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Design and Analysis of LFSR-Based Stream
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Abstract Stream ciphers are increasingly used for lightweight applications like

RFID, Bluetooth, and Wi-Fi communications where the length of the plaintext is

initially unknown. Generally, the stream ciphers are characterized by fast encryption

and decryption speed. The LFSR-based stream cipher can generate pseudorandom

binary strings with good cryptographic properties. Hardware implementation cost is

also minimum for it. In this paper, we have discussed the architecture and properties

of the LFSR. We have also discussed the properties of secured Boolean function as

one of the important components of stream cipher. Here, we have implemented a gen-

eralized nonlinear combination of generator-based model comprising LFSR/NLFSR

and Boolean function for designing a pRNG. The bitstream properties of pRNG are

tabulated and compared with their best attainable parameters.
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Introduction

Cryptography is the study of mathematical techniques used for achieving secured

communication over the unsecured channel. Cryptographic primitives are designed

to deal with the basic security issues like confidentiality, integrity, authentication,

and non-repudiation. It can be classified into two categories, namely symmetric key

and asymmetric key primitives. Symmetric key cryptographic primitives have the

advantage of higher throughput over asymmetric ones, and therefore symmetric key

cryptographic primitives are widely used for bulk data encryption and decryption.
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Symmetric key ciphers are again subdivided into two categories, namely block cipher

and stream cipher. The stream ciphers have the advantages of higher throughput, low

latency, and lesser error propagation effect than that of block cipher. The basic work-

ing principle of the stream cipher is to generate an arbitrarily long pseudorandom

bit stream from a given random string and that pseudorandom bitstream is used to

encrypt the message stream. Further, stream cipher based on LFSR (Linear Feedback

Shift Register) is characterized by its lightweight property and ease of implementa-

tion in hardware. A few examples of popular stream ciphers are A5/1 used in GSM

security, E0 used in Bluetooth, RC4 used in SSL, etc. A few prominent lightweight

stream ciphers are Grain, WG, Trivium, SNOW, Salsa 20, Sprout, SOBER, etc.

[1–3].

The outline of the paper is as follows: section “Literature Survey” provides the

literature survey. Section “Background and Preliminaries” provides the background

and preliminaries related to stream cipher. Section “Analysis of Feedback Shift

Registers for Stream Cipher” provides the FSR analysis part. Section “Proposed

Design” describes the architecture of implemented nonlinear generator model and its

result analysis. Finally, section “Conclusion and Future Work” concludes the paper.

Literature Survey

Here, we have discussed the different types of LFSR-based stream ciphers. A renewed

interest has grown among the research communities for analysis and design of stream

ciphers due to the launch of eSTREAM project [1]. This research project was main-

tained by European Network of Excellence for Cryptology from 2004 to 2008. Only

seven candidates are chosen from long-term research project in Europe known as

ECRYPT [4]. In Table 61.1, we have listed a few LFSR-based stream ciphers and

their building process [2, 3].

Background and Preliminaries

In this section, we have included mathematical preliminaries related to LFSR-based

stream cipher design.

Boolean Function

A Boolean function is a mapping from Fn
2 → F2, over the finite field with two ele-

ments{0, 1}. If the number of combination mapping consists of an equal number of

1′s and 0′s, then the Boolean function is called as balanced.
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Table 61.1 LFSR-based stream cipher list

Cipher name Platform used Building process

A5/1 Hardware Combination of three LFSRs

with irregular clocking

E0 Hardware LFSR of length 4

Sosemanuk Software LFSR of length 10

HC-256 Software Nonlinear Filter

32-bit-to-32-bit mapping

Linear masking

Trivium Hardware NLFSR (Nonlinear Feedback

Shift Register) of lengths 93,

84, and 111

Grain Hardware NLFSR of length 128 and

LFSR of length 128

Sprout Hardware LFSR and NLFSR of the

length 40

WG Hardware and software LFSR of length 11

Espresso Hardware 256-bit NLFSR are in

Fibonacci configuration

Decim v2 Hardware LFSR of length 192

Decim-128 Hardware LFSR of length 288

For example, let us consider n = 3 variable Boolean function f (x1, x2, x3) =

x1x2 + x2x3 + x3. The input sequences of (x1, x2, x3) are (000, 100, 010, 110, 001,

101, 011, 111) and the final output of the Boolean function is depicted as (0, 0, 0, 1,

1, 1, 0, 1).

A cryptographically secured Boolean function should satisfy the following prop-

erties [5, 6]:

∙ Boolean function should be balanced.

∙ The nonlinearity and correlation immunity of the function should be high so that

it can resist correlation attack.

∙ The algebraic degree and algebraic immunity of the function should be high so

that it can resist algebraic attack.

Algebraic Normal Form

Usually, every Boolean function has a distinct representation as a multivariate over

F2 which is known as algebraic normal form (ANF). This function can be represented

as



634 S. Deb et al.

f (x1, x2,… , xn) = c0 ⊕
∑

1≤i≤n
cixi ⊕

∑

1≤i≤j≤n
ci,jxixj ⊕…⊕ c(1,2,…,n)x1 … xn

where the coefficients c0, ci, ci,j,… , c(1,2,…,n) ∈ F2. In this function, the number of

variables in the highest order product term (with coefficient non zero) is known as

the algebraic degree. In general, when the degree of the function f is at most one, it

can be described as an affine function. The affine functions with (c0 = 0) are known

as linear functions [6, 7].

Walsh Transform

This transformation function is an n variable Boolean function. In that case,

c = {c1 … cn} ∈ Fn
2 and a n variable linear function can be represented as

lc(x) = c1x1 ⊕…⊕ cnxn. So, this transformation function can be described as

Wf (c) =
∑

x∈Fn
2

(−1)f (x)⊕lc(x)

From the above definition of Wf (c), it can be observed that, when f (x)⊕ lc(x) value

is 0, then sum is increased by 1, and when this value is 1, sum is decreased by 1

[6, 7].

Nonlinearity

Nonlinearity of a Boolean function f of n variables can be described as the distance

between the function and the set of all possible affine functions. Nonlinearity can be

defined in terms of Walsh transform as given below [7, 8]:

nl(f) = 2n−1 − 1
2
max |Wf (c)|

Correlation Immunity

A Boolean function f on Fn
2 is said to be correlation of order m, where 1 ≤ m ≤ n,

if the output of f and any m input variables are statistically independent. A Boolean

function f on Fn
2 is correlation immune of order m iff Wf (c) = 0 for all vectors c ∈ Fn

2
such that 0 ≤ |c| ≤ m [6, 8].
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Analysis of Feedback Shift Registers for Stream Cipher

The normal way of designing Feedback Shift Register (FSR) through binary

sequences, {c0, c1,… cn} ∈ GF(2), fulfills the recurrence relation of order n. FSR is

created by D Flip-flops which are connected serially and each D Flip-flop
constructed in such a way that each gate is simulating the Boolean logic for feed-

back function. Moreover, if FSR runs with linear recurrence, feedback function is

known as LFSR and if it runs with nonlinear recurrence, then feedback function is

known as NLFSR [9]. eStream selected Grain, Trivium, and MICKEY stream cipher

are designed by NLFSR [1].

LFSR

Linear Feedback Shift Register (LFSR) is a shift register with a feedback path. Here,

the output sequence of each D Flip-flop is joined to the input of the adjacent D Flip-
flops. Feedback path is defined as the tap position of D Flip-flop which takes part

in the XOR (modulo 2) operation and provides input to the last D Flip-flop. Initial

value of LFSR is known as seed value of LFSR. The feedback path is also known as

feedback function or connection polynomial [9, 10].

For example, let us consider a LFSR degree is m = 3. The LFSR structure and

feedback path are shown in Fig. 61.1. Here, this feedback path can be represented

in polynomial form as (x3 + x2 + 1). The internal state bits are expressed as ai and

it has been shifted by one to the right at each clock. In that case, rightmost state bit

is considered as present output bit and the leftmost state bit is calculated by feed-

back path. Let us consider the output bit is ai and assuming the initial state bits are

(a0, a1, a2).

Now, the output sequence of the LFSR can be calculated as ai+3 = ai+1 + ai mod

2, where i = 0, 1, 2, 3,… ,.

FF
a2

FF
a1

FF
a0

CLK

a ... a , ai 1 0

a3 = a1+a0 mod 2
a4 = a2+a1 mod 2
a5 = a3+a2 mod 2

...

Fig. 61.1 Schematic diagram of LFSR
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Properties of LFSR

∙ In l-stage LFSR, if l number of registers are available in the LFSR, then the number

of states is equal to 2l−1.

∙ However, every feedback path or connection polynomial will not give maximum

length. The LFSR will yield maximum length if and only if the corresponding

feedback path is primitive polynomial.

Klapper and Goresky developed similar type of LFSR design, known as Feed-

back with Carry Shift Register (FCSR). There are two different types of LFSR,

namely Fibonacci and Galois [11]. In FCSR and LFSR, linear sequences are pos-

sible to employ through Berlekamp–Massey algorithm [10, 11].

LFSR-Based Stream Ciphers

The main use of LFSR in stream cipher is to produce pseudorandom sequence. We

know, LFSR can generate an infinite bitstream. In the most common form, multi-

ple LFSRs are used to build a stream cipher. But LFSR exhibits linear property.

Thus the nonlinearity concept has been introduced to overcome the drawback of

linear property [12] by irregularly changing the clock of the LFSR. LFSR-based

stream cipher uses mainly three classes of pRNGs (pseudorandom number genera-

tors), namely nonlinear combination, nonlinear filter, and clock-controlled genera-
tors [13]. Almost every LFSR-based stream ciphers follow any of these nonlinear

techniques or use a combination of these techniques with some extra efforts like

adding counter or a combination of different LFSRs with NLFSR [1]. Usually, non-

linear combiner design employs n number of LFSRs of different lengths. In that case,

all are initially assigned with nonzero seed values. During each clock pulse, n num-

ber of results from the LFSRs are taken and filled as n data inputs to an n variable

Boolean function. In case of nonlinear filter generator, n numbers of outputs from

different positions of the LFSR are filled as n inputs to an n variable Boolean func-

tion. Moreover, the Boolean function and memory collectively construct an FSM

[7].

Proposed Design

Our proposed model follows a simple implementation of nonlinear combination gen-

erators shown in Fig. 61.2. The model comprises cryptographically secure Boolean

function and number of LFSR can be added in a customized fashion. Here, for sim-

plicity purpose, we use less number of the LFSR.
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Fig. 61.2 Proposed design

structure
LFSR1(X   )L1

LFSR2(X   )L2

LFSR3(X   )L3

LFSR1(X   )L4

LFSR2(X   )L5

LFSR3(X   )L6

LFSR1(X   )L7

LFSR2(X   )L8

LFSR3(X   )L9

LFSR4(X    )L10

LFSR5(X    )L11

L1

NLFSR1(f )1

NLFSR2 (f )2

NLFSR3 (f )3

F

Output

Design Specifications

This design consists of three main blocks. In the first block, three LFSRs are initially

loaded and passed through NLFSR1(f1) function. The second block is also loaded

with three LFSR and passed through NLFSR2(f2) function and in the third block, five

LFSRs are loaded and passed through NLFSR3(f3) function. In LFSR, the feedback

polynomial values are listed in the next subsection. Finally, three blocks are passed

through one nonlinear function (F).

Initialization

Before the output sequence generation, the structure must be initialized with nonzero

seed values. Usually, LFSR connection polynomial over GF(2) is the primitive poly-

nomial or it can be called as the update function. Now, LFSR filled with a sequence

of bits or it can be loaded like a fixed sized bit of hex values, or a string. Table 61.2

shows the LFSR tap polynomials. Specifically, results of the structure, i.e., binary

sequences of the functions, are listed in the matrix order.
1

1
LF is represented as LFSR.
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Table 61.2 Parameters of the proposed model

Tab Polynomials /
Feedback Path
LFSR1 = x6 + x5 + 1
LFSR2 = x5 + x3 + 1
LFSR3 = x4 + x3 + 1

NLFSR1

Combining function:
f1(x1,x2,x3) = x2+
x1x3 + x1x2

Output function:
F (x1,x2,x3) =
x3 + x1x2 + x3x2

Tab Polynomials/
Feedback Path
LFSR4 = x7 + x6 + 1
LFSR5 = x5 + x3 + 1
LFSR6 = x11 + x9 + 1

NLFSR2

Combining function:
f2(x1,x2,x3) = x3x2

+x3x1 + x1

Tab Polynomials/
Feedback Path
LFSR7 = x5 + x3 + 1
LFSR8 = x7 + x6 + 1
LFSR9 = x8 + x6 + x5

+x4 + 1
LFSR10 = x9 + x5 + 1
LFSR11 = x10 + x7 + 1

NLFSR3

Combining function:
f3(x1,x2,x3,x4,x5)
= x1x2 + x2x3+
x3x4 + x4x5 + x5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LF1 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0
LF2 1 0 1 0 1 0 0 0 0 1 0 0 1 0 1
LF3 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
LF4 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1
LF5 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1
LF6 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0
LF7 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1
LF8 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1
LF9 1 1 1 1 0 0 0 0 1 0 1 1 1 1 0
LF10 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
LF11 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
f1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1
f2 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
f3 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0
F 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1

Results and Performance Analysis

We have done all our experiments in SageMath tool. Here, the final bits obtained

from the nonlinear filter, i.e., F, will be considered as the final output bit which is

used as a nonlinear sequence. We have taken only 15 bits of output; however, the

number of bits can be increased or decreased as per requirement and also can be

further converted to fixed bit hex values or string. In this paper, we have analyzed

the nonlinearity property of the proposed schemes which are numerically depicted.

Table 61.3 shows the typical values of parameters such as balancedness, nonlinearity,

Table 61.3 Cryptographic properties obtained after using the Boolean functions

Function Balancedness Nonlinearity Maximum

nonlinearity

Algebraic

immunity

Correlation

immunity

Walsh

transform

f1 YES 2 2.59 2 0 (0, 4, 4, 0,
0, 4,−4, 0)

f2 YES 2 2.59 2 0 (0, 0,−4, 4,
−4,−4, 0, 0)

f3 YES 12 13.18 2 0 (0, 8, 0,−8,
8, 0, 8, 0,
0,−8, 0, 8,
−8, 0,−8, 0,
8, 0, 8, 0,
0, 8, 0,−8,
8, 0, 8, 0,
0, 8, 0,−8)

F YES 2 2.59 2 0 (0, 4, 0,−4,
4, 0, 4, 0)
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maximum nonlinearity, algebraic immunity correlation immunity, and Walsh trans-

form. More specifically, proposed model resultant bits are shown in Table 61.3. It

shows the maximum possible nonlinearity and proposed design nonlinearity.

Conclusion and Future Work

In this paper, we have surveyed LFSR-/NLFSR-based stream ciphers. We have also

implemented one nonlinear-based generator model to generate cryptographically

secured bitstream. The various properties of randomness like algebraic immunity,

correlation immunity, Walsh transformation, nonlinearity, etc. are listed in the tabu-

lated form. The nonlinearity of the bitstream is compared with maximum nonlinear-

ity achievable for a particular Boolean function. Research problems on NLFSR are

still not well understood like patterns and its behaviors. Development of an intelligent

algorithm for designing customized LFSR-based stream cipher using the generalized

model shall be our future research work.

References

1. eSTREAM: the ECRYPT Stream Cipher Project. http://www.ecrypt.eu.org/stream/

2. Kocheta, M., Sujatha, N., Sivakanya, K., Srikanth, R., Shetty, S., Mohan, P.A.: A review of

some recent stream ciphers. In: 2013 International conference on Circuits, Controls and Com-

munications (CCUBE). (2013)

3. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of lightweight-

cryptography implementations. IEEE Design & Test of Computers 24(6) (2007) 522–533

4. Videau, M. In: eSTREAM. Springer US, Boston, MA (2011) 426–427

5. Shehhi, M.A.A., Baek, J., Yeun, C.Y.: The use of boolean functions in stream ciphers. In:

Internet Technology and Secured Transactions (ICITST), 2011 International Conference for.

(Dec 2011) 29–33

6. Maitra, S., Sarkar, P.: Cryptographically significant boolean functions with five valued walsh

spectra. Theoretical Computer Science 276(1) (2002) 133–146

7. Maitra, S.: Autocorrelation properties of correlation immune boolean functions. In: Interna-

tional Conference on Cryptology in India, Springer (2001) 242–253

8. Nawaz, Y., Gong, G., Gupta, K.C. In: Upper Bounds on Algebraic Immunity of Boolean Power

Functions. Springer Berlin Heidelberg, Berlin, Heidelberg (2006) 375–389

9. Deb, S., Biswas, B., Kar, N. In: Study of NLFSR and Reasonable Security Improvement on

Trivium Cipher. Springer India, New Delhi (2015) 731–739

10. Klapper, A., Goresky, M. In: Cryptanalysis Based on 2-Adic Rational Approximation. Springer

Berlin Heidelberg, Berlin, Heidelberg (1995) 262–273

11. Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span, and combiners with memory.

Journal of Cryptology 10(2) (1997) 111–147

12. El Hennawy, H.M., Omar, A.E., Kholaif, S.M.: Lea: link encryption algorithm proposed stream

cipher algorithm. Ain Shams Engineering Journal 6(1) (2015) 57–65

13. Khan, M.A., Khan, A.A., Mirza, F.: Transform domain analysis of sequences. CoRR

arXiv:1503.00943 (2015)

http://www.ecrypt.eu.org/stream/
http://arxiv.org/abs/1503.00943

	61 Design and Analysis of LFSR-Based Stream Cipher
	Introduction
	Literature Survey
	Background and Preliminaries
	Boolean Function
	Algebraic Normal Form
	Walsh Transform
	Nonlinearity
	Correlation Immunity

	Analysis of Feedback Shift Registers for Stream Cipher
	LFSR
	LFSR-Based Stream Ciphers

	Proposed Design
	Design Specifications
	Initialization
	Results and Performance Analysis

	Conclusion and Future Work
	References




