
Velocity Restriction-Based Improvised
Particle Swarm Optimization Algorithm

H. Mouna, M. S. Mukhil Azhagan, M. N. Radhika, V. Mekaladevi
and M. Nirmala Devi

Abstract The Particle Swarm Optimization (PSO) Algorithm attempts on the use of

an improved range for inertia weight, social, and cognitive factors utilizing the Pareto

principle. The function exhibits better convergence and search efficiency than PSO

algorithms that use conventional linearly varying or exponentially varying inertia

weights. It also presents a technique to intelligently navigate the search space around

the obtained optima and looks for better optima if available and continue converging

with the new values using a velocity restriction factor based on the Pareto principle.

The improvised algorithm searches the neighborhood of the global optima while

maintaining frequent resets in the position of some particles in the form of a mutation

based on its escape probability. The results have been compared and tabulated against

popular PSO with conventional weights and it has been shown that the introduced

PSO performs much better on various benchmark functions.

Keywords Swarm intelligence ⋅ Global optimization ⋅ Intelligent search

Inertia weight ⋅ Velocity restriction ⋅ Pareto principle

H. Mouna (✉) ⋅ M. S. Mukhil Azhagan ⋅ M. N. Radhika ⋅ V. Mekaladevi ⋅ M. Nirmala Devi

Department of Electronics and Communication Engineering,

Amrita University, Coimbatore, India

e-mail: mouna.harikumar@gmail.com

M. S. Mukhil Azhagan

e-mail: mukhil@outlook.com

M. N. Radhika

e-mail: radhikamnarayan@gmail.com

V. Mekaladevi

e-mail: v_mekaladevi@cb.amrita.edu

M. Nirmala Devi

e-mail: m_nirmala@cb.amrita.edu

© Springer Nature Singapore Pte Ltd. 2018

K. Saeed et al. (eds.), Progress in Advanced Computing and Intelligent Engineering,

Advances in Intelligent Systems and Computing 564,

https://doi.org/10.1007/978-981-10-6875-1_34

351



352 H. Mouna et al.

1 Introduction

Particle Swarm Optimization (PSO) is a computational algorithm that simulates nat-

ural swarm behavior most notably found in certain species of birds, fish, and bees.

Kennedy and Eberhart introduced this algorithm in 1995 [1, 2]. The particles in a

swarm, analogous to flock of birds or fish in a school, move around the search space

in a predefined pattern that is close to the natural search of a bird for its food which

is the global optima. The communication between members of a flock is also simu-

lated and each particle in the swarm is aware of its own optima and the best optima

among the swarm. Different particles explore in different velocities and from differ-

ent positions, all of which are randomized to obtain results close to the natural order

of swarming [3].

PSO being faster in terms of iterations and processing time has progressed rapidly

in recent years and has been used for problems in Artificial intelligence, Material

design, and various fields that require a quick optimization [4, 5]. Conventional PSO

gets stuck at a local minimum [6]. Research has been focused on trying to accelerate

the convergence speed and achieving a better accuracy [7–9]. Reported literature has

shown either a linearly decreasing pattern alone or a combination of two different

algorithms, popularly known as hybrid algorithms, which are comparatively slow

on convergence [10–12]. The improvised algorithm attempted in this paper has a

varying inertia weight based on the Pareto principle, thus enabling it to converge to

a better value with more precision.

To achieve the above-mentioned superiority over the other algorithms, three tech-

niques have been introduced. The first technique, the velocity restriction is based

on the Pareto principle (or the 80-20 rule) [16, 17]. The second technique is on a

mutation-based term called the escape probability, which allows for a way of doing

extensive exploration which focuses on finding other local optima easily. The third

technique uses an improved inertia weight [10], which will progressively converge

the search toward the minima over higher iterations. The designer is allowed to set

the cognitive and social parameters, so that the user has control over the neighbor of

convergence, either toward the pbest or gbest depending on the requirement of the

algorithm. At every iteration, there is a condition for mutation that is based on its

escape probability, which is the number of times it moves out of the boundary. This

serves a dual purpose of maintaining the position within the search space of interest

and also mutates the position of the particle frequently. This frequency is controlled

by the escape probability, which is in turn controlled by the initial velocity that is

set by the designer. Combining the three techniques—mutation, velocity restriction,

and the refined inertia weight (based on the Pareto principle) the algorithm has been

made adaptive and intelligent to work with varied functions. Simulation results have

been produced to show better convergence and precision.



Velocity Restriction-Based Improvised Particle . . . 353

2 Particle Swarm Optimization

The algorithm was first proposed by considering a swarm of particles of size N [1,

2]. The optimum position in the search space was found by these particles using their

swarm intelligence. The conventional PSO uses five basic principles namely Quality

principle, Proximity principle, Stability principle, Diverse response principle, and

Adaptability principle [1]. At the start of the PSO, the number of variables D is ini-

tialized and the objective function f is specified. The required parameters such as

population size, swarm size, total number of iterations itmax, cognitive factor c1,

social factor c2, and inertia weight w are initialized. The independent variables are

given their boundary conditions in which they can search for the best optimum posi-

tion. The random values of position and velocity are initialized as the pbest values

for each particle, and gbest value for the swarm. pbest is defined as the personal best

of each particle and gbest is the global best of swarm. In the given search space, the

new position value is found by each of the particles. The position and velocity are

calculated using the Eqs. (1) and (2) given below.

vDi = w ∗ vDi−1 + c1 ∗ rand1di ∗ (pbestdi − xdi ) + c2 ∗ rand2di ∗ (gbestd − xdi ) (1)

xdi = xdi−1 + vdi (2)

Where vDi is the velocity of the current iteration for each argument, w is the inertia

weight [10]. rand1di and rand2di are two random distributions that range between 0

and 1. xdi is the position of each particle that will be updated from its previous value.

The new position value is compared and checked with its preceding value. If the

new position value is found to be better than the preceding value, the pbest value

is updated else the preceding value is retained. The best among the pbest of all the

particles is taken, if that value is better than the preceding gbest, then it is replaced as

the gbest value, else the older value is retained. Inertia weight significantly affects the

accommodation between exploitation and exploration in the PSO process. Different

variants of PSO can be obtained by changing parameters such as the cognitive and

social factor, different inertia weights, swarm size, network topologies in PSO, etc.

[13]. Hybridization and multi-objective are some of the variants. In hybridization,

for example, Genetic Algorithm and PSO can be combined; GAs mutation technique

can be combined with PSO to prevent PSO from getting stuck at local optima [14].

3 Improvised PSO

The difference between conventional PSO [1, 2] and the improvised PSO is that it has

techniques for mutation, velocityrestriction, and improvised ranges for factors that

affect PSO. This PSO works just like the conventional PSO except for the fact that it

has a restricted search in different range of weights, and velocity restriction based on

the Pareto principle. The Pareto principle states that 20% of the cause is responsible



354 H. Mouna et al.

for 80% of the outcome or vice versa, depending on the perspective. Applying this,

the inertia weight, which is calculated using Eq. (3) is varied from values between

0.8 to 0 to cover 80% of the area which is a higher neighborhood of exploration, to

find the rest 20% of the local optima after convergence has started.

wi = wmax − (wmax − wmin)
itmax

∗ it (3)

Where wi is the weight of each iteration, wmax is around 0.8 and wmin is around 0.

Values taken in the trials are 0.7 and 0.1, respectively. itmax denotes the maximum

number of iterations considered and it denotes the current iteration. Also, a technique

of velocity restriction, calculated using the Eq. (4) that modifies the effect of the

preceding velocity on the existing position, is included.

Vr = e
−it

k∗itmax (4)

Where Vr is the velocity restriction factor. k is a constant, whose value is taken as 4

for an optimum range. Equation (4) should be multiplied along with velocity during

every iteration to restrict its boundary. It decreases exponentially and the speed can

be modified by changing the value of k by the user depending on the need. Frequent

mutations are performed to help the exploration process, determined by an escape

probability. This escape probability is calculated using an algorithm that also pre-

vents the particle to move out of the boundary, thus stabilizing the swarm search.

The Pseudo code for the improvised PSO is given in Fig. 1.

Fig. 1 Pseudo code for improvised PSO



Velocity Restriction-Based Improvised Particle . . . 355

4 Simulation Results and Analysis

The improvisation performed on Particle Swarm Optimization (PSO) was tested on

benchmark functions and the results acquired are improved comparatively [10–12].

The Code was simulated in Matlab using a PC with core I3 4005u, 1.7GHz, and 4

GB RAM. Benchmark functions used are (a) Sphere function, which is continuous,

unimodal, and has D local minima (b) Rastrigin function, which is multimodal and

has several local minima (c) Rosenbrock function, also known as valley or banana

function, is unimodal (d) Michalewicz function, which is multimodal and has D local

minima and are usually referred as valleys and ridges (e) Shubert function, which has

many local and global minimas. The results have been obtained for 220 iterations and

over 30 independent trials with 100 particles. The search has been done over a search

space of [−5.12, 5.12] for (a), (b), (c), and (e) functions and [−𝜋, 𝜋] for (d), as given

in [18]. Table 1 shows the 2D plot between mean function value of all particles and

number of iterations of Sphere, Rastrigin, Rosenbrock, Michalewicz, and Shubert

functions, respectively, including equations and 3D plots.

Table 1 shows plots for the benchmark functions, for (a), (b), (c) the y-axis for

the 2D plot is indexed in powers of 10, as the expected values from mathematical

calculation [18] are close to zero. For (d), (e) the y-axis is in real values. Table 2

shows the iteration at which the minimum value is obtained for each benchmark

function. Combining 2D plots from Tables 1 and 2, various inferences can be made.

In Table 1 for the Shubert function, which is multimodal, a large number of spikes

can be seen, which denote various particles exploring other parts of the search space

for potential global minima until the 220 iterations end, whereas the minima has

been reached at around the 26th iteration in Table 2. This demonstrates the ability of

the algorithm to explore exhaustively even after getting settled at the minima, due

to the mutation factor introduced using escape probability. For the sphere function,

which has a single minima, the algorithm tries to obtain the best possible value, from

Table 3, it can be seen that the algorithm is precise up to 10−71 on an average. In such

functions, the algorithm is able to choose exploitation over exploration thus leading

to much better values as proven in Table 4.

In Table 3, X1 denotes the position in the first dimension. X2 denotes the position

in the second dimension and fgbest is the fitness value that is dependent on X1 and

X2 as described by equations in Table 1. Table 3 shows the values of X1, X2, and

fgbest using the Eqs. (5), (6), (7), (8), and (9) for various benchmark functions.

In Table 3, the best-fit column denotes the best value obtained. This value is the

global minimum that has been obtained through the algorithm over the trials. The

mean and standard deviation denote the algorithms variation from the best-fit value.

It has been shown that the algorithm performs with minimal variance for most of

the benchmark functions when the fgbest value is concerned. Incase of X1 and X2,

the average and the standard deviation are close to the expected values, except in

case of (e), the Shubert function, as the function exhibits the same minimum value

at multiple points in the given search space. This discrepancy is expected out of such

a function and can be verified mathematically [18].



356 H. Mouna et al.

Table 4 shows the fgbest values using the introduced algorithm, i.e., the fitness

value and it is compared with [11, 12, 15]. The proposed algorithm exhibits much

Table 1 Equations and rate of convergence plots for various benchmark functions

SphereFunction : f =
D∑

i=1

x2
i (5)

RastriginFunction : f =
D∑

i=1

x2
i − 10cos(2πi) + 10 (6)

RosenbrockFunction : f =
D−1∑

i=1

100(xi+1 − xi)2 + (xi − 1)2 (7)

(continued)



Velocity Restriction-Based Improvised Particle . . . 357

Table 1 (continued)

MichalewiczFunction : f = −
D∑

i=1

sin(xi) ∗ sin(
ix2

i

π
)20 (8)

ShubertFunction : f =
D∏

i=1

s∑

j=1

jcos((j + 1) ∗ xi + j)) (9)

Table 2 Iterations at which benchmark functions converge

Function Iterations at which the gbest values are obtained

Mean Std. dev. Fastest Slowest

Sphere 220 220 220 220

Rastigin 88.0333 6.8956 78 109

Shubert 26.2 2.2652 23 31

Michelawicz 30.0333 3.0904 26 40

Rosenbrock 136.5333 5.3092 128 148

better values in unimodal functions like Sphere function, and almost precise values

in multimodal functions like the Rastrigin, Rosenbrock, Michalewicz, etc.

Table 4 contains the comparison of mean and standard deviation on the bench-

mark functions such as Spherical, Rastrigin, Michaelwicz, and Shubert.



358 H. Mouna et al.

Table 3 Results obtained of the algorithm on various benchmark functions

Benchmark functions Mean Std. dev. Best fit Worst fit Expected

value [18]

Sphere X1 –1.45E-37 8.87E-37 6.87E-37 –4.79E-36 0

X2 –5.60E-37 3.49E-36 2.30E-36 –1.89E-35 0

Fgbest 1.29E-71 6.54E-71 1.23E-82 3.58E-70 0

Rastrigin X1 –1.63E-09 2.38E-09 –3.75E-09 3.51E-09 0

X2 –4.79E-10 2.03E-09 –3.73E-09 2.89E-09 0

Fgbest 0 0 0 0 0

Shubert X1 –0.6728 1.5338 –1.4266 4.8581 Several

minima

X2 –0.2959 2.0768 –1.4252 4.8580 Several

minima

Fgbest –186.725 0.0077 186.7304 –186.705 –186.7309

Michalewicz X1 2.2029 5.87E-10 2.2029 2.2029 2.20

X2 1.5708 2.11E-09 1.5708 1.5708 1.57

Fgbest –1.8013 6.77E-16 –1.8013 –1.8013 –1.8013

Rosenbrock X1 1 0 1 1 1

X2 1 0 1 1 1

Fgbest 0 0 0 0 0

Table 4 Performance comparison amongst literature and introduced algorithm on benchmark

functions

Function name [11] [12] [15] Obtained

results

Mean Sphere 2.46E-11 1.44E-23 3.80E-27 1.29E-71

Rastrigin NA 0.01 0.01 0

Michalewicz –1.8769 –1.8947 –1.8966 –1.8013

Shubert –186.704 –186.728 –186.717 –186.725

Standard

deviation

Sphere 1.35E-10 7.86E-23 2.08E-26 6.54E-71

Rastrigin 0.1817 0.2524 0.2524 0

Michalewicz 0.0934 0.0906 0.0868 6.78E-16

Shubert 0.1418 0.0119 0.0762 0.0077



Velocity Restriction-Based Improvised Particle . . . 359

Rosenbrock function is neglected due to unavailability of information. The best

value amongst the compared values is highlighted. On comparison of the mean val-

ues with [11] and [15], it is seen that there is 1060 increase and a 1044 increase,

respectively, for sphere function. For Rastrigin function, the expected value of 0

has been obtained. For Michelawicz function, the expected value has been obtained.

For Shubert function, [12] exhibits the best value, and the proposed algorithm is

only second to it with an error of 0.0016%. In Table 3, it has also been shown that

the algorithm produces the expected result for Rosenbrock function.

5 Conclusion

The PSO variant introduced in the paper has three modifications, namely, a new

range of linearly varying inertia weight to work with most real-time and natural order

functions that follow the exponential rule, a mutation technique to control particles

that move too fast and increase exploration capability, and a velocity restriction factor

that converges the search space exponentially over the given range. The algorithm

has been proven to work well for both unimodal and multimodal functions. It can

especially tackle multimodal functions better due to the inclusion of the Pareto effect

in various phases of the algorithm. The algorithm seems to be promising for any

number of dimensions with any function and is expected to produce a better solution.

Improvement of the order of 1040 is seen in spherical function and expected values

have been obtained in other benchmark functions.

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proceedings of IEEE International

Conference on Neural Networks, Perth, Australia 4, 1942–1948 (1995)

2. Kennedy, J., Eberhart, R.C., Shi, Y.H.: Swarm Intelligence. Morgan Kaufmann, San Mateo,

CA (2001)

3. Eberhart , R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of

6th International Symposium Micromachine Human Science, Nagoya, Japan, pp. 39–43 (1995)

4. Eberhart, R.C., Shi, Y.H.: Particle swarm optimization: developments, applications and

resources. In: Proceedings of IEEE Congress on Evolutionary Computation, Seoul, Korea,

pp. 81–86 (2001)

5. Ciuprina, G., Ioan, D., Munteanu, I.: Use of intelligent-particle swarm optimization in electro-

magnetics. IEEE Trans. Magn. 38(2), 1037–1040 (Mar 2002)

6. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm

optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),

281–295 (Jun 2006)

7. Ho, S.-Y., Lin, H.-S., Liauh, W.-H., Ho, S.J.: OPSO: orthogonal particle swarm optimization

and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. A Syst. Hum.

38(2), 288–298, Mar 2008

8. Liu, B., Wang, L., Jin, Y.H.: An effective PSO-based mimetic algorithm for flow shop schedul-

ing. IEEE Trans. Syst. Man Cybern. B Cybern. 37(1), 18–27 (Feb 2007)



360 H. Mouna et al.

9. Eberhart, R.C., Shi, Y.: Guest editorial special issue particle swarm optimization. IEEE Trans.

Evol. Comput. 8(3), 201–203 (Jun 2004)

10. Zhan, Z.-H., Zhang, J.: Adaptive particle swarm optimization. In: IEEE Trans. Syst. Man

Cybern. B Cybern. 39(6), Dec 2009

11. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of IEEE World

Congress Computation Intelligence, p. 6973 (1998)

12. Chen, T.-Y., Chi, T.-M.: On the improvements of the particle swarm optimization algorithm.

Adv. Eng. Softw. 41, 229–239 (2010)

13. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight

strategies in particle swarm optimization. Proceedings of IEEE International Conference on

Neural Network, Perth, Australia 4, 1942–1948 (1995)

14. Das, S., Abrahamm, A., Konar, A.: Particle swarm optimization and differential evolution algo-

rithms: technical analysis, applications and hybridization perspectives. Stud. Comput. Intell.

(SCI) 116, 1–38 (2008)

15. Anand, B., Aakash, I., Akshay, Varrun, V., Reddy, M.K., Sathyasai, T., Devi, M.N.: Improvisa-

tion of particle swarm optimization algorithm. In: International Conference on Signal Process-

ing and Integrated Networks (SPIN). India (2014)

16. Kiremire, A.R.: The application of pareto principle in software engineering. 19th October

(2011)

17. Wikipedia. Pareto principle. http://en.wikipedia.org/wiki/paretoprinciple. Accessed March

2016

18. Virtual library of simulation experiments: test functions and datasets. http://www.sfu.ca/

~ssurjano/. Accessed March 2016

http://en.wikipedia.org/wiki/paretoprinciple
http://www.sfu.ca/~ssurjano/
http://www.sfu.ca/~ssurjano/

	Velocity Restriction-Based Improvised Particle Swarm Optimization Algorithm
	1 Introduction
	2 Particle Swarm Optimization
	3 Improvised PSO
	4 Simulation Results and Analysis
	5 Conclusion
	References


