model does not exceed 5%, which indicates a sufficient accuracy
of the constructed model.

From Fig. 11.9, it follows that as the thickness of the substrate increases, the value
of the output electric potential increases. The difference between the finite element
calculation and the model does not exceed 7%, which indicates a sufficient accuracy
of the constructed model.
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Fig. 11.9: Dependence of the output electric potential on the thickness of the sub-
strate: dashed line — model, solid line — finite element simulation

11.2.2.3 Parametric Studies

Next, we will investigate the dependencies of the main performance characteristics
of cantilever PEGs (resonance frequency, beam tip’s displacement, output voltage
and power) on the position of the proof mass, and the position of the piezoelement.

Consider the effect of the position of the proof mass M of 3 g on the performance
of the PEG. As the main parameter we will use the relative position of the proof
mass, i.e. normalized with respect to the coordinate of the end of the substrate.

As can be seen from Fig. 11.10 with increasing distance between clamped end and
the proof mass, the first resonance frequency of the beam decreases. From Fig. 11.11
we can conclude that at some position of the proof mass, the maximum displacement
of the end of the beam is achieved. From Fig. 11.12 it follows that at some position
of the proof mass, there are local maxima of the output voltage and the maximum of
the output power (with the optimum electrical resistance). Since the power directly
depends on the electrical resistance, it makes sense to consider the value of the
resistance at which power is maximal i.e. optimum electrical resistance. Figure 11.13
demonstrates that the closer the proof mass is to the end of the beam, the higher
the value of the optimum electrical resistance. Analyzing the obtained data, we can
conclude that there is a certain value of the position of the proof mass, at which the
maximum output power is reached.

Next, we consider the case when the length of the piezoelement is fixed. We will
investigate the effect of repositioning of the piezoelectric element relative to the
clamped end on the performance of the PEG, taking into account the presence of
the proof mass of 3 g. As the main parameter, we will use the relative offset, i.e.
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normalized with respect to the length of the substrate. This parameter is responsible
for the coordinate of the beginning of the piezoelement. From Fig. 11.14 it can
be seen that as the position of piezoelectric element becomes more indented, the
first resonance frequency decreases monotonically. Figure 11.15 shows that with

Fig. 11.14: Dependence of the first resonance frequency on the offset from clamp

increasing offset of the piezoelectric element from the clamp displacement of the
end of the beam decreases slightly at a small interval, and then increases. This may
indicate that the bending stiffness of the beam near the clamping zone decreases.
In Fig. 11.16 it is shown that with an increase in the piezoelectric element’s offset
from the clamped end, the output voltage drops noticeably. Moreover, the maximum
voltage is observed when the offset is minimal. The maximum output power demon-
strates similar behavior. The dependence of the value of the electrical resistance, at
which the maximum power is reached, on the amount of offset of the piezoelectric
element from the clamped end, depicted in Fig. 11.17, has a monotonous increasing
character. The obtained data on the influence of the position of the piezoelectric
element on the output characteristics of the PEG indicate that it is most advantageous
from the point of view of obtaining maximum power to position the piezoelectric
element near the clamp.
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Fig. 11.15: Dependence of the displacement of the beam’s end on the position of
the piezoelectric element

Fig. 11.16: Dependence of the maximum output voltage and power on the amount
of indentation of the piezoelectric element from the termination
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Fig. 11.17: Dependence of the resistance value, at which the maximum power is
reached, on the offset from clamp

11.2.3 Modelling of Stack Type PEG

The derivation of the equations describing the behavior of the stack-type PEG, shown
in Fig. 11.18, is also based on the Hamiltonian principle given earlier. This PEG is
subjected to an external mechanical loading p(t) along the coordinate axis x3.

Fig. 11.18 Stack PEG scheme

p(t)

x1

x3

x2

Rv(t)

Therefore, repeating the calculations (11.6)–(11.11), we obtain the following
equation:
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t2∫
t1

dt
�

V

[
−
(
ci jkluk,l+ eki jϕ,k

)
δui, j− (

eikluk,l− �ik ϕ,k
)
δϕ,i

]
dV−

−
t2∫

t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

ρüiδuidV +
�

S

(piδui+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 ,

(11.38)

where, in contrast to (11.11), external loads pi are conserved.
Let us consider the construction of PEGs of the stack type, shown in Fig. 11.18.

The simplest stacked PEG consists of several piezoceramic plates connected to each
other (either glued at the production stage, or stapled mechanically). The thickness
of the electrodes can, due to the smallness of its values, be neglected.

After introducing the assumption of small deformations, the problem reduces to
forced longitudinal vibrations of the rod along the x3 coordinate. Taking into account
the foregoing, the displacement vector u takes the following form:

u = {0,0,w(x3, t)}T . (11.39)

The transition to the consideration of the one-dimensional case also simplifies the
governing equations (11.2):

σ11 = cE∗
33 ε33− e∗33E3 ,

D3 = e∗33ε33+ �
S ∗
33 E3 , (11.40)

where the material constants are expressed as follows:

cE∗
33 =

1
sE

33

, e∗33 =
d33

sE
33

, �S ∗
33=�

T
33 −

d2
33

sE
33

. (11.41)

Substituting (11.39) into (11.38), taking into account (11.40), we obtain:

t2∫
t1

dt
�

V

[(
−cE∗

33
∂w(x3, t)
∂x3

+ e∗33ϕ,3

)
δ

(
∂w(x3, t)
∂x3

)]
dV+

+

t2∫
t1

dt
�

V

[(
e∗33
∂w(x3, t)
∂x3

+ �S ∗
33 ϕ,3

)
δϕ,3

]
dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρẅ(x3, t)δw(x3, t)}dV +
�

S

(p3δw(x3, t)+σδϕ)dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.42)

In the studied PEG, the polarization vector is directed along the coordinate axis
x3. The electrodes are applied to the long sides of piezoceramic plates perpendicular
to the axis x3. They are connected in parallel (see Fig. 11.18). Accordingly, it makes



11 Mathematical Modelling of Piezoelectric Generators 249

sense to consider only the components of the electric potential gradient along the
axis x3.

Since the piezoelements are assumed to be thin and there are no free charges
inside, we assume that the electric field is distributed linearly along the thickness of
each piezoceramic element:

ϕ =
v(t)x3

h
, ϕ,3 =

v(t)
h
, (11.43)

where v(t) is the potential difference between the upper and lower electrode of the
piezoelectric element, h denotes the thickness of the single piezoelectric layer. Taking
into account (11.43), the expression (11.41) takes the form:

t2∫
t1

dt
�

V

[(
−cE∗

33
∂w(x3, t)
∂x3

+ e∗33
v(t)
h

)
δ

(
∂w(x3, t)
∂x3

)]
dV+

+

t2∫
t1

dt
�

V

[(e∗33

h
∂w(x3, t)
∂x3

+ �S ∗
33

v(t)
h2

)
δv(t)

]
dV+

+

t2∫
t1

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
�

V

{−ρẅ(x3, t)δw(x3, t)}dV +
�

S

(
p3δw(x3, t)+

σx3

h
δv(t)

)
dS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 .

(11.44)

To solve the problem of forced longitudinal oscillations of stacked PEGs, we will
also use the Kantorovich method. Further, repeating the calculations similarly to the
derivation of equations (11.18)–(11.21), we obtain a system of differential equations
describing the forced oscillations of the stacked PEG connected to the resistor:

Mη̈(t)+Dη̇(t)+Kη(t)−Θv(t) = p,

Cpv̇(t)+ΘT η̇(t)+
v(t)
R
= 0 . (11.45)

Coefficients of (11.45) are equal to:
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Cp = Np
bl
h
�

S ∗
33 ,

Mi j =

H∫
0

mφi(x3)φ j(x3)dx3,

Ki j =

H∫
0

Yφ′i (x3)φ′j(x3)dx3,

pi = −p0φi(x3),

θi =

H∫
0

Jpφ
′
i (x3)dx3,

Y =
�

S

cE∗
33 dS ,

Jp =

�
S

e∗33

h
dS ,

(11.46)

where Np is the number of piezoelectric layers, b, l and h are the width, length and
height of single piezoelement, H denotes the height of the whole stack, Y stands for
the rigidity of the cross section of the stack.

Now it remains to find a set of test functions satisfying the boundary conditions.
The search for test functions satisfying the boundary conditions is connected to
the solution of the eigenvalue problem for the rod. We solve the problem of free
vibrations of the rod shown in Fig. 11.18. Let us write out the solution in general
form:

φi (x3) = a1,i sin(βi x3)+a2,i cos(βi x3) . (11.47)

Boundary conditions in the considered case are:

φi (0) = 0 , φ′i (H) = 0 . (11.48)

We can find the eigenvalues βi and coefficients ai.
After this we obtain a homogeneous system of 4 equations with 4 unknowns

which is given in matrix form:

Λ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1,1 . . . a1,4
...
. . .

...
a4,1 · · · a4,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0 . (11.49)

This system has nonzero solutions when its determinant is zero. The determinant of
the system yields a characteristic equation that needs to solve in order to compute
the eigenvalues βi:

1+ cosβi coshβi = 0 . (11.50)
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Equation (11.50) is transcendental. Therefore we will solve it with numerical methods.
Knowing βi, we can find the coefficients ai for the required number of vibration
modes N.

For the case of harmonic loading, obtaining the solution of the system (11.45)
is analogous to the solution for harmonic loading of the cantilever PEG (11.31)-
(11.36). Here, the loading of an arbitrary shape, in particular the impulse form, will
be considered.

To consider a load p(t) having an arbitrary shape, we represent its amplitude
values with a set of discrete values, and then interpolate it using Fourier series:

p(t)�m0+

N∑
k=1

[
mk cos

(
k

2πt
T

)
+nk sin

(
k

2πt
T

)]
, (11.51)

where m0 is the average value, T denotes the loading duration, nk,mk are Fourier
coefficients.

m0 =
1
T

T∫
0

p(t)dt, mk =
2
T

T∫
0

p(t)cos
(
k

2πt
T

)
dt, nk =

2
T

T∫
0

p(t) sin
(
k

2πt
T

)
dt .

(11.52)
Then, we substitute the obtained approximation (11.51) into (11.45) and solve the
system numerically by the Runge-Kutta method.

11.2.3.1 Parametric Studies

As input parameters of the model, we use the initial data from the experiment. We will
consider stack PEG, made using disk elements from ceramics PZT-19. The model of
PEG considered in Fig. 11.19, is a stack of piezoelements of the ring type, connected
together by a coupling bolt. Above and below are metal discs that distribute the

Fig. 11.19 Schematic model
of the stacked PEG

Piezoelement

Coupling
bolt

~

applied load evenly over the section, and protect against direct mechanical action
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on the piezoelements. The metal discs are followed by an insulating spacer, which
prevents electrical shorting. Between the piezoelements are located electrodes. They
are connected in parallel. In order to take into account the influence of the metal core
(clamping bolt) in the cross section of the PEG, we add to the rigidity of the cross
section Y one more term:

Y =
�
S p

cE∗
33 dS +

�
S c

ccdS , (11.53)

where S p and S c are the areas of the section of the stack and bolt, respectively, cE∗
33

and cc represent the modulus of elasticity of the piezoceramic and steel, respectively.
This PEG will be subjected to a pulsed loading, the shape of which is shown

in Fig. 11.20. The main geometric and physical properties of the generator model
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Fig. 11.20: Shape of the loading force

under study are given in Table 11.2. The modal damping coefficients are equal
ξ1 = ξ2 = 0.02.

Investigations of the dependence of the main characteristics of the stacked PEG
(output voltage and power) on various parameters (geometric sizes of piezoelements
and the number of piezoelements) were carried out. Figure 11.21 shows the depen-
dence of the maximum output voltage and the power on the number of layers of PEG.
The geometry of the layers is assumed to be unchanged. From the above dependence,
it follows that with an increase in the number of layers, the output voltage and power
increase. The behavior of the obtained dependencies is similar to the behavior of
the square root function. The dependence shown in Fig. 11.22, demonstrates the
effect of the outer diameter of the disk on the maximum output voltage and power. It
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Fig. 11.21: Dependence of output voltage and output power of stacked PEG on the
number of layers

0

5

10

15

20

25

0

50

100

150

200

250

1 1,2 1,4 1,6 1,8 2 2,2

Po
w

er
,m

W

V
ol

ta
ge

, V

Diatemer of disk, cm

Voltage Power

Fig. 11.22: Dependence of the output voltage and output power of the stacked PEG
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Table 11.2: PEG Parameters

Core Piezoelement

Geometrical dimensions(D×d×h) 6 mm 18×8×1 mm3

Density (ρ) 7800 kg/m3 7500 kg/m3

The Young’s modulus and Poisson’s ratio (E, ν) 210 GPa and 0.3 —
Elastic compliance

(
sE

33

)
— 17×10−12 Pa

Relative permittivity
(
εS

33/ε0
)

— 1500
Piezoelectric module (d33) — -307 pC/N

follows from the figure that with an increase in the external diameter of the disk, the
output voltage and power increase to a certain value, after which the recession occurs.
From Fig. 11.23, which shows the dependence of the maximum output voltages
and power on the height of each layer, it follows that as the height of the layers
increases, the output voltages and power increase. This dependence is close to linear.
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Fig. 11.23: Dependence of output voltage and output power of stacked PEG on the
height of each layer

In addition, the influence of the number of layers on the output characteristics of
PEG was investigated at a fixed total height of the entire piezostack. The results are
shown in Fig. 11.24. It turned out that there is a number of layers, in which the output
characteristics will be maximum.



11 Mathematical Modelling of Piezoelectric Generators 255

0
2
4
6
8
10
12
14
16
18

0

50

100

150

200

250

0 5 10 15 20 25 30

Po
w

er
,m

W

V
ol

ta
ge

, V

Number of layers

Voltage Power

Fig. 11.24: Dependence of the output voltage and output power of the stacked
PEG on the number of layers, provided that the height of the entire packet remains
unchanged

11.2.3.2 Comparison With Finite Element

Let us compare the derived model for stack PEG with finite-element calculations.
In Solovyev et al (2016), a finite element simulation of the stack PEG impulse
loading experiment was carried out. In the ANSYS package, the generator model was
constructed. The model is presented in Fig. 11.25. In the course of the experiment,
a pulse excitation aplied to the PEG was recorded, which was shown earlier in
Fig. 11.20. This impulse was used in ANSYS as an excitation force. Calculation of
the output electric potential was made with three values of electrical resistance: 374
kOhm, 2.6 MOhm, 22.7 MOhm. A comparison of the results obtained with finite
element modeling and the analytical model is shown in Fig. 11.26. From Fig. 11.26
it follows that the model obtained coincides, with a sufficient degree of accuracy,
with the finite-element calculation. The average error did not exceed 5%.

11.3 Summary

In this work, applied numerical theories were constructed, allowing preliminary
estimations of the output characteristics of the PEG of various configurations. The
developed theories are based on the Hamiltonian principle, extended to the theory
of electroelasticity. The solution was carried out using the Kantorovich method. In
the first part of the work, within the framework of the Euler-Bernoulli hypotheses, a
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Fig. 11.25 Axisymmetric
finite element model of PEG
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Fig. 11.26: The time dependence of the electrical potential for various electrical
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model of a cantilever PEG was created. The main model’s peculiarity is the consider-
ation of structural features. In the second part, a model was developed for multilayer
stacked PEG, where the energy generation process was considered as forced oscilla-
tions of an electroelastic rod. The adequacy of the obtained theories in both cases
was verified by comparison with finite-element modelling. The characteristics of
PEGs (resonant frequencies, output voltage and power) are calculated depending on
geometric parameters such as the dimensions, location of piezoelements, the number
of piezolayers, etc. The results are presented in the form of graphs of possible options
for optimal parameters of PEG.
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Chapter 12

Modeling of Dielectric Elastomers Accounting

for Electrostriction by Means of a Multiplicative

Decomposition of the Deformation Gradient

Tensor

Elisabeth Staudigl, Michael Krommer, and Alexander Humer

Abstract Nonlinear modeling of inelastic material behavior by a multiplicative
decomposition of the deformation gradient tensor is quite common for finite strains.
The concept has proven applicable in thermoelasticity, elastoplacticity, as well as
for the description of residual stresses arising in growth processes of biological
tissues. In the context of advanced materials, the multiplicative decomposition of
the deformation gradient tenser has been introduced within the fields of electro-
elastic elastomers, shape-memory alloys as well as piezoelastic materials. In the
present paper we apply this multiplicative approach to the special case of dielectric
elastomers in order to account for the electrostrictive effect. Therefore, we seek to
include the two main sources of electro-mechanical coupling in dielectric elastomers.
These are elastostatic forces acting between the electric charges and electrostriction
due to intramolecular forces of the material. In particular we intend to study the
significance of electrostriction for the particular case of dielectric elastomers, in the
form of a thin layer with two compliant electrodes.

12.1 Introduction

In this work we study constitutive modeling within the field of nonlinear electro-
elasticity, with special application to dielectric elastomer films. Dielectric elastomers
are capable of a mechanical response upon application of an external electric field,
which is why they are commonly termed electro-active polymers (EAPs). These
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types of actuators are predicted to have a large variety of promising application fields,
due to their characteristic to resist large strains while having a low stiffness and low
density. These features, make them especially prone to smart or bio-inspired structural
technologies e.g. artificial muscles. An EAP is typically assembled of a dielectric
film sandwiched between two electrodes. When applying a potential difference to the
electrode layers, they attract each other due to Coulomb forces, causing a pressure
on the surface of the dielectric film, enforcing a deformation. Practical applications
of this effect have been developed rather intensively, see examples such as soft and
flexible keyboards (Xu et al, 2016) or artificial caterpillars demonstrated by various
groups e.g. in SPIE (2017).

However, the full theoretical background of the deformation is yet not fully
exploited. It has been reported, that the electric field might also interact with the
dielectric layer as it gets polarized. This effect is reasoned in the micro-structure
of the material, where different polarization mechanisms prevail. Therefore, we
seek to include the two main sources of electro-mechanical coupling in dielectric
elastomers as pointed out in Mehnert et al (2016). Polarization on the molecular
level, called electrostriction, poses a process for which a full geometric nonlinear
electro-mechanically coupled theory is necessary in order to model the impact of
this effect adequately. Among the first theoretical works referring to electrostriction
we refer to Zhao and Suo (2008), while earlier Zhenyi et al (1994) already presented
experimental results.

Typical candidates for the material choice of dielectrics are silicon rubber and
polyurethane elastomers, while special graft elastomers have been developed in
the 1990s whose improved properties among high elastic-modulus count also the
capability of nonlinear behavior at large strain regimes; therefore, a geometrical
nonlinear framework is also necessary to model the mechanical behavior accurately.
Theoretical works on the field of nonlinear electro-mechanical coupling date back into
the 1950s. Toupin (1956) was among the first to address this field. A comprehensive
presentation has later been given by Landau et al (2013); Maugin and Eringen (2012).
Within the framework of nonlinear elasticity the book of Bonet and Wood (1997),
has proven to be a handy reference, while special emphasis on the electric-coupling
procedure can be found in the works of Dorfmann and Ogden (2005); Bustamante
et al (2009a); Dorfmann and Ogden (2017) as well as in McMeeking and Landis
(2004).

Constitutive modeling techniques incorporating the multiplicative decomposition
of the deformation gradient tensor are quite common for finite strains. The concept
has proven applicable in thermoelasticity, elastoplacticity, as well as for the descrip-
tion of residual stresses arising in growth processes of biological tissues (Lubarda,
2004). In the context of advanced materials, electro-elastic elastomers have been
investigated in Skatulla et al (2012), shape-memory alloys in Arghavani et al (2010)
and piezoelastic materials in Humer and Krommer (2015). A geometric nonlinear
formulation on the constitutive modeling for the coupled electrostrictive-viscoelastic
problem has been published by Ask et al (2012) using an additive decomposition of
the free energy function. However, the comparison to experimental results, published
by Diaconu and Dorohoi (2005); Diaconu et al (2006), suggest to put still further
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investigations into this field. Bortot et al (2016); Ask et al (2015) made already
use of the multiplicative decomposition of the deformation gradient tensor in their
viscoelastic constitutive relation. Applications within the fields of electro-elastic
coupled fields can be found in Zäh and Miehe (2015), and with special application to
piezoelectricity in the works of Humer and Krommer (2015). Special interest is put
on the physical bounds of the actuation at high strain magnitude. Phenomena called
pull in or ceasing instability currently limit further increase in the actuation strains,
as either imperfections or localization effects lead to the breakdown of the EAP.
Analytical efforts to investigated these phenomena were made in Xu et al (2010),
making use of the Hessian. They derived analytical expressions for the critical strain
values, above which no stable stretch configuration exists any more.

This work is organized into five sections. First, we are going to introduce the basic
electro-elastic coupled balance equations of continuum-mechanics, following Maugin
and Eringen (2012) and the recent work of Humer et al (2017). The relevant electric
quantities are reviewed and the Maxwell equations of electrostatics for dielectric
materials are addressed. Within the second part, we introduce these quantities into
the continuum mechanic theory in order to derive the spatial balance equations
rendering the basis for the electro-mechanically coupled theory. With the spatial
balance equations at hand, the material counterparts are obtained by which some
preliminary constitutive relations are derived shortly, in order to demonstrate the
general approach to the constitutive modeling framework. We close this part by
introducing the incompressibility constraint using a Lagrange multiplier, which
allows the physical interpretation of an electrostatic force. Higher order effects are
then incorporated into the theory in Sect. 12.3. There, we extend the constitutive
model by introducing the multiplicative decomposition of the deformation gradient.
Results of the derivations show, that additional electro-mechanical coupling stresses
increase the electro-elastic entanglement while still the overall physical relations can
be retained. Section 12.4 provides additional background on the electrostrictive effect,
unveiling the approach to include this effect into the constitutive model. In Sect. 12.5,
we finally apply the resulting equations to the simple example of a homogeneous
in-plane deformation of a plate. We choose this example on the one hand, as it
allows for a comparison to experimental results, while on the other hand theoretical
investigations allow for generalized statements on the impact of the electrostrictive
effect.

12.2 Electromechanical Coupling by Electrostatic Force

12.2.1 Kinematics in Nonlinear Elasticity

Beginning with the kinematic quantities required in the framework of nonlinear
continuum mechanics, we consider a material body, whose material points in the
undeformed reference configuration Vr are denoted by upper case letters X. Its bound-
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ary is referred as ∂Vr. We consider only quasi-static, time independent deformation,
which lead to a deformed current configuration, denoted by V with the boundary ∂V ,
and assume that a mapping function χ exists, such that x = χ(X) uniquely maps the
position vector of the material point into the current configuration x, see Fig. 12.1.
Hence the deformation gradient tensor F can be defined with respect to χ given by,

F = ∇0x = ∇0χ(X). (12.1)

∇0 is the differential operator with respect to the reference configuration. The volume
change throughout the configuration is defined by J = detF assuming J > 0 holds.

Knowing the deformation gradient tensor F allows to introduce the nonlinear
strain measures

B = F ·FT , C = FT ·F, (12.2)

where B is referred to as the left, and C as the right Cauchy-Green Tensor.
Orientation and position of a deformed surface element are defined by the unit

outward normal vector n on ∂V , while t is the force per unit area on ∂V , which allows
to introduce the second rank Cauchy stress tensor σ through σT ·n = t.
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Fig. 12.1: Field mapping of a general deformable body.
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12.2.2 Electro-Elastic Balance Laws

In order to derive the balance equations for the electro-elastic continuum, we start by
defining the dependent variables within the micro-continuum, which upon statistical
averaging over the continuum volume, lead to the relevant expressions of the macro-
continuum. Within the continuum mechanic framework, only the quantities arising
when applying external fields have to be taken into account, internal field quantities
are incorporated by the concepts of electro-mechanical stress and internal energy.
Upon application of an external electric field e, charges q are encouraged to move
slightly forming dipole-moments within the continuum; this process called polariza-
tion p, see Fig. 12.2, is reflected by electrostatic volume force f E , the corresponding
couple cE , and the power of the electrostatic force WE :

f E = (∇e) · p, cE = p× e, WE = ρe · d
dt

(
p
ρ

)
+ f E ·v. (12.3)

12.2.2.1 Maxwell Equation and Electric Body Forces

In case of electrostatics for an ideal dielectric, terms with free charges and magnetic
interactions can be dropped in the Maxwell equations, which then read:

∇ · d = 0, (12.4)
∇× e = 0; (12.5)

respectively, the Gauss Law and the Faraday Law of electrostatics. Here, we already
used the electric displacement vector, defined by d = ε0e+ p, in which ε0 denotes
the vacuum permittivity. One may find an exact solution for the Faraday Law imme-
diately by engaging a scalar potential function Φ, which satisfies e = −∇Φ; ∇ is the
differential operator with respect to the current configuration. Additionally, the fields
e, p and d have to satisfy the jump conditions

n · [[d]] = 0, n× [[e]] = 0. (12.6)
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Fig. 12.2: Polarization of a continuum.
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The bracketed terms denote jumps in the relevant field quantity. In case of vacuum
the fields reduce to d = ε0e. Following Bustamante et al (2009b), the boundary
conditions can be set as a function in p:

ε0[[e]] = (n · p)n, [[d]] = (n · p)n− p; (12.7)

hence, by introducing the so called Maxwell stress which is present in the free field,
the jump on the boundary ∂V of a material can be defined as:

[[σM]] ·n = 1
2
ε−1

0 (p ·n)2n. (12.8)

12.2.2.2 Conservation Laws

Turning now to the equations of the theory of electro-elasticity, we start with the
macroscopic law of conservation of mass m = ρV in form of the Continuity equation:

ṁ =
∂ρ

∂t
+∇ · (ρv) = 0, (12.9)

where v = ẋ denotes the current velocity of the continuum at the point x.
For the electro-elastic coupling, the electrostatic body-force f E of the continuum

is first introduced into the Balance of linear momentum. Hence, the momentum of
a body, which is balanced by body forces ρ f per unit volume, mechanical surface
loads t = σT · n per unit area, and the effect of the electrostatic force per unit volume
f E reads

d
dt

∫
V

ρvdV =
∫
V

(ρ f + f E)dV +
∫
∂V

tdS (12.10)

in its global form. Using the Gauss integral theorem, yields the local form,

∇ ·σ+ρ f + f E −ρv̇ = 0. (12.11)

In analogy to the pure mechanical case, also an electrostatic stress tensor f E = ∇·σE

can be introduced. Adding the electrostatic stress tensor to the Cauchy stress tensor
σ, results in the total electro-mechanical stress tensor σtot,

σtot = σ+σE , σE = e(ε0e+ p)− 1
2
ε0(e · e)I. (12.12)

Furthermore, one has to incorporate the electric couple cE in the Balance of
Moment of Momentum,

d
dt

∫
V

x×ρvdV =
∫
V

x× (ρ f + f E)dV +
∫
V

cEdV +
∫
∂V

x× tdS . (12.13)
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This yields, in contrast to the pure mechanical theory of elasticity, a non-symmetric
mechanical Cauchy stress tensor. Using the identity

∇ · (x×σ) = x× (∇ ·σ)+3 ε · ·σ, (12.14)

where 3ε is the third rank Levi-Civita tensor, and the Gauss integral theorem the
local form eventually yields to the symmetry of the sum of the Cauchy stress tensor,
and the polarization stress σP:

cE+ 3ε · ·σ = 0 , cE = p× e = 3ε · ·ep= 3ε · ·σP. (12.15)

The last equation states, that the negative antisymmetric part of the Cauchy stress
tensor is identically the antisymmetric part of the dipole moment tensor σP. Hence,

skew
(
σ+σP

)
= 0 and σS = σ+σP, (12.16)

where a symmetric stress tensor σS = (σS )T has been introduced. If we now use the
last part of Eq. (12.16) and insert it into the electro-mechanical stress tensor, we find
the famous Maxwell stress tensor σM:

σtot = σS −σP+σE = σS +σM , (12.17)

σM = σE −σP = ε0ee− 1
2
ε0(e · e)I. (12.18)

Finally, in order to get hands on a thermodynamically consistent constitutive relation,
the Balance of Energy for the electro-elastic body reads

d
dt

∫
V

ρ

(
1
2

v2+ e
)
dV =

∫
V

[(
ρ f + f E

)
·v+ρe · π̇ππ

]
dV +

∫
∂V

t ·vdS , (12.19)

which upon using the balance of momentum Eq. (12.11), yields the local form:

ρė−σ · · (∇v)T −ρe · π̇ππ = 0, (12.20)

where π̇ππ = d
dt

p
ρ . Finally, following Maugin and Eringen (2012) we change the depen-

dent variable by using a Legendre transform for the internal energy e in order to gain
the Helmholtz free energy ψ = e− 1

ρe · p

ρψ̇+
d
dt

e · p−σ · ·(∇v)T −ρe · π̇ππ = 0, (12.21)

which after differentiation gives the final form of the rate of free energy:

ρψ̇ = σ · · (∇v)T − ė · p. (12.22)
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12.2.3 Lagrangian (Material) Framework

Within this part the framework of the derivation of the constitutive relations is
presented in a generalized state, in order to present the overall procedure. We start by
transforming the relations, which were obtained previously in the current (spatial)
configuration into the reference configuration, resulting into the Lagrangian (material)
framework. The transformation rules of the dependent variables read:

ρ0 = ρJ, (12.23)
PPP = JF−1 · p, (12.24)
EEE = e ·F, (12.25)
S = JF−1 ·σ ·F−T . (12.26)

σ defines the Cauchy stress tensor and S the second Piola-Kirchoff stress tensor.
EEE andPPP define the material electric field and polarization vector respectively. The
electric displacement vector d, transforms in the same manner as the polarization
vector, using Nanson’s formula nda = JF−T ·NdA:

DDD = Jd ·F−T , DDD = ε0EEE ·C−1+PPP. (12.27)

Maxwell equations can be written as

d = ε0e+ p, ∇0 ·DDD = ∇0 · (ε0EEE ·C−1+PPP) = 0, (12.28)
∇0×EEE = 0, (12.29)

while by carefully applying the volume, surface and line element transformation
rules, on can find the electrostatic material force and couple:

FFF E = (∇0EEE) ·PPP, (12.30)
CCCE = −F−T ·EEE×PPP·FT . (12.31)

Next, we write the material form of the balance of momentum, while from the
balance of moment of momentum, the material form of the polarization stress tensor
is derived:

ρ0v = ∇0 · (S+SE)+ρ0 f , (12.32)
SP = JF−1 · ep ·F−T = C−1 ·EPEPEP (12.33)

The material electrostatic stress tensor follows to

SE = C−1 ·EEE(ε0EEE ·C−1+PPP)− 1
2
ε0J(EEE ·C−1 ·EEE) ·C−1 (12.34)

= C−1 ·EEEDDD− 1
2
ε0J(EEE ·C−1 ·EEE) ·C−1. (12.35)
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In order to obtain the material form of the free energy function, one has to incorporate
the time rate of the right Cauchy-Green strain tensor Ċ = (ḞT ·F+FT · Ḟ), which
allows to write the proper transformation of the gradient of the velocity vector
∇v = F−T · 1

2 Ċ ·F−1. Hence, the material rate of free energy function per unit mass
ψ̇(C,EEE) can be written as:

ρ0ψ̇ =
(
S+PPPEEE ·C−1

)
· ·1

2
Ċ−PPP·ĖEE. (12.36)

In the material form of the problem the boundary conditions are obtained by trans-
forming the second Piola Kirchoff stress tensor to its two-field tensor counterpart
Ptot = F ·Stot,

N · [[Ptot]] = 0, N · [[DDD]] = 0, (12.37)

and by Faraday’s law ∇0×EEE = 0,

N× [[EEE]] = 0. (12.38)

12.2.4 Constitutive Relations

In order to close the theory, the phenomenological properties of the material have
to be taken into account. We consider only small gradients in the electric field and
strains, which therefore allows to take the classical quadratic form of the generalized
thermodynamic energy function, valid in electro-elastic bodies. The free energy
function ψ is assumed to decompose additively into a mechanical part ψme(C), and
an electrical part ψel(C,EEE).

However, an additional term, called augmented free energy, motivated by the
presence of ponderomotive forces in vacuum is additionally incorporated. This
approach is suggested in Dorfmann and Ogden (2005). In order to make a clear
distinction, we indicate the sum of all free energy functions with Ω,

Ω = ψ+ψaug = ψme(C)+ψel(C,EEE)+ψaug(C,EEE), (12.39)

where the dependent variables of the augmentation term ψaug(C,EEE) are introduced
in accordance to the electrical free energy. Writing the rate of the augmented free
energy yields

Ω̇ =
∂ψme

∂C
· · Ċ+ ∂ψel

∂C
· · Ċ+ ∂ψaug

∂C
· · Ċ+ ∂ψel

∂EEE ·ĖEE+
∂ψaug

∂EEE ·ĖEE, (12.40)

or after inserting Eq. (12.36)

ρ0Ω̇ =
1
2

(
S+PPPEEE ·C−1+2ρ0

∂ψaug

∂C

)
· · Ċ−

(
PPP−ρ0

∂ψaug

∂EEE
)
· ĖEE. (12.41)

A comparison unveils
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∂ψme

∂C
=

1
2ρ0

S,
∂ψel

∂C
=

1
2ρ0

SP, −∂ψel

∂EEE =
1
ρ0
PPP, (12.42)

∂ψaug

∂C
=

1
2ρ0

SM , −∂ψaug

∂EEE =
1
ρ0

(D−PD−PD−P). (12.43)

We obtain relations for the total electric displacement and the total stress expressed
by simple addition:

DDD = −ρ0
∂ψel

∂EEE −ρ0
∂ψaug

∂EEE = −ρ0
∂Ω

∂EEE , (12.44)

Stot = 2ρ0
∂ψme

∂C
+2ρ0

∂ψel

∂C
+2ρ0

∂ψaug

∂C
= 2ρ0

∂Ω

∂C
. (12.45)

Still the specific form of the energy functions is missing. For the mechanical
part ψme any hyperelastic strain energy function can be used. In order to define the
electrical energy function, we assume the energy to take a quadratic form in EEE, and
start by transforming the heuristic relation p= χe for the polarization vector given in
the spatial framework into the material framework:

p= χe, PPP = JχC−1 ·EEE, (12.46)

ρ0ψel = −1
2
χε0EEE · (C−1 ·EEE), (12.47)

where χ is the electric susceptibility. The augmentation term reads

ρ0ψaug = −1
2
ε0JEEE · (C−1 ·EEE), (12.48)

and by taking the derivative with respect to C, while keeping in mind ∂J
∂C
= 1

2 JC−1,
we find

1
2ρ0

SP =
∂ψel

∂C
=

1
2ρ0

χε0C−1 ·EEEEEE ·C−1, (12.49)

1
2ρ0

SM =
∂ψaug

∂C
=

1
2ρ0

ε0J
(
C−1 ·EEEEEE− 1

2
I(EEEEEE · ·C−1)

)
·C−1, (12.50)

which are the constitutive relations for the polarization stress SP and the material
Maxwell stress tensor SM . Subsequently, we obtain the polarization vector by taking
the derivative with respect to EEE,

1
ρ0
PPP = −∂ψel

∂EEE =
1
ρ0
χε0C−1 ·EEE, (12.51)

−ρ0
∂ψaug

∂EEE = ε0JC−1 ·EEE. (12.52)

Here it should be noted, that the polarization stress SP can directly be obtained by
multiplication with EEE ·C−1. Gathering all terms one can find the constitutive relation
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for the electric displacement vectorDDD =PPP+ε0JC−1 ·EEE to

ρ0Ω̇ =

(
S+DDDEEE ·C−1− 1

2
ε0JC−1 · (EEEEEE · ·C−1)

)
· ·1

2
Ċ−DDD·ĖEE. (12.53)

The bracketed term is the total second Piola-Krichoff stress tensor Stot, which is
composed of the unsymmetric mechanical second Piola-Kirchoff stress tensor S, the
polarization stress SP and the symmetric Maxwell stress SM .

This renders the classical version of electro-mechanical coupling most commonly
used in the field of dielectric elastomers, where the major driving mechanism is
given by the electrostatic force. In case of incompressible dielectric elastomers,
the deformation gradient is oblige to detF = J = 1, hence J̇ = 0. Therefore, the
constitutive relation for the total second Piola-Kirchoff stress tensor is constrained,
and we account for the constraint by introducing a Lagrange multiplier p,

Stot = 2ρ0
∂Ω

∂C
+ pC−1, DDD = −ρ0

∂Ω

∂EEE (12.54)

and refer to Dorfmann and Ogden (2005) as well as to Wissler and Mazza (2005)
when making the interpretation of p as taking the role of a hydrostatic pressure,
which can be identified as taking a mechanical part as well as an electric part which
corresponds to the electrostatic force acting on the dielectric material, in case of
plane stress.

12.3 Electromechanical Coupling Using a Multiplicative

Decomposition of the Deformation Gradient Tensor

In order to broaden the constitutive model to nonlinear effects involving electro-
mechanical coupling on the constitutive level, we make use of the multiplicative
decomposition of the deformation gradient tensor. This idea is adopted from the fields
of thermo-elasticity and plasticity. Using this technique allows for incorporating
different or even multiple phenomena and cross effects, e.g. piezoelectricity or
electrostriction.

Obviously when dealing with electro-mechanical coupling, the deformation gradi-
ent is naturally decomposed into an elastic part Fme, called the mechanical and an
electric part Fel called the electric deformation gradient tensor,

F = Fme ·Fel, (12.55)

where Fel = Fel(EEE) is assumed to solely depend on the material electric field vector
EEE.

We apply the right (Lee-type; Lee, 1969) decomposition proposed by Skatulla
et al (2012) for dielectric elastomers, where the right Cauchy-Green tensor can then
be expressed by C = FT

el ·Cme ·Fel with the mechanical part being Cme = FT
me ·Fme.
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It is clear, that the decomposition order puts already restrictions on the choice of
dependent variables within the free energy function, resulting in a rather specific
theory. Therefore, switching the order of the multiplicative decomposition to a right
(Clifton-type; Clifton, 1972) decomposition, necessitates a completely different
modeling approach from the very beginning.

We start the derivation of the constitutive relations analogously to the previous
section 12.2, however, we drop the augmentation term temporary, the free energy
function now reads ψ = ψme(Cme)+ψel(C,EEE), while its rate computes to:

ψ̇ =
∂ψme

∂Cme
· · Ċme+

∂ψel

∂C
· · Ċ+ ∂ψel

∂EEE · ĖEE. (12.56)

Inserting C = FT
el ·Cme ·Fel the time rate of the mechanical right Cauchy-Green tensor

is:

Ċme = F−T
el · Ċ ·F−1

el −2sym
(
Cme · Ḟel ·F−1

el

)
. (12.57)

Therefore, upon applying the symmetry and cyclic permutation property of the double
dot product, and after inserting Ḟel =

∂Fel
∂EEE · ĖEE, the first, mechanical, part of the free

energy, gets:

∂ψme

∂Cme
· · Ċme = F−1

el ·
∂ψme

∂Cme
·F−T

el · · Ċ−
(
2F−1

el ·
∂ψme

∂Cme
·Cme · · ∂Fel

∂EEE
)
· ĖEE. (12.58)

This allows to rewrite the rate of the free energy Eq. (12.56), such that the global
form with regard to the double dot product can be restored:

ψ̇ =

(
F−1

el ·
∂ψme

∂Cme
·F−T

el +
∂ψel

∂C

)
· · Ċ−

(
2F−1

el ·
∂ψme

∂Cme
· ·∂Fel

∂EEE −
∂ψel

∂EEE
)
· ĖEE. (12.59)

Comparing now the coefficients of this relation to the material rate of free energy
from Eq. (12.36), the constitutive relations for the symmetric second Piola-Kirchoff
stress tensor as well as for the polarization vector can be obtained:

SS = S+PPPEEE ·C−1 = 2ρ0F−1
el ·

∂ψme

∂Cme
·F−T

el +2ρ0
∂ψel

∂C
, (12.60)

PPP = 2ρ0F−1
el ·

∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE −ρ0
∂ψel

∂EEE . (12.61)

Here the pronounced coupling nature of the multiplicative decomposition becomes
clear, while the second Piola-Kirchoff stress tensor experiences a transformation by
the electrical deformation gradient, the polarization vector PPP is now composed of
two parts, an electrical onePPPel and a coupled electro-mechanical partPPPcoup.

PPPel = −ρ0
∂ψel

∂EEE , PPPcoup = 2ρ0F−1
el ·

∂ψme

∂Cme
·Cme · ·Fel

∂EEE . (12.62)
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Moreover, the corresponding polarization stress SP = Spol,el+Spol,coup is again ob-
tained by multiplication with EEE ·C−1:

Spol,el = PPPelEEE ·C−1 = −ρ0

(
∂ψel

∂EEE
)
EEE ·C−1, (12.63)

Spol,coup = PPPcoupEEE ·C−1 = ρ0

(
2F−1

el ·
∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE
)
EEE ·C−1. (12.64)

The symmetric Piola-Kirchoff stress tensor composes now of three parts SS = S+

Spol,coup+Spol,el. The term Spol,el, introduces the electrostatic force into the theory,
since it has to fulfill the restriction

−∂ψel

∂EEE EEE ·C
−1 = 2

∂ψel

∂C
. (12.65)

Due to simplicity, we choose the same free energy ρ0ψel = − 1
2χε0EEE · (C−1 ·EEE) from

Sect. 12.2, since it has already been shown to be a proper choice. The variables ε0
and χ are the permittivity in vacuum and the electric susceptibility respectively.

The identification of the electrostatic force motivates further statements on the
analysis of the electro-elastic coupling nature. As the responsible term for the electro-
static force can now be excluded, still a symmetric electro-mechanical stress tensor
Sem = S+PPPcoupEEE·C−1 can be obtained, which upon comparison to Eq. (12.60) reads:

Sem = 2ρ0F−1
el ·

∂ψme

∂Cme
·F−T

el . (12.66)

By using Cme = F−T
el ·C ·F−1

el , the coupling polarization can be written as:

PPPcoup = Sem ·C ·F−1
el · ·

∂Fel

∂EEE , (12.67)

which after comparison to the balance of energy yields the symmetric second Piola-
Kirchoff stress tensor being composed of an electromechanical part Sem and the
electrical part Spol,el.

SS = S+PPPEEE ·C−1 = Sem+Spol,el, PPP =PPPel+PPPcoup (12.68)

with the specific constitutive relations:

Sem = 2ρ0F−1
el ·

∂ψme

∂Cme
·F−T

el and Spol,el = 2ρ0
∂ψel

∂C
, (12.69)

PPPel = −ρ0
∂ψel

∂EEE and PPPcoup = Sem ·C ·F−1
el · ·

∂Fel

∂EEE . (12.70)

In view of a proper thermodynamic presentation of the rate of the free energy, one
can finally write:
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ρ0ψ̇ = Fel ·Sem ·FT
el · ·

1
2

Ċme︸��������������������︷︷��������������������︸
=ρ0ψ̇me(Cme)

+Spol,el · · 1
2

Ċ−PPPel · ĖEE︸��������������������︷︷��������������������︸
=ρ0ψ̇el

. (12.71)

Consider the case Fel = I; then PPPcoup = 000,Fme = F,Cme = C and Sem = S hold, and
the previous constitutive model without constitutive coupling is found:

S = 2ρ0 · ∂ψme

∂C
, Spol =PPPEEE ·C−1 = 2ρ0

∂ψel

∂C
and PPP = −ρ0

∂ψel

∂EEE . (12.72)

12.3.1 Total Stress

It remains to incorporate the contribution of the electric field in vacuum to the con-
stitutive model. Starting at the definition for the free energy function, the objective
we want to achieve is to find some global relationships which hold when incorpo-
rating the multiplicative decomposed deformation gradient. We make use of the
augmentation term in Sect. 12.2 and write

ρ0Ω = ρ0ψ− 1
2
ε0JEEE · (C−1 ·EEE) = ρ0ψ+ρ0ψaug. (12.73)

Hence, in analogy to the electric free energy, also for the augmentation term ψaug =

ψaug(C,EEE) holds, and the rate of the augmented free energy can be expressed as:

ρ0Ω̇ = ρ0ψ̇+ρ0
∂ψaug

∂C
· ·Ċ+ρ0

∂ψaug

∂EEE ·ĖEE. (12.74)

However, in few of a uniform presentation, one might be interested to further develop
ψ̇ given in Eq. (12.59). As ψme = ψme(Cme) = ψme(Cme(C,EEE)) holds, and by using
Cme = F−T

el ·C ·F−1
el the derivative of the mechanical free energy can be expressed by

∂ψme

∂EEE =
∂ψme

∂Cme
· · ∂Cme

∂EEE =
∂ψme

∂Cme
· · ∂(F−T

el ·C ·F−1
el )

∂EEE
= −2F−1

el ·
∂ψme

∂Cme
·
(
Cme · ∂Fel

∂EEE ·F
−1
el

)
= −2F−1

el
∂ψme

∂Cme
·Cme · ·∂Fel

∂EEE ,
(12.75)

and furthermore,

∂ψme

∂C
=
∂ψme

∂Cme
· ·∂Cme

∂C
=
∂ψme

∂Cme
· ·∂(F−T

el ·C ·F−1
el )

∂C
= F−1

el ·
∂ψme

∂Cme
· ·F−T

el (12.76)

which finally gives
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DDD = −ρ0
∂ψme

∂EEE −ρ0
∂ψel

∂EEE −ρ0
∂ψaug

∂EEE = −ρ0
∂Ω

∂EEE , (12.77)

Stot = 2ρ0
∂ψme

∂C
+2ρ0

∂ψel

∂C
+2ρ0

∂ψaug

∂C
= 2ρ0

∂Ω

∂C
. (12.78)

Note, that in case of multiplicative decomposition, the electric displacement vector
contains the material derivative of the mechanical free energy with respect to the
electric field, this was not the case in the representation of the constitutive equations
in section 12.2. Inserting the quantities into the rate of augmented free energy finally
yields

ρ0Ω̇ = Stot · · 1
2

Ċ−DDD·ĖEE. (12.79)

12.3.2 Intermediate Configuration

By using a multiplicative decomposition, one equivalently introduces an intermediate
configuration, see Fig. 12.3 into the deformation path, which is a result of the
right Lee-type decomposition. In our case, the intermediate configuration might
be adopted in case when no mechanical loads are applied, hence Cme = I, and the
electro-mechanical stress, given in Eq. (12.68)

Reference configuration

Intermediate configuration

Actual configuration

F = I , SS = 0
E = 0 , P = 0

F = Fel , S
S = Spol,el

E , P = Pel

F = Fme · Fel

SS = Spol,el + Sem

E , P = Pel +Pcoup

Fel(E)

Ψel(C,E)
Fme

Ψme(Cme)

F

Ψ(C,E)

Fig. 12.3: The intermediate configuration is entered by instantaneously taking all
mechanical loads yielding to an appealing, yet unphysical state of pure electrical
origin.
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Sem = S+PPPcoupEEE ·C−1 = 2ρ0F−1
el ·

∂ψme

∂Cme
·F−T

el , (12.80)

has to vanish. This is true, because the mechanical part of the free energy ψme(Cme)
per definition depends solely on the mechanical right Cauchy-Green tensor. Hence,
the symmetric stress tensor SS for the intermediate configuration must be equal to
the electrical polarization stress tensor SS = SP = Spol,el. Moreover, as the total stress
tensor is Stot = SS −SP +SE = SE yields to Stot = SP +SM , hence, there exists a total
stress tensor in the intermediate configuration, composed of the symmetric Maxwell
stress and the unsymmetric electrical polarization stress.

Moreover, as the electro-mechanical stress tensor is composed of the second
(mechanical) Piola-Kirchoff stress and the coupling polarization stress tensor Sem =

S+Spol,coup = 0 yields in consequence that either S = −Spol,coup or both Spol,coup = 0

and S = 0 vanish. However, in either way, the total stress tensor remains apparent
because of the Maxwell stress tensor, hence the intermediate configuration cannot be
a "stress-free" configuration.

This concept of different deformation path yields to three possible configurations:

1. The unloaded reference configuration, here both the electric field vector and the
polarization vector have to vanish EEE = PPP = 0, while at the same time F = I is
prescribed, hence this configuration is stress free Stot = SS = 0.

2. Allowing a pure electric polarizationPPP =PPPel accompanied with an electric field,
yields to a configuration where stress fields Stot = Spol,coup + SM are present
yielding to a deformation field characterized by F = Fel.

3. Within the actual configuration, all physical possible combination of electric and
mechanic sources are present, allowing now the the symmetric electro-mechanical
stress tensor Sem to emerge. When starting in the intermediate configuration, the
actual configuration is attained through the mechanical energy field ψme(Cme).
When going this path one has to keep the electric field EEE constant and add the
coupled term to the polarization vector fieldPPP =PPPel+PPPcoup.

12.4 Electrostriction

Phenomenologically speaking, electrostriction is the quadratic response in the strain
field, upon application of an electric field; hence, we write a series expansion

ε ≈EEE · 3e+EEEEEE · · 4D+ ... (12.81)

for the infinitesimal strain tensor ε, where 3e is a third rank piezoelectric coefficient
tensor, and 4D a fourth rank electrostrictive parameter tensor. Therefore, electrostric-
tion renders a higher order effect, which is typically considered as negligible. How-
ever, experimental results show, that among the linear electrostatic relation, also
higher order effects contribute significantly to the strain field. As piezoelectricity is a
special topic, in this work we restrict ourselves to electrostriction, which also depends
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e
=

0

e cE

grafted polymer crystal flexible graft molecule

backbone molecule

p

Fig. 12.4: Electrostrictive graft polymer, left deformation of the whole specimen,
right reorientation of the crystal unit upon application of an electric field.

highly on the materials properties. In order to explore the origin of this effect one has
to look inside the micro-structure. Materials which exhibit a distinct electrostrictive
behavior carry typically polarized cells or crystalline groups within a matrix of long
chained elastomer molecules. In 1998 NASA (Su et al, 1999) published results on
their improved EAP material, with especially improved electrostrictive properties,
called electrostrictive graft elastomer. The key ingredients are crystalline groups
which are solvents in a flexible backbone polymer matrix. Upon application of an
external electric field, the dipole moments within the crystal cells have to reorient,
according to the induced dipole couple cE = p× e. This effect is shown in Fig. 12.4.
If the sign of the external field is changed, the dipole couple reorients in the other
direction; hence, the cells are turned around such, that the same net deformation
can be measured. As every material carries imperfections, which lead to polarized
cells within the structure, every material is capable of undergoing an electrostrictive
behavior. However, e.g. in silicon rubber one can barely find such micro defects,
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m

e2, λ2

e1, λ1

h

Fig. 12.5: Homogeneous plate in cartesian coordinates, the unit vector in thickness
direction is denoted with m.

which is why the electrostrictive effect of silicon rubber (3M VHB4910) is rather
small. Other materials which have drawn attention due to their distinct ability towards
electrostriction are polyurethane elastomers, see experimental results in Diaconu et al
(2006). We complete this introductory part by mentioning that also combinations
of electrostrictive EAPs and piezoelectric copolymers exist (so called ferroelectric-
electrostrictive materials), which allow the use of the piezoelectric polymer for
sensing and the electrostrictive one for actuation.

In order to incorporate electrostriction into the constitutive relations in the present
paper, we make use of the yet undefined electric deformation gradient tensor Fel,
which in case of electrostriction might e.g. take the form of an exponential function
suggested by Skatulla et al (2012):

Fel = expD, (12.82)

where D is a proper second rank tensor, which in turn has to satisfy D = lnFel,
such that by choosing D carefully, the electric deformation gradient might become
identical to the electric right stretch tensor Fel = RelUel := Uel, hence D becomes an
electrical logarithmic strain tensor Eel

D = lnUel = Eel, (12.83)

which then can be chosen quadratic in the material electric field vector EEE.

12.4.1 Homogeneously Deformed Plate

We turn now to the case of homogeneous in plane deformation of a plate, see Fig.
12.5, in which the coordinate system is embedded such, that one unit vector m is
aligned with the electric field vector EEE = E3m, acting in thickness direction. Hence
the electric deformation gradient takes the form Fel = Uel = λel(I−mm)+λel,3mm.

Therefore, the tensor D is taken in the form of a diagonal tensor:
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D = c1(EEE ·EEE)mm+ c2(EEE ·EEE)(I−mm), (12.84)

where the two parameter c1 and c2 are electrostrictive material parameter, which
allow to write the electrical stretches in the form:

λel = exp(c2EEE ·EEE) , λel,3 = exp(c1EEE ·EEE). (12.85)

It remains now to recall and specify the augmented free energy. Starting with the
mechanical free energy, we are using a neo-Hookean hyperelastic strain energy
function,

ρ0ψme(Cme) = ρ0ψme(ICme , IICme , IIICme ) =
μ

2
(ICme −3−2ln Jme)+K(lnJme)2;

(12.86)
the electrical and the augmented free energy are respectively:

ρ0ψel = −1
2
χε0EEE · (C−1 ·EEE) (12.87)

ρ0ψaug = −1
2

Jε0EEE · (C−1 ·EEE). (12.88)

12.4.1.1 Plane Stress

For the total stress tensor we write Stot = S2 + τm+mτ+ S 33mm, where S2 is its
plane part, τ is the total transverse shear stress vector and S 33 the magnitude of
the total stress in direction of the unit normal vector m. We use I2 = I−mm for
the plane identity tensor. The restriction to plane stress allows to set all parts in m

direction zero, hence Stot = S2. As a consequence, shear components of the right
Cauchy-Green tensor vanish; hence, it can be decomposed into an in plane part C2,
and an out of plane tensor C33mm such that C = C2+C33mm. In accordance to the
total right Cauchy-Green tensor, also the mechanical right Cauchy-Green tensor turns
into Cme =C2,me+C33,memm. By using the transformation rule Cme = F−T

el · C ·F−1
el ,

the invariants of Cme turn into functions of the total right Cauchy-Green tensor, and
the electric stretches.

ICme = trCme = λ
−2
el trC2+λ

−2
el,3C33, (12.89)

IICme = Cme · ·Cme = λ
−4
el,3C2

33+λ
−4
el C2 · ·C2, (12.90)

IIICme = detCme = λ
−4
el λ
−2
el,3C33detC2. (12.91)

12.4.1.2 Incompressibility

As dielectric elastomers are often considered incompressible, J = detF := 1, we have:

- detF = detFel = 1,
- detC = 1→C33 = detC−1

2 = III−1
C2

.
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Turning to the electric deformation gradient tensor, the incompressibility condition
already defines one of the electrostrictive material parameter c1 in terms of the second
one c2:

detFel = 1 = λ2
elλel,3 = exp((c1+2c2)E2

3) = 1 → c1 = −2c2. (12.92)

Additionally the electric in plane stretch is a direct result of the out of plane stretch:
λ−2

el = λel,3 = exp(c1E2
3). For the electric free energy function the inverse total right

Cauchy-Green tensor is needed, as C−1 = C−1
2 +C−1

33 mm holds. Upon inserting
EEE = E3m and using J = 1 the electric free energy and the augmented free energy are:

ρ0(ψel+ψaug) = −1
2
ε0(1+χ)

E2
3

C33
. (12.93)

For the mechanical free energy function the trace of the mechanical right Cauchy-
Green tensor is needed. If we make use of λ−2

el = λel,3 and C33 = detC−1
2 = III−1

C2
, the

invariants read:

ICme = λ
−2
el trC2+λ

4
elC33, (12.94)

IICme = λ
8
elC

2
33+λ

−4
el C2 · ·C2, (12.95)

IIICme = λ
−4
el λ

4
elIII−1

C2
detC2 = 1. (12.96)

We can now write the augmented free energy for the incompressible neo-Hookean
material and the plane stress case:

ρ0Ω2 =
μ

2

(
λ−2

el trC2+λ
4
elIII−1

C2
−3

)
− 1

2
εIIIC2E2

3, (12.97)

where we used the permittivity ε = ε0(χ+1) = εrε0, with the relative permittivity
εr = χ+1, and the electrical stretch λel = exp(c2E2

3) = exp((−c1/2)E2
3).

12.4.1.3 Electrostatic Force

We already reduced the augmented free energy to its plane counterpart, however,
in order to ensure incompressibility when using the constitutive relations for the
stresses one has to enforce the condition by using a Lagrange multiplier p:

S2 = 2ρ0
∂Ω2

∂C2
+ pC−1

2 , (12.98)

where p can be obtained by making use of the plane stress condition in the three
dimensional problem S 33 = 0, keeping C33 = III−1

C2
in mind yields

S 33 = 2ρ0
∂Ω2

∂C33
+ pC−1

33 = 0 → p = −2C33ρ0
∂Ω2

∂C33
. (12.99)
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Inserting p into the plane part of the total stress tensor finds

S2 = 2ρ0
∂Ω2

∂C2
−2C33ρ0

∂Ω2

∂C33
C−1

2 , (12.100)

which upon using C33 = III−1
C2

and the identity
∂III−1

C2
∂C2

= −III−1
C2

C−1
2 finally becomes

S2 = 2ρ0

⎛⎜⎜⎜⎜⎜⎜⎝ ∂Ω2

∂C2

∣∣∣∣∣
C33=III−1

C2

− ∂Ω2

∂C33

∣∣∣∣∣
C33=III−1

C2

III−1
C2

C−1
2

⎞⎟⎟⎟⎟⎟⎟⎠
= 2ρ0

(
∂Ω2

∂C2
+
∂Ω2

∂C33

∂C33

∂C2

)∣∣∣∣∣∣
C33=III−1

C2

.

(12.101)

This is however identical to
S2 = 2ρ0

∂Ω2

∂C2
, (12.102)

with the plane part of the augmented free energy. Hence, for the case of plane stress,
incompressibility is ensured by application of a pressure p. The externally applied
electric field acting in thickness direction, however yields to a stress resultant in
thickness direction whose contribution has to be balanced by the Lagrange multiplier

p = −2C33ρ0
∂Ω2

∂C33
, (12.103)

which takes part of a mixed mechanical portion on the one hand, and an electrostatic
Coulomb force resultant on the other hand.

In summery, the constitutive model for plane stress case yields the total stress
tensor Stot = Stot

2 . Because of EEE = E3m also the electric displacement vector has only
a component in the thickness direction D3; hence, the non-vanishing components
read:

Stot
2 = 2ρ0

∂Ω2

∂C2
, D3 = −ρ0

∂Ω2

∂E3
= εIIIC2E3−ρ0

∂Ω2

∂λel

∂λel

∂E3
. (12.104)

12.4.1.4 Traction Boundary Condition

Within a conducting material such as the electrodes attached on top and bottom of
the dielectric layer, the electric field has to vanish. Hence, there is no contribution
from the Maxwell stress in thickness direction, however, at the vertical boundaries
where the film and the exterior (vacuum) field share a surface, continuity in the stress
field must be ensured. Denoting with subscript 2 the plane components, for the plane
first Piola-Kirchoff [[Ptot

2 ]] ·N2 = 0 must hold, where N2 is the in plane unit normal
vector at the vertical edges. In addition, we claim also continuity of F2 as well as Stot

2
at the interface. For this reason, we can demand the continuity condition equivalently
by taking the second Piola-Kirchoff stress, and its Maxwell stress version in air SM

2 .
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Let us discuss the jump condition in more detail, for the dielectric material the
full contribution of the augmented free energy applies, while in the exterior field, all
constituents arising from the presence of material vanish, hence the only remaining
term is the augmentation term:

ρ0ΩDielectric = ρ0Ω2, ρ0Ωexterior f ield = ρ0ψaug. (12.105)

The Maxwell stress tensor is obtained by differentiating the augmented free energy,
and using C−1 = C−1

2 +C−1
33 mm with EEE ·EEE = E2

3 and EEEEEE = E2
3mm:

SM = 2
∂ψaug

∂C
=

1
2
ε0JC−1 · E3E3mm ·C−1− 1

2
ε0JC−1 · E2

3 ·C−1

=
1
2
ε0JC−2

33E2
3mm− 1

2
ε0JE2

3C−2
2 , (12.106)

such that the plane part is SM
2 = SM · I2.

We use Ptot
2 = F2 ·Stot

2 in the dielectric elastomer, and by writing the equilibrium at
the surface with the plane Maxwell stress tensor PM

2 = F2 ·SM
2 the traction boundary

condition is found to:

F2 ·Stot
2 ·N2 = F2 ·SM

2 ·N2 = −F2 · 12ε0JE2
3C−2

2 ·N2. (12.107)

12.5 Electromechanical Stability

Still, the electrostrictive material parameter c1 remains unknown, in order to define
c1 one has to rely on experimental measurements. However, proper identification
of a coefficient associated with electrostriction is difficult as also the strain coming
from Maxwell effect is quadratic in the electric field. Hence, a direct comparison to
experimental data is not possible, and a proper conversion from the measured value
to the electrostrictive parameter c1 has to be applied. Diaconu and Dorohoi (2005)
used a parameter M to relate the experimental dependence of the measured strain on
the applied electric field. We will make use of the data set obtained there and proceed
by specifying the mathematical model to the problem from the measurements.

We consider a thin plate, which is free to deform in plane upon application of an
external electric field in thickness direction E3 = V/h, where V is the magnitude of
the applied voltage, and h the thickness of the plate. For this problem, a spherical
right Cauchy-Green tensor, with the same in plane stretches due to the homogeneous
deformation, applies, hence C2 =CI2 with C = λ2. Where λ = λ1 = λ2 denotes the
principal stretch in both in-plane directions. We use I2 = I−mm the plane identity
tensor, and write the invariants for this problem,

IC2 = 2C = 2λ2 , IIIC2 =C2 = λ4. (12.108)
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By using the neo-Hookean strain energy function, specified for incompressible
materials, the expression for the augmented free energy gets,

ρ0Ω2 =
μ

2
(2λ−2

el λ
2+λ4

elλ
−4−3)− 1

2
ελ4E2

3, (12.109)

where ε = ε0(1+χ) = ε0εr. The plane total second Piola-Kirchoff stress tensor is
obtained by using implicit differentiation, and the relation ∂C2/∂λ = 2λI2:

Stot
2 = 2ρ0

∂Ω2

∂C2
= 2ρ0

∂Ω2

∂λ

∂λ

∂C2
= ρ0

1
λ

∂Ω2

∂λ
I2. (12.110)

Next, the contributing stress from the exterior field needs to be incorporated, by
making use of the traction boundary condition F2 ·Stot

2 ·N2 =F2 ·SM
2 ·N2 with F2 = λI2

and SM
2 = − 1

2ε0E2
3λ
−4I2:

ρ0
∂Ω2

∂λ
N2 = −1

2
ε0E2

3λ
−3N2 (12.111)

Integration yields the augmentation energy ρ0Ω
aug
2 = 1

4ε0λ
−2E2

3, such that the traction
boundary condition can be expressed by an overall plane energy function Ω̄2

ρ0Ω̄2 = ρ0Ω2−ρ0Ω
aug
2 = ρ0Ω2− 1

4
ε0λ
−2E2

3. (12.112)

Moreover, the traction boundary condition can be equally written in terms of a new
overall second Piola-Kirchoff type stress tensor S̄2 ·N2 = 0, where

S̄2 =
1
λ

(
∂Ω2

∂λ
+

1
2
ε0λ
−3E2

3

)
I2 =

1
λ

∂Ω̄2

∂λ
I2 (12.113)

has to vanish in the whole plate. We can now proceed to the stability analyses by
writing the equilibrium condition in form of the Principle of Gibbs (Ziegler, 1998)

∂Ω̄2

∂λ
= 0, (12.114)

yielding the equilibrium stretches λ = λ0. Furthermore, one can judge on the stability
of these stretches by making use of the Dirichlet stability criterion for conservative
problems,

∂2Ω̄2

∂λ2

∣∣∣∣∣
λ0

> 0. (12.115)

We proceed by specifying the overall free energy for the incompressible neo-Hookean
material and write the equilibrium condition:
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Fig. 12.6: Equilibrium Biot strain for Voltage driven actuation, left the linear
course of the strain upon the square electric field, right the quadratic course upon
the linear electric field. The red line corresponds to the full model, black dotted
neglects Maxwell effect, black solid line linearized problem, blue line electric
stretch.

ρ0Ω̄2 =
μ

2
(2λ−2

el λ
2 + λ4

elλ
−4−3)− 1

2
ελ4E2

3−
1
4
ε0E2

3λ
−2, (12.116)

(λ−2
el λ−λ4

elλ
−5) − λ3

(
1− 1

4εr
λ−6

)
ε

μ
E2

3 = 0 (12.117)

where we have used ε = ε0(1+χ) = ε0εr. Finally, we close the theoretical part by
specifying the material parameter using the same polyurethane elastomer reported
in Diaconu and Dorohoi (2005), with εr = 8.8,Y = 3μ and Y = 3.6MPa. Multipli-
cation of Eq. (12.117) with λ and using λ2 = λ−1

3 , which was obtained from the
incompressibility condition, yields:

(λ−2
el λ
−1
3 −λ4

elλ
2
3)−λ−2

3

(
1− 1

4εr
λ3

3

)
ε

μ
E2

3 = F(λ3,E2
3) = 0. (12.118)

In the reference, quadratic dependence of the strains was observed at low electric
field strength. To ensure comparability, we approximate the equilibrium condition
F(λ3,E2

3) in the vicinity of λ3 ≈ 1 and E2
3 ≈ 0, leading to the linear relation

ε3 = −
⎛⎜⎜⎜⎜⎜⎜⎝ε(1−

1
4εr

)

3μ
− c1

⎞⎟⎟⎟⎟⎟⎟⎠E2
3 = −ME2

3, (12.119)

which allows for incorporating the measured value M. Diaconu and Dorohoi (2005)
measured a value of M = 7.07×10−16m2V−2, which is a parameter, that still carries
the contribution from the Maxwell effect. Here, we have introduced the Biot strain
measure ε3 = λ3−1. By solving the linearized system the electrostrictive parameter
c1 = −6.86× 10−16m2V−2 can be found. Hence, the contribution of the Maxwell
effect is 3.066%, which agrees well with the value 3.07% given in Diaconu and
Dorohoi (2005). In Fig. 12.6, the equilibrium Biot strain against the square of the
electric field (left), and right the equilibrium Biot strain against the linear electric
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field is shown. Clearly, the electrostrictive behavior can be observed. On the left side,
the solid red line corresponds to the strain response of the whole problem, the black
line shows the linearized system giveni Eq. (12.119), and the blue line corresponds
only to the electrical Biot strain εel,3 = λ

−2
el −1 = exp(c1E2

3)−1. However, for small
strains, almost no difference is visible. In the right figure, the red line corresponds
to the problem discussed in this paper, accounting for the Maxwell effect, while the
black dotted line shows the solution of the problem if the Maxwell stress arising
from the traction boundary is neglected. Results show, there is almost no difference,
due to the prevailing electrostrictive effect.

Increasing the field strength and allowing also higher strains, the different curves
deviate from each other, unveiling the nature of each contributor, see Fig. 12.7. In
the left figure, again the red as well as the black dotted line are almost equal, as the
Maxwell effect from the boundary condition is negligibly small. The black solid line
is again the linear solution. Attention should be taken to the blue line, which shows
the electric stretch λel,3−1 in thickness direction; its nature unveils the impact of the
electrostrictive effect, which for the polyurethane material under consideration seems
to be of great importance.

Strains of such magnitude cannot be obtained in nature, as at some point the
system looses its stability. On the right hand side in Fig. 12.7 the equilibrium strains
(red, black dotted and brown) and the stability margin in black are presented. The
theoretical bounds of equilibrium stretches, and the corresponding field strength can
be obtained by using the Dirichlet criteria and are acquired for several cases:

• Considering both Maxwell effect and electrostriction, with the following equilib-
rium condition, and Dirichlet stability criterion
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Fig. 12.7: Equilibrium Biot strain considering higher electric fields, up to Biot
strain =1. On the right side, the red line corresponds to the case with electrostric-
tion, brown line only electrostatic forces, black line stability margin. Left: red and
black dotted line, equilibrium strain accounting for electrostriction with and with-
out Maxwell boundary term, black solid line linearized strain, blue line electrical
part of the Biot strain εel,3.
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(λλ−2
el −λ−5λ4

el)−λ3
(
1− 1

4εr
λ−6

)
ε

μ
E2

3 = 0, (12.120)

(λ−2
el +5λ−6λ4

el)−3λ2
(
1+

1
4εr

λ−6
)
ε

μ
E2

3 = 0. (12.121)

• Neglecting the Maxwell effect from the boundary conditions, which follows by
dropping the terms with the relative permittivity.

(λλ−2
el −λ−5λ4

el)−λ3 ε

μ
E2

3 = 0, (12.122)

(λ−2
el +5λ−6λ4

el)−3λ2 ε

μ
E2

3 = 0. (12.123)

• In order to draw a comparison to the impact of the electrostrictive effect the case
for pure electrostatic force, shown in Krommer et al (2016):

(λ−λ−5)−λ3 ε

μ
E2

3 = 0, (12.124)

(1+5λ−6)−3λ2 ε

μ
E2

3 = 0. (12.125)

The critical stretch in thickness direction is obtained by inserting λ3 = λ
−2, and

solving the equilibrium condition. Using this critical value thereafter in the Dirichlet
criterion yields the critical electric field. For the last two discussed cases, the critical
stretch λcrit along with the critical electric field E3,crit are

λ−6
crit,ES Force =

1
4
→

√
ε

μ
E3,crit,ES Force =

√
3

4
2
3

= 0.687, (12.126)

(
λcrit,DE

λe,crit,DE

)−6

=
1
4
→

√
ε

μ
(exp(−c1E2

3,crit,DE)E3,crit,DE) =

√
3

4
2
3

= 0.687. (12.127)

First the critical stretch and electric field for the electrostatic force is presented
in Eq.(12.126). For the problem accounting for electrostriction but dropping the
Maxwell effect, a very similar correlation can be found, see Eq.(12.127). However, if
considering both electrostriction and Maxwell effect, the limiting criteria turn out to
be more complicated

λ6
crit =

(
−1+8λ6

el,critεr +

√
1−20λ6

el,critεr +64λ12
el,critε

2
r

)
(4εr)−1, (12.128)

which upon using the abbreviations k = (−1+ 8εrλ
6
el,crit) and s =

√
k2−4εrλ

6
el,crit

yields
λ6

crit = (k+ s)(4εr)−1, (12.129)

and
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√
ε

μ
Ecrit =

√√√√√ 2
2
3 (λ6

crit −λ6
el,crit)4εr

λ2
el,crit(k−1+ s)(kε−1

r + sε−1
r )

1
3

. (12.130)

However, as it has turned out that the Maxwell effect seems to have minimal effect
on the solution, Fig. 12.7 indicates almost the same critical values, as for the case
where Maxwell effect is dropped. This can be judged, as the black line giving the
stability margin crosses the equilibrium lines where the tangent gets horizontally, in
both cases.

12.5.1 Stiffening Effect of Electrodes

Up to now, the investigations presented above, were made under the assumption, that
electrodes attached to the EAP film do not interact with the EAP other than supplying
an electric field. As this assumption is fairly crude, the last part is devoted to the
problem of a homogeneously deformed plate with electrodes attached on top and
bottom, see Fig. 12.8.

We investigate the case of compliant electrodes made of steel, hence we use a St.
Vernant-Kirchoff material model for the constitutive part of the electrodes. Due to
the in plane deformation a membrane state of stress prevails. We use ε3 = λ3−1, the
strain component in thickness direction as it correlates to the in plane stretches by
the relation λ2 = λ−1

3 .

um,2 =
1
2

(A(trε3 trε3−2(1− ν)detε3)) , A =

−h/2∫
−H/2

Y
(1+ ν)(1− ν)dz (12.131)

A denotes the tension stiffness, which is given for the lower electrode, but cor-
respondingly applies to the upper electrode by changing the sign of the bounds.
Y = 210×109Nm−2 denotes the elastic modulus, and ν = 0.33 the Poisson’s ratio of
steel. We incorporate the electrodes into our constitutive model of the dielectric by
simply adding the strain energy um,2 to the augmented free energy function Ω2 and

Fig. 12.8 Electro-active
polyurethan plate with elec-
trodes at the height 1

2 (H −h)
attached on top and bottom.

e2, λ2

e1, λ1

h H

m
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Fig. 12.9: In red, the equilibrium Biot strain for the plate with electrodes, black
plate problem without electrodes.

find

Ω2,ges =
1
2

h
(
−E2

3ε0εrλ
4+ (2λ2λ−2

el +λ
−4λ4

el−3)μ
)
+

( H
2 − h

2 )Y(λ2−1)2

(1+ ν)(1− ν) . (12.132)

As the Maxwell effect coming from the vertical boundaries has been shown to be
negligible, we dropped the term, and proceed by determining the electrostrictive
coefficient c1. Again the correlation of the experimentally known data for M to
our parameter c1 is found in a linear approximation of the equilibrium equation
∂Ω2,ges
∂λ = 0, in the vicinity of λ3 ≈ 1 and E3 ≈ 0 to

ε3 = −h(ν2−1)
(

(ε+3c1μ)
h(Y+3μ(ν2−1))−HY

)
E2

3 = −ME2
3. (12.133)

At first, the difference in the electrostrictive behavior and the stable stretch config-
uration is investigated. As for the experimental value M = 7.07× 10−16m2V−2 no
thickness of the sample was reported, we assumed a value of 1μm. The thickness
of the electrodes is derived by using the relation H = 1,00002h, which results in
an electrostrictive coefficient of c1 = −9.94×10−15m2V−2. Figure Fig. 12.9 shows
the resulting equilibrium Biot strain, the electrostrictive behavior upon the linear
electric field is still visible, furthermore, the stiffening effect of the electrodes tends
to stabilize the problem (red line) as no horizontal tangent is present any more.
Additionally to the single parameter set we are using so far, Diaconu et al (2006)
published experimental results for another set of fife different materials, given in
Tab. 12.1. Again only results for small electric fields and strains are presented in
Diaconu et al (2006). At this regime the results given in Fig. 12.10, upon the square
electric field agree very well, however at higher fields, experimental results tend to
deviate nonlinearly, which is not visible from the results of our model. The black
line in Fig. 12.10 corresponds to the pure EAP model without electrodes. Finally, the
results upon increasing the thickness of the electrodes by the factor 10 are presented
in Fig.12.11. The electrostictive behavior remains for a broadened electric field.
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Table 12.1: Material parameter taken from Diaconu et al (2006), at an electric field
of E3 = 4.5MVm−1

Sample Thickness [μm] Y [MPa] M×1016 [m2V−2] c1 ×1016 Color

1 15 6.19 3.00 2.87 Red
2 27 25.46 5.00 4.97 Green
3 33 51.03 8.00 7.89 Blue
4 49 52.39 12.28 12.27 Brown
5 110 59.5 8.92 8.91 Magenta

0 20 40 60 80 100 120 140

0.00

0.02

0.04

0.06

0.08

2
/ TV

2
m

-2

3
-

1
/

1

-15 -10 -5 5 10 15

0

0.02

0.04

0.06

0.08

/ MVm-1

3
-
1

/
1

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

3-1 / 1

2
-

1
/

1

-70 -35 35 70

0

0.2

0.4

0.6

0.8

1

/ MVm-1

3
-
1

/
1

Fig. 12.10: Response at small electric fields and strains above, and at large fields
bottom.

While if the thickness is decreased, the curves tend to the solution without electrodes,
presented in black.

12.6 Conclusion and Outlook

The constitutive modeling framework in the field of nonlinear electro-elasticity has
been presented in details, starting by introducing the electrostatic field quantities, the
macroscopic balance equations were derived and with clear focus on the multiplica-
tive decomposition of the deformation gradient applied to the effect of electrostriction.
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Fig. 12.11: Increasing the thickness of the electrodes by factor 10.

The application on a simple homogeneously deformed plate unveiled, that the elec-
trostrictive effect has a considerable effect on the actuation behavior of electroactive
polymers, and can be enhanced by the choice of dielectric material. In the near
future, the presented model is extended to geometrically nonlinear shells and the
implementation into a geometrically nonlinear finite element code, in order to apply
the model to more general problems. Special attention will be paid on the choice of
the specific constitutive law for the electrical part of the deformation gradient, as this
component offers access to easily incorporate different models and requires some
more investigations.
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Chapter 13

Mechanics of Axially Moving Structures at

Mixed Eulerian-Lagrangian Description

Yury Vetyukov

Abstract We discuss a series of methods of the mathematical modelling of large
deformations of axially moving strings, beams and plates. Both uni-axial and looped
trajectories of motion are considered, which allows the application of these methods
to such practically important problems as rolling mills or belt drives. Based on the
principles of Lagrangian mechanics, we transform the variational formulations of
structural mechanics to problem-oriented exact kinematic descriptions with mixed
spatial and material coordinates. The discretization of an intermediate domain results
in a consistent non-material finite element formulation with particles of continuum
flowing across the mesh. This allows avoiding numerically induced oscillations in
the solution, while keeping the discretization fine where necessary, e.g. in the regions
of contact.

13.1 Introduction

Axially moving structures are frequently used in engineering as an intrinsic part of
many technical solutions. It is not surprising that they have long attracted the attention
of mechanical engineers. Practical relevance, technical difficulties in maintaining the
desired regime of motion, non-trivial and even sometimes counter-intuitive behavior
are coupled with challenges, intrinsic to the theoretical investigation of such systems.

The mathematical modeling is traditionally based on a spatial (Eulerian) kine-
matic description, see review papers by Chen (2005); Marynowski and Kapitaniak
(2014). Considering the unknown displacements, forces and other mechanical fields
as functions of a fixed coordinate in the axial direction simplifies the analysis, as
the problem needs to be solved in a fixed control domain only and the boundary
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conditions are applied at fixed points. The common difficulty is that the basic equa-
tions of structural mechanics are generally available in the Lagrangian form, where
the variables are observed in material points. The present contribution is focused on
consistently solving this issue by transforming the equations to new problem-specific
coordinates.

Below, in Sect. 13.2, we demonstrate the transformation of the equations to the
spatial form in a simple linear case, when the relation between the material and
the spatial coordinates is known in advance. In nonlinear problems, many authors
adopt certain kinematical simplifications and derive the mathematical model in the
spatial frame from scratch (Ghayesh et al, 2013; Kong and Parker, 2005), or rely
upon other known equations from the literature. Thus, the models of Wickert (1992);
Mote (1966) are often applied. While numerous fascinating and practically important
results were obtained in this way, accurate modelling of large deformations of axially
moving structures requires exact treatment of geometrically nonlinear effects both in
the elastic response as well as in the inertial properties with an established structural
mechanics theory in the background. Despite growing interest of researchers (Humer,
2013; Humer and Irschik, 2009, 2011; Eliseev and Vetyukov, 2012; Pechstein and
Gerstmayr, 2013; Vetyukov et al, 2017b), developing efficient and reliable techniques
of transforming the general equations of motion to a new spatial form remains a
challenging problem.

In statics of flexible solids, modelling of a discretized system is convenient with
the principle of minimality of the potential energy. For a given finite element (or
global Ritz) approximation one simply integrates the total strain energy and energy
of external forces as functions of generalized coordinates, and the derivatives of these
functions constitute the equations. An extension to dynamics is traditionally accom-
plished with Lagrange’s equations of motion of the second kind; the kinetic energy
becomes a quadratic form of generalized velocities. The approach is particularly
straightforward when combined with the material description of the kinematics of
deformation and motion. Considering mechanical fields as functions of coordinates in
the reference configuration is advantageous because an elastic body keeps "memory"
of its undeformed state. Moreover, dealing with the same material volume ensures
the validity of the variational principle and the corresponding equations. Modern
applications pose challenging problems of computational modelling of fluid-structure
interaction, material forming processes, etc. Similar to fluid mechanics it becomes
more efficient to observe the processes at given points in space, which gave birth
to the so-called Arbitrary Lagrangian-Eulerian (ALE) formulations. This family of
methods features control volumes, which are moving in a problem-oriented manner
relative to both the spatial actual state as well as the reference configuration (Donea
et al, 2004). In their traditional form, ALE methods imply accounting for the advec-
tion of material in the local forms of the constitutive and balance equations. Although
their applications in structural mechanics are presently sparse, we can mention the
works by Hong and Ren (2011); Yang et al (in press). The authors of the mentioned
papers make use of a redundant set of degrees of freedom in a finite element model
with additional constraints. This flexible formulation results in a differential-algebraic
system of equations, which needs to be integrated over time.
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In this chapter, we systematically discuss the application of a novel kinematic
description of thin axially moving structures, which undergo finite deformations
superimposed upon the gross nominal motion. The main results were partially pre-
sented by the author previously in Vetyukov (2017); Vetyukov et al (2016). The
presented work in progress is currently actively developed towards the consistent
model of dry friction with stick and slip phenomena in the zones of contact of the
axially moving continua with pulleys and drums.

13.2 Linear Waves in a Moving String

We begin with the simple example of waves, running in a moving string. A particle
of a string is identified by a material (Lagrangian) coordinate s. We assume small
transverse deflection w and constant tension force and write

∂2
t w = c2∂2

sw,

∂sw ≡ ∂w
∂s

∣∣∣∣∣
t=const

, ∂tw ≡ ∂w
∂t

∣∣∣∣∣
s=const

(13.1)

for a dynamic process over time t with the wave velocity c. The mechanical field w
is considered at a given material point s, and the wave equation features a material
time derivative ∂t, which is typical for the Lagrangian formulation. In mathematical
physics, one conventionally considers (13.1) with boundary conditions. Our string
is moving axially between two spatially fixed points, and the boundary conditions
need to be posed in time varying material points s1,2(t). Moving boundary conditions
make the problem essentially more difficult and challenging for solving by either
the established methods of mathematical physics or numerical techniques of finite
differences or finite elements.

Assuming a constant velocity v of the gross axial motion, we find simple relations
between the material coordinate s and the spatial one x, along which the string is
moving, see Fig. 13.1:

x = s+ vt. (13.2)

In the following, we will mainly deal with the Eulerian form of equations, in which
the unknown fields are observed at a given spatial coordinate x. Derivatives with
respect to time and space need to be transformed from the material to the spatial
form:

∂sw = ∂xw ≡ w′, ∂tw = ẇ+ vw′, ẇ ≡ ∂w
∂t

∣∣∣∣∣
x=const

. (13.3)

We introduce a shortened notation: a prime means a derivative with respect to x and
a dot denotes a time derivative at given x.

Applying Eqs. (13.3) twice, we transform the wave equation (13.1) to the Eulerian
form and arrive at an equivalent boundary value problem with the new pair of
variables x and t:
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Fig. 13.1: Wave travelling in a moving string at three different instances of time;
crosses mark the same material particle

ẅ+2vẇ′ = (c2− v2)w′′, u|x=0,l = 0. (13.4)

The boundary conditions are imposed at fixed points x = 0 and x = l, the latter being
the length of the control domain. The equation appears to be more complicated,
but the boundary value problem may be solved either analytically in the form of
infinite series (van Horssen and Ponomareva, 2005), or, even easier, numerically
using the method of finite differences. The example solution for the following values
of parameters and the smooth initial state

c = 1, l = 1, v = 0.5;

t = 0 : ẇ = 0, w =
{

w0(1+ cos(6π(x/l−1/2)))/2, l/3 < x < 2l/3
0, x < l/3 or x > 2l/3

w0 = 1

(13.5)

is shown for three instances of time in Fig. 13.1; SI system of units will be used
throughout the Chapter. The chosen large sample value of the amplitude w0 lies
certainly far beyond the range of applicability of the geometrically linear wave
equation (13.1). The string is moving, and the sequential positions of a material point,
which is originally in the middle of the string, are marked in Fig. 13.1 by a cross.
We see two waves of unequal intensities, travelling with the velocities c+ v and c− v
respectively to the right and to the left and reflecting from the end points. From (13.4)
we conclude that the type of the partial differential equation changes when v grows
above c, which means loss of stiffness and dynamic instability.

13.3 Large Vibrations of an Axially Moving String

The mathematical model for large vibrations of an axially moving string or a beam
was presented by the author in Vetyukov (2017). The key points of the analysis
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are discussed below, we restrict the presentation to the string case without bending
stiffness.

We consider the planar motion of a string across a given domain, see Fig. 13.2.
The material enters the domain at the left end x = 0 and leaves it at the right one x = l
with the same rate γ. This material length of the string per time unit is essentially
different from the spatial velocity of the particles in the axial direction. Such kind of
kinematically prescribed influx or outflux of the material may be implemented using
a timing belt and a toothed pulley. It means that the total material length of the string,
which remains in the control volume of the considered problem, remains constant.

The kinematically prescribed time-varying transverse deflection of the end point

yl(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

y∗l
(
1− cos

πt
t∗

)
, t ≤ t∗

y∗l , t > t∗
(13.6)

brings the system into a complicated in-plane motion with coupled axial and trans-
verse dynamics when ẏl is not small, see Fig. 13.3 for a plot of (13.6).

Although the equations of string dynamics at finite deformations are well estab-
lished at Lagrangian description (Eliseev, 2006; Eliseev and Vetyukov, 2012), it is
a numerically challenging task to solve them with the boundary conditions moving
across the material domain. Thus, an attempt to impose kinematic constraints at

Fig. 13.2: Vibrations of an axially moving string with kinematically prescribed
transverse motion of the right end

Fig. 13.3 Kinematically pre-
scribed transverse coordinate
of the right end of the moving
string
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moving points of a finite element mesh leads inevitably to numerically induced
oscillations in the solution. Therefore, in the following we will use the principle of
virtual work as a starting point and transform the equations to a more advantageous
problem-specific kinematic description.

For the material description, we consider the displacement from an initially
straight horizontal reference configuration

u = uxi+uy j (13.7)

being a function of the material coordinate s and time t, such that the actual position
vector of a particle is

r = xi+ y j = si+u, x = s+ux, y = uy; (13.8)

the unit vectors in the directions of the coordinate axes are respectively called i and j.
The longitudinal strain measure reads

ε = |∂sr| −1 =

√
(∂s(s+ux))2+

(
∂suy

)2−1. (13.9)

The strain energy U per unit material length s is a quadratic function of the strain,

U =
1
2

bε2, (13.10)

in which b is the tension stiffness.

13.3.1 Mixed Eulerian-Lagrangian Description of the Kinematics
of Motion

Further exploiting the simple idea of the mixed Eulerian-Lagrangian description,
we change the variable. Instead of the unknown fields ux(s, t), uy(s, t), we seek the
material coordinate and the transverse displacement as functions of the axial spatial
coordinate and time:

s = s(x, t) = x−ux(x, t), uy = uy(x, t). (13.11)

The presentation (13.11) is incapable of describing the formation of loops, at which
several material points have the same coordinate x. However, we gain more efficiency
in the analysis of practically relevant problems with large vibration amplitudes.

Again introducing short notation for the derivatives with the pair of variables x, t
similar to (13.3) and using

ds = dx−dux = (1−u′x)dx, ∂s(. . .) = (1−u′x)−1(. . .)′, (13.12)
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we rewrite the strain measure (13.9) to the spatial form

ε =

√
1+u′2y

1−u′x
−1. (13.13)

Now we address the velocity of a particle and compute it in the mixed description,
in which a convective term comes into play:

∂t x = ∂tux(x, t) = u̇x +u′x∂t x ⇒ ∂t x =
u̇x

1−u′x
,

v = ∂tu(x, t) = u̇+u′∂t x = u̇+u′
u̇x

1−u′x
.

(13.14)

The acceleration results into

w = v̇+ v′
u̇x

1−u′x
. (13.15)

13.3.2 Mixed Form of the Variational Equation of Virtual Work

The boundaries of the active material segment of the string, which is currently in the
control domain, vary over time with the known rate:

s0(t) ≤ s ≤ sl(t), ṡ0 = ṡl = −γ. (13.16)

We restrict the presentation to the simple case of known rates of the material influx
and outflux and begin with the material form of the variational equation of virtual
work for the active segment of the string:

sl∫
s0

(
ρw· ◦δu+ ◦δU)

ds = 0. (13.17)

With
◦
δ we denote a material variation, i.e. a variation of a mechanical field in a given

material point. Owing to the kinematic nature of the boundary conditions, we state
that the variation

◦
δu vanishes at the current boundaries, and there is no virtual work

produced by the interaction forces with the parts of the continuum outside the active
domain.

Using the mathematics similar to (13.14), we relate the material variation
◦
δ at

fixed material point and the spatial one δ at given x:

◦
δϕ = δϕ+ϕ′

δux

1−u′x
; (13.18)
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ϕ is any mechanical field, which can be considered as a function of both, the material
and the spatial coordinates. Transforming the elastic term in (13.17) to the spatial
form is simply:

sl∫
s0

◦
δU ds = δUΣ, UΣ =

sl∫
s0

U ds =

l∫
0

U(1−u′x)dx. (13.19)

The distributed strain energy U remains a quadratic form (13.10) of the strain mea-
sures (13.13). The inertial term in (13.17) reads

sl∫
s0

ρw· ◦δuds =

l∫
0

ρw·((1−u′x)δu+u′δux
)
dx; (13.20)

besides (13.12) we also used the transformation rule for the variations (13.18).
Substituting (13.19) and (13.20) in (13.17), we obtain a non-material variational
equation

l∫
0

ρw·((1−u′x)δu+u′δux
)
dx+δUΣ = 0. (13.21)

The latter can be used in a numerical procedure with a suitable Ritz-Galerkin ap-
proximation of the unknown displacement u(x, t). More elegance, simplicity in
implementation and efficiency can be reached by transforming the equation to the
form of Lagrangian equations of motion of the second kind for a given approximation
of the unknown displacements.

13.3.3 Finite Element Approximation

The finite element approximation of the unknown field of displacements is set in the
form

u(x, t) =
n∑

k=0

(uk(x)qk,1(t)i+uk(x)qk,2(t) j) =
n∑

k=0

2∑
α=1

uk,α(x)qk,α(t). (13.22)

Both cartesian components are independently represented by piecewise-cubic shape
functions uk(x), which allows achieving C1 inter-element continuity with the corre-
sponding fine rate of mesh convergence. With equal finite element sizes and a local
coordinate ξ on each finite element, which varies from −1 to 1, we have a linear
mapping from ξ to x and use four cubic shape functions uel

i (ξ) (Fig. 13.4) with the
properties
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Fig. 13.4 Cubic shape func-
tions, which provide C1

inter-element continuity

uel
i |ξ=−1 = δ1,i, ∂ξuel

i |ξ=−1 = δ2,i, uel
i |ξ=1 = δ3,i, ∂ξuel

i |ξ=1 = δ4,i;

δ j,i =

{
1, i = j
0, i � j ;

(13.23)

the four conditions uniquely determine four coefficients of cubic polynomials, which
often find use in the models of classical rods and shells (Vetyukov, 2014b, 2012).
The global shape functions uk(x) are constructed from the local ones uel

i (ξ), degrees
of freedom qk,α determine either the value or the derivative of the corresponding
component of u in a node. Each node has now four degrees of freedom, and n is
twice the number of nodes in the finite element model. The boundary conditions in
the first and the last nodes,

u̇x|x=0,l = γ, uy|x=0 = 0, uy|x=l = yl(t) (13.24)

kinematically prescribe some of the functions qk,α, which thus deleted from the set
of active degrees of freedom in the model.

13.3.4 Lagrange’s Equation of Motion of the Second Kind

The dynamic part of Eq. (13.21) can be represented in terms of the kinetic energy of
the control domain

TΣ =

l∫
0

1
2
ρv·v(1−u′x)dx. (13.25)

In Vetyukov (2017) it was rigorously proved, that the Lagrange’s equation of motion
of the second kind

d
dt

(
∂TΣ

∂q̇k,α

)
− ∂TΣ

∂qk,α
= − ∂UΣ

∂qk,α
(13.26)
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retains validity in the considered case of non-material control volume, provided that
the shape functions of the active degrees of freedom vanish at both ends:

uk,α(0) = uk,α(l) = 0, (13.27)

which is the case for kinematic boundary conditions at hand.

13.3.5 Example Solution

The finite element scheme including the time integration was implemented in the
Wolfram Mathematica1 environment. With nel being the number of elements in the
model, we have nel +1 nodes with 4(nel +1) degrees of freedom qk,α, 4 of which are
prescribed by the boundary conditions and excluded from the active set. The total
strain energy (13.19) and kinetic energy (13.25) were computed using a Gaussian
quadrature rule with 3 integration points per element. Substituting further the known
time variations for the kinematically prescribed degrees of freedom, we construct
the system of second order differential equations for the transient dynamics in
the form (13.26). With the values of the numerical parameters, initial values and
time derivatives of degrees of freedom we integrate the equations over time using
standard NDSolve routine. Setting the option Method -> {"EquationSimplification"
-> "Residual"} allows Mathematica to treat the problem as a system of differential-
algebraic equations and to use the corresponding solver, which is more efficient and
robust in the present case. The obtained results are ready for post-processing.

At first, we considered the linear problem of wave propagation in a moving string,
discussed in the motivational example, Sect. 13.2. Setting the numerical values and
the initial conditions in accordance with (13.5), we were able to reproduce the results
of Fig. 13.1 with a high level of accuracy even using small nel.

The numerical experiments presented below feature the following parameters of
the model with large deformations:

l = 1, b = 1, ρ = 1, γ = 0.1 or γ = 0.05,

ε0 = −0.1, t∗ = 5, y∗l = 0.4.
(13.28)

Scalability of the model allows testing the numerical scheme for unit tension stiffness
and inertia. The structure is pre-stressed, and the initial tension strain

ε0 =
sl− s0− l

sl− s0
(13.29)

determines the material length of the active part of the string sl − s0, whose length
does not change during the simulation. In the beginning, the structure is moving
steadily with

1 https://www.wolfram.com/mathematica/
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t = 0 : u̇ = γi, u′ = − ε0

1−ε0
i. (13.30)

The initial velocity of transverse waves is determined by the pre-tension and for
the given numerical parameters can be estimated as

√
0.1 (square root of the tension

divided by the linear density), which is comparable to the rate of material supply γ.
The transverse motion of the right end yl(t) according to (13.6) increases the general
tension level and the wave velocity over the time period 0 ≤ t ≤ t∗.

Taking nel = 10, we sequentially solved the transient problem for both axial
transport rates γ, given in (13.28); a simulation takes about 10-15 seconds of CPU
time with a modern desktop computer with an Intel i7 CPU 2.3 GHz. The computed
deformed configurations of the structure for the time instant t = 10 are presented
in Fig. 13.5. The curves here are simple plots of uy in dependence on the axial
coordinate x, the domains of the finite elements are indicated by gray vertical lines,
and the nodes of the finite element model reside on this lines. More informative are
the time histories of characteristic variables, which are shown for both solutions in
Fig. 13.6. In the middle point of the domain x = l/2 we observe the time variation
of the transverse displacement uy, of the strain ε and of the axial component of the
velocity of particles vx; we also present the time variation of the strain ε in the end
point of the domain x = l. The starting values of the velocity vx are not equal to
γ because of the pre-strain. We notice that the strain at the right end immediately
responds to the growing yl(t), but it takes some time before the influence in the
middle point is observed.

For the demonstration of the rapid mesh convergence, extension to the case of a
beam with the bending stiffness and modelling dynamic instability at growing velocity
of axial motion we refer to Vetyukov (2017). The formulation was also validated by
successfully comparing the results in Fig. 13.6 against a lumped particles simulations
at Lagrangian description, which featured thousands of particles in contrast to just a
few number of degrees of freedom in the presented model, see the above reference
for the details of comparison.

Fig. 13.5: Deformed structure in the control volume at t = 10 for two values of the
axial transport rate
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Fig. 13.6: Time histories of the transverse deflection, strain and axial velocity in
the middle point of the control domain as well as of the strain in the end point for
two values of the axial transport rate

13.4 Finite Deformations of an Axially Moving Plate

We proceed to modelling finite deformations and bending of an elastic plate moving
across a given domain and present the results, which were presented in Vetyukov
et al (2016) under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/). Previous attempts to obtain a
model for an axially moving deformable plate (Ghayesh et al, 2013; Banichuk et al,
2010) did not account for particular kinematic conditions at the boundaries of the
domain in the form of time and space variations of the prescribed velocity profiles.
These effects are particularly relevant in applications of hot rolling, strip coiling or
belt drive simulations.

In this section we discuss a mathematical description for finite deformations of
a thin plate, which is moving between two parallel lines, see Fig. 13.7. This gross
axial motion takes place in the direction of the x-axis (called in the following axial
direction) from left to right. Velocities of the plate at the entry to the domain x = 0

Fig. 13.7 Deformable plate
moving in the axial direc-
tion (x) with kinematically
prescribed velocities; the ve-
locity profile at the exit from
the domain is varying in the
transverse direction (y)

x

y

ventry

vexit(y)
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and at the exit from it x = L are kinematically prescribed and equal respectively
ventry and vexit. In a transient process, a non-constant profile of the velocity vexit(y)
results in the deformation of the plate in its plane xy and subsequent buckling in the
out-of-plane direction of the z-axis. This kind of undesired behavior may happen
during the metal rolling process, paper production, etc., which makes the respective
methods of analysis practically relevant.

The proposed Eulerian-Lagrangian formulation is motivated by computational dif-
ficulties that are inherent in conventional finite element modeling of the deformation
of the plate. As a Lagrangian finite element mesh propagates across the domain in
the course of a simulation, kinematic boundary conditions need to be imposed at the
interior of the finite elements. This typical "variational crime" leads to numerically
induced oscillatory behavior of the stressed state of the plate and this would not allow
for accurate presentation of its bending, which is tightly coupled with the in-plane
stresses. While extended finite element formulations (Moës et al, 1999) or a mortar
approach (De Lorenzis et al, 2011) could theoretically be applied to solving the issue,
an elegant and efficient alternative is to preserve the finite element mesh from moving
in the axial direction. This guarantees that the boundaries of the active domain, at
which the displacements need to be prescribed for each time step, remain aligned
with the boundaries of the finite element mesh.

At present, we restrict the consideration to the constant profile of the velocity of
material production ventry and aim at modeling the evolution of finite deformations
of an elastic plate under quasistatic assumptions. Further extensions of the approach
are discussed in the concluding remarks below. Further extensions of the approach
are discussed below in Sect. 13.5.

13.4.1 Kinematic Description

Consider a plate as a two-dimensional material surface axially moving across a
domain, bounded by two lines, see Fig. 13.8. Rolling of a sheet of metal, paper
production or motion of a conveyor belt are typical examples of such a structure. At
each time instant, the plate is clamped at the lines of contact: there are no out-of-plane

Fig. 13.8 Deformable plate,
moving across a domain,
bounded by two lines (dashed):
three-dimensional view
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displacements in the direction of the z axis at x = 0 and x = L nor does the plate rotate
about these lines. The material is produced in a fixed segment −w/2 ≤ y ≤ w/2 at
x = 0, such that the plate is here centered and has a fixed width w. The second line of
contact, where the plate is leaving the domain, may travel in the transverse direction,
see discussion in Sect. 13.4.5.

For the sake of mathematical description, we introduce an infinitely long reference
configuration, see Fig. 13.9. Particles of the plate are identified by their material
coordinates ◦x and ◦y, i.e., by the reference position vector

◦r = ◦xi+ ◦y j, −w/2 ≤ ◦y ≤ w/2 (13.31)

with i, j and k being the unit base vectors of the global cartesian frame. In the
actual state we consider just the particles, which are currently residing in the domain
0≤ x≤ L. In the reference configuration these particles form a planar manifold, which
will be called active material volume in the following (depicted grey in Fig. 13.9),
and which is thus a pre-image of the actual state. Between the time instants t and
t+ dt, a material layer of the length ventrydt enters the domain from the left. As
ventry = const, it means that the left boundary of the active material volume (which is
a pre-image of the line x = 0, −w/2 ≤ y ≤ w/2 in the actual configuration) is moving
across the stress free reference configuration to the left with the velocity ventry, the
mathematical form of this statement being (13.71).

The Lagrangian description, at which the actual configuration is defined by a
mapping from ◦r to the actual place of a particle

r = xi+ y j+ zk, (13.32)

remains efficient as long as the active material volume is known (and suitable for
being discretized in numerical simulations). This is not the case for the problem at
hand, and it is efficient to decompose the mapping into two steps by introducing an
additional spatially fixed intermediate configuration. This rectangular domain with

entry active material volume

reference configuration

r,

intermediate configuration

en
tr
y

ex
itr

~,
~

x
y

actual configuration

r ,

en
tr
y

ex
it

F

F
~

~
rT

Fig. 13.9: Configurations involved in the mathematical description of the kinemat-
ics of the plate
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the position vector

r̃ = x̃i+ ỹ j, 0 ≤ x̃ ≤ L, −w/2 ≤ ỹ ≤ w/2 (13.33)

differs from the reference state by the axial displacement ux only:

r̃ = ◦r+uxi, x̃ = ◦x+ux, ỹ = ◦y. (13.34)

At the same time, the transverse displacement uy and the out-of-plane displacement
uz differ in the actual configuration from the intermediate one:

r = r̃+uy j+uz k, x = x̃, y = ỹ+uy, z = uz. (13.35)

Now, as
x̃ = x, ỹ = ◦y, (13.36)

the left and the right boundaries of the intermediate configuration (13.33) map onto
the lines of contact of the plate x = 0 and x = L. We thus introduce the mapping from
the active material volume in the reference configuration to the actual state implicitly
in the form

◦r = ◦r(r̃), r = r(r̃), (13.37)

which guarantees the conformity of the domains.

13.4.2 Deformation and Strain Energy

Treating displacements
u = uxi+uy j+uz k (13.38)

as primary variables, we seek them as functions of the place in the intermediate
configuration:

u = u(r̃) = r− ◦r. (13.39)

The quasistatic simulations below are based on the principle of stationarity of
the total strain energy of the active volume of the plate for each time instance. For a
classical (transverse shear-rigid) Kirchoff plate model (Eliseev, 2006; Eliseev and
Vetyukov, 2010; Vetyukov, 2014b), the strain energy depends on the two symmetric
strain tensors

E =
1
2

(FT ·F− I2),

K = FT ·b·F.
(13.40)

The first strain measure E describes the membrane (in-plane) deformation of the plate,
while the second one K is responsible for its bending. The gradient of deformation is
the transposed gradient of the position vector of the actual state with respect to the
reference one:
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F =
◦∇rT ,

◦∇ = i
∂

∂ ◦x
+ j

∂

∂◦y
≡ i∂◦x + j∂◦y.

(13.41)

The in-plane identity tensor is

I2 = ii+ j j =
◦∇◦r, (13.42)

and the second metric tensor of the actual configuration

b = −∇n (13.43)

which is the negative gradient of the unit normal vector n to the actual surface of the
plate (Stoker, 1989; Ciarlet, 2005). We recall the relation between the differential
operators of the reference and of the actual states,

◦∇ = FT ·∇, (13.44)

and rewrite the second equality in (13.40):

K = −◦∇n·F. (13.45)

Now, the displacement (13.39) is a field over the intermediate configuration, which
does not allow us to directly compute the strain tensors using (13.40). We aim at
transforming the above kinematic relations from the material description featuring
derivatives with respect to the coordinates in the reference state to the differential
operator of the intermediate configuration

∇̃ = i∂x̃ + j∂ỹ. (13.46)

For a two-stage mapping from the reference configuration to the actual one, the total
deformation gradient is a product

F = ∇̃rT · ◦∇r̃T , (13.47)

which is mathematically equivalent to the chain rule of differentiation of a function
of multiple arguments. We introduce the gradient of deformation from the reference
configuration to the intermediate one

F̃ =
◦∇r̃T =

(
I2− i ∇̃ux

)−1
. (13.48)

Indeed, using a relation between the differential operators analogous to (13.44) and
recalling (13.34), we write

◦∇ = F̃T · ∇̃,

I2 =
◦∇◦r = F̃T · ∇̃ (r̃−uxi) = F̃T ·

(
I2−∇̃uxi

)
⇒ (13.48).

(13.49)
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The inverse of an in-plane tensor in (13.48) is again an in-plane one, and the total
deformation gradient F can now be computed for any field of displacements (13.39),
known in the intermediate configuration (13.33).

While this is sufficient for the membrane strains E in (13.40), further mathematics
is needed to compute the tensor of bending strains K. Using the first relation in
(13.49), we rewrite (13.45) as

K = F̃T ·K̃· F̃, (13.50)

in which a symmetric tensor
K̃ = −∇̃n· ∇̃rT (13.51)

is introduced.
The vector of unit normal is easy to compute with the known relation r(r̃) =

r(x̃i+ ỹ j). Considering a surface, parametrized by coordinates x and ỹ, we write

n=
∂x̃r×∂ỹr
|∂x̃r×∂ỹr| . (13.52)

From (13.35) we see, that n at a given point of the intermediate configuration does
not depend on the field ux(r̃). Now we apply ∇̃ to both sides of the identity

∇̃r·n=
(
i∂x̃r+ j∂ỹr

)
·n= 0 (13.53)

and arrive at an alternative form of (13.51), which shows the symmetry of K̃ more
clear:

∇̃∇̃r·n= −∇̃n· ∇̃rT = K̃. (13.54)

The above general nonlinear kinematic relations may be simplified when particular
deformations or coupling terms are negligible. Thus, in a geometrically linear model
just small deformations are assumed to be superposed upon a regular axial motion of
the plate, and linearizing we arrive at the conventional strains of the classical plate
theory:

E ≈ ε = ∇(uxi+uy j)S , K ≈ κ = ∇∇uz. (13.55)

In a linear theory, one does not need to differentiate between ∇ and ∇̃, and con-
ventional finite element models of a plate may be applied. However, in this linear
formulation the in-plane stresses are decoupled from the bending of the plate, which
makes it inapplicable for studying buckling behavior.

Returning to the fully nonlinear model, we write the strain energy of a plate per
unit area of its reference configuration as a quadratic form of the strains (Eliseev and
Vetyukov, 2010):

U =
1
2

(
A1(trE)2+A2E·E+D1(trK)2+D2K·K

)
. (13.56)

Thus, we assume that the local strains remain small, which does not exclude large
overall deformations of a thin structure. For a homogeneous isotropic plate with the



308 Yury Vetyukov

thickness h, Young’s modulus E and Poisson’s ratio ν, the stiffness coefficients are

A1 =
Eνh

1− ν2 , A2 =
Eh

1+ ν
, D1 =

h2

12
A1, D2 =

h2

12
A2. (13.57)

Now, we need to integrate the strain energy over the intermediate configuration. The
change of variables is to be accounted for,

d ◦xd◦y = (det F̃)−1dx̃dỹ (13.58)

with
(det F̃)−1 = 1−∂x̃ux, (13.59)

see Eq. (13.48). Finally, the total strain energy of the active material volume reads

UΣ =

L∫
0

dx̃

w/2∫
−w/2

(1−∂x̃ux)U dỹ. (13.60)

In the absence of external loading, UΣ will be at minimum in a state of stable static
equilibrium provided that the set of material particles is fixed. Although we are
dealing with an open system, and particles are continuously entering and leaving the
active material volume, this condition is fulfilled at each time step of a quasistatic
simulation owing to the kinematic nature of the boundary conditions at both ends of
the domain, see the discussion in Sect. 13.4.5.

13.4.3 Finite Element Scheme

In a numerical scheme, we need to compute the total strain energy UΣ and its
derivatives for a given approximation of displacements u(r̃). Similar to the above one-
dimensional case (13.22), we have applied a four-node C1-continuous finite element
approximation, which is based on the idea of a Bogner-Fox-Schmit rectangle with
bi-cubic shape functions, see Vetyukov (2014a,b). A regular mesh was introduced
in the intermediate configuration with nx × ny elements in the axial direction and
in the transverse one, respectively. With twelve degrees of freedom at each node
(vector of displacement, its two derivatives with respect to the local coordinates on
the element and one mixed second-order derivative) we guarantee the continuity of
both u and n across the boundaries of the element. Now, the first strain measure E
is continuous and the second one K may undergo discontinuities of the first kind,
which is sufficient for the regularity of the integral (13.60).

At each time instant we fix the values of displacements at the boundaries x = 0
and x = L according to (13.75). Along with the condition of clamping n = k, this
results in kinematic constraints for some of the degrees of freedom. Seeking for a
stable equilibrium, we minimize UΣ with respect to remaining degrees of freedom
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of the model e with the help of a quasi-Newton scheme, which requires computing
derivatives of the kind

∂UΣ

∂e
=

L∫
0

dx̃

w/2∫
−w/2

(
(1−∂x̃ux)

∂U
∂e
− ∂(∂x̃ux)

∂e
U
)
dỹ. (13.61)

A Gaussian integration rule with 3 × 3 points per element is used, and at each
integration point we compute

∂U
∂e
= (A1I2trE+A2E)·· ∂E

∂e
+ (D1I2trE+D2E)·· ∂K

∂e
. (13.62)

The difficulty lies at evaluating the derivatives of the strain measures with respect to
e. Writing

∂E
∂e
= FT · ∂F

∂e
,

∂F
∂e
=
∂∇̃rT

∂e
· F̃+ ∇̃rT · ∂F̃

∂e
, (13.63)

we see that either the first or the second term remain in the last expression depending
on the kind of degree of freedom under consideration. Indeed,

∂∇̃rT

∂e
=

(
∇̃∂(uy j+uz k)

∂e

)T

, (13.64)

which vanishes if e is a degree of freedom of axial motion. Considering now the
second term in Eq. (13.62), we write

∂K
∂e
= F̃T · ∂K̃

∂e
· F̃+2F̃T ·K̃· ∂F̃

∂e
. (13.65)

Again, either the first or the second term needs to be treated depending on the kind
of e.

Although programming the computation according to Eqs. (13.62)-(13.65) is
feasible, it would be a challenging task to obtain the second-order derivatives in an
algorithmic manner. In the present study, we used a system of computer algebra and
first computed the first and the second order derivatives of the strain measures with
respect to the local geometric characteristics

∂x̃u, ∂ỹu, ∂2
x̃u, ∂2

ỹu, ∂x̃∂ỹu. (13.66)

The resulting expressions were exported as automatically generated C# code into the
in-house finite element simulation software. Now, the derivatives of (13.66) with
respect to the nodal degrees of freedom are just the shape functions of a finite element,
and the element’s stiffness matrix and force vector are easily computed using the
chain rule.
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13.4.4 Benchmark Problem

The kinematic formulation and the resulting finite element scheme were validated on
a simple benchmark problem. Consider a plate of a trapezoidal shape. The width of
the plate is w, while the other two edges have lengths L and L+ux0 as in Fig. 13.10.
The right (inclined) edge is clamped and kinematically rotated such, that it becomes
parallel to the left one, which is also clamped. Depending on the magnitude of ux0,
the resulting deformation of the plate in its own plane may become unstable and lead
to the out-of-plane buckling as depicted in the figure by the surface with the grid
lines on it.

As the deformed configuration is bounded between two parallel lines, the problem
is perfectly suitable for the mixed Eulerian-Lagrangian description. At the same
time, a solution with the conventional Lagrangian finite elements with the same
approximation (Vetyukov, 2014a) is readily available, which allows comparing the
solutions and thus testing the new numerical scheme.

Using SI system of units here and in the following, we summarize the parameters
of the considered model:

L = 1, w = 0.4, ux0 = 0.1, h = 5 ·10−3, E = 2.1 ·1011, ν = 0.3. (13.67)

Seeking for a static equilibrium, we considered an intermediate configuration
0 ≤ x ≤ L, −w/2 ≤ ˜y ≤ w/2 and prescribed ux and uy at the edge x = L
such, that its pre-image in the reference state ◦r would correspond to the given unde-
formed geometry and the length of the rotated edge is preserved. The out-of-plane
buckling was promoted by imposing a small gravity force in the first iteration of
the quasi-Newton minimization scheme, which was then released for the rest of
iterations.

In accordance with Eq. (13.35), the transverse grid lines of the finite element mesh,
shown in the deformed state in Fig. 13.10 remain parallel to the y-axis. The surface
of the plate in the supercritical state after buckling may be better observed from an
isometric viewpoint as shown in Fig. 13.11. We studied the mesh convergence and
compared the solutions with the proposed mixed Eulerian-Lagrangian description
and with the conventional Lagrangian finite elements by finding the maximal and the

Fig. 13.10 Undeformed ge-
ometry of a trapezoidal plate
and its postbuckling configura-
tion after the inclined edge is
kinematically rotated
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Fig. 13.11 Deformed config-
uration of a trapezoidal plate,
kinematically loaded in its
own plane

minimal values of the displacement uz, which are observed at the edges ỹ = ±w/2 of
the plate. The results of the comparison, which are summarized in Table 13.1, clearly
demonstrate that both formulations converge to the same solution.

Table 13.1: Mesh convergence and comparison of the mixed Eulerian-Lagrangian
and traditional Lagrangian frameworks for a benchmark problem

Discretization, Mixed E.-L. Lagrangian
nx ×ny minuz maxuz minuz maxuz
4×2 -0.05851 0.18428 -0.07322 0.18138
8×4 -0.05546 0.18319 -0.05831 0.18256
16×8 -0.05496 0.18277 -0.05527 0.18259
32×16 -0.05493 0.18274 -0.05490 0.18262

13.4.5 Time Stepping and Boundary Conditions

Time rates of mechanical entities need to be considered in a quasistatic simulation.
We need to differentiate between the velocity of a particle u̇ with the material time
derivative

(· · · )̇ ≡ ∂(· · · )
∂t

∣∣∣∣∣◦r=const
(13.68)

and the time rate ∂tu with the local derivative at a given point in the intermediate
configuration defined as

∂t(· · · ) ≡ ∂(· · · )
∂t

∣∣∣∣∣r̃=const
. (13.69)

The general relation between the material and the local time derivatives with the
known convective term reads

u̇ =
du(r̃(◦r, t), t)

dt
= ∂tu+ ˙̃r· ∇̃u = ∂tu+ u̇xi· ∇̃u = ∂tu+ u̇x ∂x̃u. (13.70)

Observing the time evolution of nodal variables, we need to deal with the local
time derivatives as the nodes of the finite element mesh are fixed in the intermediate
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configuration. As discussed after Eq. (13.31), the left boundary of the active material
volume moves across the reference state with a known velocity, which means that
the local time rate of u is known at the left edge:

x = 0 : ∂t
◦r = −ventryi ⇒ ∂tu = ventryi. (13.71)

On the opposite, at the right boundary we know the actual velocities of the
particles, with which they move across the line of contact:

x = L : u̇ = vexiti, u̇x = vexit ⇒ ∂tu = vexit(i−∂x̃u). (13.72)

This explains the fact that the right line of contact will move in the transverse
direction as long as ∂x̃u has a non-zero component in the direction of the y-axis (the
z component is always zero owing to the condition of clamping). Indeed, in Fig. 13.7
the plate is slightly inclined immediately before x = L and it is easy to imagine, that
in the next time instant a new cross-section of the plate with greater values of y will
arrive at the line of contact. Stationary motion of the plate with

u = us(r̃)+ ventryt i (13.73)

is possible only when the static deformation us fulfills

x = 0 : us = 0, k·∂x̃us = 0;

x = L : ventryi = vexit(i−∂x̃us) ⇒ ∂x̃us =

(
1− ventry

vexit

)
i.

(13.74)

These boundary conditions allow seeking the stationary solution by solving just a
single static problem.

We turn back to the problem of evolution of the deformation of the plate in time.
The strategy of computing the solution u(k+1) in the end of a time step t(k+1) = (k+1)τ
for a known state of the plate u(k) in the beginning of the time step t(k) = kτ comprises
the following two stages.

1. First we compute new displacements at the left and right boundaries of the domain,

x = 0,L : u(k+1) = u(k)+τ∂tu, (13.75)

in which the local time derivatives are determined by (13.71) and (13.72). This
sort of explicit time integration requires a moderately small time step size and
has a clear advantage: with known displacements ux at x = 0,L we have a fixed
material volume for the end of the time step, which allows finding the equilibrium
by seeking argminUΣ . In practice, updating the nodal variables according to
the incremental boundary conditions (13.75) requires a derivative of the velocity
profile v′exit(y) as the nodal unknowns comprise not only displacements, but also
their derivatives in the transverse direction.

2. As soon as the kinematic constraints are applied for some of the degrees of
freedom of the nodes at the left and right boundaries of the domain, we proceed
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to the quasi-Newton iterative scheme and seek the values of the rest of degrees
of freedom in the model by minimizing the total strain energy (13.60). At each
iteration we compute the force vector by the derivatives ∂UΣ/∂e, and the stiffness
matrix is evaluated only when the rate of convergence at the previous iteration
was unsatisfactory. Converged iterations provide us with the new equilibrium state
u(k+1).

13.4.6 Simulation of a Moving Plate

We considered a plate with the width w, length L and material properties as in the
benchmark test (13.67). As the behavior of the system depends strongly on the ratio
between the membrane and the bending stiffness of the plate, we considered two
values of its thickness and started with a thick plate with h = 0.02. Velocities at the
boundaries were chosen as follows:

ventry = 5, vexit = 5+1y. (13.76)

Note that the mean value of the exit velocity varies when the line of contact is
moving in the transverse direction. Thus, the linear component in vexit rotates the
cross-section of the plate at x = L clockwise, which "pushes" the line of contact in
the positive direction of y-axis: its mean transverse displacement

u∗y =
1
w

w/2∫
−w/2

uy
∣∣∣
x̃=Ldỹ (13.77)

grows in time. The mean value of vexit increases as well, and a tension force appears
in the plate. However, the part of the plate near ỹ = −w/2 is compressed in the axial
direction, which (along with the shear deformation owing to the motion of the line of
contact) may result in the instability of the plane configuration.

We integrated over the time span 0 ≤ t ≤ 1.25 with the step size τ = 0.00125,
which allowed avoiding instability in the explicit time integration of the boundary
conditions for finer meshes. Experiments showed that further reduction of the time
step size results in nearly identical solutions. Varying the number of finite elements
in the transverse direction ny, we kept the length to width aspect ratio of the elements
(L/nx)/(w/ny) ≈ 1.2.

The computed configuration of the plate at t = 0.4 with ny = 18 is shown in
Fig. 13.12. As discussed after (13.76), the linear component in vexit leads to a growing
in-plane deformation, which soon initiates the out-of-plane buckling of the plate. The
computed time histories of the maximal and the minimal (negative) displacements uz
as well as of the mean transverse displacement of the line of contact u∗y are shown
in Fig. 13.13 for three levels of mesh refinement. Besides rapid mesh convergence
and transition to a stationary regime, we clearly observe the time instant of buckling
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Fig. 13.12 Deformed config-
uration of the thick plate at
t = 0.4 computed with 18 finite
elements in the transverse
direction
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Fig. 13.13: Time histories of the maximal and minimal out-of-plane displacements
uz and the mean transverse displacement of the right edge u∗y of the thick plate,
computed with sequentially refined finite element models

of the plate, at which in-plane equilibria with uz = 0 become unstable and non-zero
values of umin

z , umax
z are produced in the simulation.

A thin plate with h = 0.01 has significantly lower bending stiffness in comparison
to the membrane one, which makes the simulation more challenging from the nu-
merical point of view. The deformed surface, presented in Fig. 13.14, is less smooth
than the previous one in Fig. 13.12. Lines with high curvature ("folds") may now
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Fig. 13.14 Thin plate at
t = 0.4 computed with 27 finite
elements in the transverse
direction, the "folds" are
observable in the deformation
pattern

be observed, which require dense finite element meshes to be accurately resolved.
In particular, the boundary layer near x = L tends to demonstrate a complicated
deformation pattern. The effect is getting more pronounced for yet thinner plates (as
the one, considered in the benchmark test in Sect. 13.4.4). Nevertheless, the solution
with ny = 27 finite elements in the transverse direction is quite accurate, as it may be
concluded from the time histories, shown in Fig. 13.15. Earlier buckling of the thin
shell may also be observed.

13.5 Mixed Eulerian-Lagrangian Formulation in the Analysis of

a Belt Drive

The belt drive is a very common technical solution. Mathematical modelling of
its behavior is, however, often a challenging task at Lagrangian description, as the
particles of the belt are permanently moving from the free spans to the contact zones
and back. Our interest is commonly focused on the time history of mechanical fields
in a particular point in space rather than on following them in a given material
point of the belt. As it is typical for axially moving structures, Lagrangian (material)
kinematic description is not an optimal choice for this sort of problems, in particular
for numerical methods with spatial discretization. Purely Eulerian (spatial) (Eliseev
and Vetyukov, 2012; Vetyukov et al, 2017b) or mixed Eulerian-Lagrangian (Vetyukov
et al, 2016, 2017a) formulations are advantageous as we discretize the problem in
a domain-specific manner. Exact solutions of the problem of an extensible belt
moving between the pulleys with dry friction law of contact were provided by Rubin
(2000); Bechtel et al (2000); Morimoto and Iizuka (2012) for stationary regimes
of motion. Leamy (2005) as well as Kim et al (2011) considered perturbations of
stationary motion, which should allow studying transient regimes with sufficiently
small and slow deviations from a given steady one. Hong and Ren (2011) suggested a
mixed finite element formulation, which combines Lagrangian nodes with Arbitrary
Lagrangian-Eulerian ones using constraint conditions, typical for Multibody Systems
Dynamics, and which can theoretically be applied to the considered class of problems.

In the present section, we discuss, how the previosly used mixed Eulerian-
Lagrangian kinematic description can be transferred to the looped motion of a
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Fig. 13.15: Time histories of the maximal and minimal out-of-plane displacements
uz and the mean transverse displacement of the right edge u∗y of the thin plate

belt drive with transverse deflections and frictional contact with the pulleys. This
preliminary presentation of the ongoing research work is restricted to static solutions
of the contact problem with no frictional interaction and shall serve as a basis for
the future analysis of moving systems. For a semi-analytical study of the problem of
contact of a belt with the pulleys with the account of bending and shear effects we
refer to Belyaev et al (2017).

13.5.1 Problem Statement

We consider a flexible belt with the tension stiffness b, which is stretched on two
identical rigid pulleys with radius R and is hanging in the field of gravity g, see
Fig. 13.16. With the distance between the centers of the pulleys H, we denote by λ
the ratio between the shortest possible contour of the belt L and its material length
Lmat:
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Fig. 13.16: Weakly pre-tensed rubber belt, hanging on two pulleys in the field of
gravity; the curvilinear coordinate system is plotted in the background

Lmat = λL, L = 2H+2R. (13.78)

In the following, we mainly focus on the case λ > 1, such that the belt is under
tension just because of the gravity force. This situation is mostly challenging for the
mathematical modelling.

As the pulley radius R is small compared to the distance H, it is certainly ad-
vantageous to keep the finite element discretization finer near the contact zones;
larger elements can be used in the free spans to reduce the number of unknowns.
This is feasible with the use of the mixed Eulerian-Lagrangian kinematics, which
is demonstrated below on the simple example of seeking just a single equilibrium
configuration of the hanging belt.

13.5.2 Problem-Specific Coordinate System

Splitting the spatial coordinates into a Eulerian and a Lagrangian one for a looped
belt requires a looped coordinate system. The classical polar or elliptical coordinates
would have too high distortions for longer belt drives with large H and small R.
Therefore, we decided to develop a problem-specific coordinate system, which
consists of 6 separately defined zones, see Fig. 13.17 for the geometrical parameters

H = 2, R = 0.15. (13.79)

The position vector of a point in space r is determined by two curvilinear coordinates
σ and ν:

r = g(σ)+ νn(σ). (13.80)

Here

• g(σ) is a generatrix of the coordinate system; it is a C2 continuous curve in the
plane in the plane xy, which is defined piecewise analytically over 6 segments,
see details below;
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Fig. 13.17: Coordinate lines of the used curvilinear coordinate system with num-
bered analytical segments in the piece-wise presentation of the generatrix, which is
plotted by a green line

• n is the unit outer normal vector to the generatrix:

n· g′ = 0, n·n= 1; (13.81)

n is C1 continuous, which makes r also C1 continuous everywhere and the metric
of the resulting coordinate system is then C0 continuous;

• σ is a circumferential coordinate in the direction of gross axial motion of the belt,
ν is a coordinate in the normal direction.

We choose polar coordinates in the segments 1 and 4 with x > H/2 and x < −H/2
coinciding with the outer half-circles of the pulleys. The analytical expressions for
other four segments involve exponents, which provide the necessary continuity and
which turn into ordinary Cartesian coordinates at a significant distance from the
contact zones.

The coordinate lines of the coordinate system are orthogonal, and in each segment
and in each point we compute scalar products

∂σr·∂νr = 0, ∂νr·∂νr = 1, ∂σr·∂σr = Λ(σ,ν). (13.82)

The metric coefficients of the coordinate system form a diagonal matrix, and the
component in the circumferential direction reads

Λ = Λ0(σ)+2Λ1(σ)ν+Λ2(σ)ν2,

Λ0 = g′ · g′, Λ1 = g′ ·n′, Λ2 = n′ ·n′.
(13.83)

The metric is continuous owing to the achieved C2 smoothness of the generatrix, and
the single coefficients Λ0,1,2 may be pre-computed in the integration points of the
finite elements, in which σ = const. In segments 1, 4 with polar coordinates x ≤−H/2
and x ≥ H/2 we have Λ0 = 1, Λ1 = 0, Λ2 = 1. More complicated expressions need
to be used in −H/2 < x < H/2, which, however, result in Λ ≈ 1 far away from the
pulleys, where the coordinates are almost Cartesian.

It remains to notice, that the generatrix g(σ) is constructed such, that in each point
σ is the arc coordinate of the projection of the point onto the undistorted contour
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of the belt, and at the free spans we have dσ = ±dx. Finally, the function g(σ) is
periodic, and we have

r(σ,ν) = r(σ+L, ν). (13.84)

13.5.3 Mixed Lagrangian-Eulerian Kinematic Description

Particles of the belt are identified by the material coordinate s. The belt is looped,
which means that coordinates s and s+Lmat correspond to the same material point.

At material (Lagrangian) description, we would consider the curvilinear coordi-
nates as functions of the material one:

r = r(σ(s), ν(s)). (13.85)

The proposed mixed Eulerian-Lagrangian description rests upon the change of
variable:

s = s(σ). (13.86)

We observe the material particles, which cross spatial coordinate lines σ = const. The
position vector reads

r = r(σ,ν(σ)). (13.87)

Again, all mechanical entities are periodic functions of σ with the only exception
being the material coordinate, for which holds

s(σ+L) = s(σ)+Lmat. (13.88)

13.5.4 Finite Element Approximation and Energy

As discussed in Sect. 13.3.3, the cubic finite element approximation in the domain

0 ≤ σ ≤ L (13.89)

provides us with the C1 continuous approximation of

s(σ), ν(σ). (13.90)

As each node has fixed coordinate σk, we mesh all six segments of the coordinate
system individually. The periodicity conditions are ensured by looping the finite
element mesh, i.e., by uniting the degrees of freedom at nodes at σ = 0 and σ = L.
Instead of directly using the condition (13.88) on such a mesh, we account for the
jump in s on the very last finite element when computing the derivatives.

In contrast to (13.9), here we use the Green-Lagragian strain measure
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ε =
1
2

(∂sr·∂sr−1) ; (13.91)

see Eliseev and Vetyukov (2012) for a discussion of the difference between the
possible strain measures in mechanics of strings. Transforming (13.91) to the new
kinematic description (13.90), we use the rule of differentiating inverse and implicit
functions along with the metric (13.82) and compute

ε =
Λ+ ν′2− s′2

2s′2
; (13.92)

the prime means a derivative with respect toσ. Using again a quadratic approximation
for the strain energy of the belt per its material length, we write its total mechanical
energy in the field of gravity as an integral over the spatial coordinate σ:

UΣ =

L∫
0

1
2

bε2s′dσ+
L∫

0

ρgr· js′dσ (13.93)

with j being the unit vector of the vertical cartesian axial y, ρ the density per unit
material length and g the free fall acceleration.

Using the simple penalty formulation for the normal contact of the belt and the
pulleys, we find the equilibrium by minimizing

UΣ +P→min, P =

L∫
0

1
2

Kγ2dσ. (13.94)

Here, K is the high penalty stiffness and γ is the penetration depth, which vanishes
as long as the point of the belt does not touch a pulley.

13.5.5 Simulation Results

In the numerical example we consider a soft rubber belt with the square cross-section
of the size 5 ·10−3, which is by 1% longer than the contour between the pulleys, and
use the following parameters of the problem:

b = 12.5, ρ = 0.03, g = 9.8, K = 2 ·105, λ = 1.01. (13.95)

We used a non-homogeneous mesh with smaller elements near the points, in which
the belt touches the pulleys. The minimization (13.94) started with the initial approx-
imation s = σ, ν = 0 and resulted in the configuration, shown in Fig. 13.16. In the
equilibrium state we have the total strain energy of the belt approximately 0.0534, the
potential of the field of gravity −0.252 and the penalty term resulted into a very small
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value P ≈ 3.89 · 10−5, which means that the penalty stiffness factor is sufficiently
high.

In Fig. 13.18 we demonstrate the computed distribution of strain along the belt.
Locking (inability of the finite element approximation to represent the exact solution)
results in irregularities, which appear mostly near the upper points of the pulleys.
Dividing each element into two, we arrived at a much more regular solution for a
refined mesh (red line in the figure).

We additionally validated the results by integrating the contact force, which acts
on the pulleys from the side of the belt. The vertical component of the integrated
force, which acts on the left pulley results approximately to −0.734268, while the
half of the weight of the belt is ρgLmat/2 = 0.73381. Good correspondence was also
achieved for the horizontal component of the contact force at the left pulley, which
results into 0.9968 after integration. Computing the strains in the middle points
of the upper and lower free spans of the belt, finding the respective tension forces
according to Q = bε

√
1+2ε (for the particularity of computing the force with the

Green-Lagrangian strain measure we refer to Eliseev and Vetyukov (2012)) and
adding both we arrive at 0.9941.

13.5.6 Work in Progress and Outlook

While it is too early to present the preliminary results of modelling the motion of the
belt with rotating pulleys and dry friction in detail, it can already be stated that the
resulting time histories of the strains in different points of the belt are remarkably
smooth, in particular in comparison with the attempts to achieve the same solutions
using Lagrangian kinematic description. Step-like discontinuities appear when the

Fig. 13.18: Computed distribution of strain along the hanging belt for the original
mesh and for the refined one
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contact state in a neighboring integration point switches from stick to slip as the zone
of creep of the belt is growing (Rubin, 2000; Reynolds, 1874). The mesh convergence
is very satisfactory.

The discussed above kinematics and simulation strategy may be applied to signifi-
cantly more challenging problems, like e.g. modelling the motion of an endless steel
belt between two rotating drums, Fig. 13.19. Being efficient in such technological
processes as food industry, production of laminates, casting of optical films, etc.,
such belts often suffer from lateral run off during the motion because of intrinsic
unsymmetries in the geometry, orientation of drums, temperature distribution, etc.
Reliable mathematical modelling, which is necessary for the model-based design of
a controller (Fig. 13.20) is particularly challenging for weakly tensed belts because
of the high membrane and low bending stiffness along with the very hard contact
conditions. Preliminary results of a non-material finite element simulation of a steel
belt using a shell model and a three-dimensional curvilinear coordinate system,
which is the extension of the one in Fig. 13.17, are shown in Fig. 13.21. Imperfect
geometry of the belt is accounted for using the multiplicative decomposition from the
undeformed state to the reference one (Vetyukov et al, 2017a), and then we apply the
mixed Eulerian-Lagrangian kinematic description to prevent the mesh from motion
in the circumferential direction. We observe the effects, known from the practical
experience: skew hanging of the belt, partial loss of contact with the drums (indicated
by missing integration points in the figure) and lateral run-off during the motion.

Fig. 13.19 Endless steel belt,
moving between two rotating
drums

Fig. 13.20 Controlling the
motion of an endless steel belt
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Fig. 13.21 Non-material
finite element simulation of a
moving steel, which is running
off in the lateral direction
because of the imperfect
geometry

Currently, the research work is focused on the consistency of the analysis of the
effects of the dry friction with stick and slip phenomena.
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Chapter 14

A software platform for the analysis of porous

die-cast parts using the finite cell method

Mathias Würkner, Sascha Duczek, Harald Berger, Heinz Köppe, Ulrich Gabbert

Abstract Due to the die-cast technology the manufactured parts contain unavoidable
imperfections such as cavities and pores with a length scale much smaller than the
size of the produced parts. Such imperfections can reduce the load bearing capacity
as well as the lifetime of a part and, consequently, have to be taken into consideration
during the design process. But, to include the huge amount of small scale pores in a
classical finite element simulation requires an extremely refined mesh and results in a
computational effort, which may exceed the capacity of todayt’‘s computer hardware.
An alternative approach is the application of the finite cell method (FCM), which
can operate with non body-fitted hexahedral or tetrahedral meshes, meaning that the
finite element mesh does not have to be aligned to the geometry of the structural part.
The pores are taken into account in form of a STL data set (STL: standard tessellation
language) coming from computed tomography (CT) or other sources, such as from a
cast simulation procedure.
The paper deals with the development of a software platform, which combines
the FCM with the widely used commercial finite element package Abaqus. The
overall workflow along with specific implementational details are discussed. Finally,
academic benchmark problems are used to verify the developed software platform.

14.1 Introduction

The development of light-weight designs in the automotive industry contributes to
fulfill the EU regulations to reduce the fuel consumption as well as the carbon dioxide
and nitrogen oxide emissions of combustion engines. But, also in electric vehicles the
light-weight design is essential, because it contributes to an increase of the vehicle’s
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range. In general a weight reduction can be achieved by optimizing the design of the
part and by changing the deployed material. The application of aluminium die-cast in
connection with an optimized design fulfils the requirements for a light-weight and
cost effective product. But die-cast parts show an inherent and unavoidable amount
of imperfections, such as cavities and pores. A wide range of changeable parameters
are available to reduce the porosity, such as a large amount of setting parameters at
the die-cast machines, the thermal cycling of the manufacturing process, the amount
of applied spray etc.; for details see the research results presented in (Ambos et al,
2013a).
The location, the shape, the number and the distribution of pores have a great
influence on the durability and strength properties of die-cast parts. The information
are available today provided by fast computed tomography (CT) scans, which are
used to investigate the pore morphology in detail (Ambos et al, 2013a,b; Oberdorfer
et al, 2014; Rehse et al, 2013). CT scans help to identify and to quantify the location,
the size and the volume of pores. Besides the 3D coordinates of each voxel measured
with a CT scan also a gray value, the so called Hounsfield scale, is assigned. From
these data a STL file is derived, which represents a triangular surface tessellation,
originally developed for the stereolithography process. Finally, each pore is described
by a surface mesh of triangles. This topological description can be used for further
steps in a finite element analysis of die-cast parts with pores. At pores high stress
concentrations often occur, which may facilitate a crack initiation. Therefore, the
calculation of stress concentration at the most significant pores of die-cast parts
under real operating conditions is of great interest. For the overall simulation the
FEM is usually used and applied to the ideal construction without regarding pores.
To take into account the pores we propose to apply the finite cell method (FCM).
In the following it is assumed, that the pores are given in form of a STL data set.
The main difference of the FCM to the classical FEM is the concept of embedding
the original or physical domain into a larger domain creating a simpler geometrical
shape (Ramière et al, 2007; Saul’ev, 1963). The finite cell method (FCM) combines
the so called fictitious domain approach with the FEM especially in case of higher
order finite elements (Duczek et al, 2015, 2016; Düster et al, 2008; Parvizian et al,
2007; Zander et al, 2012; Rank et al, 2009).
The FCM can be interpreted as an extension of the classical FEM. If a finite element
model (FE model) of the ideal geometry of a construction (without inhomogeneities
such as pores) is given and additionally CT scans or STL data sets containing
informations on the pore morphology are provided, the FCM can be used to calculate
the stress field taking into account the real geometry of the pores. Consequently,
for an industrial application it would be helpful to combine the FCM with the FEM
based on commercially available software tools (Ansys, Abaqus, etc.).
The paper deals with the development of such a software platform combining the
FCM with the FEM and using a STL file containing the inhomogeneities in order to
calculate the displacements and stresses based on a FE model of the ideal geometry.
The platform uses data interfaces and offers a flow chart, so that the complete analysis
process can be performed automatically.
The paper is organized as follows. In Sect. 14.2 some basic information about the
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FCM are briefly given. This also includes the main differences to the classical FEM.
Then the platform concept is described in Sect. 14.3. In Sect. 14.4 some information
and trouble shootings according to the STL data derived from CT measurements
are discussed. In Sect. 14.5 the platform is tested by analyzing some academic
test examples, which demonstrate the capability of handling the complete analysis
process. The paper finishes with a summery and an outlook to further development
steps.

14.2 The Finite Cell Method

Numerical methods are most preferred for solving nonlinear and complex physical
problems. In engineering applications the FEM is one of the most popular methods.
The basic idea of the method is to divide the physical domain of the considered
problem into smaller subdomains, the so called finite elements (FEs), where in
each of these domains the unknown solution is approximated by an ansatz function
including a field of unknown variables, the so called degrees of freedom (DOFs).
These unknowns are determined by solving a system of equations.
The finite cell method (FCM) is a numerical method, which is strongly related to
the FEM. The FCM can be interpreted as an extension of the FEM and belongs to
the class of fictitious domain methods (Düster et al, 2008; Parvizian et al, 2007).
In the following a brief description and the fundamental equations of the FCM are
presented. In addition the differences in relation to the classical FEM are emphasized.
For further informations and explanations regarding the FEM and the FCM the reader
is referred to other literature (Düster et al, 2008; Parvizian et al, 2007; Zienkiewicz
and Taylor, 2000; Bathe, 2002; Duczek, 2014).

14.2.1 Fundamentals of the Finite Cell Method

Let us focus on a 3D problem of linear elasticity. It is assumed, that the problem is
given by

−div σ̃ = f (14.1)

on a domain Ω. σ̃ denotes the second order Cauchy stress tensor. The right-hand
side of the equation characterizes the body loads. Due to linear elasticity and the
general use of Cartesian coordinate systems the more convenient Voigt notation is
used, describing the stresses and strains in vector form. In the following vector and
matrix form quantities are highlighted by a single and double underline, respectively.
In order to solve a boundary value problem the boundary conditions have to be
formulated. The boundary of Ω, denoted with ∂Ω, is split into a Dirichlet boundary,
denoted ΓD, and two Neumann boundaries, denoted ΓN and Γ0. It holds ∂Ω =
ΓD∪ΓN∪Γ0 and ΓD∩ΓN∩Γ0 = ∅. The boundary conditions are given as follows
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u = 0 on ΓD, (14.2)
t = t on ΓN, (14.3)
t = 0 on Γ0, (14.4)

where u are the displacements and t are the tractions. Adding a bar over a letter means
that the quantity is prescribed. Using the Bubnov-Galerkin method the weak form of
the boundary value problem is derived. Multiplying Eq. (14.1) with a test function v,
which is zero on the boundary ΓD, and afterwards performing an integration over Ω
results in a weak form of the equilibrium. Using the multidimensional integration by
parts and taking into account the boundary conditions Eqs. (14.2)-(14.4) the weak
form can be rewritten as∫

Ω

(
Dv

)T
σdΩ−

∫
ΓN

vT t dΓ−
∫
Ω

vT f dΓ = 0. (14.5)

Here σ denotes the stresses in the Voigt notation. The quantity D denotes the matrix
of differential operators, which relates the displacements to the strains in the Voigt
notation as

Du = ε. (14.6)

Using the constitutive law of linear elasticity the weak form changes to∫
Ω

(
Dv

)T
C DudΩ−

∫
ΓN

vT t dΓ−
∫
Ω

vT f dΩ = 0. (14.7)

Here C is the elasticity matrix in the Voigt notation. Instead of solving the physical
problem on the original domain an expanded domain is used in the FCM, denoted
with Ωex (see Fig. 14.1). The additional domain, also called fictitious domain and
denoted with Ωfic, is chosen in such a way, that Ωex can be characterized by a simpler
geometric structure. For further investigations we assume, as shown in Fig. 14.1,
that the fictitious domain is completely enclosed by the original domain. In case of

Fig. 14.1: Expansion of the original domain by a fictitious domain
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investigating die-cast parts such a fictitious domain represents a pore.
Using the expansions uex and vex and additionally the continuity conditions related
to displacements and tensions on the boundary Γ = ∂Ω∩∂Ωfic the weak form can be
written as ∫

Ωex

(
Dvex

)T
C

ex
Duex dΩ−

∫
ΓN

vT
ext dΓ−

∫
Ωex

vT
ex f dΩ = 0. (14.8)

Here C
ex

denotes the modified elasticity matrix defined by

C
ex
= α

(
x
)
C, (14.9)

where

α
(
x
)
=

{
1.0 ∀x ∈ Ω,
0.0 ∀x ∈ Ωfic.

(14.10)

With respect to further investigations related to the numerical integration it is men-
tioned, that the value of α in Ωfic should be replaced by a sufficiently small value
representing numerical zero. This avoids severe ill-conditioning of the global stiffness
matrix in the upcoming discretization process. To simplify the problem we further
assume, that body loads are absent. Therefore the last term of Eq. (14.8) is neglected
in further investigations.
In the FEM the domain Ω is divided into finite elements, where in the FCM the ex-
panded domain Ωex is partitioned. Due to similarities in the discretization process of
the FCM and the FEM the used elements in the FCM are currently called finite cells,
which helps to distinguish between the two methods for further explanations (Düster
et al, 2008; Parvizian et al, 2007). In general the finite cells differ from the classical
finite elements by the fact, that they do not have to be adapted to the real physical
geometry or inner boundaries, for instance caused by different material regions. This
gives the opportunity to use a more simplified discretization grid. Very promising
cases would be uniform grids of rectangularly shaped cells in 2D or hexahedrally
shaped cells in 3D (see Fig. 14.2).
Let us just concentrate on the first term of Eq. (14.8). Assuming Ωex is completely
divided into M finite cells the term can be changed to

M∑
c=1

∫
Ωc

(
Dvex

)T
C

ex
Duex dΩ. (14.11)

The second term can be treated in a similar way.
In similarity to the FEM the displacement uex is approximated in each cell using so
called shape functions

uex = N û. (14.12)

Here N and û are the matrix of shape functions and the vector of unknown variables,
the so called DOFs, respectively. Using vex = N v̂, Eqs. (14.11) and (14.12) the
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Fig. 14.2 Uniform finite
cell grid of an expanded
2D domain consisting of
quadratically shaped cells
(right side of the figure); the
occupied domain of the c-th
finite cell is denoted by Ωc
(left side of the figure)

following system of equations can finally be derived for each finite cell

K û = F. (14.13)

By assembling the system of equations of all finite cells the global system of equations
is derived as

KA ûA = FA. (14.14)

The FCM is an extension of the FEM, which gives the opportunity of defining a
compatible finite cell for each finite element. This also assures the possibility of
creating a hybrid mesh consisting of both finite elements and finite cells. In the
following such a mesh is called FE-FC mesh.

14.2.2 Numerical Integration

For the evaluation of K and F in Eq. (14.13) integrals have to be calculated. In
the classical FEM, due to mapping transformations using a reference element, the
integrand is in general non-polynomial. The integration cannot be analytically per-
formed in most of the cases. Therefore, numerical integration methods are used. For
common finite elements as in commercial software tools (Abaqus, Ansys, etc.) the
Gaussian quadrature is applied. This approach converges fast for sufficiently smooth
integrands, but not for discontinuous ones. Referring to Fig. (14.2) and Eq. (14.11),
for the finite cells the integrand is discontinuous due to the jump in the elasticity
matrix. That is why in the FCM an adaptive integration scheme is used in order to
capture this discontinuity in an appropriate way.
In the following, the case of discontinuous material properties is discussed. This
means, the cell contains the joint boundary of the fictitious and the original domain.
A common Gaussian quadrature for solving the integrals would be an inappropriate
approach. Instead a composed integration is used. This integration procedure is
characterized by subdividing the domain of the cell, using a subdivision scheme. In
the following a quadtree subdivision procedure for the 2D case will be explained.
Referring to Fig. 14.3 it is assumed, that a cell is cut by the boundary of the region.
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The subdivision level, denoted with k, is zero at the beginning. For k = 1 the domain
of the cell is split into four equal-sized subdomains, which are called subcells in the
following. In order to establish the level k = 2 each of the four subcells is checked,
whether it contains the boundary or not. If it is true the domain of the subcell is
split further into four smaller subcells. In Fig. 14.3 the subcells, which have to be
divided, are marked with a gray color filling. Higher subdivision levels are obtained
by following the previously explained procedure until the integration is converged.
In case of 3D finite cells an octree-subdivision scheme is used. Here the cells are
split into eight subcells. Detailed information, such as the integration weights and
points of the Gaussian quadrature, can be taken from Duczek (2014).

14.3 Concept of the Software Platform

For developing the software platform concept the programming software tool Matlab
is used. The platform combines the FCM and the interaction of its interface to an
appropriate commercial software tool in order to establish a complete workflow of
creating the FC model, solving the problem and evaluating its strains and stresses. In
this regard the programming of the platform is split into three sections. These are the
preprocessor, the solver and the post processor (see Fig. 14.4).
The preprocessor deals with the creation of the FC model. In the following it is
assumed, that a sample of an ideal die-cast part (without pores) is already given as
a FE model and the information of the pores are separately provided in form of a
STL data set. This data set contains the topology of the surface triangulation of the
pores as well as the locations of the corner vertices of the triangles. The mesh of the
FE model is used to perform the FC discretization. The finite elements are replaced

Fig. 14.3 Schematic sketch
of a quadtree subdivision
procedure, where the fictitious
domain is represented by a
circular region; cells/subcells
containing at least parts of this
region are highlighted in light
gray
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Fig. 14.4: Flow chart of the developed software platform

by finite cells. In general, as mentioned in Sect. 14.2, the expanded domain, here
represented by the ideal die-cast part, can be discretized with cells. According to
the adaptive numerical integration a distinction of two cases has to be considered:
(i) the integration point is in the physical region and (ii) the integration point is
in the fictitious domain. The numerical integration of cells completely located in
the real domain (α = 1.0) are treated as in standard finite elements. Cells, which
are completely located in the fictitious domain (α = 0.0), are removed from the
model, which results in a lower effort in solving the system of equations. Only those
finite cells have to be treated separately, whose domain contains the boundary of the
fictitious domain, i.e. the material discontinuity Eq. (14.9). The resolution of this
discontinuity in the numerical integration, controllable by the subdivision level k,
has to be fine enough to reduce the integration error sufficiently.

For the sake of clarity, the finite elements belonging to the real domain do not
have to be replaced by finite cells, since the numerical treatment of cells and elements
is identical. These elements can be kept. The resulting FE-FC model does not differ
in a numerical sense from the corresponding pure FC model.

The usage of the platform is tied to the condition, that the initial FE mesh has
to be either hexahedral or tetrahedral. Due to the numerical accuracy a hexahedral
mesh is to be preferred. In industrial application the geometry of a part is in general
very complex. Therefore, most existing meshes are tetrahedral meshes, which are
simpler to create. Using compatible finite cells the FE-FC model is established
with regard to the initial FE model. The hybrid model and the data set for numerical
integration (integration weights and points) of the cells given in an appropriate format
are transferred via the software platform to a commercial FE tool, such as Abaqus.
In Abaqus for instance, the possibility of applying user-defined subroutines (UEL
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subroutines) is used to incorporate the special FCM part, which is needed to create
and to solve the overall global system of equations.

The postprocessor of the software platform deals with the subsequent treatment
of the vector of unknowns, i.e. the displacement at all nodes of the FE-FC mesh.
These solution data are transferred to the software platform. In combination with the
previously saved FE-FC model it is possible to calculate the displacements, strains
and stresses at any point. For the purpose of visualizing those quantities on the FE-FC
point grid a problem occurs, since points of the grid lie in the fictitious domain, which
in case of representing a pore causes visualization artifacts. For this reason a grid
of points is created, where all the points belong to a body-fitted mesh, the so called
visualization mesh. The displacements, strains and stresses are calculated at the
points of the visualization mesh by using the data from the FC-FE solution. In order
to generate the visualization mesh the surface triangulation based on the FE model of
the ideal die-cast part in combination with the STL data set of the pores is transferred
to Abaqus and a mesh consisting of 4-node tetrahedra is created. Alternatively, the
surface triangulation and its grid of points can be used for the visualization (see Fig.
14.5).

The actual visualization of strains and stresses is performed by using a data inter-
face to the open source software ParaView. Executing ParaView and transferring the
calculated results in an appropriate format provides the opportunity to an interactive
evaluation of the displacements, strains and stresses.

14.4 Trouble Shooting the STL Data Set

First used in stereolithography CAD software nowadays the STL format is supported
by almost every CAD software. The file format can be either Ascii or binary. As
mentioned in Sect. 14.3 a STL data set is used in the preprocessor of the developed
platform. This data set contains in the case of die-cast parts the pore morphology

Fig. 14.5: Samples of visualization meshes: 3D tetrahedral mesh (left) and a sur-
face triangulation mesh (right)
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in form of a surface triangulation described by normals and point locations. The
simplicity of the STL format using unstructured triangular facets often causes errors
in the 3D meshing procedure. Overlapping of facets, incorrect normal directions,
unclosed surface descriptions, etc. are not prevented by the format. Also closed
surface triangulations can be connected to each other, as for instance by a line segment
or a point (see Figs. 14.6 and 14.7), which complicates the unique identification of
surface objects. Therefore, a mesh repair or a remeshing procedure is absolutely
essential for FEM or FCM applications. However, this is a highly complex issue and
topic of several publications (Bechet et al, 2002; Attene, 2014).

The repair mechanisms for STL data included in the software platform is still
under development; a reorienting of the normals of facets is already included.

Fig. 14.6: Problems of identifying pores: Closed surface triangulations of pores
connected to each other by a point

Fig. 14.7: Problems of identifying pores: Closed surface triangulations of pores
connected to each other by a line segment
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14.5 Verification of the Software Platform

In this section the developed platform is tested with help of some academic test cases.
The objective of these investigations is to demonstrate the capability of the developed
software platform of performing the complete analysis process.

The first example deals with a cube (a = 10m), in which a centrally located
ellipsoidal pore is embedded. The material is aluminium (see Table 14.1). A tensile
load P = 100N/m2 is applied on the surface of the cube normal to the positive
z-direction (see Fig. 14.8). On the opposite surface the displacements in z-direction
are constrained to zero. In addition the displacements in x- and y-direction are
also constrained to zero at two edges of this surface, respectively. These boundary
conditions ensure enabled transverse contraction.

In order to verify the calculated quantities by using the developed software
platform a reference FE analysis (Abaqus) is performed. The applied body-fitted FE
model consists of 180325 tetrahedral elements (764424 DOFs) of second polynomial
order (10-node tetrahedral elements; see Fig. 14.9) and is used to evaluate the
computations. In comparison, the FE-FC model is based on a 25×25×25 hexahedral
FE mesh (204828 DOFs). Both simulations employ elements with an identical
polynomial order. The subdivision level was set to k = 3.

Figures 14.10 and 14.11 show some results related to the developed software
platform and to the purely Abaqus-based simulations, respectively. The depicted
results are the displacement magnitudes (left side of the figures) and the von Mises
stresses (right side of the figures). Due to the boundary conditions we can observe
a band of stress concentrations at the surface of the ellipsoidal pore. It can be
summarized, that the results of both analyses are in very good agreement.

Fig. 14.8: Model definition: Boundary conditions, loads and dimensions
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Table 14.1: Material properties

Material Young’s modulus [N/mm2] Poisson’s ratio

Aluminium 70000 0.33

X

Y

Z

Fig. 14.9: Geometrical model of a cube with a centrally embedded ellipsoidal pore
(left) and a sectional view of the corresponding FE model with a body-fitted finite
element mesh

Fig. 14.10: Displacement magnitudes and von Mises stresses calculated with help
of the developed software platform and a coarse FE-FC mesh of 25× 25 × 25
hexahedral elements

Next we consider an example with more than one inclusion. As shown in Fig. 14.12
a cube (a = 10m) with four randomly distributed embedded ellipsoidal pores is
investigated. Note that, all pores have different volumes and sizes. As in the previous
example a body-fitted FE model (Abaqus) is used as reference model. The model
consists of 300864 tetrahedral elements (1263081 DOFs) with a polynomial order of
two. The FE-FC model is again based on a 25×25×25 hexahedral FE mesh (204828
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Fig. 14.11: Displacement magnitude and von Mises stresses calculated with the
help of a body-fitted finite element mesh

DOFs) with an identical polynomial order. The integration subdivision level is set to
k = 4.

In Figs. 14.13 and 14.14 the results related to the developed software platform
and to the pure Abaqus model are shown, respectively. While the displacement mag-
nitudes are in good agreement the von Mises stresses show some small differences,
with a maximum value of about 6%. Nevertheless it has to be pointed out, that the
model related the developed software platform only uses almost one twentieth of the
element number of the reference model.

14.6 Summary and Outlook

The current paper deals with the development of a software platform using the FCM
and the STL format in order to calculate displacements, strains and stresses of die-
cast parts. The platform contains a complete flow chart of the analysis. The ideal

Fig. 14.12: Geometrical model of a cube with four randomly distributed embedded
ellipsoidal pores and a sectional view of the corresponding FE model with a body-
fitted finite element mesh
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Fig. 14.13: Displacement magnitudes and von Mises stresses calculated with the
developed platform

Fig. 14.14: Displacement magnitudes and von Mises stresses calculated with
Abaqus

geometry given in form of a FE model and the pore morphology given in the STL
format deal as initial informations for the platform. The usage of interfaces to several
software tools (Abaqus, ParaView) helps the platform to assure the capability of
performing a complete analysis process. The representation of the results can be
interactively performed by using ParaView, where the results are based on a point
grid belonging to a visualization mesh. This visualization mesh contains either a 3D
point grid related to the real geometry or a grid related to the boundary surface of the
real geometry.

The platform and its flow chart is verified with the help of two academic test
problems. Their results, such as displacements and stresses, calculated by the platform
are compared to results of body-fitted FE models, which are used as reference. Despite
of much smaller numbers of DOFs compared to the reference models they are in
good agreement with the calculated quantities of the FE models.

In the future, the platform and its flow chart will be tested on real die-cast part,
which contains pores lying in a critical region of the part. Also improvements
according to the trouble shootings with the STL format will be included in the
platform.
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Chapter 15

Refined One-Dimensional Models for the

Multi-Field Analysis of Layered Smart

Structures

Enrico Zappino and Erasmo Carrera

Abstract The analysis of layered structures requires the use of numerical tools that
able to describe the complex behavior that can appear at the interface between two
different materials. The use of the Finite Element Method can only lead to accurate
results if the kinematic assumptions of the structural models allow complex deforma-
tion fields to be evaluated, and as a consequence classical models are often ineffective
in the analysis of such structures. The use of the Carrera Unified Formulation pro-
vides a general tool that can be used to derive refined one-dimensional models in a
compact form. The use of a refined kinematic description over the cross-section of
an element leads to accurate results even when multi-field problems are considered,
that is when complex stress fields appear. A comprehensive derivation of a class of
refined one-dimensional models, which are able to deal with multilayer structures
and multi-field problems, is presented in this section. Thermal and piezoelectric
effects are considered, and a fully coupled thermo-piezo-elastic model is presented.
Finally, some benchmarks are shown in order to verify the accuracy of the presented
models.

15.1 Introduction

The development of innovative structures requires the use of numerical tools that
are able to deal with the complexities introduced by innovative materials. Laminated
materials are used extensively in all engineering fields, and they can appear in many
different forms. The most common layered structures are made up of composite
materials, see Fig. 15.1a, that exploit the orthotropic properties of the fiber reinforced
layers to increase the stiffness of the structural component in the desired direction.
When the weight of the structure is one of the design parameters, the use of sandwich
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(a) Composite Material (b) Sandwich Material (c) Piezo-layered beam

Fig. 15.1: Examples of layered structures.

materials, see Fig. 15.1b, may lead to an improvement in the bending resistance
without increasing the total weight of the structure. Sandwich materials exploit a thick
soft core and two external skins. The core, in addition to absorbing the shear load,
increases the distance of the skins from the neutral axis. Another example of layered
material is that used in smart structures, see Fig. 15.1c. In this case, a layer or a patch
of active material, e.g. piezoelectric material, is bonded onto a structure with the
purpose of exploiting the piezo-elastic effect as an actuator or a sensor. Piezo-layered
structures have become very important over the last few decades because they are at
the basis of the development of MEMS (Micro Electro-Mechanical Systems) devices.
The present work has focused on piezo-layered structures, although it is common to
find piezoelectric patches on composite materials and sandwich panels.

The analysis of layered beam structures involves evaluating complex stress fields.
When the Euler-Bernoulli (Euler, 1744) beam model is used, it is accepted that the
solution can only be considered accurate for slender bodies and isotropic materials,
that is, it cannot be applied to layered structures. If moderately stubby structures are
considered the model proposed by Timoshenko (1921) has to be used to include shear
effects, and in this case, the use of a shear correction factor, see Timoshenko (1921);
Cowper (1966); Dong et al (2010), is required to overcome the approximation of
a constant shear distribution over the cross-section. Even though the Timoshenko
model is more accurate than the Euler-Bernoulli theory, neither of these classical
models is suitable for the stress analysis of layered structures because they are not
able to properly describe the layers interfaces. The introduction of refined structural
models allows the limitations introduced by the fundamental assumptions of the
classical models to be overcome and the stress singularities due to local effects to be
dealt with. Carrera (1997a) pointed out that the analysis of layered structures requires
a numerical model that is able to fulfill the C0

z requirement, that is, the continuity of
the transversal stress component has to be ensured to obtain reliable results.

Many refined one-dimensional models have been proposed over the last few
decades, e.g. the use of warping functions, as proposed by Vlasov (1984), which
allows the cross-section deformation to be included in beam models. Cross-sectional
warping plays an essential role in thin-walled structures, as shown in the work by
Friberg (1985); Ambrosini (2000), where the warping function approach was used.
Schardt (1966) proposed a one-dimensional model for the thin-walled structures
analysis where the displacement field was considered as an expansion around the mid-
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plane of the thin-walled cross-section. This approach, which is called the generalized
beam theory (GBT), was also used by Davies and Leach (1994); Davies et al (1994),
and an extension to the analysis of composite material was proposed by Silvestre et al
(2002). The Variation Asymptotic Method, VAM, proposed by Berdichevsky (1976),
uses a characteristic cross-section parameter to build an asymptotic expansion of the
solution. The application of this approach to one-dimensional structures can be seen
in the work by Giavotto et al (1983). Volovoi (1999); Yu et al (2002); Yu and Hodges
(2004) have extended this method to composite materials and beams with arbitrary
cross-sections.

All these methods allow the accuracy of one-dimensional models to be improved.
The development of these models has been crucial in the design of innovative
structures that make use of innovative materials. One of these applications is the
development of piezoelectric devices. Figure 15.2 shows how the analysis of a
piezo-layered structure requires many aspects to be take into account, such as the
material interfaces and the orthotropy of the material. The piezoelectric effect has
been known since the 19th century, when the Curie brothers first noticed it. This
effect pertains to the conversion of mechanical to electrical energy and vice-versa.
The use of piezoelectric materials in structural design is very interesting because of
their properties, and a great deal of effort has been made to include the piezoelectric
contribution in structural models. Crawley and Luis (1987); Bailey and Hubbard
(1985) considered the piezoelectric contribution as an additional strain which had to
be added to the inactive structure. Classical structural models were used extensively
to analyze piezoelectric materials; as shown by Sarvanos and Heyliger (1999) in
their review. In the past, classical three-dimensional (Dong et al, 2006; Xu and
Koko, 2004), two-dimensional (Kim and Kim, 2005; Moitha et al, 2004) and one-
dimensional models were used to study structures with piezoelectric effects. The
use of refined structural models improves the accuracy of the stress and strain fields,
especially when complex structures, such as multi-layered structures, are considered.
A great deal of effort has been focused on the extension of these models to the analysis
of piezoelectric materials. One of the most critical points is the interface between
the structure and piezoelectric patches, as shown by (Zhou and Tiersten, 1994).
The introduction of shear effects (see Caruso et al, 2003; Kumar and Narayanan,

Fig. 15.2: Example of a piezo-layered structure.
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2007; Kusculuoglu and Royston, 2005; Liu et al, 2004; Vasques and Rodrigues,
2006), makes it possible to have a more accurate description of the stress field of the
problem. More refined approaches have been proposed in the last few years (see Zhou
et al, 2000; Moita et al, 2005; Vidal et al, 2011); in these cases, a first order theory
has been considered. Carrera (1997b); Robaldo et al (2006); Carrera et al (2007)
proposed the use of refined two-dimensional models for the analysis of multi-layered
structures, including piezoelectric materials. The use of a refined model over the
whole structural domain requires more computational costs than those necessary. The
best solution would be to use refined models only in the region in which they are
required and classical models elsewhere. The problem of mixing or joining different
structural models is a well-known topic in literature as shown by Kim et al (1997).
Biscani et al (2012) proposed an approach that is able to increase the accuracy of the
model, but only where the piezoelectric elements are located. The coupling between
of piezo-ceramic and metallic materials can be an problematic when the device has
to operate at high temperatures. The large difference between the thermal expansion
coefficients (CTE) could lead to large deformations, which in turn could overcome
the stroke of the actuator. Accurate numerical models may be used to predict the
behavior of these devices, and they can be used in the design process. The use of
classical beam models for the thermo-piezo-elastic analysis of multilayer structures
can be found in the work by Tzou and Ye (1994); Ahmad et al (2006). (Carrera and
Robaldo, 2007) presented a class of refined two-dimensional models for the accurate
analysis of plates and shells including thermal and piezoelectric effects.

A unified approach to the development of refined one-dimensional models, which
is suitable for multi-field analyses is presented in the following pages. The structural
model is based on the Carrera Unified Formulation (CUF), a numerical tool that
can be used to derive any order of structural model in a compact and unified form.
CUF was firstly developed for two-dimensional models by Carrera (2003) and was
extended to the thermal-elastic problem by Carrera (2000); Robaldo et al (2005).
The piezo-elastic formulation was introduced by Robaldo et al (2006). The fully
coupled piezo-thermo-mechanical expansion of the CUF was presented by Carrera
and Boscolo (2007). This numerical approach was extended to the one-dimensional
model by Carrera et al (2010, 2011b, 2012a,b),more details can be found in the books
by Carrera et al (2014a, 2011a).

The displacement field above the cross-section was described in the work by
Carrera and Petrolo (2012) through the use of Lagrange-type polynomials. The
extension of this model to a multi-field analysis was presented by Miglioretti et al
(2014) for the piezo-mechanical problem, and was used by Zappino et al (2016).

15.2 Thermo-Piezo-Elastic One-Dimensional Model

This section presents the refined one-dimensional model used in the following
analyses. The coordinate reference frame is shown in Fig. 15.3. The displacement
three-dimensional field is described using the vector uuu:
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Fig. 15.3 Beam reference
system.

x

z

y

�

uuuT =
{
ux, uy, uz

}
(15.1)

In the thermo-piezo-elastic formulation, in addition to the mechanical variables, also
the temperature variation,ϑ, and the electric potential, φ, must be considered. The
solution of the thermo-piezo-elastic problem requires to define five quantities in each
point:

uuuT =
{
ux, uy, uz, ϑ, φ

}
(15.2)

where vector uuu contains the unknown quantities.

15.2.1 Kinematic Approximation

The one-dimensional approximation requires to assume a known displacement field,
a temperature variation and a electric potential over the cross-section. Different
formulation can be used, in the following pages a review of the classical models
and the details of the refined kinematic assumptions used in the present work are
presented.

15.2.1.1 Classical Beam Models

Classical beam models are subject to a number of fundamental assumptions that limit
the use of these models to a small number of applications.

The Euler-Bernoulli beam theory, EBBT, does not consider shear effects and the
warping of the cross-section, which is considered rigid in- and out-of-plane. The
displacement field of the cross-section can be written as:

ux = ux1

uy = uy1 + x
∂uz1

∂y
+ z

∂ux1

∂y
(15.3)

uz = uz1
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This model has only three degrees of freedom, DOF, over the cross-section because
the rotation of the cross-section is considered as the derivatives of the rigid translation.

The Timoshenko beam theory, TBT, includes the effects of the shear but it is
considered constant over the cross-section. In this case, the displacement field of the
cross-section can be written as:

ux = ux1

uy = uy1 + x uy2 + z uy3 (15.4)
uz = uz1

The TBT has five DOFs, because the cross-sectional rotation is a free parameter.
The use of these models is limited to slender (EBBT) and moderately slender (TBT)
bodies, because the fundamental assumptions are only verified for these geometries.
In the present form these models can be used to describe the bending of prismatic
beam. The torsional effects can be included considering the contributions introduced
by de Saint-Venant (1856) or, in the case of thin-walled structures, by Vlasov (1984).

The use of refined one-dimensional models allows the range of applicability of
these models to be extended to a large number of applications. In this work the
refined one-dimensional models derived from using the CUF are used to build node-
dependent kinematic one-dimensional models. A brief review of these models is
presented in the following section.

15.2.1.2 Refined One-Dimensional Models

The one-dimensional approximation requires a known displacement field to be
assumed over the cross-section. A function expansion can be used to describe properly
the behavior of the beam cross-section. This approach, suggest by Washizu (1968),
leads to write the three-dimensional displacement field as:

u = uτ(y)Fτ(x,z), τ = 1 . . .M. (15.5)

where Fτ(x,z) is the function expansion over the cross-section, uτ(y) is the unknown
vector along the beam axis, and M is the number of terms in the functions expansion
Fτ(x,z). The choice of the functions expansion allows the kinematic of the model to
be modified. A number of possible choices were presented by Carrera et al (2014c).
In the present work Taylor and Lagrange expansions are considered, more details are
reported in the next sections.

The displacements approximation introduced in Eq. (15.5) leads to a one-
dimensional problem. The solution of this problem can be obtained using the Finite
Element Method, FEM, which allows the system of partial derivative functions to be
reduced to an algebraic system. FEM approximates the axial unknowns uτ(y) using
the one-dimensional shape functions Ni, that is, the displacement field assumes the
formulation:
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u = uiτNi(y)Fτ(x,z), τ = 1 . . .M; i = 1 . . .Nn. (15.6)

where Ni are the shape functions introduced by the FE model, Nn is the number
of nodes of the element and uiτ are the nodal unknowns. The virtual variation of the
displacement can be written as:

δu = δu jsN j(y)Fs(x,z), s = 1 . . .M; j = 1 . . .Nn. (15.7)

15.2.1.3 Taylor Expansion Models (TE)

The one-dimensional TE model consists of an expansion that uses 2D polynomials
xm zn, as Fτ, where m and n are positive integers. For instance, the second-order
displacement field is:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6

(15.8)

Figure 15.4 shows a representation of a two nodes element based on the TE expansion.
In this case, the Fτ and Fs functions are used to expand the solution from the beam
node to the cross-section.

15.2.1.4 Lagrange Expansion Models (LE)

In the case of LE models, Lagrange polynomials are used to build refined one-
dimensional models. The iso-parametric formulation is exploited to deal with arbi-
trary cross-section shaped geometries. For instance, the linear interpolation functions
are:

F1 =
1
4 (1− ξ) (1−η); F2 =

1
4 (1+ ξ) (1−η);

F3 =
1
4 (1+ ξ) (1+η); F4 =

1
4 (1− ξ) (1+η)

(15.9)

where ξ and η are the coordinates in the natural reference system. Equation (15.9)
coincides with the linear Lagrange polynomial in two dimensions. In this paper a
quadratic element with nine nodes, LE9, is used. When LE is used the unknowns are
only the displacements of the cross-sectional nodes.

Fig. 15.4 A two-nodes beam
based on the Taylor expansion.
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Figure 15.5 shows a representation of a two nodes element based on the LE. In this
case the Fτ and Fs functions are used to expand the solution from the cross-sectional
nodes to the cross-section area.

This approach is very effective when layered structure are considered. Fig. 15.6
shows a layered beam, the beam has two layer but there is a patch at one end, that
is, in that area three layer are present. Figure 15.6 shows how each layer can be
represented with a different element over the cross section. This approach allow the
accuracy of the results to be increased because a zig-zag displacement field can be
predicted.

15.2.2 Geometrical Relations

The geometrical relations in the case of the thermo-piezo-elastic model allow the
strain (εεε), the spatial thermal variations (θθθ) and the electric field (EEE) to be evaluated.
The strain vector, εεε, can be written as:

εεεT = {εxx εyy εzz εxz εyz εxy } =DDDuuuu (15.10)

where DDDu is:

DDDT
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 ∂z ∂x ∂y 0
0 ∂y 0 0 ∂z ∂x
∂x 0 0 ∂z 0 ∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.11)

The spatial temperature variation, θθθ, can be written as:

θθθ =

{
∂ϑ

∂x
∂ϑ

∂y
∂ϑ

∂z

}T

=DDDϑϑ (15.12)

where ϑ is the temperature and DDDϑ is:

Fig. 15.5 A two-nodes beam
based on the Lagrange expan-
sion.

Fig. 15.6 Example of the
cross-sectional discretization
of a layered structure.
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DDDT
ϑ =

[
∂x ∂y ∂z

]
(15.13)

The electric field, EEE , can be expressed as:

EEE =
{
∂φ

∂x
∂φ

∂y
∂φ

∂z

}T

=DDDφφ (15.14)

where DDDφ is equal to DDDϑ. The symbol ∂ stands for partial derivative, that is: ∂x =
∂
∂x ,

∂y =
∂
∂y and ∂z =

∂
∂z

15.2.3 Constitutive Relations

The constitutive equation for the thermo-piezo-elastic model have been derived in
according with the work presented by Carrera et al (2008).

The stress, σσσ can be written in the following form:

σσσ =CCCεεε−λλλϑ−eeeEEE (15.15)

The first contribution comes from the Hook’s law and derives from the mechanical
problem. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
σxz
σyz
σxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16
C21 C22 C23 0 0 C26
C31 C32 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C54 C55 0

C61 C62 C63 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εxz
εyz
εxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.16)

The second therm, λλλϑ, comes from the thermo-mechanical coupling. The vector λλλ
can be written as:

λλλ =CCCααα =CCC{α1 α2 α3 0 0 0 }T (15.17)

Where CCC is the matrix with the elastic coefficients of the material, and ααα is the vector
of the thermal expansion coefficients. The last term, eeeEEE, comes from the electro-
mechanical coupling. The matrix eee contains the piezoelectric stiffness coefficients
and can be written as:

eee =CCCddd =CCC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 d15 0
0 0 0 d24 0 0

d31 d32 d33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(15.18)

where ddd is the matrix of the piezoelectric coefficients.
The electric displacement, DDD, can be written in the following form:

DDD = eeeεεε+χχχEEE+ pppϑ (15.19)
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The first term, eeeεεε, comes from the electro-mechanical coupling. The second contribu-
tion, χχχEEE, is due to the electric problem, χχχ is to the dielectric permittivity matrix of
the material:

χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
χ11 χ12 0
χ21 χ22 0
0 0 χ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.20)

The last term, pppϑ, comes from the thermo-electric problem and ppp is the vector of the
pyro-electric coefficients.

The last constitutive equation describe the heat flux, hhh:

hhh = κκκθθθ (15.21)

where κκκ is the conductivity coefficients matrix:

κ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
κ11 κ12 0
κ21 κ22 0
0 0 κ33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.22)

15.2.4 Governing Equation

The governing equation can be written using the virtual displacements principle,
PVD:

δLint = δLext (15.23)

where δLint is the variation of the internal work while, δLext is the variation of the
external work.

In explicit form the PVD can be written as:

δLint =

∫
V

(δεεεTσσσ−δθθθThhh−δEEET DDD)dV = δLext (15.24)

If geometrical and constitutive equation are substituted in Eq. (15.24) the following
equation is obtained:

δLint =

∫
V

(δεεεTCCCεεε−δεεεTλλλϑ−δεεεTeeeEEE+δθθθTκκκθθθ

− δEEETeeeεεε−δEEETχχχEEE−δEEET pppϑ)dV
(15.25)

If the kinematic approximation introduced before is used the terms that compose the
variation of the internal work can be written in matrix form.

The first term, δεεεTCCCεεε, represents the mechanical problem. The strain can be
expressed in therm of derivatives of the displacements, moreover the displacements
can be written using the shape functions Ni and Fτ.
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V

δεεεTCCCεεε = δqqqu
T
js

∫
V

N jFsIIIDDDT
u CCCDDDuIIIFτNidVqqquiτ = δqqqu

T
jskkk

i jτs
uu qqquiτ (15.26)

kkki jτs
uu is the fundamental nucleus of size 3× 3 of the stiffness matrix of the pure

mechanical problem. qqquiτ is the part of the unknown vector related to the mechanical
variables.

The term δεεεTλλλϑ can be written as:∫
V

δεεεTλλλϑ = δqqqu
T
js

∫
V

N jFsIIIDDDT
uλλλIIIFτNidVqqqϑiτ = δqqqu

T
jskkk

i jτs
uθ qqquiτ (15.27)

kkki jτs
uθ is the fundamental nucleus of size 3×1 of the stiffness matrix of the thermo-

elastic problem. qqqϑiτ is the part of the unknown vector related to the thermal variable.
The term δεεεTeeeEEE can be written as:∫

V

δεεεTeeeEEE = δqqqu
T
js

∫
V

N jFsIIIDDDT
u eeeDDDφIIIFτNidVqqqφiτ = δqqqu

T
jskkk

i jτs
uφ qqquiτ (15.28)

kkki jτs
uφ is the fundamental nucleus of size 3×1 of the stiffness matrix of the piezo-elastic

problem. qqqφiτ is the part of the unknown vector related to the electrical variable.
The term δθθθTκκκθθθ can be written as:∫

V

δθθθTκκκθθθ = δqqqϑT
js

∫
V

N jFsIIIDDDT
ϑκκκDDDϑIIIFτNidVqqqϑiτ = δqqqu

T
jskkk

i jτs
θθ qqquiτ (15.29)

kkki jτs
θθ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pure thermal

problem.
The term δEEETeeeεεε can be written as:∫

V

δEEETeeeεεε = δqqqφT
js

∫
V

N jFsIIIDDDT
φeeeDDDuIIIFτNidVqqquiτ = δqqqφ

T
jskkk

i jτs
φu qqquiτ (15.30)

kkki jτs
φu is the fundamental nucleus of size 1×3 of the stiffness matrix of the piezo-elastic

problem.
The term δEEETχχχEEE can be written as:∫

V

δEEETχχχEEE = δqqqφT
js

∫
V

N jFsIIIDDDT
φχχχDDDφIIIFτNidVqqqφiτ = δqqqφ

T
jskkk

i jτs
φφ qqqφiτ (15.31)

kkki jτs
φφ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pure electric

problem.
The term δEEET pppϑ can be written as:
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V

δEEET pppϑ = δqqqφT
js

∫
V

N jFsIIIDDDT
φ pppDDDθIIIFτNidVqqqθiτ = δqqqφ

T
jskkk

i jτs
φθ qqqθiτ (15.32)

kkki jτs
φθ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pyro-electric

problem.
All the fundamental nucleus can be assembled together in fundamental nucleus of

the multi-field problem:

δLint = δuuuT
js

kkki jτs︷�������������������������������︸︸�������������������������������︷⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
. . .

kkkuu
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
...

kkkuθ
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
...

kkkuφ
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
· · · 0 · · ·

] [
kkkθθ

] [
0
]

[
· · · kkkφu · · ·

] [
Kφθ

] [
kkkφφ

]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uuuiτ (15.33)

The contributions kkkθφ and kkkθu can be neglected when an external temperature is
imposed as boundary condition, as in the present paper. As can be seen in Eq.
(15.33), when the multi-field case is considered the nucleus is no more symmetric,
as a consequence the global stiffness matrix loses the properties that come from the
symmetry, this can reduce the efficiency of the numerical solution and an appropriate
solver must be used.

15.2.5 Loading Vector

The virtual work due to the load P = {Px,Py,Pz,Pθ,Pφ} can be expressed as:

δLext =

∫
V

δuT PdV (15.34)

Considering the displacement function the external work can be written as:

δLext = δuT
s j

∫
V

F j
sN j PdV = δuT

s j · ps j (15.35)

where ps j is the expression of the fundamental nucleus of the load vector.
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15.2.6 Rotation and Assembly of the Fundamental Nucleus

The analysis of complex structures requires finite elements to be rotated in any
direction and the stiffness to be computed in a given reference system, that is,
the displacements have to be expressed in the same, global reference system. The
matrices can be written in the global reference system using a rotation matrix, with
respect to the local reference system. The rotation matrices are:

ΛΛΛx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (15.36)

ΛΛΛy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φ) 0 sin(φ)

0 1 0
−sin(φ) 0 cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (15.37)

ΛΛΛz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ξ) −sin(ξ) 0
sin(ξ) cos(ξ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (15.38)

where θ, φ and ξ are the rotation angles around the x,y, and z axis, as shown in Fig.
15.7. The displacement vector in the global reference system, uuuglob, can be written as:

uuuglob =ΛΛΛxΛΛΛyΛΛΛzuuuloc =ΛΛΛuuuloc (15.39)

Therefore, the mechanical part of the fundamental nucleus in the global reference
system becomes:

kkki jτs
uuglob =ΛΛΛ

Tkkki jτs
uulocΛΛΛ (15.40)

The coupling terms can be rotated using the following equations:

Fig. 15.7 Representation of
the rotation angles.
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kkki jτs
uΘglob

=ΛΛΛTkkki jτs
uΘloc

(15.41)

kkki jτs
uφglob

=ΛΛΛTkkki jτs
uφloc

(15.42)

kkki jτs
φuglob

= kkki jτsT

φuloc
ΛΛΛ (15.43)

The terms kkkφφ, kkkφθ and kkkθθ are related to scalar fields therefore do not need to be
rotated. Once all the elements have been expressed in the same reference system, the
global stiffness matrix can be assembled using the classical FEM approach.

15.2.7 The Stiffness Matrix Assembly

The fundamental nuclei introduced in the previous section, that are discussed ex-
tensively in Carrera et al (2014b), can be used as bricks to build the matrix of the
complete structure. Figure 15.8 shows the procedure used to build the stiffness ma-
trix, starting from the fundamental nucleus. The loops on τ and s allow to build the
stiffness matrix at the node level while the loops on i and j make it possible to create
the stiffness matrix at the element level. The assembly on the global stiffness matrix
can be done summing the stiffness of the nodes shared by more then one element.

15.3 Numerical Results

The results obtained using the previously introduced structural model are reported
in this section. The structural model has been assessed, and the results have been
compared with those presented in literature using classical approaches. The Piezo-
elastic model has been assessed considering the benchmark proposed by Zhang and

Fig. 15.8: Stiffness matrix assembly.



15 Refined One-Dimensional Models for the Multi-Field Analysis 357

Sun (1996b). A second case, a beam with piezo-patches, has been considered and
the results have been compared with those by Kpeky et al (2017). Finally, the results
from the thermo-piezo-elastic model have been compared with those by Tzou and Ye
(1994).

15.3.1 Piezo-Elastic Model Assessment

A piezo-elastic model has been assessed in this section. The sandwich beam con-
sidered in the analysis is shown in Fig. 15.9. The beam has a length, L, of 0.1 m, a
thickness of the metallic core, hc, of 16 mm and two external piezo-patches which
have a thickness, hp, equal to 1 mm. The width is considered equal to 1 m. A poten-
tial of 10 V is applied to the face of the interface between the piezoelectric patch
and the internal core, while, the external free faces have a potential set equal to
0 V. The piezoelectric patches are polarized in the z direction. The properties of
the piezoelectric material used in the patches are reported in Table 15.1, while the
properties of the aluminum alloy used in the core are reported in Table 15.2.

The displacements due to the applied voltage, have been evaluated. The results
have been compared with those of Zhang and Sun (1996b). Figure 15.10 shows the
vertical displacement of the beam along the length of the beam. The results are in
agreement with those present in literature. This assessment proves that the present
beam formulation is able to provide an accurate description of piezo-elastic coupling.

Fig. 15.9 Geometry of the
sandwich beam used in the
piezo-elastic assessment

Table 15.1: Material properties of PZT-5H

C11,C22,C33 C12 C13,C23 C44,C55,C66 e15,e24 e31,e32 e33 χ11,χ22 χ33
[GPa] [GPa] [GPa] [GPa] [C/m2] [C/m2] [C/m2] [F/m] [F/m]
126 79.5 84.1 23.0 17.0 -6.5 23.3 1.503×10−8 1.30×10−8
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Table 15.2: Aluminum alloy 1 material properties

aluminum alloy 1
Mechanical properties
E 70.3 GPa
ν 0.345 -

Fig. 15.10 Vertical displace-
ment of the beam along the
y-axis.
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15.3.2 Cantilever Beams with Piezo-Patches

A cantilevered beam with two piezo-patches has been considered in this section.
Benchmark cases of this type have been studied by various researchers such as Sun
and Zhang (1995); Zhang and Sun (1996a); Benjeddou et al (1997), as well as Kpeky
et al (2017). The beam geometry is shown in Fig. 15.11.

Fig. 15.11: Geometrical feature of slender beams with piezo-patches.
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The piezoelectric components are poled in the thickness direction z. A voltage
equal to Δφ= φbottom−φtop = 10 V has been applied for the upper patch and Δφ =−10
V for the lower one to actuate the beam. The piezoelectric components are made of
PZT-5H, whose material coefficients are listed in Table 15.1, The substrate structures
employ aluminum which has the Young modulus E = 70.3GPa and a Poisson ratio
ν = 0.345. Two cases are considered:

• Case A: the piezo-patches cover the whole length of the beam;
• Case B: the piezoelectric components have a length c = 0.01 m and variable

positions along the axial direction from d = 0.01 m to d = 0.09m.

The numerical results for Case A were obtained with uniform LE nodal kinemat-
ics, denoted as “12LE9”, which discretizes the cross-section into 12 sub-domains.
It should be noted that when Lagrange expansions are adopted to describe the kine-
matics on a cross-section of a beam, each expansion term possesses specific physical
coordinates. The structure is divided into 20 beam elements along the longitudinal
direction, and each element has 4 FEM nodes. The obtained results have been com-
pared with the solutions provided by Benjeddou et al (1997); Kpeky et al (2017) as
well as with those obtained from ABAQUS 3D modelling. The ABAQUS models
employ eight layers of C3D20R mechanical brick elements and another eight layers
of C3D20RE piezoelectric brick elements, uniformly distributed 8×40 (x× y) along
each layer. The results given by Benjeddou et al (1997) were obtained using a beam
element model in which the displacement assumptions were layer-wisely defined (in
other words the Bernoulli-Euler theory was used for the faces while the Timoshenko
theory was adopted for the cores), and displacement continuity was enforced at
the layer interfaces. Kpeky et al (2017) reached their solution through solid-shell
piezoelectric elements, that is, SHB8PSE and SHB20E.

The variation in deflection along the beam axis at the central cross-sectional
point (lines A) and at one of the upper corners (lines B) are shown in Fig. 15.12 for
Case A. Table 15.3 compares the deflection on two sets of locations on the free-end
cross-sections. The current solution for the shear configuration in Case A shows good
agreement with those of Benjeddou et al (1997); Kpeky et al (2017).

The models with the same uniform 12LE9 sectional kinematics were also applied
to obtain the numerical solutions to Case B, and the results are shown in Fig. 15.13.
It can be observed that the results based on 12LE9 are in good agreement with the
reference solutions taken from literature (Kpeky et al, 2017).

A frequency response analysis, in which the patches were closer to the beam root,
has been performed using the present model. In this case, the two patches were used

Table 15.3: Tip deflection of the cantilevered beam in Case A

w[10−7m]
(0,b,0) ( a

2 ,b,
he
2 )

ABAQUS 3.749 3.913
12LE9 3.748 3.897
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Fig. 15.13: Tip deflection of the cantilever beams with piezo-patches in Case B.

as sensors and an external force was applied at the tip of the beam. Figure 15.14
shows the frequency response of the cantilevered beam. The dashed line shows the
mechanical response, and it can be seen that it identifies the natural frequencies of
the structure reported in Table 15.4. The solid line represents the electric response
evaluated on the outer surface of the piezo-patch. It can be seen that the resonances
of the electric response just appear when the mechanical modes stretch the piezo-
patches during the deformation. In the other cases the deformation does not produce
an electric response.

Fig. 15.12 Vertical displace-
ment along the beam beam,
piezo-patches cover the entire
length (Case A).
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Fig. 15.14: Frequency response of the cantilever beams with piezo-patches

Table 15.4: First six natural frequency of the cantilever beams with piezo-patches

Natural Frequency LE Model
1 1363.1
2 1637.2
3 7214.3
4 7460.0
5 8744.9
6 12941.5

15.3.3 Thermo-Piezo-Elastic Model Assessment

The fully coupled thermo-piezo-elastic model has been assessed in this section. The
structure reported in Fig. 15.15 has been considered. This is once again a sandwich
beam but with the following dimensions: L equal to 1 m, b equal to 0.0508 m, the
core thickness, hc, equal to 3.36 mm and the thickness of two external piezo-patches,
hp, equal to 0.254 mm.

The internal core has the properties that are reported in Table 15.5, while the
external piezoelectric patches have been built using the same material that was used
in the previous assessment, that is PZT-5H. The thermal properties of this material
are reported in Table 15.6.
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Fig. 15.15 Geometry of
the sandwich beam used
in the thermo-piezo-elastic
assessment

Table 15.5: Aluminum alloy 2 material properties

aluminum alloy 1
Mechanical properties
E 68.95 GPa
ν 0.292 -

Thermal properties
α 11×10−6 oC−1

Table 15.6: PZT-5H material thermal properties

PZT-5H
Thermal properties

λ1 2×105 Nm2 oC−1

λ2 2×105 Nm2 oC−1

λ3 −2.7×105 Nm2 oC−1

Pyro-electric properties
p3 25×10−6 Cm2 oC−1

The structure is subjected to a homogeneous thermal environment, that is, at each
point the same value of temperature has been imposed. An electric potential of 0 V
as been considered at the interfaces between the core and the patches, as shown in
Fig. 15.15. The voltage of the external layer faces, due to the deformation caused by
the thermal load, has been evaluated. The results have been compared with those of
Tzou and Ye (1994).

Figure 15.16 shows the variation of the electric potential at different temperatures.
It is possible to see that there is a linear correlation between the temperature and the
potential. The small difference between the present results and the reference values
is due to the different kinematic model that has been adopted. While the reference
results were obtained using classical models, the present approach takes into account
a quasi three-dimensional deformation that produces a slightly higher potential.
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Fig. 15.16 Upper face poten-
tial at different temperature.
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15.4 Conclusions

The multi-field analysis of layered structures requires the use of refined structural
models. Finite elements based on a layer-wise approach are able to describe the
complex displacement fields due to the variations in the material properties at each
layer. In these cases, it is important to have a zig-zag capability in the kinematic
description, that is, the C0

z requirement can be fulfilled. The refined one-dimensional
models presented in the present work uses a Lagrange expansion over the cross-
section that allows each layer to be described with an independent expansion, or
Lagrange element. The computational model has been developed in the framework of
the Carrera Unified Formulation, which allows refined structural models to be derived
in compact form. The results shown in the present work highlight the following
points:

• the present one-dimensional model can provide three-dimensional results in the
case of thermo-piezo-elastic analysis;

• the present model can deal with the analysis of layered structures with piezo-
patches;

• both sensor and actuator patches can be considered;
• the computational costs can be reduced whit respect to full three-dimensional

models.

In short the present formulation can be considered a valid option for the multi-field
analysis analysis of layered structures.
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