
Chapter 72
A Density-Based Clustering for Gene
Expression Data Using Gene Ontology

Koyel Mandal and Rosy Sarmah

Abstract Gene expression clustering is built on the premise that similarly expressed

genes are included in the same kind of biological process. Recent research has

focused on the fact that incorporation of biological knowledge such as gene ontology

(GO) improves the result of clustering. This paper demonstrates a Semi-supervised
Density-based Clustering (SDC) which uses GO to detect positive and negative co-

regulated patterns from the noisy gene expression data. SDC improves a previous

algorithm DenGeneClus (DGC) which could handle only positive co-regulation and

did not include GO in the clustering process. Experimental results on four real-life

data show that SDC outperforms DGC based on z-score and gene ontology enrich-

ment analysis.
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Positive and negative co-regulated gene

Introduction

High-throughput experiments such as DNA microarray technology have generated

huge amount of data, analysis of which require high performing computational meth-

ods such as clustering. DNA microarrays have helped researchers to observe the

expressions of enormous amount of genes at different conditions such as time, dif-

ferent stages of diseases, or drug applications [1]. The output of DNA microarrays

after several preprocessing steps is finally obtained as a gene expression numerical

matrix which is mathematically written as, GEG×C = {evi,t|i ∈ G, t ∈ C}, where
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evi,t denotes the expression value of ith gene at condition t, G the total gene set, and

C the condition set, respectively [1].

Clustering helps to identify co-expressed, coherent, and co-regulated genes from

the given expression data [2]. Co-regulated genes can be of two types: positively

co-regulated and negatively co-regulated genes [3]. Genes g1 and g2 are said to be

positively co-regulated if the expression value of g1 increases (or decreases) from

condition ti to tj then the expression level of g2 also increases (or decreases) from

ti to tj. Two genes g1 and g2 are said to be negatively co-regulated if the expression

value of g1 increases (or decreases) from condition ti to tj then the expression level

of g2 also decreases (or increases) from ti to tj.
Unsupervised clustering algorithms are built on the presumption that co-expressed

genes are likely to have common biological functions. However it is seen that most of

the algorithms miss the gene functional prediction at the time of clustering. This has

motivated us to shift from unsupervised to semi-supervised clustering by incorporat-

ing gene ontology (GO) knowledge in the clustering process. GO is the fundamental

database of bioinformatics that specifically gives the annotations for gene products

with consistent and structured vocabularies [4].

Algorithms based on the density information give quality clusters, and when GO

knowledge is incorporated into the clustering process, we get more biologically sig-

nificant clusters. Therefore, in this paper, we have combined both density and GO

information to get the benefits of both in our proposed algorithm.

A Semi-supervised Density-based Clustering (SDC) is being proposed, using the

density information of a gene and external knowledge from GO to discover more

biologically relevant clusters from noisy data. This work overcomes the drawbacks

of a density-based clustering algorithm (DenGeneClus, DGC) [5] by discovering

both the positively and negatively co-regulated genes.

Background

Clustering of gene expression data is widely classified into five types, viz. hier-

archical, partitional, density-based, graph-theoretical, and model-based [1, 6, 7].

From the various approaches surveyed, we find that density-based algorithm is not

dependent on number of clusters. DGC [5], DHC [8], OverDBC [9], and Bayesian-

OverDBC [10] are the examples of density-based gene expression data clustering.

Conventional clustering algorithms find sets of genes depending on their prox-

imity (similarity or dissimilarity) measure. Most commonly used proximity mea-

sure is Euclidean distance which gives the dissimilarity between gene gi, gj as

DisEuc(gi, gj) =
√

(
∑|C|

t=1(gi,t, gj,t)2) [1]. Expression based measures may not find

the potential relationships among the genes. Therefore, it is necessary to guide the

clustering process with external domain knowledge. Semantic similarity measure is

the key technique to incorporate the knowledge of known genes from gene ontol-

ogy and gene annotation file. Some of the well-known semantic similarities are
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Resnik’s, Jiang and Conraths’s and Lin’s [11]. These semantic similarities are built

on the information theory which means how much information they commonly share.

Information content of a term t represented as IC in a specific corpus is described

by IC = −log(P(t)), where P(t) represents probability of occurrence of t. In our

proposed method, we have used Lin similarity between two terms say ti and tj and

given by SimLin(ti, tj) =
2×IC(LCA)
IC(ti)+IC(tj)

. SimLin gives the IC between two terms by con-

sidering the IC of each individual term and the IC of lowest common ancestors

(LCA). The value of SimLin lies between 0 and 1. We combined SimLin and DisEuc
to improve the clustering result. We first convert DisEuc into a similarity measure as

SimEuc =
1

1+DisEuc
. Then we find the combined similarity (Com_sim) given next.

Com_sim = w1 ∗ SimEuc + w2 ∗ SimLin (72.1)

where, w1+w2 = 1, 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1 [4]. w1 and w2 control the weights

to two similarity measures. Hang et al. [12] proposed an algorithm using two infor-

mation such as gene density function and biological knowledge, and the proposed

one gave better result than standard algorithm. Zhou et al. [13] also proposed an algo-

rithm incorporating density of data and gene ontology in distance-based clustering

algorithm. Both the algorithms do not address the issue of identifying the positive

and negative co-regulated genes. An algorithm which finds clusters comprised with

co-regulated genes is being proposed by Ji and Tan [3]. To identify interesting partial

negative positive co-regulated gene cluster, Koch et al. [14] proposed an algorithm

which also discovers overlapping clusters.

Proposed Method

Our SDC is a density-based clustering algorithm which works in two phases (i) pre-

processing and (ii) clustering phase.

Preprocessing step is initiated by normalizing (standard deviation 1 and mean 0) the

gene expression data. Then, a discretization process discretizes the gene expression

data, and the discretized data (GEdisct) is fed as input to the clustering algorithm.

In Discretization step, each cell evi,t, (where t = 1) of the gene expression data (GE)

for the first condition is discretized by using Eq. 72.2, and for the other conditions

(C− t1), each cell evi,t (where t = 2, 3..., |C|) is computed using Eq. 72.3. Each gene

in GEdisct will now have a pattern of regulation values 0s, 1s, and 2s across condition

known as regulation pattern.

GEdisct(i, 1) =
⎧
⎪
⎨
⎪
⎩

2 if evi,1 < 0
0 if evi,1 = 0
1 if evi,1 > 0

(72.2)
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GEdisct(i, t) =
⎧
⎪
⎨
⎪
⎩

2 if evi,t < evi,t−1
0 if evi,t = evi,t−1
1 if evi,t > evi,t−1

(72.3)

After the computation of each gene’s regulation pattern, next job is to calculate the

match (M) between genes gi and gj stated in Eq. 72.4.

Definition 1 Match: Match (M) gives the number of common regulation value

according to the conditions except the first one, which signifies how similar two

patterns are with respect to their expression values.

If M = |C|−1, it can be said that two patterns are almost similar. The match between

gi and gj is calculated as below.

Pati,jt =

{
1 if GEdisct(evi,t) = GEdisct(evj,t)where t = 2, ..., |C|
0 otherwise

(72.4)

M(gi, gj) = number of 1s in Pati,jt (72.5)

Definition 2 Maximal Match: If match between gi and gj is equal or greater to the

minimum threshold value 𝛿, (M(gi, gj) >= 𝛿) and no other gene exists whose match

(M) with respect to gi is greater than gj, then gi has a maximal match (MM) with

another gj (gi ≠ gj).

Definition 3 Maximally Matched Regulation Pattern: For genes gi and gj, let

gi be maximally matched with gj, then the Maximally Matched Regulation Pattern

(MMRP) is computed using Eq. 72.6 by considering the subset (two gene profiles

may not match throughout |C| − 1 conditions) of conditions where they maximally

matched based on 𝛿.

MMRP(gi,t) = MMRP(gj,t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2 if GEdisct(gi,t) = 2 = GEdisct(gj,t)
0 if GEdisct(gi,t) = 0 = GEdisct(gj,t)
1 if GEdisct(gi,t) = 1 = GEdisct(gj,t)
x otherwise

(72.6)

where, t = 2, 3, ..., |C|. Therefore, for the whole set of t conditions, we obtain an

MMRP pattern of 0s, 1s, 2s and xs.

Definition 4 Negative Maximally Matched Regulation Pattern: The Negative

Maximally Matched Regulation Pattern (NMMRP) of gj is determined by comparing

the MMRP of gi as stated in Eq. 72.7.
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NMMRP(gj,t) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

2 if MMRP(gi,t) = 1
1 if MMRP(gi,t) = 2
0 if MMRP(gi,t) = 0
x if MMRP(gi,t) = x

(72.7)

Therefore, we obtain a NMMRP pattern for t conditions (t = 2, 3, ..., |C|).

Definition 5 Rank: Rank gives the ascending order of expression levels of a gene

across conditions.

Rank is measured by giving a ranked value starting from 1 to all the expression values

in the MMRP pattern except for those conditions having a x value. The working

example of the computation of M, MM, MMRP, NMMRP, and Rank is available in

http://agnigarh.tezu.ernet.in/~rosy8/workingexampleSDC.pdf.

The second phase, Clustering of SDC is based on some of the fundamental con-

cepts of density-based clustering. The following definitions are trivial to the cluster-

ing process.

Definition 6 𝜖-neighbor: 𝜖-neighbors with respect to gi ∈ G are those genes gk ∈
G, which have more similarity than the user defined threshold (𝜖). Here, we have

used combined similarity which is mentioned in Eq. 72.1.

𝜖 − neighbors(gi) = {gk|where gk ∈ G and com_sim(gi, gk) >= 𝜖} (72.8)

Definition 7 Core-neighbors: Core-neighbors of a gene gi ∈ G is described by a

set of genes G∗ ∈ G and should satisfy the following four criteria. A gene, say gi is

considered as core gene if.

1. ∀gy ∈ G∗
, gy ∈ 𝜖 − neighbors(gi).

2. MMRP(gy) ≈ MMRP(gi).
3. Rank(gy) ≈ Rank(gi).
4. |G∗| >= min_points (a user defined threshold).

To compute the core-neighbors of a particular gene gi, we check the above-mentioned

four criteria for all the C − 1 dimensions (except condition 1). If we do not get the

core-neighbors, we will go on checking the criteria by reducing the search space one

condition at a time. At first we reduce the condition set by C− {t1, tl} , where t1 and

tl are the first and the last condition respectively, i.e., |C| − 1 − 1 = |C| − 2. If we

still do not find the core-neighbors of gi, we further reduce the search space by the

second last condition i.e., C − {t1, tl−1, tl}, where t1, tl−1 and tl are the first, second

last and the last condition respectively. In other words the condition set is reduced

by |C| − 2, |C| − 3, |C| − 4 . . . and so on.

Definition 8 Direct density reachable: gi is direct density reachable with respect

to gj if it fulfills three basic principles.

http://agnigarh.tezu.ernet.in/~rosy8/workingexampleSDC.pdf
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1. gj must be a core gene or gj must have core-neighbors.

2. gi ∈ 𝜖 − neighbors(gj).
3. MMRP(gi) ≈ MMRP(gj).

In case of pairs of core genes, direct density reachable relation holds symmetric

relation.

Definition 9 Density reachable: Gene gq is density reachable from gp provided

there is a chain of genes g1, g2, g3, ..., gn such that g1 = gp and gn = gq and every

gi+1 gene is directly density reachable from gthi gene.

Definition 10 Connected: Gene gi is connected to gj with respect to 𝜖, provided gi
and gj are reachable from a common gene say gk.

This relation holds symmetric property.

Definition 11 Cluster: A cluster CL (|CL| >= min_points) is a collection of reach-

able and connected genes. Say, a gene gi ∈ CL and the gene gj is found to be reach-

able from gi, then gj must be in cluster CL. Similarly, if a gene gi ∈ CL and gj is

connected to gi then gj will be in the same CL cluster.

Definition 12 Noise: A noise gene is a gene which does not belong to any cluster.

The steps of SDC is given next. At first, all genes are not clustered.

Step 1 Start with an random unclustered gene say gi.
Step 2 Find the MMRP(gi) and Rank(gi).
Step 3 Find the core-neighbors of gi using Definition 7.

Step 4 For each core-neighbors of gi.

Step 4.1 Identify all connected and reachable genes with respect to each core-

neighbors.

Step 4.2 Give the same cluster_id for all these genes.

Step 5 End of step 4.

Step 6 Find the NMMRP from MMRP of the newly formed cluster_id .

Step 7 Find the unclustered genes which matches the NMMRP.

Step 8 For each gene gj with matched NMMRP.

Step 9 Find the core-neighbors of gene gj and all reachable and connected genes

from it.

Step 10 Assign another cluster_id to all the reachable and connected genes of gj.
Step 11 Repeat step 1 to 10 with the next unclustered gene.

Step 12 All the unclustered genes are marked as noise.

Step 13 End
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Table 72.1 A brief description about the datasets

Serial no. Name of dataset Genes/samples Source

D1 Yeast cell cycle 384/17 http://anirbanmukhopadhyay.50webs.

com/data.html

D2 Yeast sporulation 474/7 http://cmgm.stanford.edu/pbrown/

sporulation/

D3 Yeast diauxic shift 614/7 http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE28

D4 Prostate cancer 339/102 http://archive.broadinstitute.org/mpr/

publications/projects/

Cancer_Susceptibility/

references_and_URLS_of_datasets.html

Experimental Result

Implementation of SDC and DGC was done in MATLAB 2015 platform and exper-

imented over four publicly available real-life gene expression datasets. Table 72.1

gives a description about the used datasets in the experiment.

To compute SimLin, we have downloaded the most recent gene ontology file (released

on 2016-09-10) and annotation files (Saccharomyces Genome Database and Homo
Sapience) from www.geneontology.org. To compare both the DGC and SDC clus-

tering results, we use DisEuc for DGC and Com_sim for SDC. The parameter settings

highly influence the clustering results. We keep the value of 𝛿 as minimum (𝛿 = 3)

as possible. To determine the value of 𝜖 and min_points (= 4), we follow the method

mentioned in [15]. As we want to give the more weightage on proximity measure

than semantic similarity measure, we kept the value of w1 = 0.6 and w2 = 0.4. The

𝜖 for DGC and SDC changes from one dataset to another. The 𝜖 of DGC is 3 and 1.2

for D1 and D2; and for D3 and D4, it is 1 and 10, respectively. The 𝜖 of SDC is 0.3

for D1, 0.4 for D2, 0.3 for D3 and 0.3 for D4, respectively.

To assess the biological significance of clusters, we eventually investigated the

clusters generated by DGC and SDC by functional enrichment analysis. A cluster is

called enriched, if at least one of the GO term of a particular cluster from the Biolog-

ical Process is below the level of significance. P value is being computed using Fun-

cAssociate 3.0 with 5% level of significance [16]. We then analyze the functional cat-

egory Biological Process (BP) using web (http://www.ebi.ac.uk/QuickGO/) based

on GO annotation database. It can be observed from Fig. 72.1 that SDC finds more

enriched clusters than DGC.

http://anirbanmukhopadhyay.50webs.com/data.html
http://anirbanmukhopadhyay.50webs.com/data.html
http://cmgm.stanford.edu/pbrown/sporulation/
http://cmgm.stanford.edu/pbrown/sporulation/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28
http://archive.broadinstitute.org/mpr/publications/projects/Cancer_Susceptibility/references_and_URLS_of_datasets.html
http://archive.broadinstitute.org/mpr/publications/projects/Cancer_Susceptibility/references_and_URLS_of_datasets.html
http://archive.broadinstitute.org/mpr/publications/projects/Cancer_Susceptibility/references_and_URLS_of_datasets.html
http://archive.broadinstitute.org/mpr/publications/projects/Cancer_Susceptibility/references_and_URLS_of_datasets.html
www.geneontology.org
http://www.ebi.ac.uk/QuickGO/
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Fig. 72.1 Proportion of

enriched clusters of DGC

and SDC for different

datasets

Table 72.2 Comparison of z-score between DGC and SDC on various datasets

DGC SDC

Datasets No. clusters z-score No. clusters z-score

D1 27 2.494 25 5.042

D2 31 9.621 27 12.59

D3 47 4.121 41 4.718

To judge the quality of clusters, we have used the Web-based tool cluster judge

[17]. The comparison of DGC and SDC based on z-score for different yeast datasets

is shown in Table 72.2. Table 72.2 suggests that the clusters generated by SDC have

higher z-score value than DGC which proves that the cluster quality is better for

SDC.

Conclusion

We have proposed an algorithm incorporating gene ontology in a density-based clus-

tering algorithm. It is being observed that external domain knowledge gives reliable

clusters. The drawback of this algorithm is that it finds disjoint clusters and cannot

find overlapping clusters. Biologically it is proven that one gene may participate in

many biological pathways, and this allows it to belong to multiple clusters. Detecting

overlapping clusters is a crucial task and will be incorporated in our future work.
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