
Path Executions of Java Bytecode Programs

Safeeullah Soomro, Zainab Alansari and Mohammad Riyaz Belgaum

Abstract Static analysis of programs is essential for better understanding towards

software maintenance and re-engineering. Unfortunately, we still lack automatic

tools to understand the back end of the programs (Bytecode). Developing these tools

is very expensive and time-consuming task but it is today’s need. Those tools may

help to understand Java Bytecode. Some time source code is not available all the

time but bytecode is easily available. Unfortunately, bytecode is not understandable

by many of us so that we are providing a little effort in this regard. This article rep-

resents the program flow execution in Java Bytecode. We present static and dynamic

path executions of programs in a bytecode using Control Flow Graph (CFG) and

Data Dependence Graph (DDG). Bytecode analysis is an effort to develop a tool

which can make visualization of Java programs in back end form.

Keywords Static analysis of programs ⋅ Program dependence graph

Control flow graph ⋅ Software testing and maintenance

1 Introduction

Program execution is the process of control flow information towards output. It

shows the behavior of programs in a dynamic way. Mainly, there are two ways of

analysis of programs they are static and dynamic. Static analysis provides all text

of programs and more path execution which can make some heuristics about pro-

grams. Dynamic analysis provides exact execution which is a dynamic path of the

S. Soomro (✉) ⋅ M. R. Belgaum

College of Computer Studies, AMA International University, Salmabad, Bahrain

e-mail: s.soomro@amaiu.edu.bh

M. R. Belgaum

e-mail: bmdriyaz@amaiu.edu.bh

Z. Alansari

University of Malaya, Kuala Lumpur, Malaysia

e-mail: zeinab@amaiu.edu.bh

© Springer Nature Singapore Pte Ltd. 2018

K. Saeed et al. (eds.), Progress in Advanced Computing and Intelligent Engineering,

Advances in Intelligent Systems and Computing 564,

https://doi.org/10.1007/978-981-10-6875-1_26

261



262 S. Soomro et al.

program during runtime. In our paper, we are dealing with both approaches towards

path executions. We present the Control Flow Graph (CFG) and Data Dependence

Graph (DDG) from Java Bytecode which are better for developing tools of software

testing and maintenance in future. Currently, we are lacking those tools which can

provide information of whole programs in visual forms and that can be better for

understanding of programs.

Program analysis is the process of verification of data flow and control flow in-

formation from programs [1]. This is although very active research area and many

tools [2, 3] have been developed for the programs but unfortunately, all tools work

on front end (Source Code) of programs. Mainly all tools are used for the source

code but there are few tools [4], which have been developed for Java Bytecode for

understanding and representation of data and control flow analysis. This area of re-

search still needs more focused time so that people can get benefit from the back

end (Bytecode) analysis which may reduce the cost of program maintenance and re-

engineering. At [5, 6], static analysis of Java Bytecode and Dependence analysis is

presented which are essential for the understanding of computer programs. It may

prove helpful for many software engineering tasks like testing, debugging, reverse

engineering, and maintenance. Our approach presents new approach to building back

end (Bytecode) tools for the Java Bytecode programs and may be helpful for upcom-

ing automatic tools towards software testing, debugging, maintenance, and reverse

engineering. The authors provided specification based model for the abstract depen-

dencies from Java programs which helps towards finding faults and localizing faults

[7–9]. The visualization of data through software requirement [7] is presented. To

the best of our knowledge, our technique may help further to investigate program

analysis and help towards debugging [10] in a bytecode.

This article makes use of static and dynamic analysis of programs in terms of

bytecode analysis. In our approach, we have presented executions of programs, show-

ing the Control Flow Graph (CFG) and Data Dependency Graph (DDG). A Control

Flow Graph (CFG) presents the execution paths in a program using graph notations.

It shows exactly the traversing of all statements of the program during execution. In

a Control Flow Graph (CFG), the program statements are converted into nodes and

edges, nodes show the basic blocks of the statements and edges show the control

from one statement to another statement. There are, in most presentations, two spe-

cially designated blocks: the entry block, through which control enters into the flow

graph, and the exit block, through which all control flow leaves. In our work, we are

extracting edges and nodes from bytecode of the Java programs which helps in static

and dynamic analysis of programs from the back end (Bytecode). Furthermore, we

have presented Data Dependence Graph (DDG) from the bytecode which presents

the constraints on how a piece of code can be reorganized in term of dependency.

Furthermore, data dependency shows the relationship of the variables in a program.

The rest of this paper is organized as follow. Section 2 contains information of Java

Virtual machine and Bytecode Information. Section 3 contains program execution

information. Section 4 contains Control Flow Graph (CFG) from bytecode. Section 5

extracted Data Dependence Graph from the bytecode. Section 6 contains Related

Research. Finally, conclusion and future research are depicted in Sect. 6.



Path Executions of Java Bytecode Programs 263

2 Java Virtual Machine (JVM) and Bytecode
Understanding

This section gives an overview about Java Virtual Machine (JVM) and bytecode in-

formation from the Java source code. The Java Virtual Machine (JVM) is a load

based virtual machine which can support Java programming language [11]. It is an

independent platform for the input of class files. Each class is a binary file which con-

tains information about fields and methods. Java Programs are compiled into byte-

code called as machine language of JVM which also provides opcode and operands in

bytecode information [12]. The JVM is responsible for loading all relevant class files

upon execution of program. At runtime, the JVM fetches opcode and corresponding

operands and executes the corresponding actions accordingly [5]. Java Bytecode is

an object code of Java program [13]. In a bytecode, it shows the line number, opcode

and operands with complete information of variables used with reference numbers.

Also, it provides prefixes to all statements used in source code of Java program. For

example, if we used declaration of any data type in the source code then bytecode

provides prefix with values assigned. For example int i = 3 represented in a bytecode

is ICONST3, i declares the integer type of the variable and CONST shows that vari-

able declaration and assigned value is 3. It also provides line number with ISTORE
information, which is used for integer storage in the memory stack. So always in a

bytecode, it includes the prefix information, line number, memory storage and label

number which may count as line number in our idea. For basic and complicated state-

ments of source code, compiler provides information in a bytecode with reference

number, opcode, and corresponding operands.

3 Path Executions

This section contains information of the program execution and representation in

control flow graph and data dependence graph from the back end (bytecode). There

are two kinds of the execution of programs named as static and dynamic.

∙ Static Execution: It provides whole text of the program for analysis. Static always

provides all information of program having all control flow possibility according

to the source code. In Java program, we extracted all possible path executions. In

the program, we found four path executions according to true and false values for

those conditions. We have shown the static path executions of our program (Fig. 1)

as follows:

Line Number 3: x > y : FALSE

Line Number 7: y > 5 : FALSE

Execution Path 1: 0 1 2 3 5 6 7 9 10

Line Number 3: x > y : TRUE

Line Number 7: y > 5 : FALSE



264 S. Soomro et al.

Execution Path 2: 0 1 2 3 4 6 7 9 10

Line Number 3: x > y : FALSE

Line Number 7: y > 5 : TRUE

Execution Path 3: 0 1 2 3 5 6 7 8 10

Line Number 3: x > y : TRUE

Line Number 7: y > 5 : TRUE

Execution Path 4: 0 1 2 3 4 6 7 8 10

∙ Dynamic Execution: It provides the exact flow control of program according to

source code of program execution. It depends on compiler to compute and execute

program statements based on the input values and other control flow statements of

the program. We have presented dynamic execution path of our program (Fig. 1)

as under:-

Line Number 3: x > y : FALSE

Line Number 7: y > 5 : FALSE

Execution Path : 0 1 2 3 5 6 7 9 10

4 Control Flow Graph

A Control Flow Graph (CFG) is a graph which represents control through whole

program. It contains nodes of program which represents statements while edges show

the flow of control between statements.

In the Fig. 1, an example of Java program is written and we have shown the execu-

tion passing through all paths. In Table 1 we have shown each bytecode statement of

the Java Program, source code, basic blocks, and nodes for the graph. However, we

have extracted source code and provided bytecode in the Table 1 is for understand-

ing of the execution of Java programs. Our approach is to derive control flow graph

and dependence graph from its bytecode. We have extracted all bytecode statements

from the source code and have made blocks and nodes of all statements. Once pro-

gram has been compiled, we analyzed bytecode. In Table 1, there are four columns,

one column shows bytecode information, second represents source code, third col-

umn shows the basic blocks, and the last column shows the nodes for the graph.

We recognize nodes according to entry and exit point of control flow execution of

program.

Always we start from the first node and leader of the control flow graph. The

leaders of all blocks have to be recognized through control flow from its entry and

exit point. First, it begins with simple statements and making basic blocks for all the

bytecode instructions. The basic block is defined as a block consisting of sequence of

instructions where entry and exit point are only in one direction. So simple statement

and multiple statements are sequentially treated as one node in the control flow graph.

For example, we have made one node for all the sequence statements in our example



Path Executions of Java Bytecode Programs 265

Fig. 1 Java test program public class TestProgram {
public static void main(String[] args) {

0: int x = 3;
1: int y = 4;
2: int z = 0;
3: if (x > y)
4: z = x + 2;

else
5: z = y + 2;
6: z = z + y;
7: if (y > 5)
8: z = z + 5;

else
9: z = z - 2;

10: z = z + 3;
}

}

program. In the Table 1, B1, B2 and B3 are counted as one node because of sequence

of statements and no edges.

For those statements which have more than one edge then each statement is

counted as a node. All conditional, calling methods statements in a program are

counted individually and are assigned node for every edge in between. Each condi-

tional instruction of program is counted as also leader so that we have given rep-

resentation as node. If there is if , while or other comparative statements, also they

are counted as leaders. The branch values of these leader are true and false. Each

instruction of method calls and return also counted as leaders. After counting all

instructions of programs we have assigned leaders and fixing the nodes. Once all

bytecode instructions are represented in the form of nodes, the control flow graph

works through all possible path executions. Also, we never count node of any return

statements which may not return any value so we have reduced that block from the

control flow, as it does not show impact on the flow of program and as well as result

of the program.

Algorithm 1 Algorithm of Extracting Blocks and Nodes from Bytecode

INPUT : BytecodeofJavaProgram(P)
OUTPUT: Nodes(N)andBlocks(B)
Let Assume Line Number is L
Read P
while find ICONST
Add B
if preL = nextL
Add N
DrawGraph(B,N)
Ensure: {∀S∃P}



266 S. Soomro et al.

Table 1 Bytecode of program with blocks and nodes

Byte code Source Code Blocks Nodes

L0
LINENUMBER 0 L0
ICONST3 x = 3 B0 N1
ISTORE 1
L1
LINENUMBER 1 L1
ICONST4 y = 4 B1 N1
ISTORE 2
L2
LINENUMBER 2 L2
ICONST0 z = 0 B2 N1
ISTORE 3
L3
LINENUMBER 3 L3
ILOAD 1
ILOAD 2
IFICMPLE L4 if (x > y) B3 N2
L5 LINENUMBER 4
L5
ILOAD 1
ICONST2
IADD

ISTORE 3 z = x + 2 B4 N3
GOTO L6
L4
LINENUMBER 5 L4
ILOAD 2
ICONST2
IADD

ISTORE 3 z = y + 2 B5 N4
L6
LINENUMBER 6 L6
ILOAD 3
ILOAD 2
IADD

ISTORE 3 z = z + y B6 N5
L7
LINENUMBER 7 L7

(continued)



Path Executions of Java Bytecode Programs 267

Table 1 (continued)

Byte code Source Code Blocks Nodes

ILOAD 2
ICONST5
IFICMPLE L8 if (y > 5) B7 N6
L9
LINENUMBER 8 L9
IINC 35 z = z + 5 B8 N7
GOTO L10
L8
LINENUMBER 9 L8
IINC 3 −2 z = z - 2 B9 N8
L10
LINENUMBER 10
L10
IINC 33 z = z + 3 B10 N9
L11
LINENUMBER 11
L11
RETURN return from method B11 N10

In Fig. 2, for the building CFG from the bytecode, we use nodes which are cre-

ated from blocks. We are not considering else, if , return, {, } and those which cannot

make impact on the output of the programs. We are extracting nodes from the basic

blocks from Table 1 and did not even count some basic blocks which are making

from nonstructuring statements like else, if , return, {, and}. Our Algorithm 1 is to

recognize the line numbers from bytecode and nodes which are created from blocks.

After that we follow path execution of program in bytecode statically and dynami-

cally as we have discussed in Sect. 3. We have presented below static and dynamic

execution of paths according to nodes representation in the Fig. 2 as follows:-

∙ Path 1: N1, N2, N4, N5, N6, N8 and N9

∙ Path 2: N1, N2, N3, N5, N6, N8 and N9

∙ Path 3: N1, N2, N4, N5, N6, N7 and N9

∙ Path 4: N1, N2, N3, N5, N6, N7 and N9

In the above information path, 1, 2, 3, and 4 are static paths. Also, path 1 is counted

as dynamic path because of compiler execution according to values in the program.

We have extracted all information from bytecode and built blocks and nodes from

program lines. After that nodes and blocks are presented in CFG which is shown in

Fig. 2.



268 S. Soomro et al.

Fig. 2 Control flow graph

of bytecode execution

5 Data Dependence Graph (DDG)

The Data Dependence Graph (DDG) is derived from assignment of variables which

shows dependence relation in between. We extract information from bytecode and

make blocks of each lines. We have given names to each block and counted depen-

dencies of it. One block to another block we consider variable which may impact

on another variable in a block. We have inspected each block in a Java Bytecode in



Path Executions of Java Bytecode Programs 269

Fig. 3 Data dependence

graph of bytecode execution
Start

End

B2

B4

B5 B6

B7

B8

B9 B10

B11

B1

B3

x

y

z
z

y

z
z

z

z

z

terms of values in variables. In Java code, x = 3 which represents L0 LINENUM-

BER ICONST 3 ISTORE 1 in bytecode. We calculated data dependencies according

to given line number of each bytecode statements. Furthermore identify the names

of variables, line numbers and uses of those variables in another block. We have

identified the data flow of variables from one block to another block in a graph 3.

In Fig. 3, we have made blocks from all statements including simple, multiple

and conditional. Blocks consist of all lines with variables and values. The simple

lines show the control flow of the program and dotted lines show the dependency of



270 S. Soomro et al.

variables on different blocks. For example in the block number 3, variable z is used

which can change in others blocks due to data dependency. We have shown in the

Fig. 3 all variables dependencies according to blocks wise.

6 Related Research

In [14], a library that enables bytecode transformations by strategic rewriting has

been presented using the language TOM. Mapping of bytecode programs to algebraic

terms is done. Pattern matching and strategic programming primitives to the existing

language is added to express bytecode transformations.

In [15], Fixpoint algorithms was used for analyzing the bytecode considering a

number of optimizations in order to reduce the number of iterations. The term para-

metric is used as the algorithm is independent of abstract domain and it can be ap-

plied to different domains.

In [16], authors carried research work to discussed challenges faced by bytecode

analyzers. With various example programming statements, the relation between low

level and high level analyses using the concepts of strong and weak relative com-

pleteness have been formalized.

In [17], a framework for java program analysis called Soot was discussed. Various

features of the framework were discussed which can be used for program analysis.

We have presented analysis technique and show how we can extract bytecode

information from the code and represent it in control flow graph and data dependence

graph. It is being good to understand the back end of the program. As we cannot find

much material on understanding of bytecode our research may help to understand

bytecode information.

7 Conclusion and Future Research

We have presented static and dynamic execution of programs from Java Bytecode in-

structions. It is essential for better understanding towards software maintenance and

reengineering. Our article represents the program flow executions in Java Bytecode.

We presented Control Flow Graph (CFG) and Data Dependence Graph (DDG) from

bytecode information. We believe that our discussion and idea may help researchers

to develop advance tools for understanding back end code of programs.

Future research has to develop tool of our presented idea and hope it may help for

software debugging and testing community in future, which is really today’s need in

the world.



Path Executions of Java Bytecode Programs 271

References

1. Sreedhar, V.C.: Efficient Program Analysis Using DJ Graphs. Doctoral Dissertation. McGill

University, Canada (1995)

2. Java Checker. http://www.gradsoft.ua/products/javachecker_eng.html

3. Static Analysis Tools Exposition (SATE). http://samate.nist.gov/SATE.html

4. Dr. Garbage. http://www.drgarbage.com

5. Zhao, J.J.: Static analysis of bytecode. Wuhan Univ. J. Natural Sci. 6(1–2), 383–390 (2001)

6. Zhao, J.J.: Dependence analysis of java bytecode. In: Proceeding COMPSAC 24th Interna-

tional Computer Software and Applications Conference, pp. 486-491. IEEE Computer Society

Washington, DC, USA (2000)

7. Soomro, S., Abdul, H., Syed, H.A.M., Asadullah, S.: Ontology based requirement interdepen-

dency representation and visualization. In: Communication Technologies, Information Secu-

rity and Sustainable Development Communications in Computer and Information Science vol.

414, 2014, pp 259–270, pp. 486–491. CCIS Springer Series (2013)

8. Soomro, S., Wotawa, F.: Detect and localize faults in alias-free programs using specification

knowledge. In: LNAI Springer Series , IEA/AIE 2009, LNAI 5579, pp. 379–388 (2009)

9. Soomro, S.: Using abstract dependences to localize faults from procedural programs. In: Pro-

ceedings Artificial Intelligence and Applications, Innsbruck, Austria, pp. 180185 (2007)

10. Weiser, M.: Programmers use slices when debugging. Communications of the ACM 25(7),

446452 (1982)

11. Arnold K., Gosling, J.: The Java Programming Language, Addision Wesley (1996)

12. Don, L., Roland, H.U., Nancy J.W.: Bytecode-based java program analysis In: Proceedings of

the 37th Annual Southeast Regional Conference , ACM Southeast Conference, Mobile, AL,

April 15–18 (1999)

13. Peter, H.: Java Bytecode (2001). https://www.ibm.com/developerworks/ibm/library/it-haggar_

bytecode/

14. Ballad, E., Moreau, P.E., Rellies, A.: Bytecode rewriting in Tom. In: Second Workshop on

Bytecode Semantics, Verification, Analysis and Transformation–Bytecode 07 Braga/Portugal

(2007)

15. Maendez, M., Jeorge, N., Hermenegildo, M.V.: An Efficient, Parametric Fixpoint Algorithm

for Analysis of Java Bytecode. Published in Electronic Notes in Theoretical Computer Science

(2007). https://www.elsevier.nl/locate/entcs

16. Logozzo, F., Fahndrich, F.: On the relative completeness of bytecode analysis versus source

code analysis. In: Published in 17th International Conference, CC 2008, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-

gary, March 29–April 6 (2008)

17. Lam, P., Bodden, E., Lhotak, O., Henden, L.: The Soot Framework for Java Program Analysis:

a Retrospective. Published in Cetus Users and Compiler Infastructure Workshop ETUS (2011)

http://www.gradsoft.ua/products/javachecker_eng.html
http://samate.nist.gov/SATE.html
http://www.drgarbage.com
https://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/
https://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode/
https://www.elsevier.nl/locate/entcs

	Path Executions of Java Bytecode Programs
	1 Introduction
	2 Java Virtual Machine (JVM) and Bytecode Understanding
	3 Path Executions
	4 Control Flow Graph
	5 Data Dependence Graph (DDG)
	6 Related Research
	7 Conclusion and Future Research
	References


