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Abstract
The emanations upon combustion of petroleum fuels cause grave pessimistic 
impact on surrounding ambiance and global climate change. Therefore, the con-
temporary stance of scientific fraternity is to generate energy and mercantile 
products through biological methods with waste as a resource. Biohydrogen pro-
duction from wastewater seems to be a promising green option for sustainable 
renewable energy. The process is feasible from practical point of view and can be 
operated under ambient conditions. It has been attracting attention due to its 
applicability to different types of wastewaters, and the production costs of biohy-
drogen can compete economically with other traditional methods. However, the 
crucial challenges like enhancing rate and yield for sustainable biohydrogen pro-
duction still persist. During fermentation process, the undissociated volatile fatty 
acids (VFAs) and alcohols accumulate in the system leading to inhibition and 
redundancy in substrate degradation. Employing integration strategies with other 
bioprocesses like photo-fermentation or bio-electrochemical systems is the san-
guine option to make the process frugally possible.
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12.1	 �Present Scenario

Paucity of worldwide petroleum reserves and apprehensions concerning environ-
mental pollution prompt for the advancement of green energy substitutes (Arimi 
et al. 2015). Bioenergy has the sustainable potential that is appealing great curiosity 
amongst researchers across the world (Rama Mohan 2015). Recently, biohydrogen 
is cited to be one of the prospective areas of interest (Venkata Mohan 2009). In 
2010, the market demand of international hydrogen production was 53 million met-
ric tons and is anticipated to rise with a growth rate of 5.6% per annum. Worldwide 
commercial H2 production presently is produced majorly from natural gas, oil and 
coal and to certain extent by water electrolysis (Markets and Markets 2011; Bhaskar 
et al. 2013; Rama Mohan 2015). Alternatively, H2 from waste biomass/wastewater 
using biological methods as renewable resource is gaining much interest. By this 
way negative-valued organic waste is transformed to green energy abating the pol-
lution (Ghimire et al. 2015). The governing prerequisite for wastewater treatment is 
an ideal prospect to produce biohydrogen. By this way, it diminishes the overall 
expenditure towards effluent treatment, and additional revenue could be incurred 
from biohydrogen as a fuel (Nissilä et al. 2014; Thi et al. 2016).

12.2	 �Biohydrogen Production

There are several routes for H2 production, viz. physical, chemical, biological and 
thermochemical (Fig. 12.1). BioH2 production is majorly contributed by anaerobic 
fermentation which is categorised as light-independent and light-dependent 
(Venkata Mohan et al. 2007a; Hallenbeck 2013). Light-independent fermentation 
process is usually referred to as dark fermentation that hires both strict anaerobes 
and facultative bacteria. This process results a higher rate of H2 and formation of 

Biohydrogen

Thermo-chemicalBiological

Photobiological EnzymaticMicrobial 
ElectrolysisAnaerobic

Dark-
fermentation

Light-
fermentation 
(Anoxygenic)

Direct 
Photolysis

Indirect 
photolysis 
(Oxygenic)

Fig. 12.1  Flowchart representing various routes for biohydrogen production

G.N. Nikhil et al.



251

soluble metabolic products (SMPs), viz. volatile fatty acids, solvents, etc. Acidogenic 
anaerobes are incompetent of consuming these undissociated organic acids result-
ing in the accumulation of these acids leading to a drop in pH value. Subsequently, 
H2 production is inhibited and, finally, results in low H2 yields (Guo et al. 2010; 
Venkata Mohan et al. 2017). Light-dependent processes used by cyanobacteria and 
green algae are direct and indirect biophotolysis or via photo-fermentation mediated 
by photosynthetic bacteria. H2 production by photosynthetic bacteria occurs by 
photo-fermentation of inorganic/organic acids (Lam and Lee 2013). The biochem-
istry varies considerably based on the biocatalyst, operational conditions, microen-
vironment and substrate (Lin et al. 2012).

12.2.1	 �Photo-Fermentation

Photosynthetic microorganisms, viz. cyanobacteria, photosynthetic bacteria and 
algae, have varied photosynthetic machinery (anoxygenic or oxygenic) that func-
tions for H2 production (Allakhverdiev et al. 2010). The process involves generation 
of a proton gradient by energy from sunlight and electron generation either by direct 
photolysis of water (Fig. 12.2a) or by indirect photolysis involving a parallel photo-
system II (PSII)-independent process (Fig. 12.2b). In direct photolysis, the sunlight 
functions as a powerhouse for PSII ensuing production of oxidising equivalents that 
are used for the water oxidation into protons, electrons and O2 (Krassen et al. 2009). 
Then, ferredoxin in reduced state is the electron donor for [FeFe]-hydrogenases in 
both types of photolysis. Thereafter, these reducing equivalents are transported to 
the chlorophyll α-dimer (P700) in photosystem I (PSI). The P700 is energised upon 
absorption of sunlight and then discharges electrons to the acceptor site of PSI con-
taining iron–sulphur clusters via the electron transport chain (Hallenbeck 2013). 
Later, PSII is  driven by water splitting where in the electrons are transported to 
reducing equivalents which then finally reduced by the [FeFe]-hydrogenase (HydA) 
to H2. Hydrogenase enzyme performs as a discharge valve in presence of protons 
and electrons from the reduced ferredoxin to produce H2. The activity of hydroge-
nase enzyme relies on the number of reducing equivalents from either of two pho-
tosynthetic processes (Constant and Hallenbeck 2013).

Microalgae are outstanding for their ability of high translation of solar energy to 
molecular H2 (12–14%) by the oxidation of water molecules (Sambusiti et al. 2015). 
In direct biophotolysis, O2 is generated as by-product of PSII that is a major sup-
pressor of the hydrogenase enzyme; therefore, it can be operated for short periods 
of time (Blankenship et al. 1995). In indirect photolysis, the generated electrons and 
protons are generated and stored as starch during photosynthesis. Under certain 
stress conditions, the electrons and protons are fed into the plastoquinone pool and 
then onto HydA via PSI resulting in H2 production. In case of microalgae and cya-
nobacteria, compounds for reserve accumulate during the Calvin cycle. At night, the 
compounds in reserve act as source energy for the cell activities. The change from 
aerobic to anaerobic condition is complemented by termination of a photosynthetic 
light reaction and generation of a surplus reductant, which is finally converted to H2 
by hydrogenase (Allakhverdiev et  al. 2010). Under anaerobic conditions, 
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Fig. 12.2  Schematic illustration of the photosynthetic mechanisms for biohydrogen production – 
(a) direct photolysis involved in oxygenic photosynthesis; (b) indirect photolysis involved in oxy-
genic photosynthesis; (c) anoxygenic mechanism involved with photosynthetic bacteria

G.N. Nikhil et al.



253

[FeFe]-hydrogenases (HydA1 and HydA2) catalyse the molecular H2 by proton 
reduction. In cyanobacteria, H2 is produced during nitrogen fixation by action of 
nitrogenase enzyme (Greenbaum 1988a, b; Melis et al. 2000).

Photosynthetic bacteria utilise the visible and/or near-infrared spectrum to produce 
H2 by catabolising organic molecules by anoxygenic photosynthesis (Fig. 12.2c). In 
these bacteria, the [FeFe]-hydrogenase can easily evade the distress of oxygen, since 
they do not use water as source for electron generation (Melis and Happe 2001; 
Krassen et al. 2009). In this process, the bacteriochlorophyll (BChl) elicits for the 
formation of bacteriopheophytin (BPh) upon light absorption. The electrons from 
BPh are transferred to quinine pool (QA) and then to the cytochrome subunit of the 
reaction centre that generates a proton gradient for ATP synthesis and finally to H2 
(Hallenbeck and Benemann 2002). The efficacy of light energy translation to H2 is 
significantly higher in photosynthetic bacteria than cyanobacteria since the quantum 
of light energy requirement is less than the water photolysis. Thus, the photosynthetic 
bacteria make photo-fermentation process more feasible, viable and its adaptability in 
consuming a variety of substrates (Chandra and Venkata Mohan 2011, 2014).

12.2.2	 �Dark Fermentation

Dark fermentation involves a multitude of biochemical metabolic reactions, viz. 
hydrolysis, acidogenesis, acetogenesis and methanogenesis (Lin et al. 2012). The 
composite organic matter is catabolised to simple molecules during hydrolysis and 
consequently fermented to organic acids during acidogenesis (Dahiya et al. 2015). 
As a special case, H2 production is feasible from acetic acid by microbial consortia 
of acetogens and homoacetogens. Further, the acetoclastic methanogens translate 
the volatile fatty acids to methane during methanogenesis (Thi et al. 2016). Most 
often, acetogens nurture in syntrophic alliance with the hydrogenotrophic methano-
gens, thereby retaining low partial pressure to allow acidogenesis to become ther-
modynamically favourable. Therefore, the methanogenic activity is suppressed to 
increase the yields of bioH2 as a sole metabolic by-product (Venkata Mohan et al. 
2008a, b; Goud and Venkata Mohan 2012a; Sarkar et al. 2016).

The organic sugars are first metabolised during the glycolysis to pyruvate, a key 
precursor for subsequent microbial fermentation (Venkata Mohan et  al. 2007b). 
Consequently, pyruvate can result in a variety of short-chain organic fatty acids, and 
H2 is also produced during the metabolism (Fig. 12.3a). Anaerobes that are faculta-
tive metabolise pyruvate to acetyl-CoA and then to formate catalysed by pyruvate 
formate lyase and subsequently to hydrogen by formate hydrogen lyase (Nikhil 
et al. 2014b). Anaerobes that are obligate oxidise pyruvate to acetyl-CoA through 
pyruvate ferredoxin oxidoreductase. Metabolites formed during anaerobic substrate 
metabolism raise the accessibility of reducing equivalents within the bacteria (Wong 
et al. 2014). Protons from the redox mediators separate in presence NADH dehydro-
genase enzyme and subsequently reduced to H2 with electrons offered by the oxi-
dised ferredoxin upon action of hydrogenase enzyme. The membrane-bound NADH 
dehydrogenase, cytochrome complex and other carrier proteins channel the 
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Fig. 12.3  (a) Different biochemical steps involved in the dark fermentation of glucose (organic 
matter); (b) schematic illustration of substrate conversion and H2 production mechanism during 
dark fermentation
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electrons via the quinone (Q) pool (Fig. 12.3b). Uninterrupted interconversions of 
quinone and protons assist in the transport of electrons to cytochrome b–c1 complex 
and then to cytochrome aa3. Ultimately, the electrons are transferred from cyto-
chrome aa3 to iron-containing protein ferredoxin. The ferredoxin in reduced state 
transfers electrons to the catalytic site of hydrogenase where protons are combined 
to form H2 (Saratale et al. 2013).

Dark fermentation has gained significant credit as a practically feasible scheme 
amongst the other biological ways for H2 production, especially when wastewater is 
considered as a substrate and assorted bacterial consortium as a biocatalyst (Agler 
et al. 2011; Nikhil et al. 2014a). The prominent features of this process are: process 
simplicity, less energy intensive, less carbon footprints, use of broad spectrum of 
organics and operation at ambient temperatures. Besides, the process is economically 
steady and robust for large scale of H2 production (Venkata Mohan 2009). If the fer-
mentation favours for the acetic acid synthesis, then the stoichiometric yield of H2 is 
4 mol per mol of glucose, whereas if the fermentation pathway is butyric acid, the 
yield of H2 is 2 mol per mol of glucose. Yet, the experimental H2 yield is lower than 
the stoichiometric yield, since a fraction of the substrate is consumed for bacterial cell 
mass and in few cases by-products might reduce the H2 yield. Strategies are developed 
to attain superior H2 yields at better rates, viz. novel reactor designs, variable mode of 
operation, inoculum type and pretreatment, nature and pretreatment of substrate and 
many more (Venkata Mohan et al. 2008a; Monlau et al. 2015; Sarkar et al. 2016).

The potential sources for anaerobic cultures are found almost in all types of natu-
ral environments. Anaerobic bacteria under the class of Firmicutes, which are apt 
biocatalysts for H2 production (Venkata Mohan et al. 2011). A mixture of bacterial 
flora is largely preferred for continuous H2 production; however, the microbial cul-
ture can show a divergence in H2 production competence because of the co-
occurrence of H2-consuming bacteria in overall microbial diversity. In such 
conditions, conditioning of inoculum is performed to augment H2 producers due to 
their compliance in hostile environments (Sarkar et  al. 2013; Goud et  al. 2017). 
Moreover, proton fluxes in/out bacteria affects the enzyme activity, biochemical 
pathways and substrate decomposition. pH is also acute to sustain ample cellular 
ATP levels, since surplus H+ ions are pumped out using ATP to ensure cell neutrality 
(Srikanth and Venkata Mohan 2012). The initial pH can impact the duration of lag 
phase involved in spore germination and enzyme synthesis. The operational organic 
load of bioreactor can affect several functional issues which include accumulation 
of undissociated VFA and pH variations. This subsequently changes the diversity of 
microbial flora with subsequent amendments of the allied metabolic pathways (Van 
Ginkel and Logan 2005a; Goud and Venkata Mohan 2012b). Commercial biohydro-
gen production still poses certain process impede like the inhibitory effect caused 
by the undissociated VFA (Van Ginkel and Logan 2005b; Goud et al. 2014; Srikanth 
and Venkata Mohan 2014; Sarkar et al. 2017). Improving H2 production rate and 
yield are the grave challenges to sustain economic production. In this regard, vari-
ous strategies were reported in the literature. A few of them are selection and pre-
treatment of microbial consortia, immobilisation of consortia, statistical techniques 
for process optimisation, sequencing of bioreactors, bio-electrochemical treatment, 
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multiple process integration and bio-augmentation (Pasupuleti and Venkata Mohan 
2015a, b). Commercial operation still poses certain process impedes like inhibitory 
effect of undissociated VFA (Van Ginkel and Logan 2005b; Goud et  al. 2014; 
Srikanth and Venkata Mohan 2014; Sarkar et al. 2017).

12.2.3	 �Integration Strategies

12.2.3.1	 �Biohythane
A proportionate mixture of hydrogen and methane is commercially available as 
Hythane™, HCNG or methagen (Eden 2010). The recommended composition of H2 
with CH4 ranges between 10% (v/v) and 25% (v/v) (Liu et al. 2013). Conventional 
methods could be unsustainable due to their reliance on exhausting petroleum 
reserves. Yet, the contemporary trends in bioenergy exploit the different biological 
routes for the production of both methane and hydrogen from waste organic matter. 
Literature reports are available on two-step fermentation process to produce a mix-
ture of H2 and CH4 from wastewater (Venkata Mohan et al. 2008b; Mohanakrishna 
and Venkata Mohan 2013). This biological design assures the composition of biogas 
mixture (CH4 + H2) by regulating the environments of microbial fermentation. The 
usual operation is a two-step process that has a few advantages, but operation of two 
bioreactors is frugally not that sustainable (Cavinato et  al. 2012; Willquist et  al. 
2012). A recent investigation reported biohythane from single-stage bioreactor 
using spent-wash wastewater (​Pasupuleti and Venkata Mohan 2015b). In another 
study, a unique strategy was reported that augments acidogenesis for the production 
of biohythane (​Sarkar and Venkata Mohan 2016, 2017).

12.2.3.2	 �Hybrid Dark–Photo Fermentation
A blend of both dark and photo-fermentation is a credible option to accomplish a 
yield of 12 mol H2/mol glucose. Integrative fermentation can be considered as an 
operational and competent option to harness maximum H2 yield with simultaneous 
wastewater treatment (Srikanth et al. 2009; Laurinavichene et al. 2012). A variety of 
photosynthetic bacteria are capable of H2 production which can uptake the volatile 
fatty acids as carbon source and light as energy sources. Studies have been carried 
out with two-stage integration of heterotrophic dark with photo-fermentation for 
bioH2 production (Chandra et al. 2015). It was noticed that photo-fermentation of 
acid-rich effluents is considered to be complicated due to light infiltration complica-
tions, multifaceted nutritional requirements, obligatory operational conditions, sub-
strate (VFA and ammonia) inhibitions and vulnerability for impurity (Wang et al. 
2009; Chandra and Venkata Mohan 2014).

12.2.3.3	 �Microbial Electrolysis
Microbial electrolysis is an electrically driven H2 production process wherein the 
exchange of electron equivalents in carbon-based composites to H2 gas involves 
bio-electrochemical reactions (Call and Logan 2008). A microbial electrochemical 
cell (MEC) has a prerequisite of additional potential to assist the metabolism of 
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undissociated organic acids into H2 which is obligatory to cross the endothermic 
barrier (Cheng and Logan 2011). Therefore, the protons and electrons are driven 
with the supplementation of an external voltage from anode to cathode which is 
reduced to H2. The typical redox potential for H2 reduction is −0.414 V, and a volt-
age >0.11 V facilitates H2 formation at the cathode. These applied potentials are 
moderately low compared to the applied external potential of 1.23 V for electrolysis 
of water. For example, H2 (−0.414 V) from acetate (−0.279 V) at the cathode occurs 
upon appliance of voltage (−0.135  V). In reality, a relatively higher voltage is 
required than the prerequisite; owing to system overpotentials aroused by physico-
chemical and microbial influences.

It is reported that the applied potentials selectively enrich the growth of electro-
active bacteria that efficiently reduce electrons (Arunasri et al. 2016). Operating an 
MEC can recover more than 90% of H2 as against 33% by the dark fermentation. 
Thus, the application of MEC can be seen with the usage of acidogenic effluents 
rich in short-chain fatty acids for recovery of additional H2/CH4 production (Wagner 
et al. 2009; Modestra et al. 2015). The prospects of MEC over conventional water 
electrolysis are low-energy consumption, appreciable H2 yields and wastewater 
treatment. Nevertheless, biocatalyst diversity, electrode materials, membrane, 
applied potential, substrate loading rate and reactor configuration critically affect 
the functioning of MEC (Nam et al. 2011). To begin with, studies were carried out 
in double chamber that allows separate capture of H2 at cathode and prevents foul-
ing by anodic bacteria (Pisciotta et al. 2012). But, separation leads to acidification 
at the anode chamber; so, removing the partition creates a single-chamber MEC that 
reduces the applied potential attenuating the pH and energy losses. Electrodes 
coated with platinum are commonly used as chemical catalysts for H2 evolution as 
it significantly diminishes the cathode overpotential. Conventional methods use 
platinum which is costly, consumable and vulnerable to contamination by constitu-
ents in the effluents. Recently, research on biocathodes is of prime attention as they 
are eco-friendly and renewable (Jeremiasse et al. 2010; Nikhil et al. 2015b).

During the operation of MEC, the hydrogen evolution reaction (HER) is linked 
to the pH. The buffer capacity of wastewater is typically low resulting in accumula-
tion of protons resulting in acidification at anode (Hamelers et al. 2010). The use of 
chemical buffers could be a possible option that alleviates the pH gradient. The 
efficacy of a buffer relies on its dissociation constant (pKa) and diffusivity. Buffers 
with pKa slightly above the operating pH (near neutral) aid to sustain the internal 
pH close to the external pH (Zhu et al. 2009; Liang et al. 2014). Inappropriate use 
of buffer (above 300 mM) affects the system and unsuitable for the effluent dis-
charge; besides addition of salts would escalate the operating economics (Ambler 
and Logan 2011). It was reported that the external voltage exhibited a dual conse-
quence over process performance by regulating the in situ buffering capacity using 
a biocathode (Lenin Babu et al. 2013b; Nikhil et al. 2015a). Integrating MEC with 
other processes to harvest biohydrogen generation is the state-of-the-art research 
amongst the scientific fraternity (Escapa et al. 2014). Small additional voltage with 
a high current density will be a crucial challenge for scaling-up of MEC to mercan-
tile applications (Lenin Babu et al. 2013a; Venkata Mohan et al. 2014).
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12.2.3.4	 �Bio-based Products
The dark-fermentative effluents are rich in VFA, and these can be used as possible 
substrate for production of polyhydroxyalkanoates (PHAs) commonly referred to as 
‘bioplastics’ (Venkata Mohan et al. 2010; Sarkar et al. 2016). PHAs are biopolyes-
ters of hydroxyalkanoates that amass as cellular storage materials produced under 
surplus carbon and nutrient-deprived environments (Patel et  al. 2012; Fradinho 
et al. 2013). Commercial scale of PHA is produced using plant-derived resources 
and pure cultures that rise the production costs. Compared to other substrates (car-
bohydrates or proteins), the use of VFA facilitates PHA synthesis depriving the 
participation of glycolysis and β-oxidation pathways. Reports are available on PHA 
production from synthetic VFA and biohydrogen effluents (VFA-rich) under an 
anoxic microenvironment using a mixed bacterial culture (Venkateswar Reddy and 
Venkata Mohan 2012). If acetate and butyrate compositions are relatively higher 
amounts, then polyhydroxybutyrate (PHB) is the product type, and if propionate 
and valerate are relatively higher amounts, then polyhydroxyvalerate (PHV) is the 
product type. The combined production of H2 and PHA followed by methanogene-
sis is possible option to make the whole process economical and sustainable (Patel 
et al. 2012; Venkateswar Reddy et al. 2014).

12.3	 �Waste Treatment vs Biohydrogen Production

Ideally, a unit kilogram of chemical oxygen demand (COD) equals to 5.2 mol of 
glucose, and upon dark fermentation each mole of glucose results in 4  mol and 
2 mol of H2 depending upon acetic acid and butyric acid pathways, respectively 
(Venkata Mohan et al. 2007c). On the other hand, photo-fermentation yields 12 mol 
of H2 per mol of glucose. H2 produced by acetate pathway of dark fermentation 
yields 89.6 l of H2 per mol of glucose which is equivalent to 466.6 l of H2 per kg 
COD. Assuming with only 40% of COD removal, then H2 yield in dark and photo-
fermentation is 125 g and 16.6 g, respectively. For example, if an industry discharg-
ing ~3 × 1011 l of effluent per annum containing a typical COD of 20 g/l, then it 
amounts to 6000 × 106 g of COD for that year. The yields of H2 with dark and photo-
fermentation are about 5 × 106 kg and 300 × 106 kg per year that accounts for many 
million dollars/year (at a rate of $ 4/kg H2) (Markets 2011).

Rapid industrialisation is resulting in immense amounts of waste. Conventional 
treatment of wastewater is an energy-exhaustive process. Probing means to produce 
or harness valuable products from wastewater remediation are significantly pursued 
in recent times (Angenent et al. 2004; Venkata Mohan et al. 2010). The prerequisite 
requirement for their management markedly makes wastewater a choice for biohy-
drogen production, besides abating the overall treatment cost (Guo et  al. 2010; 
Elsharnouby et al. 2013). Till date, considerable efforts were put on the application 
of various wastewaters for the production of biohydrogen through fermentation pro-
cesses (both light-dependent and light-independent) (Hallenbeck 2013). Both 
wastewater treatment and H2 production are equally important, and a balance should 
exist between technical expertise and substrate uptake with operating circumstances 
(Show and Lee 2013). Assessing these conditions is particularly important in 
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sustaining the financial possibility and environmental competence of the process 
(Arimi et al. 2015). An illustrative plan of strategies to recover energy and products 
for value additions along with wastewater treatment is represented in Fig. 12.4.

12.4	 �Future Perspectives

Hydrogen is an imperative substitute for energy domain and can be produced from 
a variety of production technologies (Dunn 2002; Nouni 2012). Presently, investiga-
tions are being dedicated on viable and eco-friendly biohydrogen from biomass to 
substitute fossil fuels (Hallenbeck and Ghosh 2009; Rama Mohan 2015). Waste 
biomass can be deliberated as the paramount choice and has the foremost prospec-
tive that encounters energy supplies and could assure fuel stock in the upcoming 
future. Utilisation of remaining organic portion after acidogenesis is also the most 
significant aspect to be paid momentous consideration (Mohanakrishna et al. 2010; 
Ghimire et al. 2015). Photobiological processes with acidogenic wastewater as sub-
strate are comparatively less studied and need further exploitation. Multi-process 
combination is effectively evaluated for economic viability and commercialisation 
(Mohanakrishna and Venkata Mohan 2013; Wang and Ren 2013). Overall, a biore-
finery concept with closed-loop approach visualises negative-valued waste as a 
potential renewable feedstock that will pave new opportunities for the growth of 
bio-based society with circular economy (Venkata Mohan et al. 2016).
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Fig. 12.4  Schematic details of various strategic routes possible for effective H2 production and 
other value-added products
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