
Flexoelectric Effect at the Nanoscale 17
Lele L. Ma, Weijin J. Chen, and Yue Zheng

Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
2 Theoretical Descriptions of Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

2.1 Thermodynamic Model of Ferroelectrics with Flexoelectricity . . . . . . . . . . . . . . . . . . . . . . 553
2.2 Microscopic Theory of Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
2.3 The Theoretical Calculations of Flexoelectric Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 561
2.4 Size Effect of Flexoelectric Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562

3 Experimental Characterization of Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
3.1 Experimental Determination of Flexoelectric Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

4 Flexoelectricity-Induced Novel Phenomena in Nano-ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . 569
4.1 Modifications on Dielectric and Mechanical Response of Nanoscale

Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
4.2 Imprint Behaviors in Ferroelectric Nanofilms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
4.3 Influence of Flexoelectric Effect on Ferroelectric Nanodomains . . . . . . . . . . . . . . . . . . . . 573
4.4 Novel Domain Wall Properties Resulted by Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . 580

5 Applications of Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

L. L. Ma · Y. Zheng (*)
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University,
Guangzhou, China

Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen
University, Guangzhou, China

School of Engineering, Sun Yat-sen University, Guangzhou, China
e-mail: zhengy35@mail.sysu.edu.cn

W. J. Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University,
Guangzhou, China

Micro&Nano Physics and Mechanics Research Laboratory, School of Physics, Sun Yat-sen
University, Guangzhou, China
e-mail: chenweijin@mail.sysu.edu.cn

# Springer Nature Singapore Pte Ltd. 2019
C.-H. Hsueh et al. (eds.), Handbook of Mechanics of Materials,
https://doi.org/10.1007/978-981-10-6884-3_18

549

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6884-3_18&domain=pdf
mailto:zhengy35@mail.sysu.edu.cn
mailto:chenweijin@mail.sysu.edu.cn
https://doi.org/10.1007/978-981-10-6884-3_18


Abstract
Flexoelectric effect is a universal electromechanical coupling effect in solids.
Nevertheless, it has been ignored for a long time, due to the usual small strain
gradients in materials. The case is different for nanomaterials, where strain
gradients can usually reach to the order of 106 m�1. Moreover, as the flexoelectric
effect scales with dielectric susceptibility, it can be much more apparent in
materials with higher dielectric constants, such as ferroelectrics. Due to this
reason, increasing attention has been attracted on the flexoelectric effect in
nanomaterials (with ferroelectrics as the representatives) during the past few
years. The large flexoelectric effect in nanomaterials not only makes them
promising candidates to design novel electromechanical nanodevices but also
strongly modifies many material properties such as polarization switching, ferro-
electric domains and domain walls, polarization-mediated electronic transport
effects, etc. Focusing on flexoelectric effect at the nanoscale and with ferroelec-
trics as the representatives, this chapter aims to provide an overview of this
rapidly growing field, including the theoretical models and experimental charac-
terization methods of flexoelectric effect, the recent important progress of
flexoelectric effect, as well as the potential applications.

Keywords
Flexoelectricity · Ferroelectric · Nanoscale · Strain gradient · Polarization

1 Introduction

Flexoelectric effect, also called flexoelectricity or nonlocal piezoelectric effect,
describes the linear electromechanical coupling between electrical polarization
and strain gradients in materials. Concretely speaking, it characterizes the induced
polarization by inhomogeneous strain or the strain resulted from the polarization
inhomogeneity, where the former corresponds to the direct flexoelectric effect and
the latter corresponds to the converse flexoelectric effect. Flexoelectricity manifests
itself in a variety of materials, such as solid dielectrics, liquid crystals and biolog-
ical systems, etc. The physical mechanisms in different kinds of materials can be
quite different. Here the discussions are mainly confined in the flexoelectricity of
solids.

When we talk about electromechanical couplings, it is inevitable to mention
piezoelectricity, which characterizes the linear coupling between polarization and
homogeneous strain. A big difference between piezoelectricity and flexoelectricity is
their different requirements on the symmetry of materials. Piezoelectricity can only
be found in 20 point groups which are non-centrosymmetric, for homogeneous strain
cannot change the symmetry of materials. In contrast, with inhomogeneous strain or
strain gradients, the symmetry of materials will be broken, which results in the
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generation of polarization and enables the universality of flexoelectricity in
the whole 32 point groups (see Fig. 1). So compared with piezoelectricity,
flexoelectricity is more general and it broadens the scope of candidate materials
possessing desired electromechanical behaviors. The flexoelectric effect in solids
was predicted theoretically in the 1950s [1]. In 1964, Kogan [2] proposed a phe-
nomenological description for this effect firstly and estimated the order of magnitude
of the flexoelectric coefficients. In 1968, Mindlin [3] first introduced polarization
gradient term into the continuum theory. At the same year, Bursian [4] experimen-
tally observed the bending of a thin BaTiO3 (BTO) film due to polarization, which is
the beginning of investigating converse flexoelectric effect, i.e., the linear coupling
between polarization gradient and strain. In 1974, Bursian [5] used the term “non-
local piezoelectric effect,” and the terminology was substituted by “flexoelectric
effect” in 1981 by Indenbom [6]. Then Tagantsev [7] presented a phenomenological
description systematically on flexoelectricity and made the first attempt to investi-
gate this effect microscopically. The derived results in his work showed that the
flexoelectric effect could be divided into several contributions and the bulk
flexoelectric coefficients are scaling with the dielectric susceptibility proportionally.
Toward applications, Fousek et al. [8] proposed the idea of “flexoelectricity-based
piezoelectric composites” which have no piezoelectric constituents in 1999. Though
these achievements have been made, there have been only a few interests in this area
until at the beginning of the new century.

Fig. 1 Schematic of the
effect of homogeneous and
inhomogeneous strain on the
symmetry of centrosymmetric
lattice. It can be seen that the
homogeneous strain has no
effect on the lattice symmetry
and introduces no
polarization, but the
inhomogeneous strain or
strain gradient does break the
lattice symmetry and induces
net polarization in the
centrosymmetric lattice
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The situation changed after a series of experimental works conducted by Ma and
Cross et al. [9]. They determined the flexoelectric coefficients of several ferroelectric
ceramics and confirmed the susceptibility dependence of the flexoelectric coeffi-
cients, but the obtained values of the coefficients in some materials were much larger
than the preceding theoretical estimations. Then Zubko et al. [10] experimentally
investigated the flexoelectricity of SrTiO3 (STO) single crystals and obtained its all
three flexoelectric coefficients for the first time. Some theoretical works also began
to take flexoelectric effect into consideration, and flexoelectricity was drawing more
and more attentions. During the past decade, flexoelectric effect has aroused great
interests, and the investigations have been broadened to several aspects. These
include (a) the theoretical calculation of flexoelectric coefficients both phenomeno-
logically and microscopically as well as those by the first-principle methods, (b) the
experimental determination of flexoelectric coefficients, (c) the manifestation of
flexoelectric effect in the physical properties of materials, (d) the explanation of
some confusing but novel phenomena by taking this effect into consideration, (e) the
innovative applications and device design based on flexoelectricity and (f) the
construction of continuum theories involving the flexoelectric term, etc.

The ignorance of flexoelectricity in its early years was mainly due to the relative
weakness of the effect in bulk materials with common scales, for the order of
magnitude of the flexoelectric coefficients are estimated as ~e/a (10–9C/m), where
e is the electron charge and a is the lattice constant. Accompanying the progress in
material science and technology, however, the dimensions of materials scale down,
and the strain gradients obtained can be much larger. Especially, with the dimensions
of materials down to nanoscale, the flexoelectric effect can be quite significant and
even plays a dominant role. Moreover, as the flexoelectric coefficients scale with
dielectric susceptibility, the effect can be much more apparent in materials with
higher dielectric constants.

In this chapter, a review on the flexoelectric effect at the nanoscale, with ferro-
electrics as the representatives, will be presented. Ferroelectrics are typical materials
exhibiting high dielectric constants; thus, they are promising prototypes for the
investigations of nontrivial flexoelectricity. They also exhibit a wide range of
fascinating properties such as polarization switching, ferroelectric domains and
domain walls, polarization-mediated electronic transport effects, etc. Importantly,
many properties of ferroelectrics show strong size-dependence, due to the collective
feature of the ferroelectricity. In combination with the flexoelectric effect and size
effects, nanoscale ferroelectrics could present abundant phenomena and introduce
interesting applications. In the following, Section 2 builds up a thermodynamic
model involving the bulk static flexoelectricity in nano-ferroelectrics and introduces
Tagantsev’s microscopic rigid ion model. Then the theoretical works about the
calculations of the flexoelectric coefficients are briefly retrospected, and the size
effects of flexoelectricity are discussed. The experimental characterization of
flexoelectricity is introduced in Sect. 3. Section 4 involves the influence of
flexoelectricity on material properties and its effects on domains and domain
walls. Section 5 introduces the applications of flexoelectricity, and a conclusion is
made in Sect. 6.
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2 Theoretical Descriptions of Flexoelectric Effect

2.1 Thermodynamic Model of Ferroelectrics with Flexoelectricity

The flexoelectricity-induced polarization can be written as

Pl ¼ μijkl
@eij
@xk

(1)

where eij is the strain tensor and μijkl is the flexoelectric tensor. Einstein summation
convention is assumed hereafter with the dummy index running from 1 to 3. The
flexoelectric tensor is a fourth-rank tensor which guarantees the existence of
flexoelectricity in all crystals with any symmetry mathematically. It has 54 indepen-
dent components for most general cases. For cubic crystals, it has only three
independent components known as the longitudinal coefficient μ11, transverse coef-
ficient μ12, and shear coefficients μ44.

To characterize flexoelectricity (including both the direct and converse effect), the
total free energy density of a ferroelectric system should be supplemented by adding
the linear coupling term between the polarization and strain gradient and the term
between the strain and polarization gradient. This term is denoted as fflexo, which
represents the flexoelectric coupling energy density

f flexoðPi, eij,∇Pi,∇eijÞ ¼ �f
ð1Þ
ijklPk

@eij
@xl

� f
ð2Þ
ijkleij

@Pk

@xl

¼ � f
ð1Þ
ijkl þ f

ð2Þ
ijkl

2

@ðPkeijÞ
@xl

� f
ð1Þ
ijkl � f

ð2Þ
ijkl

2
Pk

@eij
@xl

� eij
@Pk

@xl

� � (2)

where f
1ð Þ
ijkl and f

2ð Þ
ijkl are the coupling coefficients. The volume integral of the first

term on the right-hand side can be transformed to a surface integral, and it makes no
contribution in the energy minimization process. Therefore, the flexoelectric cou-
pling energy density can be written as the Lifshitz invariant

f flexo Pi, eij,∇Pi,∇eij
� � ¼ 1

2
f ijkl eij

@Pk

@xl
� Pk

@eij
@xl

� �
(3)

where f ijkl ¼ f
ð1Þ
ijkl � f

ð2Þ
ijkl is the bulk flexoelectric coupling coefficients and it has the

same symmetry with μijkl.
The total free energy of ferroelectric system can be expressed as a function of

polarization P, electric filed E, and strain eij,

F ¼ FLand þ Felas þ Fgrad þ Felec þ Fflexo þ Fsurf

¼
ð

f Land þ f elas þ f grad þ f elec þ f flexo

� �
dV þ

ð
f surfdS

(4)
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where FLand, Felas, Fgrad, Felec, Fflexo and Fsurf are the Landau free energy, elastic
energy, gradient energy, electric energy, flexoelectric coupling energy, and sur-
face energy, respectively, and fLand, felas, fgrad, felec, fflexo and fsurf are the
corresponding energy densities.

For a typical perovskite ferroelectric material such as BaTiO3, the Landau free
energy density can be written as an eighth-order polynomial:

f Land Pið Þ ¼ a1 P1
2 þ P2

2 þ P3
2

� �þ a11 P1
4 þ P2

4 þ P3
4

� �
þ a12 P1

2P2
2 þ P1

2P3
2 þ P2

2P3
2

� �þ a111 P1
6 þ P2

6 þ P3
6

� �
þ a112 P1

2 P2
4 þ P3

4
� �þ P2

2 P1
4 þ P3

4
� �þ P3

2 P1
4 þ P2

4
� �� 	

þ a123P1
2P2

2P3
2 þ a1111 P1

8 þ P2
8 þ P3

8
� �

þ a1112 P1
6 P2

2 þ P3
2

� �þ P2
6 P1

2 þ P3
2

� �þ P3
6 P1

2 þ P2
2

� �� 	
þ a1122 P1

4P2
4 þ P1

4P3
4 þ P2

4P3
4

� �
þ a1123 P1

4P2
2P3

2 þ P2
4P1

2P3
2 þ P3

4P1
2P2

2
� �

(5)

where a1, a11, a12, a111, a112, a123, a1111, a1112, a1122 and a1123 are the phenomeno-
logical coefficients.

With the existence of eigenstrain eij
0 caused by electrostriction, the elastic energy

density of the system can be written as

f elas Pi, eij
� � ¼ 1

2
Cijkl eij � eij0

� �
ekl � ekl0
� �

¼ 1

2
C11 e112 þ e222 þ e332
� �þ C12 e11e22 þ e11e33 þ e22e33ð Þ

þ 2C44 e122 þ e132 þ e232
� �þ β11 P1

4 þ P2
4 þ P3

4
� �

þ β12 P1
2P2

2 þ P2
2P3

2 þ P3
2P1

2
� �� e11 q11P1

2 þ q12 P2
2 þ P3

2
� �� 	

� e22 q11P2
2 þ q12 P1

2 þ P3
2

� �� 	� e33 q11P3
2 þ q12 P1

2 þ P2
2

� �� 	
� 2q44 e12P1P2 þ e13P1P3 þ e23P2P3ð Þ

(6)

with

β11 ¼
1

2
C11 Q11

2 þ 2Q12
2

� �þ C12Q12 2Q11 þ Q12ð Þ

β12 ¼ C11Q12 2Q11 þ Q12ð Þ þ C12 Q11
2 þ 3Q12

2 þ 2Q11Q12

� �þ 2C44Q44
2

q11 ¼ C11Q11 þ 2C12Q12

q12 ¼ C11Q12 þ C12Q11 þ C12Q12

q44 ¼ 2C44Q44

where C11, C12 and C44 are the elastic moduli and Q11, Q12 and Q44 are the
electrostrictive coefficients.
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The gradient energy density can be written as

f grad ∇jPi,∇keij
� � ¼ 1

2
gijklPi, jPk, l þ 1

2
wijklmneij, kelm, n (7)

where gijkl and wijklmn are the gradient coefficients. The second term on the right-
hand side of Eq. (7) appears to guarantee a smooth distribution of the order
parameter in the presence of flexoelectric coupling term. Under the condition f 2klmn
< gijklCijmn, this term can be neglected, and the gradient energy can be simplified as

f grad ∇jPi,∇keij
� �¼ 1

2
G11

@P1

@x1

� �2

þ @P2

@x2

� �2

þ @P3

@x3

� �2
" #

þG12

@P1

@x1

@P2

@x2
þ@P1

@x1

@P3

@x3
þ@P2

@x2

@P3

@x3

� �

þ 1

2
G44

@P1

@x2
þ@P2

@x1

� �2

þ @P1

@x3
þ@P3

@x1

� �2

þ @P2

@x3
þ@P3

@x2

� �2
" #

þ 1

2
G44

0 @P1

@x2
�@P2

@x1

� �2

þ @P1

@x3
�@P3

@x1

� �2

þ @P2

@x3
�@P3

@x2

� �2
" #

(8)

The electric energy density is

f elec ¼ �PiEi � 1

2
ϵbEiEi ¼ �ðP1E1 þ P2E2 þ P3E3Þ � 1

2
ϵbðE2

1 þ E2
2 þ E2

3Þ (9)

where ϵb is the background dielectric coefficient.
The flexoelectric coupling energy density is

f flexo Pi, eij,∇Pi,∇eij
� � ¼ 1

2
f ijkl eij

@Pk

@xl
� Pk

@eij
@xl

� �

¼ 1

2
f 11e11 þ

1

2
f 12 e22 þ e33ð Þ


 �
@P1

@x1
þ 1

2
f 11e22 þ

1

2
f 12 e11 þ e33ð Þ


 �
@P2

@x2

þ 1

2
f 11e33 þ

1

2
f 12 e11 þ e22ð Þ


 �
@P3

@x3

þ f 44 e12
@P1

@x2
þ @P2

@x1

� �
þ e13

@P1

@x3
þ @P3

@x1

� �
þ e23

@P2

@x3
þ @P3

@x2

� �
 �

� 1

2
f 11

@e11
@x1

þ 1

2
f 12

@e22
@x1

þ @ϵ33
@x1

� �
þ f 44
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@x2

þ @e13
@x3

� �
 �
P1

� 1

2
f 11

@e22
@x2

þ 1

2
f 12

@e11
@x2

þ @e33
@x2

� �
þ f 44

@e12
@x1

þ @e23
@x3

� �
 �
P2

� 1

2
f 11

@e33
@x3

þ 1

2
f 12

@e11
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þ @e22
@x3

� �
þ f 44
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@x1

þ @e23
@x2

� �
 �
P3

(10)

where f11, f12 and f44 are the flexoelectric coupling coefficients.
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The surface energy density can be written as

f surf Pið Þ ¼ D1
sP1

2

2δ1
eff

þ D2
sP2

2

2δ2
eff

þ D3
sP3

2

2δ3
eff

(11)

with δi
eff being the so-called extrapolation length and Di

s being the material coeffi-
cients related to the gradient energy coefficients and surface orientations.

To minimize the total free energy F, apply the Euler-Lagrange equations with
respect to polarization Pi and strain eij, respectively,

@F

@Pi
� @

@xj

@F

@ @Pi=@xj
� �

 !
¼ 0 (12a)

@F

@eij
� @

@xk

@F

@ @eij=@xk
� �

 !
¼ σij (12b)

For simplicity, if just consider the second order of P in the Landau energy density,
one can have

Pi ¼ ϵ0χij Ej þ f jmkl
@ekl
@xm

� �
(13)

σij ¼ Cijkl ekl � ekl0
� �þ f ijkl

@Pk

@xl
(14)

These are the constitutive equations of ferroelectrics considering the flexoelectric
effect.

From Eq. (13), it can be seen that the term f jmkl
@ϵkl
@xm

behaves just like the electric

field Ej, so it is defined as the flexoelectric field

Ef
j ¼ f jmkl

@ekl
@xm

(15)

Furthermore, rewrite Eq. (13) by defining μijkl= ϵ0χimfmjkl, and rewrite Eq. (14) in
terms of E by neglecting the term related to the higher-order @2ϵkl

@xi@xj
,

Pi ¼ ϵ0χijEj þ μijkl
@ekl
@xj

(16)

σij ¼ Cijkl ekl � ekl0
� �þ μijkl

@Ek

@xl
(17)

where μijkl is the so-called flexoelectric coefficients appearing in Eq. (1). It should be
noted that Eq. (17) is only limited to the cases of small strain gradients; for large
strain gradients such as in domain walls and interfaces, it is not rigorous because the
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neglect of the term @2ϵkl
@xi@xj

is not reasonable in such cases. Moreover, with the

piezoelectric coupling term involved in the total free energy, the constitutive equa-
tions of “general piezoelectricity” can be derived as

Pi ¼ ϵ0χijEj þ eijkϵjk þ μijkl
@ϵkl
@xj

(18)

σij ¼ Cijkl ekl � ekl0
� �þ eijkEk þ μijkl

@Ek

@xl
(19)

with eijk being the piezoelectric constants.
To investigate the domain structure evolution of ferroelectric system and study

the system’s responses and physical properties under different boundary conditions,
the time-dependent Ginzburg-Landau (TDGL) equations

@Pi

@t
¼ �L

δF

δPi
(20)

are commonly employed to describe the evolution of order parameters. For a given
ferroelectric system, Eq. (20) should be solved under a set of boundary conditions, i.
e., polarization boundary condition, mechanical boundary condition, and electrical
boundary condition. The polarization boundary condition can be obtained by varying
the total free energy with respect to Pi and equating the variation δF to zero, that is,

@f surf
@Pi

þ nl
@f bulk

@ @Pi=@xlð Þ þ
@f grad

@ @Pi=@xlð Þ þ @f elas
@ @Pi=@xlð Þ þ @f elec

@ @Pi=@xlð Þ þ @f flexo
@ @Pi=@xlð Þ

� ����
s¼ 0

(21)

To obtain the mechanical boundary condition in the presence of flexoelectric
effect, first substitute the strain eij by 1

2
ui, j þ uj, i
� �

, then vary the total free energy
with respect to ui and equating the variation δF to zero,

@f surf
@ui

þnl
@f bulk

@ @ui=@xlð Þþ
@f grad

@ @ui=@xlð Þþ
@f elas

@ @ui=@xlð Þþ
@f elec

@ @ui=@xlð Þþ
@f flexo

@ @ui=@xlð Þ
� �����

s

¼ 0

(22)

Take a mechanical-free, open-circuit ultrathin ferroelectric film as an example, the
equations of boundary conditions at the top and bottom surfaces are

Ds
i

δsi
Pi þ njgijkl

@Pk

@xl
þ nj

f lmij
2

elm

� �����
s

¼ 0 (23)

σi3 � f l33l
2

þ f ij3l
2

@Pl

@xj

� �����
s

¼ 0 (24)

∇ � Djs ¼ 0 (25)
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with Eqs. (23), (24), and (25) being the polarization, mechanical, and electrical
boundary conditions, respectively. It should be noted that the consideration of
flexoelectric effect not only contributes to the TDGL equation but also contributes
to the boundary conditions. Nevertheless, in many theoretical works, the modifica-
tions of flexoelectric effect on the boundary conditions were ignored. It is still
indistinct how much the flexoelectric boundary conditions can influence the domain
structure and physical properties of ferroelectric systems. But it is expected that in
nanoscale materials, the effect of the flexoelectric boundary conditions should not be
neglected not only because of the significance of flexoelectricity but also because of
the importance of the surfaces at the nanoscale.

It is noteworthy to point out that the flexoelectricity discussed above is the bulk
static flexoelectricity which is somewhat analogous to piezoelectricity. According to
Tagantsev’s work [7], the dynamic bulk flexoelectric response, for example, the
polarization caused by the strain gradients induced by an acoustic wave, can also be
derived in a similar way by considering the kinetic energy and can be written as

Pi ¼ ϵ0χijEj þ ðμijkl þ μdijklÞ
@ekl
@xj

(26)

where μdijkl is the dynamic flexoelectric coefficients which is also proportional to the

susceptibility χij and is approximately of the same order of magnitude with the bulk
static fleoxelectric coefficients. For a system in quasi-static states, the dynamic
flexoelectric effect can be ignored.

Moreover, a complete phenomenological description of flexoelectricity for finite
samples must include the effects of surfaces or interfaces. A typical example of surface
effects that can mimic bulk flexoelectric response is the surface piezoelectricity, where
thin piezoelectric layers near the surfaces cause a built-in field across the sample, and
the field depends on the strain state of the surfaces. Despite a lack of clear understand-
ing of the surface flexoelectricity, it is believed that it makes an important contribution
to the large difference between the experimental flexocoupling coefficients and the
theoretical bulk ones. In general, properties near the surface (e.g., bonding and
screening environment, surface polarization, surface work function, interface dipole,
etc.) should change in response to local strain. As a result, a long-range surface-specific
flexoelectric field may arise across the sample due to the strain difference between the
surfaces. In this context, besides solving the bulk flexoelectricity, one can include a
surface-specific flexoelectric field to the system, for example, for a nanofilm as

Eflexo, S
i ¼ f SijklΔe

S
kl=h (27)

where ΔeSkl are the components of strain difference between the top and bottom
surfaces of the nanofilm, h is the film thickness, and f Sijkl are the surface-specific

flexocoupling coefficients.
It is also noteworthy that recent first-principle calculation has shown that bending

strain can induce antiferrodistortive (AFD) displacement associated with the rotation
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of oxygen octahedral in ultrathin ferroelectric nanofilms. [11] Interestingly, the
bending nanofilm possesses spontaneous polarization (which is absent in flat film)
due to the coupling between ferroelectricity and the AFD phase transition. In other
words, polarization is induced by strain gradient via the triggering of AFD phase
transition. This actually indicates flexoelectricity can be originated from more com-
plex mechanisms. However, a complete phenomenological description of
flexoelectricity in nanomaterials taking into account such mechanisms is still lacking.

2.2 Microscopic Theory of Flexoelectric Effect

Though the phenomenological description sheds light on the flexoelectric response
of materials and obtains the flexoelectric constitutive equations, it cannot give the
magnitude of the flexoelectric coefficients. To estimate the flexoelectric coefficients
and uncover the microscopic mechanism of flexoelectricity, various theoretical
works have been conducted. In 1964, Kogan [2] first gave the order of magnitude
estimation of the flexoelectric coefficients. Following his method, consider a cubic
unit cell with lattice constant a, if the strain variation over the interatomic distance
equals one, then the strain gradient is 1

a. With the polarization being of the order of
ea
a3 ¼ ea�2, the flexoelectric coefficient can be obtained as � ea�2

1=a ¼ e
a, where e is the

absolute value of the electron charge. After Kogan, Tagantsev [7] developed a
microscopic description of flexoelectricity based on the “rigid ion” model, which
focused on the ionic flexoelectricity and neglected the electronic contribution. Here a
brief introduction to this model is given; more details can be found in Reference [7].

Consider a crystal lattice sketched in Fig. 2. Atom B is the nth atom of the lattice,
and its jth coordinate is denoted by Rn, j before deformation. When the lattice is
subjected to an inhomogeneous deformation, one can get two kinds of values of the
ith components of the displacement of atom B. The first value is an approximation
based on the continuum theory and is called the external displacementwext

n, i, set x
0
j the

coordinates of an immobile reference point, then

wext
n, i ¼

ðRn, j

x0
j

@ui
@xj

dyj (28)

where @ui
@xj

is the so-called external strain. The other value is the real displacement of

the atom B according to the discrete nature of the lattice, wn,i. The inhomogeneous
deformations break the centrosymmetry of the lattice, so wext

n, i is not coincident

with wn,i. The difference between wn,i andwext
n, i is the so-called internal strainw

int
n, i, and

it is proportional to the strain gradient

wint
n, i ¼ wn, i � wext

n, i ¼ Njkl
n, i

@ejk
@xl

(29)
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whereNjkl
n, i can be calculated by the theory of lattice dynamics. If the nth atom has the

charge Qn, the variation of the average polarization induced by the inhomogeneous
deformation can be written as

δPi ¼ V�1
def

X
n

Qn Rn, i þ wn, i
� �� V�1

X
n

QnRn, i (30)

where V and Vdef are the volume of the sample before and after deformation,
respectively. Substituting Eq. (29) into Eq. (30), one can find the strain gradient
induced polarization variation in a unit cell with volume v,

δPi ¼ v�1
X
n

QnN
jkl
n, i

@ejk
@xl

(31)

So the flexoelectric coefficients can be obtained as

μijkl ¼
δPi

@ejk=@xl
¼ v�1

X
n

QnN
jkl
n, i (32)

Based on this rigid ion model, Tagantsev [7] divided the flexoelectric effect into
four contributions, i.e., static bulk, dynamic bulk, surface piezoelectricity, and

Fig. 2 Schematic of a lattice before a and after b inhomogeneous deformation
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surface flexoelectricity, and the four contributions are generally of the same order of
magnitude. As mentioned before, surface piezoelectricity shows its existence in
finite samples, the surfaces of which break the symmetry of the system and result
in effective piezoelectric layers in vicinity of the surfaces. This contribution is also
susceptibility dependent and is independent of the surface/volume ratio. The last
contribution, i.e., surface flexoelectricity, is not dependent on the dielectric constant
thus relatively insignificant. It should be noted that the surface contribution to the
flexoelectric response was challenged by Resta [12], who developed a microscopic
description of the electronic contribution to flexoelectricity based on the classical
piezoelectric theory.

2.3 The Theoretical Calculations of Flexoelectric Coefficients

To quantify the significance of flexoelectric response, the relatively accurate values
of flexoelectric coefficients are needed, not just the order of magnitude estimations.
The theoretical calculations of flexoelectric coefficients were conducted just in
recent years though the microscopic theories were put forward much earlier. Based
on Tagantsev’s microscopic model, Maranganti et al. [13] first implemented the
calculation of bulk static flexoelectricity. Later, Hong et al. [14] performed the first-
principle calculations of longitudinal flexoelectricity using a direct approach. They
directly calculated the induced polarization by a given strain profile and extracted the
flexoelectric coefficients. The direct methods have the merits of including the
extrinsic contributions, such as surface and defect effects. Then Hong and Vanderbilt
[15] extended Resta’s theory to yield the transverse flexoelectric coefficients and
obtained the longitudinal flexoelectric coefficients for a number of materials such as
BTO, PbTiO3 (PTO), and STO. Later they developed a more general first-principle
theory which included both the electronic and lattice contributions in the context of
density-functional calculations [16]. They obtained the relationship of flexoelectric
coefficients between the fixed electric field (μEijkl ) and fixed electric displacement

ðμDmjkl) boundary conditions:

μEijkl ¼ ðδim þ χimÞμDmjkl (33)

where δim is Kronecker delta. So μDmjkl could be seen as a “ground-state bulk property”

to calculate the μEijkl at finite temperature by scaling with the dielectric constant.

Ponomareva et al. [17] developed an effective Hamiltonian method to study the
flexoelectric effect in ferroelectric thin films at finite temperatures and investigated
the temperature and film thickness dependence of the flexoelectric coefficients.
Recently, Stengel [18] built up a new continuum thermodynamic functional and
constructed the relationship between the continuum description and ab initio phono
dispertion curves, which was used to calculated the flexoelectric coefficients.

Besides of calculating the exact values of the flexoelectric coefficients, the upper
limits for the magnitude of the static bulk flexoelectric coefficients in ferroelectrics
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were determined by Yudin et al. [19]. By studying the requirement of stability of the
parent phase, the upper bounds for the flexoelectric coefficients were derived as

f 244 < c44g44 (34a)

f 11 � f 12ð Þ2 < C11 � C12ð Þ g11 � g12ð Þ (34b)

2.4 Size Effect of Flexoelectric Response

The significance of the flexoelectric response is not only related to the magnitude of
the flexoelectric coefficients but also to the strain gradients. The flexoelectric
response is expected to be largely size-dependent and tends to be much stronger
when the structural size scales down to nanometers because the strain gradients are
closely linked with structural feature size. The size scale of strain gradients can be
shown in a simple way as discussed by Majdoub et al. [20]. As shown in Fig. 3,
consider two triangular inclusions with different length scales but the same aspect
ratio, when they were subjected to the same stress, the strain distributions of the two
inclusions would be identical. So the strain gradients scaled inversely with ai, which
was the distance between two points inside the inclusion.

Majdoub et al. [20] also investigated the flexoelectric size effects of piezoelectric
and non-piezoelectric cantilevers by using both the flexoelectric continuum theory
and the atomistic simulations. As illustrated in Fig. 4, when the thickness of the
cantilever was below 10 nm, an apparent piezoelectric response can be found in non-
piezoelectric paraelectric BTO which was attributed to the flexoelectricity. With the
decrease of thickness of the cantilever, the piezoelectric response of paraelectric
BTO became much stronger, and its piezoelectric constant could be as high as five
times of the piezoelectric BTO constant when the thickness of the cantilever was

∂ε

∂x

Dε

a1

s ¥ s ¥

s ¥s ¥

a1

» m m » nm

Self-similar

scaling

~
∂ε

∂x

Dε

a2

a2

~

Fig. 3 The illustration of size effects of flexoelectricity by considering two triangular inclusions
with the same aspect ratio, subjected to the same stress but with different length scales. Reprinted
with permission from [20]. Copyright (2008) American Physical Society
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smaller enough. The enhancement of piezoelectric response of PZT (lead zirconate
titanate) was relatively moderate compared with that of BTO, but the piezoelectric
constant was still doubled at 15 nm. Inspired by the size effect of flexoelectricity,
Majdoub et al. [21] also found a size-dependent effect of the harvested power of a
PZT cantilever due to flexoelectricity. Their results indicated that the energy
harvesting of piezoelectric nanostructures could be dramatically enhanced in a
definite small range of sizes by taking the flexoelectricity into consideration.

Due to the size effects and its significance in smaller size, flexoelectric response is
quite strong in systems with nanoscale sizes and comparable to the piezoelectric
response or even plays a dominant role. To clarify the influence of flexoelectricity
and its size effects in nanostructures, there are also more and more interests focused
on the flexoelectric continuum theory, which will not be covered here, and are
referred to, e.g., Reference [22].

3 Experimental Characterization of Flexoelectric Effect

3.1 Experimental Determination of Flexoelectric Coefficients

The measurement techniques of flexoelectric coefficients include direct methods and
the converse ones. The direct methods measure the polarization of the samples induced
by the external inhomogeneous deformations. In contrast, the converse methods utilize
the converse flexoelectric effect, measure the strains of the sample under a nonuniform
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Fig. 4 The enhancement of piezoelectric response of piezoelectric PZT (dashed blue) and para-
electric BTO (solid red) with the decrease of cantilever thickness. The piezoelectric constants are
normalized with respect to the bulk piezoelectric PZT (solid blue) (dPZT = � 274pC/N ) and
piezoelectric BTO (dBT = � 78pC/N ), respectively. Reprinted with permission from [20]. Copy-
right (2008) American Physical Society
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electric field, and extract the converse flexoelectric coefficients. It has been shown that
the direct and converse flexoelectric coefficients are equivalent. The direct methods are
more commonly used and include various designs such as cantilever bending, three-
point bending, four-point bending and pyramid compression, etc.

The typical experimental setups of cantilever bending, three-point bending, four-
point bending and pyramid compression are illustrated in Fig. 5a, b, c and d,
respectively. To illustrate the measurements, take the three-point bending measure-
ment conducted by Zubko et al. [10] as an example. As shown in Fig. 5b, oscillatory
bending strain can be induced by the probe on single crystal STO, with the strain
gradient being

@e11
@x3

¼ 3z0
L

2

� ��3 L

2
� x1

� �
, (35)

where L is the distance between the knife edges under the sample, z0 is the
displacement of the probe, and xi is the distance between the center of the sample
and the interested position. The induced average out-of-plane polarization can be
measured as

P3 ¼ I

ωA
(36)

where ω is the angular frequency of the oscillatory mechanical bending, A is the area
of the electrode and I is the measured ac current. In addition, the flexoelectricity-
induced average polarization can also be obtained as

P3 ¼ μ
@e11
@x3

¼ μ
12z0

L3
L� að Þ (37)

where μ is the effective flexoeletric coefficient and a is the half length of the
electrodes. From Eqs. (36) and (37), it has

μ ¼ IL3

12ωAz0 L� að Þ (38)

It should be noted that μ is the effective flexoelectric coefficient, which is a
combination of the flexoelectric coefficients defined before. To obtain the full three
flexoelectric coefficients of STO, the measurement should be repeated for samples
with different orientations. It is also necessary to use a different method to get
another independent equation because the pure bending method can only provide
two independent equations. Then the flexoelectric coefficients can be extracted by
solving the independent equations of different μ from different measurements.
Moreover, the existence of the heater and liquid N2 bath in Fig. 5b enables the
controllability of temperature; thus, the dependence of the flexoelectric coefficients
can also be obtained.
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By using the developed experimental techniques, the flexoelectric coefficients of a
number of ferroelectric and relaxor ceramics have been measured. The results of the
direct and converse methods show a good agreement. The relationships between the
flexoelectricity-induced polarization and strain gradient of relaxor PMN (lead mag-
nesium niobate), paraelectric BST (barium strontium titanate), and unpoled ferroelec-
tric PZT are shown in Fig. 6. It can be seen that for paraelectric ceramics, the
flexoelectric polarization scales linearly with strain gradient as expected. In contrast,
for unpoled ferroelectric one, the flexoelectric behavior is nonlinear, which is associ-
ated with the ferroelastic domain switching under large mechanical loading.

According to Tagantsev [7], the relationship between flexoelectric coefficients
and dielectric permittivity can be described as

μij ¼ γχij
e

a
(39)

where χij is the dielectric susceptibility and γ is a constant of the value close to 1.
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Fig. 6 The relationship between the flexoelectricity-induced polarization and strain gradient in (a)
relaxor PMN (Reprinted with permission from [9]. Copyright (2001) AIP Publishing LLC.), (b)
paraelectric BST (Reprinted with permission from [25]. Copyright (2002) AIP Publishing LLC.)
and (c) unpoled ferroelectric PZT (Reprinted with permission from [26]. Copyright (2003) AIP
Publishing LLC.)
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The experimental results characterizing the permittivity dependence of μ12 for
PMN and BST are shown in Fig. 7a. The temperature dependence of μ11 and χ of
BST are shown in Fig. 7b. It is clear that the flexoelectric coefficients scale with the
dielectric permittivity. The enhancement of μ12 in BST above ϵr~11000 is perhaps
associated with the existence of ferroelectric domains above the general transition
temperature. However, it can be seen that γ of PMN and BST are not as expected and
are also much different with each other, with γPMN~0.65 and γBST~9.3. Moreover,
for unpoled PZT and BTO ceramics, the scale factors have been determined as
γPZT~0.57 and γBT~11.4, respectively. Compared with Pb-based PZT and PMN, the
Ba-based BST and BTO have stronger flexoelectric effects and larger values of γ.
Thus the chemical makeup might be the source of the difference of the
flexoelectricity in these two perovskite structures.

The dielectric permittivity dependence of the flexoelectric coefficients indicate a
large flexoelectric response at the temperature close to the paraelectric-ferroelectric
transition temperature of ferroelectrics, where the ϵr is much higher. The measured
flexoelectric coefficients of BST, PMNT (lead magnesium niobate-lead titanate), and
PST (lead strontium titanate) under such conditions are indeed particularly high
(~10� 100μC/m). But for relaxor ferroelectric PMN, the large μ12 is attributed to not
only the large permittivity but also the reorientation of the polar nanodomains under
strain gradients.

The flexoelectric coefficients have also been measured for some kinds of single
crystals. The temperature dependence of the flexoelectric response of STO and BTO
are shown in Fig. 8a and b, respectively. The inset of Fig. 8a shows the linear
proportionality between flexoelectricity-induced polarization and strain gradients, as
expected. For STO, the flexoelectric response increases qualitatively following the
dielectric permittivity with a decreasing temperature. However, there is an anomaly
of the flexoelectric response when the temperature is below 105K, which is the cubic
to tetragonal phase transition temperature of STO. The anomaly can be explained as
follows: ferroelastic domains appear below 105K and tend to release the elastic
energy by readjustment of domain walls under mechanical deformation, thus leading

Fig. 7 (a) Relationship between flexoelectric coefficient μ12 and dielectric permittivity and (b) the
temperature dependence of μ11 and χ of BST. Reprinted with permission from [24]. Copyright
(2006) Springer Nature
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to the relaxation of strain gradients and consequently the reduction of the
flexoelectric response. For BTO single crystal, a sharp decrease of flexoelectric
coefficients from 10–100 μC/m to 1–10 μC/m can be seen above Tc, which corre-
sponds to the ferroelectric-paraelectric phase transition. Since the reported values of
BTO ceramics in paraelectric phase are 5–50 μC/m, it indicates that the grain
boundaries play a role of enhancing the flexoelectric response.

To compare the flexoelectric coefficients obtained through theoretical calcula-
tions and experimental measurements, BTO and STO are taken as examples as
displayed in Table 1. It can be seen that the order of magnitude of flexoelectric
constants for STO show good agreement between the ab initio calculations and the
experiments, while the measured transverse flexoelectric coefficient of BTO are
three to four orders higher than the calculated one. This discrepancy is partly
attributed to the large temperature dependence of the dielectric permittivity of
BTO, since the temperature of the calculation is 0K, while the experiment is
conducted at room temperature. Taking this effect into consideration, the gap can
be narrowed to about one to two orders of magnitude. Other sources of this gap
involve the surface piezoelectricity and the flexoelectricity-induced alignment of
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Table 1 Flexoelectric coefficients for BTO and STO from theoretical calculations and experiment.
Reprinted with permission from [13]. Copyright (2009) American Physical Society.

μ11(10
�13C/m) μ12(10

�13C/m) μ44(10
�13C/m)

Ab initio Experiment Ab initio Experiment Ab initio Experiment

STO �26.4 20 �374.7 700 �357.9 300

BTO 15.0 �546.3 106 �190.4
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precursor polarization existing in the paraelectric phase of BTO. Furthermore, since
the experimental data for BTO used here is from BTO ceramics, the grain boundary
enhancement of flexoelectricity is also a contribution to this gap.

4 Flexoelectricity-Induced Novel Phenomena
in Nano-ferroelectrics

When the size of ferroelectric system decreases to nanoscale, various triggering
phenomena arise. Many of the phenomena can be explained without taking into
account the flexoelectric effect, while some of the anomalies cannot. In this section,
we will discuss the triggering phenomena and properties induced by flexoelectric
effect in nanoscale ferroelectrics, from relatively global characteristics such as
dielectric responses and imprint behaviors to some local characteristics, e.g., the
profile and conductivity of domain walls.

4.1 Modifications on Dielectric and Mechanical Response of
Nanoscale Ferroelectrics

4.1.1 Modified Dielectric Response
It has been reported that for ferroelectric thin films close to the transition tempera-
ture, the permittivity is depressed rather than the sharp peak of bulk ferroelectrics.
With decreasing film thicknesses, the depression tends to be more pronounced. The
smearing of the temperature-dependent permittivity for BST thin films with different
thicknesses is shown in Fig. 9a. By taking the flexoelectric effect into consideration,
Catalan et al. [29] calculated the ferroelectric properties in terms of the LGD theory
in the assumption of an exponentially relaxed strain profile. The results show a good
agreement with the experimental data, as displayed in Fig. 9b. Unlike bulk ferro-
electrics, thin films are subjected to misfit strains by the underlying substrates. The
misfit strains relax across the direction of film thickness and generate a strain
gradient in the film. Due to the flexoelectric effect, this strain gradient will induce
a built-in flexoelectric field, which influence the dielectric responses. With decreas-
ing film thickness, the flexoelectric response becomes more apparent and leads to a
larger degradation of the dielectric permittivity.

Besides the smearing of the dielectric permittivity, flexoelectricity can also
modify the critical thickness of the ferroelectric films. The reported vanishing critical
thickness of free standing PT (lead titanate) films has been demonstrated to be
caused by flexoelectricity. And it is proposed that the critical thickness of epitaxial
BTO films can be increased by the flexoelectric effect. Furthermore, the
flexoelectricity-induced modifications on Curie temperature and pyroelectric coeffi-
cients of ferroelectric thin films have also been reported. These phenomena indicate
that thin films with desirable dielectric and ferroelectric properties could be designed
by introducing or avoiding specific strain gradients.
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4.1.2 Modified Mechanical Response
In indentation tests of ferroelectrics, it is found that the indentation hardness was
enhanced when the indenter radius decreases. This indentation size effect of hard-
ness is demonstrated to be induced by the flexoelectric effect by Gharbi et al. [30],
both theoretically and experimentally. Barium titanate and quartz were both inves-
tigated to testify their theory. The indentation hardness with different indenter radius
is shown in Fig. 10a. It can be seen that the flexoelectric model is in excellent
agreement with experiments. For macroscale indentation, the strain field is relatively
uniform, and the strain gradient is small; therefore, the flexoelectricity-induced
enhancement can be neglected. For nanoscale indentation, there existed an extremely
large strain gradient so that the enhancement is apparent for BTO which has large
flexoelectric coefficients. While quarts shows no enhancement even for nano-
indentation because of its weakness of flexoelectric response. This enhancement
phenomenon also provides us a method to extract the flexoelectric coefficients by
indentations. For BTO in the present case, the extracted flexoelectric coefficients is
μ12 = 4μC/m, which is in good agreement with the value measured by cantilever
bending.

In fact, besides the indentation hardness, various mechanical properties are
modified by flexoelectricity and thus present a size effect according to the developed
flexoelectric continuum theory. As an example, the effective flexural stiffness of
PMN nanofilm is shown in Fig. 10b. It can be seen that correction of flexural
stiffness due to flexoelectricity is fairly obvious when the film thickness decreases
to several nanometers and cannot be neglected in the design and fabrication of
nanodevices.
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Fig. 9 (a) Experimental data of relative permittivity for BST grown on SRO substrate (Reprinted
with permission from [28]. Copyright (2002) AIP Publishing LLC.) and (b) The calculated
temperature dependence of permittivity and the comparison with the measured values (Reprinted
with permission from [29]. Copyright (2005) American Physical Society.)
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4.2 Imprint Behaviors in Ferroelectric Nanofilms

The phenomenon that the polarization of ferroelectrics has a preferential direction
and asymmetric hysteresis loops is known as imprint. That is, one polarization state
is more stable than the other. This asymmetric polarization bistability on the one
hand will degrade the performance of devices such as nonvolatile memory in
ferroelectric thin film; on the other hand, it can also lead to an interesting
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phenomenon, such as smearing of phase transition. Ferroelectric nanocapacitors are
typical examples to exhibit imprint behavior. For these systems, first-principle
calculations have showed that the different bonding environment at the top and
bottom electrode/ferroelectric interfaces can lead to asymmetric stability of polari-
zation. (See reference [32] and references therein.) Meanwhile, phenomenological
models usually attribute the intrinsic source of this asymmetric polarization stability
to the so-called non-switchable dead layer at the film/electrode interface. This layer
may be caused by various reasons such as a secondary low-permittivity phase at the
film surface, the presence of misfit dislocations, nearby-surface variation of polari-
zation and electric field penetration into the electrodes, etc.

Importantly, it has been demonstrated that the dominant contribution to the dead
layer is the flexoelectric effect trigged by the large strain gradient near the interface.
The misfit strain between the film and electrode relaxes by the appearance of
dislocations. Full strain relaxation will generate a strain gradient as large as
~106 m�1 with a relaxation length of 10 nm. The flexoelectric filed is estimated as
Ef = f ∇e~107 V/m by using the typical value of the flexocoupling coefficients
f~10 V. Although this estimated value is smaller than value of the coercive field, it is
thought to result in the non-switchable dead layer at the region of interface, as shown
in Fig. 11. Assuming the direction of flexoelectricity-induced polarization in the dead
layer is upward, as illustrated, the head-to-head polarization configuration of the
capacitor will result in a larger electrostatic energy compared with the head-to-tail
configuration and is less energetically favorable. This leads to a preferential polari-
zation oriented upward in the rest of the film; thus, imprint behavior occurs. This
flexoelectricity-induced imprint behavior reminds us that large strain gradients need
to be avoided to prevent the degradation of device performance in ferroelectric
nanofilms.

Imprint behavior can also be introduced by the application of external strain
gradients. Gruverman et al. [34] demonstrated that the PZT thin films could be
imprinted through flexoelectric effect by applying bending stress. The PFM

Fig. 11 Schematics of non-switchable dead layer at the region of interface of a ferroelectric
capacitor. Reprinted with permission from [33]. Copyright (2006) AIP Publishing LLC
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magnitude and phase images of the as-grown film are shown in Fig. 12a and b.
Corresponding images after tensile and compressive bending are shown in Fig. 12c,
d, e and f, respectively. The dark and light regions in phase images represent the
upward and downward polarization, respectively. The dark lines in the amplitude
image represent the domain boundaries. It can be seen that before bending, the
polarization has no preferential direction. After the application of tensile bending
stress, the as-grown capacitor is switched into a single domain with upward polar-
ization, while the application of compressive bending stress results in a single
domain with downward polarization. The different preferential polarization direc-
tions are due to the opposite sign of the strain gradient for tensile and compressive
bending. This kind of imprint behavior suggests that the domain configurations of
nano-ferroelectrics can be influenced and controlled by external strain gradients,
which will be discussed in detail in the next section.

4.3 Influence of Flexoelectric Effect on Ferroelectric
Nanodomains

4.3.1 Mechanical Switching of Polarization in Ferroelectric Thin Films
Since the flexoelectric field induced by strain gradients is analogous to electric field,
it can also be used to switch the polarization of ferroelectrics mechanically. The
experimental demonstration of the mechanically induced domain switching was
conducted by Lu et al. [35]. BTO ultrathin film grown on STO substrate was used
in their investigation. The compressive misfit strain of the film resulted in the out-of-
plane polarization; thus, only 180� polarization switching was allowed. The film was
first written into a bipolar domain state electrically, the PFM images of which are
shown in Fig. 13a and b. Then it was scanned in the center area by an AFM tip with
an increasing loading force from 150 to 1500 nN. The PFM images of the scanned
film are shown in Fig. 13c and d. It can be seen that with increasing tip force, the
upward polarization is switched downward. This mechanical switching behavior is

Fig. 12 Imprint behavior generated by mechanical bending in PZT thin film. (a) and (b) are the
PFM amplitude and phase images for the as-grown film before bending. (c, d) and (e, f) are the
corresponding images after tensile and compressive bending, respectively. Reprinted with permis-
sion from [34]. Copyright (2003) AIP Publishing LLC
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attributed to the flexoelectric filed induced by the local stress inhomogeneity under
the AFM tip. The estimated flexoelectric field is as strong as 2 MV/cm, which is
comparable to the coercive field. This switching behavior can also be explained in
perspective of free energy. Figure 13e shows the calculated free energy for the
epitaxially clamped BTO ultrathin film under no stress, homogeneous compressive
stress, and tip-induced strain gradient. Under homogeneous stress, the double well is
still symmetric though the barrier decreased. While under strain gradient, the double
well is skewed, and the downward polarization state is more energetically favorable,
thus driving the upward polarization to switch downward.

The effects of epitaxial strain on mechanical switching were investigated, and it
was found that the mechanical threshold for polarization switching increased with
increasing in-plane compressive strain, which was resulted from the increase of
coercivity and tetragonality. The loading mode of AFM tip was also reported to
influence mechanical switching process and resulting domain. Sliding contact load-
ing mode requires smaller load to realize the switching, and the written domains
were much more stable, compared with the perpendicular loading mode. This was
attributed to the different strain distributions under the AFM tip in different loading
modes. The nonvolatile ferroelectric memory written mechanically and read electri-
cally were recently demonstrated in ferroelectric polymer. The force needed to
record electronic signals on the polymer film was less than 100 nN and the mechan-
ically written domains were stable and electrical erasable.

Note that the flexoelectric field induced by the AFM tip is localized near the tip,
which makes it suitable to write local nanodomains but not suitable to erase them.
From theoretical point of view, a nonlocal flexoelectric field can be also induced by
other kinds of strain gradients such as when a nanofilm is subjected to cylindrical
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Fig. 13 Mechanically induced reversal of ferroelectric polarization. (a) and (b) are the PFM phase
and amplitude images of the film in bipolar states. Dark areas in the phase image represent the
domain with upward polarization. (c) and (d) are the PFM phase and amplitude images after scan.
(e) Free energy calculations for the epitaxially clamped BTO ultrathin film subjected to no stress
(blue curve), homogeneous compressive (red curve), and tip-induced strain gradient (green curve).
From [35]. Reprinted with permission from AAAS
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bending or wavy bending. Simulation has showed that the nonlocal flexoelectric
fields associated with these two kinds of mechanical bending can largely affect the
stability of the nanodomains in ferroelectric nanofilm and lead to effective erasing of
the information stored by the nanodomains [36]. Take the wavy bending as an
example, as illustrated in Fig. 14.

To study the erasing effect of wavy bending, the stability of pre-written 180�

cylindrical domains with different sizes are investigated. The strain profile of a
nanofilm under wavy bending can be approximately descriped as a cosine form (Fig.
14a). The flexoelectric effect is considered with a flexocoupling f12 = 10V. Fig. 14b
and c depict the distributions of in-plane strain and the flexoelectric field and as a
function of the wave amplitude. Firstly, it can be seen that wavy bending has
significant impact on the stability of cylindrical domains, which can lead to the
instability of domains and thus lead to the erasing effect. As shown in Figure. 14d,
where the flexoelectric field is switched off, the critical size of stable cylindrical
domain changes from 11 nm to 30 nm when the bending amplitude increases from
0.2 nm to 1.0 nm.When the flexoelectric field is switched on, significant difference can
be found in the controllability on domain stability of the bending loads (Fig. 14e).
Flexoelectric field can both enhance and depress the stability of the 180� cylindrical
domain, depending on the direction of the domain polarization and the flexoelectric
field. Due to the modulated flexoelectric field, large change in domain shape not only
happens at region near domain instability but also happens when the domain size is
comparable to the wave length, as indicated by the<P3> curves as shown in Fig. 14g.
By influencing the stability of domains, the nonlocal wavy bending and flexoelectricity
can be used to erase information, and furthermore, control the domain shapes.

Compared with electrical switching, mechanical switching can avoid the associ-
ated breakdown and leakage problem. As the critical mechanical load to induce
polarization switching is generally small, the nanofilm cannot be damaged in the
mechanical switching process. It is therefore promising for application in nonvolatile
ferroelectric memory with ultrahigh data storage density and less power consump-
tion. However, mechanical switching has only been reported to switch the upward
polarization to downward, not vice versa. The reversal switching may be realized by
strain gradient engineering or by changing the surface screening condition of the
film, which so far has not yet been investigated.

4.3.2 Impacts on Domain Patterns of Nanoscale Ferroelectrics
The properties of ferroelectrics such as dielectric and piezoelectric response can be
largely modified by the domain structure. Since flexoelectricity is significant at
nanoscale, its effect on the domain configurations should be considered for applica-
tions of ferroelectrics. The influence of flexoelectricity on the domain patterns of
HoMnO3 epitaxial thin films has been reported by Lee et al. [37]. To investigate the
role flexoelectricity, films with different large strain gradients were grown. The strain
gradients were modulated by controlling the oxygen partial pressures PO2 during the
growth process. Figure 15a shows the strains for films deposited at high and low PO2.
It can be seen that strains for both high and low PO2 were relaxed exponentially from
the film/substrate interface to the film surface, and the strain variation for high PO2 is
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larger than low PO2. Thus the films deposited at higher PO2 had larger strain gradient.
It was estimated that the flexoelectric field Es for film grown with PO2 = 10 mTorr
and PO2 = 350 mTorr was ~0.7MV/m and ~5MV/m, respectively. The estimated
values of Es were comparable to the coercive filed of the film at temperature close to
Tc so the flexoelectric effect was giant. The domain configurations for films depos-
ited at different PO2 are shown in Fig. 15b. For the film deposited at low PO2 with
small Es, a mixed multidomain pattern was formed due to the depolarization energy.
Meanwhile, for the film deposited at high PO2 near Tc, Es was large enough to induce
the formation of monodomain. The effect of Es on the domain configurations was
further investigated by a periodic two-dimensional model illustrated in Fig. 15c,
where α and β are the domain width of the upward and downward domains. The
results are shown in Fig. 15d. It can be clearly seen that the flexoelectric field had a
large effect on the domain configurations, which indicated that the domain config-
urations could be tuned by flexoelectricity.

Another experimental evidence suggesting that the flexoelectricity had effect on
the domain configurations was reported by Catalan et al. [38]. They noticed that
there existed large unexpected horizontal strain gradients in the c-domains of PTO
thin film with a-c twins. The strain gradients were attributed to the attachment of the
film with ferroelastic domains onto the flat surface of the substrate. According to
flexoelectricity, this strain gradient would lead to a horizontal contribution to the
polarization of c-domain and cause a strong polarization rotation. They measured the
lattice distortion (Fig. 16a) and mapped polarization of the twins in the film (Fig.
16b). Strong polarization rotation of c-domains was observed, which was in agree-
ment with the flexoelectric theory.

The influence of flexoelectricity on domain configurations was also theoretically
investigated by Ahluwalia et al. [39]. They predicted the domain patterns under
different strength of the flexoelectric coupling by using two-dimensional phase field
simulations. The roles of different flexoelectric components were also analyzed
under mechanically constrained and stress-free boundary conditions. It was found
that a fine structure in domain patterns formed when the strength of flexoelectric
coupling exceeded a critical value, as shown in Fig. 17a. The polarization (Py in Fig.
17b) in these fine domains had a nearly sinusoidal modulation, indicating the
formation of the so-called “incommensurate” or modulated phase. The finding that
flexoelectricity could induce incommensurate phase formation in ferroelectrics was
in agreement with previous investigations. Two-dimensional modulated domain

�

Fig. 14 Control of domain stability by wavy bending on 128 nm � 128 nm � 8 nm simulation
cells at room temperature. The cells are initially written with cylindrical domains with size r from
1 nm to 64 nm. (a) Schematics of a cell under wavy bending, with λ = 128 nm. Distributions of (b)
strain and (c) flexoelectric field as a function of Ab in the x-z plane of a cell under wavy bending.
Phase diagrams of equilibrium domain pattern in cells under wavy bending with flexoelectric field
(d) switched off and (e) on. (f) and (g) the average polarization of the equilibrium domain patterns in
z-direction, i.e.,<P3>, in the initial cylindrical domain region, for the two bending cases. Reprinted
with permission from Macmillan Publishers Ltd. Nature Scientific Reports [36], Copyright (2014)
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patterns, such as domain patterns with alternating vortices (Fig. 17c) and with
coexisting phases of the stripes and vortices (Fig. 17d), had also been observed
under specific flexoelectric coupling strengths and mechanical boundary conditions.
It was proposed by the authors that more flexoelectricity-induced domain configu-
rations might occur in the real 3D crystals. It is noteworthy that effect of mechanical
strain/stress on the vortex transformation has been revealed [40], which showed
quite distinct characteristics from that of conventional electric field. Considering the
similarity between flexoelectric field and electric field, mechanical strain/stress
gradients might act like the role of electric field to induce transformation of ferro-
electric vortices. However, it is still not clear now.

Furthermore, the controllability of domain evolution by mechanical loads and
flexoelectricity has been reported by Chen et al. [41]. They investigated the stability
and evolution paths of domain patterns under uniform strain and cylindrical bending
strain gradient in ferroelectric nanofilms. The role of both the bulk and surface
contributions to the flexoelectricity was studied for different initial domain patterns.

According to their results, the domain patterns were largely affected by strain
gradient even in the absence of flexoelectricity. The presence of bulk flexoelectricity
made the a/c and b/c domain variants more favorable and thus modified the domain
patterns. Due to the weakness of the bulk flexoelectricity, this modification is small.
The contributions of bulk flexoelectricity to the mechanical and polarization bound-
ary conditions also had effects on the domain patterns. The domain pattern evolution
was further investigated with different strength of flexoelectric fields, which involves
both the bulk and surface contributions of flexoelectric effect. It was demonstrated
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Fig. 16 Direct observations of the polarization rotation. (a) Positions of atoms with zoom-ins
showing the a-domain (I) and c-domain (II). (b) Out-of-plane strain (color map) and electric
polarization (vector map) with the line scan showing the rotations angles from normal in the
c-domains. Reprinted with permission from Macmillan Publishers Ltd. Nature Materials [38],
Copyright (2011)
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that with large flexoelectric field, the domain patterns were switched into the
monodomain state, which indicating the erasing effect. The domain evolution of a
nanofilm written with “SYSU” under various bending loads was investigated to
show the effect of mechanical loads on the carried information in the film, as shown
in Fig. 18. One can see that with the combined effect of strain gradient and
flexoelectric field, the information was erased under a large downward bending.
While under upward bending, the written information would be unstable and
evolved to a lager domain, which could be used to assist writing domains.

4.4 Novel Domain Wall Properties Resulted by Flexoelectric
Effect

Compared with domains, domain walls have been demonstrated to own attracting
properties such as high electronic conductivity, chirality, and oxygen vacancy
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Fig. 17 (a) Domain pattern with f44= 15 Vunder stress-free boundary conditions. (b) Polarization
profile of the domain pattern in a along the x direction. (c) Domain pattern with f11 = 15 V under
stress-free boundary conditions. (d) Domain pattern with f11 = 12 V under mechanically
constrained boundary conditions. Reprinted with permission from [39]. Copyright (2014) American
Physical Society

580 L. L. Ma et al.



segregation in ferroelectrics. It is becoming a trend to regard domain walls as
promising alternative engineering elements in smart materials. Due to the sharp
change of order parameter normal to the ferroelectric domain wall, the strain
gradients in the wall can be very large as a result of electrostriction. Therefore the
flexoelectric effect is very pronounced and has important effects on the domain wall
properties.

4.4.1 Domain Wall Profile
The 180� domain wall separating domains with antiparallel polarizations is very
common in ferroelectrics. The profile of this kind of domain wall has been consid-
ered as Ising-like for a long time. However, this viewpoint should be renewed by
considering flexoelectric effect because the flexoelectricity-induced polarizations
can result in more complicated domain wall profiles. The role of flexoelectricity
on domain wall profiles has been reported recently. As an example, we discuss the
domain walls of tetragonal BTO. Following the work of Gu et al. [42], consider a
180� domain wall with spontaneous polarization along x3, as illustrated in Fig. 19a.
The calculated domain wall by phase field simulation at wall orientation θ = 0 is
shown in Fig. 19b. Nonzero sinusoidal P1 is observed, while P2 is exactly zero,
which corresponds to a Néel-like feature. Considering the dependence of
flexoelectric and electrostrictive coefficients on domain wall orientation, the effect
of flexoelectricity on domain wall profile is anisotropic. The calculated maximum
absolute values of P1 and P2 in different oriented domain wall are shown in Fig. 19c.
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Fig. 18 Evolution of a written domain pattern “SYSU” under various cylindrical bending condi-
tion. (a) etop = � etop = � 0.005, (b) etop = � etop = � 0.01, (c) etop = � etop = 0.005, and (d)
etop = � etop = 0.01. Reprinted from [41], Copyright (2015), with permission from Elsevier
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As expected, a strong angular dependence of P1 and P2 is observed. The P1

component is nonzero for all orientation θ, while P2 vanishes when θ = nπ/4, with
n being an integer, indicating that the pure ferroelectric domain wall is Ising-Neel
type when θ= nπ/4 and Ising-Bloch-Neel type for all other orientations. In addition,
since the strain resulted from the electrostrictive effect is symmetric with respect to
the center of the domain wall, the flexoelectric filed proportional to strain gradient is
along opposite direction on opposite side of the wall center, as shown in Fig. 18d,
thus leading to the chiral profiles of P1 and P2 in tetragonal BTO domain walls. It
should be noted that the chirality of P1 induces a strong depolarization filed (see Fig.
19d), which would further influence the conductivity of the domain walls, as will be
discuss later.

The flexoelectricity-induced non-Ising characteristics of domain wall profiles are
in agreement with previous first-principle investigations, where the Bloch-like and
Ising-like characters were reported but not explained. Furthermore, it should be
noted that the polarization component normal to the domain walls (P1 here) was also
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found to be nonzero in other kinds of domain walls [43]. In incipient ferroelectrics
STO, for example, polar ferroelastic twin walls have been predicted theoretically and
confirmed experimentally. The polarization of its domain walls was attributed to
flexoelectricity and rotostriction (or the so-called flexo-roto field), analogous to the
mechanism in ferroelectrics, i.e., flexoelectricity and electrostriction.

4.4.2 Conductivity of Domain Walls
With different rotation angles with respect to the spontaneous polarization, ferro-
electric domain walls can be nominally charged or not, as illustrated in Fig. 20a.
Compared with the domain regions far from the domain walls, charged domain walls
possess enhanced conductivity due to the accumulation of free charge carriers by
screening the bound charges in the wall. Recently, the nominally uncharged ferro-
electric domain walls and ferroelastic twin walls are also reported be conductive or
with enhanced conductivity. It has been demonstrated that the conductivity of
uncharged domain walls is closely related to flexoelectricity. Due to flexoelectricity,
the polarization components and the domain wall profile are modified, as discussed
in the previous section. The presence of polarization component perpendicular to the
domain wall plane changes the bound charge distribution and results in a strong
electric field at the wall. The accumulation of free screening charge carries is thus
affected, and the modification on the domain wall conductivity arises. It should be
noted that the domain wall conductivity was influenced by inhomogeneous
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Fig. 20 (a) Schematic of a charged domain wall (Reproduced from [44]. # IOP Publishing
Ltd. All rights reserved.) (b) Relative hole density at different rotation angles in uncharged
180� domain walls in multiferroic BiFeO3. Black-dotted curves are calculated without
deformation potential Ξp

ij ¼ 0 and flexoelectric coupling fij = 0. Solid curves are calculated
for different coefficients: f11 = � 1.38 � 10�11C�1m�3, f12 = 0.67 � 10�11C�1m�3,
f44 = 0.85 � 10�11C�1m�3, and Ξp

ij ¼ 0 (red solid curves); 2fij and Ξp
ij ¼ 21 eV (magenta solid

curves); 3fij and Ξp
ij ¼ 21 eV (blue solid curves) (Reprinted with permission from [45]. Copyright

(2012) American Physical Society)
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deformations through two mechanisms, i.e., the so-called deformation potential and
the flexoelectric coupling (flexoelectric field in ferroelectric domain walls and flexo-
roto field in twin walls). Figure 20b shows the influence of flexoelectric coupling on
the hole density of the uncharged 180� domain wall in BiFeO3, with different
flexoelectric coefficients and rotation angles. One can see that the variations of
hole density was about one order of magnitude, depending on the strength of
flexoelectric coupling. The anisotropy of the hole density was attributed to the
angle-dependent electrostriction. Furthermore, the conductivity of charged domain
walls has also been demonstrated to be modified by flexoelectricity.

5 Applications of Flexoelectric Effect

Being a commonly existing electromechanical coupling effect, flexoelectric effect
provides us more possibilities to meet the urging need for new design and fabrication
of nanodevices. The first potential application of flexoelectric effect resides in the so-
called pseudo-piezoelectric composites. As discussed before, flexoelectricity is a
universal mechanism in materials with any symmetry, so it can still induce polari-
zations in non-piezoelectric materials by inhomogeneous deformation. This effect
largely broadens the candidate materials for piezoelectric devices, which can be lead-
free, biocompatible, and even flexible. Fousek [8] first proposed the idea to design
piezoelectric composites with non-piezoelectric components. This flexoelectric-type
piezoelectric composites were realized by a simple design shown in Fig. 21a. The
composites contain an active flexoelectric phase with truncated pyramid shape and a
second dielectric phase (air here). When the composites are sandwiched by elec-
trodes and compressed homogeneously, the induced strains in the pyramids are
inhomogeneous and result in polarizations by flexoelectricity. Thus the composites
exhibit piezoelectric responses.

Fig. 21 Schematics of pseudo-piezoelectric composites. (a) The design with truncated pyramid
array (Reprinted from [46], Copyright (2013), with permission from Elsevier.). (b) The design
employing transverse flexoelectricity (Reprinted with permission from [47]. Copyright (2009) AIP
Publishing LLC.
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An imaginative design to employ the large transverse flexoelectricity of BST is
illustrated in Fig. 21b. The homogeneous compression leads to the bending of the
paraelectric BST layers and results in charge separations by flexoelectricity. Metallic
stripes are placed at positions with maximum strain gradients to collect the induced
charges. An effective piezoelectric coefficients is reported to be higher than 4300 pC/
N for a six-unit three-layer composite. It should be noted that the converse piezo-
electric effect in this structure is weak due to the relative homogeneity of electric field
between the parallel strips. This separate control of direct and converse piezoelectric
effect is favorable for applications requiring sensing but not actuating and vice versa.
Theoretical analysis on pseudo-piezoelectric composites has been conducted. Vari-
ous applications of the pseudo-piezoelectric composites, such as sensors, actuators,
transducers, energy harvesters, and nanogenerators, were also reported.

The interaction between flexoelectricity and piezoelectricity can also lead to a
novel nanoscale ferroelectric device, i.e., strain diode, as illustrated in Fig. 22. The
cantilever is a buffered sandwich structure with a (110)-oriented PZT active layer as
the core, STO as electrodes, and yttria-stabilized zirconia (YSZ) as the bottom
buffer. When the top surface is exerted to a voltage, negative for example, the
bending curvature of the cantilever will be large or small, depending on the ferro-
electric polarization directions in the PZT layer. If the polarization is upward, the
negative voltage of the top surface will increase the polarization, which leads to an
out-of-plane (parallel to the polarization direction) expansion and an in-plane con-
traction due to electrostriction. Thus an upward bend of the cantilever occurs by the
constraint of the buffer. Meanwhile, for downward polarization, the voltage will
cause an out-of-plane contraction and in-plane expansion, which leads to a down-
ward bend of the cantilever. On the contrary, the voltage-induced bending by
flexoelectricity is independent with the polarization directions, which is always
upward because of the negative flexoelectric coefficients for (110)-oriented perov-
skites. Therefore, for upward polarization, both piezoelectricity and flexoelectricity

Fig. 22 Schematic illustration of the strain diode, which is attributed to the enhancement and
suppression of flexoelectricity on piezoelectric response. Reproduced from [48] with permission of
The Royal Society of Chemistry
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favor the upward bending and cause a large curvature. In contrast, for downward
polarization, the direction of the bending caused by piezoelectricity and
flexoelectricity is opposite, which leads to a smaller curvature. A two-state strain
diode is thus obtained.

Besides strain diode, flexoelectricity can also lead to an electrical diode, as
reported by Lee et al. [49]. For epitaxial HoMnO3 film grown on Pt(111)/
Al2O3(0001) substrate, as shown in Fig. 23a, the misfit strain is as high as þ3.5%.
The flexoelectric field due to strain relaxation is estimated to be Es � 10 MVm�1,
which is comparable to the electric field in conventional p-n junctions. The
flexoelectric field-induced polarization causes the positive bound charge at top of
the HoMnO3/Pt interface and negative bound charge at bottom of the interface.
These bound charge would result in a high Schottky barrier at the interface. Due to
the small barrier height at surface, electrons are more likely to be injected there and
result in a rectifying diode effect, as the I-V curve shown in Fig. 23b.

Another promising application of flexoelectricity is the nonvolatile ferroelectric
memories with the ferroelectric domains written and erased through mechanical
loads. The mechanism has been discussed in Sect 4.3.1. The typical mechanical
writing and electrical reading process using an AFM tip is illustrated in Fig. 24.
Without applying an external electric field, mechanical writing/erasing of ferroelec-
tric domain can avoid the associated dielectric breakdown and current leakage
problem, so it is promising for application in nonvolatile ferroelectric memory
with ultrahigh data storage density and less power consumption. One of the chal-
lenges of such an application is that mechanical switching reported in ferroelectric
film so far is unidirectional, as the strain gradient is fixed in direction.

Fig. 23 (a) Schematic of strain relaxation and the associated flexoelectric field in an epitaxial
HoMnO3 film grown on Pt(111)/Al2O3(0001) substrate. (b) The I-V curve of such a film which
shows a rectifying diode effect. Reprinted with permission from [49]. Copyright (2012) American
Chemical Society
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6 Summary

In this chapter, we have presented a review on the recent progress of
flexoelectricity at the nanoscale, with emphasis on a special class of materials,
namely, ferroelectrics. Flexoelectricity is a universal electromechanical coupling
effect between polarization and strain gradients and between strain and polariza-
tion gradients. Due to its size-dependent behavior, flexoelectricity plays a signif-
icant role at the nanoscale. It can influence the dielectric and electromechanical
responses of materials, generate imprint behaviors in ferroelectric nanofilms, and
affect the global and local characteristics of nanodomains and domain walls. It is
promising to utilize flexoelectric effect in potential applications on micro-nano
electromechanical systems, such as pseudo-piezoelectric composites, diodes, and
nonvolatile ferroelectric memories.

It is noteworthy that there still exist some confusable issues in this rapid growing
field. Flexoelectric coefficients, which characterize the significance of
flexoelectricity, exhibit large discrepancies in their magnitudes between theoretical
calculations and experimental measurements. Meanwhile, the available database of
flexoelectric coefficients is also limited. Consequently, there are difficulties in
assessing the role of flexoelectricity in novel phenomena, in predicting undiscovered
behaviors of flexoelectricity by theoretical modeling and simulations, and in precise
design of nanodevices based on flexoelectricity. To solve this problem, both the
experimental methods and theories of flexoelectricity need to be further developed.
The techniques of employing flexoelectricity, such as strain gradient engineering, are
also awaiting to be further explored. Though challenging, it is believed that the
progress of flexoelectricity in the near future will bring us more possibilities.

Pressure

Mechanical Writing

Electrical Reading

V

Fig. 24 Schematic illustration of the mechanical writing and electrical reading on ferroelectric thin
film by AFM tip. Reprinted with permission from [50]. Copyright (2015) AIP Publishing LLC
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