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An Euler Path Based Online Testing
Technique to Detect Catastrophic Fault
in Triangular DMFBs
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Abstract Defective microfluidic chip increases the assay completion and total
turnaround time and it is the main reason of deviation of the actual result of assay
operation. In online testing, the test droplets are moving out of step with each other.
Again testing of DMFB is NP-hard in nature. Using Euler path based test technique,
we can test the whole chip but we cannot apply Hamiltonian path based test method
in case of equilateral triangular electrode array due to routing constraints in trian-
gular DMFB. A graph-based test planning technique for online testing is proposed
in this paper. Considering the active parts of the chip, like mixer and store cell, as
obstacle in the triangular microfluidic array, we test the chip during the assay
operation running in some portions of the array. Here, we focus on Euler path based
test technique for catastrophic fault detection.
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Introduction

Microfluidic biochips, also renowned as “lab-on-a-chip”, have become very
important biomedical analytic instruments [1, 2] as the experiments in a laboratory
can be efficiently performed within a chip. It manipulates nanolitre or microlitre
volumes of biological samples and reagents which lead to consumption of a very
low cost and relatively a very less time. Moreover, higher sensitivity of DMFBs and
less involvement of human manipulation make it less erroneous than laboratory
experiments. In spite of all the facilities of a biochip system, physical defects may
arise during microfluidic operations. Some manufacturing defects may be realised
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during the assay operations and may lead to a crucial diagnosis process in vain. It is
worthwhile to mention here that effective testing methodologies to test these
devices after manufacture and during assay operations are very essential as biochips
are generally used for vital biochemical and medical applications.

Generally, the testing procedure of the DMFBs is classified into structural testing
and functional testing. Structural testing aims to detect the physical faults, while the
functional testing focuses in identifying the faulty functional modules. One of the
important testing techniques is droplet trace-based fault detection where a test
stimulus droplet is moved through the testable cells, and depending on the presence
of the droplet at its desired position at scheduled time, the defected cells are
recognised. Such transportation of test droplets may be planned in terms of the
Euler cycle or Euler path problems in an undirected or a directed graph, respec-
tively. Sometimes, due to the unintended droplet, residual on the chip introduces
particle contamination [1, 3] during assay operation that leads to physical defects
afterwards. If one cell (Electrode) becomes faulty during the assay operation, even
the entire assay operation may be fouled depending on the positional impact of the
defective electrode(s). Thus, online and offline (e.g. Post-manufacturing) testing
techniques are required to ensure system reliability and to augment the system
performance [4, 5].

Now, in traditional square electrode array, we find a number of droplet
trace-based testing mechanisms that are not beneficial for Triangular Electrode
based Digital Microfluidic Biochip (TEDMB) [6] due to its routing constraints. In
this paper, we have developed an Euler path based online testing algorithm for
TEDMB. Moreover, a test planning procedure for online testing is introduced.
Procedure for finding Euler circuit in a graph is presented here which runs in O
(n + e), where a number of vertices and edges in the graph are, respectively,
denoted by n and e. In the next section, we first discuss the types of faults that may
occur in biochip and the basis of online testing as well as some already existing
testing algorithms for traditional DMFB. Section “Test Planning Issues for Online
Testing” formulates the problem as an Euler circuit finding problem in graph theory
and we discuss our algorithm in detail. In Sect. “Conclusion”, a comparative study
has been cited to explain the efficacy of our algorithm.

Classification of Faults in DMFB: Fault Modelling

Typically, the faults in DMFBs are of catastrophic and parametric [4, 5]. Catas-
trophic (i.e. hard) faults lead to a complete malfunction of the underlying system,
whereas parametric (i.e. soft) faults may introduce a deviation in the system per-
formance. Catastrophic faults have the highest priority for detection as they may
cause complete breakdown of the system. Catastrophic faults can occur due to some
physical imperfections such as (i) dielectric breakdown, (ii) short between a pair of
adjacent electrodes, (iii) degradation of electrode performance, (iv) open circuit in
the metal connections between the electrode and the control source and (v) defected
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configuration of parallel plates, to name a few. Physical defects that lead to para-
metric faults are deviation in geometrical parameters, particle contamination due to
residual effect and deviation in viscous force acting between a droplet and filler
medium.

To avoid the digression of the overall performance of the system, testing of the
electrodes is a crucial issue before the chip is subjected to market. Chip-level testing
is an iterative procedure where a chip is tested before or after the bioassay operation
(offline testing) or a parallel testing operation may be carried on simultaneously
with an assay in a time-overlapped manner. Parallel scan like testing [7] (using both
single and multiple droplets) and path-based testing (Hamiltonian and Euler circuit
[8, 9]) belong to offline testing.

Test Planning Issues for Online Testing

Problem Formulation

One of the most important catastrophic faults is stuck-at fault where a test stimuli
droplet may be stuck at a faulty cell during the droplet movement through the
electrode array from an original or customised source to a sink. The detection of all
test stimuli droplets by a sensing circuit placed at a droplet sink indicates that the
electrodes on the path are fault free. An efficient test plan must ensure two things:
(i) no conflict of the testing operation with the normal biomedical assay and
(ii) guarantee of the coverage of test droplets over all the microfluidic chip cells that
are available for testing.

Here, it is worth mentioning that we consider catastrophic faults detection and
we assume that every catastrophic fault in the microfluidic device affects only a
single cell on the chip array. Nevertheless, some faults, like electrode shorts, affect
more than one cell in the microfluidic array [1]. The fundamental idea behind the
graph-theoretic testing optimization approach is to formulate the 2D chip as a
directed graph followed by partitioning into sub-graphs such that each partition
requires one test stimuli droplet to cover the associated portion of the chip and it can
be tested independent of the other parts of the chip.

Testing by traversal generally finds a path such that the test droplet can be routed
through the array visiting every cell exactly once though a path connecting all
available electrodes does not exist in a chip as shown in Fig. 52.1a. Although this
method ensures the fault detection concerning a single electrode, it fails to identify
the faults associated with electrode-short and fluidic-open faults that influence two
neighbouring electrodes, e.g. as shown in Fig. 52.1b; the test droplet path
6 → 7→ 8 → 9→ 10 → 5→ 4 → 3→ 2 → 1 is unable to detect an
electrode-short present between electrodes 3 and 8. But the Hamiltonian path based
tour visits each electrode just once. Thus, Hamiltonian path does not pledge to
detect a fault-free microfluidic array. Therefore, a novel method for test planning is
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essential to solve this complication. Since this type of defect can happen in the
DMFBs not only in the manufacturing (in the fabrication) process but also during
the on-chip bioassay operations (e.g. owing to contamination of particles and
relocation of electrode metal), the offline and online testing techniques are equally
mandatory.

Here, we formulate the test planning problem into two well-known
graph-theoretic problems, i.e. the ‘Euler circuit’ and ‘Euler path’ [8]. The basic
idea behind this outlook is to construct an undirected graph representing the
microfluidic chip array where each electrode acts as a vertex. Between any two
vertices, i.e. two neighbouring electrodes, there exists an edge. Now, the problem of
finding a test path is comparable to finding an Euler path of the graph. A flow-based
test path for the test droplet can be acquired by using Euler’s theorem. Such a path
enables to detect the shorts between any two neighbouring electrodes. As the Euler
path/circuit based test technique visits all edges exactly once, it guarantees any
electrode-short fault within the chip array.

Initially, we model the chip array by employing an undirected graph G = (V, E),
where V is the set of microfluidic chip cells and E is the set of edge {u, v} between
any two vertices u and v if there exists a connectivity between two cells represented
by u and v, respectively. Euler theorem gives us the technique to traverse every
edge in the undirected graph only once. For an undirected graph, Euler path exists if
the graph is in connected pattern and the connected graph has exactly two
odd-degree vertices. Again, an undirected graph has Euler circuit if the graph is
connected and the degree of every vertex in the connected graph must be even.
Now, in general the graphical representation of the 2D microfluidic chip array has
more than two vertices with odd degree in nature. So, we have to retrace some of
the edges such that all the edges must be visited at least once. In G, retracing
signifies an additional edge between two adjacent vertices. Therefore, our objective
is to minimise the number of retracing throughout the testing, i.e. the requisite
number of additional edges to Eulerise the graph.

As each electrode in TEDMB has three direct neighbours, in the dual graph of
the array, each vertex other than the peripheral one has degree three [6]. At the
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Fig. 52.1 a A test droplet from the source can traverse only two electrodes, but cannot reach the
sink. b Test stimuli droplet from the source can reach the sink leading two electrodes not reachable
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beginning of the algorithm, we identify all odd-degree vertices and transform them
into even degree by adding minimum number of extra edges. For type 1 triangle,
upward movement is restricted and for type 2 triangle downward movement is
restricted [6]. So, there is an edge between two vertices, belonging to two adjacent
rows, if and only if one vertex corresponds to a type 1 triangle and another vertex is
associated with a type 2 triangle. To find an Euler circuit/path in a connected
undirected graph, we use Fleury’s algorithm [4, 8].

In Fig. 52.2a, b, c, d, associated graph models for different triangular 2D arrays
are shown, i.e. in the 2D m × n array four cases may occur, (i) m = odd, n = odd,
(ii) m = even, n = even, (iii) m = odd, n = even and (iv) m = even, n = odd. We
next model the 2D microfluidic array using undirected graphs and then modify
these graphs so that the condition for possessing an Euler circuit is satisfied.
Applying Fleury’s algorithm [4, 8], the complexity becomes O (n + e), where
n = the number of vertices and e = the number of edges. So it requires linear time.

An Efficient Eulerisation Technique for Online Testing

To ensure unpredictable faulty status, online testing is performed throughout the
free cells during normal bioassay operation (say, on-chip mixing in some regions).
Here, the active parts of the chip along with its guard band may be considered as
obstacles to the test stimuli droplets. The graph model of a triangular biochip with
obstacle in it (i.e. with mixing and other operations running within the array) is not
regular structure as an m × n array. As a result, Eulerising it by adding extra
dummy edges for optimising test cost may not be straightforward as eulerising the
graph model of m × n triangular microfluidic array, as the odd degree nodes
geometrically, may be random in nature. For more than one test droplet, we par-
tition the graph model of the microfluidic array into sub-graphs and then manipulate
them individually such that there exists an Euler circuit in each sub-graph. Now,
multiple test droplets are dispensed in the chip for performing the concurrent

(a) (b) (c) (d)

Fig. 52.2 a–d corresponding graph model and Eulerisation of different-sized 2D triangular
microfluidic array
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edge-tour based testing in various sections of the chip array. Thus, entire testing
application time is equal to the maximum testing time among all these sub-graphs.

Let us illustrate the procedure with an example. A 10 × 10 microfluidic chip
array is shown in Fig. 52.3a where two mixing operations are going on and one
droplet is stored in a storage cell; hence, the active cells as well as their guard band
are not accessible during this period of time. In order to test the remaining free cells,
we first check the connectivity of the associated dual graph. If it is a disconnected
graph, we need to deploy more than one test droplet to perform the testing properly.

If there exist even number of odd degree vertices, we can pair them in such a
way that all vertices in the graph have even degree [8]. A matching M in a graph
G = (V, E) comprises pair-wise non-adjacent edges, i.e. a common vertex is not
shared by any two edges [8]. Appending additional edges between a pair of
non-adjacent vertices is not as easy as adding extra edges between a pair of adjacent
vertices. An extra edge in the graph model connecting two non-adjacent vertices
i and j signifies an order of edges formulating a path with endpoints at node i and
node j.

The Euler tour must be minimised to reduce the testing time. In a graph, this kind
of problem can be modelled as the classical Chinese Postman Problem [10]. For
doing this, instead of locating the arbitrary matching among the odd degree vertices
in the graph representation of the 2D microfluidic array, we choose the closest pairs
of odd degree vertices. There may be more than one connected sub-graph in the
graphical representation of the microfluidic chip array with obstacle.

Guard ring Mixer region

Store cell
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G2
Sub-graph with 
all nonzero 
degree vertices.

G3

Sub-graph with 
zero-degree
vertex.G4

(a) (b)

Fig. 52.3 a 10 × 10 chip array with obstacle, b Four sub-graphs G1, G2, G3, G4 constitute the
graph representation of the 2D microfluidic array with mixer and storage cell along with guard
bands as obstacle
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We establish a complete, undirected, weighted graph G′ = (V, E). Nodes of this
graph represent the vertices with odd degree where microfluidic operations are not
running. The least number of edges necessary to reach node j from node i, i.e.
shortest Manhattan distance between node i and node j, is symbolised by w(i, j).
Then, a perfect matching with minimum weight is found in the graph G′. Perfect
matching defines the matching where all vertices of the graph are matched, i.e.
every vertex of the graph is incident to exactly one edge of the matching. Minimum
matching in a weighted graph usually denotes the perfect matching with minimum
weight, i.e. a perfect matching with the weighted sum of all the edges in the
matching minimised [9]. This kind of matching is subsequently used for the
Eulerisation of the sub-graph model by adding extra edges that guarantee Euleri-
sation having least possible additional edges. All such sub-graphs of the graph
model abstracted from the 2D microfluidic chip array with obstacle are Eulerised
(Fig. 52.4).

Figure 52.3b shows that there are four sub-graphs with two sub-graphs having
zero degree vertices. G1 and G2 are two sub-graphs where vertices have non-zero
degree. But G3 and G4 cannot be Eulerised, since these sub-graphs have zero degree
vertices. Next, as shown in Fig. 52.5a, we pair the odd-degree vertices which are
close to each other in these two sub-graphs G1 and G2 and then we add extra edges
to make these sub-graphs eulerize, as shown in Fig. 52.5b. Deploying the
above-said algorithm, this is evidenced that required number of edges for different
types of array configuration is different. Hence, it depends on the row–column
combination of TEDMB as shown in Table 52.1. After performing a comparative
study between the number of extra edges required to Eulerise a square electrode
array and that for a TEDMB, we obtain Table 52.2.
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Fig. 52.4 a In sub-graphs G1 and G2, the vertices having odd degree are labelled, b Sub-graph G1

with odd-degree vertices, c Another sub-graph G2 with odd-degree vertices
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Fig. 52.5 a Pairing the odd-degree vertices in sub-graphs G1 and G2, b Eulerisation of the
sub-graphs

Table 52.1 Number of additional edges for eulerising the graphs for different TEDMBs

Number
of rows
(m)

Number
of
columns
(n)

Remaining columns
n1 = (n − i), i is either 4 or
3 depending on whether
n is even or odd,
respectively

Number
of
repetitive
clusters
(d)

Number of additional
edges Na

Even Even n1 = n − 4 d = n1/2 m + (d × (m − 1))
Odd Odd n1 = n − 3 d = n1/2 (n − 1) + (d × (m/

2)) + ((d + 1) × (m/
2))

Odd Even n1 = n − 4 d = n1/2 m + (n −
4) + (d × (m − 1))

Even Odd n1 = n − 3 d = n1/2 ((d + 1) × ((m − 2)/
2)) + (d × (m/2))

Table 52.2 Comparative study of requisite number of additional edges between DMFB and
TEDMB

Square DMFB TEDMB

m + n − 4, if m = even, n = even, m + n −
2, otherwise

m + (d × (m − 1)), for even–even
(n − 1) + (d × (m/2)) + ((d + 1) × (m/2)),
for odd–odd
m + (n − 4) + (d × (m − 1)), for odd–even
((d + 1) × ((m − 2)/2)) + (d × (m/2)), for
even–odd
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Conclusion

In triangular electrode array, Hamiltonian path based testing is not possible due to
the restricted movement of droplets along vertical axis (although Hamiltonian path
based test is not sufficient testing, it cannot detect electrode short), but Euler circuit
based testing works. This Euler circuit based test can be used both in offline and
online testings. In this paper, a graph-based droplet traversal testing algorithm has
been developed. Here, we have presented an Euler path based testing for online
testing that is easy to implement. Some physical failures are thus far not well
identified, like those faults related with power supply or deviation of microfluidic
assay operation as a consequence of unknown thermal effect or environmental
temperature variation [1]. Competent modelling of faults and generation of test
stimuli methods are required for the testing of biochips. Although the detection of
parametric faults is challenging and may lead in break down at a later stage,
catastrophic faults result in the complete abnormality of the system structure, and
hence, it should have the highest priority to be detected.
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