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Special Topics: A Short Course on
Group Theory

Bobby Ezhuthachan

These lectures provide a brief introduction to group theory, largely
focussing on finite groups. After giving the basic definition of groups,
we start with a discussion on abelian groups followed by a discussion
on non-abelian groups in the next section. Along the way, we define
normal subgroups and conjugacy classes and discuss the commuta-
tor subgroup and abelianization. In the final sections, we discuss the
examples of the Quaternionic group, as well as two examples of con-
tinuous groups- the rotation group, in particular its connection with
the group of special unitary matrices in two dimensions as well as
the conformal group.

8.1 Groups and Physics

Symmetry plays an important role in Physics. In classical theory, Noether’s
theorem relates symmetries of the action to conservation laws. So for instance,
if the action, or Hamiltonian in the phase space formulation, is invariant under
rotations, then the system described by the action, has total angular momen-
tum conserved in time, just as invariance of the action under translation in
space implies the conservation of total momentum in time. The set of such
symmetry transformations which leaves something invariant (the action in this
case), forms what is mathematically called a “group”. The action of these sym-
metry transformations on a physical system are described by matrices- called
group representations. Taking products of such matrices, corresponds to doing
successive symmetry transformations of the system.
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154 8. Group Theory

The ideas of symmetry transformations and groups are even more power-
ful in quantum theory. For instance in quantum mechanics, if a system has some
symmetry, then the corresponding group-matrices commute with the Hamilto-
nian. This fact along with a well known theorem called the Schur’s lemma, can
help in solving the problem of finding the energy levels of a system in some
cases.

Group theory helps in classifying the various particles found in nature,
since the various fundamental particles of nature, as described by the stan-
dard model of particle physics, correspond to different representations of the
corresponding symmetry group.

It is sometimes the case that the ground state is invariant under a smaller
set of symmetries than the Hamiltonian. This is known as ‘ spontaneous sym-
metry breaking’ and plays a crucial role in very important and diverse physical
phenomenon, like superconductivity and the ‘Higgs mechanism’ which gives
mass to various fundamental particles in nature. Most phases of matter can
be classified by the amount of symmetry that they break. As an example, in
crystals, the underlying invariance of the Hamiltonian under continuous trans-
lations is broken to a set of discrete translations in the crystalline phase.

So, in short, the study of Group theory is well motivated in Physics.
Before discussing some properties and examples of groups, we begin with the
basic definition of groups in the next section.

8.2 Basic definition

A Group G is a set of elements (g1, g2, ...), equipped with a composition rule,
that basically tells us how composing any two elements of this set gives rise to
a third gi ◦ gj = gk. This set along with the composition rule, has to satisfy the
following conditions.

• Associativity: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk)

• Existence of an identity element denoted by e such that e ◦ gi = gi ∀ i.
• Existence of an inverse element for every element gi for which we use the

notation by g−1
i such that g−1

i ◦ gi = e

As a corollary of these properties, it follows that e and g−1
i are unique

and that g ◦ e = g and g ◦ g−1 = e.
If the elements of the set G can be labelled by an integer, then the group

is called discrete, while if its labelled by continuous numbers, then the group
is called continuous . If a discrete group has a finite number of elements, then
the number of elements is called the order of the group and is usually denoted
by the symbol |G|.

In general, the composition rule for the group elements is not commuta-
tive. However if in special cases, the composition rule is commutative for all
elements, then such a group is called an abelian group, else its called non-
abelian.
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The condition that two elements gi, gj commute, can be recast as g−1
i ◦

g−1
j ◦gi◦gj = e. An element of a group g ∈ G is called a commutator if it can be

expressed as g = a−1 ◦ b−1 ◦a◦ b ≡ [a, b]. Where a, b are any two elements of G.
Stated in terms of the commutator, a group is abelian iff the only commutator
element of the group is the identity.

Some simple examples of Groups:

• The set of integers under addition (Z).

• The set of continuous rotations of a rigid body

• Permutation of n objects

• The set of unitary n× n Matrices.

In the next section, we will first discuss the abelian case, and then in later
sections discuss non-abelian groups.

8.3 Abelian Groups

For the abelian group, as is standard, we will borrow the notation from Z. We
therefore denote the composition rule by the addition symbol (+), the identity
element by 0 and the inverse by −g. So that gi+gj = gk and g+(−g) ≡ g−g = 0.

If a subset of elements of a group, itself forms a group under the same
composition law, then its called a subgroup. For example, the group Z has a
subgroup which is simply obtained by multiplying each element by any specific
integer say N , that is: NZ is a subgroup of Z. Given an abelian group G and
some subgroup H, we can form a set of equivalence classes , called coset , where
the elements of each class consists of all such elements, (g, x) which are related
as: {g, x ⊂ G; such that g = x+ h; where h ⊂ H}. It is easy to check that the
above relation is an equivalence relation (which we denote as: (g ∼ x)), because
the relation is reflexive, transitive and associative.

• (a) reflexivity: g ∼ g, because g = g + 0

• (b) transitivity: g ∼ x⇒ x ∼ g, because g = x+ h ⇒ x = g − h
• (c) associativity: if g ∼ x and x ∼ y ⇒ g ∼ y, because if g = x + h1 and
x = y + h2, then g = y + h1 + h2

Each such coset class, is denoted by [g], where g is any representative
element of that class. For abelian groups the coset , which is the set of all such
distinct equivalence classes, also has a group structure and hence is also called
the Quotient Group. The notation used for such a Quotient group formed out
of G and H is G/H. The identity element of this group denoted by [0] is simply
the set of all elements of the type (0 + h) which is just the full subgroup H.

In particular, for G = Z and H = NZ, the elements of G/H are the
equivalence classes ([0], [1], ...[N − 1]). For example with N = 2, we have
the elements [0] and [1]. Where [0] = (0, 2,−2, 4,−4, 6,−6, ...) and [1] =
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(1,−1, 3,−3, 5,−5, 7,−7, ....). Its easy to see that, [0] + [1] = [1], [1] + [1] ≡
2[1] = [0]. This Group is therefore in one - one correspondence with the group
of two elements (0, 1) under the composition law addition modulo two, (a+b =
c mod 2). This group is denoted as Z2. Similarly for general N , N [1] = 0 and
the quotient group Z/NZ ∼= ZN , which is the group of N integers-(0, 1, ...N−1)
under the composition rule addition modulo N , (a+ b = c mod N)

In a general abelian group, the element obtained by adding the same
element many times must be again an element of the group. If the group is finite,
then it must be the case that for some positive integer N , g+g+g...(Ntimes) ≡
Ng = 0. Then, N is called the order of the element g. The set of all elements of
finite order, in an abelian group forms a sub group, called the torsion subgroup
and denoted by t(G).

Problem 8.3.1: Show that t(G) is a subgroup.

If all elements of a group is generated by a set of elements (g1, g2, ...gr),
their inverse and the identity, the group is called a finitely generated abelian
group (FGAG). That is, g =

∑r
i=1Nigi; ∀ g ∈ G. Here, Ni ∈ Z. If these

generators are linearly independent, that is: 0 =
∑r
i=1Nigi; ⇒ Ni = 0 ∀i ,

then the FGAG is called free. A free FGAG with r independent generators is
said to have rank r. A group generated by one element is called cyclic. The
group Z is a cyclic group of order infinity, while ZN is a cyclic group of finite
order N .

Definition 8.3.1 (Group Homomorphisms). Given two groups (not neces-
sarily abelian) G and H, if there exists a map f(G), which maps elements of
G into elements of H, then such a map is called a Homomorphism.

1. f(g) ∈ H; ∀g ∈ G
2. f(g1 ◦ g2) = f(g1) • f(g2); ∀gi ∈ G

Here the ◦ and the • denote the composition laws in G and H respectively.

The subset of elements (x) of the group G, which maps to the identity in
H is called ker f . (x ∈ kerf ; f(x) = e). While Im f is the subset of elements
y in H which have been mapped from some element of G. ie: y = f(g).

Problem 8.3.2: Show that both ker f and Im f are subgroups of G and H
respectively.

It is clear that the map from G to Im f is not in general an isomorphism.
That is, the map need not be one-one onto. This is so because, more than one
element in G, can map to same element in H. f(g1) = f(g2). This means that
f(g1) • f−1(g2) = e⇒ f(g1 ◦ g−1

2 ) = e⇒ g1 ◦ g−1
2 ∈ kerf .

Returning to the case of abelian groups, this means that g1 - g2 = h, h ∈
kerf . This implies that any two elements which map to the same element in
H belong to the same equivalence class, and therefore is a single element of
the Quotient group G/kerf . This Quotient group has now elements in one
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to one correspondence with the elements of Im f , so that the two groups are
isomorphic. ie: G/kerf ∼= Imf

A few applications of this result are given below.

1. Consider the homomorphism between the group Z and Z2. f(2n) = 0 and
f(2n+1) = 1. The kernel of this map f(x) = 0 is simply all even integers:
ie: kerf = 2Z, so that we recover: Z/2Z ∼= Z2.

2. Consider any group H which is a free FGAG of rank r generated by the set
(g1, ..., gr). This can be thought of as the image of the homomorphism from
the group G =

⊕r
i=1 Z. The map being simply: (N1, ...Nr) ∈ G; f(g) =∑r

i=1Nigi ∈ H. Since the group H which is the image of f is a free
FGAG, the kerf = {0}. Then it follows that any free FGAG of rank r,
H ∼=

⊕r
i=1 Z.

3. By a similar argument, any cyclic group G with generator g of finite order
N , (x ∈ G; x = ng; Ng = 0) is isomorphic to ZN . To get this result,
we simply start from the group Z and then take f(n) = ng; n ∈ Z.
Since Ng = 0, it follows that kerf = NZ. Therefore, any cyclic group
G ∼= Z/NZ ∼= ZN .

4. More generally, any FGAG with r generators (g1, ...gr) not necessar-
ily free, is isomorphic to Z

⊕
Z
⊕

Z...(m times)
⊕

Zk1
⊕

Zk2 ...
⊕

Zkn ,
where the set of integers (m, k1, ...kn) are fixed for a given FGAG, and
m+ n = r. m is known as the rank of the FGAG.

We sketch a proof of the last statement below.

Problem 8.3.3: For a free FGAG of rank = r with generators (g1, ..., gr),
the subset of elements generated by (k1gi1 , ...kpgip) is always a subgroup. Where
(gii ....gip) are any p generators from the set of r generators of the free FGAG
and (k1, ..., kp) are all integers.

In fact, it turns out that all subgroups of a FGAG can be generated
this way. This means, that any subgroup H of a free FGAG is isomorphic to
k1Z

⊕
k2Z

⊕
...
⊕
kpZ.

We can now construct a homomorphism, as before, from the group G =⊕r
i=1 Z to H = FGAG. The map being, again as before, f(G) = f(N1, ...Nr) =∑r
i=1Nigi. Then the kernel of this map, being a subgroup of G,

• kerf ∼= k1Z
⊕
k2Z

⊕
...
⊕
kpZ, for some set of positive integers

(p, k1, ...kp).

Then the desired result follows.

• H = Imf ∼= G/kerf = Z
⊕

Z
⊕

Z...(m times)
⊕

Zk1
⊕

Zk2 ...
⊕

Zkp ,
with m+ p = r
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8.4 Nonabelian cases: Conjugacy class, cosets

In this section, we will start discussing the non-abelian case. We will intro-
duce some definitions, some of which we have already seen in the abelian case,
and some which are interesting and non-trivial only when the group is non-
abelian. For the non abelian groups, we will use the notation gh for denoting
the composition g ◦ h.

Definition 8.4.1 (conjugacy classes). All the elements of a group can be placed
in various conjugacy classes. Two elements (x, y) of a group G are said to be
conjugate to each other, if there exists some element g of the group G, such
that gxg−1 = y. The conjugation relation is an equivalence relation.

Problem 8.4.1: Show that conjugation is an equivalence relation

All elements which are so related belong to the same conjugacy class. It is
trivial to see that for abelian groups, there are no non-trivial conjugacy classes.
Every element is conjugate only to itself.

• For the group of rotation matrices in three dimensions, all rotations by
the same angle but about different axis fall into the same conjugacy class.

• For the group of two dimensional special unitary matrices, all matrices
having the same trace are conjugate to each other.

Definition 8.4.2 (coset). Given any element (g) in G, and a subgroup H, one
can form a set denoted as [g], which has elements (g, gh1, gh2, ..); ∀hi ∈ H.
This subset of elements is denoted as gH ≡ [g]. A coset is a set whose elements
are all such distinct classes [g1], [g2].... Its usually denoted as G/H.

Problem 8.4.2: Show that if there are two such classes [g1] and [g2], then either
they share all elements or none.

The number of elements in each such class [g] is equal to |H|- the order
of H. Therefore |G|/|H| = number of distinct coset classes. So it follows that
for any subgroup H of G, |H| factorizes |G|.

Cosets have been introduced in the context of abelian groups. Unlike in the
abelian case however, cosets do not form a group in general. This is because the
coset classes do not satisfy the composition rule for groups. ie: All elements of
[g1][g2] 6= [g1g2]. This is so because due to the non-abelian nature of the group,
g1h1g2h2 6= g1g2h3 for any gi ∈ G and hi ∈ H. Another way of expressing this
is g1Hg2H 6= g1g2H, A coset would have been a Group, iff (giHg

−1
i = H ∀ i).

This brings us to the definition of a normal subgroup.

Definition 8.4.3 (Normal Subgroup and Quoient Groups). A subgroup which
satisfies the property that gHg−1 = H; ∀g ∈ G is called a normal subgroup.

This means that the conjugate of any element of H is also in H. If we
construct a coset out of a normal subgroup, then the coset so formed is a Group,
called the Quotient Group. For the abelian case, all subgroups are trivially
normal.
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Problem 8.4.3: Show that kerf , where f is a homomorphism between two
groups G and H is a normal subgroup of G

8.5 Commutator subgroup and abelianization

As an example of a normal subgroup, we consider the commutator sub group.
Given a group G, the commutator subgroup [G,G] is the subgroup which is gen-
erated by all the commutator elements [a, b]. So, the elements of the subgroup
[G,G] are (x ∈ [G,G]; x = [a1, b1]n1 [a2, b2]n2 ...[ai, bi]

ni ...). This automatically
implies that the product of two commutator elements is also a commutator
element. All such elements clearly form a group. In fact it forms a Normal
subgroup. This follows from the following two properties.

• [a, b]−1 = b−1a−1ba ≡ [b, a]

• g[a, b]g−1 = [ac, bc]; ac = gag−1 and bc = gbg−1

This further means that

1. ∀ x ∈ [G,G], x−1 ∈ [G,G]

2. ∀ x ∈ [G,G] and ∀g ∈ G, gxg−1 ∈ [G,G]

• The first property along with the fact that the identity is also a commu-
tator element implies that [G,G] is a subgroup.

• From the second property, it follows that [G,G] is a normal subgroup.

The Quotient group G/[G,G] is always abelian. This means that
g1[G,G]g2[G,G] = g2[G,G]g1[G,G]. As a check of this statement, do the fol-
lowing problem.

Problem 8.5.1: Show g1[a1, b1]g2[a2, b2] = g2[ac1, b
c
1]g1[g1, g2][a2, b2] where

ac = g−1
2 g1ag

−1
1 g2 and similarly for bc.

This process of constructing an abelian group from a non-abelian group
is called abelianization.

8.6 Examples of Groups

In this and the following section, we will consider various examples of groups.

8.6.1 The Quaternionic Group

The Quaternionic group is the set of elements denoted as
(1,−1, i, j,k,−i,−j,−k), with the composition rule: ii = jj = kk = −1
and ij = −ji = k, jk = −kj = i, ki = −ik = j. (1, −1) commute with all
elements. In particular, 1 is the identity element and −1 has order two. (-i, -j,
-k) are the inverse elements of (i, j, k) respectively

One representation of these elements are as 2 × 2 σ matrices and the
identity matrix.
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Problem 8.6.1: Check that the following representations of the elements of the
Quaternionic group, indeed satisfy the group composition rules.
i ≡ iσ1, j ≡ iσ2, k ≡ −iσ3, ±1 ≡ ±I2×2

Problem 8.6.2: Write down all the conjugacy classes of the group.

Problem 8.6.3: Write down all the subgroups of the Quaternionic group. Check
that the order of these subgroups are indeed factors of the order of the Quaternionic
group.

Problem 8.6.4: Check which of these subgroups are normal subgroups.

Problem 8.6.5: Using the definition of the commutator subgroup show that for
the Quaternionic group, the commutator subgroup is {1,−1}.

Problem 8.6.6: Abelianization of the Quotient Group: Since the commuta-
tor subgroup is a Normal subgroup, the coset formed out of it G/[G,G] is a
Quotient group. We will now check that it is abelian and identify which abelian
group it is.

• Find the cosets gH where H is the commutator subgroup. Show that they
are (1,−1), (i,−i), (j,−j), (k,−k)

• Denoting each of these classes as [1], [i], [j], [k] respectively, show that they
form an abelian group. Show explicitly that the composition rule of the
Quotient group is [i][i] = [j][j] = [k][k] = [1], [i][j] = [j][i] = [k],
[j][k] = [k][j] = [i]

and [j][i] = [i][j] = [k]

• Using the notation for abelian groups, where we use + for composition, 0 for
identity, so that [1] = 0, write the above rules as: 2[i] = 2[j] = 2[k] = 0 and
[i] + [j] = [k], [j] + [k] = [i], [i] + [k] = [j].

• Simplify the above and show that not all are independent relations. Show that
the independent relations are:

• 2[i] = 2[j] = 0 and [i] + [j] = [k].

• Hence show that the Quotient group obtained by abelianization of the Quater-
nionic group is isomorphic to Z2 ⊕ Z2

8.6.2 Rotations of a rigid body

Now we will consider examples of continuous groups. The first example we
consider is that of continuous rotations of a rigid body. These are characterized
by 3× 3 marices which satisfy

RRτ = RτR = I3×3, with det[R] = +1 (8.1)

Here Rτ is the transpose matrix. Its easy to check, the set of all such matrices
form a group. This is the group SO(3). Here R is a three dimensional real
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matrix. The above equation reduces the number of independent elements of
the matrix to just three. Under rotations, the length of a vector Vremains
invariant. ie RV ·RV = V ·V. Let W be an eigenvector of R with eigenvalue
λ. Physically we expect that under rotation the vector remains real, so that we
take λ to be real. Then,

RW ·RW = λ2W ·W = W ·W

Also the determinant condition means that λ1λ2λ3 = 1. Taken together, this
means that there exists atleast one eigenvector with eigenvalue = +1. Therefore
this eigenvector does not change under rotations. This eigen-direction is called
the axis of rotation.

Problem 8.6.7: Choose a basis, where the z − axis is the axis of rotation,
and the x and y axes are any two orthonormal directions. In this basis show, using
equation(1), that R can be written as follows:

R =




1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)




The angle θ is called the angle of rotation. So that any Rotation matrix is
fully characterized by an angle and an axis of rotation. It follows from this
form of R that cos(θ) = trR−1

2 . So the angle of rotation is given in terms of the
trace of R.

So any rotation is characterized by (n̂, θ). We can now parametrize this
space as follows.

• Let n̂ be any direction on the sphere. This means that we distinguish
between the axis of rotations n̂ and -n̂.

• Then we measure θ in counter-clockwise direction of n̂. This way, we can
restrict the range of θ to values 0 ≤ θ < π. This is because, in this way of
parametrizing, rotation by angle π + θ in counter clockwise direction to
n̂, is same as counter clockwise rotation by π − θ around -n̂.

• In particular, rotation by π around n̂ is same as rotation by π around -n̂.

• We can now geometrically represent the space of all SO(3) matrices as
points inside a ball of size π, where the radial direction is the n̂, and the
length along this direction is θ and because of the identification mentioned
in the previous bullet, the surface of this ball has its diametrically opposite
points identified. Therefore the configuration space of SO(3) Matrices is
in one to one correspondence with the points of a Ball/Z2, where the Z2

action identifies the opposite points on the surface of the ball.

There is another way in which we can represent these SO(3) matrices.
Since these represent continuous rotations, we can build a finite rotation as a
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series of several smaller rotations, in the limit where each rotation is taken to
be infinitesimal and the number of such rotations is taken to be infinity. ie:

R = ΠN
i=1R(ε), lt : (N →∞, ε→ 0, Nε = 1). (8.2)

Here R(ε) is a infinitesimal rotation. An infinitesimal rotation can be
parametrized as

R(ε) = I3×3 + εT (8.3)

Using the equation RRτ = I3×3, we can show that T is an antisymmetric
matrix. Any antisymmetric matrix in three dimensions may be parametrized
in terms of three generators {Ti}, T =

∑3
i=1 tiTi, where ti are independent

parameters, and

T1 =




0 1 0
−1 0 0

0 0 0


 T2 =




0 0 1
0 0 0
−1 0 0


 T3 =




0 0 0
0 0 −1
0 1 0




These generators satisfy the following algebra: [Ti, Tj ] = εijkTk, where[A,B] =
AB − BA and εijk is the completely antisymmetric tensor with entries ±1.
ε123 = 1. We can now build a finite rotation, as a product of such infinitesimal
rotations.

R(t1, t2, t3) = lim
N→∞

(
I3×3 +

1

N

3∑

i=1

tiTi

)N
= exp

(
3∑

i=1

tiTi

)
(8.4)

It is more conventional to express

R(ti) = exp

(
i

3∑

i=1

θiLi

)
= exp(iθn̂ · L) (8.5)

Where Li = iTi, θi = −ti, (θ =
√
t21 + t22 + t23), θ n̂ = (θ1, θ2, θ3) and L =

(L1, L2, L3).
The Li’s are Hermitian matrices and satisfy the following algebra:

[Li, Lj ] = iεijkLk. This algebra is identical to that satisfied by the two di-
mensional σ matrices. As we will see in the next section, the σ matrices are the
generators of the SU(2) matrices in two dimensions. This isomorphism between
the two algebras is because of the fact that the SU(2) and SO(3) groups are
related by a homomorphism, which we will discuss in the next section.

8.7 SU(2) and SO(3)

In this final section, we will discuss the group of two dimensional SU(2) ma-
trices and write down a homomorphism from this group to the group of SO(3)
matrices.
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8.7.1 SU(2) matrices

SU(2) matrices in two dimensions are complex matrices with determinant +1
and satisfying

UU † = I (8.6)

Its easy to show that any such matrix can be parametrized as

U =

(
α β

−β∗ α∗

)
=

(
a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

)
= a0I + ia · σ

where, α = a0 + ia3, β = a2 + ia1 are complex numbers and (a2
0 + a · a = 1)

a = (a1, a2, a3) and σ = (σ1, σ2, σ3)

Problem 8.7.1: Show it.

Therefore it follows that the configuration space of all SU(2) matrices are
in one-one correspondence with the points on a S3.

Parametrizing a0 = cos(θ) and |a| = sin(θ), we can write: U = eiθn̂·σ,
where n̂ = a

|a| . So the σ matrices are the generators of the SU(2) group in

the same sense that Li’s were of the SO(3) group. Also, the SU(2) and SO(3)
generators satisfy the same algebra. We will now see that the two groups are
homomorphic.

Homomorphism from SU(2) to SO(3)

We start with the observation that for every 3 dimensional vector one can write
a corresponding two dimensional traceless, hermitian matrix as follows:

V =



V1

V2

V3


 ⇒ υ =

(
V3 V−
V+ −V3

)
= V · σ, V± = V1 ± iV2

The length of the vector is related to the determinant of the matrix as:
|V |2 = −det(υ).

After rotation vector V goes over to vector V′ = RV with the same length.
|V ′| = |V |. This means that the corresponding two dimensional matrices, υ and
υ′ = V′ · σ must have the same determinant. Since both these matrices are
Hermitian, have the same trace and same determinant, it must be that they
are related by a unitary transformation as given below:

υ′ = URυU
†
R (8.7)

In fact we can take the UR to be SU(2) matrices, because the det(U) and
det(U †) cancel each other in the RHS of the above equation. So, we can con-
clude that the rotation of a vector V in three dimensions, corresponds, in two
dimensions, to acting on the matrix υ by a SU(2) matrix and its inverse from
the left and right respectively.
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We can use this equation to find an explicit map from SU(2) to the R
matrices. We first note that:

υ′ =
∑

i

V ′i σi =
∑

i

RijVjσi = (a0I + ia · σ)(V · σ)(a0I− ia · σ), (8.8)

where Rij ’s are the components of the rotation matrix.
One can then simplify the LHS further by using the following identities:

(V · σ)(W · σ) = (V ·W)I + i(V ×W) · σ, (8.9a)

V′ = a2
0V + a(V · a) + (V × a)× a + 2a0(V × a). (8.9b)

We then get

RijVj =
(

(a2
0 − a · a)δij + 2aiaj + 2a0εijkak

)
Vj . (8.10)

Then comparing the coefficient of Vj on both sides we get the desired
explicit form of Rij

R =



a2

0 + a2
1 − a2

2 − a2
3 2(a1a2 + a0a3) 2(a1a3 − a0a2)

2(a1a2 − a0a3) a2
0 + a2

2 − a2
1 − a2

3 2(a2a3 + a0a1)
2(a1a3 + a0a2) 2(a2a3 − a0a1) a2

0 + a2
3 − a2

1 − a2
2


 ,

where as before, a2
0 + a · a = 1. R(a0,a) is therefore the desired map which

takes an element of SU(2) labelled by (a0,a) to an element of SU(3). We can
easily show that the kernel of this map is a2

0 = 1, a = 0. ie: R(±1,0) = I.
Therefore the kernel is simply ±I2×2. This is the subgroup Z2. Z2 is called the
centrer of SU(2). In general, the centre of a group is the subset of all elements
which commutes with every other element. For SU(N) group the centre is ZN .
So we get the relation that SU(2)/Z2

∼= SO(3). Thus there is two-one relation
between elements of the SU(2) and SO(3).

We can further identify the angle and axis of rotation with the ϕ and n̂
appearing in the parameterization of the SU(2) matrix UR = eiϕn̂·σ as follows:
θ = 2ϕ and angle of rotation is same as n̂. This is left as an exercise below.
This relation between the angles θ and ϕ is related to the existence of half
integral spin particles in quantum mechanics— a direct consequence of the
SU(2) representation of rotations.

Problem 8.7.2: Prove the identity given by Eq. (8.9a).

Problem 8.7.3: Using the identity of Eq. (8.9a), show Eq. (8.9b).

Problem 8.7.4: By choosing V ‖ a, show that V′ = V, and thus prove that
n̂ is indeed the direction of the axis of rotation.

Problem 8.7.5: By choosing V ⊥ a, and using the fact that the angle of
rotation cos(θ) = V′ ·V/|V |2, show that θ = 2ϕ. So that UR can be parametrized
directly in terms of the axis and angle of rotation as UR = ei(θ/2)n̂·σ.
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8.8 Conformal transformations

Conformal transformations are transformations which preserve the angle be-
tween curves. The angle between two curves at a point of intersection p is the
angle that the tangents to the two curves make at p. It is given by

cos(θ) =
ds1.ds2

|ds1||ds2|
,

where ds1 and ds2 are infinitesimal vectors along the tangent directions at the
point p. It is clear, from the expression of the angle that it is invariant under:

• global translations (x→ x+ a),

• global rotations(or Lorentz transformations, depending on whether the
space is Euclidean or Minkowskian)(xi → Rijxj)

• global scaling of coordinates (x → λx). In this case, Both ds1.ds2 and
|ds1||ds2| scale by a factor of λ2, but these factors cancel in the denomi-
nator and numerator terms.

• In fact, the expression would be invariant if the numerator and denom-
inator both scaled locally by the same function f(x), which could then
cancel among each other. This would mean demanding that ds1.ds2 →
f(x)ds1.ds2 and |ds1||ds2| → f(x)|ds1||ds2|. We can now ask, what kind
of coordinate transformations x→ x′(x) can achieve such a local scaling.

To find such coordinate transformations, it is useful to consider the invariant
distance dS2 = gijdx

idxj . The distance dS2 is defined to be invariant under
any general coordinate transformations, which means that under any coordinate
transformations, when

dxi → ∂x′i

∂xj
dxj , the metric gij →

∂xk

∂x′i
∂xl

∂x′j
gkl,

so that the statement that ds1.ds2 → f(x)|pds1.ds2 is the same as demanding
that the metric gij → 1

f(x)gij .

• So a conformal transformation is a coordinate transformation x′(x) under
which gij(x) → g′ij(x

′) = h(x)gij(x) where h(x) is any local function of
the coordinates.

• It is easy to see that these transformations form a group. Under two such
transformations, x→ x′(x)→ x′′(x′(x)), the metric will transform as

gij(x)→ g′ij(x
′(x)) = h′(x)gij(x),

g′ij(x
′)→ g′′ij(x

′′) = h′′(x′)g′ij(x
′) = h′′(x′(x))h′(x)gij(x) = ĥ(x)gij(x),

where ĥ(x) = h′′(x′(x))h′(x). The inverse coordinate transformation, as-
suming it exists, is the inverse element while the identity is x′(x) = x.
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We study these transformations by first looking at the infinitesimal forms
of coordinate transformations. So, we look at x′(x) = x + ε(x) and h(x) =
1 + g(x). Under these transformations, the metric change is as follows:

∂xa

∂x′i
∂xb

∂x′j
gab(x) = h(x)gij(x), (8.11)

which for infinitesimal transformations becomes

(δai − ∂iεa)(δbj − ∂jεb)gab = (1 + g(x))gij(x) (8.12)

We will be working mostly on flat space, so that we can take gij = δij . Then
the above equation simplifies to:

∂iεj + ∂jεi = −g(x)δij (8.13)

We will first analyze these equations in two dimensions, where it is simple.
In two dimensions, i, j take values 1, 2. Then the above two equations are:

∂1ε1 = ∂2ε2, and ∂1ε2 = −∂2ε1. (8.14)

These are just the Cauchy-Riemann conditions, and it means that in two dimen-
sions, under a conformal transformations, (z = x + iy) → f(z) and similarly
for z̄ = x − iy → f̄(z̄). So any holomorphic transformation is a conformal
transformation in two dimensions.

We now try to construct the generators of these conformal transforma-
tions. To find the generators, let us first recall how it is done for the case of
translations and rotations.

• The generator of translations is simply the derivative operator ∂
∂xi . Any

function f(x+ a) = ea∂xf(x). For a infinitesimal,

f(x+ a) = f(x) + a∂xf(x) = (1 + a∂x)f(x).

In particular for f(x) = x, x′ = x+ a = (1 + a∂x)x.

• Similarly for the case of two dimensional infinitesimal rotations x′ = x+yε
and y′ = y− εx, we know that the generator is simply (x∂y − y∂x), as for
any function

f(x′, y′) = f(x+ εy, y − xε) = f(x, y) + ε(y∂x − x∂y)f(x, y).

In particular, for f(x) = x we have x′ = (1 + ε(y∂x−x∂y))x and similarly
y′ = (1 + ε(y∂x − x∂y))y.

So, now we can use the same method to find the generators for the conformal
transformations in two dimensions. We first write

z′ = z + ε(z) =

[
1 +

( ∞∑

n=−∞
εnz

n+1

)
∂z

]
z, (8.15)
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where in the RHS, we have done a Laurent expansion of ε(z) and εn are its
infinitesimal coefficients. So the generators are Ln = zn+1∂z. We have similar
generators from the anti holomorphic transformations on z̄, viz., L̃n = z̄n+1∂z̄.
These generators, satisfy the following algebra:

[Ln, Lm] = (m− n)Lm+n, [L̃n, L̃m] = (m− n)L̃m+n (8.16)

These are the generators of the conformal transformations in two dimen-
sions. In d > 2 however, the analysis of Eq. (8.12) will lead to a finite set of
symmetries. The analog of these in two dimensions are the ones generated by the
following subset, which form a subalgebra— the set generated by (L−1, L0, L+1)
and (L̃−1, L̃0, L̃+1) . We will try to see what finite transformations these cor-
respond to.

1. L−1 + L̃−1 = ∂z + ∂z̄ = ∂x,

2. i(L−1 − L̃−1) = ∂y,

3. L0 + L̃0 = z∂z + z̄∂z̄ = x∂x + y∂y = r∂r =
coordinate)

4. L0 − L̄0 = x∂y − y∂x,
5. L1 = z2∂z = −∂z−1 .

From the above, we can conclude that:

1. L−1 ± L̃−1 generate translations,

2. L0 + L̃0 = ∂ln(r), from analogy with translations, generates translations
along . But translations along corresponds to constant scaling of r
and therefore of x, y. So this is the generator for constant scaling.

3. L0 − L̃0 is the generator of rotation.

4. L1 = −∂z−1 , again generates translations in 1
z . So it takes

1

z
→ 1

z
+ a⇒ z → z

1 + az
,

where a is complex. Written in terms of X = (x, y) the transformation is

X′ =
X + a(|X|2)

1 + 2a ·X + |a|2|X|2 , a = (a1, a2). (8.17)

This is known as the Special Conformal transformation(SCT)

5. Taken together the translations, rotations, scaling and special conformal
transformations together form a group — the global conformal group. For
any d ≥ 2 this group is isomorphic to SO(d + 1, 1), which is the Lorentz
group in d+2 dimensions. For d > 2, this is the full conformal group, while
in d = 2 this group of transformations is a part of the infinite dimensional
transformations, that we discussed.

∂ ln(r), (r is the usual radial

lnr lnr
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