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Abstract
In this chapter a new method – the relaxation element method is justified. The
definition of the changing of stress fields in solids under loading as a result of the
change of elastic energy in a local volume, undergoing plastic deformation, is laid
down at the basis of the method.

The Relaxation Element Method (REM) solves effectively two problems of a
deforming solid (DS):

1. The construction of the different distributions of plastic deformation in local
regions of various geometrical shape.

2. Modelling of the consequent involvement of separate structural elements into
plastic deformation, operating on the principle of an inverse task of mechanics
of deforming solids.

With this method a stress-strain state of the elastic plane with the sites of
plastic deformation in the form of a circle, rectangle, and a localized shear band is
analytically described. Examples of the construction of the sites of plastic defor-
mation with gradients are given. The stress-strain state of a plane with a round
inclusion is considered.

Examples of the simulations by the REM of the effects of Lüders band
formation and interrupted flow in polycrystals are given. The analysis of the
influence of rigidity of a testing device on qualitative and quantitative character-
istics of the loading diagram is presented.

The effect of the gradients of plastic deformation on the stress of
Lüders band initiation is analyzed. It is shown that the dependence of
the stress of Lüders band initiation on grain sizes is the consequence
of the independency of the gradient of plastic deformation under the changing
of grain sizes.

A modified model of Griffith crack surrounded by a layer of plastically
deformed material is proposed. Plastic deformation is shown to eliminate the
singularity at the crack tip. The maximum stresses are observed at the boundary of
the plastic zone in an elastically deformed matrix. The stress concentration
increases as the thickness of the plastic layer decreases.

The obtained results testify to high predictable possibilities of the developed
method. They are in a good agreement with known experimental data.

1 Introduction

The development of plastic deformation in the solid is known to proceed
inhomogeneously in space and irregular in time. This property defines the process
of plastic strain localization, developing in the course of loading of structurally
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inhomogeneous materials. The evolution of nonhomogeneous distribution of plastic
deformation is realized under the influence of various stress concentrators, caused by
the inhomogeneity of the initial structure of the material and changing of stress state of
the loaded system under prescribed boundary conditions. In the course of plastic
deformation of local volumes, the continuous changing of the fields of internal stresses
in the whole volume of the solid takes place. Technological and strength properties of
the material depend on the character of the process of plastic strain localization and
material degradation. In this connection there is an actual problem of the description
and simulation of the process of plastic strain localization and changing of the stress-
strain state of a structurally inhomogeneous medium with the site of plastic deforma-
tion under the different boundary conditions of loading. The description and simula-
tion of these effects demand accounting for the multilevel character of the development
of the processes in the deformed system, where the surface layer and internal interfaces
affect the process of plastic deformation and fracture [1–4]. The evolution of an
inhomogeneous distribution of plastic deformation is realized under the influence of
different stress concentrators, and first of all under the influence of stress concentrators
at the free surface of the solid. The pattern of macrolocalization of plastic deformation
inherits the character of the distribution in the thin near-surface layer.

On the macrolevel one can select three types of macrolocalization of plastic
deformation: Lüders band propagation, Portevin–Le Chatelier effect (PLC), and
neck formation at the stage of prefracture [5–9]. For the description and simulation
of the effect of intermittent flow, the relaxation element method (REM) developed by
the present authors is suitable and promising [9–14].

The change in stress field in the solid under loading as a result of the decrease in
elastic energy in the local volume, undergoing plastic deformation, lies on the basis
of the method. Plastic deformation is the relaxation process in its nature. That means
that in the site of plastic deformation a decrease in elastic energy takes place, i.e., the
decreased level of stress is observed in comparison to the average stress level beyond
the site of plastic deformation. For the fulfillment of this condition in the relaxation
element method the notion of “relaxation tensor” is used, which characterizes a
decrease in the field of elastic stresses in the given local volume as a result of its
plastic deformation. The above approach allows solving effectively two problems of
a deformed solid:

a) The description of the stress-strain state of the solid with the sites of different
geometrical shape and with different distributions of the plastic deformation.
Results are obtained using the known technique of continuum mechanics of a
deformed solid and are represented in the form of analytical expressions for the
components of the tensor of plastic deformation and stresses.

b) Simulation of the sequence of the involvement of separate structural elements into
plastic deformation. Stress relaxation in local volumes changes the stress state in
the whole volume of the solid. Thus, structural elements, having undergone plastic
deformation in the surrounding of the elastically deformed matrix, play the role of
the defect on a mesoscopic scale with its own field of internal stresses.
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The presence of defects in a continuum is related to the existence of inhomoge-
neous stress fields in a volume of the material. Plastic deformation is the conse-
quence of the collective movements of defects of different scale level. At the same
time, the linear dependence of the components of the stress tensor breaks. There
arises a fundamental problem of definition of the unambiguous connection between
deformation and stresses. In the linear theory of elasticity, such a connection is
represented by the generalized Hooke’s law. In the continuum theory of defects [15,
16, 17], this obstacle is removed by the condition that the tensor of total deformation
is equal to the sum of elastic eeij and plastic epij deformation:

eij ¼ eeij þ epij: (1)

The tensor of total deformation eij is assumed to obey the compatibility condition.
Thus, in the general case the tensors eeij and epij could be incompatible. But the

incompatibility of the tensor of elastic deformation is fully compensated by the
incompatibility of the tensor of plastic deformation and vice versa. In particular, both
eeij and epij could be compatible. Then, the stress state of the medium will be

exclusively defined by the tensor of elastic deformation eeij, connected with stresses

through the generalized Hooke’s law:

σij ¼ Сijkleeij: (2)

Hence, according to the accepted assumptions, compatible plastic deformation
cannot be connected with the stresses existing in the volume of a deforming solid. In
other words, without additional conditions a compatible plastic deformation cannot
be represented as an analytical function of the coordinates.

In the continuum theory of defects, a compatible and incompatible plastic defor-
mation is calculated only in connection with the presence of the internal stress fields
in each volume of the material.

Investigations show that the absolute majority of the defects at the stage of
developed plastic deformation disappear as a result of annihilation, absorption at
the sinks and interfaces, and the exposure at the external surface of the solid [18].
Together with deformation defects the stresses caused by the presence of the latter in
the volume of the material disappear as well.

Traditional theories of plasticity take the macroscopic diagrams of work-hardening of
real materials [19, 20, 21] into account, when defining the relation of the stresses in the
local volume of a solid with plastic deformation in it, i.e., the integral (macroscopic)
characteristics of mechanical properties are prescribed to the local volumes of the solid.
Such an approach doesn’t fully account for the relaxation nature of plastic deformation.
On the other hand, continuum theories consider the field of plastic deformation in the
local volumes of a solid in the form of defects with corresponding fields of internal
stresses [15, 16, 17]. However, at that time, the problem of the connection of these fields
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with the boundary conditions of loading of the solid and with the geometrical parameters
of the initial microstructure of the material is not considered. In order to reveal this
connection, let us consider the physics of the phenomenon.

According to the modern conception of physical mesomechanics [2–4], a phys-
ical reason of plastic flow in real materials is the mass transfer under the influence of
an external applied stress. The creation and movement of dislocations occurs
practically at the very beginning (onset) of loading, when due to the difference in
elastic properties and anisotropy of structural constituents of the solid, the peak
stresses (stress microconcentrators) arise in the volume of solid. Mass transfer causes
continuous stress relaxation in the local volumes of the material. A different strain
rate of plastic deformation in the local volumes results in its inhomogeneous
distribution over the whole volume of a solid.

In many cases with a definite accuracy one can select a local volume, which
undergoes plastic form changing. In such a case, one can state that plastic strain
localization occurs. Very often such local volumes are called the sites or zones of plastic
deformation, or the zones of plastic shearing. Experiments show that there are definite
peculiarities of the formation of the zones of localized plastic deformation at each stage
of loading [22–27]. A classical example is the Lüders band at the stage of its formation
and propagation in polycrystals with highly pronounced yield stresses [28, 29].

The sources of movable deformation defects are, first of all, the free surface of the
solid and various interfaces (grains, phases). Therefore, by prescribing the field of
plastic deformation within these boundaries, we in principle take into account an
initial structure of the material. Taking additionally into account the hierarchy of the
structural levels of deformation [2–4], and the notions of physical mesomechanics,
the site of plastic deformation should be considered as a volume defect of a higher
scale level than microdefects such as dislocations and vacancies.

On this level, being commensurable with the elements of the initial structure (on
mesolevel) bands of localized plastic deformation (LPD) form. On the background
of a quasi-homogeneous distribution of plastic deformation, the bands of localized
plastic deformation could be considered as defects of a corresponding mesoscale.

In polycrystals, for example, a single grain could be considered as a structural
element of mesoscopic scale. The bands of localized plastic deformation can be
considered as defects of a higher mesoscale if they embrace a conglomerate of
grains. If the zone of localization spans over the region being commensurable with
the width of the specimen, such a defect is necessary to be considered as a defect of
macroscopic scale.

Below we consider the construction of the inhomogeneous distribution of plastic
deformation on meso- and macrolevel, when the substitution of the real displace-
ment field (with microscopic discontinuities from the movement of microdefects,
such as dislocations) with the continuous one could be justified. This allows one to
use fully the known methods of continuum mechanics when constructing an inho-
mogeneous distribution of plastic deformation in local regions and to calculate the
corresponding stress concentrations in the solid at a definite scale level under
prescribed boundary conditions of loading.
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In this work, the relaxation element method (REM) is theoretically justified. This
method allows one on the data of the sites of localized plastic deformation with a definite
degree of accuracy to calculate the components of inhomogeneous stress fields caused
by these sites. Besides that, in combination with other methods of analytical and
numerical calculations of mechanics of deforming solid, this method allows by variation
of structural, geometrical, and physical parameters to model the processes of the
development of localized plastic deformation and at that time to check the validity of
certain mechanisms of plastic deformation and fracture of real materials.

The idea of REM arose due to the authors’ attempt to relate the change in plastic
shape of a local volume of continuum with the value of stress drop or decrease in
elastic energy in it. The phenomenon of elastic stress relaxation within the solids has
long been known [30–33]. Its essence lies in the following: If a loaded sample is
deformed up to a definite value, then at a fixed position of clamps the load will
decrease in the process of time. The physical reason for stress relaxation, which is
especially pronounced at elevated temperature, is the increase of the contribution of
plastic deformation to the total deformation of the sample with time. Since the latter
keeps constant, then with time the contribution of elastic deformation correspond-
ingly decreases locally. A decrease in elastic deformation in the considered case is
possible only under the decrease in applied stress in this volume. Analogous
processes, apparently occur in local volumes of a solid, undergoing plastic flow.
However, in literature the analysis of the correlation between physical processes,
especially the process of plastic deformation and the value of relaxation within the
local regions of a solid has received insufficient attention.

2 Relaxation Element Method

2.1 Relaxation Element as a Specific Defect in Continuum

Plastic deformation is the phenomenon of essentially relaxation nature. Hence, plastic
(irreversible) form changing of the local volume in a loaded solid should be accompa-
nied by stress relaxation in the given volume and arising of an inhomogeneous stress
field in the whole volume of the solid. The process of formation of an inhomogeneous
distribution of plastic deformation in continuum can be represented as a result of
consequent chain of elementary acts of stress drop in the various local volumes of
solid. Since the stress state of a solid is a tensor characteristic, then the value of stress
relaxation in the local volume should be characterized by the tensor. In this connection,
let us introduce the notion “relaxation element” (RE) as a specific defect in continuum.
Tensor of relaxationΔσr for such a defect should be unambiguously connected with the
plastic formchanging of the local volume, i.e., inside this volume the field of plastic
deformation, characterized by tensorΔep, obeying the plastic displacement of the points
at the external boundary of the given local volume should be assigned. Thus in general
case, relaxation element is characterized by the geometrical shape of a local relaxation
region and relaxation tensorΔσr, defining thefield of internal stress outside and thefield
of plastic deformation Δep inside the given region.
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One can imagine that in the process of loading in the volumes of a solid a number
of elementary acts of stress relaxation in different local regions Ri occurs. By
prescribing the distribution of the relaxation elements in the volume of material,
we prescribe a definite distribution of plastic deformation, accumulated in the local
volume in a definite time interval. One can imagine that in the process of loading in
the volume of a solid a number of elementary acts of stress relaxationdσri in different
local volumes Ri occurs. By assigning a distribution of relaxation elements in the
volume of a material, at that time we prescribe a definite distribution of plastic
deformation, accumulated in the local volume in a definite time interval.

By summation of the fields from various RE just as for (as well as for) disloca-
tions the superpositional principle is used since the elementary fields (from the
elementary tensor of relaxation dσri) depend linearly on the corresponding boundary
conditions of loading and on the boundary of region of relaxation Ri.

In other words, the characteristics of elementary fields depend linearly on the
components of elementary tensor of relaxation dσri . It should be noted at that time,
that the constancy of the loading conditions and the stress distribution at the external
surface are assumed. A temporal sequence of the elementary acts of stress relaxation
doesn’t affect the integral result of the stress state of the solid.

2.2 Connection of Plastic Deformation with the Tensor of Stress
Relaxation

The same relaxation tensor in principle can meet a variety of options of plastic strain
distribution in the local areas of relaxation. In such a situation, a continuum theory
suggests a most simple variant of the connection of tensor of relaxation with the
tensor of plastic deformation. In principle, it is sufficient to solve the inverse
problem: for the known field of internal stresses to define the tensor of plastic
deformation in the local volume. Let us consider a simple example.

Shown in Fig. 1 is the scheme of tensile loading of the plane with the site of plastic
deformation of arbitrary shape. Under the operation of external stress in a local region

Fig. 1 Representation of a solution for the plane with the site of plastic deformation in the form of
superposition of two solutions
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S, a stress drop of the value Δσ takes place. The general solution can be represented in
the form of the algebraic sum of two solutions. The superposition principle is valid
here because two solutions are summed up within an approximation of the linear
theory of elasticity and the sum satisfies the required boundary conditions at the fields
(places) of applied external stress and at the contour of the relaxation region. As it is
seen, without a homogeneous field of stresses σ � Δσ one can obtain the case of full
stress relaxation within the regions of given configurations under external stress Δσ.
The absence of stresses in the local region testifies to the fact that the formchanging of
the local region Ri is characterized solely by the compatible tensor of plastic defor-
mationΔepij [15, 16, 17]. In such a case, the continuity condition of the stress fields and
field of plastic deformation are broken only at the boundary of this region, because
tensors of elastic deformation eeij in the region R and stresses σij beyond this region will

be equal to zero. Let us emphasize once more that we consider only the final result but
not the kinetics of stress relaxation.

A field of stresses fully determines an elastic deformation of the plane. Hence,
beyond the region of relaxation, the deformation is fully defined. On the other hand,
an inhomogeneous stress field beyond the relaxation region unambiguously defines
the displacements of the points of the boundary of relaxation region, independently
on the process of mass transfer inside the region of relaxation. The same displace-
ments should be defined by the field of plastic deformation inside the local region of
relaxation.

Therefore, from the many solutions for the tensor of plastic deformation, satisfy-
ing the given formchanging S, it is reasonable to choose the simplest linear one,
obeying the equation Cijmnde

p
mn, j ¼ 0, as in the case of a boundary-value problem of

the theory of elasticity with prescribed displacements. Thus, within this accepted
approach, the plastic form changing of the local region we don’t connect with the
specific physical mechanism of plastic deformation. We are interested only in the
stress state of the continuum.

At the boundary of the site of plastic deformation the compatibility condition of
the tensor of plastic and elastic deformation is broken, as the stresses undergo
discontinuity. At the same time, the sum of the tensor of elastic and plastic defor-
mation satisfies the compatibility conditions everywhere.

Thus, from the standpoint of continuum theory of defects the value Δσr and the
geometrical shape of the local region of relaxation fully determine the stress-strain
state of the plane and the distribution of plastic deformation in this region.

Let us emphasize that under the condition of full stress relaxation, the boundary
conditions at the boundary of plastic regions are unambiguously related to the
external applied stress. The changing of the load distribution at the external surface
of a solid results in the corresponding changing of point displacements of the contour
of ideal site of plastic deformation, i.e., boundary conditions at this contour, defining
the tensor of plastic deformation inside this contour.

It is clear that there is no sense to speak about stress relaxation without the
presence of a definite system of forces at the external surface of the solid, if suppose
that there were no stresses in the solid before the testing. Disappearance of the elastic
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field in a given volume is unambiguously connected with the arising of the field of
plastic deformation. Thus, a physical law manifests itself explicitly, which points to
the connection between the tensor of plastic deformation and stress relaxation tensor
in the local region.

3 Stress-Strain State of the Continuum with the Site of
Plastic Deformation

3.1 Examples of the Site of Plastic Deformation

Apparently, the stress state of the continuum with the site of plastic deformation
depends on which components of stress tensor change as a result of relaxation, i.e.,
on the component of stress relaxation. However, in each case, a decrease in elastic
energy in the site of plastic deformation will be accompanied by increase in stress
beyond the site of plastic deformation.

As a simple example let us consider a stress state of the plane with the site of
plastic deformation of round shape under the operation of external applied tensile
stresses along the coordinate axis у. On a mesoscopic level in such an approximation
one can imitate the influence of a separate grain of the polycrystal, undergone plastic
deformation in surrounding of elastically deformed matrix.

For the simplification, let us consider the case of RE the tensor of relaxation of
which is characterized by nonzero component Δσу = Δσ directed along tensile axis
у. That means that as a result of plastic deformation only the normal component of
the tensor of stresses σу is relaxed.

The scheme of loading is represented in Fig. 2. The general solution (а) can be
represented in the form of superposition of two separate solutions: homogeneous
stress field: σ � Δσ (b) and stress field for the plane under external tensile stress Δσ
(c), in the round region of which there exist no stresses. The last solution is known as
Kirsch’s problem for the plate with a round hole [34, 35].

s

a

= =+ +

b c d e

s

s–Δs

s–Δs Δs

s–Δs s–Δs

Δs

s=0

s

s

s

s ∗s +s ∗ Δs +s ∗

–Δs

Fig. 2 Representation of the solution а in the form of superposition of simpler solutions: 1 –
homogeneous stress field Δσ � σ (b) and Kirsch’s solution (с); 2 homogeneous field σ (d ) and the
field of internal stresses σ* (е)
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In the system of coordinates at the center of the circle and 0у-axis along the tensile
axis, beyond the site of plastic deformation, Kirsch’s solution is characterized by the
components:

Δσy ¼ Δσa2

2r2
3 1� 2y2

r2

� �
þ 1� 8y2x2

r4

� �
3a2

r2
� 2

� �� �
þ σ;

Δσx ¼ Δσa2

2r2
1� 2y2

r2

� �
� 1� 8y2x2

r4

� �
3a2

r2
� 2

� �� �
;

(3)

Δσxy ¼ Δσa2yx
r4

3� 2 3a2 þ 4y2ð Þ
r2

þ 12a2y2

r4

� �
:

Here r2 = x2 + y2, σ – external tensile stress.
The considered example testifies to the fact that Kirsch’s solution has a more

deeper physical sense than the simple one as a stress in the plane with round hole.
This solution defines also the fields of stresses beyond the sites of plastic deforma-
tion of round shape under the relaxation of stresses in it in a value Δσ. Theoretically
one can imagine the case of full stress relaxation in a round region, i.e., when σ =Δσ
(Fig. 2c), then we obtain Kirsch’s solution (3) in its pure form. As it is seen the
absence of material in the local region doesn’t mean the absence of material there. In
our problem, the stress-strain state is caused by plastic deformation of the material in
the local region of round shape and the region without stresses cannot be considered
as a region where there is no material.

Since the plastic deformation is irreversible, then under unloading the plane will
be elastically deformed. Therefore without homogeneous field of external stress σ
(Fig. 2d), Kirsch’s solution defines an inhomogeneous field of internal stresses in
unloaded material σ* (e), caused by the presence of the site of plastic deformation.
Then inside the site the stress is equal to Δσy = �Δσ, i.e., the material is in the state
of compression along the tensile axis till the value �Δσ.

Equation (1) without stresses Δσ for the component Δσy characterizes the field of
internal stresses of a defect in the solid. Such a defect is the result of stress drop σy by
the value Δσ in a local volume of round shape. Shown in Fig. 3 are the patterns of
spatial distributions of all the components of the fields of internal stresses σ*.
Maximum and minimum values of the component Δσy are equal to Δσymax = 2Δσ
and Δσymin = �Δσ, respectively. As a result of stress relaxation inside the circle
stress concentrations are observed at the boundary of the circle.

Let us characterize the field of plastic deformation in the site, corresponding to stress
relaxation in the value Δσ in the round region for the case of tension. This field ensures
the full displacements of the points of the circle in Fig. 2c under the absence of the
stresses in the site of plastic deformation. According to the solution of Kirsch’s problem,
the components of displacements of an arbitrary point (x0, y0) at the circle are equal:

uy ¼ 3y0Δσ=E, ux ¼ �x0Δσ=E: (4)
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The point displacements of the contour along the y-axis due to elastic deformation
are equal to uy

e = y0Δσ/E. Hence, the displacements due to plastic deformation are
equal to uy

p = 2y0Δσ/E and ux
p = �x0Δσ/E.

Thus, the field of plastic deformation should satisfy the following boundary
conditions in displacements at the boundary of the contour:

upy ¼ 2yΔσ=E, upx ¼ �xΔσ=E: (5)

The derivatives of the components of displacement field (5) over the
corresponding coordinates define the components of the tensor of plastic
deformation:

epy ¼ 2Δσ=E, epx ¼ �Δσ=E, epxy ¼ 0: (6)

Under the operation of external stress Δσ under the pure elastic deformation of
plane (without plastic deformation), an elastic deformation will be observed inside
the circle which is characterized by the components

eey ¼ Δσ=E, eex ¼ �νΔσ=E, eexy ¼ 0, (7)

where ν – is the Poisson’s ratio. Average values ν for solids in most cases lie within
the range ν � 0.33.

After stress relaxation in a Δσ-value, the elastic deformation of the circle
decreases. This decrease is defined by the components represented by Eq. (7).

A comparison of (6) and (7) shows that plastic deformation not only compensates
the disappeared contribution from elastic deformation, but makes additional contri-
bution which two times exceeds the elastic deformation. Herewith, the region of
relaxation increases along the у-axis and decreases along х-axis. Thus, the contribu-
tion of plastic deformation of the element to the changing of the shape of the circle

Fig. 3 Distribution of the components of the field of internal stresses σ*: Δσy(а), Δσx(b), Δσxy(c)
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two times exceeds the contribution of elastic deformation, disappeared as a result of
stress relaxation.

At the boundary of the site, the components of the tensor of plastic deformation
change jumplike from the value (6) down to zero, but the components of the tensor
of elastic deformation from the value (7) up to (3) at the contour of the circle.
Nevertheless, the displacements are not discontinuous when they transfer through
the boundary of the site. A joint action of elastic and plastic deformation satisfies the
continuity condition (compatibility) of the material at the boundary of the site of
plastic deformation.

Let us consider another case, when stress relaxation occurs on the scheme of
pure shear in conjugate directions at an angle of 45� with respect to the tensile axis
(Fig. 4). Stress relaxation of pure shear can be realized by superposition of two
separate solutions, correspondingly for the case of tension along the y-axis and for
the case of compression along the x-axis (Fig. 4).

The case of tension is considered above and is described by Eq. (3). Analogically,
an inhomogeneous stress field for the case of compression along the х-axis is
defined. In the latter case, the same Eq. (3) are used where the stress Δσ is taken
with the opposite sign. Further in Eq. (3), the variable х will be exchanged into у and
у into -x. The solution for the compression along x-axis will be obtained. Summing
this solution with the solution (3), the following equations for the components of the
stress tensor for the site of plastic deformation of pure shear will be obtained.

Δσy ¼ Δσa2

r2
2 1� 2y2

r2

� �
þ 1� 8y2x2

r4

� �
3a2

r2
� 2

� �� �
,

Δσxy ¼ 2Δσa2xy
r4

3a2

r2
� 1

� �
Δσx ¼ Δσa2

r2
2 1� 2y2

r2

� �
� 1� 8y2x2

r4

� �
3a2

r2
� 2

� �� �
:

(8)

The patterns of spatial distribution of all the components of the field of internal
stresses in the system of coordinates in Fig. 4 are shown in Fig. 5. The comparison

Fig. 4 The scheme for the
calculation of stresses in the
plane with a relaxation
element of pure shear
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with Fig. 3 reveals qualitative and quantitative discripancies as well. Let us notice
that here the maximum and minimum values of Δσy components are equal to
Δσymax = 3Δσ and Δσymin = �1.4Δσ, respectively. The Δσх-distribution is the
inverse distribution of the Δσy-distribution, which is rotated by 90� as well. Extreme
values of the Δσхy-component are equal to �2Δσ.

Inside the RE, there exists a homogeneous field of plastic deformation with the
components:

epy ¼ 4Δσ=E, epx ¼ �4Δσ=E, epxy ¼ 0: (9)

It is not difficult to define that the plastic deformation of pure shear in conjugate
directions at an angle of 45� with respect to the tensile axis in the site is calculated
according to the formulae

γp ¼ epy � epx
� �

=2 ¼ 4Δσ=E: (10)

At that time, in the direction at an angle of 45� with respect to tensile axis a shear
stress is observed:

τ x, yð Þ ¼ Δσy � Δσx
� 	

=2: (11)

The equations obtained (8), (9), (10), and (11) above fully define the stress-strain
state of the simplest site of plastic deformation of pure shear of round shape.

3.2 Construction of Relaxation Elements with Gradients of Plastic
Deformation

The disadvantage of the considered distributions is the fact that at the boundary of
RE the components of stresses and deformations possess jumps. And though
formally the condition of compatibility for the total deformation (elastic þ plastic)
is obeyed the jumps of stresses mean loose of continuity of material along the
boundary. The relaxation element method allows to construct and to find relaxation

Fig. 5 Distributions of the components of the field of internal stresses of an RE of pure shear with
respect to the system of coordinates in Fig. 4: Δσy(а), Δσx(b), Δσxy(c)
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elements with smooth distributions of plastic deformations. Let us demonstrate it
with an example of RE of round shape.

By definition, the site of plastic deformation is the relaxation element is the defect
in the continuum medium with its own fields of internal stresses. WhenΔσ tends to a
small value dσ, we obtain an elementary defect in the continuum. The presence of
such a defect doesn’t change the elastic properties of the medium, i.e., it doesn’t
affect the solution of the boundary-value problem of linear theory of elasticity.
Therefore, for the internal fields of stresses of similar defect the superposition
principle is valid. This defect can be used as the element for the construction of
the various fields of localized plastic deformation. Prescribing a definite distribution
of RE, one can construct the sites with the gradients of plastic deformation.

Let us consider it on the example of the site of plastic deformation of а-radius,
constructed by superimposition of the RE of round shape on each other with the
common center (Fig. 6). Each RE in the family is characterized by a definite dimension
and the value of the elementary tensor of relaxation dσ. The boundaries of the
neighboring elements are assumed to lie at the equal distance dа from each other.
Quantitative view (representation) of expected profile (smooth, differentiated) of plastic
deformation is represented in Fig. 6 (to the right) in the form of envelope line,
embracing the steps the height of which characterized the value of plastic deformation
dep of a definite RE. Let us select the near-boundary region with the width h in the
given family of RE, in which parameters of RE will define in the following manner:

a t00ð Þ ¼ a� ht00, dσ t00ð Þ ¼ βþ 1ð Þh Δσt00βdt=a, 0 � t00 � 1: (12)

Here t00 is an integration variable, Δσ is prescribed value, β – is the parameter,
defining the value of elementary step when transfer from one element to another,
βþ 1 is normalization factor. It is seen that with increase in В t00 the dimension of RE
evenly decreases from а till a � t. Herewith, the magnitude of the elementary
relaxation tensor dσ(t00) is gradually increasing. The growth rate depends on the
value of the β-parameter. The more β, the more the growth rate of dσ(t00).

Fig. 6 The scheme of the family of RE and profile of plastic deformation in the family
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Let the value of steps dep in the central zone gradually decreases down to zero
when approaching the center of the site. For that the changing of parameters of
relaxation elements can be defined in the following manner.

a t0ð Þ ¼ a� hð Þ 1� t0ð Þ, dσ t0ð Þ ¼ βþ 1ð Þ 1� h=að Þ Δσ 1� t0ð Þβdt, 0 � t0

� 1: (13)

Here t0 – is the integration variable, which is changing within the interval
0 � t0 � 1, β – is the parameter, defining the change in the value of elementary
stress drop dσ(t0). Accordingly (13), an increase in t0 defines the gradual decrease in
radius RE a(t0) and the value dσ(t0) as the center of the site is approached. The rate of
reduction is controlled by the β-parameter. The higher is β-parameter, the quicker the
value dσ(t0) decreases.

Using parameters (12) and (13) for the corresponding RE in Eqs. (8) and (10), we
obtain the dependencies for the elementary stress field dσi and plastic deformation
depi on the variables t0 and t00. Integration of the elementary fields of plastic deforma-
tion from all RE under the prescribed conditions results in the smooth stress fields

τ x, yð Þ

¼ Δσ

βþ 1ð Þa2
βþ 3ð Þr2

3 βþ 3ð Þa2
βþ 5ð Þr2 � 2

� �
1� 8 1� y2=r2

� 	
y2=r2


 �
, if r2 � a2,

�1þ r
a

� 	βþ1 β2 � 1

2 βþ 3ð Þ βþ 5ð Þ 1� 8 1� y2=r2
� 	

y2=r2

 �þ 1

� 

, if r2 � a2

8>>><
>>>:

9>>>=
>>>;
:

(14)

and plastic deformation

γp ¼ 2Δσ
E

1� h

a

� �
1� r

a�h

� 	βþ1
h i

þ h

a
, r2 � a� hð Þ2

h

a

a� r

h

� �βþ1

, a� hð Þ2 � r2 � a2:

8><
>: (15)

Here r – is the distance from the center of the family of relaxation elements to the
point with the coordinates (х, у).

To be short, Eq. (14) is written at the value h = 0. In Eq. (15), the upper equation
behind the bracket defines the value of γp-component at each point of central zone
(Fig. 6), and lower at each point in the near-boundary zone.

Apparently by pointed out method one can construct the smooth fields of plastic
deformation and stresses for each RE of any type.

A smooth distribution of plastic deformation of pure shear at the value β = 5 is
depicted in Fig. 7a. The profiles of plastic deformation for the different values of β-
parameter are represented in Fig. 7b. At a distance h from the boundary of the site,
the maximum gradient of plastic deformation is observed

gradepy ¼ 2Δσ βþ 1ð Þ=Ea: (16)
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It is seen that the value of the gradient is defined by the parameter β. The more the
value, the higher is the gradient of plastic deformation. At β ! 1, we yield to the
considered above the site of plastic deformation with the jump at the boundary of the
site.

Shown in Fig. 8 are the parameters of the spatial distribution of plastic deforma-
tion and stress τ(x,y), for the various values of the parameter β at h = 0.5а. As the
parameter β increases, the maximum gradients of plastic deformation and stresses
increase as well. The case considered above with the jump of plastic deformation
(and stress) is the limit case at β = 1.

Figure 9 demonstrates the stress field (а) and isolines of pure shear (b) of the site
of plastic deformation of pure shear at the values β = 8 and h = 0.2а. It is seen that
such a site causes elevated stresses of a mesoscopic scale in the direction of 45� with
respect to the tensile axis.

4 Stresses in a Continuum with Band Structures

4.1 Introduction

The band of localized deformation defines an extended narrow region on the surface
of the material, where the process of stress relaxation occurs intensively and the
material undergone the formchanging, additional to elastic one. On microlevel this
region is represented as a pack of slip traces. In monocrystals such packs are formed
along the closed-packed planes of atoms, favorably oriented for easy slip and spans
(intersect) over the whole cross section of the specimen [36–39]. In polycrystals, first
of all the conjugate grains are involved into plastic deformation, in which the slip
traces are favorably oriented for the realization of shear component of external stress.
On mesolevel, the straight bands of localized plastic deformation are formed. As a
rule, they are oriented along the planes of maximum shear stress with respect to

Fig. 7 Distribution (а) and profiles (b) of plastic deformation in the site at h = 0.5а and β = 5.
Numbers at the curves mean β-values
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external applied stresses, independently on the crystallographic orientations of slip
systems.

As experiment shows [38, 39] the phenomenon of material fragmentation on the
mesolevel is, also, the consequence of the intersection and interaction of the forming
mesobands, oriented at an angle of 45� or 60� with respect to tensile axis. On

Fig. 8 Spatial distributions of stresses τ(x,y) (a) and plastic deformation of pure shear γp(b), for
different values of β-parameter
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macrolevel they are incomplete Lüders band at the initial stage of loading, or band
structures, being formed under the interaction of the macrobands of localized shear
before the onset of fracture. In the case of the alloys with martensitic transformation
inelastic formchanging of the local volumes takes place by formation or interaction
of martensitic lamellae.

In such a manner, for the definition of the stress state of the medium with the band
of localized deformation in the first approximation one should select the contours,
beyond which the material deforms elastically, but inside undergoes plastic defor-
mation, i.e. the plastic deformation is connected with stresses disappeared as a result
of relaxation. Further, for convenience, under common term “Localized deforma-
tion” one should understand (mean) any inelastic deformation, obtained as a result of
stress relaxation, independently on the physical mechanisms, providing inelastic
form changing. Assigning (prescribing) in different manner the tensor of plastic
deformation inside the contours, one can perform the analysis of the qualitative
pattern of the change in the inhomogeneous field of stresses at the interaction of band
defects at the mesoscale level.

In the given chapter provides the examples of construction of the bands of
localized deformation with very different distribution of plastic deformation. It is
shown how the field of stresses from corresponding distributions of RE are inte-
grated. The stress-strain state of the band with localized plastic deformation,
depending on the angle of its orientation with respect to tensile axis, is analyzed.
Then, the interaction of the bands with each other and the edge effect are considered.
The examples of the point displacement fields of continuum with the bands of
localized deformation of different orientation and mutual location are considered.
Qualitative and quantitative differences in the patterns of inhomogeneous stress field
of fragmentated and non-fragmentated material are revealed.

4.2 Bands of Localized Plastic Deformation

One of the most interesting tasks practically and theoretically demanded in mechan-
ics of deformed solid is the task of stress-strain state of the plane with the band of

Fig. 9 Stress field (а) and isolines of RE of pure shear (b): β = 8, h = 0.2а
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localized plastic deformation (LPD). Let us consider the simplest case of the
construction of the band of localized plastic deformation, being normal to the tensile
axis y. Let us compose it from the RE of round shape with the field of internal
stresses (3). Let us define for each RE an elementary value of stress drop dσ =Δσdx/
2a, where 2а is the diameter of the circle and let us place the RE at the equal distance
dx between each other along х-axis (Fig. 10). At such a construction in the arbitrary
point (х,у), the stress drop will be equal to ndσ, where n–is the number of RE, inside
which lies the given point. Stress drop in the value dσ, according to (6), is provided
by elementary field of plastic deformation with the components

depy ¼ 2dσ=E, depx ¼ �dσ=E, depxy ¼ 0: (17)

Integrating these elementary fields (17), we obtain the following equations for the
epy-component of plastic deformation in hemi-infinite band:

epy ¼ epymax

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y2

p
2a

, x2 þ y2 � a2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y2

p
a

, x2 þ y2 � a2:

8>><
>>: (18)

Here epymax ¼ 2Δσ=E.
The spatial distribution of the epy-component of tensor of plastic deformation in the

band is represented in Fig. 11. The maximum value of plastic deformation epymax is

observed along the axis of the band. As the boundary of plastic region is approached,
the degree of plastic deformation decreases down to zero.

The same way, integrating elementary stress fields according to Eq. (3), where
Δσ is replaced by equation dσ = Δσdx/2a, one can obtain the field of stresses for
the given semi-infinite band of localized deformation. In a coordinate system
with the origin at the 0-point (see Fig. 10), the components of the tensor of
internal stresses of the given semi-infinite band are described by the simple
formulas:

Fig. 10 The scheme of the construction of the band of localized deformation fromRE of round shape
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Δσy ¼ Δσ
ax

r2
2þ 1� a2

r2

� �
4y2

r2
� 1

� �� �
x=a, r2 � a2

8<
: , r2 � a2,

Δσx ¼ Δσ
ax

r2
2� 1� a2

r2

� �
4y2

r2
� 1

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2=a2

p
, r2 � a2

8<
: , r2 � a2,

Δσxy ¼ Δσ
ay

r2
1� a2

r2

� �
3� 4y2

r2

� �
0, r2 � a2

8<
: , r2 � a2:

(19)

Shown in Fig. 12 is the distribution of the stress field σу (19). The stress field is
seen to be perturbated only at the end of the band. There exists a stress concentration
in front of the band. At that time the stresses are lower than the average level of
external stress in the band itself, near the end. This example shows that the source of
the driving force during the formation of the shearband is the concentration and high

Fig. 11 Semi-infinite band of LPD

Fig. 12 Field of internal stress σу of semi-infi-nite LPD-band, being normal to tensile axis
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gradients of stresses at the end of the band. One should take into account the
following peculiarities of the bands of localized shear:

1. The stress field is highly perturbated only at the end of the band. There the stress
concentration is observed always. It contributes to the formation of the LPD-band.

2. The zone of stress concentration at the end of the band is always combined with
the zone of anticoncentration of stresses inside the band.

4.3 Plastic Deformation in the Site of Elliptical Shape

Let us consider an example of plane stress state of the medium, where the site of
plastic deformation is described by the family of the elliptical regions of relaxation
enclosed into each other (Fig. 13).

It is supposed that beyond a given site of plastic deformation, the material is
homogeneous, isotropic and is deformed elastically under the operation of tensile
stress σ, directed along y-axis. For definiteness let us assume that all ellipses have
common center at the origin of coordinates. For the simplicity let us consider the
case when the length of the semi-axes are equal to a = a(1 � t) и b = b(1 � t), i.e.,
when the ratio of the lengths of the semi-axes is the same and is equal to a/b, where
the semi-axis b of the site is directed along the tensile y-axis, t – is the integration
variable, changing within the interval from 0 to 1. At t = 0 we obtain the largest
semi-axis. Hence an increase in t corresponds to the consequent transition from
external contour to the center of the family. A specific t-value chooses a definite
contour from the family. The point with the coordinates (x,y) will fit the contour of
ellipses with the value t = 1 � (x/a)2 þ (y/b)2.

The value of relaxation tensor for the given ellipse we represent in the form of the
function of the integration variable in the following manner:

Fig. 13 Graphical
representation of the
distribution of the relaxation
elements in the form of
ellipses with the same relation
of axis lengths
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dσr ¼ βþ 1ð Þσ 1� tð Þβdt, � 1 � β � 1: (20)

The parameter β is seen to regulate the change in the value of relaxation under
the continuous transition from the contour to contour. The coefficient β þ 1 at
the integration of dσr from 0 to 1 determines the value of external applied stress
σ.

One can show that the plastic displacements of the ellipse’s contour as a result of
stress drop inside the ellipse in the value dσr are defined by the tensor of deformation
with the components:

dex ¼ dσr=E0, dey ¼ 1þ 2a=bð Þ dσr=E0, dτxy ¼ 0: (21)

Apparently, the fields which covered the point (x,y) are superposed, i.e., the

integral result is obtained by integration of the Eq. (21) within the limits 1 < t < 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=að Þ2 þ y=bð Þ2

q
.

By substituting into Eq. (21) instead of dσr the Eq. (20) and integrating within the
corresponding limits one can obtain the tensor components, describing the smooth
field of plastic deformation with the gradients at the boundary of the site:

The distribution of the epy-component is characterized by simple equation

epy ¼
σ

E
1þ 2

a

b

� �
1� x2

a2
þ y2

b2

� � βþ1ð Þ=2" #
: (22)

In particular, along x-axis we obtain the following equation for the profile of
plastic deformation

epy ¼
σ

E
1þ 2

a

b

� �
1� x

a

� �βþ1
� �

: (23)

An example of spatial distribution of plastic deformation for the different β-
values according to Eq. (23) is represented in Fig. 14. As it is seen, this field is
smooth. At the boundary of plastic region there is no breaks, only gradients of plastic
deformation are broken. The maximum epy -value at the center of the site is not

dependent on β-parameter and is equal

epymax ¼
σ

E
1þ 2

a

b

� �
: (24)

A derivative of the Eq. (22) on x variable results in the following equation for the
gradient of plastic deformation along x-axis:

gradepy xð Þ ¼ �epymax

βþ 1

a

x

a

� �β
:
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At the end of the band a

gradepy að Þ ¼ �epymax

βþ 1

a
: (25)

It is seen that with increase in β-parameter the gradients in front of the boundary
increase. At the center of the site at β> 1, the gradient of plastic deformation is equal

Fig. 14 The change in the distribution of plastic deformation ey in the site of elliptical shape with
increase in β-parameter in Eq. (23); a/b = 4, σ/E = 4.86 � 10�3
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to 0. At β = 0, the gradients along any directions from the center of the site are
constant, i.e., plastic deformation decreases linearly from maximum value at the
center down to zero at the boundary of plastic region. Then along x-axis
gradepy xð Þ ¼ epymax=a:

At β ! �1 at the center of the site the gradient of plastic deformation tends to
infinity. Figure 15 reflects all mentioned peculiarities on the profiles of plastic
deformation epy along x-axis under increasing the value of β-parameter according to

the law, β=�0.95þ 2j�9, where j in order takes the numerical values from 0 till 18.
It is clear that the selection of another law for the relaxation value at the same

distribution of relaxation elements will result into another distribution of plastic
deformation. Shown in Fig. 15 is the analogous example, when the law for the value
of relaxation is set by the equation

dσr ¼ βþ 1ð Þσtβdt, � 1 � β � 1: (26)

Then the distribution of epy-component is defined by the equation

epy ¼
σ

E
1þ 2

a

b

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
þ y2

b2

s2
4

3
5
βþ1

: (27)

And for the profile of plastic deformation the following equation is obtained

epy ¼
σ

E
1þ 2

a

b

� �
1� x

a

h iβþ1

: (28)

It is seen that, unlike the previous case, here, conversely, increase in β-param-
eter results in decrease in localization of plastic deformation. The peculiarity of
the distribution of (28) lies in the fact that at β> 0 at the boundary of the site there
is no jump of the gradient of plastic deformation (Fig. 16). It should be noted that
the profiles in Fig. 16 exactly copy inversely reflected profiles in Fig. 15. Besides

Fig. 15 The profiles of
plastic deformation along x-
axis when β increases
according to Eq. (23)
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that, maximum values epy at the prescribed values of relations a/b and σ/E don’t

depend on the β-value. In Figs. 15 and 16 the ratio a/b = 4, σ/E = 4.86 � 10�3,
epymax = 4.43%.

By combination of solutions (23) and (27) one can obtain the distribution which
will be smooth (differentiable) at all points of the site of plastic deformation
including the boundary of the site. For this it is necessary for the RE in the near-
boundary zone of the width h along x-axis (Fig. 13) to prescribe the relaxation law by
the equation the type (20), and for the rest of relaxation elements in distribution – the
Eq. (26), providing the matching of the gradients at the contour, separating the
selected zones. Then the continuity condition of the gradients will be fulfilled
everywhere and the distribution of plastic deformation will be described by the
formulae:

epy
epymax

¼
1� h

a

� �
1� a

a�h

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2 þ y2

b2

q� �βþ1
� �

þ h

a
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
þ y2

b2

s
� 1� h

a

h

a
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
þ y2

b2

s0
@

1
A a

h

2
4

3
5
βþ1

, 1� a

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
þ y2

b2

s
� 1:

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(29)

The result at h/a = 0.5 and for the rparameters of ellipse is represented in Fig. 17.
As should be expected, distribution of plastic deformation is turned out to be

smooth. The maximum of plastic deformation is concentrated in the center of the
site. The gradient of plastic deformation increases in the direction to the contour,
dividing the near-boundary zone. The gradient is maximum at the point on the
contour and equal to the value, prescribed by Eq. (25) (Fig. 18).

Equation (29) and the results, presented in Figs. 17 and 18, reveal that with
increase in β-parameter the gradients of plastic deformation increase at the distance h
from the boundary of the site. Along with it, within the interval х < a � h the region
of practically homogeneous plastic deformation arises and expanded. The change in

Fig. 16 The changing of the
profiles of plastic deformation
along x axis under increase in
β according to Eq. (27)
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the width of the near-boundary zone h doesn’t influence the maximum gradient, but
reduce the area of homogeneous plastic deformation inside the site (Fig. 19).

Qualitative pattern of the distribution of the component ex apparently will be
analogous to the distributions considered, i.e., the Eq. (21) for dey and dex differ only
in the coefficients.

Fig. 17 The changing of the distribution of plastic deformation ey in the site of elliptical shape with
increase in parameter β in Eq. (29)

Fig. 18 The changing of the
profile of plastic deformation
along x axis according to the
Eq. (6.10) when β increases
by law β = 20.5j (j = 0, 1, 2, 3,
. . . 10). h/a = 0.5
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4.4 Field of Stresses from the Site of Elliptical Shape

Since there exists an analytical connection between the tensor of relaxation and
plastic deformation then by prescribing the distribution of RE in the local volume,
the resulting inhomogeneous stress field is defined automatically, in the whole plane,
including the region of relaxation. For the relaxation element in the form of ellipse,
the components of tensor of elementary stress field along x-axis can be written in the
following form:

dσxx ¼ dσr
a

a� b

a

ða� bÞ
x

c
� 1

� �
� b2x

c3

� �
,

dσyy ¼ dσr
a

a� b

b2

ða� bÞ þ
xða� 2bÞ
ða� bÞc þ b2x

c3

� �
,

(30)

dτxy ¼ 0:

Here c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2 � b2

� 	
1� tð Þ2

q
. The equation for dσr in Eq. (30) is selected

depending on the character of distribution of plastic deformation.
Integrating the Eq. (30) over t variable for the general case of distribution (29) we

obtain the distributions, depicted in Fig. 20 depending on the value of the
parameter β.

The results of integration for different h values at β = 4 are represented in Fig. 21
in the form of corresponding profiles of stresses.

A comparison of stress fields with corresponding profiles of plastic deformation
immediately reveals a clear correlation. The stress fields have no breaking points
(turning points) at β > 0. Increasing the gradient of plastic deformation (increase in
parameter β) causes corresponding growth of the stress gradient, but with the
opposite sign. Maximum of the gradients is observed at the points of the contour,
separating the near-boundary zone. Besides that, the increase in the average degree
of plastic deformation is accompanied by decrease in the stress field inside the site.

Fig. 19 The change in the
profile of plastic deformation
along x at h increase from 0 to
a. h/a = 0.5j
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Increase in the width of the near-boundary zone doesn’t affect the maximum gradient
and results in increase in the average stresses inside the site (Fig. 21).

At the same time within the limits of the width h the stress continuously goes
through the maximum.With increase in β-parameter maximum grows. With increase
in h an effect of stress concentration wanes, the maximum is smoothing and
displacing to the center of the site of plastic deformation. The zone of localized
plastic deformation is reduced.

Represented variant of the model of the site of plastic deformation reflects the
elastic-plastic properties of real structures in the approximation of continuous
medium, when the near-boundary zone is considered to be the physical boundary
of the structural elements where the ability to stress relaxation is smoothly decreases
as the geometrical boundary with elastically deformed matrix is approached. The
results of calculations show that in this case the maximum stress concentration is
observed not at the geometrical boundary but in the near-boundary zone with the
width not more than h. Increase in the gradients ahead of the physical boundary,

Fig. 20 Profile of σy along x-
axis under increasing β. σ/
E = 4.8 � 10�3, β = 20.5 	 j.
Numbers at the curves relate
to the corresponding j-values

Fig. 21 Changing the profile
of stress σy along x-axis with
increasing h. σ/E = 4.8 �
10�3, h= a 	 j/11. The numbers
at the curves correspond to
j-values
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decrease in its width h, and the increase in the length of plastic region promote the
effect of stress concentration.

5 REM in the Models of Localization of Plastic Deformation
and Fracture

5.1 Peculiarities of the Simulation by the Relaxation Element
Method

Using the relaxation elements as the defects, characterizing the interrelation between
plastic deformation and stress allows one to simulate the process of strain localiza-
tion and to obtain the dependencies of flow stress on the sequence of the involve-
ments of separate structural elements into plastic deformation. A modelled medium
is represented in the form of conglomerate of discrete elements, playing the role of
elements of the structure. A structural element with the field of plastic deformation is
itself a relaxation element. With a certain degree of accuracy this field can be
characterized using the different types of RE, considered above. By placing a
definite relaxation element in the element of the structure, we at the same time
determine the corresponding change in the field of internal stresses in a solid. In such
a way, the interaction of the internal stress fields from the elements of structure,
undergone plastic deformation, lies on the basis of the modelling with relaxation
element method.

Models developed on the basis of REM operate on principles of cellular automata
[40, 41]. The calculation field is divided into a number of cells, playing the roles of
elements of structure (for example, grain in polycrystal). Each element of the
modelled medium possesses the ability to switch its state by discrete jumps in plastic
deformation, prescribed by a definite relaxation element. In such a manner, an
element of structure is able to increase discretely the degree of plastic deformation
and a stress concentration to affect the stress state of the whole volume of solid. The
involvement of the structural elements into plastic deformation is realized by definite
transition rule (for example at the moment of achieving of a critical value of shear
stress). The interaction of the stress field from different structural elements under-
gone plastic deformation occurs automatically.

When interpreting the results of a simulation, one should take into account that
the stress state of a deformed system is controlled only by incompatible plastic
deformation connected with stresses in the volume of a solid. The relaxation
elements in the present case play the role of defects, responsible for the field of
plastic deformation. However, it was experimentally found that the absolute majority
of deformation defects at the stage of developed plastic deformation disappear as a
result of annihilation, disappearing at internal interfaces and exposing at the free
surface of the solid. The stresses caused by these defects will also disappear. What
remains is the corresponding field of plastic deformation, not connected with
stresses, which satisfies the compatibility condition. Thus in general case one should
not neglect the compatible plastic deformation. The problem lies in the fact that the
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compatible plastic deformation cannot be represented by a definite analytical func-
tion of coordinates. The same formchanging of the solid can be realized by a number
of variants of mass transfer of the material, not influencing the stress field. That
means that the relaxation element method can correctly calculate the change of stress
fields and plastic deformation, caused by the presence of the defect of plastic nature
in the volume of material with time. For the definition of the total plastic deforma-
tion, including the contribution from the defects, exposed on the surface of the
material, the additional conditions are necessary. They can be formulated when
calculating the specific structures, taking the known quantitative data from the
experiment. In other words, it is necessary to know the prehistory of the develop-
ment of plastic deformation.

5.2 Modelling of Localization of Deformation in Polycrystals by
RE-Method

Let us consider an example of the simulation of plastic strain localization in poly-
crystals under loading, using the relaxation element in the form of a circle. In this
case we use an approximation, assuming that on the mesolevel each crystallite
involved into plastic deformation in the polycrystalline agglomerate can be consid-
ered as a relaxation element of round shape.

As a criterion of the crystallite involvement into plastic deformation, serves a
critical shear stress τcr in one of two possible directions which were assigned in each
crystallite by the generator of random numbers. The direction imitates the orientation
of slip planes in crystallite lattice. The second slip system was directed at an angle of
π/3 with respect to the first one. Let us define the boundary condition by the
assumption that the transition of the crystallite from elastic into plastic deformed
state occurs at the minimum external applied tensile stress σ. That means that the
probability of the involvement into plastic deformation is excluded for all crystallites
except only one. According to this condition, a new element with the coordinates
(хп, уп) transfers into the plastic state under external stress:

σn xn, ynð Þ ¼
2 τcr �

Pn�1
i¼1 Δτ xi, yið Þ

h i
1þ 2Δτ xn, ynð Þ=Δσ , (31)

where the sum represents the contribution of all previous REs to the shear stresses.
The contribution of i–RE to the effective shear stress from п-RE is calculated

according to the equation

Δτ xi, yið Þ ¼ Δσiy � Δσix
h i

sin αn cos αn þ Δσixy cos2αn � sin2αn

 �

,

where αn is the angle between the allowed direction and the axis of loading, the
components Δσxi, Δσyi and Δσxyi are calculated, using the Eq. (3) for RE of the
round form at the values Δσ = 50 MРa and τcr = 50 MРa. кΔσix The calculation field
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consists of 25�50 points – centers of virtual crystallites, which in Fig. 22 are
depicted in the form of hexagons.

Shown in Fig. 22 is the sequence of the patterns of the crystallites involvement
into plastic deformation. It is seen that under the present conditions, the model
predicts the self-organization of the bands of localized shear. From the very begin-
ning of plastic flow, the mesobands divide the material into fragments. The external
applied stress oscillates near some average value (31) (Fig. 23). Each stress drop is
associated with the formation of a separate mesoband embracing several grains.

A different pattern is observed in the polycrystal with rigid inclusions (Fig. 24).
Plastic deformation starts at the boundary of the inclusions and is located near it. The
macrobands in the conjugate directions of maximum tangential stresses originate
from the inclusion. The contribution of the additional stress fields from the inclusion
results into a lower flow stress of the polycrystal. The development of plastic
deformation is realized in this case by the formation of mesobands, causing oscilla-
tions of the external stress.

Thus, modelling by relaxation element method reveals qualitative and quantita-
tive distinctions of the developments of plastic deformation in polycrystal structures
without the inclusion and with a rigid one. The model presented predicts the jump-
like dependence of the external stress on the number of acts of structural elements
(grains of polycrystals) involvements into plastic deformation. Its value (external

Fig. 22 Self-organization of the bands of localized plastic deformation in the modelled 2D-
polycrystal under vertical tensile loading

Fig. 23 Dependence of the
external stress on the number
of crystallites, involved into
plastic deformation
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stress) defines the onset of plastic flow in the grain, where a critical value of shear
stress is achieved. Since plastic deformation of each new grain changes the field of
internal stresses, then the value of external stress oscillates within corresponding
limits.

The presented results of the simulation by the relaxation element method points
out to the necessity of further improvement of the model. A simplified approach
doesn’t allow to describe a temporal evolution of strain localization. Besides that, to
determine the value of σ(x,y) = σmin, according to the Eq. (31), practically is not
possible. That is why any further improvement of the model of plastic strain
localization is realized with accounting of the real boundary condition of loading.

5.3 The Influence of the Rigidity of the Testing Device

Theoretical models of plasticity are developed in assumption of a definite and as a
rule simple boundary condition of loading. The changing of the applied load with
time is controlled by the change of plastic deformation. It is not possible to realize in
practice precise theoretical boundary conditions. Therefore, the loading diagram of
the same material depends essentially not only on the mode of loading (tension,
compression, bending, torsion), geometrical shape, and the dimension of the spec-
imen but on the technical characteristics of the testing device. One of the most
important technical characteristics of the machine is the rigidity modulus M. It is
defined as a force which is necessary to apply to the punch of the machine in order to
shift in it in 1 mm at the rigid coupling of clamps. Such a displacement is possible
due to elastic deformations of the parts of the machine from the punch to the clamp.
Depending on the M value the machines conditionally are divided in two classes:
into rigid with a big value and into soft with a small value of rigidity modulus. Rigid

Fig. 24 Self-organization of shear bands in the modelled polycrystal with rigid inclusion
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machines are very sensitive to the quick change in the rate of plastic deformation and
react on it by a drop in the load (Fig. 25a). The stress-strain diagrams obtained on the
soft machine have stair-case type (Fig. 25b).

Let the rate of movement of the clamps of testing machine v0 is known in
unloaded state. In the loaded state in a course of deformation of the specimen, the
elastic deformation of the intermediate parts of the machine takes place. Therefore a
constant change of the strain rate of the specimen occurs. Shown in Fig. 26, the parts
of the machine which contribute to elastic displacement are depicted in the form of
springs.

According to the definition, the modulus of rigidity of the machine is equal to

M ¼ F=Δlm, (32)

where Δlm – is the displacement of the clamps and elastic displacement of the
springs. Experimentally, the modulus of rigidity can be defined in the following
manner. The clamps of the machine are coupled, excluding the possibility to move
with respect to each other. Then the loading is switching on till the nominal
magnitude of the force Fnom, after which the loading is stopped. Next, it is necessary
gradually to uncouple the clamps, to measure the distance Δlm between them and
calculate the modulus of rigidity of the machine M, according to Eq. (32).

During the time Δt the punch of the machine will move in a distance Δl* = v0Δt.
At the rigid coupled clamps, it will match to the force Δf* = MΔl* = v0Δt.

Fig. 25 The view of the loading diagram under tensile loading with application of «rigid» (а) and
«soft» (b) testing

Fig. 26 The scheme: 1 sample, 2 clamp
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If the specimen is deformed in the clamps, then due to the deformation the
distance between clamps will increase in

Δl ¼ Δeе Δtð Þ þ Δep Δtð Þ½ 
l, (33)

where l is the effective length of the working part, Δeе(Δt) and Δep(Δt) – respec-
tively contribution of elastic and plastic deformation of the specimen. In the same
length Δl will decrease «the effective length» of the imaginary spring, representing
elastic deformation of the intermediate parts of the machine. As a result, the decrease
in the force applied to the clamps will take place in a value Δf = M Δl.

The resulting changing of the force will be equal to

ΔF ¼ Δf � � Δf ¼ MðΔl� � ΔlÞ ¼ Mðv0Δt� ΔlÞ:
Then the elastic deformation of the specimen is equal

ΔeeðΔtÞ ¼ ΔF=ðSEÞ, (34)

where S – is the area of the cross section of the working part of the specimen and Е is
Young’s modulus.

Plastic deformation of the specimen is equal to Δep Δtð Þ ¼ _epΔt, where _ep is the
average rate of plastic deformation in a prescribed time interval Δt.

Taking into account the equations (33) and (34), we obtain

ΔF Δtð Þ ¼ MΔt v0 � vpð Þ= 1þMl= SEð Þ½ 
: (35)

where vp is the rate of specimen length change due to its plastic deformation.
The sign of ΔF(Δt) depends on the difference of the rates of the punch of the

machine and the rate of the change of the length of the specimen due to its plastic
deformation vp. At vp = v0 the flow plateau will be observed, and at vp > v0 –
decrease in external load. The higher the rigidity of the machine М, the higher is the
value of the external drop of the load.

The Portevin–Le Chatelier Effect is connected with periodical spontaneous
arising of the band of localized shear. The accumulation of plastic deformation in
the band proceeds so effectively, that due to this time the velocity of the increase in
the length of the specimen due to its plastic deformation passes ahead the velocity of
the movement of the punch of the testing machine. For example, in Al-Al2O3 alloys
the decrease in external load occurs during 1–2 s. The dependence of the change in
external load ΔF (35) in that time interval on the average rate of plastic in the given
time interval for the given alloy is presented in Fig. 27. The amplitude of oscillations
of external stress at the pointed parameters of the experiments is seen to be 4 MPa if
the velocity of plastic deformation of specimen two times passes ahead of the rate of
movement of the punch of the machine. Equation (36) can be transformed for the
calculation of the increment of external stress dσ in time interval dt, during which the
stress relaxation in the value Δσ takes place in the crystallite undergone plastic
deformation.
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dσ ¼ M v0dt� Ka2Δσ=bE

 �
bþMl0= Ehð Þ : (36)

Here, v0 – is the velocity of the movement of the punch of the machine, а – is the
radius of the crystallite, S, l0, h, and b are the cross section, length, and the width of
the working part correspondingly.

5.4 Accounting for Edge Effects

More exact accounting of the boundary conditions of loading in the model is planned
to perform because of the following circumstances. The equations represented above
for the stress fields are valid for an infinite plane. At that time at the lateral
boundaries of the modelled specimen there exist normal and tangential stresses,
which should be absent according to the boundary conditions of loading.

Removal of the tangential stresses has been performed, using the method of
reflection [42] following the scheme, depicted in Fig. 28. A system of 3 RE is
considered, one of which is actual and two others are fictitious. The last create the
fields of inverse stresses. The proposed scheme of RE-position practically fully
compensates the shear components at the edge of the specimen. It is seen from
Fig. 29 that RE causes at the edge of the specimens the components of shear stresses
of the significant value (Fig. 29a). Application of technique proposed allows easily
and simply to compensate for these stresses up to practically negligible values
(Fig. 29b). At that time, as seen, the stress distribution near the given edge undergoes
essential change.

RE causes at the edge of the semi-plane also the normal stresses. For the removal
of normal stresses at the edge of the specimen, the following technique has been
applied. Fictitious RE, located symmetrically with respect to the boundary of semi-
plane increases these stresses twice. This distribution is symmetrical with respect to
the line, connecting the centers of the real and imaginary relaxation element.

In mechanics of deformed solid, a problem on the concentrated force applied
normally with respect to the surface of isotropic elastic half-plane is known as the
Flahman problem [42]. According to the known formula of Flahman, in the system

Fig. 27 Dependence of the
changing of external load on
the relative rate of plastic
deformation vp/v0: Е= 70 GPa,
l= 18 mm,M= 1.3� 103 kN/
mm, Δt = 2 s,
v0 = 5 � 10�2 mm/s
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of coordinates, depicted in Fig. 30, under the influence of an elementary force
dFx = Δσxdl, operating at the boundary of the half-plane, in the volume of the
material the field of stresses with the components arise:

dσx lð Þ ¼ 2

π
Δσx lð Þx3
x2 þ l2
� 	2 dt, dσy lð Þ ¼ 2

π
Δσx lð Þxl2
x2 þ l2
� 	2 dt,

dσxy lð Þ ¼ 2

π
Δσx lð Þx2l
x2 þ l2
� 	2 dt:

(37)

Here dl is the elementary segment of the half-plane, in which the stress Δσx
operates.

Fig. 29 The distribution of shear stresses in the specimen σху before (a) and after (b) compensation
of them at the edge of the specimen

Fig. 28 The scheme of compensation of the shear stresses at the edges of the specimen
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In order to compensate the normal stresses, created by RE at the edge of half-
plane, it is enough to prescribe exactly the same stress distribution in the plane but
with the sign reversed. In the system of coordinates in Fig. 30, according to the
second equation in the system (38) RE creates the following distribution of normal
stresses at х = 0, which we will write down with opposite sign:

Δσx lð Þ ¼ �Δσa2

p2 þ t2
2 1� 2t2

p2 þ t2

� �
� 1� 8p2t2

p2 þ t2½ 
2
" #

3a2

p2 þ t2
� 2

� � !
, (38)

where l is the variable, defining at the edge of the half-plane a location of a specific
point in the distributionΔσx(l ) (Fig. 30),Δσ is the value, defining the degree of shear
stress relaxation in the RE, and p is the distance from the edge of the specimen till the
fictitious RE.

Substitution of the function Δσx(l ) in Eq. (37) and their integrations within the
limits –L till L, where l is the length of the specimen, defines with enough accuracy
the changing of the corresponding components of the stress field in the plane
specimen and the compensation of the normal stress at the edge of the specimen.
This is very well illustrated in Fig. 31, where the distribution of the normal σх stress
is represented in the specimen before (а) and after (b) their compensation at the edge
of the specimen. It is seen that the approach applied really results in releasing of
normal stresses at the edge of the specimen. At that time, an essential changing of the
character of distribution takes place.

The technique of the releasing of normal and shear stresses at the edge of the
specimen will be further used in modelling.

Fig. 30 The scheme of
compensation of normal
stresses at the edges of the
specimen
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5.5 Jump-Like Propagation of the Band of Localized Shear

Equation (8) was put on the basis of algorithm, for the distribution of the stress of
pure shear in the conjugate directions at an angle of 45� with respect to the tensile
axis without accounting for the different orientations of the slip systems. Such a
simplification is justified by the fact that in any case the front of localized shear is
usually oriented at an angle of maximum tangential stresses.

This match the case when the crystallites have a large number of slip systems.
The calculation field is represented in the form of a matrix with 10� 50 points the

centers of crystallite. Onset of plastic deformation was initiated at the edge of the
calculation field by placing the RE, represented in Fig. 7 and by Eqs. (14) and (15) at
the values h = 0 and β = 6. This grain created a nonhomogeneous field of shear
stresses (14) in the volume of the polycrystal. The field of plastic deformation in the
crystallite at h = 0 is characterized by the tensor with the components

ey x, yð Þ ¼ 2
Δσ
E

1� r

a

� �βþ1
� �

, ex x, yð Þ ¼ �ey x, yð Þ, exy x, yð Þ ¼ 0: (39)

By the formula (31), the minimum external stress was calculated, at which at the
center of any crystallite the shear stress achieves its critical value τcr = 50 MPa. The
sum in the numerator defines the contributions from the previous relaxation elements
in shear stress. The minimum values of this function correspond to the minimum
external stress, at which there is a possibility of involvement of a single crystallite
into plastic deformation. The coordinates of the point in which σ = σmin have been
found and a new relaxation element of considered type was put there. In such a
manner, such a crystallite possesses a discrete value of plastic deformation (40) and
creates around it a corresponding field of internal stresses (14). Thus, the crystallite
effects the stress field in the whole volume of solid. The interaction of the fields of
internal stresses from the crystallites undergone plastic deformation together with the
external applied stress results in the formation of meso- and macrobands of localized
plastic deformation.

Fig. 31 Distribution of normal stresses σх in the specimen before (a) and after (b) their compen-
sation at the edge of the specimen
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Figure 32 illustrates the results of the simulation of the process of strain locali-
zation under influence of external applied tensile stress. It is seen that under the
operation of the changing inhomogeneous stress field in the volume of the polycrys-
tal a consequent development of the band structure of type B occurs, being typical
for a clearly pronounced PLC bands.

The bands of localized plastic deformation, consequently formed as a result of
jump-like displacement of the process of strain localization along the working part of
the specimen belongs to such type of bands [8]. In the considered case the macro-
band consists of three mesobands with the width of the diameter of the grain. In front
of the formed macroband, a fragment of new mesoband is formed (see the frames 1,
6, 9, 10). It spans over the whole specimen cross section (frames 2, 4, 5, 7) at angle of
45�with respect to tensile axis. The development of the mesoband occurs spontane-
ously without increasing the external stress. Further the expansion of such mesoband
takes place on the mechanism of the front of the Lüders band. (frames 1–5) by
consequent involvement of the grains into plastic deformation along the front of
initially formed band. A pack (bunch) from three mesobands represents a fully
formed macroband (frame 5). At a definite distance from the macroband at the
edge of the specimen at that time the zone of increasing shear stresses arises (dark
background at the edge of the specimen in the frame 8). Achieving of the critical
value of τcr defines the initiation and development of new macroband of localized
shear at the edge of the specimen (frames 6, 9, 10). The process of initiation and
propagation of BLD is repeated periodically.

After the process of strain localization achieves the opposite end of the specimen
(frame 11), the repeated formation of the macrobands takes place, but already in
conjugate direction of the maximum shear stresses (frame 12).

Shown in Fig. 33 is the dependence of external stress on the number of grain
involvement into plastic deformation. In fact, this dependence represents by itself a
loading diagram of the modelled polycrystal, i.e., each n-act defines a definite
quantum of plastic deformation (40).

Fig. 32 Consequent formation of meso- and macrobands of localized deformation

47 Relaxation Element Method in Mechanics of Deformable Solid 1541



Each peak is connected with the initiation of a mesoband of localized deformation
at the edge of the specimen. The formation of mesobands occurs spontaneously at
the decreasing external stress. The first mesoband from three, composing the macro-
band requires for its initiation the highest external stresses than others. The lowest
external stress corresponds to the initiation of the second mesoband.

In the course of the development of deformation, the onset of the formation of the
new BLD occurs at higher external stresses in comparison with the previous band.
Thus the change in the field of internal stresses in the chosen mode of intermittent
flow results in the effect of work-hardening.

A similar result is obtained for a polycrystal with a noticeably large number of
grains (50 � 200) (Fig. 34). Besides the high-frequent oscillations of external stress,
here it is observed a long-periodical modulation of stress, connected with arising and
formation of new macrobands of localized shear. It is seen that in the process of the
formation of the band, work-hardening of the material takes place.

The evolution of the development of strain localization in the modelled polycrys-
tal qualitatively repeats the regularities of the BLD-formation in the alloys with
pronounced PLC-effect at the stage of jump-like propagation of the band of localized
shear along the working part of the specimen [8, 9].

5.6 Self-Organization of Plastic Deformation in Polycrystals

All the problems of the simulations in mechanics of deformed solid (MDS) is
divided into two classes: direct problems (those in which the boundary loading
conditions are prescribed and it is necessary to find the stress-strain state) and inverse
(stress-strain state is prescribed and it is necessary to define boundary conditions of
loading). In MDS there is an actual problem of the solving of inverse problems for

100

s, MPa
Δs = 50MPa

90

80

70
0 40 80 120 N

Fig. 33 Effect of interrupted flow at the curve of the dependency of external stress on the number
of grains, involved into plastic deformation
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the case of the plastic deformation in structurally-inhomogeneous media with exter-
nal and internal interphases.

In the given section, an example of the simulations of self-organization of plastic
deformation in polycrystal on mesolevel is given, on the example of the solution of
inverse problem of MDS yielding to the macroscopic loading diagrams «σ-e». A
variant of the model in the approximation of plane stress condition of deformed
polycrystal is given. On the mesolevel each crystallite involved into plastic defor-
mation is represented as the relaxation element of the round shape. Figure 3
illustrates the perturbation of the homogeneous stress field σ in the volume of
polycrystal under the stress relaxation in crystallite in Δσ. The stress concentration
of crystallite beyond the crystallite reaches the value σ þ 2Δσ. The same
effect resutls in plastic deformation of the crystallite, characterized by the
components epy ¼ 2Δσ=Ε, epx ¼ �Δσ=Ε, epxy ¼ 0, where Е is the Young’s modulus

and epy component is directed along the tensile axis.

The onset and development of plastic deformation in a separate grain is assumed
to be characterized by two values of shear stress. The first value τmax defines the
onset of grain involvement into plastic deformation at τmax � τcr, where τcr,
according to the concepts of physical mesomechanics [2–4, 43], is controlled by
the processes in grain boundary planar systems. In grain boundaries the movable
deformation defects arise and move in the volume of crystallite. In a definite time
step dt the relaxation of shear stress occurs in the crystallite till the level τ0, below

Fig. 34 Jump-like propagation of the process of localized deformation (a–d)
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which the plastic deformation in the grain stops. A relaxation measure in the volume
of crystallite is defined by the value Δσ = 2(τcr � τ0).

The time interval is defined from physical reasoning. For example, the macroband
of polycrystals Al-Al2O3 with the dimension of crystallite 40 μm contains not less
than 4� 103 grains. The band is formed in 1–2с. Hence, a separate grain is involved
into plastic deformation during the time 5 � 10�4 s.

Localization of deformation is developed by the consequent involvement of
crystallite into plastic deformation under the operation of concentrators of inhomo-
geneous field of internal stresses. The involvement of the crystallites into plastic
deformation is accompanied by the geometrical formchanging. A force sensor of the
test device responds to the change in the length of the specimen. This allows to
obtain the dependence of the flow stress on the sequence of separate structural
element involvement into plastic deformation. In this way REM allows to realize a
transition from the processes of deformation on mesolevel to the loading diagrams of
macroscale level.

From the Eq. (37) it is seen that the sign of the increment dσ depends on the
difference of the rates of velocities of the free movements of the clamps and the rate
of change in the specimen length due to plastic deformation vp. At vp = v0 a flow
plateau is observed, and at vp > v0 – a decrease in external load. The bigger is the
rigidity of the machine М, the more will be the value of drop of the external load.

The equations for the stress fields, derived by REM are valid for the infinite plane.
At that time, at the lateral boundaries of the modelled specimen the normal and
tangential stresses arise, which should not exist according to the real boundary
conditions of loading. During loading these stresses were deleted following the
procedure described in 5.4.

The σ-e was constructed by summation of the increment dσ, using the obtained
Eq. (37).

The effect of rigidity of the tensile testing machine on the loading diagrams of
polycrystals of low-carbon steel illustrates Fig. 35 with E = 210 GPa [44].

The curve 1 for «soft» mode of loading (M = 1.3 � 102 kN/mm) has stair-case
type. As the rigidity of the machine M increases from 1.3 � 102 to 1.3 � 108 kN/
mm, the curve takes a more saw-tooth shape. The yield drop appears and grows.

Fig. 35 The effect of the
rigidity modulus of the
machine M on the type of
loading diagramm: М, kN/
mm = 1.3 � 102 (1),
1.3 � 103 (2), 1.3 � 105(3),
1.3 � 108(4)
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The amplitude of external stress oscillations increases. At all curves the flow
plateau is observed, after which the stage of work-hardening follows, caused by
internal stress field from relaxation elements. The flow plateau is formed on the
mechanism of the Lüders band propagation, when the crystallites is involved into
plastic deformation, consequently filling up the working part of the specimen.
Repeated involvement of the grains into plastic deformation occurs at higher
external applied stresses.

The rate of loading exerts much influence upon the σ–e curve. The less the rate of
loading, the more pronounced is the effect of intermittent flow (Fig. 36). The
increase in the loading rate results in a decrease in an amplitude of oscillations of
the external curve. Starting from the definite rate of loading there exist no oscilla-
tions of external load at the curves (curve 5). A further increase in loading rate results
in disappearing of the yield drop and the flow plateau (curves 6–8). The flow stress
increases and the effect of a sharp yield stress disappears.

Along with the influence of the rigidity of the machine and the rate of loading,
defining the boundary conditions of loading, the effect of the characteristics τcr of
material itself has been considered at the same other parameter of the model. Shown
in Fig. 37 are the σ–e curves for different values of τcr. If the dislocations are not

Fig. 36 The effect of the velocity of movement of clamps of loading device v0 on the shape of
loading diagrams: v0, μm/s = 1 (1), 10 (2), 20 (3), 30 (4), 40 (5), 50 (6), 80 (7), 110 (8)

Fig. 37 The influence of τcr on the loading diagrams:τcr = 200 (1), 100 (2), 80 (3), 60 (4), 40 (5)
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blocked by the atoms of admixture (when τcr = τ0), then the phenomenon of
intermittent flow is not observed (low curve). As the τcr increases, the Portevin–Le
Chatelier effect arises and enhanced. At that time, the flow stress, flow plateau, and
the amplitude of the peaks at the loading diagram increase.

The performed simulations allowed us to reveal qualitative and quantitative chang-
ing curves of loading, depending on the characteristics of the material itself and on the
boundary conditions of loading. The obtained characteristics of the changes of the
qualitative and quantitative loading diagrams when varying the parameters of the
model are in agreement with known experimental findings [5–9, 36, 37, 45].

6 The Application of the Relaxation Element Method to the
Investigation of the Mechanisms of Plastic Deformation
and Fracture

6.1 Stresses of Lüders Band Initiation in Polycrystals

It is known that plastic deformation onset far before the yielding of the material
[22, 23, 43]. The grains being exposed on the free surface of the polycrystal are
involved into plastic deformation first of all. That is why Lüders band embryo can
be represented as the site of plastic deformation at the edge of plane polycrystal.
The zone of plastic deformation is assumed to propagate inside the polycrystal
at the distance, being equal to the average diameter of polycrystal’s grain. For
the definiteness let us represent the grain in the form of a proper hexagon. Let
the large diagonal of hexagon is directed normal to with respect to tensile y-axis
(Fig. 38).

An embryo of Lüders band is represented in the form of a number of relaxation
elements enclosed one into another (RE) with the common center and the symmetry
axes (Fig. 38). Let us construct the form of the Lüders band embryo in the following
manner. The boundary of the embryo, starting from the edge of the polycrystal till
the straight line ВВ0, passes along the half-ellipse’s contour with the big half-axes,
touching the side of the hexagon in the points В and В0. Further, from the hand-side
from the straight line ВВ0, the boundary passes now along the side of the hexagon till
the junction. The slope of the tangent of the ellipse in the points of tangency B and B'
is equal to

dy

dx

����
���� ¼ b

a

� �2 x0
y0

¼ tg
π

3

h i
¼

ffiffiffi
3

p
,

where b is the small half-axis of the given ellipse. From here we obtain the
connection:

y0 ¼
b

a

� �2 x0ffiffiffi
3

p :
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From the other hand, from the equation of the straight line AB it follows that
y0 ¼

ffiffiffi
3

p
a0 � x0ð Þ: By equating these two last formulas, we obtain the following

equations:

x0 ¼ 3a2a0

3a2 þ b2
and y0 ¼

ffiffiffi
3

p
b2a0

3a2 þ b2
: (40)

The point with the coordinates (x0, y0) belongs to ellipse. Let us present the value
of the half-axis of ellipse in the form a= f	a0, where a0 is the distance from the edge
of polycrystal to the point А (Fig. 38), f is the coefficient of proportionality. By
substitution of the value (40) in the equation of ellipses, we obtain the following
equation:

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 a20 � a2
� 	q

¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� f2
� 	q

(41)

For the definiteness let us assume that the radius of curvature of the given half-
ellipse at the end of its big half-axis, directed along the x-axis, is equal to the half of
the average of the dimension of the grain of the polycrystal. The connection d with
the big diagonal of the hexagon a0 we will define by the condition that the area of this
grain in the form of hexagon is equal to the area of hypothetical grain in the form of

the round region with diameter d. According to this condition d ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
ffiffiffi
3

p
=2π

q
:

Let us construct with the help of ellipses enclosed in each other the continuous
distribution of plastic deformation in the embryo of Lüders band. Let us give to the
relaxation elements, not intersecting the straight line BB0 (Fig. 38), the shape of half-
ellipses with the same relation of the half-axes, being equal to a/b. Within the
interval 0 < x < x0 the variable t = 1 � x/a will select from the many RE the

Fig. 38 Scheme of the
embryo of the Lüders band at
the edge of plane polycrystal
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specific contour of the given family. For the simplicity let us assume that the length
of the half-axes are equal

a tð Þ ¼ 1� tð Þdt and b tð Þ ¼ 1� tð Þdt: (42)

Elliptical contours, interacting the straight line ВВ0, smoothly transforms into
hyperbolas with the common center at the junction point А. The value of relaxation
for the arbitrary RE from the given distribution we will assign in the form of the
function on the variable t:

dσ ¼ βþ 1ð Þσ 1� tð Þβdt, � 1 � β � 1, (43)

where σ – is the external applied stress.
It is assumed that before the loading, there were no fields of internal stresses in

polycrystal and that the matrix beyond the embryo is deformed elastically and
isotropically. From general reasoning it is clear that the maximum stress concentra-
tion is expected in the vicinity of the junction A of three grains. The instant of Luders
band initiation we will define by critical stress σcry .

According to Saint Venant principle, essential influence of the geometrical shape
of the grain boundary on the field of stresses will be essential only in the vicinity of
the point A.

Let us show that in the points of contours intersection of the contours of RE with
the straight line ВВ0 the continuous transition of the contours from ellipses to
hyperbolas takes place.

Let us find the coordinates of the points of intersection of ellipses with the straight
line ВВ0. According to the equation for ellipses

x tð Þ2
a tð Þ2 þ

y tð Þ2
b tð Þ2 ¼ 1, (44)

at x(t) = x0 we will obtain the equation

f2

1� tð Þ2 þ
y tð Þ2

3a20 1� tð Þ2 1� f2
� 	 ¼ 1:

From here we will find the coordinates of the points of intersection:

y tð Þ2 ¼ 3a20 1� f2
� 	

1� f2
� 	� t 2� tð Þ
 �

: (45)

On the other hand, hyperbolas in our system of coordinates will be described by
the equation

a0 � x tð Þð Þ2
aг tð Þ2 � y tð Þ2

bг tð Þ2 ¼ 1: (46)
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For all the hyperbolas, the relationship of the half-axis is the same and equal to
bг tð Þ=aг tð Þ ¼ bg tð Þ=ag tð Þ ¼ ffiffiffiffi

3:
p

From here we will find the small half-axis of the hyperbolas:

aг tð Þ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
q

: (47)

Differentiation of (46) with accounting of (47) for each value of the variable t
gives the equation of the tangential for the hyperbola at the point of intersection with
the straight line ВВ0 (Fig. 38):

dy

dx
¼

ffiffiffi
3

p 	
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1-tð Þ2 � f2

q : (48)

By differentiation of Eq. (44), with accounting of the Eqs. (40) and (41), we
assure that the tangential line for the arbitrary ellipse in the point of interaction with
the straight line ВВ0 is also described by Eq. (49), i.e., the smooth transition of the
contours of ellipses into contours of hyperbolas.

Thus, parameter t, changing from 0 to 1, unambiguously defined the location,
shape, and the sizes of the local regions of relaxation in the embryo of the Lüders band.
Now we have enough parameters, in order by variation of the β-parameter to regulate
the gradients of plastic deformation between the grain boundary and to analyze their
influence on the stress concentration in the vicinity of triple grain junction. Further we
will neglect the edge effects at the free boundary of plane polycrystal and to consider
the stress fields for the case of unlimited medium. According to Saint Venant principle,
the effect of the latter on the stress concentration in the point A is insignificant. That is
why instead of the half-contours at the edge of the half-plane one can consider the
symmetric full contours in unlimited plane.

Before prescribing the distribution of plastic deformation, let us divide the embryo
into three zones (Fig. 39) according to the different shape of RE. In the zone I there are
RE of proper elliptical shape. The contours intersecting the straight line ВВ0 fit into
zone II, after then the elliptical shape transfer into hyperbolic one. Zone III selects the
region, where the contours of the given RE have hyperbolic shape (Fig. 39).

Displacements of the contour of RE of elliptical shape as a result of stress drop in
it in the value dσ provides the homogeneous field of plastic deformation dεy = dσ
(1 þ 2b/a) [14]. With accounting of (43) we obtain the following equation:

dεy ¼ 1� tð Þβ 1þ 2b=að Þdt: (49)

Integration of elementary fields (50) within the interval of changing of the
variable t from 1 to 1 � (x2/a2 – y2/b2) defines the following distribution in zone I:

eIpy ¼
σr

E
1þ 2

a

b

� �
fβþ1 � x2

a2
þ y2

b2

� � βþ1ð Þ=2" #
: (50)
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The contribution to plastic deformation from RE not having proper elliptical
shape is not possible to define exactly, because there is no exact analytical solution
for the displacement of the contour of ellipses, transferring into hyperbola under
stress relaxation in it in a definite value. Nevertheless, in simplified variant one can
calculate the distribution of plastic deformation in zone II exactly enough.

The results of numerical calculations of the boundary-value problem of the theory
of cut-outs reveal, that essential influence on the displacements of the points of the
contour and on the stress concentration under tensile loading only two geometrical
parameters: the length of the cut-out in the direction normal to tensile axis and the
minimum radius of the curvature at the edge of the cut-out along this direction
[46–48]. Hence, it is possible to substitute the contour of RE with hyperbolic
trajectory at the end of the big semi-axis a(t) with the elliptical contour with the
half-axis of the same length and with the radius of the curvature at the end of the
band r(t), being equal to those for the corresponding hyperbola. The point displace-
ment of the contour of such an ellipse is easy to define. They will exactly match the
displacements of the points of real contour of RE. Then, neglecting the influence of
the substitution on the transverse component depx , one can easily find an expression

depy ¼
σ β þ 1ð Þ

E
1þ 2

ffiffiffiffiffiffiffiffi
aðtÞ
rðtÞ

s( )
y0

y
1� tð Þβdt

¼ σ β þ 1ð Þ
E

1þ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� f2
� 	

t 2� tð Þ

s( )
y0

y
1� tð Þβ,

(51)

where y and y0 are the coordinates of corresponding points at the real and substituted
contours. r(t) = [a0 � a(t)] is the curvature radius at the end of the big semi-axis of
hyperbola.

Fig. 39 Zone of plastic
deformation in the embryo of
a Lüders band
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Integration of (51) over the variable t with accounting for (44) defines the
contributions of RE into plastic deformation, intersecting the straight line ВВ0. For
RE in the Zone II the relationship y0/y is equal

y0=yð ÞII ¼
f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2� tð Þ4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
qh i2

� x2

r
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
qh i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a20f
2 1-tð Þ2 � x2

qr ,

And contribution of distorted RE in the distribution of plastic deformation within
the zone II is defined by the equation

eIIpy ¼
βþ 1ð Þσr

E

ð1�
ffiffiffiffiffiffiffiffi
x2

a2
þy2

b2

q

0

1þ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� f2
� 	

t 2� tð Þ

s" #
y0

y

� �
II

1� tð Þβdt: (52)

In zone I at that time will be observed the distribution of plastic deformation eIp�y ,
which is defined by the integration of the Eq. (49) from 0 to 1 � f. Thus, in the
region, limited by elliptical contour, touching it in the point x0, this contribution is
summed with the component (50).

In the zone III RE contours have the shape of hyperbola. At that time the
relationship y0/y is equal

y0=yð ÞIII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2� tð Þpq ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a20 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2� tð Þph i2

� x2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 2� tð Þph i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 � xð Þ2 � a20 1� f2
� 	

t 2� tð Þ
qr :

The contribution of RE in the distribution of plastic deformation in the given zone
is defined by the equation

eIIIpy ¼
βþ 1ð Þσr

E

�
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�3 a0�xð Þ2�y2

3a0 1�f2ð Þ

q

0

1þ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1� f2
� 	

t 2� tð Þ

s" #
y0

y

� �
III

1� tð Þβdt: (53)

The sum of distributions epy ¼ eIpy þ eIpy� þ eIIpy þ eIIIpy fully describes the distri-

bution of plastic deformation in the nuclei of the Luders band.
Shown in Fig. 40 are the examples of the spatial distributions of plastic defor-

mation in the Lüders band embryo, obtained with the application of the derived
above equations. Quantitative and qualitative characteristics of the plastic
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deformation distribution depends are seen to depend essentially on the value β-
parameter. At increasing β the gradients of plastic deformation at the junction of the
embryo increase too. At this time, at a definite instance of time, the zone of elevated
concentration of strain arises at the junction. A maximum value of plastic deforma-
tion epy gradually increases, approaching to the junction.

Fig. 40 Examples of the distribution of plastic deformation in the embryo of Lüder’s band
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The profiles along x-axis of the epy component for the various values of β are

presented in Fig. 41a. At the small values of β a smooth decrease of epy is observed as
the junction is approaching. The data are obtained at the value а0 = 10 of the
conditional units, Е = 210 GPa and high external applied stress σ = 1 GPa. Within
creasing β the gradient of plastic deformation at the junction and the maximum is
arising and developing, more and more displacing to the junction. At the high
gradient the plastic deformation at the junction exceeds the one in the interior of
the grain. The calculations show that the contribution of distributions (51) and (53)
into plastic deformation at the high values of β-parameter become negligible.

Fig. 41 Profiles of plastic deformation epy(a) and stresses σy(b) along x-axis in the embryo of Lüders
band. β = 2m � 1. The numbers at the curves indicate m values
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Unfortunately, up to now there is no quantitative experimental data on the
distribution of plastic deformation in a separate grain of a polycrystal at the stage
of Lüders band initiation. This doesn’t allow to define the specific value β, charac-
terizing the degree of heterogeneity of the distribution of plastic deformation for the
given material. Nevertheless, given model allows to analyze a stress state of a
material in the vicinity of the triple grain junction depending on the gradients of
plastic deformation.

About the value of stress state around the embryo one can judge by the profile of
the σy component along the х-axis.

Stress field from the stress relaxation in the local area in the local value of
elliptical shape in the value Δσ corresponds to the stress distribution for the case
of the plane with elliptical cut-out at the uniaxial stress with intensity Δσ. In the latter
case the solution is usually given in the elliptical coordinates [49]. The transition to
the Cartesian coordinates results to the following equation for the profile of the
component σy of the stress tensor along х-axis

Δσy xð Þ ¼ Δσa
a� b

b2

a� b
þ x a� 2bð Þ

a� bð Þc þ b2x

c3

� �
, (54)

where с = (x2 � a2 + b2)1/2.
For the arbitrary contour from the family of RE Δσ = dσ(t), with accounting of

(42) and (43) the integration of the Eq. (54) will result to the following equation for
the σy-component along x-axis:

σIy
σ

¼ðβþ1Þ�
ð1
A

ð1� tÞβ
a�b

b2

a�b
þ axða�2bÞ

ða�bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�ða2�b2Þð1� tÞ2

q
0
B@

1
CAþ b2xað1� tÞ2�

x2�ða2�b2Þð1� tÞ2
�3=2

2
64

3
75�dt,

(55)

where А = 1 � x/a within the interval 0 � x � x0 and А = 1 � f at x > x0.
For the definition of the contribution to the stress fields from the rest of RE with

hyperbolic shape beyond the limits x> x0, i.e., intersecting the straight line ВВ0, let
us use the same Eq. (54), where instead of a and b half-axis of ellipses we
substitute the corresponding values af and bf of half-axis of fictitious ellipses.
Radius of curvature of these ellipses at the end of semimajor axis is equal to the
radius of curvature of corresponding hyperbolas. By construction, the ratio of
semi-axis of all hyperbolas satisfies the equations b'2/a'2 = 3. From the equations
of hyperbolas we can find the distance from the point А to the corresponding
hyperbola

a0 tð Þ ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
q

:: (56)

1554 Y. Y. Deryugin et al.



Hence, the length of the semimajor axis of fictitious ellipses is equal to

af ¼ а0 1� a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
q� �

(57)

Corresponding radii of curvature at the end of the major half-axis of fictitious
ellipses are equal

r tð Þ ¼ 3a
0 ¼ 3a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
q

: (58)

The length of the small semi-axis of fictitious ellipses with accounting of (57) and
(58) are defined according to the formula

bf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
af tð Þr tð Þ

q
¼ a0

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2
� 	

t 2� tð Þ
qr ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
� 	

t 2� tð Þ4

q
: (59)

Integrating the Eq. (54) within the corresponding limits, where a and b are
replaced by af and bf, correspondingly, we obtain the values σy along x-axis. At x
> a0 the limits of integration are the same. Within the intervals x0 < x < а0 limits of
integration have the following values, the lower limit is t1 = 1 � f and upper limit

t2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

1� f2
1� x

a0

� �2s
: (60)

The profiles of the components σy along x-axes for the different β values are
depicted in Fig. 41b. It is seen that the stress starting from zero value passes through
the maximum near the junction, then falls, asymptotically approaching the level of
external applied stress. In the grain interior one can always select the area where the
level of σy is lower than σr. With increase in the gradients (β-parameter) stress
concentration in the vicinity of junction increases.

The resulting equations define gradient part of stress fields. Besides that, under
external applied stress there exist a homogeneous stress field σ0 = σ � σr.

At increasing β the maximum σy is getting closer to the junction. The area at σy <
σ expands. At the high gradients of stress concentration may exceed one order of
magnitude and more the external applied stress σ.

In a similar way, one can obtain the equation for the component σх. The compo-
nent σхy along х-axis is equal to 0.

From general considerations it is clear that stress-strain state in the vicinity of
triple grain junction at the moment of Lüders band initiation should not be essentially
dependent on the grain size. That means that within the wide range of grain sizes the
stress gradients in the vicinity of tripple grain junction should be practically constant.
Analysis shows that the maximum (in absolute value) gradient of stress σy is always
observed in the point of junction А.
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From the presented distributions of plastic deformation and stresses it is seen
that at the constant values β and σr with increase in the grain diameter d the
gradients of the field decrease under the law of inverse proportionality. In order
to fulfill the condition of constancy of the critical stress gradient, it is necessary to
decreasing of the gradient to compensate due to the corresponding increase in β
parameter and vice versa. To be specific, it is necessary the specific value d0
(arbitrary unit of grain diameter) to connect with the specific value of β0 parameter.
Shown in Fig. 42 is the dependence of the stress initiation σ00 of the Luders band on
the grain size in the embryo at τcr = 1000 MPa in the coordinates σ00 � d�1/2 at
d0 = 1 and β0 = 0.

It is seen that with decrease in the grain size the stress of Luders band initiation
increases. At β < 1 σ00 tends to the value of 2τcr asymptotically. Within a wide range
of grain sizes the dependence σ00 on d�1/2 obeys almost linear dependence, known as
Hall–Petch effect.

Experimental verification of the dependence of flow stress on the grain sizes
within a wide interval of d confirms the justice the Hall–Petch law.

In this way, the dependence of mechanical properties of polycrystals on the grain
sizes, observed in experiments, is explained by the stress-strain state of the material
in the vicinity of the junction of three grains, in which the gradient of plastic
deformation plays a principal role. In this connection the attention of experimental-
ists should be concentrated on the obtaining of the information about the gradients of
plastic deformation at the grain boundaries at different stages of loading of structur-
ally inhomogeneous materials.

The method presented extends the possibility on the experiment data to analyze
and check the mechanisms, being responsible for the arising and development of
plastic flow in the local volumes of corresponding scale. In particular, at the given
example of continuum model of Luders band initiation it is shown that specific
peculiarities of loading diagrams of real polycrystals are not possible to explain
without the accounting of the gradients of plastic deformation in the local volumes
and the geometry of elements of structure of the material. At the microconcentrators
in structurally inhomogeneous materials, stress concentration can one order of

Fig. 42 Stress dependence of
the Lüders band initiation on
the grain size of polycrystal
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magnitude exceed the external applied stress. The prediction of the model is very
good consistent with the typical regularities, observed in experiments:

– within a wide range of grain sizes the flow stress obeys the Hall–Petch law;
– the average degree of plastic deformation in the grain decreases with decrease in

the grain size [50];
– in coarse-grain polycrystals the plastic deformation at the grain junction exceeds

essentially those in the interior of the grain [51].

6.2 Modified Model of Crack

The process of the formation of substructures of deformation is often accompanied
by the discontinuities and microcracks. In this connection there is an actual problem
of the description of the field of stresses at the crack tip [52–54] and the investigation
of the influence of plastic deformation of the stress state of solid with crack.

On the basis of the engineering calculations on strength lifetime of the elements
of constructions as a rule, the principles and criteria of linear mechanics of fracture
are used [52–54]. The latter are obtained, based on the properties of classical model
of Griffith crack, in spite of its essential drawback, connected with the presence of
singularity at the crack tip, approaching of which results in very quick growth of
stress. In this connection in the mechanics of fracture the physical notion of
coefficient of stress concentration at the crack tip is not used, but as a characteristic
of inhomogeneous stress field a stress intensity factor in the vicinity of singular point
is used.

An assumption on the nonlinearity at the crack tips allows to take into account a
number of known models for the calculations [55, 56]. However, their application is
essentially restricted. They are valid only in the case when the zone of plastic
deformation is extremely small in comparison with the length of the crack itself.
At the description of the stress state near the crack with significant zone of plastic
deformation, there are great mathematical and calculational difficulties.

Critical values of the stress intensity factor КIс (SIF), characterizing inhomoge-
neous stress field in the vicinity of crack tip in quasi-brittle material, cannot serve as
a parameter, characterizing the ability of the material to resist the crack propagation
in metals and alloys, where large plastic deformation precedes the crack nucleation
and propagation. That means that the characteristic KIс for plastic material lose its
previous physical sense, especially in the case of testing of small-scaled specimens
where the plane strain condition is clearly violated.

It is known that a definite degree of plastic deformation always preceeds the
moment of fracture. That means that crack propagation occurs in the layer of
plastically deformed material. In other words, the crack from the moment of its
nucleation is always surrounded by the layer of plastically deformed material. The
thickness of the layer and the distribution of plastic deformation in it apparently
depend on the ability of the material to plastic deformation.
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Let us imagine the crack in the form of an elliptical hole with the layer of plastic
deformation along the ellipse’s contour (Fig. 1). In fact, our task is reduced to the
definition of the field of internal stresses of the given system. The continuity
condition of material beyond the hole requires smooth changing of stresses from
the values in the volume of the material to zero value at the boundary of the hollow.
The matrix beyond the selected layer is assumed to be isotropic and is elastically
deformed under the operation of tensile stress σ, directed along y-axis. Shown in
Fig. 1 is the layer around the crack in the form of relaxation elements of elliptical
shape, enclosed in each other. For the definiteness it is necessary to characterize the
geometrical parameters of each RE from the family. Let us do it in the following
manner. Inside each RE from the given family let us prescribe the value of elemen-
tary stress relaxation (elementary stress drop dσ) in such a manner, that under the
external σ an integral sum of stress drop from all the RE eliminates the all stresses in
the hollow at the external stress σ (Fig. 43).

Assume that all ellipses have the common center at the origin of coordinates and
half-axis coinsiding with the coordinate axis. The length of the semi-axes we define
by equations a(t)= a0 + h(1 – t), b(t)= b0 + h(1 – t), where a0 and b0 are the big and
small semi-axes of the hole, half-axis b of the site is directed along the tensile axis y
(Fig. 43), h is the thickness of the length around the hollow, t is the variable,
changing within the limits from 0 to 1. At t = 0 semi-axes are maximal. Increase
in t corresponds to the consequent (gradual) transition from the external ellipses to
the geometrical line of the hollow. Specific value t chooses a definite contour from
the family. At b!0 the hollow transforms into a crack. Let a0>> h, then the point at
the axis x corresponds to the RE contour with the variable

t ¼ 1� x� a0ð Þ=h: (61)

The elementary value (infinitely small value) of relaxation tensor for every
relaxation element can be written as a function of the variable t:

dσr ¼ βþ 1ð Þσtβdt, � 1 � β � 1: (62)

Fig. 43 The scheme of the crack in the surrounding of plastically deformed material
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The parameter β in the Eq. (62) regulates (controls) the degree of relaxation with
continuous transition from one contour to another. Note that the relaxation stress
increases with t. Superposition holds for the relaxation element as in the linear theory
of elasticity. When integrating Eq. (62) from 0 to 1, the normalization factor βþ1
ensures inside the hole a full absence of stresses. When integrating Eq. (56) from the
value t= 0 to the value according to Eq. (61) the value of stress drop increases as the
point at the hole is approached. The parameter β regulates the speed of change in the
given value. Larger β corresponds to increase in the speed of relaxation. Figure 44
plots the normalized relaxation stress σr/σ as a function of distance along x-axis
within the thickness of the layer. It is seen that the resulting relaxation tensor ensures
smooth decrease in the value of stress relaxation.

Increase in the rate of stress relaxation (parameter β) results in the fact that a
significant stress drop starts at small distances from the crack tip. In other words,
increase in β results in the effect of decrease of physical width of the zone of plastic
deformation. Since there is an analytical connection between the elementary relax-
ation tensor inside and elementary stress field outside [11–14], then by prescribing
with the help of the distribution of RE the value of relaxation in the local regions, a
resulting inhomogeneous stress field in the whole plane as well as in the layer itself is
defined automatically. In the system of coordinates, depicted in Fig. 43, for the
components of elementary stress field of arbitrary RE along the x-axis, according to
conditions (61) and (62), the following equations can be written:

dσxx ¼ σ βþ 1ð Þtβ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a20

p � 1

 !
� h2 1� tð Þ2x

x2 � a20
� 	3=2

" #
dt, (63)

dσyy ¼ σ βþ 1ð Þtβ h2 1� tð Þ2
a20

þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a20

p þ h2 1� tð Þ2x
x2 � a20
� 	3=2

" #
dt:, dτxy ¼ 0:
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In equation the small semi-axis (64) of arbitrary ЭР in the family is equal to b= h
(1 � t), as the hollow transfer to the crack at b0 = 0.

By integrating Eq. (63) on the variable t, it is necessary to take into account that
beyond the layer the limits of integration are taken from 0 to 1, and at the points, fit in
the layer from t to t = 1 � (x � a0)/h. For the profiles of the σy component along the
x-axes we obtain the following equations:

σy
σ
¼ 2h2

β þ 2ð Þ β þ 3ð Þ
1

a20
þ x

x2 � a20
� 	3∕ 2

 !
þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a20
p ¼ A xð Þ, if x � a0 þ h and

σy
σ
¼ A xð Þ 1� 1� x� a0

h

� �βþ1
� �

þ β þ 1

β þ 3

h2

a20
þ xh2

x2 � a20
� 	3∕ 2

 !
β þ 4

β þ 2
þ x� a0

h

� �
1� x� a0

h

� �
,

(64)

if a0 � x � a0+h.
The changing of the stress distribution σy, according to (64), at the variation of β-

parameter is demonstrated in Fig. 45. It is seen that contrary to the Griffith solution
(curve 7), there is no singularity at the crack tip (Fig. 45). Within the surface layer,
the stress continuously increases, starting from 0 at the end of the crack, passes
through the maximum, then decreases asymptotically approaching the external
applied stress σ. Beyond the layer, a qualitative and quantitative discrepancy of the
curves is practically disappears. The increase in β parameter results in growth of
stress concentration and to the displacement of the maximum towards the boundary
of the hollow. In limiting case at β ! 1, we yield a Griffith curve (Curve7). The
decrease in the physical width h of the surface results in analogous effect (Fig. 46).

The increase in the length of the crack affects greatly the stress concentration
(Fig. 47). At that time, contrary to the case in Fig. 46 with increase in the length of
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the crack, the stress increases not only in the near-boundary layer, but also beyond it,
i.e., the area of elevated concentration is expanded essentially.

The advantage of the considered description of stress-strain state of solid with
crack is apparent, because the singular solution follows from it as a particular case,
when the thickness of the layer of plastically deformed material tends to zero, or
when the parameter β tends to infinity. The proposed model allows to analyze an
effect of the value of the gradient of plastic deformation on the concentration and
stress distribution at the crack tip.

7 Conclusion

In this chapter, the possibilities of new methods of the relaxation elements are
elucidated. Examples of the construction of sites with gradients of plastic deforma-
tion have been given. A stress-strain state of the plane with a round inclusion is
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considered. The analytical description of the plane with the band of localized shear is
performed.

The possibilities of the modelling by such a method of the effect of the localiza-
tion of plastic deformation are considered. An analysis of the influence of the rigidity
of the testing device on the effect of interrupted flow is presented.

Important results testify to the high predictive possibilities and perspectives of
developed method. They are in agreement with known experimental data:

• Effect of intermittent flow is a sequence of the formation of mesobands and
macrobands of localized deformation.

• In the changing field of stresses the jump-like propagation of the bands of plastic
deformation along the working part of the specimen takes place.

• The increasing of the loading rate suppresses the effect of interrupted.
• A “saw”-type of the σ–e curve is typical for the rigid mode of loading (device with

the a high value of rigidity), in the soft mode of loading σ–e curves have stair shape.

The following peculiarities of the development of localized deformation have
been elucidated:

– The formation of mesobands occurs by the mechanism of the Lüders band
propagation and is accompanied by the relaxation of internal stresses.

– The structure of a separate macroband consists of the number of mesobands,
being oriented along the direction of maximum tangential stresses.

– Accumulation of the fields of internal stresses in the volume of a polycrystal
results in the effect of strain hardening.

– A necessary condition of the arising of Portevin–Le Chatelier effect is the fact that
the stress of the onset of plastic deformation of the element of structure is
essentially higher than the stress at which the following plastic deformation can
proceed. A sufficient condition is the condition at which the velocity of increase
in the length of the specimen due to plastic deformation periodically outpaces the
velocity of the movement of the clamps of the machine.
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