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Preface

Topology deals with the concept of continuity and properties unchanged under
continuous deformations. In a real system, a continuous deformation, requiring
small changes, would involve modes or excitations that cost low energies (→ 0).
Since studies of low energy excitations are at the heart of traditional condensed
matter physics (CMP), it is natural to expect that topology would play a role
in the development of CMP. Curiously, it did not.

An early application of topology in CMP goes back to the use of Morse
theory for van Hove singularities. Despite all its beauty and actions, it was
not a hit – too much effort for too little gain. However, it did produce some-
thing of a ripple, which got amplified further by several disturbing results, like
the Aharonov-Bohm effect in quantum mechanics, flux quantization in super-
conducting rings, the Abrikosov lattice in type-II superconductors, and so on.
These hinted at a need to think afresh beyond calculus-based physics. While
the new era saw topological ideas fruitfully exploited in the high energy physics
context, the condensed matter physics community, on the other hand, remained
hesitant. One had to wait for the Berezinski-Kosterlitz-Thouless transition in-
volving vortices in a two dimensional xy magnet to appear on the scene, and
then the use of homotopy theory for classification of defects in ordered media,
to realize that topology could not be kept out of the reckoning. With the dis-
covery of the quantum Hall effect and its various avatars, and their study via
topological invariants, the language of topology became indispensable to CMP.
The theory of topological insulators was the shot in the arm CMP was waiting
for.

There was a parallel stream involving statistical mechanics. Although the
idea of knots in ether as matter (or atoms), e.g., sodium as two linked rings
because of the two D lines, got a quick burial in the nineteenth century, but
still knot theory survived as a distinct field of topology. The discovery of knot
and link structures in polymers and DNA by electron microscopy made stud-
ies of knots important in the chemical and biological domains. The study of
integrable statistical mechanical models based on hydrogen bonded crystals,
like ice, (vertex models, Yang-Baxter equation) in synergy with more modern
developments in knot theory produced knot invariants and polynomials sought
by the topologists. This was an example of physics helping mathematics. With
braids as intertwined paths of two dimensional quantum particles, also called
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directed polymers, braid groups led to exotic particle statistics, which are found
in condensed matter systems. Such exotic nonabelian particles can be exploited
in quantum computation, raising hopes of a secret rendezvous of Alice and Bob.

With so much to gain, topology needs to be an essential toolkit for physi-
cists in general and condensed matter physicists in particular. But, to the best
of our knowledge, the subject is not covered in standard physics courses. No
doubt, there are authoritative books on topology and geometry in physics, but
such are mostly for high energy physicists. It was in this context that a school
was organized to introduce topology and its applications in condensed matter
problems, at a pedagogic level, developed almost from scratch. This entailed
introduction of topology with mathematical rigor while remaining accessible
to physicists, side by side with the use of topology in quantum mechanics,
statistical physics, and solid state physics.

At a time when mathematics is getting sidelined in physics curricula, the
SERC school held in Kolkata in Nov-Dec 2015 was an attempt to halt, if not
change, the trend. Moreover, this school tried to focus on a holistic approach
to several frontier areas, bridging the language barrier among the disciplines
of physics, and between physics and mathematics. Our ultimate hope is that a
cross-fertilization will motivate newer research areas in this genre.

This book is a compilation of the lectures delivered in the SERC school.
We thank all the contributors for coming and giving the lectures in 2015 in
Kolkata, and for their extra effort to write these pedagogic lecture notes. We
thank the referees for their meticulous work that improved the readability of
the chapters. A summary of the book and guidelines on the usage of the book
for courses are given separately in the following pages.

Somendra M Bhattacharjee, Institute of Physics, Bhubaneswar

Mahan Mj, TIFR, Mumbai

Abhijit Bandyopadhyay, Ramakrishna Mission Vivekananda University, Belur,
Howrah
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Prolegomena

Layout

The book consists of two parts. The first part, consisting of rather short chap-
ters (Chapters 2-7), is a quick, but more-or-less complete, review of topology.
The focus has been on the fundamental concepts rather than on detailed proofs,
all the while retaining the basic flavour of mathematics. There is an overview
chapter (Chapter 1) at the beginning and a recapitulation chapter on group
theory (Chapter 8). The physics section (Chapters 9-18) starts with introduc-
tory chapters and goes on to topics in quantum mechanics, statistical mechan-
ics (polymers, knots and vertex models), solid state physics, exotic excitations
(Dirac quasiparticles, Majorana modes, Abelian and nonabelian anyons), quan-
tum spin liquids and quantum information processing.

Prerequisites

The readers are expected to be familiar with the usual notions of quantum
mechanics (including path integrals, Dirac hamiltonian), statistical mechanics,
and introductory solid state physics. In particular no field theoretic techniques
are discussed, and so field theory is not a prerequisite. No extra mathematical
background is assumed than what is expected of a graduate student of physics.
It is to be noted that these are not review articles of current research but are
more of a pedagogic nature; selected references are given to help the readers
delve into current papers.

Summary

The overview chapter (Chap 1) can profitably be reread as one sails through
the book.
Below, we elaborate more on the contents of the mathematics chapters to
justify their inclusion rather than the physics chapters.
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I Mathematics part — Topological tools

Various aspects of topology are covered in Chapters 2-7.

• A basic introduction and a tutorial comprise Chapter 2. This chapter with
common examples shows why we need to define topology and topological
spaces.

• The notion of fundamental group is introduced in Chapter 3. Here one
explores or probes a topological space with the help of circles and identifies
a topological invariant, the fundamental group, that remains invariant
under a continuous transformation (like changing a solid torus into a cup).
The general idea of homotopy groups is elaborated in part II; here a space
is probed by means of higher dimensional spheres, thereby generalizing
the notion of the fundamental group. Some computations of examples can
be found in part III of this chapter.

• Often it may be sufficient to distinguish spaces by the “holes” in it and
that can be achieved by Homology which is discussed in Chapter 4.

• Manifolds and differential forms are introduced in Chapter 5.
Is the earth round or flat? The importance of the question (and the answer)
is that one may draw a local map on a flat plane but not globally for the
whole earth. The local versus global aspects of a space, is the topic of this
chapter on manifolds by introducing tools from calculus. The approach
unifies the three basic theorems for three dimensional vectors – Green’s,
Stokes’ and Gauss’ theorems - into a single one.

At the next stage we need to generalize the notion of a Euclidean
metric on flat Euclidean space by the notion of a metric on an arbitrary
manifold. This calls for the basic tools of Riemannian geometry to be
introduced. We do this in part II of this chapter.

• Vector bundles and K-theory are discussed in Chapter 6.
Most of physics involves vectors defined in space, like the electric field E(x)
at a point x, or the magnetization field M(x). This needs to be generalized
if x is a point on a manifold, not necessarily the Euclidean space, and
the vector is from an arbitrary vector space. The generalization of vector
functions on Euclidean spaces to manifolds gives rise to the notion of
vector bundles. K-theory is used to distinguish between vector bundles.
Bott periodicity, a fundamental theorem of K-theory, is also introduced
in this chapter.

How to find global invariants of general vector bundles using methods
of Riemannian geometry is the topic of Chern-Weil theory. An introduc-
tion is given in part II of this chapter.

• A short introduction to a few mathematical aspects of knot theory is in
Chapter 7. It is elaborated further in various physics chapters.
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Since group theory is a part of the basic language in this discourse, there is a
chapter recapitulating group theory (Chapter 8).

II Physics problems:

The physics part starts with two introductory chapters (Chapters 9, 10) on
the use of topology in different branches of physics and the idea of dimension.
Next is a chapter (Chapter 11) on topology and geometry as used in quantum
mechanics, followed by a chapter on applications in solid state physics (Chapter
12). An introduction to Dirac quasiparticles and Majorana modes are given in
Chapter 13.

The connection between knot invariants and vertex models can be found
in Chapter 14 while many newer ideas in the field of polymers can be found in
Chapter 15. Nonabelian anyons are introduced in Chapter 16. Quantum spin
liquids are discussed in Chapter 17. A discussion on the topological aspects of
quantum computation can be found in Chapter 18.

Suggestions for courses

The book is designed for a two semester long course on “Topology and con-
densed matter physics” to give a holistic approach to various branches of physics
that go under the name of “condensed matter physics”. The interlink is the
ideas from topology. With some pick-and-choose the topics of this book can be
covered comfortably in one semester.

Selected chapters of the book may also be used as a short segment of other
advanced courses like advanced quantum mechanics, advanced statistical me-
chanics, or solid state physics, or even a mathematical methods course. Possible
selections are given below.

Suggestions for short courses are as follows:

• For Quantum Mechanics: Chapters 1-4, 7-11, 16

• For Statistical Mechanics: Chapters 1-4, 7-10, 14, 15

• For Solid state Physics focusing on exotic excitations: Chapters 1-4, 7-13,
14-18

• For a Mathematical methods course: Chapters 1-8.
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Notation
We list below the notations for a few common spaces and groups used in

this book. Other symbols are defined as and when introduced.

Symbol Name in Cartesian coordinates

Bn, Dn n-Ball, a solid sphere in n-
dimensions

j=n∑

j=1

x2
j ≤ 1

C Complex plane z = x+ iy

D2 Disk x2
1 + x2

2 ≤ 1

R,R1 Real line −∞ < x1 < +∞

R2 Real plane −∞ < x1, x2 < +∞

Rn Real n-dimensional space −∞ < x1, ..., xn < +∞

S1 Circle x2
1 + x2

2 = 1

S2 Sphere x2
1 + x2

2 + x2
3 = 1

Sn n-sphere

j=n+1∑

j=1

x2
j = 1

Z Integers n = 0,±1,±2, ...

Z2 Integers modulo 2 n = 0, 1 (0 for even, 1 for odd
integers)

Zq Integers modulo q n = 0, 1, ..., q − 1 with n+ q ≡ n

For strict inequalities, one often talks of “open ball”, “open disk” etc.
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Appendix A: Möbius strip and Stokes theorem . . . . . . . . . . . . 213
Appendix B: Disentanglement via moves in 4-dimensions . . . . . . . 214

10 What is dimension? 217
By Somendra M. Bhattacharjee

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.2 Does “dimension” matter? . . . . . . . . . . . . . . . . . . . . . 218
10.3 Euclidean and topological dimensions . . . . . . . . . . . . . . 219

10.3.1 Euclidean dimension . . . . . . . . . . . . . . . . . . . . 219
10.3.2 Topological dimension . . . . . . . . . . . . . . . . . . . 221



xxiv CONTENTS

10.4 Fractal dimension: Hausdorff, Minkowski (box) dimensions . . 223
10.4.1 Cantor set: dt = 0, df < 1 . . . . . . . . . . . . . . . . . 223
10.4.2 Koch curve: dt = 1, df > 1 . . . . . . . . . . . . . . . . . 228
10.4.3 Sierpinski Gasket: dt = 1, df > 1 . . . . . . . . . . . . . 229
10.4.4 Paths in Quantum mechanics: dt = 1, df = 2 . . . . . . . 231

10.5 Dimensions related to physical problems . . . . . . . . . . . . . 231
10.5.1 Spectral dimension . . . . . . . . . . . . . . . . . . . . . 231

10.6 Which d? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.6.1 Thermodynamic equation of state . . . . . . . . . . . . 233
10.6.2 Phase transitions . . . . . . . . . . . . . . . . . . . . . . 234
10.6.3 Bound states in quantum mechanics . . . . . . . . . . . 236

10.7 Beyond geometry: engineering and anomalous dimensions . . . 237
10.7.1 Engineering dimension . . . . . . . . . . . . . . . . . . . 238
10.7.2 Anomalous dimension . . . . . . . . . . . . . . . . . . . 238
10.7.3 Renormalization group flow equations . . . . . . . . . . 239
10.7.4 Example: localization by disorder - scaling of conductance 241

10.8 Multifractality . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Appendix A: Entropy and fractal dimension . . . . . . . . . . . . . . 246
Appendix B: Complex dimension: continuous and discrete Scaling . 247

B.1 Cantor string . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Appendix C: Spectral dimension for the Sierpinski Gasket . . . . . . 249

11 Quantum Geometry and Topology 253
By R. Shankar . . . . .

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.2 The space of physical states . . . . . . . . . . . . . . . . . . . . 255

11.2.1 Rays in Hilbert space . . . . . . . . . . . . . . . . . . . 255
11.2.2 Two level systems . . . . . . . . . . . . . . . . . . . . . 255
11.2.3 N -level systems . . . . . . . . . . . . . . . . . . . . . . . 256

11.3 Quantum Geometry . . . . . . . . . . . . . . . . . . . . . . . . 256
11.3.1 The inner product and Bargmann invariants . . . . . . 256
11.3.2 Distance and Geometric Phase . . . . . . . . . . . . . . 257
11.3.3 The quantum geometric tensor . . . . . . . . . . . . . . 258
11.3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 261

11.4 Periodic systems . . . . . . . . . . . . . . . . . . . . . . . . . . 263
11.4.1 Tight-binding models . . . . . . . . . . . . . . . . . . . 263
11.4.2 Spectral bands . . . . . . . . . . . . . . . . . . . . . . . 264
11.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.4.4 Quantum geometry of the spectral bands . . . . . . . . 270
11.4.5 Dirac points and topological transitions . . . . . . . . . 272

11.5 Physical manifestation . . . . . . . . . . . . . . . . . . . . . . . 274
11.5.1 Dynamics constrained to a Band . . . . . . . . . . . . . 274

11.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278



CONTENTS xxv

12 Topology, geometry and quantum interference in condensed matter
physics 281

By Alexander Abanov . . .
12.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . 282

12.1.1 Theory of Everything in condensed matter physics . . . 282
12.1.2 Spontaneous symmetry breaking and an emergent topology282
12.1.3 Additional reading . . . . . . . . . . . . . . . . . . . . . 285

12.2 Motivating example: a particle on a ring. . . . . . . . . . . . . 285
12.2.1 Classical particle on a ring: Action, Lagrangian, and

Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 285
12.2.2 Quantum particle on a ring: Hamiltonian and spectrum 286
12.2.3 Quantum particle on a ring: path integral and Wick’s

rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
12.2.4 Quantum doublet . . . . . . . . . . . . . . . . . . . . . . 289
12.2.5 Full derivative term and topology . . . . . . . . . . . . . 290
12.2.6 Topological terms and quantum interference . . . . . . . 291
12.2.7 General definition of topological terms . . . . . . . . . . 291
12.2.8 Theta terms and their effects on the quantum problem . 291
12.2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 292

12.3 Path integral for a single spin . . . . . . . . . . . . . . . . . . . 293
12.3.1 Quantum spin . . . . . . . . . . . . . . . . . . . . . . . 293
12.3.2 Fermionic model . . . . . . . . . . . . . . . . . . . . . . 297
12.3.3 Derivation of a WZ term from fermionic model without

chiral rotation . . . . . . . . . . . . . . . . . . . . . . . 301
12.3.4 Quantum spin as a particle moving in the field of Dirac

monopole . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.3.5 Reduction of a WZ term to a theta-term . . . . . . . . . 303
12.3.6 Properties of WZ terms . . . . . . . . . . . . . . . . . . 303
12.3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 304

12.4 Spin chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
12.4.1 Path integral for quantum magnets . . . . . . . . . . . . 308
12.4.2 Continuum path integral for Quantum Antiferromagnet 310
12.4.3 RG for O(3) NLSM . . . . . . . . . . . . . . . . . . . . 313
12.4.4 O(3) NLSM with topological term . . . . . . . . . . . . 314
12.4.5 Boundary states for spin 1 chains with Haldane’s gap . 316
12.4.6 AKLT model . . . . . . . . . . . . . . . . . . . . . . . . 317
12.4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 319

12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 322
Appendix A: Topological defects and textures . . . . . . . . . . . . . 322
Appendix B: Integrating out l field . . . . . . . . . . . . . . . . . . . 324
Appendix C: Homotopy groups often used in physics . . . . . . . . . 325



xxvi CONTENTS

13 Dirac quasiparticles and Majorana modes in condensed matter systems333
By K. Sengupta

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
13.2 Dirac Fermions in Graphene and Topological Insulators . . . . 334

13.2.1 Graphene band structure . . . . . . . . . . . . . . . . . 334
13.2.2 Topological Insulators . . . . . . . . . . . . . . . . . . . 336
13.2.3 Properties of Dirac quasiparticles . . . . . . . . . . . . . 338

13.3 Majorana modes in unconventional superconductors . . . . . . 340

14 Vertex Models and Knot invariants 343
By P. Ramadevi

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
14.2 Salient Features of Knots . . . . . . . . . . . . . . . . . . . . . 344
14.3 Knots from braids . . . . . . . . . . . . . . . . . . . . . . . . . 346
14.4 Vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
14.5 Ice Type model . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

14.5.1 Six vertex model . . . . . . . . . . . . . . . . . . . . . . 350
14.5.2 Knot Polynomials . . . . . . . . . . . . . . . . . . . . . 353
14.5.3 Nineteen vertex model (Spin-1 particles) . . . . . . . . . 355

14.6 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . 356

15 Concepts of polymer statistical topology 359
By Sergei Nechaev

15.1 What are we talking about? . . . . . . . . . . . . . . . . . . . . 359
15.2 Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

15.2.1 Abelian epoch . . . . . . . . . . . . . . . . . . . . . . . 363
15.2.2 Non-Abelian epoch . . . . . . . . . . . . . . . . . . . . . 365
15.2.3 Crumpled globule: Topological correlations in collapsed

unknotted rings . . . . . . . . . . . . . . . . . . . . . . . 383
15.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

15.3.1 The King is dead, long live The King! . . . . . . . . . . 390
15.3.2 Where to go . . . . . . . . . . . . . . . . . . . . . . . . . 392

16 Introduction to abelian and non-abelian anyons 399
By Sumathi Rao

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
16.2 Abelian anyons . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

16.2.1 Basic concepts of anyon physics . . . . . . . . . . . . . . 401
16.2.2 Anyons obey braid group statistics . . . . . . . . . . . . 405
16.2.3 Spin of an anyon . . . . . . . . . . . . . . . . . . . . . . 409
16.2.4 Physical model of an anyon . . . . . . . . . . . . . . . . 409
16.2.5 Two anyon quantum mechanics . . . . . . . . . . . . . . 410
16.2.6 Many anyon systems . . . . . . . . . . . . . . . . . . . . 413

16.3 Toric code model as an example of abelian anyons . . . . . . . 414
16.3.1 Toric code on a square lattice . . . . . . . . . . . . . . . 415



CONTENTS xxvii

16.3.2 Excitations over the ground state and fusion rules . . . 420
16.3.3 Toric code on a torus and topological degeneracy . . . . 422
16.3.4 Statistics and braiding properties of the excitations . . . 425

16.4 Non-abelian anyons . . . . . . . . . . . . . . . . . . . . . . . . . 426
16.4.1 Kitaev model in one dimension . . . . . . . . . . . . . . 430
16.4.2 Statistics of the Majorana modes . . . . . . . . . . . . . 433

16.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

17 An introduction to Quantum Spin Liquids 439
By Subhro Bhattacharjee

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
17.2 Introduction to spin systems . . . . . . . . . . . . . . . . . . . . 441

17.2.1 Spin systems . . . . . . . . . . . . . . . . . . . . . . . . 442
17.3 Spontaneous symmetry breaking . . . . . . . . . . . . . . . . . 444
17.4 Quantum ordered phases . . . . . . . . . . . . . . . . . . . . . . 446
17.5 Topological order ... . . . . . . . . . . . . . . . . . . . . . . . . 447

17.5.1 The Toric code model . . . . . . . . . . . . . . . . . . . 447
17.5.2 The ground state . . . . . . . . . . . . . . . . . . . . . . 448
17.5.3 The excitations . . . . . . . . . . . . . . . . . . . . . . . 449
17.5.4 Semionic mutual statistics of the electric and the mag-

netic charges and the bound state fermions . . . . . . . 451
17.5.5 The long range quantum entanglement in the ground state452
17.5.6 Topological Degeneracy and topological quantum numbers454

17.6 Fractionalization of spin . . . . . . . . . . . . . . . . . . . . . . 456
17.6.1 S=1/2 Pyrochlore XXZ antiferromagnets . . . . . . . . 457
17.6.2 Classical Ising limit: Macroscopic Ground state degeneracy458
17.6.3 Low energy theory: U(1) quantum spin liquid . . . . . . 459
17.6.4 Emergent quantum electromagnetism and gapless gauge

boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
17.6.5 Fractionalization of the spin . . . . . . . . . . . . . . . . 463

17.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Appendix A: From electron to spin Hamiltonians . . . . . . . . . . . 465
Appendix B: Introduction to Entanglement entropy and its connection

to characterizing quantum spin liquids . . . . . . . . . . . . . . 466
Appendix C: Low energy effective Hamiltonian for XXZ pyrochlore

antiferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . 467

18 Topological aspects of quantum information processing 471
By Ville Lahtinen and Jiannis K. Pachos

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
18.1.1 A brief history of anyonic quantum computation . . . . 473

18.2 Anyon models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
18.2.1 Toy anyons from the Aharonov-Bohm Effect . . . . . . . 476
18.2.2 Ising anyons . . . . . . . . . . . . . . . . . . . . . . . . . 477
18.2.3 The Fusion space . . . . . . . . . . . . . . . . . . . . . . 479



xxviii CONTENTS

18.2.4 Braiding evolutions . . . . . . . . . . . . . . . . . . . . . 481
18.2.5 Anyons in many-body systems: Ground state degeneracy

and Berry phases . . . . . . . . . . . . . . . . . . . . . . 483
18.3 Quantum computation with anyons . . . . . . . . . . . . . . . . 485

18.3.1 The topological qubit and initialisation . . . . . . . . . 485
18.3.2 Topological gates and measurements . . . . . . . . . . . 486

18.4 Ising anyons as Majorana modes in a microscopic model . . . . 488
18.4.1 Kitaev’s toy model for a topological nanowire . . . . . . 488
18.4.2 The Majorana qubit . . . . . . . . . . . . . . . . . . . . 491
18.4.3 Manipulating the Majorana qubit . . . . . . . . . . . . 492
18.4.4 How protected is the Majorana qubit? . . . . . . . . . . 493

18.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Index 501



1

Overview of Topological Ideas in
Condensed Matter Physics

Siddhartha Sen

Topological methods have been found to be useful for understanding
features of condensed matter physics. The quantum Hall effect, the
problem of classifying defects and the topological insulator are ex-
amples where topological ideas successfully explain unusual physical
effects.

In this overview chapter, I will introduce some topological ideas
that have been used in physics, stressing intuitive features of the sub-
ject. These ideas are discussed in greater detail in other chapters of
this book.

1.1 Introduction

Topology is the abstract study of continuity. It introduces mathematical struc-
tures which remain unchanged under continuous deformation. For this reason
it is often called “rubber sheet geometry” as it focuses on features that do not
change when continuous changes are made to the parameters of the system.
It is thus a very useful tool for discovering “invariant under continuous defor-
mation” features that may be present in a physics problem. Very often these
features appear because of boundary conditions imposed on wave functions.

The reason topological ideas emerge from boundary conditions is because
boundary conditions can turn a flat space into a space with twists or holes.
To see how this can happen let us examine what happens to a space when
periodic boundary conditions are imposed. Periodicity in one dimension turns
a line into a circle. Periodicity in two directions, say the x and y directions,
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2 1. Overview

requires the opposite sides in the x and y directions of a rectangle defined by the
periodicity features of the problem be identified. This identification turns an
originally flat rectangle into a mathematical torus which is a space with holes.
This can be easily visualized. If we join the opposite sides of the rectangle in
the x direction we end up with a cylinder. If we then join the two circular ends
of the cylinder in order to impose periodicity in the y direction we get a torus.
Thus the original flat sheet has now become a torus which has holes because
of boundary conditions. If we had joined the edges of a rectangle in a different
way we could get the Möbius strip. To get a Möbius strip we simply join one
set of opposite sides after a twist. In this case no periodicity in the y direction
is present. Gauge field interactions introduced on a space with holes, such as
a torus or a Möbius strip, introduce consistency conditions in order to be well
defined. As established in the mathematical discipline of fibre bundles, these
consistency conditions can lead to quantization of physical variables such as
the conductance, this happens for the Hall effect, or to the existence of zero
energy states, this happens for the topological insulator.

From a mathematical point of view a gauge field is a way to relate wave
functions located at different points. In mathematics, a gauge field is called a
connection on a fibre bundle. We will informally introduce the idea of a fibre
bundle and explain why it is a basic structure which is present in the description
of all physical systems. The consistency conditions of topology are robust and
are not affected by changing the parameter values of the system. They lead to
observable effects.

We now give a few examples where topological reasoning is used.

1. Is our planetary system stable? To answer this question we do not need to
determine the position of all the planets but only to know that the orbit
of all the planets remain in a bounded region. In fact Poincaré invented
topological methods to tackle this problem.

2. Are there gapless states? Here the interest is not on the precise details of
the energy spectrum of a system but whether the Hamiltonian describing
the system has zero energy modes. The existence of zero modes can often
be found using symmetry arguments. But even if no symmetry is present
topological ideas, for a space with holes, can require a Hamiltonian oper-
ator to have a zero modes. Here the idea of a fibre bundles and K-theory
can be useful.

3. Are localized excitations possible in a system? Again there are topological
ways of finding out if localized, stable excitations (solitons) exist for a
given system. Here Homotopy groups of topology play a role.

4. Can one understand the nature of allowable possible defects? Defects can
be classified using Homotopy groups from topology.

5. If a crystal symmetry group changes from a higher symmetry to a sub-
group symmetry are there selection rules for the subgroup symmetry al-
lowed? Here the topological method of Morse theory can help.
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6. Can large quantum coherent systems be created? This is a problem of great
interest. An interesting approach is to construct topologically protected
quantum entangled ground states i.e., systems whose coherence can only
be destroyed by noncontinuous deformations.

This list of examples is not comprehensive but gives a flavour of the wide variety
of possible uses of topological reasoning.

In this collection of lectures some of the basic concepts of topology are
explained and and physical examples are discussed where these topological tools
have been found to be useful.

Let us now proceed to give an informal account of topology viewed as
“rubber sheet geometry”. We start with Euclidean geometry. Euclidean ge-
ometry describes space in terms of a set of points and a distance function
between them which is defined by the theorem of Pythagoras. This Euclidean
distance function d(x, y) between two points x and y ∈ Rn does not change
under rotations or translations of the coordinate system chosen. Rotations and
translations are thus symmetries of Euclidean geometry. There are other ge-
ometries possible which have distance functions with different symmetry. With
the help of the Euclidean distance function, or any other distance function, the
concept of continuity can be defined which leads to the operation of taking a
limit which leads to calculus. Thus the idea of continuity is fundamental for
properly stating the laws of physics.

Continuity of a real valued function f(x) at a point x0 is the statement that
for any ε > 0, we can find a δ > 0 such that if d(x, x0) < δ (an open interval)
then d(f(x), f(x0)) < ε (a different open interval). In words, continuity means
that close by points are mapped to close by points, so that for a choice of the
distance between x and x0 less than a δ, the two points f(x) and f(x0) mapped
by the function will be separated by a distance less than ε, where δ depends on
the choice made for ε.

For topology, regarded as geometry, we have to find some way of capturing
its characteristic feature, which is “invariance under continuous deformations”.
The notion of distance is no longer relevant as any distance function introduced
between points will change under deformation. We need to find a set of defor-
mation invariant objects to replace the set of points of Euclidean geometry
as the building block of topology. Such a set of objects can be found. Let us
explain how.

In the definition of continuity on the real line, two key ideas were used. The
first was the idea of distance. The second was the idea of an open interval. The
open interval was defined to be the set of all points x that satisfy the condition.
defined by d(x, x0) < δ. We will use this idea to define the generalized geometry
required in topology.

Euclidean geometry, we pointed out, is defined in terms of a set of points
and a distance function between them. The set of points is the undefined fun-
damental object of the subject. In topology the analogue of the set of points
is a collection of open sets and the analogue of the distance function is a set
of rules which tells us properties that the collection of open sets must have.
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Intuitively it seems reasonable that an open set, for example an open inter-
val on the real line, remains an open set under continuous deformations. The
precise conditions required for open sets to give a “topological space” will be
described shortly. The important point to grasp is that the open set in topology
is not defined by using a distance function but is the fundamental object of the
subject and the aim of the subject is to study objects that are invariant under
continuous deformations. These invariants, discovered in topology, are found to
be important for physics.

Our next step is to give an informal account of a few useful mathematical
ideas from topology that are relevant in the context of physics. These ideas are:

1. The idea of a manifold.

2. The idea of differential forms.

3. The idea of homotopy, homology and cohomology.

4. The idea of Fibre Bundles and Vector Bundles.

We introduce the mathematical ideas and, where possible, also give practical
tools for using them. Let us explain what these ideas are and why they are
useful.

We start with the arena in which physical events happen: space. Let us
recapitulate a bit. In our introduction we introduced Euclid’s geometry as a
mathematical structure where space was represented by points and a distance
function given by the theorem of Pythagoras. The distance function could be
used to tell us how close two points were to one another. Using this idea of
closeness, the idea of limits could be formulated which then leads to calculus:
the key mathematical idea for modeling physical systems. Thus the notion of
distance and closeness are fundamental ideas on which physics is built. Let us
expand on what we said before.

The fundamental notion of distance due to Pythagoras defines Euclidean
space. There are however many situations where Euclidean distance is not ap-
propriate. For instance the distance between two points on the surface of a
sphere. However two points on the surface of a sphere that are close together do
have a distance which can be approximated by the Euclidean distance. Spaces
that have the property that the distance between points close together can be
approximated by the Euclidean distance are called manifolds. For such spaces
a scheme of representing them by patches of Euclidean space is possible. By
representing a patch of a manifold by Euclidean space we mean that an invert-
ible map taking points on a patch of the manifold to Euclidean space exists. If
the map is smooth then this procedure can be used to introduce calculus on a
manifold. The idea is to carry out usual calculus operations (differentiation and
integration) in the Euclidean space associated with a patch of the manifold and
then use the map to transfer the result to the manifold. This is a conceptual
step. In many situations the precise nature of the map is not important. It
is clear that many different maps are possible. Each map provides Euclidean
coordinates for the manifold. If two patches overlap then points of the manifold
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in the overlap region belonging to two different patches will have two different
coordinate representations and formula for relating the two sets of coordinates
need to be given.

Thus calculations on the manifold are coordinate dependent. For this rea-
son mathematicians invented objects that contain geometrical/physical infor-
mation about a manifold but are coordinate independent. Differential forms are
examples of this type.

Finally a manifold can have features that remain unchanged even when
the manifold is deformed preserving continuity. For example, a torus cannot
be changed into a sphere without tearing. The features of a manifold that
are preserved under continuous deformations are called topological invariants.
Homotopy, homology and cohomology groups are examples of such topological
invariants.

Thus the reason the topics listed are worth studying is that they make it
possible to carry out calculus calculations on manifolds, to present calculations
in a coordinate independent way and highlight global features of a manifold
that have important physical consequences.

Finally, given a manifold, in order to study physical phenomena on it, the
introduction of another space is always required. Suppose, for example, we want
to study wind flows on the earth. We then represent the surface of the earth
described using patches but we also need to introduce a second space to describe
the wind speed and direction. This space is three dimensional Euclidean space.
These two spaces together can model the physics problem. The two spaces, the
two dimensional patch, and the three dimensional Euclidean space, have to be
combined together in a smooth way.

The construction described has been studied in great detail by mathe-
maticians under the name fibre bundle.

The way we will explain the ideas listed is by looking at examples and by
explaining key concepts. We start with manifolds.

1.2 Manifolds

A manifold M is described by overlapping patches, called charts, that com-
pletely cover it and each chart has an invertible map from a portion of the
manifold to an Euclidean space. For instance, the Euclidean space Rn is a
manifold and a single chart (the identity map from Rn to itself) covers it. How-
ever, it can also be covered by a countably infinite number of charts as follows.
Local charts can be defined in terms of spherical balls (of rational radius) cen-
tred at rational points, i.e., points with each coordinate a rational number, in
Euclidean space. This collection of local charts is countably infinite. The key
point is that the rationals are dense in the reals (meaning that any real number
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is the limit of a sequence of rational numbers) which, in turn, implies that the
rational points are dense in Euclidean space. Thus the collection covers Rn.1

To clarify ideas let us consider a simple manifold, namely a circle S1.
There are many different ways of describing S1. Algebraically we can think of
it as points (x, y) ∈ R2 such that x2 +y2 = 1, or as points on the real line where
points x and x+L are identified with a fixed L, or as the space defined by the
set of equations: x2 + y2 + z2 = 1 and z = 0. Each one of these descriptions has
an extension that can be useful for studying more general spaces. The method
of defining S1 where points x and x + L are identified (i.e., glued together) is
called a quotient construction.

We can introduce more structures to the manifold. For example, we can
represent S1 as a differentiable manifold. This means that the gluing maps
introduced to describe S1 are chosen to be smooth i.e., differentiable and not
just continuous. Given two overlapping charts for a patch on a manifold M , we
may go from the Euclidean space to M via (the inverse of) one chart and then
back to the Euclidean space via the other chart; such maps are called transition
maps. We say M is smooth if all transition maps, as maps from the Euclidean
space to itself, are smooth or differentiable up to all orders. Once we have a
smooth manifold, we may do usual calculus (differentiation and integration) in
the Euclidean space associated with a patch of the manifold and then use the
map to transfer the result to the manifold. However, two charts will give rise to
two different coordinate representations. The transition maps being smooth is
the fundamental point which shows that a formula written in terms one set of
coordinates is smooth implies the same formula in the other set of coordinates
is also smooth. Thus, the notion of smoothness is well defined on the whole
manifold and does not depend on the local chart chosen to represent a given
smooth quantity defined on M .

The first step then that is needed to represent S1 as a manifold is to in-
troduce charts and smooth invertible maps to cover it and provide a coordinate
system for describing S1. If functions are introduced in each chart which are
differentiable then by using the smooth invertible maps the notion of differen-
tiable functions can be transferred to S1 we now have calculus on S1. The
technical details of this scheme will not be given. Our aim is to explain the ideas
involved. In applications the precise form of coordinates is rarely required.

To describe S1 a minimum of two coordinate charts are required. There are
many ways of introducing charts. Let us describe one way. We take S1 to be the
set of points on R2 defined by S1 = {(x, y)|x2 +y2 = 1}. A chart maps the open
set U1, defined to be the circle minus the point (1, 0), i.e., U1 = S1 − {(1, 0)},
to the Euclidean line (the y axis via a stereographic projection). We draw a
straight line from point (1, 0) to the given point in U1 and see where it intersects
the line x = 0. This gives a point on the y axis, namely, the point Ep. Explicitly

1There is also the notion of compact manifolds. A compact manifold is a manifold which
is also a compact topological space. For example, Euclidean space is a manifold but it is not
compact, while S1 is an example of a compact manifold. More details may be found in later
chapters.

, i.e.,
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we have

ϕ : U1 → R, (x, y) 7→ y

1− x.

The resulting coordinates cover the entire circle except the point (1, 0). Sim-
ilarly, one can think of another chart U2 = S1 − {(−1, 0)} which covers the
circle except the point (−1, 0), given formally as

ψ : U2 → R, (x, y) 7→ y

x+ 1
.

These two charts thus cover all points of the circle. It follows that the overlap
is S1 − {(±1, 0)}, and the transition map

ψ ◦ ϕ−1 : R− {0} → R− {0}, t 7→ 1

t
,

is smooth. It is now possible to do calculus on S1 by doing it on each chart.
For instance, a function on S1 will be called smooth if it is continuous and
smooth on each chart. With this simple example of S1, we see how charts, once
introduced, give a local description of a manifold in terms of Euclidean space
and calculus can be introduced on the manifold.

1.3 Differential Forms

Differential forms and their dual, the vector fields, are natural global objects
that appear when the operations of calculus are introduced on a manifold.2

Functions are the simplest examples of differential forms. They are differential
zero forms. In general differential forms are antisymmetric tensor fields that
appear in physics and geometry. For example, the electromagnetic field Fµν and
the curvature tensor Rµν are differential two forms, while vector fields appear as
generators of change and symmetry. Both objects can be defined in a coordinate
independent way on a manifold. However they can also be introduced using
a local Euclidean coordinates description. The local description is useful for
calculations while the coordinate free description is useful for spotting general
features of a problem. Thus a local description for a p-form, ω(p) is:

ω(p) =
∑

ωi1, i2,··· , ip(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where ω(p) is an object on the manifold, while the expression written down
gives a representation of this object using the coordinate building block differ-
entials dxi1 , dxi2 , .... These differentials satisfy the basic antisymmetric rule of
∧ multiplication, dx ∧ dy = −dy ∧ dx. Due to the antisymmetry, terms which
look like dxi1 ∧ · · · ∧ dxip with repeated indices are zero. In such a case we

2More technical details on forms can be found in Chapter 5
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may take ωi1,··· ,ip to be zero, i.e., ωi1, i2,··· , ip = 0, if there are repeated indices.
Moreover, if indices are nonrepeating then

dxi1 ∧ · · · ∧ dxip = sign(σ)dxσ(i1) ∧ · · · ∧ dxσ(ip)

where σ is a permutation of the set {i1, · · · , ip} and sign(σ) is the sign of the per-
mutation σ. This negative sign can be compensated by choosing ωi1, i2,··· , ip(x)
to be odd under odd permutation. Note that in the summation each ik is from
1, · · · , n. This leads to many identical terms in the expression above, since, by
our choice, any permutation of the labels i1, · · · , ip gives the same contribu-
tion. Thus, there are p! equal contributions to ω(p). Very often this feature is
recognized by introducing a 1

p! term. Thus we can write

ω(p) =
∑

i1<···<ip
ωi1,··· ,ip(x)dxi1 ∧ · · · ∧ dxip ,

=
1

p!

n∑

i1,··· ,ip=1

ωi1,··· ,ip(x)dxi1 ∧ · · · ∧ dxip

For example, if ω = f12dx
1 ∧ dx2 + f21dx

2 ∧ dx1 then

ω = ω1,2 dx
1 ∧ dx2 =

1

2!
(ω1,2dx

1 ∧ dx2 + ω2,1dx
2 ∧ dx1),

where ω1,2 = −ω2,1 = f12 − f21.
Now, p-forms can be added and multiplied by scalars to generate new p-

forms. They thus form a vector space. For example, on the Euclidean space of
dimension n, any 1-form is given by

ω = f1dx
1 + · · ·+ fndx

n,

where fi’s are smooth functions. We already mentioned that a 0-form is a
smooth function. Therefore any 1-form is a linear combination of n generating
1-forms with coefficients coming from the space (actually a ring) of smooth
functions. If the dimension of the manifold is n then differential one forms are
elements of a n dimensional vector space with basis vectors dxi, i = 1, ..., n
while differential p-forms belong to a vector space of dimension nCp with basis
vectors dxi1 ∧ dxi2 ∧ · · · ∧ dxip .3

On a local chart, the generating 1-forms dxi can be multiplied. This leads
to the notion of multiplying a p-form and a q-form together to generate a (p+q)-
form. This multiplication is associative as it is so on charts, but noncommutative

3Formally, these structures are called modules . We say that the space of 1-forms (on Rn)
is a finitely generated module over the ring of smooth functions. In fact, it is of rank n with
a basis given by dx1, · · · , dxn. More generally, the space of p-forms on Rn is a module over
the smooth functions of rank

(n
p

)
with a basis given by dxi1 ∧ · · · ∧ dxip , i1 < · · · < ip. If the

manifold M is compact then a theorem due to Swan implies that the space of p-forms is a
finitely generated module over the ring of functions.
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(by the antisymmetry rule). Explicitly,

ω(p) ∧ µ(q) = (−1)pqµ(q) ∧ ω(p) : gradedcommutative

µ
(q1)
1 ∧ (µ

(q2)
2 ∧ µ(q3)

3 ) = (µ
(q1)
1 ∧ µ(q2)

2 ) ∧ µ(q3)
3 : associative.

Differential forms are also elements of an exterior algebra.4 The coefficients
ωi1, i2,··· , ip(xi(p)) in the local description of a p-form can be given a coordinate
independent interpretation. We do not go into this in detail.

1.3.1 Examples

In dimension two we have the following forms:

• Zero form: f0(x), a function.

• One form: f1(x)dx1 + f2(x)dx2, and

• Two form: f3(x)dx1 ∧ dx2.

In three dimensions we can have

• Zero form: f0,

• One form: f1dx
1 + f2dx

2 + f3dx
3,

• Two form: g1dx
1 ∧ dx2 + g2dx

3 ∧ dx1 + g3dx
2 ∧ dx3,

• Three form: h dx1 ∧ dx2 ∧ dx3.

1.4 Vector fields

Vector fields and differential forms are dual objects. Differential forms describe
antisymmetric tensor fields in a coordinate independent way while vector fields
are operators that change coordinates and hence change functions and forms.

We explain vector fields by looking at an example. Suppose there is a
moving point p on a manifold M of dimension n. We want to describe this
motion. This can be done by using a local coordinate description of p(t) as
xi(p(t)), i = 1, 2, ..., n. As the point p(t) moves, it generates a curve on the
manifold M . Its velocity at time t is the tangent to this curve at the coordinate
point xi(p(t)), which is

dxi(p(t))

dt
, i = 1, 2, ..., n.

Using this idea, we consider the way a function f(p) of p(t) changes. We have

df

dt
=
∑

i

dxi(p(t))

dt

∂f

∂xi
.

4The particular noncommutative product rule is also referred to as graded commutativity.
The space of all differential forms is a (graded) vector space with a multiplication that is
associative and graded commutative.
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The next step is to write this result as

df

dt
= Xf

X =
∑

i

vi
∂

∂xi

vi =
dxi

dt
.

Thus we have introduced an operator X which changes a function. This operator
is the vector field. Recall that two vector spaces are dual to one another if an
element of one acting on an element of the other gives a scalar quantity. This
is equivalent to the definition of the dual space of a vector space V , as the set
of all linear maps from V to R. It was pointed out earlier that since differential
forms of the same order can be added and multiplied by a scalar to give a
differential form they are elements of a vector space. Similarly vector fields of
the same dimension form a vector space. These two vector spaces, when they
are of the same dimension are a dual to one another which can be displayed as
follows.

When we consider differential 1-forms at a point p in M , we get a vector
space of dimension n generated by the basis dxi(p). Working on a local chart,
a differential 1-form defines a map from the vector space of (local) vector fields
to R as follows. We write

df =
∑

i

∂f

∂xi
dxi,

and define

〈df,X〉 = Xf.

In particular for f = xj and X = ∂
∂xi , we have

〈df,X〉 = 〈dxj , ∂

∂xi
〉 =

∂xj

∂xi
= δji ,

where δji = 1, when i = j and is zero otherwise, so that, in general,

〈ω(1), X〉 =

〈∑

i

fidx
i,
∑

j

vj
∂

∂xj

〉
=
∑

i

fiv
i.

This result makes the dual link between forms and vector fields clear by showing
how they can be paired to give a number.5 Very often we will refer to the vector
fields ∂

∂xi as elements of the tangent space of a manifold at point p and refer to
dxi as elements of the dual cotangent space at p, with i = 1, 2, ..., n, where the
dimension of the manifold is n. We next consider the operations of calculus on
forms. We start with the exterior derivative.

5We may also view this as a map from the dual of vector fields at p to the vector space of
1-forms at p. In fact, this map is a linear isomorphism.
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1.5 The exterior derivative (d)

The exterior derivative maps a p-form to a (p + 1)-form. Locally a p-form is
represented as a finite sum of the wedge product of p-terms. The action of the
d-operator increases the number of such terms by one in the following way

dω(p) =
∑

i1,··· ,ip,j

∂ω
(p)
i1,··· ,ip(x)

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxip .

Let us discuss a few examples of d operator here. In two dimensions we can get

d(f1dx
1 + f2dx

2) =
∂f1

∂x2
dx2 ∧ dx1 +

∂f2

∂x1
dx1 ∧ dx2,

= −
(
∂f1

∂x2
− ∂f2

∂x1

)
dx1 ∧ dx2,

=

(
∂f2

∂x1
− ∂f1

∂x2

)
dx1 ∧ dx2,

which is basically the “curl” (area).
Next consider the two form in dimension 3:

d(g1dx
1 ∧ dx2 + g2dx

3 ∧ dx1 + g3dx
2 ∧ dx3)

=
∂g1

∂x3
dx3 ∧ dx1 ∧ dx2 +

∂g2

∂x2
dx2 ∧ dx3 ∧ dx1 +

∂g3

∂x1
dx1 ∧ dx2 ∧ dx3,

=

(
∂g3

∂x1
+
∂g2

∂x2
+
∂g1

∂x3

)
dx1 ∧ dx2 ∧ dx3.

This is the familiar “divergence”.
An immediate important consequence of the above representation of d is

the result

d2 = 0.

To see this, we simply use the definition of the d-operator. This simple identity
is one of the fundamental identities and is quite ubiquitous in mathematics.
For instance, it can be interpreted as the Jacobi identity in Lie algebras. It
is a generalization of the two well known vector calculus results that (i) the
divergence of the curl of any vector is zero, ∇ · (∇×A) = 0, for any vector A
and (ii) the curl of the gradient of a scalar function is zero, ∇ × ∇φ = 0, for
any scalar function φ. We may recall that these two important vector relations
allow us to define the vector and the scalar potentials in electromagnetism. We
now discuss some of the hidden features of this simple result.

The result suggests the question: if dω(p) = 0, does it mean that we must
have ω(p) = dη(p−1) for some (p − 1)-form η? Forms for which dω(p) = 0
are called closed. Forms which can be written as ω(p) = dη(p−1) are called
exact. Note that exact forms are closed due to d2 = 0. We will see that
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locally all closed forms are exact, but this need not be the case globally. The
local result is known as the Poincaré lemma while the possibility of the result
not holding due to global considerations is the subject matter of de Rham
cohomology, where closed forms modulo exact forms are shown to lead to groups
that are topological invariants of the manifold. They are cohomology groups of
the manifold.

1.6 A brief discussion on de Rham cohomology

We now show that Poincaré’s lemma need not hold globally. To do this we
introduce two spaces, namely Zp and Bp which consist of all closed and all
exact p-forms respectively on M defined as stated as follows

Zp : {ω(p) | dω(p) = 0} ⇒ this is called space of all closed p−forms,

Bp : {ω(p) | ω(p) = dη(p−1)} ⇒ this is called space of all exact p−forms.

Since an exact form is always closed, we can write

Bp ⊂ Zp.
One can define the quotient space as

Hp(M,R) = Zp(M,R)/Bp(M,R)

= pth de Rham cohomology group.

The group property can be seen easily if we suppose that the number of
closed p-forms on a manifold is finite. One can then choose a basis of these
forms. The coefficients of these basis p-forms can be chosen as arbitrary real
numbers, i.e., they are elements of R. Elements of R form an Abelian group
under addition, with zero as its identity element. Thus one can associate with
Zp and Bp, Abelian groups which reflect the number of elements that are closed
or exact. The quotient of these groups is the de Rham cohomology group.6 If
Poincaré’s lemma was globally valid, the spaces Zp and Bp would be equal
and the cohomology group would be trivial, i.e., it consists of a single element
corresponding to the identity element of R, which is zero.

We now give an example where this is not the case. The simplest coun-
terexample is the one dimensional manifold S1. For this 1–manifold, only forms
in degree 0 and 1 exist. An arbitrary zero form will be described by a function
parameterized by an angle θ which is periodic, while a one form can be written
as ω(1) = f1(θ)dθ, again with f1(θ) being periodic in θ. We now examine the
space Z1 and B1.

Z1 = {ω(1) | dω(1) = 0},
B1 = {ω(1) | ω(1) = dω(0)}.

6The finiteness assumption here is for simplicity— it is not necessary. In general, the set
of closed p-forms is a group as it is a vector space. The same holds for exact p-forms. Both
these are Abelian groups and the quotient of these groups Zp/Bp is also a group.
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Let ω(1) = f1(θ)dθ, where 0 ≤ θ ≤ 2π. We write f1(θ) as

f1(θ) =

∞∑

n=−∞
cn1 e

inθ.

Then dω(1) = 0 trivially. We note from the above equations that

ω(0) =

∞∑

n=−∞
cn0 e

inθ,

or, dω(0) =

∞∑

n=−∞
(in)cn0 e

inθdθ.

Since we want to find out all the exact forms, we need ω(1) = dω(0). Hence
comparing coefficients, we get

cn1 = cn0 (in), for n 6= 0,

which means that cn0 , which is a real number can not be eliminated by a term
coming from dω(0). Thus we can write

H1(S1,R) = Z1(S1,R)/B1(S1,R)

= Rcn0 ,

where Rcn0 is the real line generated by cn0 , which is also the vector space
generated by cn0 . Thus we write

H1(S1,R) = R.

Here Z1 6= B1, i.e., Poincaré lemma does not extend globally in this case.

1.7 Betti numbers

Let us start with one important comment about the example in the previous
section. The cohomology group in this example was the group, under addition
of real numbers. It was generated by just one independent real number, c0n, and
for this reason is said to have rank one. The rank, an integer number, is called
the Betti number associated with a cohomology group. In this case the Betti
number is one for the cohomology group H1(S1). We write the Betti number as
b1(S1) = 1. It counts, in this case, the number of one dimensional holes present
in the manifold S1.

For a two torus T 2, the surface of a doughnut, the manifold is T 2 = S1×S1.
The de Rham cohomology groups of T 2 can be calculated by constructing the
number of independent zero, one and two dimensional forms that are closed
but not exact following the procedure described. The cohomology groups are

H0(T 2) = R,
H1(T 2) = R + R,
H2(T 2) = R.
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The associated Betti numbers of T 2 are: b0 = 1, b1 = 2, b2 = 1. There are tables
listing cohomology groups and Betti numbers for standard manifolds, such as
spheres and tori of arbitrary dimension. We list the Betti numbers for Sn, the
n-sphere: bn = 1, b0 = 1, and all other Betti numbers bi = 0.

1.8 Homotopy and Cohomology Groups

The de Rham cohomology groups were introduced as an answer to the question:
Is a closed form (i.e., a form ω(p) with the property dω(p) = 0) always exact
(i.e., ω(p) = dη(p−1))? The fact that the answer is no was used to distinguish
the circle from the disc. Thus a method for detecting the presence of the hole in
the circle (thought of as the unit circle in the plane) was found using differential
forms. There are other ways of spotting holes in manifolds. Homology groups
are another set of topological invariants which detect holes in a given space.
The fundamental group, which was invented by Poincaré, detects holes in a
space with a chosen base point. This group is the first in a series of groups
one can associate to a based space. These groups are called homotopy groups.
Although the idea of homotopy groups is very intuitive, these are rather subtle
invariants and generally quite intractable. The objects used to construct these
groups are loops and higher dimensional closed surfaces like spheres, which can
encircle a hole and thus detect their presence.

Let us sketch the approach for a two dimensional surface, M , with a hole
in it, while a formal approach is given later. We can pick a point on the surface,
a base point x0 ∈ M , and draw closed loops on this surface that starts at the
base point; such loops are called based loops. These loops will be of two types.
There will be loops that circle the hole and those that do not. Again for loops
that encircle the hole there will be ones which circle the hole an arbitrary (but
finite) number of times in either the clockwise or anticlockwise direction. The
idea of homotopy is to introduce a notion of equivalence between two loops
that can be smoothly deformed into each other. This generates an equivalence
relation between based loops. Two loops that can be deformed into each other
will be said to be homotopic. Thus given a loop α which starts and finishes
at base point x0 of the surface, there will be an equivalent class [α] of loops
homotopic to α. Now a loop is nothing but a smooth map of the circle S1

to the surface. Poincaré defined a group operation on the equivalence class of
loops by introducing a way of combining two loops to form a product loop . The
combination rule for loops was the group operation. Following such a procedure
Poincaré constructed the first homotopy group, also called the Fundamental
group of Poincaré, π1(M,x0).

The rule for joining loops was simple. Each loop was taken to be a map
αi(t) on the surface with the parameter t in the closed interval [0 ≤ t ≤ 1]
chosen so that αi(0) = αi(1) = x0, a fixed point on the surface. The important
point was that a loop was continuous, and was to be parameterized by a variable
t which was an element of a closed unit interval in such a way that the beginning
and the end of the loop were the fixed point x0. The way Poincaré introduced
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a combination rule for loops was to consider two loops that started and ended
at the same point x0, and made the first loop return to its starting point in
half the time interval followed by an equally fast moving second loop so that
at the end of one unit the two loops are traversed. Thus the combined loops
form one loop. Poincaré went on to show that by using the idea of homotopic
loops the combination rule for homotopic loops form a group.

There is also a notion of two spaces X,Y being homotopic if X can be
deformed smoothly to Y by means of a smooth parameter. A startling example
of this is that n dimensional Euclidean space and the origin of the space, which
is a point, are spaces of the same homotopy type. A continuous deformation
which establishes this equivalence is the map x→ tx, where x is a point of the
n dimensional space and t as a real number. For t = 1 we get the point x while
for t = 0 we get the origin. This example makes it clear that homotopy related
spaces need not have the same dimension. Let us write down mathematical
expressions summarizing what we have said.

A loop α in a space M is thus a continuous map from the closed unit
interval [0, 1] to M with end points fixed at a point x0 ∈M . We write

α : [0, 1]→M, α(0) = α(1) = x0.

Thus a loop has three properties. It is continuous, it starts and ends at a fixed
point of M and the parameter t used to describe its position in M varies in the
closed interval [0, 1].

Now if α, β are two loops in M , both based at x0, we define the combi-
nation rule of Poincaré to form a new closed loop γ = α · β, where for all the
loops the beginning and end points are fixed at x0 ∈

α(0) = α(1) = β(0) = β(1) = γ(0) = γ(1) = x0.

The rule for “multiplying” or combining closed loops is,

γ(t) ≡ (α · β)(t) =

{
α(2t) for t ∈ [0, 1

2 ]
β(2t− 1) for t ∈ [ 1

2 , 1]

The parameter factors 2t for α and 2t−1 for β are introduced so that both α, β
have parameters ranging over the interval [0, 1] even though t ranges over [0, 1

2 ],
for loop α and over [ 1

2 , 1] for loop β. The two closed loops meet at x0 when
t = 1

2 . Finally we write down what is meant by two loops being homotopic.
Two loops α, β in M are homotopic if they can be continuously deformed into
each other, i.e., there is a “homotopy” parameter s belonging to a closed interval
[0, 1] such that for s = 0 we get the loop α and for s = 1 we get the loop β.
In other words, αs, always based at x0 for all s, interpolates between α, β as s
varies. Here is how this can be written. We have a homotopy map αs(t) which
is a continuous map from [0, 1]× [0, 1] to M defined to have the property,

αs : [0, 1]→M, such that α0(t) = α(t), α1(t) = β(t),

M, i.e.,
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with αs(0) = αs(1) = x0. If two loops α, β can be deformed into each other in
this way they are said to be homotopic and we write α ≈ β. The equivalence
class of loops homotopic to α is written as [α]. The multiplication rule between
two equivalent class of loops is defined to be [α]∗ [β] = [α ·β] representative
elements from each class are multiplied and then their equivalence class is taken.
It can be proved that such a procedure is well defined it does not depend
on the particular representative elements chosen to define multiplication. Using
this idea of multiplying equivalent class of loops Poincaré showed that they form
a group. This was called the fundamental group of the space M in which the
loops were introduced. The group captured a topological property of M . It was
the birth of algebraic topology.

Homotopy groups are important in physics because by using them it is
possible to distinguish spaces which cannot be deformed into each other. There
are, for instance, an increasing number of examples in condensed matter where
there are defects or textures which cannot be removed by continuous deforma-
tions. Such defects can be characterized by homotopy groups. Thus line defects
are classified by π1 while more intricate defects can be classified by higher
homotopy groups. We will later show that the presence of Dirac points on a
topological insulator can also be understood using homotopy groups.

For a two dimensional surface with a hole it is intuitively reasonable that
the surface can be deformed to a circle S1 and our discussion suggests that
π1(S1, x0) = Z, where the integer Z describes the winding number, clockwise
and anticlockwise of the loop around S1. If we have n ∈ π1(S1), it means we
have a loop of winding number n.

The higher dimensional homotopy groups πn(M,x0) come from continu-
ous (loosely called smooth) maps of Sn to M . The cohomology groups Hn(Sm)
for Sm are known for all values of n,m but this is not true for the homotopy
groups πn(Sm, x0). They are not known for arbitrary integers n,m. But many
cases are known and two important cases that are known are πn(Sn, x0) = Z
and π3(S2, x0) = Z. The second example is very interesting as it shows the
power of the homotopy group to spot global features, namely that the two
spaces S3 and S1 × S2 are related by a subtle procedure which we now briefly
describe. A simple way to do this is by representing S3 by two complex vari-
ables (z1, z2) where z1 = x1 + ix2, z2 = x3 + ix4 which satisfy the condition
corresponding to

x2
1 + x2

2 + x2
3 + x2

4 = |z1|2 + |z2|2 = 1,

where |z| is the modulus of the complex variable z, since this condition defines
points on S3 . It is clear that both z1 and z2 cannot be zero at the same time
if they represent points on S3. There are thus two cases: case one when z1 is
not zero, and case two when z2 is not zero. When z1 is not zero, we can write

(z1, z2) =
z1

|z1|
(|z1|, w) , where w = |z1|

z2

z1
,

, i.e.,

, i.e.,
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is a complex number. What this shows is that the pair (z1, z2) of points on S3

can be written as the product of a circle S1 and a two sphere S2.7 To see this
we note that z1

|z1| is of fixed modulus, i.e., it represents a point on S1 while

the pair (|z1|, w), where w is a complex number and |z1|, in any case, is a real
number, represents a point on S2. We can check that |z1|2 + |w|2 = 1. Thus
for z1 non zero we have shown that S3 can be written locally as a product of
S1×D2. A similar argument can be given for the case when z2 is not zero. Thus
we can always represent S3 locally as S1 ×D2. This structure of S3 allows us
to map S3 to S2 by mapping the S2 hidden in S3 to S2. This leads to a non
zero homotopy group π3(S2, x0). The intuitive picture given shows the subtle
nature of homotopy maps. The corresponding cohomology group H3(S2) is the
trivial group, 0. It does not capture the subtle twisting relationship between
S3 and S1 × S2.

In our discussion we gave two descriptions of S3 as product spaces de-
pending on whether z1 or z2 is non zero. These two descriptions when joined
together give S3 which is not a product space. Thus we have an example where
gluing two product spaces gives a different space. The general study of gluing
two spaces together, subject to certain conditions, to form new spaces is the
subject matter of fibre bundle theory which we will consider in the next section.
For the moment we draw attention to a rather elegant feature present when our
two S1 × D2 spaces are glued together to give S3. It is clear that the joining
together is not trivial. We will say a twist is involved, namely that the two S1

circles present in the two descriptions get linked. This linking feature can be
intuitively understood as in one case we have a circle in the z1 plane while in
the other the circle is in the z2 plane.

The map S3 → S2 described is known as the Hopf map. It shows up in
many physics applications; for example, the description of all possible states
that can be obtained from the superposition of two wave functions involves a
Hopf map as we now show. A superposition of two normalized state to form
a normalized state can be described in terms of two complex superposition
numbers a, b subject to the normalization condition |a|2 + |b|2 = 1. Thus the
allowed points a, b are on S3, but in describing the superposed state there is an
overall phase choice allowed. Taking this into account means (a, b) is equivalent
to (λa, λb) where λ = eiθ is a phase. We are free to choose either λa or λb to be
real. Let’s choose λa = c where c is real. Thus (a, b)→ λ−1(c, w), with w = λb
is a representation of S3 in terms of S1 × S2. This is exactly the situation we
have just considered. Thus a Hopf map describes the physically inequivalent
states contained in (a, b).

There are tables listing homotopy groups. Thus, in a physics problem, one
need not know how to calculate homotopy groups but only to understand how
and where they can appear in a physics problem. This requires spotting that
in a given situation there is a map from Sn to a given space X of interest. If
this happens then the group πn(X) will be relevant. Such maps show up very

7See Chapter 6 for more details.
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Table 1.1: Homotopy groups of Spheres

Homotopy Group S1 S2 S3 S4 Comment

π1 Z 0 0 0 Winding Number

π2 0 Z 0 0 Point Defect

π3 0 Z Z 0 Hopf fibration

π4 0 Z2 Z2 Z Witten Anomaly

often as boundary conditions. If the group πn(X) is nontrivial, it means the
system has topological features which will imply physical consequences. Thus
homotopy groups are important for physics. We list a few homotopy groups,
which have appeared in physics problems, in the form of a table in Table 1.1.

1.9 Fibre Bundles and Vector Bundles

We are now ready to take one more step in the mathematics of spaces by in-
troducing the important idea of fibre bundles and vector bundles. We have
explained at the beginning of the chapter how fibre bundles are natural objects
present in the description of most physical systems. However their special fea-
tures become important only when the physical space of interest is twisted or
has holes in it. When this happens novel physical features emerge. An exam-
ple of a space with a twist is provided by the topological insulator, where a
time reversal system with strong spin-orbit coupling leads to the possibility of
a twisted structure in momentum space. This happens because time reversal
invariance leads to the degeneracy of energy levels for spin up and spin down
states at zero momentum. Periodicity in momentum space implies that this de-
generacy holds for momentum points 0, π that are related by periodicity. Thus
a loop in momentum space starting at k = 0 and ending at k = π for a particle
with spin can be a space with a twist. The twist represents the spin up state
at k = 0 changing to a spin down state at k = π. Such a space is topologically
stable: it is a Möbius strip.

The topological twist can be spotted by K-groups which are constructed
by introducing a way to add and subtract vector spaces so that they form a
group. For the spin system with time reversal symmetry the vector space is a

representation of the group SO(3) = SU(2)
Z2

. A nonzero K-group has physical
implications. For instance in the case of the topological insulator a nonvanishing
K-group implies the presence of a zero mode, i.e., of a gapless state.

K-Theory is a generalized cohomology theory. It is used to classify vector
bundles. Wave functions on a Brillouin zone are vector bundles. Vector bundles
are special fibre bundles. Fibre bundles are spaces built by gluing together two
spaces: A base space B (in our case the Brillouin zone) and a fibre space F
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which is a vector space (in our case the space of wave functions). For a vector
bundle there is a group G that acts linearly and transitively on fibre vector
space, i.e., it moves points round without having fixed points and any two
points in the fibre space can be connected by a group operation. The group G
is called the group of the fibre.

The gluing procedure is described by first representing the base space
B by a collection of contractible overlapping open sets Uα, Uβ , ... so that on
each open set Uα the bundle E is simply the product of the spaces Uα and
F . The map from E to this product space is a map φα which describes the
bundle E locally. If two open sets Uα and Uβ overlap then the bundle E will
have two coordinate descriptions in the overlap region. A map linking these
two descriptions is required for consistency. This map gα|β is called a transition
function. It is the crucial step in the construction of a fibre bundle as it glues
together untwisted spaces and can do so as to generate the twists and holes.

Finally, a bundle E has a projection map π : E → B. It describes the
way in which overlapping descriptions of E must be glued together to form the
global bundle space E. The local product structure of the bundle E is called a
“local trivialization”.

In any one of these local trivializations, a point in the bundle can be de-
scribed by the pair (x, f(x)) where x is a base point and f(x) the corresponding
location of the point on the fibre. This is thus a map from the base space to the
bundle space. As x ranges over the base we get f(x) ranging over the different
fibres. The collection f(x) is called a section of the bundle8. It is in general
not a function as different open sets are needed and after a global tour on the
base when one returns to the same point x one need not return to the same
f(x) but to a rotated gf(x) where g ∈ G is the group of the fibre. Sections
represent physical information. For instance they can be wave functions. If the
bundle E can be described as the product of B and F then the bundle is said
to be a trivial bundle. In this case the section becomes a function. An example
would be when B is a circle S1 and the fibre is a line L, and the total space
is a cylinder (a trivial bundle) while if the gluing is done with a twist we get
the Möbius strip (a nontrivial bundle). If the fibre space F is a vector space
then the bundle is said to be a vector bundle. If the dimension of the fibre
vector space is k then we have a vector bundle of rank k. This is the basic
intuitive idea of a vector bundle. Different ways of gluing lead to bundles that
are not equivalent. Thus finding out all possible bundles given the base B, the
fibre F , and the group of the fibre G will depend on the way the base space
is represented by open sets and then how these are glued together. This is the
problem of classifying a bundle.

There is a standard procedure for classifying vector bundles which reduces
the classification problem to that of determining the homotopy class of maps
from the base space B of the bundle of interest to a space called the classifying

8To be precise, f(x) is a section of the localized bundle as global sections may not exist
(for example, in twisted principal bundles).
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space BG. 9 Fortunately we do not need to know the details of the space BG.
All we will need for our calculations is G, which is the group of the fibre. Thus
this result from fibre bundle theory tells us that bundles, with Sn as base space,
are classified by the (n − 1)th homotopy group πn−1(G). The point to note is
that this result requires us to calculate the homotopy group not for a space but
for a group. We will briefly explain how this is done by replacing the group by a
space associated with it. Thus we will now show that the groups U(1), SU(2),
SO(3) can be identified with spaces S1, S3,RP 3 respectively.

1.10 Groups and their manifolds

In the last section, it was stated that the class of fibre bundles over Sn with G
as the group of the fibre can be identified with πn−1(G), the (n−1)th homotopy
group of G. It is evident that the cohomology groups of G (considered as a space
by ignoring the group structure) will capture some properties of the Lie group.
Indeed all the classical Lie groups have spaces associated with them that com-
pletely capture their cohomological properties. For instance, SU(3) is a bundle
over S5 with S3 as the fibre but it is not the product bundle. Using methods
from algebraic topology we can still extract cohomological information about
SU(3) in terms of S3 and S5. In general, a lot of the cohomological information
of SU(N) can be described by those of S3 × ... × S2N−1. As suggested above,
we now discuss the examples of the groups U(1), SU(2), SO(3). We start with
U(1).

1.10.1 U(1)

The group U(1) is a unitary group which means that U† = U−1 the adjoint
is the inverse. For U(1) the adjoint is the same as U∗, the complex conjugate
as it is a 1 × 1 matrix. Thus we can write a general U(1) group element as
g(θ) = eiθ where θ is real. But we know from Euler’s theorem that

eiθ = cos θ + i sin θ

Thus a general element is fixed by choosing a value for θ restricted to lie on a
circle S1 since the function representing U(1) is a periodic function of θ and
we have 0 ≤ θ ≤ 2π. Thus the space associated with the group U(1) is S1.

9A technical aside: The study of topological and geometric properties of classifying spaces
is the subject of characteristic classes. Although cohomology groups of classical classifying
spaces are known, we are interested in the homotopy class of maps from B to BG. In general,
this may be a hard problem but when the base space B is a sphere the question reduces to
homotopy groups of BG. However, there is an isomorphism between the homotopy groups
of BG and that of G, shifted by one. Thus the question reduces to understanding the higher
homotopy groups of the Lie group G.

, i.e.,
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1.10.2 SU(2)

The group SU(2) is a 2×2 unitary matrix which has determinant equal to one.
The property U† = U−1 is satisfied by any 2× 2 matrix of the form,

(
a b
−b∗ a∗

)

with |a|2 + |b|2 = 1, the determinant condition. But writing a = x1 + ix2 and
b = x3 + ix4 the condition becomes (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 which is
a point on S3. Thus each point on S3 gives an allowed SU(2) matrix and is its
associated manifold.

1.10.3 SO(3)

The group SO(3) is an orthogonal 3×3 matrix that represents rotations in three
dimensions. We determine the parameter space needed to describe a general
rotation. We will see it is the space RP 3. To describe a rotation we need to fix
the axis of rotation and prescribe the rotation angle. The axis of rotation can
be fixed by the polar angles α, β. The angle θ can be taken to be the radius of
the sphere. Thus α, β give an axis direction and θ gives the length along this
axis. Since −π ≤ θ ≤ +π the radius of the parameter space sphere is π. But a
rotation along an axis by an angle ±π give the same point. Thus the parameter
space sphere of radius π has to have the additional property that the two ends
of any axis through the centre of the sphere meeting the surface of the sphere
must be identified as they represent the same rotation. This is the space RP 3.

For understanding the topology of the topological insulator we need tools
required to classify vector bundles when the base space M is not an n-sphere
Sn since the classifying theorem requires finding the homotopy equivalence
classes of maps from M → BG. For example, for the topological insulator,
M = T 3, the three torus, these maps do not give standard homotopy groups.
New methods are required.

1.11 Conclusion

In this brief tour basic ideas of topology are sketched but techniques for cal-
culating the topological invariants in the form of various groups introduced
here are not described. To learn these techniques, see the following chapters of
this book, while for more details books on mathematics and research papers or
conference proceedings in physics need to be consulted.
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Set Topology

Somnath Basu and Atreyee Bhattacharya

In the first part we discuss metric spaces and continuous maps be-
tween them. Reformulating the notion of continuity leads to the con-
cept of topological spaces. Some important properties of such spaces
are discussed. We end with the concept of topological manifolds, as
a particular class of examples of topological spaces.

The second part is a tutorial on equivalence relations and quotient
sets. The main aim here is to recall a few relevant definitions in this
context and more importantly make the reader comfortable with these
definitions by providing a series of examples. Examples are discussed
keeping in mind their significance in advanced topics of Mathematics
such as topology and geometry.

I Topology: A Quick Review

2.1 Equivalence relation

Let us start with the notion of an equivalence relation. This shall be used
throughout in several examples that we will encounter.

Definition 2.1.1. Let X be a set. An equivalence relation ∼ on X is an identi-
fication between elements of X satisfying:
(a) [reflexive] x ∼ x for any x ∈ X;
(b) [symmetric] if x ∼ y then y ∼ x;
(c) [transitive] if x ∼ y and y ∼ z then x ∼ z.
The equivalence class of x, denoted by [x], is the set of all elements in X that
are related to x.
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The set of equivalence classes will be denoted by X/∼. We shall see a host
of examples and identify X/∼ with standard objects from analysis, geometry
and topology. However, the identifications, for now, are just bijections between
sets. In later sections we shall revisit some of these examples and prove that
the identifications can be upgraded to an equivalence of topological spaces.

Example 2.1.2. An equivalence relation on X can be specified by giving a sub-
set of X ×X satisfying the three properties in Definition 2.1.1.
(1) Let X = {1, 2, 3} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. The equiva-
lence classes are [1] = [2] and [3].
(2) Let X = R and x ∼ y if x − y ∈ Z. Then it can be seen that X/∼ is in
bijective correspondence with the unit circle S1 in R2. The map that sends [t]
to e2πit is one such bijection.
(3) Let X = V be a finite dimensional vector space over R. Given a subspace
W , we define v1 ∼W v2 if v1−v2 ∈W . This defines an equivalence relation and
the resulting set V/∼W (usually denoted by V/W ) can be given the structure
of a vector space. It is tempting to say that V/W is in bijection with W⊥, the
orthogonal complement of W in V . However, there is no such natural bijection.
In case V has a positive definite inner product then the orthogonal projection
of V to W⊥ induces a linear isomorphism from V/W to W⊥.
(4) Let X = V −{0} with V as in (3) above. Consider the equivalence relation
where v ∼ w if v = λw for some λ ∈ R− {0}. The set of equivalence classes is
denoted by P(V ) and called the space of lines in V or projectivization of V .
(5) Let X = G be a group. We say g1 ∼ g2 if g1 = gg2g

−1. The equivalence
classes are called the conjugacy classes of G. For an abelian group, the conju-
gacy relation is simply the reflexive relation on G.
(6) Let Dn denote the closed unit disk in Rn. The equivalence relation gener-
ated by identifying all points on Dn of length 1 is denoted by ∼. Then it can
be shown that Dn/∼ is identifiable with Sn, the unit sphere in Rn+1.

These are not surprising examples but should be kept in mind. In a later
section we shall expect the unfamiliar reader to go through these armed with
the notion of quotient topology.

2.2 From metric spaces to topology

Let us recall the familiar notion of metric spaces.

Definition 2.2.1. A set X equipped with a non-negative real valued function
d : X ×X → R is called a metric space if the following holds:
(i) d(x, y) = 0 if and only if x = y;
(ii) d is symmetric, i.e., d(x, y) = d(y, x);
(iii) d satisfies the triangle inequality, i.e., d(x, y) + d(y, z) ≥ d(x, z).

We shall denote a metric space by (X, d), or simply by X when d is clear
in the context. The function d is called the distance function. To each point x
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in a metric space (X, d) and every ε > 0 we have the set

Bε(x) := {y ∈ X | d(x, y) < ε}

called the open ball of radius ε, centered at x. Given y ∈ Bε(x) with r =
d(x, y) < ε, we observe that Bε−r(y) ⊆ Bε(x). When ε = 0 then Bε(x) = ∅.

Example 2.2.2. We present several well-known examples.
(1) Let d be the Euclidean distance on X = Rn. The open balls in this metric
are actually the open balls in the usual sense.
(2) Let X = Rn with

d((x1, · · · , xn), (y1, · · · , yn)) := max
i
{|xi − yi|}.

It can be seen that the open balls (of radius ε) are open cubes with side length
2ε.
(3) Let X be any set and let d(x, y) = 1 if x 6= y. It follows that open balls are
either the point or the whole space.
(4) Given a metric space (X, d) we may consider a new function

d(x, y) :=
d(x, y)

1 + d(x, y)
.

This defines a distance function and (X, d) becomes a metric space where the
distance between any two points is uniformly bounded by 1. Note that in the
new metric B1(x) = X for any x ∈ X.

Let τd consist of all subsets of X which are arbitrary unions of finite
intersections of open balls. By construction τd contains ∅ and X. Moreover, it
is closed under arbitrary unions. Given U, V ∈ τd one verifies that U ∩V is also
in τd. This implies that τd is closed under finite intersections. This collection
τd is called the topology induced by the metric on X.

Remark 2.2.3. It is well-known that the topology induced by the metrics in (1)
and (2) are the same, i.e., they both have the same collection of open sets. In
the case of (3) we see that τd = P(X), the power set of X. For (4) one can
check that τd = τd.

Before we explain why this passage from d to τd is important, we recall
the notion of convergence of sequences and continuous maps (between metric
spaces).

Definition 2.2.4. Let (X, d) be a metric space. A sequence {xn}n≥1 ⊆ X is said
to converge to x ∈ X if given ε > 0 there exists N ∈ N such that d(xn, x) < ε
for all n ≥ N .
A map f : (X, d)→ (Y, d) is called continuous if it maps convergent sequences
to convergent sequences, i.e., if {xn} is a sequence converging to x then {f(xn)}
converges to f(x).



28 2. Set Topology

Note that a sequence (in a metric space) can converge to at most one
point. An alternate but equivalent definition of continuity states that a map is
continuous at x if for any ε > 0 there exists δ > 0, depending on ε and x, such
that if d(x, x′) < δ then d(f(x), f(x′)) < ε. A function is called continuous if
it is continuous at each point. If a common δ, independent of x, exists for a
given ε then we say that f is uniformly continuous.

The significance of τd stems from the following key observation.

Proposition 2.2.5. Let f : (X, d) → (Y, d) be a map between metric spaces.
Then the following are equivalent:
(1) the map f is continuous;
(2) if U ∈ τd then f−1(U) ∈ τd.

Proof. Let {xn} be a sequence converging to x. Assuming (2) and setting U =
Bε(f(x)) we gather that

f−1(U) = {w ∈ X | d(f(w), f(x)) < ε} ∈ τd.

Thus, f−1(U) = ∪i∈IUi, where Ui is a finite intersections of open balls in X.
Choose an Ui such that x ∈ Ui. It follows that there exists δ > 0 such that
Bδ(x) ⊆ Ui. Moreover, there exists N such that xn ∈ Bδ(x) for all n ≥ N . In
particular, f(xn) ∈ U for all such n.

To prove the converse it suffices to show that f−1(Bε(y)) ∈ τd for any y ∈ Y .
Let x ∈ f−1(Bε(y)), i.e., d(f(x), y) = r < ε. By continuity of f at x there exists
δ (possibly depending on x) such that if w ∈ Bδ(x) then d(f(w), f(x)) < ε− r.
By the triangle inequality, d(f(w), y) < ε. Consequently, Bδ(x) ⊆ f−1(Bε(y))
and the latter is a union of Bδ(x) as x varies. �

2.3 Topological spaces: Definition and examples

Having extracted the abstract essence of continuity, we now define topological
spaces.

Definition 2.3.1. A topological space (X, τ) is a set X equipped with a collection
τ of subsets of X satisfying the following:
(i) the empty set and X are in τ ;
(ii) the collection τ is closed under finite intersections;
(iii) the collection τ is closed under arbitrary unions.
An element U ∈ τ is called an open set while its complement is called a closed
set.

Definition 2.3.2. A map f : (X, τX) → (Y, τY ) between topological spaces is
called continuous if f−1(τY ) ⊆ τX . If f maps open (respectively closed) sets
to open (respectively closed) sets then f is called an open (respectively closed)
map.

Given two topologies τ, τ ′ on X, we say they are the same if τ = τ ′.



2.3. Topological spaces: Definition and examples 29

Remark 2.3.3. The condition for continuity of a function can be restated in
terms of closed sets by saying that inverse images of closed sets should be closed
sets.

Observe that metric spaces are topological spaces and different metrics
can induce the same topology (cf. Remark 2.2.3). A topological space (X, τ) is
called metrizable if there is a metric which induces the topology τ . If a space
X is metrizable then any two distinct points can be separated by open sets, i.e.,
given x 6= y there exists U, V ∈ τ such that U ∩ V = ∅ and x ∈ U, y ∈ V .
This follows by setting r = d(x, y), U = Br/2(x) and V = Br/2(y). Topological
spaces where points can be separated by open sets are called Hausdorff.

Example 2.3.4. Let us consider several standard examples of topology on a
given set X.
(1) The trivial topology on X is τtr = {∅, X}. Any map f : (Y, τ)→ (X, τtr) is
continuous while f is open if f(U) = X for every non-empty open set U .
(2) The discrete topology on X is τdis = P(X). This corresponds to Example
2.2.2 (3). Any map f : (X, τdis)→ (Y, τ) is continuous.
(3) The cofinite topology on X is the collection consisting of complements of
finite sets along with the empty set. If X is finite then this is exactly the discrete
topology. However, if X is infinite then any two non-empty open sets intersect.
In this case the topology is not Hausdorff and cannot be induced by a metric.
For instance, a map f : (R, τcofin) → (R, τd) with d as in Example 2.2.2 (2)
is continuous if and only if it is constant. The cofinite topology on R is often
called the Zariski topology.

The usual topology on the real line has open sets which are finite or
countable disjoint unions of sets of the form (−∞, b), (a, b), (a,∞). Topological
spaces can be weird in the sense that some of its properties may deviate sharply
from what we are used to in Euclidean spaces and its open subsets. We present
a few examples below.

Example 2.3.5. (1) The profinite topology on Z consists of open sets which are
defined to be arbitrary unions of (non-constant) arithmetic progressions that
extend in both directions. This topology is neither discrete nor trivial.
(2) Given a space (X, τ) and a subset A ⊆ X we define the induced topology on
A by declaring τA := {U ∩A |U ∈ τ} to be a topology on A. For instance, the
induced topology on Q from the standard real line is different than (Q, τdis).
(3) The real line admits another, quite different, topology. Consider X = R and
τ = {(−r, r) | r > 0} ∪ {∅,R}. This topology is not Hausdorff. Moreover, the
identity map i : (R, τ) → R, where the latter is the standard topology on the
real line, is not continuous. If we switch the topology then the identity map is
continuous.
(4) Finite sets as topological spaces are rather interesting objects. There are
exactly four topologies on X = {a, b} given by τtr, τcofin, τ1 = {∅, {a}, X} and
τ2 = {∅, {b}, X}. A well-known example is the pseudo-circle, a non-Hausdorff
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topological space X = {a, b, c, d} with

τ = {∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, X}.

This space is weakly homotopy equivalent to the circle.

The notion of convergent sequences make sense for topological spaces as
well.

Definition 2.3.6. A sequence {xn} in a topological space (X, τ) is said to be
convergent if there exists x ∈ X such that for any open set U containing x there
exists N ∈ N such that {xn}n≥N ⊆ U . We say that the sequence converges to
x and that x is a limit of the sequence.

If we consider the sequence {1,−1, 1,−1, · · · } in Example 2.3.5 (3) then
this converges to both −1 as well as 1. Although a convergent sequence may
have several limits, in a Hausdorff space this limit is unique. This is one of the
main reasons to work primarily with Hausdorff spaces in analytical geometry
and topology.

For a subset A of a space X, the interior of A is defined to be the largest
open set contained in A, i.e.,

IntA =
⋃

U∈τ,U⊆A
U.

The closure of A is defined to be the smallest closed set containing A, i.e.,

A =
⋂

F c∈τ,A⊆F
F.

The boundary of A is the set A−A. The set A is called dense if A = X.

2.4 Topological spaces: Some key properties

In order to distinguish between topological spaces we need an appropriate no-
tion of equivalence.

Definition 2.4.1. A map f : (X, τX)→ (Y, τY ) is called a homeomorphism if f is
a bijection, and both f and f−1 are continuous. We say two topological spaces
are equivalent (or homeomorphic) if there exists a homeomorphism between the
two spaces.

It can be shown that any open ball in Rn is homeomorphic to Rn (in the
standard topology). The requirement that both f and f−1 be continuous is
necessary as a continuous bijection need not have a continuous inverse. To see
this, consider the unit circle S1 with the topology inherited from R2. The map

f : [0, 2π)→ S1, t 7→ eit
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is continuous and bijective but f is not open. Using stereographic projection
we may prove that S1 minus a point is homeomorphic to R. This generalizes to
higher dimensions for the unit sphere Sn in Rn+1. Let us now look at a slightly
more interesting construction.

Example 2.4.2. Consider R̂n := Rn t {∞} equipped with the topology

τ = τd ∪ {(Rn −K) ∪ {∞} |K is a closed and bounded subset of Rn}.

It can be shown that R̂n is homeomorphic to Sn.

Several key properties which are preserved under continuity are often used
to distinguish between topological spaces.

Definition 2.4.3. A topological space (X, τ) is called connected if X cannot be
written as the disjoint union of two non-empty open sets. It is called path-
connected if for any two points x, y ∈ X there exists a path joining x to y, i.e.,
continuous map γ : [0, 1]→ X such that γ(0) = x, γ(1) = y.

It is clear that these properties are preserved under homeomorphisms.
In fact, the image of a connected (respectively path-connected) space under a
continuous map is connected (respectively path-connected). Euclidean spaces
with the usual metric/topology are connected and path-connected. For instance,
[0, 1] is connected for if [0, 1] = U t V is a disconnection with
(a1, a2) t · · · then a0 ∈ V which is open. Therefore, (a0 − ε, a0 + ε) ⊆ V for
some ε > 0. This violates the assumption that U ∩ V = ∅. Finally note that
any connected subset of R is of the form

∅, (a, b), [a, b], [a, b), (a, b], (a,∞), [a,∞), (−∞, b), (−∞, b], R,

where a, b ∈ R and a ≤ b.
Remark 2.4.4. If (X, τ) is path-connected then let X = UtV be a disconnection
of X, if possible. For x ∈ U and y ∈ V choose a path γ joining x to y. Now
consider the equality [0, 1] = γ−1(U) t γ−1(V ). This is impossible as [0, 1]
is connected. Thus, path-connectivity implies connectivity. However, there are
examples of connected spaces which are not path-connected.

The space R2 −Q2 is path-connected. Euclidean spaces minus the origin
is path-connected if the dimension is at least 2. However, there is a difference
between punctured Euclidean spaces in terms of higher connectivity.

Yet another key notion is that of compactness. Recall that an open cover
of a space X is a way of expressing X as the union of a collection of open sets.
A finite subcover (of a given cover) simply means a finite subcollection whose
union is X. We shall work with the following.

Definition 2.4.5. A topological space (X, τ) is called sequentially compact if
every sequence {xn} has a convergent subsequence. A topological space (X, τ)
is called compact if every open cover has a finite subcover.

U = [0, a0) �
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It is a known fact from elementary real analysis that for subsets of Rn
the two notions of compactness agree. The proof generalizes to metric spaces.
Before we present some examples we note that closed subsets of compact sets
are compact.

Example 2.4.6. (1) The set (0, 1] is non-compact; just consider the cover given
by {(1/n, 1]}n≥1.
(2) The compact subsets of Rn are precisely the closed and bounded sets. This
is known as the Heine-Borel Theorem.
(3) The construction outlined in Example 2.4.2 is an example of what is known
as the one-point compactifcation of a locally compact, non-compact Hausdorff
space.

Compactness is preserved under continuous maps, i.e., the image of a
compact set is compact. A very useful observation (involving all of the notions
we have encountered so far) is the following result.

Proposition 2.4.7. A continuous bijection from a compact space to a Hausdorff
space is a homeomorphism.

Proof. We need only show that the map f is closed. Now any closed subset of
a compact set is compact and f takes compact sets to compact sets. Finally
note that a compact subset of a Hausdorff space is closed. �

2.5 Quotient topology

Suppose we have an equivalence relation ∼ on X. If X is equipped with a
topology τ then consider the set X/∼ of equivalence classes. It is natural to
want the projection map q : X → X/∼ to be continuous, i.e., to find a topology
τq on X/ ∼ such that q−1(τq) ⊆ τ .

Definition 2.5.1. Given an equivalence relation ∼ on (X, τ), the collection of
sets U ⊆ X/∼ such that q−1(U) ∈ τ defines a topology called the quotient
topology.

Observe that if τ ′ is a topology on X/∼ such that q is continuous then τ ′

is a subset of the quotient topology. We say that the quotient topology is the
finest topology with respect to which q is continuous.

Example 2.5.2. Let us illustrate with a few basic examples.
(1) Consider X = [0, 1] and the equivalence relation ∼ that identifies 0 with 1,

space is Hausdorff. We define a bijective map

We can check that this is continuous. It follows from Proposition 2.4.7 that f
is a homeomorphism.

The example above generalizes to higher dimensions. If Dn denotes the

i,e., every x �= 0, 1 is its own equivalence classes while [0] = [1]. The quotient

f : S1 → [0, 1]/∼, e2πit �→ [t].
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closed unit disk in Rn then the equivalence relation ∼ that identifies all its
boundary points together induces a homeomorphism between Sn and Dn/ ∼
(cf. Example 2.1.2 (6)).
(2) The previous example is a special case of the following identification. Given
a subset A of (X, τ) we define the equivalence relation ∼A that identifies all
points of A together. We shall denote the quotient space by X/A. In general,
this space may fail to be Hausdorff even if X is. For instance, let X = R with
A = R− {0}. Then X/A = {[0], [1]} has [0] as closed and [1] as open. Perhaps
a stranger example arises out of X = R and A = Q. The quotient space is an
uncountable set with a distinguished point ∗ where every point other than ∗ is
closed. Moreover, any open set containing α 6= ∗ must be the whole set.
(3) Consider X = [0, 1]× [0, 1] with the equivalence relation that identifies (0, t)
with (1, 1− t). The quotient space can be realized as a subspace inside R3 and
is called the Möbius strip (cf. Figure 2.2).

We note that if (X, τ) is connected (respectively path-connected) then
X/∼ is connected (respectively path-connected). Compactness is also preserved
under taking quotients. As observed in Example 2.5.2 a quotient of a Hausdorff
space need not be Hausdorff. Groups acting on spaces provide a plethora of
examples of quotient topology.

To discuss actions of groups let us recall a few notions.

Definition 2.5.3. A topological group G is a topological space (G, τ) such that
the underlying set G is a group, and the inverse and multiplication maps are
continuous.

Any group is a topological group with the discrete topology. The first
examples of (non-discrete) topological groups are the Euclidean spaces with
vector addition as the group operation. The set of positive real numbers, under
multiplication, is also a (topological) group. It can be seen that S1 and C× are
both topological groups. In fact, C× is isomorphic (as topological groups) to
S1 × (0,∞).

Example 2.5.4. Consider the set GLn(R) of invertible real n×n matrices. This
is a (discrete) group with several distinguished subgroups including SLn(R)
and On(R). We may equip GLn(R) with the subspace topology induced from

Mn(R) which can be identified with Rn2

. The determinant, being a polynomial
in entries, is continuous. Thus, the set GLn(R) = det−1(R − 0) is open in the
space of all n×n matrices. The multiplication of matrices is a polynomial map
on Rn2

. This implies that GLn(R) is actually a topological group.

Since the topology on Mn(R) is induced by the Euclidean metric on Rn2

,
the group GLn(R) is metrizable. In fact, GLn(R) is open and dense in Mn(R).
It is known that SLn(R) is non-compact and is evident from the sequence of
diagonal matrices Ak with a11 = k, a22 = k−1 and aii = 1. However, On(R)
can be described as the common zeroes of n(n+ 1)/2 polynomials of degree 2.
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Thus, On(R) is a closed subset and is contained in

{
(x11, . . . , x1n, x21, . . . , x2n, . . . , xn1, . . . , xnn) ∈ Rn

2 ∣∣ ∑

i

x2
ji = 1 for any j

}
.

The space above is the n-fold product Sn−1 × · · · × Sn−1. Thus, On(R) is
compact.

Definition 2.5.5. We say a (topological) group G acts on a topological space
X (from the left) if there exists a continuous map ϕ : G × X → X satisfying
ϕ(e, ·) = idX and ϕ(gh, x) = ϕ(g, ϕ(h, x)) for any g, h ∈ G and x ∈ X.

Note that when G is discrete then a group action is equivalent to a group
homomorphism from G to Homeo(X), the group of all homeomorphisms of X.
In general, a group action induces a natural equivalence relation on X; the
quotient space is denoted by X/G.

Example 2.5.6. (1) Let Z act on the real line by translations. Then R/Z is
homeomorphic to S1. A word of caution: we have earlier used the notation
X/A in Example 2.5.2 (2). If we think of Z as a subset of R then R/Z, in our
old notation, is not S1. In a similar way, we can define the action of Z× Z on
R2 and the quotient is the torus S1 × S1 (cf. Figure 2.1).

Figure 2.1: The action of the element (3, 1) ∈ Z2 on the plane.

(2) Consider the Z/2Z-action on X ×X given by (x, y) 7→ (y, x). The diagonal
∆ := {(x, x) ∈ X ×X |x ∈ X} is fixed pointwise by this action. When X = R
we observe that the quotient space is homeomorphic to the upper half plane
{(x, y) ∈ R2 | y ≥ 0}. When X = S1 we can check that the quotient space is
the Möbius strip (cf. Figure 2.2).
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Figure 2.2: The quotient of the torus under the reflection map.

(3) The group Z/nZ acts on S1 via the map ([k], z) 7→ e2πik/nz. It is clear that
S1/(Z/nZ) is again the circle.
(4) The group Z/2Z acts on Sn via identifying a point with its antipode. The
quotient space is denoted by RPn and called the real projective space of dimen-
sion n.
(5) Consider the action of SO2(R) on R2. The origin is fixed by the group while
all points at a distance d away from the origin are identified with each other
via elements of SO2(R). The quotient space is [0,∞).
(6) Consider the group PSL2(Z) = SL2(Z)/± I acting on the upper half-plane

H := {x+ iy ∈ C | y > 0}

by z 7→ az+b
cz+d . Here an element A ∈ SL2(Z) has entries a, b, c, d. This group and

its action is important in many branches of mathematics. This group is called
the modular group and is generated by T (z) = z + 1 and S(z) = −z−1. The
quotient space can be shown to be a 2-sphere minus one point.

2.6 Topological manifolds

We are ready to discuss a class of topological spaces which form the most
prevalent family in algebraic and differential topology. We shall need a few
preliminaries.

Definition 2.6.1. A base for a topology τ on X is a subcollection β such that any
U ∈ τ can be written as a union of elements from β. A space with a countable
base is called second countable.

Euclidean spaces are second countable. In fact, most spaces we encounter
in analysis and geometry are second countable.
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Definition 2.6.2. A topological manifold M is a topological space which is Haus-
dorff, second countable and for each point there exists an open set which is
homeomorphic to an open ball in Rn for some n. A pair (U,ϕ) consisting of
such an open set and a homeomorphism ϕ : U → B ⊂ Rn is called a chart.

Remark 2.6.3. What we have defined is a manifold without boundary. We often
discuss spaces which are locally like Rn or the upper half-plane in Rn. The points
where a local chart looks like the latter is called a boundary point. Closed disks
and closed upper half-planes are examples of such spaces, also called manifolds
with boundary. A manifold without boundary may be thought of as a manifold
with empty boundary.

Proposition 2.6.4. A connected topological manifold is also path-connected.

Proof. Fix x ∈ M and consider the set S of all points that can be joined by
a path to x. As x ∈ S, it is non-empty. If y ∈ S then a small open path-
connected set containing y is also in S, whence S is open. If Sc 6= ∅ then a
similar argument proves that Sc is open, contradicting the connectedness of
M . �

If M is connected then n is constant and called the dimension of the
manifold. This follows from proving invariance of dimension, i.e., that Rm and
Rn cannot be homeomorphic if m 6= n. It is one of the basic and non-trivial
facts of (algebraic) topology.

The subset of R2 given by the union of the x and y-axis is not a manifold as
the origin does not admit a neighbourhood which looks like R. However, there
are examples of spaces which are locally Euclidean but fail to be non-Hausdorff.

Example 2.6.5. We may consider X = R t {∗} equipped with the topology

τ = τd ∪ {(U − 0) ∪ {∗} |U is an open set in R containing 0}.

This space is called the line with two origins. Every point in R ⊂ X has an open
set, homeomorphic to (−1, 1), containing it. As for ∗, the set ((−1, 1)−0)∪{∗}
is homeomorphic to (−1, 1). However, 0 and ∗ cannot be separated by open
sets.

Most of what we had seen in earlier sections are examples of manifolds -
spheres, real projective spaces, GLn(R), On(R). Configuration spaces are ex-
amples of manifolds which are useful in applications as well as in theory. For
example, the configuration space of a rod rotating in R3 about a fixed hinge at
the midpoint of the rod is RP 2. In practice, one finds the following result quite
useful.

Proposition 2.6.6. Let f : Rn → R be a continuously differentiable function. If
c is a non-critical value of f then f−1(c) is a manifold of dimension n− 1.

This can be proven using the Implicit Function Theorem from several vari-
able calculus. Note that f−1(c) can be empty. The empty set is also considered
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a manifold of any given dimension. The above result implies, for instance, that
SLn(R) is a manifold.

Example 2.6.7. The Grassmannians are manifolds which appear in several
branches of mathematics and are of considerable importance. For a fixed n
and 1 ≤ k ≤ n the Grassmann manifold Gk,n (over R) is defined to be the set
of linear k-planes in Rn. The topology is induced by the metric

d(L,L′) = ‖PL − PL′‖

where PL denotes the orthogonal projection of Rn to the subspace L and ‖A‖,
for a linear map A : Rn → Rn, is defined to be

‖A‖ = max
v∈Sn−1

‖Av‖.

In other words, ‖A‖ is the maximum possible size of the image of any unit vector
under A. In fact, it is known that Gk,n is homeomorphic to On(R)/(Ok(R) ×
On−k(R)). Observe that when k = 1 the Grassmannian is the real projective
space RPn−1 (cf. Example 2.5.6 (4)). In fact we had encountered this even
earlier in Example 2.1.2 (4) as P(Rn).

We finally come back a full circle to metric spaces. The question of when
a topological space is metrizable, i.e., it admits a metric with the induced
topology being the given topology, has been answered in various forms. For us,
the following is of relevance.

Theorem 2.6.8 (Urysohn’s metrization theorem). Every Hausdorff, second-
countable, regular space is metrizable.

Recall that a space (X, τ) is called regular if points and closed sets can
be separated by open sets. More precisely, given x and a closed set F not
containing x there exists U, V ∈ τ such that x ∈ U,F ⊆ V and U ∩ V = ∅.
Since a manifold can be shown to be regular, it is metrizable.
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II A Tutorial on Equivalence Relations and Quotient Sets

Equivalence relation and quotient sets

In English, we say that two objects are related if there is some rule connecting
them together. For example, two persons are said to be related by ‘blood’ if
they belong to the same family, by ‘friendship’ if they are friends of each other,
by ‘nationality’ if they come from the same country. Thus one way to describe
a relation would be to collect all possible pairs of objects connected by the
same relation. Mathematically a relation on a set X can be viewed as a way
of identification between elements of X and can be described by a collection of
ordered pairs of elements of X. The ordering is important as two pairs (a, b)
and (b, a) do not necessarily represent the same relation; e.g., if a is the mother
of b, then the relation between (a, b) and (b, a) are different.

Definition 2.6.1. Binary relations: Let X be a non-empty set. A binary relation
R on X is defined as a subset of the cartesian product X ×X or equivalently
a collection of ordered pair of elements of X. Two elements x, y ∈ X, are said
to be related by R if (x, y) ∈ R. In that case, one writes x R y.

Example 2.6.2. (a) On the set of real numbers R, the following well known
(binary) relations, e.g., greater than (>), greater than or equal to (≥), less than
(<), less than or equal to (≤), is equal to (=) and divides, can be represented
by the respective subsets R>, R≥, R<, R≤, R= and R/ of R2 = R × R as
described below.

R< = {(x, y) ∈ R2 : x > y},
R≥ = {(x, y) ∈ R2 : x ≥ y},
R< = {(x, y) ∈ R2 : x < y},
R≤ = {(x, y) ∈ R2 : x ≤ y},
R= = {(x, x) ∈ R2 : x ∈ R} and

R/ = {(x, y) ∈ R2 : x divides y}.

(b) Let P (X) denote the power set of a set X (i.e., P (X) is the collection of
all subsets of X). On the set P (X), one can define the binary relation R⊂(⊂
P (X)× P (X)) by

R⊂ = {(A,B) ∈ P (X)× P (X) : A ⊂ B}.

(c) For a given positive integer n, one can define the binary relation called
congruence modulo n on the set of integers Z, as follows. Two integers a and b
are said to be congruent modulo n, often denoted by a ≡ b (mod n), if a− b is
divisible by n. For example, 23 and 73 are congruent modulo 10. Thus one can
describe the relation as the subset R≡(n) of Z× Z defined by

R≡(n) = {(a, b) ∈ Z× Z : a ≡ b (mod n)}.
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(d) Let (V, 〈., .〉) be an inner product space. Given two vectors v, w ∈ V,
v is said to be orthogonal to w, denoted by v ⊥ w, if 〈v, w〉 = 0. This defines
the binary relation orthogonal to (on V,) described by the subset R⊥ of V × V
defined by

R⊥ = {(v, w) ∈ V × V : v ⊥ w}.

Definition 2.6.3. Equivalence relations: A binary relation R on a set X is said
to be an equivalence relation if the following conditions hold:

• R is reflexive, i.e., (x, x) ∈ R for each x ∈ X.

• R is symmetric, i.e., if (x, y) ∈ R, then (y, x) ∈ R.

• R is transitive, i.e., if (x, y), (y, z) ∈ R, then (x, z) ∈ R.
Example 2.6.4. (a) R= and R≡(n) described in Example 2.6.2, are both
examples of equivalence relations whereas none of the relations R>, R≥, R<,
R≤, R/, R⊂ or R⊥ in Example 2.6.2 is. Clearly, R>, R< are neither reflexive
nor symmetric; R⊥ is neither reflexive nor transitive and R≥, R≤, R/, R⊂ are
not symmetric.

(b) Consider a (real or complex) vector space V and let X = V \ {0}.
Define the binary relation Rp by

Rp = {(v, w) ∈ X ×X : w = λv for some λ ∈ K}

where K = R or C if V is a real or complex vector space respectively. Naturally,
if (v, w) ∈ Rp, then w = λv and λ(∈ K) 6= 0 as both v and w are non-zero
vectors. Then one can re-write Rp as

Rp = {(v, λv) : v ∈ X and λ ∈ K \ {0}}

and it is easy to see that Rp defines an equivalence relation on X.

(c) Let V be a real vector space and W be any linear subspace of V. Then
one can define the binary relation RW on V by

RW = {(v1, v2) ∈ V × V : v1 − v2 ∈W}.

Using the fact that W is also a vector space, it follows that RW is an
equivalence relation.

(d) We say that a group (G, .) acts on a non-empty set X (or X is a G-set)
if there is a map ρ : G×X → X satisfying

ρ(g1.g2, x) = ρ(g1, ρ(g2, x)) ∀x ∈ X and g1, g2 ∈ G;

ρ(e, x) = x ∀x ∈ X. (2.1)
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e is the identity element of G. Then ρ is called an action of G on X. Define the
binary relation RG on X by

RG = {(x, ρ(g, x)) ∈ X ×X : x ∈ X and g ∈ G}.

It can be shown (using the properties of ρ) that RG is an equivalence relation.
For example, the group of integers (Z,+) acts on the set of real numbers

R by translation. More generally, for all n ∈ N, the product group Zn acts
on the Euclidean n-space Rn by translation i.e., there is a natural map ρ :
Zn ×Rn → Rn defined by ρ(a, x) = a+ x for all a ∈ Zn and x ∈ Rn; satisfying
the conditions (2.1). Using this action of Zn on Rn, one obtains the equivalence
relation RZn given by

RZn = {(x, a+ x)) : x ∈ Rn and a ∈ Zn}.

Definition 2.6.5. Equivalence classes: Let (X,R) denote a set X together with
an equivalence relation R (on X). Given any element x0, the equivalence class
of x0 denoted by [x0] is a subset of X defined by

[x0] = {x ∈ X : (x, x0) ∈ R}

i.e., x ∈ [x0] if and only if x is related to x0 under the relation R.

From the definition of equivalence class, it follows that given a set X
together with an equivalence relation R and any two elements x, y ∈ X, [x] = [y]
if and only if x is related to y by R. In such a case, the elements x and y are
said to be equivalent under the relation R.

Example 2.6.6. (a) For the equivalence relation R= as in Example 2.6.4(a), the
equivalence class [x0] for any x0 ∈ R, is the singleton subset {x0} of X.

For the equivalence relation R≡(n), check that there are only n distinct
equivalence classes, namely, [0], [1], ..., [n− 1].

(b) Let V and X be as in Example 2.6.4(b). Given any vector v ∈ X, its
equivalence class corresponding to the relation Rp is the subset

[v] = {λv : λ ∈ R, λ 6= 0}.

Thus if the vector space V is Rn or Cn, the equivalence class [v] is the line
(real or complex) in Rn or Cn respectively, passing through the origin and the
vector v with the point 0 removed. Moreover, it is easy to see that in this case,
two vectors v, w ∈ X will be equivalent under Rp if and only if they both lie
on the same straight line (real or complex) passing through the origin in Rn or
Cn respectively.

(c) Consider the equivalence relation RW on a vector space V correspond-
ing to a given subspace W of V described in Example 2.6.4(c). It is easy to see
that with respect to the relation RW , the equivalence class [0] of the null vector
0 ∈ V, is the subspace W, as using the definitions of RW and the equivalence
class [0], it follows that v ∈ [0] if and only if (v− 0) = v ∈W . Also each vector
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in W is equivalent to the null vector 0 under RW and hence [w] = [0] = W for
all w ∈W. For a vector v ∈ V which lies outside W, the equivalence class [v] is
different from W (as v is not equivalent to any vector in W ). In this case, one
can check that the equivalence class is [v] = v + W = {v + w : w ∈ W} which
is an affine subspace of V .

(d) As discussed in Example 2.6.4(d), consider a G-set X for some group
G and let ρ be the corresponding group action. Then for any x0, its equivalence
class [x0] with respect to the relation RG, is the following subset of X described
by

[x0] = {ρ(g, x0) : g ∈ G}.
Thus whenX = Rn, G = Zn and the group action ρ is just the usual translation,
then for any x0, its equivalence class is

[x0] = {a+ x0 : a ∈ Zn}

i.e., [x0] consists of all translates of x0 by the elements of Zn. Also in this case,
any two elements x0, y0 ∈ Rn, will be equivalent or [x0] = [y0] if and only if
(x0 − y0) ∈ Zn.

Definition 2.6.7. Quotient sets: Let (X,R) denote a set X together with an
equivalence relation R (on X). The set of all equivalence classes of X with
respect to the relation R, denoted by X/R and defined by X/R := {[x] | x ∈
X}, is said to be the quotient set of X by the relation R.

If X has some additional (algebraic/topological/geometric) properties,
there are standard techniques of transferring these properties to the quotient
set X/R (details of which we avoid in this note). For example, if X is a topolog-
ical space, one can transform X/R also into a topological space in a canonical
manner.

Example 2.6.8. (a) For the equivalence relation R= (cf. Example 2.6.4(a)), the
quotient set X/R (here X = R) is the same as the set of real numbers (one
can easily see that in this case, the map which sends each real number to its
equivalence class under R=, defines a bijection of sets).

The quotient set for the relation R≡(n), commonly denoted by Z/nZ or
Z/n is the finite set Z/nZ = {[0], [1], .., [n − 1]}. This quotient set Z/nZ has
several important mathematical properties that are related to many branches
of Mathematics.

(b) In Example 2.6.4(b), the quotient set for the equivalence relation Rp
is

X/R = {[v] : v ∈ X}
which consists of all one dimensional subspaces of V minus the null vector.
Thus if V is Rn (respectively Cn), the corresponding quotient set is the set of
all real (complex) lines minus the origin in Rn (Cn) passing through the origin.
The quotient space has very rich topological and geometric structures and are
known as the real (complex) projective space.
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(c) For the equivalence relation RW on a vector space V, (cf. Example
2.6.4(c)), it is easy to see that the quotient set V/RW (commonly denoted by
V/W ), is a vector space of dimension dimV−dimW with addition and scalar
multiplication of vectors in V/W given by

[v1] + [v2] = [v1 + v2] ∀ v1, v2 ∈ V, and

c[v1] = [cv1] ∀ v1 ∈ V, c ∈ K

(K = R or C if V is a real or complex vector space respectively).
If V is equipped with an inner product 〈., .〉, then there is a nice description

for the quotient space V/W as follows. Recall that in this case, for any subspace
W of V, (V, 〈., .〉) can be decomposed as the orthogonal direct sum V = W⊕W⊥
(i.e., each v ∈ V has a unique expression v = v0 + v1 such that v0 ∈ W and
v1 ∈ W⊥) where W⊥ = {v ∈ V : 〈v, w〉 = 0 ∀ w ∈ W} is the subspace of V
called the orthogonal complement of W in V and dimW⊥ =dimV−dimW. Also
recall the orthogonal projection map P : V → W⊥ which is a surjective linear
map sending any vector v = v0 + v1 ∈ V (as described above), to v1. It can be
checked that there is a canonical isomorphism between the vector spaces V/W
and W⊥. As both the vector spaces are of the same dimension, it suffices to
construct an injective linear map between them. Define L : V/W → W⊥ by
L([v]) = P (v), for v ∈ V.

Then L is well defined (i.e., for any two vectors u, v ∈ V with [u]=[v] (or
(u−v) ∈W ), one has L([u]) = L([v])): In fact, (u−v) = (u1−v1)+(u0−v0) ∈W
where u = u0+u1 and v = v0+v1 with u0, v0 ∈W and u1, v1 ∈W⊥ respectively,
implies that u1 = v1 and thus P (u) = P (v).
It is easy to see that L is a linear map. Injectivity of L follows from the fact that
L([v]) = P (v) = 0 if and only if v ∈ W (property of an orthogonal projection)
or equivalently, [v] = 0.

(d) Consider a G-set X for some group G (cf. Example 2.6.4(d)) and
let ρ be the corresponding group action. The quotient space consisting of all
equivalence classes with respect to the relation RG, is commonly denoted by
X/G.

In particular, when X = R, G = Z and the group action ρ is given by
ρ(a, x) = a+x, x ∈ R and a ∈ Z; then the quotient space R/Z is the unit circle
S1 = {z ∈ C : |z| = 1} in the complex plane via the bijection f : R/Z → S1

defined by f([x]) = e2πix, for x ∈ R. Clearly, f is well defined i.e., for any
two equivalent elements x, y ∈ R (i.e., [x]=[y] and (x − y) ∈ Z,), one has
f([x]) = f([y]).

f is surjective by construction. Finally f is injective as f([x]) = f([y])
implies that e2πi(x−y) = 0 i.e., (x − y) ∈ Z and hence [x] = [y]. Similarly, for
X = Rn, G = Zn (n ≥ 1) and the group action ρ given by ρ(a, x) = a + x,
x ∈ Rn and a = (a1, ...an) ∈ Zn; the quotient space Rn/Zn is the n-torus
Tn = S1 × S1 × .... × S1(n-times) via the bijection F : Rn/Zn → Tn defined
by f([x]) = (e2πix1 , .., e2πixn) for x = (x1, .., xn) ∈ Rn. It turns out that these
quotient sets have very special structures from algebraic, topological as well as
geometric points of view.
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Homotopy theory

Samik Basu and Soma Maity

In the first part, the fundamental group is defined using loops in
topological spaces, which is the first of a series of invariants called
homotopy groups. Unlike other homotopy groups, these groups are
non-Abelian. However, these are computable in many examples. In
this chapter, we discuss some properties of Fundamental groups and
some computations.
Higher dimensional analogues of the above involve maps out of
higher dimensional spheres and the resulting invariants are called
homotopy groups. In the second part, we define homotopy groups
and list some of the main computations.
In a tutorial section, the fundamental groups of spheres and real
projective spaces are worked out and a few examples of group action
discussed.

I The Fundamental Group

3.1 Introduction

In the basic topology section, we have seen a large list of examples of topological
spaces. These include the Euclidean space Rn, the n-disk Dn, the n-sphere
Sn, the n-dimensional real projective space RPn, surfaces (of genus g), their
products, subspaces, and quotients under equivalence relations (as a special
case, orbit spaces of group actions). In topology, we try to answer natural
questions about topological spaces such as these; for example, we would like
show that two different spaces from the list above are not homeomorphic. This
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involves the careful definition of invariants and their computation in important
cases. There are two families of invariants of particular importance –

1. Homotopy groups : πn for n ≥ 1. For n = 1, π1 is referred to as the
fundamental group and is non-abelian in general. For n ≥ 2, the group
πn(X) is abelian.

2. Homology and cohomology groups : denoted by Hn, Hn for n ≥ 0. These
groups are always abelian.

The first family of invariants are easy to define but very hard to compute,
especially, when n ≥ 2. The second family of invariants have an involved de-
scription but their computation is easy. This note is a brief introduction to the
fundamental group.

3.2 Paths and loops in a topological space

A path in a topological space is a continuous curve between two points as in
Fig. 3.1 (see below). We think of this as a path in the space X from the point x0

X

x
0

x
1

γ

Figure 3.1: A path joining points in a space.

to the point x1. More precisely, the path shown in the diagram is the image of
a continuous function from an interval to X and the end points of the interval
are mapped to x0 and x1. For certain technical reasons, we define a “path in a
topological space” as the underlying function as opposed to its image.

Definition 3.2.1. • A path in a topological space X is a continuous function
γ : [0, 1]→ X.

• The initial point of γ is defined as γ(0). The final point of γ is defined as
γ(1).

• If γ(0) = x0 and γ(1) = x1, γ is said to be a path from x0 to x1.

Note that this implies a path means not just the figure above but also
contains the information about how one moves along the path, that is, one
may define velocity, acceleration along the path. However, for our purposes in
this lecture we consider different properties of paths.
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Similar to a path, a loop in a space may be viewed as a path from x0 to
x0 as shown in Fig. 3.2 below.

Definition 3.2.2. A loop based at x0 is a path γ from x0 to x0, that is, γ :
[0, 1] → X is a continuous function with γ(0) = γ(1) = x0.

Example 3.2.3. The circle x2 + y2 = 1 may be described as a loop based at 1
by γ : [0, 1] → R2 defined according to the equation γ(t) = e2πit identifying the
2-plane with the complex numbers.

Example 3.2.4. The formula γ(t) = (a cos 2πt, b sin 2πt) for positive real
numbers a and b defines a loop based at (a, 0) which traces out the ellipse
x2

a2 + y2

b2 = 1.

Example 3.2.5. Since constant functions to any topological space are continuous
the formula c(t) = x0 defines a loop based at x0. This loop is called the constant
loop.

The basic idea of the fundamental group is to consider loops in a space
upto continuous deformation. As an example, consider the unit circle γ in the
example above. As a loop based at (1, 0) in R2, γ may be continuously deformed
to c, the constant loop based at (1, 0), as demonstrated in Fig 3.3. The value
of the deformation at time s may be taken as γs(t) = ((1− s) cos 2πt+ s, (1−
s) sin 2πt) which is γ at s = 0 and the constant loop at s = 1.

Now consider the space R2 − 0, and note that both γ and c are well-
defined loops based at (1, 0). However the deformation above cannot be defined
in R2 − 0 because some intermediate loop would have to pass through 0. For
the formula above this happens at s = 1

2 and t = 1
2 . We will see later that γ

cannot be deformed to the constant loop. In this way we notice how removing
the point 0 from the plane changes the topology.

The idea of continuous deformations is encapsulated in the concept of
homotopy. (See Fig. 3.4.)

Definition 3.2.6. Two paths γ, γ′ from x0 to x1 are said to be homotopic (de-
noted γ � γ′) if there exists a continuous function H : [0, 1]× [0, 1] → X such

��

X

γ

x
0

Figure 3.2: Loop based at x0

��
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(1,0)

Figure 3.3: Homotopy of based loops.

γ

γ

Figure 3.4: Homotopy of paths.

that

H(0, s) = γ(s), H(1, s) = γ′(s)

H(t, 0) = x0, H(t, 1) = x1

Two loops γ, γ′ based at x0 are said to be homotopic if they are homotopic as
paths from x0 to x0.

Problem 3.2.1: Verify that homotopy is an equivalence relation.

3.3 Operations on paths and loops

We consider the set

π1(X,x0) = {Loops based at x0}/homotopy
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An element in π1(X,x0) is written as [γ] for loops γ in X based at x0. Given
two loops γ, σ we may form a new loop : γ followed by σ, denoted as γ ∗σ. (See
Fig. 3.5.)

γ

σ

γ∗σ

Figure 3.5: Multiplication of loops.

We use the following formula

γ ∗ σ(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2

σ(2t− 1) if 1/2 ≤ t ≤ 1

Remark 3.3.1. Note that this operation is well defined as long as the starting
point of σ matches the end-point of γ.

Using this operation, one proves that

1. The operation ∗ induces a binary operation on π1(X,x0) which we also
denote by ∗.

2. Under the operation ∗, π1(X,x0) has a group structure with the constant
loop as the identity element.

For 1), one has to show

γ ' γ′, σ ' σ′ =⇒ γ ∗ σ ' γ′ ∗ σ′

For 2), one has to first prove the associative condition :

(γ1 ∗ γ2) ∗ γ3 ' γ1 ∗ (γ2 ∗ γ3)

In order to prove that the class of the constant loop c is the identity element,
one needs to verify

γ ∗ c ' γ, c ∗ γ ' γ
for all loops γ based at x0. Finally for a loop γ based at x0, one verifies that
its inverse is given by the loop that traverses along γ in the opposite direction
: γ̄(t) = γ(1− t).

Let us verify the associative condition. The rest we leave as an exercise
for the reader. First observe that α12,3 = (γ1 ∗γ2)∗γ3 and α1,23 = γ1 ∗ (γ2 ∗γ3)
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are given by the formulas

α12,3(t) =





γ1(4t) if 0 ≤ t ≤ 1
4

γ2(4t− 1) if 1
4 ≤ t ≤ 1

2

γ3(2t− 1) if 1
2 ≤ t ≤ 1

α1,23(t) =





γ1(2t) if 0 ≤ t ≤ 1
2

γ2(4t− 2) if 1
2 ≤ t ≤ 3

4

γ3(4t− 3) if 3
4 ≤ t ≤ 1

1/4

3/41/4

1/2 1

1

S

(1+S)/4 1/4 (2−S)/4

α1,23

α12,3

Figure 3.6: Associativity of loop multiplication.

Note that α12,3 and α1,23 are not the same loops although their images
are the same. The difference lies in their speeds. The loop α12,3 traverses along
γ1 for time 1/4, then γ2 for time 1/4 and finally along γ3 for time 1/2. The
loop α1,23 traverses along γ1 for time 1/2, then γ2 for time 1/4 and γ3 for time
1/4. We may construct an explicit homotopy to be read off from Fig. 3.6. Now
draw a horizontal line at time s and read off the time spent by the loop αs
along γ1, γ2 and γ3. The loop αs traverses through γ1 for time 1+s

4 , then γ2 for
time 1/4 and then γ3 for time 2−s

4 . This leads to the following formula

αs(t) =





γ1( 4t
1+s ) if 0 ≤ t ≤ 1+s

4

γ2(4t− 1− s) if 1+s
4 ≤ t ≤ 2+s

4

γ3( 4t−2−s
2−s ) if 2+s

4 ≤ t ≤ 1

which is easily verified to be a homotopy between α12,3 and α1,23.
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Problem 3.3.1: Using ideas as above write down formulas verifying the other
required properties above.

Once all the above properties are verified, π1(X,x0) has the structure of
a group. This is called the fundamental group of the topological space X at the
point x0.

3.4 The fundamental group

We start with an example

Example 3.4.1. Suppose X is a convex subset of Rn. That is, for any two points
x1, x2 ∈ X, the line segment {tx1 + (1− t)x2|t ∈ [0, 1]} is a subset of X. Now
for any loop γ in X

γt(s) = (1− t)γ(s) + tx0

is a homotopy γ ' c. Hence every loop at x0 lies in the class of the identity loop
and as a consequence, the fundamental group is the trivial group 0. Therefore,
for a convex subset X of Rn, π1(X,x0) = 0.

Example 3.4.2. Note that the above example can be fitted into an abstract frame-
work. For writing down the argument, we only used that there is a natural way
of moving every point to x0. This is achieved by a continuous deformation of
the identity map to the constant map. A space X is said to be contractible if
there is a continuous map H : X × [0, 1] → X such that H(x, 0) = x and
H(x, 0) = x0. Under the additional assumption H(x0, t) = x0 for all t, the
formula

αs(t) = H(γ(t), s)

gives a homotopy between γ and the constant loop. Therefore we obtain
π1(X,x0) = 0. (In fact, the statement is true without the additional assumption
but the proof requires more work.)

Next we list some properties of the fundamental group :

Proposition 3.4.3. If there is a path from x0 to x1, π1(X,x0) ∼= π1(X,x1).

Proof. A path γ from x0 to x1 induces a group homomorphism c(γ) :
π1(X,x0) → π1(X,x1) which sends a loop α based at x0 to the loop γ̄ ∗ α ∗ γ
(γ̄(t) = γ(1− t) is the path from x1 to x0 obtained by moving backwards along
γ). This is easily verified to be well-defined and that the homomorphism de-
pends only on the homotopy class of the path γ. It follows that the inverse of
c(γ) is given by c(γ̄) through the following chain of implications

c(γ) ◦ c(γ̄) = c(γ ∗ γ̄)

= c(const) as γ ∗ γ̄ ' const

= id .

and similarly, c(γ̄) ◦ c(γ) = id . �
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Remark 3.4.4. It follows from Proposition 3.4.3 that for a path connected space
X, the fundamental group π1(X,x0) does not depend on the point x0 upto iso-
morphism. Following this fact, when X is path connected we write π1(X) for
the fundamental group and omit the point x0 from the notation.

Now define

π(X;x0, x1) = {set of paths from x0 to x1}/homotopy.

A similar proof to Proposition 3.4.3 may be used to verify that the set
π1(X;x0, x1) is in bijection with the fundamental group π1(X,x0) whenever
x0 can be joined to x1 by a path.

Let f : X → Y be a continuous function such that f(x0) = y0. If γ is a
loop in X based at x0, the composition f ◦ γ is a loop in Y based at y0. This
operation induces a group homomorphism f∗ : π1(X,x0)→ π1(Y, y0).

Problem 3.4.1: Verify this fact.

One may formulate a condition about when f∗ = g∗ for two different
continuous maps between X and Y . This involves deforming the map f con-
tinuously to the map g a definition that will be made explicit in the section
on higher homotopy groups. The idea is that in such a case the continuous
deformation may be used to write down a homotopy between f ◦ γ and g ◦ γ.
We deal with an explicit case below.

Definition 3.4.5. A subspace A ⊂ X is said to be a deformation retract, if there
exists H : X × [0, 1]→ X (called deformation retraction) satisfying

H(x, 0) = x, H(x, 1) ∈ A, H(a, t) = a ∀ t ∈ [0, 1].

Example 3.4.6. The space D2− 0 deformation retracts to the unit circle S1. In
fact Dn − 0 deformation retracts to Sn−1. To see this, think of Dn − 0 to be
made of an elastic material with a rigid boundary. Now linearly pressurize the
material onto its boundary. Such a process gives a continuous deformation. In
terms of formulas, we may write :

H(t, x) = (1− t)x+ t
x

|x|

to deform Dn − 0 to the unit sphere Sn−1. Therefore, π1(Dn − 0) ∼= π1(Sn−1).

Proposition 3.4.7. Let A ⊂ X be a deformation retract. Then for a point x0 in
A, π1(X,x0) ∼= π1(A, x0). [The proof involves deforming a loop in X continu-
ously down to a loop in A using the deformation of X to A]

Proof. Let H be the deformation retraction. Then, H describes a homotopy
between the identity map of X and the function h1 : X → A which sends
x 7→ H(x, 1). Let i : A → X denote the inclusion of the subspace. Then we
have

π1(A, x0)
i∗ //

π1(X,x0)
h1∗

oo
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which satisfies
h1∗ ◦ i∗ = (h1 ◦ i)∗ = id∗ = id

i∗ ◦ h1∗ = (i ◦ h1)∗ = id

as i ◦ h1 ' id via the homotopy H. �

A special class of topological spaces are the ones whose fundamental group
is the trivial group.

Definition 3.4.8. A space X is called simply connected if X is path connected
and for every point x0 of X, π1(X,x0) = 0.

We may deduce from the discussion above that if a space is simply con-
nected any two paths with the same endpoints are homotopic. From Example
3.4.1 we have seen that a convex set is simply connected. In fact, a convex
set deformation retracts to a point. From Proposition 3.4.7, we know that any
space which deformation retracts to a point is simply connected. Observe this
is precisely the Example 3.4.2.

So far we have computed the fundamental groups of only those spaces
which deformation retracts to a point. Examples of these are Rn and Dn. Next
we consider X = S1 in which case the fundamental group turns out to be non-
trivial. This computation passes through a mathematical argument involving “
covering spaces”. We only outline the main ideas in this case.

Let p : R→ S1 be the map given by p(t) = e2πit. Observe that p(t+ 1) =
p(t) and that p is a local homeomorphism, that is, for every t in R there is an
ε such that

p : (t− ε, t+ ε)→ Ut = open neighbourhood of p(t)

is a homeomorphism for some open neighbourhood Ut. The map is described
in the Fig. 3.7 below.

Let γ : [0, 1] → S1 be a loop so that γ(0) = γ(1) = (1, 0). One can prove
that the loop γ may be lifted to a unique loop γ̃ in R starting at 0 : that is,
there is a unique γ̃ : [0, 1] → R such that p ◦ γ̃ = γ and γ̃(0) = 0. To observe
this, first write γ̃(0) = 0. Now there exists ε such that

p : (−ε, ε)→ U1

is a homeomorphism. Since U1 is open, from the continuity of γ we deduce that
there is a δ such that γ : [0, δ) → U1. Now we readily see that γ̃ is uniquely
defined on [0, δ) as p−1 ◦ γ. Now iterate the above logic with δ instead of 0
which defines γ̃ uniquely on a bigger interval. This can be carried on until we
reach 1 and the entire path γ̃ is uniquely defined. In this way we deduce

Path-lifting : Any loop γ in S1 based at the point 1 can be uniquely lifted
to a path in R starting at 0.

We remark that the reader may easily notice that the statement “This
can be carried on” needs a rigorous mathematical proof. Such a proof requires
the property that [0, 1] is compact, which implies that the process needs to be
repeated only a finite number of times to reach 1.
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p

Figure 3.7: Mapping the real line onto the circle.

Example 3.4.9. Consider the loop γ in S1 based at 1 given by γ(t) = e2πit.
Observe that the unique lift is given by γ̃(t) = t.

The example demonstrates that the unique lift need not be a loop. One
makes a similar argument with homotopies to deduce
Homotopy-lifting: If γ ' γ′, then γ̃ ' γ̃′ as paths.

Now we prove that π1(S1) ∼= Z. Construct

φ : π1(S1)→ Z

by defining φ([γ]) = γ̃(1) (γ̃(1) ∈ p−1(1) = Z). Note that this is well defined
by homotopy-lifting:

γ ' γ′ =⇒ γ̃ ' γ̃′ =⇒ γ̃(1) = γ̃′(1)

φ is easily verified to be a group homomorphism by the following formula of

the unique lift γ̃ ∗ γ′ of γ ∗ γ′.

γ̃ ∗ γ′(t) =

{
γ̃(2t) if 0 ≤ t ≤ 1/2

γ̃(1) + γ̃′(2t− 1) if 1/2 ≤ t ≤ 1

so that γ̃ ∗ γ′(1) = γ̃(1) + γ̃′(1) = φ([γ]) + φ([γ′]). We prove that φ is an
isomorphism as follows

• φ is injective : If φ([γ]) = 0, then γ̃ is a loop in R based at 0. Since R is
simply connected, [γ̃] = 0 which in turn implies [γ] = p∗[γ̃] = 0.

• φ is surjective : Let σn : [0, 1] → R be defined as σn(t) = nt for n ∈ Z.

Then, p∗σn is a loop based at 1 ∈ S1. The lift is same as σ by the
uniqueness so that φ([p∗σ]) = n.
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Thus we have observed that π1S
1 ∼= Z. A generator is given by a loop [γ] with

φ(γ) = 1 so the loop in Example 3.4.9 is a generator. As a loop this traverses
around the circle once in anti-clockwise direction.

Next we turn our attention to the spheres Sn for n ≥ 2. This relies on the
following theorem, a special case of Van-Kampen Theorem.

Theorem 3.4.10. Suppose U, V are simply connected open subsets of X such
that U ∩ V is path-connected and X = U ∪ V . Then X is simply connected.

Proof. Suppose γ is a loop in X written as γ : [0, 1] → X. Divide [0, 1] as
0 = s0 < s1 · · · < sn = 1 so that γ([si, si+1]) lies entirely in U or V . As an
example see Fig. 3.8.

s

s

s

s

1

2

3

4

U

V

Figure 3.8: Homotopy of a loop in a union.

If γ([si, si+1] lies in V join γ(si) to γ(si+1) by a path σ in U ∩ V . Then
from the simply connectedness of V we have that γ|[si,si+1] is homotopic to σ.
In this way we may homotope γ by removing segments mapping to V by those
mapping to U ∩V . Therefore, γ is homotopic to a loop in U which is homotopic
to the constant loop as U is simply connected. �

Now we may apply the above theorem to Sn by writing the sphere as
a union of neighbourhoods of the upper and lower hemispheres. These are
homeomorphic to Dn which is simply connected. The intersection deforms down
to the equator Sn−1 which is path connected if n ≥ 2. It follows that Sn is
simply connected if n ≥ 2.

We end the discussion pointing out two further computations of the fun-
damental group.

Example 3.4.11. We may compute the fundamental group of RPn from the
fundamental group of Sn. For n = 1, the space RP 1 is homeomorphic to S1 and
thus the fundamental group is Z. For n ≥ 2 we consider the map q : Sn → RPn.
Analogous to the case of p : R→ S1, we may observe that every point has two
inverse images and that the map q is a local homeomorphism. Results such as
path lifting and homotopy lifting follow.
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We may follow the proof of the fundamental group of S1 for RPn. By
fixing a point [x] ∈ RPn for x ∈ Sn, we see that for a homotopy class [γ] ∈
π1(RPn, [x]) the element γ̃(1) is well defined and belongs to the set {x,−x}. We
may use the simply connectedness of Sn for n ≥ 2 analogous to the circle case,
to prove that the association above is a bijection. Therefore the fundamental
group of RPn is a group of order 2 for n ≥ 2. Hence π1(RPn) ∼= Z2.

Example 3.4.12. Let X be the torus. (See Fig. 3.9.)

Figure 3.9: Generators of the Fundamental group of a Torus.

Note that the torus is homeomorphic to S1 × S1. Thus π1(X) ∼= π1(S1 ×
S1). A loop in the product space S1 × S1 is a pair of loops in S1 and the
homotopies also work out pairwise. Therefore π1(S1 × S1) ∼= Z⊕ Z. Note that
the loops in figure give generators of either factor.
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II Higher homotopy Groups

3.5 Definition of homotopy groups

In the section on the fundamental group, we have seen how considering loops
upto homotopy leads to an invariant of topological spaces with values in groups.
Following the ideas of the fundamental group. we try to define

πn(X) = {Maps : Sn → X}/Continuous deformations.

We rigorize this concept below.

Definition 3.5.1. • A based space is a pair (X,x0) where X is a topological
space and x0 ∈ X. (We will use the notation X for a based space to mean
the pair (X,x0))

• A map of based spaces X → Y is a continuous function f : X → Y such
that f(x0) = y0.

• Homotopy of maps : Suppose f, g are two based maps from X → Y . A
homotopy from f to g is a continuous function H : X × [0, 1] → Y such
that H(x, 0) = f(x) and H(x, 1) = g(x) and each Ht(x) = H(x, t) is a
based map. For this relation we use the notation f ' g.

Problem 3.5.1: Verify that homotopy is an equivalence relation.

Notation : We write [X,Y ] to denote the homotopy classes of maps between
the based spaces X and Y .

Recall that the n-sphere Sn is the space of all unit vectors in Rn+1. We
fix a base point ∗ in Sn throughout so that Sn is a based space.

Pinch at

equator
X

f

g

S
n

S S
n n

Figure 3.10: Multiplying maps from spheres.

Definition 3.5.2. Let X be a based space. Define πn(X) = [Sn, X].

Next we introduce a binary product on πn(X). Given two maps f, g :
Sn → X we may form the product f ·g : Sn → X as demonstrated in Fig. 3.10.
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We may rewrite this in an equivalent fashion.
Let In denote the n-cube. Recall that In/∂In ∼=
Sn. Therefore a based map Sn → X is equiva-
lent to a continuous function f : In → X such
that ∂In maps to x0. We represent such an ob-
ject by Fig. 3.11.
In this notation the above product can be writ-
ten schematically as

fx x
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I

Figure 3.11
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Figure 3.12: Multiplying based maps from cubes.

Problem 3.5.2: Verify that the above operation (Fig. 3.12) induces a group
structure on πn(X) and for n = 1 this is the fundamental group as defined in the
previous section. [HINT : The last equivalent formulation can be written in terms
of explicit formulas similar to the fundamental group.]

Next we note that πn(X) is abelian if n ≥ 2. The following sequence of
diagrams (Fig. 3.13) demonstrates a proof of this statement
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Figure 3.13: Commutativity of multiplication of higher homotopy groups.

Note that the above manoeuvre is not possible if n = 1.
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3.6 Computing homotopy groups

Computations of homotopy groups are difficult in general and in most cases
these are still unknown. We list some important cases below.
1) For contractible spaces X (like convex subsets of Rn for example), πn(X) = 0.
2) For “ covering spaces” p : E → X (like p : R → S1 or q : Sn → RPn),
πn(E) ∼= πn(X) for n ≥ 2.

The properties 1) and 2) together imply that πn(S1) ∼= πn(R) = 0 for
n ≥ 2. Applying 2) for RPn we have πk(RPn) ∼= πk(Sn) if k ≥ 2.

Next we look at the homotopy groups of spheres πk(Sn) for various k and
n. Suppose f : Sk → Sn is a continuous map. Then, we have
1) Every continuous map is homotopic to a smooth map. (that is, all the partial
derivatives are continuous)
2) A smooth map from a space of low dimension cannot map surjectively onto
a space of high dimension.1

From the two properties above we deduce that a map f : Sk → Sn

for k < n can be homotoped so that it misses some point of Sn. Now using
stereographic projection we know that the space Sn − pt is homeomorphic to
Rn which is contractible. Therefore f factors through some contractible space
and is homotopic to a constant map. We conclude that πk(Sn) = 0 if k < n.

Next consider the case k = n. The property 1) above still holds. The
analogue of property 2) states that for most points (outside a measure zero set
to be precise) the inverse image is a finite set. This enables us to construct an
invariant. Let f : Sn → Sn and y be such that f−1(y) = {x1, · · · , xr}. The
restriction of f to sufficiently small neighbourhoods of xi is a homeomorphism
onto its image. Define the sign of xi to be ±1 in accordance with whether f is
orientation preserving at xi or not. Define

dy(f) =
∑

i

sgn(xi)

If we change the point y to a different point y′ we may compare dy(f) and
dy′(f) as follows. Choose a path from y to y′ and consider its inverse image
under f . It is a subset of Sn consisting of a union of intervals and circles. As
an example see Fig. 3.14 below.

From this we may read off the equality dy(f) = dy′(f). Thus, the number
dy(f) does not depend on the choice of y. This number is called the degree of the
map f which is an invariant of the homotopy class. The Hopf degree theorem
states that the map πn(Sn) → Z given by f 7→ deg(f) is an isomorphism. We
summarize the computations in the following theorem

Theorem 3.6.1. • For k < n, πk(Sn) = 0.

• πn(S1) = 0 for n ≥ 2.

• πn(Sn) ∼= Z.

1This is an application of Sard’s Theorem in multivariable calculus
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Figure 3.14: Inverse image of a regular path.

For k > n the computation of πk(Sn) is extremely hard. The complete
list is unknown for even n = 2. Calculation of all homotopy groups for a fixed
sphere Sn is a very difficult problem when n ≥ 2. In comparison, it is easier to
compute πn+k(Sn) for k � n which turn out to be independent of n. We list
some of the values below.

We end by stating some more computational results. There is one very
important fact which arises while computing homotopy groups. For spaces such
as spheres, manifolds and in general objects which are finite dimensional, homo-
topy groups are hard to compute. On the other hand there are certain infinite
dimensional objects2 for which the computations are slightly easier and more
results are known. One such example is the space CP∞ = ∪nCPn. We have
the following result

πk(CP∞) =

{
Z if k = 2

0 if k 6= 2

and similarly for RP∞ = ∪nRPn

πk(RP∞) =

{
Z2 if k = 1

0 if k 6= 1

There are computations for U = ∪nU(n) and O = ∪nO(n)

πk(U) =

{
Z if k is odd

0 if k is even

2More precisely, infinite loop spaces.

k 0 1 2 3 4 5 6 7 8 9

πn+k(S
n) Z Z2 Z2 Z24 0 0 Z2 Z240 Z2 ⊕ Z2 Z2 ⊕ Z2 ⊕ Z2
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πk(O) =





Z2 k ≡ 0 (mod 8)

Z2 k ≡ 1 (mod 8)

0 k ≡ 2 (mod 8)

Z k ≡ 3 (mod 8)

0 k ≡ 4 (mod 8)

0 k ≡ 5 (mod 8)

0 k ≡ 6 (mod 8)

Z k ≡ 7 (mod 8)

The last two computations are part of the famous Bott periodicity theorem.
Using these computations πk(U(n)) and πk(O(n)) are computed in a small
range of k.

III A Tutorial on Fundamental groups and group actions

Let X be a topological space and π1(X) denote its fundamental group. We
assume that we know π1(Rn) = 1 and π1(S1) = Z.

3.7 Fundamental groups of Spheres

Sn = {(x1, x2, ..., xn+1) ∈ Rn :
∑n+1
i=1 x

2
i = 1} denotes the n-dimensional

sphere. We prove that Sn is simply connected, i.e., π1(Sn) = 1 for n > 1.
Let γ be a loop in Sn at a base point a, i.e., γ : [0, 1] ∈ Sn is a continuous
function such that γ(0) = γ(1) = a. Suppose γ is not surjective. Choose a
point p in Sn from outside of the image of γ. Since Sn − {p} is diffeomorphic
to Rn, choose a diffeomorphism φ : Rn → Sn − {p}. Let φ−1(a) = b. φ−1 ◦ γ
be a loop in Rn at a base point b. Since Rn is simply connected, φ−1 ◦ γ is
homotopic to the constant loop at b. If H is a homotopy between them, φ◦H is
a homotopy between γ and the constant loop at a. Therefore, any loop which
is not surjective is homotopic to the identity in Sn.

Let γ[0, 1] = Sn. Choose a point p 6= a in Sn. Consider a sufficiently small
closed disc D centered at p such that D does not contain a. Using compactness
of [0, 1] one can prove that γ enters and exits D passing through p finitely many
times. Let γi : [ai, bi]→ Sn be the components of γ which enter and exits D at
ai and bi and pass through p at ci, i.e., γi(ai), γi(bi) are points in the boundary
of D and γi(ci) = p. [ai, bi] ⊂ [a, b]. Since D is simply connected, one can choose
a curve σi : [ai, bi] → D with same end points as γi such that σi is homotopic
to γi and σi does not pass through p. Then one can replace γi’s by σi’s in γ
and construct a curve σ which is homotopic to γ but does not pass through p.
Hence, σ is not surjective. Therefore, it is homotopic to the identity.
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3.8 Fundamental group of Real Projective spaces

The n dimensional real projective space is denoted by RPn. It can be viewed
as a quotient space of Sn. Consider the equivalence relation ∼ on Sn defined by
x ∼ (−x). RPn is the set of all equivalence classes with the quotient topology
on it. Let P : Sn → RPn be the quotient map defined by P (x) = [x]. One can
prove that P is a local homeomorphism. Let γ be a loop at a fixed base point
[a] ∈ RPn. Then there exists a unique curve γ̃ in Sn starting at a such that
P ◦ γ̃ = γ. Since γ is a loop, the end point of γ̃ is either a or −a. So, there are
two types of loops in RPn at [a].

Type 1: A Type 1 loop is a loop γ such that γ̃ is a loop in Sn at a . Since
Sn is simply connected, there is a homotopy H between γ̃ and the constant
loop at a. Then P ◦H is a homotopy between γ and identity in RRn. So, Type
1 loops are homotopic to the identity.

Type 2: A Type 2 loop is a loop γ such that the end point of γ̃ is −a.
Consider any two Type 2 loops γ1 and γ2. γ̃1 and γ̃2 are loops with same
end points a and −a. Since Sn is simply connected, they are homotopic. If we
compose that homotopy with P then we get a homotopy between γ1 and γ2 in
RPn.

Therefore, the fundamental group of RPn consists of two elements. Hence,
it is Z2.

3.9 Group actions

Let G be a group and X be a topological map. A group action is a function
F : G×X → X such that

1. Fg : X → X defined by Fg(x) = F (g, x) is a homeomorphism of X for all
g ∈ G.

2. Fg ◦ Fh = Fg◦h for all g, h ∈ G.
3. Fe = Id where e is the identity of G and Id is identity function of X.

A group G is said to act freely if Fg(x) = Fh(x) for any x ∈ X implies
g = h. If a group G acts on X hen one can define an equivalence relation ∼ on
X by x ∼ y if and only if y = F (g, x) for some g ∈ G. The quotient space X/G
is the set of all equivalence classes with quotient topology on it. As in the case
of RPn we have the following result.

Theorem 3.9.1. If a group G acts on a simply connected topological space X
freely and “nicely” then π1(X/G) = G.

For a detailed proof we refer to Ref. 1.
Example 1: Tn = Rn/Zn. Let m̃ = (m1,m2, ...,mn) ∈ Zn and x =

(x1, x2, ..., xn) ∈ Rn. The group action is defined by,

F (m,x) = (m1 + x1,m2 + x2, ....,mn + xn).
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Tn is homeomorphic to S1 × S1 × S1...n-times. For n = 1, one gets S1. The
fundamental group of Tn is Zn.

Example 2: RPn = Sn/Z2. Z2 = {1,−1}. In this case F1 is the identity
function of Sn and F−1 is the antipodal map which sends x to −x.

Example 3 : S2n−1 is embedded in Cn.

S2n−1 = {z = (z1, z2, ..., zn) ∈ Cn : |z1|2 + |z2|2 + ...+ |zn|2 = 1}

Let α be a p-th root of unity. Zp is isomorphic to the group (1, α, α2, ..., αp−1).

F (αk, z) = (αkz1, α
kz2, ...., α

kzn)

Therefore, π1(S2n+1/Zp) = Zp.
Example 4 : Lens spaces: Consider S3 embedded in C2 as in the previous

example. Let α be a p-th root of unity for a prime p, and 1 ≤ k ≤ p− 1. Then,

F (α, z) = (αz1, α
kz2)

This gives a free action of Zp on S3. The quotient space is called a Lens space
and denoted by Lp,k.
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4

Homology

Dheeraj Kulkarni

In this chapter, we discuss simplicial homology theory. We explain,
with examples, the main motivation behind various homology theo-
ries. Simplicial Homology involves the ideas of simplicial complexes
and triangulations for topological spaces, which are introduced at ap-
propriate places. We discuss concrete examples of triangulations for
surfaces. Further the chain complex, the boundary operator and the
simplicial homology groups are defined. We compute simplicial ho-
mology for several examples explicitly. At the end of the chapter, we
see the usefulness of homology groups in distinguishing topological
spaces.

4.1 Introduction

After formally defining notions of topological spaces, continuity of maps be-
tween topological spaces and homeomorphisms, the following natural question
arises :

Question 4.1.1. Given two topological spaces X and Y , are they homeomorphic?

Recall that a homeomorphism is a continuous map with a continuous

In more mundane language, homeomorphisms ignore stretching, bending, shear
of the space. For example, the graph of the sine function is homeomorphic to
the real line.

Let us pose this question for familiar examples of topological spaces –
the Euclidean spaces. Is R1 homeomorphic to R2? A little thought reveals that
they cannot be. The reason is as follows. Suppose they are homeomorphic. Let
us remove a point from the real line R and the image of this point from R2.

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
Matter Physics, Texts and Readings in Physical Sciences 19,
https://doi.org/10.1007/978-981-10-6841-6_4

inverse. Homeomorphisms preserve the topology (i.e., collection of open sets).
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The resulting spaces must still be homeomorphic. However, the real line with
a point removed is disconnected whereas the plane minus a point is connected.
Thus, we get a contradiction. Further, we observe that the argument is just
the same if we want to show that R and Rk can not be homeomorphic for any
k ≥ 2.

Now the next question is : Is R2 homeomorphic to R3? We see that we
can no longer use the above argument successfully to arrive at a contradiction.
We need a new idea to deal with this problem. Homology is a tool developed to
resolve this classification problem completely and partial resolutions to other
classification questions.

In homology theory, the main idea is to associate abelian groups to topo-
logical spaces in such a way that these groups encode information about topo-
logical properties of the space. Further, to every map (map means a continuous
function) between two topological spaces we associate group homomorphisms
between associated groups. Overall, we translate the problems in the world
of topological spaces to the world of abelian groups. We understand abelian
groups better than abstract topological spaces so we expect to solve topologi-
cal problems transformed into group theoretic problems. More often than not,
this approach helps us to answer negatively the questions raised above.

In these lectures, we will focus on Simplicial Homology theory which is
easier to formulate than other homology theories. Besides that, the simplicial
homology theory has strong geometric intuition behind it.

4.2 Motivating Examples

Before we begin defining the simplicial homology, let us look at a few simple
and instructive examples. We will deal with symmetric objects in the Euclidean
spaces namely the convex polyhedrons. We will focus on boundaries of these
objects in Fig. 4.1.
Finding “Holes” in the space.
First observe from Fig. 4.1 that the boundary of a boundary of a convex poly-
hedron is empty. This is a very important geometric observation on which
homology theory rests.

Next there may be objects without boundaries. We call objects without
boundary as “cycles” (the term is justified if we look at the examples in Fig.
4.1). The figure suggests that there could be cycles in topological spaces that are
not boundaries. In other words, existence of cycles which are not boundaries
suggests that there are “holes” in the space. This is the second important
observation for defining homology theory.

4.3 Simplicial Complex

Let us define what do we mean by a symmetric polyhedron in m-dimensional
Euclidean space.
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Figure 4.1: Simplices and their boundaries

Definition 4.3.1. Let {v0, v1, v2, . . . , vn} be n + 1 points in Rm such that they
are not contained in a hyperplane of dimension less than n. Then an n-
simplex is the smallest convex set containing {v0, v1, v2, . . . , vn}. We denote
it by [v0, v1, . . . , vn]. Thus, we have

[v0, v1, . . . , vn] =

{
n∑

i=0

tivi | 0 ≤ ti ≤ 1 and
n∑

i=0

ti = 1

}
.

Thus, every point in n-simplex receives coordinates given by (t0, t1, . . . , tn).
They are called barycentric coordinates .

Remark 4.3.1. The points {v0, v1, . . . , vn} do not lie in a hyperplane of dimen-
sion less than n is equivalent to saying that the set of vectors {v1 − v0, v2 −
v0, . . . , vn − v0} is a linearly independent set in Rm.

Remark 4.3.2. By an n-simplex, we really mean an ordered set of points
[v0, v1, v2, . . . , vn]. This naturally induces an order on the subsets of points
by writing them in increasing order of subscripts. For example [v0, v1], [v1, v2]
and [v0, v2] are sub-simplices of a 3-simplex [v0, v1, v2]. One more consequence
of ordering on the vertices is that there is a canonical linear homeomorphism
between any two n-simplices preserving the order of points.

Definition 4.3.2. If we delete one of the n + 1 points from n-simplex
[v0, v1, . . . , vn] while keeping the increasing order of subscripts of points, then
the remaining n vertices form an n − 1 simplex which is called a face of
[v0, v1, . . . , vn].

Now we are ready to define a finite simplicial complex.

Definition 4.3.3. Let K be a finite collection of simplices. We call K a simplicial
complex if the following conditions hold
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1. If σ is a simplex in K then every face of σ is also in K.

2. If σ and τ are simplices in K then either σ ∩ τ = ∅ or σ ∩ τ is a common
face of both σ and τ .

Fig. 4.2 gives an illustration of a simplicial complex and an example which
is not a simplicial complex.

We can define infinite simplicial complexes by modifying the definition
suitably but we will restrict our attention to finite simplicial complexes.
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v
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v2 v
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Figure 4.2: Part(A) shows allowed intersection in Simplicial Complex. Part(B)
is not a simplicial complex

Notice that a simplicial complex is not a topological space as defined
above. It is only a collection of simplices that satisfy some properties. We
introduce the following notion of the geometric carrier of a simplicial complex
which is a topological space.

Definition 4.3.4. Let K be a (finite) simplicial complex. We define a topology
on the set

|K| :=
⋃

σ∈K
σ

A subset U of |K| is open if U ∩ σ is open in σ for every σ ∈ K. Recall that
each σ, a simplex from Euclidean space, is a topological space in its own right.
Thus, the above definition makes sense. We denote the collection of open sets
by T . It is easy to see that T defines a topology on |K|.

We call |K| with topology T the geometric carrier of the simplicial complex
K.

Definition 4.3.5. Let X be a topological space. We say that X is triangulated if
there is a simplicial complex K and a homeomorphism h : |K| → X. Further,
we say that the pair (K,h) is a triangulation of X. In this case, we say that X
is triangulable.

In more mundane words, triangulation of a space is a decomposition of the
space into nicely fitting triangles (more generally polyhedrons). A triangulation
of space X gives a good model to understand the topology of the space. How-
ever, showing existence of triangulations for spaces can be very challenging. We
will be dealing with nice topological spaces, namely, manifolds. There are deep
theorems that guarantee the existence of triangulations for smooth manifolds.
We will assume that we are already given at least one triangulation and work
with it.
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4.4 Review of Abelian Groups

Recall that a group (G,+) is abelian if any two elements commute, i.e., a+ b =
b + a for all a, b ∈ G. We say that G is finitely generated if there is a finite
generating set for G. More explicitly, there is a set {a1, . . . , ak} such that for
any element g in G we have g = n1a1 + n2a2 + · · ·+ nkak for some integers ni.

We say that a set {g1, g2, . . . , gr} is linearly independent if n1g1 + n2g2 +
· · ·+ nrgr = 0 implies that each ni = 0.

Definition 4.4.1. We say that an abelian group G is a free abelian group of
rank r if there is a linearly independent generating set with r elements.

Example 4.4.2. Z is a free abelian group of rank 1 but Zn for n 6= 0 is not a
free abelian group. In general if G is a free abelian group of rank r then it is
isomorphic to

Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r copies

.

Now let us recall examples of finite abelian groups. First we have the cyclic
group Cn of order n which is isomorphic to Z/nZ. We can further take direct
sums of cyclic abelian groups, for example, Cn ⊕ Cm. The following theorem
asserts that essentially these are the only finite abelian groups.

Theorem 4.4.1 (Structure of Finite Abelian Groups). Let G be a finite abelian
group. Then G is isomorphic to

Z
n1Z

⊕ Z
n2Z

⊕ · · · ⊕ Z
nrZ

.

Now, we are ready to state the fundamental theorem of abelian groups.

Theorem 4.4.2. Let G be a finitely generated abelian group. Then G is isomor-
phic to

Z⊕ Z⊕ · · · ⊕ Z︸ ︷︷ ︸
r copies

⊕ Z
n1Z

⊕ Z
n2Z

⊕ · · · ⊕ Z
nrZ

.

Moreover r is the same for any decomposition of G given as above.

Remark 4.4.3. In the view of the above theorem, we can define rank for any
finitely generated abelian group as the number of copies of Z in any decompo-
sition of G given as above.

4.5 Chain Groups, Boundary Maps and Homology Groups

Let K be a simiplicial complex that triangulates the topological X. Now con-
sider the set consisting of (finite) formal sums

Ck =




∑

σk∈K
niσ

k
i | ni ∈ Z



 .
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Clearly, Ck is a free abelian group generated by all k-simplices in K. We call
Ck as k-th chain group and elements in Ck are called k-chains.

Now we define the boundary map which is a homomorphism ∂k : Ck →
Ck−1. We define it on the basis elements of Ck end extend it linearly as follows.
Let [v0, v1, . . . , vk] be a k-simplex. By [v0, v1, . . . , v̂i, . . . , vk] we denote the (k−
1)-simplex obtained by deleting i-th vertex. Now define the boundary map as

∂k([v0, v1, . . . , vk]) =
k∑

i=0

(−1)i[v0, v1, . . . , v̂i, . . . , vk].

It does not take much effort to show that ∂k ◦∂k+1 = 0. (The essential point in
the proof is that every face occurs exactly twice but with the opposite signs).

Now, observe that Im∂k+1 ⊂ ker∂k as ∂k ◦ ∂k+1 = 0.
We call the elements of ker(∂r) as r-cycles and denote the subgroup r-

cycles by Zr. The elements in Im(∂r+1) are called as r-boundaries. We denote
the subgroup of r-boundaries by Br. The terminology has its origin in geometry
as we see that 1-cycles are closed loops and 1- boundaries are boundaries of
some 2-dimensional region. Thus, r-boundaries are always r-cycles. However,
there could be r-cycles that are not r-boundaries. This motivates the following
definition of homology groups.

Definition 4.5.1 (Homology Groups). We define the homology groups Hr(K),
associated to simplicial complex K, to be the quotient of subgroups of r-cycles
by r-boundaries. Formally, we define

Hr(K) :=
Zr(K)

Br(K)
.

The elements of Hr(K) are called homology classes. In the quotient group
Hr(K), two r-cycles c1 and c2 represent the same homology class if and only if
c1− c2 = ∂r+1b, where b is a (r+ 1)-chain. In other words, two cycles represent
the same homology class if and only if they differ by some r-boundary. In that
case, we say that r-cycles c1 and c2 are homologous.

Now the following fact states that the homology groups Hr(K) are inde-
pendent of choice of the simplicial complex K that triangulates X. In other
words, the homology groups depend only on the underlying topological space
X. The reader is encouraged to look at Chapter 1 and 2 of [3].

Theorem 4.5.1. Let X be a topological space. Suppose X is triangulable and K
is a simplicial complex that triangulates X. Then the homology groups Hr(K)
are independent of the choice of K. In other words, the homology groups Hr(K)
depend only on the underlying space X.

In the light of the above theorem, we refer to groups Hr(K) as the ho-
mology groups associated to X and denote them by Hr(X).

The following theorem says that that to a continuous function f : X → Y
there is a natural way of associating a group homomorphism f∗r : Hr(X) →
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Hr(Y ) for each r such that composition of maps is associated to composition
of homomorphisms. The identity map gets associated to the identity homo-
morphism. In Category theoretic language, this is summarized by saying that
homology is a functor from the category of topological spaces to the category
of abelian groups.

Theorem 4.5.2. Let X, Y and Z be triangulable spaces. Let f : X → Y and
g : Y → Z be continuous functions. Then there are group homomorphisms f∗r,
g∗r such that (g ◦f)∗r = g∗r ◦f∗r. Moreover, for the identity map idX : X → X
the associated group homomorphisms idX∗r are identity group homomorphisms.

Frequently, the above mentioned theorem helps us prove that spaces can
not be homeomorphic by showing that the corresponding homology groups can
not be isomorphic.

4.6 Computation of Homology Groups Of Surfaces

In this section, we see some computations of homology groups associated to
surfaces. These examples illustrate the power of homology theory. The reader
is encouraged to do more computations as it will help develop the geometric
intuition and insight into ideas of homology theory.

4.6.1 The Cylinder

We consider the following triangulation given in Fig. 4.3 for the compact cylin-
der S1 × [0, 1]. Let us denote it by K.
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Figure 4.3: A triangulation K of the cylinder.

Now we observe that the 0-th chain group C0(K) is the abelian group
generated by the vertices v0, v1, v2, v3, v4, v5. Thus, we formally write

C0(K) = [v0]Z⊕ [v1]Z⊕ [v2]Z⊕ [v3]Z⊕ [v4]Z⊕ [v5]Z.

In other words C0(K) ∼= Z5. Similarly, we note that the chain group C1(K) is
generated by all the edges shown in the figure. Thus, we have

C1(K) = [v0, v1]Z⊕ [v0, v2]Z⊕ [v0, v3]Z⊕ [v0, v4]Z
⊕[v1, v3]Z⊕ [v1, v5]Z⊕ ...⊕ [v4, v5]Z.
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The group of 2-chains is generated by six triangles as shown in the above
diagram.

C2(K) = [v0, v1, v3]Z⊕ [v0, v2, v3]Z⊕ [v0, v4, v1]Z
⊕[v2, v3, v5]Z⊕ [v2, v5, v4]Z⊕ [v1, v4, v5]Z.

Let us now compute H0(K) which by definition C0(K) modulo B0(K).
By definition B1(K) is the subgroup of vertices that are boundaries of 1-chains.
We observe the following few examples

∂1([v0, v1]) = [v1]− [v0],

∂1([v3, v5]) = [v5]− [v3],

∂1([v4, v2]) = [v2]− [v4].

To summarize, the boundary of an oriented edge is the terminal vertex minus
the initial vertex of the oriented edge. Further, observe that if there is an
oriented path given by a sequence of oriented edges then the boundary of this
path is also the terminal vertex of the last edge in the sequence minus the initial
vertex of the first edge in the sequence as every other vertex appears twice but
with opposite sign.

Now, we see that the vertex v0 can be joined by an oriented path to any
other vertex in K. Thus, H0(K) = [v0]Z. Later, we will see that H0 is a measure
of connectedness of the underlying space. Let us now turn our attention to
H1(K). By definition, H1 is the group of 1-cycles modulo 1-boundaries. Now,
1-cycles are elements in C1(K) that get mapped to zero under the boundary
map. Thus, formally we set the following equation

∂1(m1[v0, v1] +m2[v0, v2] +m3[v0, v3] +m4[v0, v4] + · · ·+m12[v5, v4]) = 0,(4.1)

where m1,m2, . . . ,m12 are integers. There are twelve edges in K (see Fig. 4.3).
Reading off the coefficients of each vertex and setting it equal to zero, we get
a system of five linear equations. For examples, the coefficient of the vertex v0

gives the following equation

−m1 −m2 −m3 −m4 = 0.

Solutions of the above system of equations gives all possible 1-cycles. There
is a more geometric way to find out 1-cycles. In Fig. 4.4, we observe that the
oriented path [v0, v2] + [v2, v4] + [v4, v0] gives a closed loop (dotted lines). It is
easy to see that

∂1([v0, v2] + [v2, v4] + [v4, v0]) = 0.

There are many more loops formed by sequence of edges, for instance
[v0, v3] + [v3, v2] + [v2, v5] + [v5, v4] + [v4, v1] + [v1, v0] which gives a “zig-zag”
loop as shown in Fig. 4.4.

Now, we need to see which 1-cycles differ by 1-boundaries. We observe
that the 1-cycles given by [v0, v2] + [v2, v4] + [v4, v0] and [v0, v3] + [v3, v2] +
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Figure 4.4: Two possible closed paths for the triangulation of Fig. 4.3: one along
the dotted lines, and one along the zig-zag dashed lines.

[v2, v4] + [v4, v0] (check that these are indeed 1-cycles!) differ by a 1-boundary,
viz., ∂2[v0, v3, v2]. We write

([v0, v3] + [v3, v2] + [v2, v4] + [v4, v0])− ([v0, v2] + [v2, v4] + [v4, v0])

= [v0, v3] + [v3, v2]− [v0, v2] = ∂2([v0, v3, v2]).

Further observation suggests that any two 1-cycles will differ by 1-
boundaries. To see this, one needs two find out triangles in K that form the dif-
ference of given two 1-cycles. Thus, there is only one 1-cycle upto 1-boundaries.
The reader is encouraged to verify the claim that H1(K) ∼= Z.

Now, to compute H2(K) we need to see only 2-cycles as there are no
non-trivial 2-boundaries (There are no non-trivial 3-chains). We notice that
there are six triangles that generate C2(K). We set the equation for finding out
2-cycles as before

∂2

(
n1[v0, v1, v3] + n2[v0, v3, v2] + n3[v2, v3, v5]

+n4[v2, v5, v4] + n5[v4, v5, v1] + n6[v0, v4, v1]
)

= 0.

Again reading off the coefficients of edges and equating them to zero, we
get twelve equations. The solution space gives all possible 2-cycles. However,
there is a more geometric way to find out 2-cycles. First observe that if there is
an edge shared by exactly two triangles then the edge gets opposite orientations
from the two triangles then it is cancelled by the boundary map if and only
if both the triangles appear with the same coefficient. For example, the edge
[v0, v1] is shared by exactly two (oriented) triangles namely, [v0, v1, v3] and
[v1, v0, v4]. Thus, we have n4 = n6 from the above equation.

Observe that each of the edges [v1, v3], [v3, v5], [v5, v1], [v0, v2], [v2, v4], [v4, v0]
in K belongs to only one triangle. Each of the six triangles in K contains
precisely one edge from this list. Thus, in the boundary computation, the
coefficient of each triangle must be equal to zero in order to get a 2-cycle.
Thus, the element 0 is the only 2-cycle. Hence H2(K) = 0.
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4.6.2 Torus

The torus T can be obtained as the quotient space of a rectangle with opposite
sides identified in a manner that preserves orientations on them. Thus, we can
triangulate the torus as shown in the Fig. 4.5.

Instead of going through the tedious computations, we argue geometrically
to compute the homology groups of torus T .
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Figure 4.5: A triangulation of the torus T .

We first observe that all the homology groups for Hr(T ) = 0 for r ≥ 3 as
there are no non-trivial r-chains for r ≥ 3. Next, recall that H0(T ) = C0/B0.
Again any two vertices can be joined by an oriented path. Therefore, there is
only one 0-cycle upto 0-boundaries. Hence, H0(T ) ∼= Z.

There are eighteen triangles in the above diagram. To get a 2-cycle, we
observe that each edge is shared by precisely two adjacent triangles. Thus, the
coefficients of these triangles must be the same for cancellations to take place.
Any two triangles can be joined by a sequence of adjacent triangles. Therefore,
the coefficients of all triangles must be the same. This shows that the subgroup
of 2-cycles is generated by the cycle that is obtained by taking the sum of all
(oriented) triangles as shown in the diagram. Thus, H2(T ) ∼= Z.

To compute H1(T ), first we look for closed loops formed by sequences of
oriented edges. Evidently, [v0, v1]+[v1, v2]+[v2, v0] and [v0, v3]+[v3, v4]+[v4, v0]
are 1-cycles. We denote them by α and β respectively. We claim that these two
1-cycles are linearly independent and do not differ by a 1-boundary. A geometric
way of arriving at this statement is to observe that the two 1-cycles do not form
the boundary (as in the usual sense) of any combination of triangles. The reader
can verify this fact and may support it with a rigorous argument.

There are many more (in fact, infinitely many!) 1-cycles that can be seen
in Fig. 4.5. For example, [v0, v7]+ [v7, v6]+ [v6, v0] is another 1-cycle. We notice
that any 1-cycle containing the vertex v0 differs from a linear combination of
α and β by a 1-boundary. More explicitly, if a 1-cycle effectively (considering
orientations) covers m horizontal and n vertical loops then it differs by a 1-
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boundary with the 1-cycle mα+nβ. For example the 1-cycle [v0, v7]+ [v7, v6]+
[v6, v0] covers the horizontal and vertical loops exactly once. Hence, it differs by
a 1-boundary with α+ β. The 1-boundary in this case is the image, under ∂2,
of sum of all triangles in upper half portion above the 1-cycle [v0, v7]+[v7, v6]+
[v6, v0].

From the discussion above it follows that H1(T ) = αZ⊕ βZ.

4.6.3 The Projective Plane

The projective plane is obtained by taking a closed unit disk in the plane and
identifying diametrically opposite points on the boundary circle. The resulting
topological space can not be given an orientation. We consider the triangulation
shown in Fig. 4.6 for the projective plane.
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Figure 4.6: A triangulation of RP 2

By now, an alert reader might have acquired a geometric feel for guessing
the homology groups and supporting the guesses with rigorous arguments.

First, observe that Hr(RP 2) = 0 for r ≥ 3 as there are no non-trivial
chains in dimension greater than or equal to three. Now H0(RP 2) ∼= Z as all the
vertices can be connected by a path of edges. Next, we note that H2(RP 2) = 0
as any edge is shared by precisely two adjacent triangles. Further, any two
triangles can be joined by a sequence of adjacent triangles. Therefore, the co-
efficients must be the same for cancellations to happen along non-peripheral
edges. The coefficients along the peripheral edges [v0, v1], [v1, v2] and [v2, v0]
get added instead of cancelling. This is due to the identification along the
boundary. Therefore, one may argue that the only 2-cycle is the trivial 2-cycle
(the element 0). Hence H2(RP 2) = 0.

Now for H1(RP 2), first observe that [v0, v1]+ [v1, v2]+ [v2, v0] is a 1-cycle.
We denote it by α. Notice that 2([v0, v1] + [v1, v2] + [v2, v0]), the geometric
boundary of the disk is the boundary (image under the boundary map ∂2) of
sum of all triangles in the figure. Thus, 2α = 0 in H1. Any loop formed by a
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sequence of non-peripheral edges (or 1-cycle) differs by a 1-boundary with the
l-cycle 2α. Thus, it must be the 0 element in H1(RP 2). The only non-trivial
element in H1 is α with the property that 2α = 0. Hence, H1(RP 2) = Z/2Z.

4.7 Some Remarks and Conclusion

As the reader may have noticed some common features and some differences in
the above computations. We state the following facts without proof.

Theorem 4.7.1. Let X be connected triangulable topological space. Then
H0(X) ∼= Z. More generally, if X is not connected then H0(X) has rank equal
to the number of connected components of X.

Theorem 4.7.2. If topological spaces X and Y are homeomorphic then Hr(X) ∼=
Hr(Y ) for all r.

As a corollary, we note that if the homology groups of the two given spaces
are not isomorphic then the spaces can not be homeomorphic. This is useful in
the following instance.

Theorem 4.7.3. Let Sn denote the n-dimensional unit sphere centered at the
origin in Euclidean space Rn+1. Then Hi(S

n) = Z for i = 0, n, and Hi(S
n) = 0

otherwise.

Proof. Here we give a sketch of a proof. We leave the details to be filled by the
reader. First observe that Sn has a triangulation given by the boundary of the
n-dimensional regular polyhedron. Using this triangulation, one concludes that
Hi(S

n) = Z when i = 0, n. If 0 < i < n, observe that every i-chain is an i-
boundary. One can “see” that this is an n-dimensional regular polyhedron. �

Corollary 4.7.4. Rn is homeomorphic to Rm if and only if m = n.

Proof. When m = n the statement is obviously true. To prove the converse
assume that Rn and Rm are homeomorphic via a homeomorphism h. Then it
follows that Rn −{0} is homeomorphic to Rm −{0} (to get a homeomorphism
bring the point h(0) to the origin 0 in Rm by an appropriate translation). We
now use that fact that Sk−1 is a deformation retract1 of Rk − {0} for k ≥ 1.
Therefore, Hi(S

k−1) ∼= Hi(Rk). The reader is encouraged to look at the notion
of deformation retract and its relation to homology groups from Refs. [2], [3]
and [1]. Now, it follows from Theorem 4.7.3 that m = n. �

The above corollary completely answers Question 4.1.1 when X and Y
are Euclidean spaces.

In conclusion, homology theory is a useful tool to distinguish topological
spaces. Moreover, the power of homology theory lies in the fact that homology
groups can be computed in many situations.

1We may recall (see Example 3.4.6) that a map h(t, x) = (1− t)x+ tx/|x|, t ∈ [0, 1] takes
any point x ∈ Rk−{0} to a point on the unit sphere Sk−1. Here |x| is the length of vector x.
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The author would like to point out that these notes are merely an intro-
duction to (simplicial) homology theory. Interested reader may refer to Refs. [2]
and [1].
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5

Differential Topology and Differential
Geometry

Kingshook Biswas and Soma Maity

In the first part of this chapter, we give a brief introduction to
Smooth Manifolds and Differential Forms following mainly the text
of Arnold (“Mathematical Methods of Classical Mechanics”).
In the second part, we start with the definitions of Riemannian met-
rics, connections and curvatures on open sets of Euclidean spaces,
and then give a brief introduction of those on smooth manifolds.

I A Brief Introduction to Manifolds and Differential Forms

5.1 Introduction: Smooth Manifolds, Tangent Spaces,

Derivatives

A manifold is a topological space formed by patching together pieces of Rn by
differentiable maps, to which the usual concepts from multivariable calculus,
such as vector fields, line and surface integrals generalize. The formal definition
is:

Definition 5.1.1. A C∞ (or smooth) n-manifold is a second countable, Haus-
dorff topological space M together with a collection of pairs {(Ui, φi)i∈I} called
charts, where the sets {Ui}i∈I form an open cover of M , each φi is a homeomor-
phism from Ui onto an open set Vi in Rn, and whenever Ui and Uj intersect,
the map φj ◦ φ−1

i : φi(Ui ∩ Uj) ⊂ Rn → φj(Ui ∩ Uj) ⊂ Rn is C∞ or “smooth”
(partial derivatives of all orders exist).

The collection of charts is called an atlas, while the real-valued functions
x1, . . . , xn such that φi = (x1, . . . , xn) are called local coordinates.
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A manifold is locally homeomorphic to Rn, and can be thought of as
formed by patching together the open subsets Vi ⊂ Rn smoothly by the maps
φj ◦ φ−1

i .
A function on a manifold f : M → R is called smooth if near each point

it is smooth as a function of the local coordinates near the point (the function
f ◦ φ−1 is smooth for any chart φ on M). The smooth functions on a manifold
form a ring, denoted by C∞(M), which is useful in defining many concepts
from calculus in an intrinsic manner on manifolds without having to resort to
local coordinates.

A map between manifolds f : M → N is said to be smooth if when
expressed in local coordinates on M and N it is smooth as a map between
Rn and Rm (all maps ψ ◦ f ◦ φ−1 are smooth, where φ, ψ are charts on M,N
respectively). A smooth map f : M → N is called a diffeomorphism if it
has a smooth inverse; we say then that M and N are diffeomorphic. The set of
diffeomorphisms from a manifold M to itself forms a group denoted by Diff(M).

5.1.1 Examples of manifolds

1. Rn, with atlas consisting of the single chart (Rn, id).
2. The unit circle S1 ⊂ R2, with atlas consisting of two charts giving the usual
angular coordinate,

θ1 : S1 − {(−1, 0)} → (−π, π), θ2 : S1 − {(1, 0)} → (0, 2π).

3. The unit sphere S2 ⊂ R3, with atlas consisting of two charts given by
stereographic projections from the North Pole N = (0, 0, 1) and South Pole
S = (0, 0,−1) respectively,

φ1 : S2 − {N} → R2, φ2 : S2 − {P} → R2.

The same construction works for the n-sphere Sn ⊂ Rn+1.
4. The two-torus T 2 = S1 × S1 ⊂ R4, with atlas consisting of 4 charts

U1 × U1 → (−π, π)× (−π, π),

U1 × U2 → (−π, π)× (0, 2π),

U2 × U2 → (0, 2π)× (0, 2π),

U2 × U1 → (0, 2π)× (−π, π),

giving the two angular coordinates on the torus, where

U1 = S1 − {(−1, 0)}, U2 = S1 − {(1, 0)}.

Similarly the Cartesian product M ×N of two manifolds M,N is a man-
ifold with charts φ× ψ : U × V → Rm × Rn, where (U, φ), (V, ψ) are charts on
M,N respectively.
Remark. While all the examples above are embedded in Euclidean spaces, and
it is a well-known theorem (Whitney Embedding Theorem) that in fact any
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smooth n-manifold may be smoothly embedded into R2n+1, in practice mani-
folds often arise as abstract quotient spaces, as in the following two examples.
5. The two-torus may also be described as a quotient space C/L, where
L = Z ·ω1⊕Z ·ω2 is a discrete subgroup of C generated by two R-linearly inde-
pendent vectors ω1, ω2. We can think of this torus as obtained by identifying by
translations opposite sides of a parallelogram with vertices 0, ω1, ω1 +ω2, ω2. If
q : C→ C/L is the quotient map, then q is a local homeomorphism and charts
on C/L are given by local inverses s : U ⊂ C/L → C of q, with changes of
charts being given by translations of the form z 7→ z + ω, ω ∈ L.
6. If M is a manifold and Γ is a discrete subgroup of Diff(M) such that the
quotient map q : M → M/Γ is a covering map, then M/Γ is a manifold.
Charts on M/Γ are given by composing charts on M with local inverses of q,
U ⊂M/Γ→ V ⊂M → Rn.

5.1.2 Manifolds as configuration spaces of mechanical systems

The configuration spaces of many mechanical systems are often manifolds. We
give some examples below, taken from Arnold’s book.
Example 1. The configuration space of a planar pendulum is the circle S1.
Example 2. The configuration space of the “spherical” mathematical pendulum
is the two-sphere S2.
Example 3. The configuration space of a “planar double pendulum” is the two
torus T 2.

φ

φ

φ

1

2

Figure 5.1: Planar, spherical and double planar pendulums

Example 4. The configuration space of a spherical double pendulum is the
Cartesian product of two spheres S2 × S2.
Example 5. The configuration space of a rigid line segment in the (q1, q2)-plane
is the manifold R2 × S1 with coordinates q1, q2, q3.
Example 6. A rigid right-angled triangle OAB moves around the vertex O in
R3. The position of the triangle is completely described by an orthogonal right-
handed frame ~e1 = OA/|OA|, ~e2 = OB/|OB|, ~e3 = ~e1 × ~e2, or equivalently by
the 3× 3 orthogonal matrix [~e1|~e2|~e3] with determinant +1. The configuration
space of the triangle OAB is the group SO(3) of such matrices, which is a
3-manifold.
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Figure 5.2: Configuration space of a segment in the plane

Figure 5.3: Configuration space of a right-angled triangle OAB

5.1.3 Tangent spaces and derivatives

Just as smooth curves in R or surfaces in R3 have at each point a tangent line
or tangent plane, to each point x of a k-manifold M embedded in Rn one can
associate a k-dimensional subspace TxM of Rn, called the tangent space to M
at p. The vector space TxM can be described as the set of velocities γ̇(0) of
smooth curves γ in M passing through x at time 0.

For an abstract manifold without a given embedding into Euclidean space,
such as those defined as quotient spaces, it is not immediately clear however
how to define tangent spaces. While the Whitney Embedding Theorem ensures
that any smooth manifold may be embedded into some Euclidean space, it is
useful (and aesthetically satisfying) to have a definition of the tangent space
TpM as an abstract vector space defined intrinsically independent of the choice
of an embedding into Euclidean space. We give two definitions, one geometric
and the other algebraic.

Geometric definition of tangent spaces and differentials

The geometric definition of tangent spaces is based on the intuitive notion of
tangent vectors to a point x being velocities of smooth curves passing through
x.

q

q

q

1

3

2
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We say that two curves γ1, γ2 in Rn passing through the same point x at
time t = 0 have first-order contact at x if γ1(t)−γ2(t) = o(t) as t→ 0. Similarly
one could define a relation of having kth-order contact at x by requiring that
γ1(t)− γ2(t) = o(tk) as t→ 0.

Then it is easy to see that the relation of first-order contact is an equiva-
lence relation on the set of curves passing through x at time t = 0, which, in the
case where the curves are smooth, is equivalent to both curves having the same
velocity at time t = 0, γ̇1(0) = γ̇2(0) (while k-th order contact is equivalent to
the first k derivatives at time t = 0 being equal).

For curves γ1, γ2 passing through a point x of an n-manifold M at time
t = 0, we say they have first-order contact at x if this is true when viewed in
some chart near p (the curves φ◦γ1, φ◦γ2 have first-order contact at φ(x) ∈ Rn,
where φ is a chart near x). This gives an equivalence relation on curves passing
through x which is independent of the choice of chart (because the changes of
charts are smooth maps).

Definition 5.1.2 (Geometric definition of tangent space). Let M be a smooth
manifold and let x ∈M . The tangent space to x at M , denoted by TxM , is the
set of equivalence classes [γ] of smooth curves γ passing through x under the
relation of first-order contact at x.

While this defines the tangent space as a set, to give it the structure of
a vector space, we can choose any chart chart φ near x, then the map dφx :=
([γ] 7→ ˙φ ◦ γ(0)) gives a bijection between TxM and the vector space Rn, so
we can use the addition and scalar multiplication on Rn to define the addition
and scalar multiplication in TxM (for example, [γ1] + [γ2] := [γ3] if dφx([γ1]) +
dφx([γ2]) = dφx([γ3]) in Rn). This vector space structure is independent of the
choice of chart φ because the changes of charts are smooth; if ψ is another chart
near x, then the two bijections dφx : TxM → Rn and dψx : TxM → Rn are
related by the linear map dη : Rn → Rn where η is the change of charts.

With this vector space structure the map dφx : TxM → Rn becomes a
linear isomorphism, so TxM is a vector space of dimension n.

We can give a geometric definition of the derivative dfx of a smooth map
f : M → N between manifolds at a point x:

Definition 5.1.3 (Geometric definition of derivative). Given a smooth map be-
tween manifolds f : Mm → Nn, the derivative of f at a point x of M , denoted
by dfx or f∗x, is the map

dfx : TxM → TyN

[γ] 7→ [f ◦ γ]

where y = f(x) ∈ N .

If φ, ψ are charts near x, y respectively, and f̂ is the smooth map ψ◦f ◦φ−1

from Rm to Rn given by the expression of f in these charts, then dψy ◦ dfx ◦
(dφx)−1 is given by the linear map df̂φ(x) from Rm to Rn. From the definition
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Figure 5.4: Derivative of a smooth map

of the vector space structures on TxM,TyN it follows that dfx is a linear map.
Moreover it is easy to see that the Chain Rule d(g ◦ f)x = dgy ◦ dfx holds for
smooth maps between manifolds.

While the geometric definitions of tangent spaces and derivatives of
smooth maps are aesthetically satisfying, for practical purposes the algebraic
definition, which we give in the next section, is the one commonly used for
computations.

Algebraic definition of tangent spaces

The algebraic definition of tangent spaces is based on the idea of tangent vectors
to a point p being directions along which one can compute derivatives of smooth
functions near p.

For a point p in Rn, let C∞(p) be the set of smooth functions f defined
in some neighbourhood of p, modulo the equivalence relation f ∼ g if f = g on
some neighbourhood of p. This forms a ring called the ring of germs of smooth
functions at p. Any vector v in Rn gives a map ∂v : C∞(p)→ R by taking the
directional derivative of a function f in the direction v,

(∂vf)(p) = lim
t→0

f(p+ tv)− f(p)

t

This map is linear and satisfies the Leibniz (or product) rule,

(∂vf · g)(p) = (∂vf)(p)g(p) + f(p)(∂vg)(p)

Conversely any map l : C∞(p)→ R which is linear and satisfies Leibniz rule is
of the form ∂v for a unique vector v.

For a point p of a manifold M , we can define similarly the ring C∞(p) of
germs of smooth functions near p.
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Definition 5.1.4 (Algebraic definition of tangent space). Let M be a manifold
and let p ∈ M . The tangent space to p at M , denoted TpM , is defined to be
the set of linear maps l : C∞(p) → R which satisfy Leibniz rule, l(f · g) =
l(f)g(p) + f(p)l(g).

In this case it is clear that TpM forms a vector space, and from the remarks
of the previous paragraph, v 7→ ∂v gives an isomorphism between Rn and TpRn
for any p ∈ Rn.

Definition 5.1.5 (Algebraic definition of derivative). Let f : M → N be a
smooth map between manifolds and let p ∈ M, q = f(p) ∈ N . Then f induces
a linear map f∗ : C∞(q) → C∞(p), u 7→ u ◦ f . The derivative of f at p is the
map

dfp : TpM → TqN

l 7→ l ◦ f∗

It is clear in this case that dfp is a linear map. Choosing a chart φ =
(x1, . . . , xn) near p with φ(p) = q, the map dφp : TpM → TqRn ' Rn is an
isomorphism, so that TpM is an n-dimensional real vector space, with basis
given by { ∂

∂x1
, . . . , ∂

∂xn
}, where

∂

∂xi
: C∞(p)→ R

u 7→ ∂

∂xi
u ◦ φ−1(q)

In this case as well the Chain Rule holds, and there is a natural iso-
morphism between the geometric and algebraic definitions of tangent spaces,
[γ]→ lγ , where lγ : C∞(p)→ R, u 7→ d

dt |t=0
(u ◦ γ). For the remainder of these

notes we shall only be using the algebraic definition of tangent spaces however.
In what follows, the dual space to the tangent space, T ∗pM , called the

cotangent space to M at p, will play an important role. Note that for any real
valued function f on M , its derivative at p dfp : TpM → Tf(p)R ' R gives
an element of the cotangent space T ∗pM . If x1, . . . , xn are local coordinates

near p, then the dual basis to the basis { ∂
∂x1

, . . . , ∂
∂xn
} of TpM is given by the

derivatives {dx1, . . . , dxn} of the coordinate functions, and the derivative of a
smooth function f is given by

df =
∑

i

∂f

∂xi
dxi

5.1.4 Tangent bundle, vector fields and flows

The notion of vector fields on manifolds formalizes the idea of force fields acting
on configuration spaces of mechanical systems.
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Definition 5.1.6 (Tangent bundle). Let M be a smooth manifold. The tangent
bundle of M , denoted by TM , is given as a set by the disjoint union of the
tangent spaces,

TM =
⋃

p∈M
TpM

The tangent bundle comes equipped with a map π : TM →M which sends
a tangent vector v to the point p at which it is based, so that π−1(p) = TpM .
The tangent bundle can be given the structure of a smooth vector bundle of
rank n as follows:

Given a chart (U, φ = (x1, . . . , xn)) of an atlas for M , we have a bijection

Tφ : π−1(U)→ U × Rn

v =
∑

i

vi

(
∂

∂xi

)

p

7→ (p = π(v), dφp(v) = (v1, . . . , vn))

The bijections Tφ define bundle charts on TM . If (V, ψ) is another chart
for M with U ∩ V = W , let η = ψ ◦ φ−1 be the change of charts map. Then by
the Chain Rule dη ◦ dφ = dψ, so that the bijections Tφ and Tψ are related on
π−1(W ) by

Tψ = (idW × dη) ◦ Tφ
so that the transition function for the bundle TM is given by p ∈W 7→ dηφ(p)

which is smooth. Thus TM has the structure of a smooth vector bundle of rank
n over M , and in particular is a smooth manifold of dimension 2n.

Definition 5.1.7 (Vector field). A vector field on a manifold M is a smooth
section X of the vector bundle TM → M , in other words a smooth map
X : M → TM such that X(p) ∈ TpM for all p (or π ◦X = idM ).

Concretely, a vector field is given by a smooth assignment to each point
p of a tangent vector X(p) based at that point. In terms of local coordinates
x1, . . . , xn it can be written locally as

X(p) =
∑

i

ai(p)

(
∂

∂xi

)

p

where a1, . . . , an are smooth functions. A vector field on M determines integral
curves and a local flow (1-parameter group of diffeomorphisms) on M :

Definition 5.1.8 (Integral curves). A smooth curve γ in M is an integral curve
of a vector field X if

d

dt
γ = X(γ(t)) ∈ Tγ(t)M

for all t.

In terms of local coordinates if γ is given by n functions of t, γ(t) =
(x1(t), . . . , xn(t)), then the above equation is equivalent to a system of first-
order ODEs:

x′i(t) = ai(x1(t), . . . , xn(t)) i = 1, . . . , n
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and hence for any p in M , by the Existence-Uniqueness Theorem for ODEs for
ε > 0 small enough there is a unique integral curve γ : (−ε, ε) → M satisfying
the initial condition γ(0) = p. A vector field is called complete if all integral
curves are defined for all time. For example any vector field on a compact
manifold is complete.

Definition 5.1.9 (Flow of a vector field). The flow of a complete vector field X
is the 1-parameter family of maps φt : M →M,p 7→ γ(t), where γ is the unique
integral curve of X satisfying γ(0) = p.

If t 7→ γ(t) is an integral curve then so is t 7→ γ(s+ t) for any fixed s, and
it then follows easily from the uniqueness of integral curves that φt ◦φs = φs+t
for all t, s, thus the maps φt form a 1-parameter group of diffeomorphisms of
M . Elements of the flow are often denoted by exp(tX).

5.2 Differential forms, wedge products and exterior derivative

Differential forms on manifolds provide a way of formalizing the traditional ‘in-
finitesimal’ quantities of calculus such as ‘line elements’ dx, ‘surface elements’
dxdy, ‘volume elements’ dxdydz, etc. On a manifold, 1-forms are to represent in-
finitesimal quantities which one should be able to integrate over smooth curves
in the manifold, 2-forms infinitesimal quantities which one should be able to
integrate over smooth surfaces in the manifold, and so on. For example work
done by a force field along a curve γ should be given by the integral of a 1-form
over γ, flux of a fluid through a surface S should be given by the integral of a
2-form over S.

A k-form ω, supposed to represent a notion of infinitesimal oriented k-
dimensional volume, should be a function (v1, . . . , vk) 7→ ω(v1, . . . , vk) of ‘in-
finitesimal parallelepipeds’ with sides v1, . . . , vk which are tangent vectors based
at a point p, which should be linear as a function of each side vj when the others
are fixed (being a notion of volume), and which should change sign if the order
of two sides vi, vj is interchanged (being a notion of oriented volume). This
should remind the reader of k-dimensional determinants, which are functions
of k vectors satisfying these properties.

5.2.1 Multilinear forms, alternating forms, tensor products, wedge

products

Let V be an n-dimensional real vector space, with a basis {e1, . . . , en}. Let V ∗

be the dual space of V with dual basis {e∗1, . . . , e∗n} (the example to keep in mind
for what follows is V = TpM and V ∗ = T ∗pM with bases {e1 = ∂

∂x1
, . . . , en =

∂
∂xn
} and {e∗1 = dx1, . . . , e

∗
n = dxn}).

Definition 5.2.1 (Multilinear and alternating k-forms). For k ≥ 0, a multilinear
k-form on V is a real-valued function on the Cartesian product of V with itself
k times, ω : V ×· · ·×V → R, such that ω is linear as a function of each variable
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vi ∈ V when the other (k−1) are fixed (if k = 0 then ω is a scalar, and if k = 1
then ω is simply a linear functional on V ).

An alternating k-form on V is a multilinear k-form ω which changes sign
when the order of two vectors vi, vj is reversed:

ω(v1, . . . , vi, . . . , vj , . . . , vk) = −ω(v1, . . . , vj , . . . , vi, . . . , vk)

The set of multilinear and alternating k-forms on V form vector spaces which
we shall denote by V ∗⊗k and ∧kV ∗ (these spaces are special cases for the
vector space V ∗ of general constructions for vector spaces, namely k-fold tensor
products and wedge products, but we will not be requiring these notions in full
generality).

There is a natural bilinear product (α, β) 7→ α ⊗ β on the direct sum of
the spaces V ∗⊗k which gives a (k+ l)-multilinear form α⊗β from multilinear k
and l-forms α, β, and turns this direct sum into an R-algebra. We recall that a
k-algebra A is a vector space over a field k together with a multiplication that
makes it a ring, such that the ring multiplication and scalar multiplication are
compatible (α · (v ·w) = (αv) ·w = v · (αw), for all vectors v, w ∈ A and scalars
α ∈ k), such as the algebra of polynomials k[x] or the algebra of n×n matrices
Mn(k).

Definition 5.2.2 (Tensor product and tensor algebra of multilinear forms). The
tensor product of a multilinear k-form α and a multilinear l-form β is the
multilinear (k + l)-form α⊗ β defined by:

(α⊗ β)(v1, . . . , vk, w1, . . . , wl) := α(v1, . . . , vk)β(w1, . . . , wl)

The tensor algebra of multilinear forms, denoted by T (V ∗), is the direct sum of
the spaces of multilinear k-forms, T (V ∗) := ⊕∞k=0V

∗⊗k, together with the mul-
tiplication given by the tensor product ⊗ : V ∗⊗k × V ∗⊗l → V ∗⊗(k+l) extended
to T (V ∗) so as to be bilinear.

The symmetric group Sk of permutations σ of {1, . . . , k} acts linearly on
the space of multilinear k-forms by permuting the arguments of a multilinear
k-form ω:

(σ · ω)(v1, . . . , vk) := ω(vσ(1), . . . , vσ(k))

Since any permutation is a product of transpositions, the alternating k-
forms are precisely those which satisfy (σ ·ω) = sgn(σ)ω, where sgn(σ) denotes
the sign of the permutation σ. An alternating k-form may thus also be viewed
as a common fixed point for the group of linear maps Tσ : V ∗⊗k → V ∗⊗k, ω 7→
sgn(σ)(σ ·ω). A standard way to obtain a common fixed point for a finite group
of linear maps is to average over an orbit of the group. We thus define a linear
map

πalt : V ∗⊗k → ∧kV ∗

ω 7→ 1

k!

∑

σ∈Sk
Tσω =

1

k!

∑

σ∈Sk
sgn(σ)(σ · ω)
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The map πalt satisfies π2
alt = πalt, (πalt)|∧kV ∗ = id, and is in fact the

projection of V ∗⊗k onto the subspace ∧kV ∗ along the complementary subspace
of symmetric k-forms (the multilinear k-forms which are invariant under the
action of Sk). This allows us to define a bilinear product on alternating forms,
the wedge product:

Definition 5.2.3 (Wedge product and exterior algebra of alternating forms).
The wedge product of an alternating k-form α with an alternating l-form is the
alternating (k + l)-form α ∧ β defined by

(α ∧ β)(v1, . . . , vk, vk+1, . . . , vk+l)

:= (k + l)! πalt(α⊗ β)(v1, . . . , vk, vk+1, . . . , vk+l)

=
∑

σ∈Sk+l
sgn(σ)α(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+l))

The exterior algebra of alternating forms, denoted by A(V ∗), is the direct sum of
the spaces of alternating k-forms, A(V ∗) := ⊕∞k=0∧kV ∗, with the multiplication
given by the wedge product ∧ : ∧kV ∗×∧lV ∗ → ∧k+lV ∗ extended to A(V ∗) so
as to be bilinear.

The reason for the factor (k+l)! is so that the wedge product may be inter-
preted as a sum of oriented volumes. For example, given k 1-forms ω1, . . . , ωk,
the wedge product ω1∧· · ·∧ωk acting on a k-tuple of vectors (v1, . . . , vk) turns
out to be given by the following determinant:

(ω1 ∧ · · · ∧ ωk)(v1, . . . , vk) =

∣∣∣∣∣∣∣∣∣

ω1(v1) ω1(v2) . . . ω1(vk)
ω2(v1) ω2(v2) . . . ω2(vk)

...
...

. . .
...

ωk(v1) ωk(v2) . . . ωk(vk)

∣∣∣∣∣∣∣∣∣

which is the oriented volume of the parallelepiped with sides T (v1), . . . , T (vk) in
Rk, where T : V → Rk is the linear map defined by T (v) = (ω1(v), . . . , ωk(v)).

For the remainder of these notes we shall refer to alternating k-forms
simply as k-forms. Any k-form is determined by its value on k-tuples of the
form (ei1 , . . . , eik) where 1 ≤ i1 ≤ · · · ≤ ik ≤ n. It follows that any k-form ω
can be written as

ω =
∑

1≤i1≤···≤ik≤n
ω(ei1 , . . . , eik)e∗i1 ∧ · · · ∧ e∗ik

since both sides above take the same value on such k-tuples. Moreover a basis
for ∧kV ∗ is given by {e∗i1 ∧ · · · ∧ e∗ik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n}, so the dimension

of ∧kV ∗ is

(
n
k

)
. We note that ∧nV ∗ is 1-dimensional, spanned by e∗1 ∧· · ·∧ e∗n;

when V = Rn and e1, . . . , en is the standard basis of Rn then e∗1 ∧ · · · ∧ e∗n is
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just the determinant, which is an alternating multilinear function of n column
vectors. We also note that ∧kV ∗ = {0} for k > n.

The wedge product is associative, distributive and skew-commutative: α∧
β = (−1)klβ ∧ α, where α is a k-form and β an l-form.

5.2.2 Differential forms on manifolds

Just as the tangent bundle TM has the structure of a smooth vector bundle over
M , so does the cotangent bundle T ∗M := ∪p∈MT ∗pM , as well as the kth exterior

power of the cotangent bundle, ∧kT ∗M := ∪p∈M ∧k T ∗pM , for 1 ≤ k ≤ n.

Definition 5.2.4 (k-form). A k-form on a manifold M is a smooth section of
the bundle ∧kT ∗M , in other words a smooth map ω : M → ∧kT ∗M such that
ω(p) ∈ ∧kT ∗pM for all p.

For example if f is a smooth function on M then its derivative df is a
1-form on M . In local coordinates, a k-form can be expressed as

ω =
∑

1≤i1≤···≤ik≤n
ai1...ikdxi1 ∧ · · · ∧ dxik

where the functions ai1...ik are smooth.

The wedge product of two forms is defined by taking the wedge product
pointwise in each exterior algebra A(T ∗pM), p ∈M . An important operation on
forms is the pull-back of forms:

Definition 5.2.5 (Pull-back of forms). Let f : M → N be a smooth map between
manifolds and let ω be a k-form on N . The pull-back of ω by f is the k-form
f∗ω on M whose action on vectors v1, . . . , vk ∈ TpM is given by

(f∗ω)p(v1, . . . , vk) := ωf(p)(dfp(v1), . . . , dfp(vk))

Note for a function u on N , f∗du = d(u◦f) by the Chain Rule. Pull-back
of forms commutes with wedge product, in the sense that f∗(α∧β) = f∗α∧f∗β.

5.2.3 Integration of differential forms

We follow closely Chapter 7, section 35 of Arnold’s book in this section.

To motivate the definition of integration of a k-form over a k-chain, we
first consider the integrals of 1-forms and 2-forms over curves and surfaces.

Integrals of 1-forms and 2-forms

Let ω be a 1-form on a manifold M and let γ : [a, b]→M be a smooth curve in
M . The integral

∫
γ
ω can be defined as a limit of sums of the 1-form ω acting

on tangent vectors ξi tangent to the curve γ, obtained as follows:
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Figure 5.5: Integral of a 1-form over a curve

Given a partition P = {ti} of [a, b], each increment ∆i = ti+1 − ti can be
viewed as a tangent vector in R based at the point ti, giving a tangent vector
ξi := dγti(∆i) ∈ Tγ(ti)M . The integral of ω over γ is then defined by

∫

γ

ω := lim
||P ||→0

∑

i

ω(ξi)

(where ||P || = maxi ∆i). The integral can also be viewed as a limit of Riemann

sums for the integral
∫ b
a
φ(t)dt of the function φ on [a, b] such that γ∗ω = φ(t)dt.

Similarly the integral
∫
σ
ω of a 2-form ω over a smooth parametrized

surface in M , σ : [a, b] × [c, d] → M , can be defined as a limit of sums of the
values of ω on ‘infinitesimal parallelograms’ formed by pairs of tangent vectors

ξ
(1)
ij , ξ

(2)
ij ∈ Tσ(si,tj)M where ξ

(1)
ij , ξ

(2)
ij are images under dσ(si,tj) of increments

∆
(1)
ij = (si+1 − si, 0),∆

(2)
ij = (0, tj+1 − tj), thought of as tangent vectors based

at the points (si, tj) where ||P || = {si}, ||Q|| = {tj} are partitions of [a, b], [c, d]
respectively:

∫

σ

ω := lim
||P ||,||Q||→0

∑

i,j

ω(ξ
(1)
ij , ξ

(2)
ij )

As in the case of the integral of a 1-form over a curve, the integral above
can be viewed as a limit of Riemann sums for the integral

∫
[a,b]×[c,d]

φ(s, t)dsdt

where φ is the function such that σ∗ω = φ(s, t)dsdt.

Here the parametrized surface σ plays the role of “path of integration”.
In the following section we describe how to generalize these definitions to the
case of k-forms on a manifold, where the “path of integration” will be given by
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Figure 5.6: Integral of a 2-form over a surface

a smooth map σ : D ⊂ Rk → M where D will be a k-dimensional, bounded,
convex polyhedron in Rk.

Integral of a k-form over a k-chain

We first need to recall the notion of orientation on a finite-dimensional real
vector space. The simplest example is that of R2, where an ordered frame
(~v, ~w) is said to be positively oriented if the angle going anti-clockwise from
~v to ~w is less than π, and negatively oriented if the angle is in between π
and 2π. These two cases correspond to the determinant of the matrix [~v|~w]
being positive and negative respectively. Equivalently, the ordered frame being
positively (respectively negatively ) oriented corresponds to the case when the
matrix [~v|~w] can (respectively cannot) be deformed into the identity matrix
through a continuous path ([~vt| ~wt])t∈[0,1] of matrices.

In general, for an n-dimensional real vector space V , the set of ordered
frames of V can be identified with the group GL(V ) of invertible linear maps
of V to itself after choosing one distinguished ordered basis ( ~e1, . . . , ~en), via
the bijective correspondence which associates to T ∈ GL(V ) the ordered basis

( ~T (e1), . . . , ~T (en)). The group GL(V ) has two connected components, which
are given by det−1(1), det−1(−1), where det : GL(V ) → R is the determinant
function. The space of ordered frames thus has two connected components, and
an orientation corresponds to a choice of one of these.

Definition 5.2.6 (Orientation). Let V be an n-dimensional real vector space.
Two ordered frames (~v1, . . . , ~vn), ( ~w1, . . . , ~wn) are declared equivalent if they lie
in the same connected component of the space of ordered frames, or equivalently
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D

k
R

Or

f

f (D)

M

Figure 5.7: A k-cell

if the invertible linear map T ∈ GL(V ) such that T (vi) = wi, i = 1, . . . , n has
positive determinant. An orientation on V is a choice of an equivalence class of
ordered frames.

On Rn the orientation given by the standard ordered basis ( ~e1, . . . , ~en)
will be called the standard orientation on Rn.

A convex polyhedron D in a real vector space V is a closed convex set
with nonempty interior given by the intersection of finitely many half-spaces
H1, . . . ,Hm, where each half-space is a set of the form Hi = {v ∈ V |li(v) ≤ 0},
li : V → R being a non-zero linear functional on V . We assume that no half-
space Hi is contained in any other half-space Hj , and that the faces Di = D∩Vi
of D are also polyhedra, where Vi is the subspace {v ∈ V |li(v) = 0}.
Definition 5.2.7 (Cell). Let M be an n-manifold and let 1 ≤ k ≤ n. A k-cell
is a triple σ = (D, f,Or) where D ⊂ V is a bounded, convex polyhedron in a
k-dimensional real vector space V , f : D →M is a smooth map, and Or is an
orientation on V .

Definition 5.2.8 (Integration of a form over a cell). Given a k-form ω and a
k-cell σ = (D, f,Or), the pull-back form f∗ω is a k-form on D ⊂ V and is
hence of the form φ(x) dx1 ∧ · · · ∧dxk for some smooth function φ on D, where
x1 = e∗1, . . . , xk = e∗k : V → R are linear coordinates on V dual to an ordered
basis (e1, . . . , en) of V giving the orientation Or. We define the integral of ω
over the cell σ to be ∫

σ

ω :=

∫

D

φdx1 . . . dxk

(where the integral on the right-hand side is given by the usual limit of Riemann
sums).

The integral as defined above is independent of the choice of coordinate
system x1, . . . , xn on V (this can be seen using the Change of Variables Formula
from multivariable calculus).
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Note that for the integral over a cube C = [0, 1]k in Rk, taking the parti-
tion {i/N : 0 ≤ i ≤ N} of [0, 1] divides the cube into Nk small cubes Ci where
i ∈ {0, . . . , N − 1}, and the integral can be written as a limit as N → ∞ of
sums of the form ∑

i

ω(ξ1
i , . . . , ξ

k
i )

where the tangent vectors ξ1
i , . . . , ξ

k
i are the images under df of the sides of Ci

at the vertex pi = i/N (the sides being thought of as tangent vectors based at
the point pi).

It will also be useful to consider chains, given by finite linear combinations
of cells.

Definition 5.2.9 (Chains). A k-chain c on M consists of a finite collection of
k cells σ1, . . . , σk together with associated multiplicities m1, . . . ,mk which are
integers, denoted by c = m1 ·σ1 + · · ·+mk ·σk, where for any cell σ = (D, f,Or)
the chain −1 · σ is identified with the cell σop = (D, f,Orop), Orop being the
opposite orientation to Op. In other words the set of k-chains is the free abelian
group Ck on the set of k-cells, modulo the relations σop = −1 · σ for all cells σ.

The integral of a k-form ω on a k-chain c =
∑
imiσi is defined by

∫

c

ω :=
∑

i

mi

∫

σi

ω

This defines a k-cochain, or a homomorphism from the group of k-chains
to R,

ω̂ : Ck → R

c 7→
∫

c

ω

The cochain ω̂ completely determines ω:

If ξ1, . . . , ξk are tangent vectors based at a point x of M , then we can define
a family of ‘shrinking’ curvilinear k-dimensional parallelepipeds Πε based at x
tangent to these vectors near x, by taking a smooth map f from Rk into M
such that f(0) = x and df0 maps the standard basis e1, . . . , ek to the vectors
ξ1, . . . , ξk, and letting Πε be the image under f of the k-dimensional cube with
side length ε, [0, ε]k in Rk based at 0 with sides parallel to e1, . . . , ek. Then one
can show that

ω(ξ1, . . . , ξk) = lim
ε→0

∫
Πε
ω

εk
= lim
ε→0

ω̂(Πε)

εk
− (∗)

(where by abuse of notation we write Πε for the k-cell given by [0, ε]k, f , and
the standard orientation on Rk).
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5.2.4 Boundary of a chain

Given a k-cell σ = (D, f,Or), one can define a (k − 1)-chain ∂σ called the
boundary of σ, given by “adding the faces of the polyhedron D with orientations
taken to be compatible with the orientation of D”, as follows:

Each face Di of the polyhedron D is a (k − 1)-dimensional polyhedron in
the vector space Vi. Restricting f to Di gives a smooth map fi := f|Di of Di

into M . We choose an orientation Ori on Vi which is “compatible” with the
orientation Or on D in the following sense:

Let ~n be an “outward” pointing normal vector on the face Di of the polyhe-
dron (so that li(~n) > 0). Choose the orientation Ori on Vi such that if it is given
by an ordered frame (~v1, . . . , ~vk−1), then the ordered frame (~n, ~v1, . . . , ~vk−1)
gives the orientation Or on V . We obtain a (k − 1)-cell σi := (Di, fi, Ori).

Definition 5.2.10 (Boundary of a chain). The boundary of a k-cell σ =
(D, f,Or), denoted by ∂σ is the (k−1)-chain given by the sum of the (k−1)-cells
σi defined above,

∂σ :=
∑

i

σi

The boundary map from k-cells to (k − 1)-chains then extends uniquely to a
homomorphism from the group Ck of k-chains to the group Ck−1 of (k − 1)-
chains, which we also denote by ∂.

For any chain c, one can show that

∂2c = 0

(“each cell in ∂2c occurs twice with opposite signs”).
Chains c such that ∂c = 0 are called cycles, while chains c which can be

written in the form ∂c′ for some chain c′ are called boundaries. Since ∂2 = 0,
every boundary is a cycle. The quotient group {k − cycles}/{k − boundaries}
is called the k-th homology group Hk(M,Z) of M with integer coefficients.
Similarly allowing chains

∑
i ri · σi with real coefficients ri one can define the

k-th homology group Hk(M,R) of M with real coefficients. It is a fact that
for a compact manifold, Hk(M,Z) is a finitely generated abelian group, while
Hk(M,R) is a finite dimensional real vector space, whose dimension βk is called
the kth Betti number of M .

5.2.5 Exterior derivative of differential forms

Let C∗k = Hom(Ck,R) be the group of k-cochains, then the boundary homo-
morphism ∂ : Ck+1 → Ck determines a dual homomorphism on cochains

∂∗ : C∗k → C∗k+1

η 7→ (∂∗η : c 7→ η(∂c))

Since any k-form ω is determined by the corresponding k-cochain ω̂, it is reason-
able to ask whether the (k+ 1)-cochain ∂∗ω̂ corresponds to some (k+ 1)-form.
It turns out that this is indeed the case:
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Theorem 5.2.11. (Existence of exterior derivative) Let ω be a k-form on a
smooth manifold M . Then there exists a unique (k+ 1) form called the exterior
derivative of ω, denoted by dω, such that for any ξ1, . . . , ξk+1 ∈ TxM ,

dω(ξ1, . . . , ξk+1) = lim
ε→0

∫
∂Πε

ω

εk+1
= lim
ε→0

(∂∗ω̂)(Πε)

εk+1
− (∗∗)

(where Πε is a (k + 1)-dimensional curvilinear parallelepiped corresponding to
the vectors ξ1, . . . , ξk+1 as defined above).

In local coordinates, if

ω =
∑

1≤i1≤···≤ik≤n
ai1...ikdxi1 ∧ · · · ∧ dxik ,

then
dω =

∑

1≤i1≤···≤ik≤n
dai1...ik ∧ dxi1 ∧ · · · ∧ dxik

Note if ω is a 0-form, in other words a function f , then the exterior
derivative coincides with the derivative df of the function. Moreover, ∂2 = 0
implies ∂∗2 = 0, and hence

d2 = 0

5.2.6 Stokes’ Theorem

Stokes’ theorem is a generalization to higher dimensions of the Fundamental
Theorem of Calculus, ∫ b

a

f ′(t)dt = f(b)− f(a).

Stokes’ Theorem asserts the integral of the exterior derivative of a form along
a chain (which corresponds to the left-hand side above) equals the integral of
the form along the boundary of the chain (which corresponds to the right-hand
side above):

Theorem 5.2.12. (Stokes’ Theorem). For any k-form ω on a manifold M and
any (k + 1)-chain c, ∫

c

dω =

∫

∂c

ω

By linearity it suffices to prove the Theorem for cells. We briefly sketch
the proof of Stokes’ Theorem for a curvilinear parallelepiped Π:

We may assume the curvilinear parallelepiped Π is given by a smooth
map f from the (k+1)-dimensional cube [0, 1]k+1 into M . Taking the partition
P = {i/n : 0 ≤ i ≤ N} of the interval [0, 1] gives a partition of the cube [0, 1]k+1

into Nk+1 small cubes of side length 1/N each, and hence gives Nk+1 small
curvilinear parallelepipeds Πi, where i = (i1, . . . , ik+1) with 0 ≤ i1, . . . , ik+1 ≤
(N − 1). Then ∫

∂Π

ω =
∑

i

∫

∂Πi
ω
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since the integrals over faces common to two small curvilinear parallelepipeds
cancel. As N → ∞, the integrals over the boundaries of the small curvilinear
parallelepipeds, are given, using (∗∗), by

∫

∂Πi
ω = dω(ξ

i
1, . . . , ξ

i
k+1) + o

((
1

N

)k+1
)

uniformly in i, thus

∫

∂Π

ω =
∑

i

∫

∂Πi
ω

=
∑

i

(
dω(ξ

i
1, . . . , ξ

i
k+1) + o

((
1

N

)k+1
))

=


∑

i

dω(ξ
i
1, . . . , ξ

i
k+1)


+ o(1),

and the first term on the right-hand side above we recognize as a Riemann sum
for the integral

∫
Π
dω, so letting N →∞ gives Stokes’ Theorem.

5.3 de Rham cohomology of smooth manifolds

Definition 5.3.1 (Exact and closed forms, de Rham cohomology). A k-form α
is called exact if it is of the form α = dβ for some (k− 1)-form β, and closed if
it satisfies dα = 0. Since d2 = 0, it follows that any exact form is closed. The
de Rham cohomology groups of M , denoted by Hk

dR(M), are defined to be the
quotient of the space of closed k-forms by the subspace of exact k-forms,

Hk
dR(M) := (Ker d : Ωk(M)→ Ωk+1(M))/(Im d : Ωk−1(M)→ Ωk(M))

5.3.1 Poincaré Lemma

Not all closed forms are exact, a well-known example being given by the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy,

on the punctured plane R2 − {0}, which is closed because locally it can be
written as dθ where θ is a local branch of the argument function, but it is not
exact because for the closed curve γ : t ∈ [0, 2π] 7→ (cos t, sin t) the integral

∫
γ
ω

equals 2π, whereas if ω were exact, equal to df for some function f , then we
would have ∫

γ

ω =

∫

γ

df = f(γ(2π))− f(γ(0)) = 0
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since γ is a closed curve.
As in the above example, any form which is locally exact will clearly be

closed. The Poincaré Lemma asserts that the converse is also true, namely
any form which is closed is locally exact. Since any point in a manifold has a
neighbourhood diffeomorphic to a ball in Rn, it suffices to prove the following:

Theorem 5.3.2. (Poincaré Lemma). Any closed k-form α on a ball B in Rn is
exact (there is a (k + 1)-form β on B such that α = dβ).

We give a brief sketch of the proof, using the “cone construction” on
chains:

Given a k-cell σ = (D, f,Or) in the ball B, we construct a cell pσ called
the “cone over σ”. Assume the ball B is centered at the origin in Rn,D ⊂
Rk × {1} ⊂ Rk+1 and Or is the standard orientation on Rk × {1}. Choose a
point x ∈ Rk × {0}. Let pD := {(1 − t)x + ty : t ∈ [0, 1], y ∈ D} ⊂ Rk+1

be the polyhedron given by joining all points of D to the point x by straight
lines. Extend the map f : D → B to a map pf : pD → B by defining pf :
(1−t)x+ty 7→ tf(y), so that pf|D = f and pf(x) = 0. Let pOr be the standard

orientation on Rk+1.

Definition 5.3.3 (Cone over a chain). The cone over the cell σ is defined to be
the (k+ 1)-cell pσ := (pD, pF, pOr). The cone map p on cells extends uniquely
to a homomorphism on chains, p : Ck → Ck+1. For a chain c, the chain pc is
called the cone over the chain c.

For example if we take a 1-cell given by a straight line segment L, the cone
over L is a triangle pL with one side equal to L and the other two sides given by
the cone on the boundary of L (which is the pair of endpoints of L) which occur
with orientations opposite to the orientations induced from the orientation on
the triangle pL, so the boundary of pL is given by ∂pL = L − p∂L. Similarly,
in general we have

∂ ◦ p = id− p ◦ ∂
on all k-chains. Then for the dual homomorphisms we have

p∗ ◦ ∂∗ = id− ∂∗ ◦ p∗

The dual homomorphism p∗ : C∗k → C∗k−1 on cochains can also be expressed,
like ∂∗, as an operation on forms, since for any (k − 1)-cell σ and any k-form
ω, the integral over the cell pσ can be written as an iterated integral,

p∗(ω̂)(σ) =

∫

pσ

ω

=

∫

σ

Pω

where the form Pω is a (k−1)-form whose value on vectors ξ1, . . . , ξk−1 ∈ TqRn
(where q ∈ B) is given by

(Pω)q(ξ1, . . . , ξk−1) =

∫ 1

0

ωtq(q, tξ1, . . . , tξk−1) dt
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From the relation p∗ ◦ ∂∗ = id − ∂∗ ◦ p∗, it follows that P ◦ d = id − d ◦ P on
Ωk(B), and hence if α is a closed form in B, then

α = d(Pα)

5.3.2 de Rham’s Theorem

As noted before, any k-form ω gives a k-cochain by integration on chains,
(c 7→

∫
c
ω). If the form is closed, then by Stokes’ Theorem, adding a k-boundary

∂c′ to c does not change the integral, since

∫

c+∂c′
ω =

∫

c

ω +

∫

∂c′
ω =

∫

c

ω +

∫

c′
dω =

∫

c

ω

(as dω = 0). Thus any closed form ω defines a linear map ω̂ : Hk(M,R) →
R, [c] 7→

∫
c
ω. Furthermore, adding an exact form dβ to ω does not change the

integral over a cycle either, since

∫

c

ω + dβ =

∫

c

ω +

∫

∂c

β =

∫

c

ω

(as ∂c = 0). It follows that we have a well-defined bilinear pairing Hk
dR(M) ×

Hk(M,R)→ R, ([ω], [c]) 7→
∫
c
ω. Then we have:

Theorem 5.3.4. (de Rham’s Theorem) The bilinear pairing Hk
dR(M) ×

Hk(M,R)→ R is nondegenerate.
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II An Introduction to Riemannian Geometry

“A geometry is a topological space where lines, circles, angles, triangles, dis-
tance, isometries, etc. are defined. The Euclidean Geometry we studied in school
is the most elementary geometry. It is based on 5 axioms introduced in “Ele-
ments” by Euclid in 300 B.C.

Euclid’s Axioms :

1. Given two points, there is a line segment connecting them.

2. Any line segment can be extended to a line.

3. Given a point and a positive real number, there is a circle with that point
as a center and the number as radius.

4. All right angles are congruent.

5. (Parallel postulate:) Given a line and a point not on the line there is at
most one line through the point that does not meet the given line.

Are these axioms mutually independent? It is easy to construct geome-
tries violating one of the first four axioms by taking suitable subspaces of the
Euclidean space. It was not easy to prove that the parallel postulate can’t be
derived from previous four postulates. This question leads to the construction
of a Non-Euclidean geometry.

5.4 A Non-Euclidean Geometry

Let Ω be an open connected subset of R2. For example, we can take Ω to be
the unit disc D defined by

D = {(x, y)|x2 + y2 < 1}.

A curve in Ω is a smooth function σ : [0, 1] → Ω

σ(t) = (σ1(t), σ2(t)),

where σi(t) : [0, 1] → R are differentiable functions. To define distance between
points in Ω, let us first define the length of a curve in Ω. The usual definition
of length is

l(σ) =

∫ 1

0

‖σ′(t)‖ dt,

where ‖v‖ = 〈v, v〉 1
2 .

Proposition. The formula for distance in the Euclidean space is

d(p, q) = ‖p− q‖

= inf
σ

∫ 1

0

‖σ′(t)‖ dt

= inf
σ

l(σ).
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Let γ be another curve which intersects σ. The angle between curves at
their point of intersection, γ(t0) = σ(t0), is the angle between γ′(t0) and σ′(t0)
which is

cos−1

( 〈γ′(t0), σ′(t0)〉
‖γ′(t0)‖‖σ′(t0)‖

)
.

So, the inner product between tangent vectors is an important quantity to
define distance, length and angle. We now change the inner product at each
point as follows.

Let f : Ω → (0,∞) be a positive smooth function. Then we can define a
new notion of inner product at the tangent space of a point p as follows:

〈v, w〉f := f(p)2〈v, w〉.

In particular,
‖v‖f = f(p)‖v‖.

Example 1: If we let f ≡ 1, we get the old inner product at each point.

Example 2: Ω = D, f(p) =
1

1− ‖p‖2 .

Let us see how the notions of length and angles change. The new length
is,

lf (σ) =

∫ 1

0

f(σ(t))‖σ′(t)‖dt,

and the angle α between v and w is

α = cos−1

( 〈v, w〉f
‖v‖f‖w‖f

)

= cos−1

( 〈v, w〉
‖v‖‖w‖

)
.

Therefore, the angle between two curves does not change whereas the length of
curves changes. To define distance between two points in Ω, we use Proposition
1, i.e.,

df (p, q) = inf
σ
lf (σ),

where σ is any curve joining p and q. If this infimum is realized by a smooth
curve, then the curve is called a geodesic (or a line segment). Hence, the
geodesics of R2 are straight lines.

Proposition. (Ω, df ) is a metric space, i.e.,
(i) df (p, q) ≥ 0 and df (p, q) = 0, iff p = q,
(ii) df (p, q) = df (q, p),
(iii) df (p, q) ≤ df (p, r) + df (r, q).

A line is an infinitely extended curve,

σ : (−∞,∞)→ Ω,
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such that σ is a geodesic between any two points on it. The circle with center
p and radius r is the set

{x ∈ Ω|df (p, x) = r}.

Next, we define congruence. In Euclidean space, two sets S1 and S2 are said
to be congruent if S2 can be obtained by translating and rotating S1. More
precisely, there is a point b ∈ R2 and a matrix

A =
[ cos θ sin θ
− sin θ cos θ

]
,

such that if
T (v) = A(v) + b,

then
T (S1) = T (S2),

i.e., T is an isometry (distance preserving function). Conversely,

Proposition. If φ : R2 → R2 is an isometry, then φ is of the form

φ(p) = A(p) + b.

Motivated by this fact, we say S1, S2 ⊂ Ω are congruent if there is an
isometry φ of (Ω, df ) with

φ(S1) = (S2).

Proposition. Let φ be an isometry of (Ω, df ) and σ be a curve joining two points
p and q in Ω.
(i) lf (φ ◦ σ) = lf (σ).
(ii) Let γ be another curve making an angle θ with σ at σ(t0) = γ(t0). Then
φ ◦ σ and φ ◦ γ makes the same angle θ at φ ◦ σ(t0) = φ ◦ γ(t0).

The proof is given in the next section.

5.4.1 Hyperbolic Geometry

The geometry on D defined by the function f(p) = 1
1−‖p‖2 (see Example 2) is

called Hyperbolic geometry. Geodesics in D are lines passing through the origin
and circles intersecting the boundary of D orthogonally.
Example 3: Consider the geodesic

σ(t) =

(
e2t − 1

e2t + 1
, 0

)
, t ∈ (−∞,∞).

If a(t) =
e2t − 1

e2t + 1
, then a′ = 1− a2. This implies,

‖σ′(t)‖f = 1.
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Therefore,

l(σ|[0,T ]) = T.

So, σ has infinite length.
Note that Euclidean norm of σ′ is

‖σ′(t)‖ =
4e2t

(e2t + 1)2
→ 0, as |t| → ∞.

However, because of the factor of [1 − ‖σ(t)‖]−2, we have

‖σ′(t)‖f = 1.

It is easy to see that the parallel postulate fails in Hyperbolic geometry.

Euclid’s axioms for hyperbolic geometry

1. Given two points in D, we can find a circle orthogonal to the boundary
connecting these two points.

2. Any geodesic can be extended to a line.

3. Circle exists.

4. Let σ1, σ2 and γ1, γ2 be pairs of infinite geodesics intersecting orthogo-
nally.

geodesic meeting γ1 orthogonally. Therefore, φ ◦ σ2 = γ2.

5. Failure of parallel postulate.

5.5 Riemannian Geometry

Let M be a smooth manifold with dimension n, and p be a point in it. There
exists a diffeomorphism φ from an open neighborhood U of p to an open neigh-
borhood V ⊂ Rn of the origin such that φ(p) = 0. A curve in U is a map
σ : (−ε, ε)→ U such that σ ◦ φ : (−ε, ε)→ Rn is smooth. Consider,

C = {σ : σ(0) = p}.

If (σ1 ◦ φ)′(0) = (σ2 ◦ φ)′(0) then σ1 ∼ σ2 for any σ1, σ2 ∈ C. This defines an
equivalence relation in C. The set of all equivalence classes is called the tangent
space at p and denoted by TpM.

Let v be a vector in Rn. There exists an ε > 0 such that tv ∈ V for all
t ∈ ε. Now define σ(t) = φ−1(tv) for all t ∈ ε. Hence σ is a curve passing
through p and (σ ◦ φ)′(0) = v. This gives a bijection from TpM to Rn. Using
this bijection one can define addition and scalar multiplication on TpM to make
it a vector space over R. Let φ : M → N be a smooth map where N is another

Let φ be an isometry taking σ1 to γ1 φ ◦ σ1 = γ1. Then φ ◦ σ2 is a, i.e.,
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smooth manifold. Then φ∗|p, the differential of φ at any point p is a linear
transformation from TpM to Tφ(p)N defined by

φ∗|p([σ]) = [φ ◦ σ],

where σ is a curve passing through p. If φ is a diffeomorphism then φ∗|p is an
invertible linear transformation.

The tangent bundle of M denoted by TM is a vector bundle on M consist-
ing of all tangent spaces of M. A vector field is a smooth function X : M → TM
such that X(p) ∈ TpM. In order to define a geometry on M , we define inner
products on each tangent space.

Definition: g is said to be a Riemannian metric on M if
(i) g(p) is an inner product on TpM for each p ∈M.
(ii) g(p) varies smoothly with p, i.e., if X and Y are two vector fields

on M then g(X,Y ) is a smooth function on M .
A smooth manifold with a Riemannian metric is called a Riemannian manifold.
We use gp to denote g at p ∈M.

Theorem 5.5.1. Every smooth manifold admits a Riemannian metric.

Proof. We refer to Ref. 1 for a detailed proof of the theorem. �

Let (M, g) be a Riemannian manifold and v ∈ TpM .

|v| :=
√
gp(v, v).

If γ : [a, b]→M is a curve on M then the length of γ is defined by,

l(γ) :=

∫ b

a

|γ′(t)|dt.

Let σ : [a, b] → M be a curve intersecting γ at σ(t0) = γ(t0). The angle θ
between these two curve is defined by the following formula:

cos(θ) =
g(σ′(t0), γ′(t0))

|σ′(t0)||γ′(t0)| .

The distance d between any two points p and q is defined by,

d(p, q) = inf
σ
l(σ).

If the infimum is realized at a curve γ then γ is said to be a geodesic. Geodesics
are very important geometric quantities. It is not easy to obtain an equation
of a geodesic from the above definition. There is an alternative way. We know
that the geodesics of a Euclidean space are straight lines. They are solutions
to the following ODE:

γ′′(t) = 0.
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To obtain an analogous analytic definition of a geodesic in a Riemannian man-
ifold we need a notion of differentiation of vector fields on M. Let χ(M) denote
the space of all vector fields on M.

Definition: A Riemannian connection is a bilinear map, ∇ : χ(M) ×
χ(M)→ χ(M), satisfying the following properties.

(i) ∇ is C∞M -linear on first co-efficient and R-linear on the second, i.e.,

∇fXcY = fc∇XY ∀ f ∈ C∞M.

(ii) ∇ is torsion free, i.e.,

∇XY −∇YX = [X,Y ].

(iii) ∇ is metric, i.e.,

X.g(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).

Theorem 5.5.2. There exists a unique Riemannian connection on a Riemannian
manifold.

Proof.

2g(∇XY, Z) = X.g(Y, Z) + Y.g(Z,X)− Z.g(X,Y )

+g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X).

�

Let X(t) be a vector field along a curve γ(t) which can be extended to a
vector field on M. The covariant derivative of X(t) along γ is defined by

D

dt
X(t) = ∇γ′(t)X.

A curve γ is a geodesic if the covariant derivative of γ′(t) along γ(t) is zero, i.e.,

D

dt
γ′(t) = 0, or γ′′(t) = 0.

Proposition. If γ is a geodesic then |γ′(t)| is constant.

Proof.

d

dt
(|γ′(t)|2) =

d

dt
gp(γ

′(t), γ′(t))

= 2gp

(
D

dt
γ′(t), γ′(t)

)

= 0.

Therefore, |γ′(t)|2 =constant. �
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Theorem 5.5.3. Let γ be a curve joining two points p and q in M. If |γ′(t)| is
constant and l(γ) = d(p, q) then γ′′ = 0.

Proof. We refer to the first variational formula in Ref. 1. �

A diffeomorphism φ of M is said to be an isometry of (M, g) if for every
p ∈M

gφ(p)(φ∗(v), φ∗(w)) = gp(v, w) ∀ v, w ∈ TpM.

Proposition. If φ is an isometry of (M, g) then

d(φ(p), φ(q)) = d(p, q).

Proof. Let σ : [0, 1] → M be a curve between p and q. Then φ ◦ σ is a curve
between φ(p) and φ(q).

l(φ ◦ σ) =

∫ 1

0

|(φ ◦ σ)′(t)|dt

=

∫ 1

0

g(φ∗σ
′(t), φ∗σ

′(t))
1
2 dt

=

∫ 1

0

g(σ′(t), σ′(t))
1
2 dt

= l(σ).

This completes the proof. �

Proposition. If φ is an isometry of (M, g) then

∇φ∗Xφ∗Y = ∇XY.

Proof. The proof follows from the equation in the proof of theorem 2. �

Proposition. Let φ be an isometry of (M, g) and γ be a geodesic. Then φ ◦ γ is
also a geodesic.

Proof.
∇φ∗γ′φ∗γ′ = ∇γ′γ′.

�

Example 4: Let (M, g) = (R2, std), and X, Y be two vector fields on R2. Let
X = {X1, X2} and Y = {Y1, Y2}. Here std mean the standard inner product.
Tnen,

∇XY = X.Y

where

X.Y (p) =

(
X1

∂Y1

∂x
+X2

∂Y1

∂y
,X1

∂Y2

∂x
+X2

∂Y2

∂y

)
.

The geodesics are straight lines.
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Example 5: Consider S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}. Let X and Y be
two vector fields on S2. Then

g(X,Y ) = 〈X,Y 〉,

and
∇XY (p) = X.Y (p)− 〈X.Y (p), p〉p.

Consider the curve γ : [0, π]→ S2 given by

γ(t) = (cos(t), sin(t), 0),

D

dt
γ′(t) = 0.

Hence, γ is a geodesic.
For any A ∈ SO(n+ 1), x→ Ax is an isometry of Sn, and, therefore, Aγ

is a geodesic. Therefore, great circles are geodesics of Sn.
Example 6 : Let M be a sub-manifold of Rn. Then TpM ⊂ TpRn. Define a
Riemannian metric g on M by restricting the standard inner product of Rn to
TpM.

gp(v, w) = 〈v, w〉, ∀v, w ∈ TpM.

∇XY (p) is the component of X.Y (p) along TpM.
Example 7 (Flat Torus) : {(z1, z2) ∈ C2 : |z1| = |z1| = 1} is a sub-manifold of
R4.

5.5.1 Riemannian curvature

Riemannian Curvature is a (3, 1)-tensor on M defined by

R(X,Y, Z) = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z,

R(X,Y, Z,W ) = g(R(X,Y, Z),W ),

where X,Y, Z,W are vector fields on M .
Sectional Curvature : Let v, u ∈ TpM.

sec(v, u) =
Rp(u, v, u, v)

g(u, u)g(v, v)− (g(u, v))2
.

If u and v are orthogonal unit vectors then

secp(u, v) = Rp(u, v, u, v).

We say an (M, g) has constant curvature if all sectional curvatures are equal.
Example 1: (M, g) = (Rn, std).

R(X,Y, Z) = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z

= Y.(X.Z)−X.(Y.Z) + [X,Y ].Z

= [Y,X].Z + [X,Y ].Z

= 0.
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Example 2: (M, g) = (Sn, std). SO(n + 1) acts on Sn isometrically. Sn has
constant sectional curvature. One can prove that it is positive.
Example 3: (Hn, std) has constant negative curvature.
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Vector Bundles

Utsav Choudhury and Atreyee Bhattacharya

The aim in the first part of this chapter is to understand the basics
of Vector bundles and K-theory. We will define vector bundles and
give several examples of vector bundles that arise naturally in ge-
ometry. We will give constructions of important natural operations
on vector bundles, and we will show how deformation of spaces con-
trols the structure of vector bundles. In section 6.5 we will define
K-theory, an important abelian invariant of a space. We will show
that this invariant can be used to answer non-trivial questions about
the geometry of a space.

The second part gives a brief overview of the Chern-Weil theory in
the context of vector bundles. The Chern-Weil theory is a vast topic
which has been studied from various aspects. In this short note we
take the differential geometric approach. We start with smooth mani-
folds and affine connections and generalize the notion of connections
and curvature to vector bundles with an aim to produce global invari-
ants of vector bundles in terms of characteristic classes. We conclude
with a few simple examples.

I Vector Bundles and K-theory

6.1 Introduction

Let X be a space; suppose we want to understand the space using continuous
(or differentiable) maps from X to real or complex vector spaces. For instance,
continuous real valued functions (resp. complex valued functions) records a
lot of information about the topological nature of the space. If we take only
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differentiable functions then the derivatives of the functions determine the dif-
ferential structure of the space. All these are part of the process of linearization
of the topological or differentiable structures. The language of vector bundles
allows us to make sense of the linearization process.

We are interested in the following types of problems

1. Consider the circle S1 as a subspace of R2. Can we have a continuous map
from f : S1 → R2, such that ∀x ∈ S1,

(a) f(x)⊥x.

(b) f(x) 6= 0.

2. Consider the unit 2-sphere S2 as a subspace of R3. Can we have a contin-
uous map from f : S2 → R3, such that ∀x ∈ S2,

(a) f(x)⊥x.

(b) f(x) 6= 0.

3. In particular given any differentiable manifold X, we want to associate
for each x ∈ X an element vx ∈ Tx continuously. Here Tx is the tangent
space at x.

We will see that the answers to these questions really depend on funda-
mental topological properties of the space.

6.2 Basic definitions and examples

For us F will be either R or C.

Definition 6.2.1. Let B be a topological space. An n-dimensional F - vector
bundle over a topological space B is a continuous map p : E → B together
with a F -vector space structure on p−1(b) for each b ∈ B, such that B can
be covered by open sets Uα for each of which there exists a homeomorphism
hα : p−1(Uα) → Uα × Fn mapping p−1(b) to {b} × Fn by linear isomorphisms
for each b ∈ Uα.

hα’s are called local trivializations of the vector bundle. We will state re-
sults for R vector bundles but the statements are also true for C-vector bundles
.

6.2.1 Examples

1. Let X be any topological space. Consider the topological space X × Rn.
The projection p : X × Rn → X is the first projection. This is called the
trivial vector bundle of rank n.

2. Let E = [0, 1]× R/ ∼, where (a, b) ∼ (c, d) iff b = −d and a = 0, c = 1 or
a = 1, c = 0.The projection map p : E → S1 is given by [x, y] 7→ e2π.i.x,
here [x, y] is an equivalence class. Let U = S1 \ {1}. Then p−1(U) = U ×



6.2. Basic definitions and examples 111

R/ ∼∼= U×R. Let V = S1\{−1}. Then p−1(V ) = [0, 1/2)∪(1/2, 1]×R/ ∼.
The trivializationφ : p−1(V )→ V × R is given by φ([x, y]) = (x− 1/2, y)
if x > 1/2, else φ([x, y]) = (x+ 1/2, y).

3. Let Sn be the n-dimensional sphere.

TSn :=
{

(x, v) ∈ Sn × Rn+1|x⊥v
}
,

and consider TSn equipped with subspace topology (subspace of Sn ×
Rn+1). There is a projection map p : TSn → Sn given by (x, v) 7→ x).
Note that p−1(x) ∼= Rn and p−1(x) is the tangent space of at x. For
x ∈ Sn, let Ux be the open hemisphere containing x and bounded by
p−1(x). Consider the function hx : p−1(Ux) → Ux × p−1(x) ∼= Ux × Rn,
given by hx(y, v) = (y, πx(v)), where πx is the orthogonal projection to
p−1(x). Then it is clear that hx’s are homeomorphism for every x ∈ Sn.

4. Again, let Sn be the n-dimensional sphere.

NSn =
{

(x, v) ∈ Sn × Rn+1|v = tx, t ∈ R
}
.

There is a projection p : NSn → Sn given by (x, v) 7→ x. Note that
p−1(x) ∼= R. For x ∈ Sn, let Ux be the open hemisphere containing x and
bounded by the hyperplane passing through the origin which is orthogonal
to x. Let hx : p−1(Ux) → Ux × p−1(x) ∼= Ux × R be the map given by
hx(x, v) = (x, πx(v)), where πx(v) is the projection of v to the line p−1(x).
Then hx’s are homeomorphism for all x ∈ Sn.

5. Let RPn be the space of lines through the origin in Rn+1. We can think
of RPn as Sn/(x ∼ −x). The canonical line bundle is given by E :={

(l, v) ∈ RPn × Rn+1|v ∈ l
}

. The projection map p : E → RPn is given
by (l, v) 7→ l. Note that p−1(l) = l ∼= R. For l ∈ RPn, let Ul ⊂ RPn be
the open set of all lines in RPn which are not orthogonal to l. Then the
functions hl : p−1(Ul)→ Ul×p−1l ∼= Ul×R, given by hl(l

′, v) = (l′, πl(v))
is a homeomorphism. Here πl(v) is the projection of v to the line l. This
is called the canonical line bundle.

6. Again for consider the topological space

E⊥ :=
{

(l, v) ∈ RPn × Rn+1|v⊥l
}
.

There is a projection map p : E⊥ → RPn given by (l, v) 7→ l. Note that
p−1(l) ∼= Rn. For each l ∈ RPn consider the same open set Ul as in the
previous example. The functions hl : p−1(Ul)→ Ul×p−1l ∼= Ul×Rn, given
by hl(l

′, v) = (l′, πl(v)) is a homeomorphism. Here πl(v) is the projection
of v to the line l. Here πl(v) is the orthogonal projection of v to p−1(l).

7. Let RP∞ =
⋃
∞ RPn. The union is taken under the inclusions RPn ⊂

RPn+1. The topology on RP∞ is defined by declaring a subset U to be
open in RP∞ iff U ∩RPn is open for all n. The inclusions RPn ⊂ RPn+1,
induce inclusions of canonical line bundles and after taking union of these
canonical line bundle we get a line bundle over RP∞.
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8. For n and k positive integers such that n ≤ k, consider the following sets

Gn(Rk) :=
{
V ⊂ Rk|dimR(V ) = n

}
,

Vn(Rk) :=
{

(v1, v2, . . . , vn)|vi ∈ Rk, orthonormal
}
.

Note that

Vn(Rk) ⊂ Sk−1 × . . . Sk−1

︸ ︷︷ ︸
n

.

So we can give the subspace topology to Vn(Rk). There is a surjective map
Vn(Rk)→ Gn(Rk) given by (v1, . . . vn) 7→ Span(v1, . . . , vn). Therefore we
can give the quotient topology to Gn(Rk). Note that G1(Rk) = RP k−1.
Since Gn(Rk) ⊂ Gn(Rk+1), we can take the union Gn(R∞) :=

⋃
kGn(Rk).

We take all the sets U ⊂ Gn(R∞), such that U ∩ Gn(Rk) is open for all
k, to be the open sets. This defines a topology on Gn(R∞). Let

En(Rk) =
{

(l, v) ∈ Gn(Rk)× Rk|v ∈ l
}
.

This is a topological space with subspace topology coming from Gn(Rk)×
Rk. There is a projection map p : En(Rk) → Gn(Rk) given by (l, v) 7→ l.
For each l ∈ Gn(Rk) let πl : Rk → l be the orthogonal projection to l.
The set

Ul :=
{
l′ ∈ Gn(Rk)|dim(πl(l

′)) = n
}

is open. Then hl : p−1(Ul)→ Ul× l ∼= Ul×Rn given by (l′, v) 7→ (l′, πl(v))
gives a homeomorphism. Hence p : En(Rk) → Gn(Rk) is a vector bundle
of rank n. Let En(R∞) =

⋃
k En(Rk), where the union is taken over the

inclusions En(Rk) ⊂ En(Rk+1). Then p : En(R∞)→ Gn(R∞) is a vector
bundle of rank n.

9. Let M be a smooth manifold and p ∈M . Let

C(M,p) = {γ : (−ε, ε)→M |γ(0) = p} .

Define TpM := C(M,p)/ ∼ where γ ∼ σ if there exists a chart h : U → Rn
such that p ∈ U and (h ◦ γ)′(0) = (h ◦ σ)′(0). Let

TM :=



(p, v) ∈M ×

∐

p∈M
TpM |v ∈ TpM



 .

There is a natural projection map π : TM → M . Give TM the coarsest
topology such that π is continuous. Let U ⊂ M be a open subset such
that h : U ∼= Rn, and let xi : Rn → R be the i-th projection maps.
Then π−1(U) = TU and TU → Rn ×Rn given by (p, v =

∑n
i=1 wi

∂
∂xi

) 7→
(p, {wi(p)}) gives a homeomorphism. The vector bundle TM is called the
tangent bundle of M . It is a vector bundle of rank dim(M).
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6.2.2 Map of vector bundles

Definition 6.2.2. Let p1 : E → M and p2 : F → M be vector bundles over M .
A map of vector bundles from E to F is a continuous map f : E → F such
that p2 ◦ f = p1, and for every m ∈M , the induced map f : p−1

1 (m)→ p−1
2 (m)

is a linear transformation. A map of vector bundles is an isomorphism if it has
both left and right inverses.

Lemma 6.2.3. Let p1 : E → M and p2 : F → M be vector bundles over M .
A map f between vector bundles E to F is an isomorphism if and only if
f : p−1

1 (m)→ p−1
2 (m) is an isomorphism for all m ∈M .

Proof. The only if part is clear. Suppose f : p−1
1 (m) → p−1

2 (m) is an isomor-
phism for all m ∈ M . It is clear that f is a bijection. We want to show that
f−1 is continuous. Continuity is a local property so we can assume that U ⊂M
is open and we have homeomorphisms hi : p−1

i (U) → U × Rn for i ∈ {1, 2}.
Then h2 ◦ f ◦ h−1

1 : U × Rn → U × Rn is given by (x, v) 7→ (x, gx(v)), where
gx ∈ GLn(R). The entries of the matrix gx depend on x continuously. Hence
the entries of the matrix g−1

x = Ad(gx)/det(gx) depend continuously on x. So
h1 ◦ f−1 ◦ h−1

2 is continuous as it is given by h1 ◦ f−1 ◦ h−1
2 (x, v) = (x, g−1

x (v)).
Therefore f−1 is continuous. �

6.2.3 Sections of a vector bundle

Definition 6.2.4. A section of a vector bundle p : E → B is a continuous map
s : B → E such that p ◦ s = idB .

1. Since every vector space V has a distinguished element 0 ∈ V (the zero
element of the vector space), every vector bundle p : E → B has a canon-
ical section s0, called the zero section. The map s0 : B → E is defined by
s0(b) = 0p−1(b) for all b ∈ B.

2.

Lemma 6.2.5. An n-dimensional vector bundle p : E → B is trivial if and only
if it has n-sections s1, s2, . . . , sn such that for all b ∈ B, s1(b), . . . , sn(b) are
linearly independent in p−1(b).

Proof. Let (e1, . . . , en) be the standard basis of Rn. If E = B × Rn and p :
E → B the first projection then si(b) = (b, ei) are continuous sections of p and
si(b)’s form a basis of p−1(b). Conversely suppose p : E → B has n-sections
s1, s2, . . . , sn such that for all b ∈ B, s1(b), . . . , sn(b) are linearly independent

2. Let p1 : E1 → B and p2 : E2 → B be vector bundles, then a vector bundle
isomorphism h : E1 → E2 takes the zero section to the zero section, f ◦
s0 : B → E2 is again s0 : B → E2. Hence h takes E1 \s0(B) to E2 \s0(B).
So the Möbius bundle over S1 is not isomorphic to the trivial bundle
S1 × R. Indeed, if we they were isomorphic the complement of the zero
section of the Möbius bundle which is connected will be homeomorphic
to the complement of the zero section of the trivial bundle which is not
connected.

i.e.,
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in p−1(b). Define h : B × Rn → E by h(b, t1, t2, . . . , tn) =
∑
ti.si(b). It is clear

that h is continuous and a map of vector bundles. Now apply 6.2.3 to show
that h is an isomorphism of vector bundles.

�

Definition 6.2.6. Let p : E → B a vector bundle. A section of s of p is called
non vanishing if s(B) ∩ s0(B) = ∅.

6.2.4 Examples

1. The normal bundle NSn is isomorphic to Sn × R. The isomorphism is
given by (x, tx) 7→ (x, t).

3. Any section of the Möbius bundle has to intersect the zero section hence
the Möbius bundle is not trivial.

4. The vector space R4 is also an algebra. The multiplication is given as
follows: We have orthonormal basis 1, i, j, k such that,

i2 = j2 = k2 = −1;

and

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Writing z1 := (x1, x2, x3, x4), z2 := (y1, y2, y3, y4) ∈ R4 as z1 = x1 + ix2 +
jx3 + kx4 and z2 := y1 + iy2 + jy3 + ky4, we can define the multiplication
z1.z2 using the multiplication rule above for i, j, k and forcing distributiv-
ity of multiplication over addition. Check that if z = x1 + ix2 + jx3 + kx4

and z̄ = x1 − ix2 − jx3 − kx4 then z.z̄ = |z|2 and hence |z.w| = |z|.|w|.
Let sβ : S3 → TS3 be given by sβ(z) = (z, β.z) where β ∈ {i, j, k} for all
z ∈ S3 ⊂ R4. These three sections are linearly independent in p−1(z) for
every z ∈ S3, where p : TS3 → S3. Hence by lemma 6.2.5 TS3 is a trivial
bundle.

5. The canonical line bundle over RP 1 is isomorphic to the möbius bundle
over S1. Here we identify RP 1 with [0, π]/(0 ∼ π). The tautological line
bundle over RP 1 can be described as tuples (θ, x) where θ ∈ [0, π] and
x ∈ l where l is the line passing through origin that makes θ angle with
x axis, then identify (0, x) with (π,−x). The möbius bundle over S1 is
[0, π]× R/((0, x) ∼ (π,−x)).

2. The tangent bundle of the sphere is trivial, i.e., TS1 ∼= S1 ×R. Indeed, we
have to construct a non vanishing section s : S1 → TS1 (lemma 6.2.5).
Define s as s(x1, x2) = ((x1, x2), (−x2, x1)) for all (x1, x2) ∈ S1.
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6.3 Operations

Let p : E → B a vector bundle. So there exists an open covering {Uα} of B
and hα : p−1(Uα)→ Uα × Rn homeomorphism such that the induced map

hβ ◦ h−1
α : Uα ∩ Uβ × Rn → Uα ∩ Uβ × Rn

is given by (x, v) 7→ (x, gx(v)) where gx ∈ GLn(R). This gives continuous maps
ρβα : Uα ∩ Uβ → GLn(R) such that ργβ ◦ ρβα = ργα. These ρβα’s are called
transition function.

Conversely, given a topological space B, open covering {Uα} of B and
continuous maps ρβα : Uα ∩ Uβ → GLn(R) such that ργβ ◦ ρβα = ργα, we
construct a new vector bundle Eρ as follows : Eρ :=

∐
(Uα × Rn)/∼, where

(x, v) ∼ (x, ρβα(x)v) for x ∈ Uα∩Uβ . So elements in Eρ is given by equivalence
classes [x, v]. The topology is quotient topology. There is a projection map
p : Eρ → X, sending [x, v] → x, since the equivalence relation does not do
anything to the first factor so it is a well defined continuous map. It is easy to
check that p−1(Uα) ∼= Uα × Rn and hence Eρ is a vector bundle.

Given any vector bundle p : E → B we can use the functions ραβ of E
to construct Eρ. We can construct a canonical map of vector bundle Eρ → E,
given by h :=

∐
h−1
α :

∐
Uα × Rn → E and then see that h takes equivalent

points to a single point. It is is easy to verify using lemma 6.2.3, that h is an
isomorphism. So to give a vector bundle E → B is equivalent to give open
covering {Uα} of B and continuous maps ρβα : Uα ∩ Uβ → GLn(R) such that
ργβ ◦ ρβα = ργα.

6.3.1 Direct Sum

Let p1 : E1 → B and p2 : E2 → B be vector bundles. We can choose an open
cover {Uα} such that both E1 and E2 are trivial over each Uα such that for E1

the transition functions are ρ1
βα and for E2 the transition functions are ρ2

βα.

Then we take ρβα = ρ1
βα ⊕ ρ2

βα. Define E1 ⊕ E2 := Eρ.
Let E′ := {(x1, x2) ∈ E1 × E2|p1(x1) = p2(x2)}, equip this space with

subspace topology coming from E1 × E2 and let p : E′ → B be given by
p(x1, x2) = p1(x1) = p2(x2). It is easy to verify that p : E′ → B is a vector
bundle and there exists a vector bundle isomorphism h : E′ → E1 ⊕ E2.

Example 6.3.1. 1. Direct sum of trivial bundles is again a trivial bundle.

2. A point in TSn⊕NSn is given by (x, v, tx) where x ∈ Sn, v⊥x and t ∈ R.
The map TSn⊕NSn → Sn×Rn+1 given by (x, v, tx) 7→ (x, v+ tx) gives
an isomorphism TSn ⊕NSn ∼= Sn × Rn+1.

3. Let E → RPn be the canonical line bundle and let E⊥ be the orthogonal
bundle. Then a point of E⊕E⊥ is given by (l, v, w) such that l ∈ RPn, v ∈
l, w⊥l. The map E ⊕ E⊥ → RPn × Rn+1 given by (l, v, w) 7→ (l, v + w)
gives an isomorphism E ⊕ E⊥ ∼= RPn × Rn+1.
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4. If n = 1, we have E ∼= E⊥. Indeed (l, v) 7→ (l, ρ(v)), where v ∈ l and ρ is
rotation by π/2, gives the required isomorphism. So E ⊕E ∼= S1 ×R2, or
sum of two copies of möbius bundle is trivial.

6.3.2 Inner Product

Definition 6.3.2. Let p : E → B be a vector bundle. An inner product on E is a
map <,>: E⊕E → R, which restricts to a positive definite symmetric bilinear
form in each fiber.

A space X is paracompact if it is Hausdorff and for every open cover {Uα}
of X, there exists a collection of continuous functions φβ : X → [0, 1] such that
φβ is zero outside Uα for some α, each x ∈ X has a neighborhood in which
only finitely many φβ ’s are nonzero, and

∑
β φβ = 1. The collection {φβ} is

called a partition of unity subordinate to the open cover {Uα}. Every compact
Hausdorff space is paracompact.

Proposition 6.3.3. Let B be a paracompact space. Then for any vector bundle
p : E → B, an inner product exists on E.

Proof. Let hα : p−1(Uα) → Uα × Rn be the local trivializations of p : E → B.
Then <,>Uα : p−1(Uα) ⊕ p−1(Uα) → R is given by (x1, x2) 7→< v1, v2 >.
Here (p(xi), vi) = hα(xi) and <,> is the standard norm of Rn. For any point
(x1, x2) ∈ E ⊕ E, let < x1, x2 >:=

∑
β φβ(p(x1)) < x1, x2 >Uβ , where {φβ} is

a partition of unity subordinate to the open cover {Uα} such that φβ is zero
outside Uβ . �

Similarly, if p : E → B was a complex vector bundle then one can con-
struct a Hermitian inner product.

Proposition 6.3.4. Let B be a compact Hausdorff space. For each vector bundle
E → B, there exists a vector bundle E′ → B such that E ⊕ E′ is the trivial
bundle.

Ref. 1, Proposition 1.4. �

6.3.3 Tensor Product

Let pi : Ei → B be vector bundles i ∈ {1, 2}. We can choose an open cover
{Uα} such that both E1 and E2 are trivial over each Uα such that for E1 the
transition functions are ρ1

βα and for E2 the transition functions are ρ2
βα. Then

we take ρ⊗βα = ρ1
βα⊗ ρ2

βα. Define E1⊗E2 := Eρ⊗ . Here, by ρ1
βα⊗ ρ2

βα we mean

for each x ∈ Uα ∩ Uβ we take the tensor product of the matrices ρ1
βα(x) and

ρ2
βα(x).

Definition 6.3.5. Let p : E → B a vector bundle. The rank of the vector bundle
is the dimension of the vector space p−1(b) for any b ∈ B. A rank 1 vector
bundle is called a line bundle.
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Lemma 6.3.6. For a topological space B, let V ect1(B) be the set of isomorphism
classes of line bundles. Then V ect1(B) is a group, where the group operation
is given by ⊗. Moreover if B is paracompact, then every element of V ect1(B)
has order 2.

Proof. If pi : Li → B be line bundles for i ∈ {1, 2}, then L1 ⊗ L2 is again a
line bundle. Suppose p : L → B a line bundle then the transition functions
ρβα : Uα ∩ Uβ → GL1(R) takes a value in an abelian group, so the continuous
functions ρ−1

βα satisfies cocycle condition. Hence for the line bundle Eρ−1 , we
have E ⊗ Eρ−1

∼= B × R as the transition functions of the left hand side is

ρβα⊗ρ−1
βα = 1. If B is paracompact, then any vector bundle E → B has an inner

product, so we can choose the local trivializations to be isometries in each fiber.
So for a line bundle p : L → B, B paracompact, we can choose the transition
functions ρβα such that it takes values in the subgroup {1,−1} ⊂ GL1(R). Then
the transition function of L⊗ L takes the value 1. Hence L⊗ L ∼= B × R. �

The last part of the proposition is not true for complex line bundles.

6.3.4 Dual

Let p : E → B be a complex vector bundle. Let ρβα be the transition functions.
Let Ē be the vector bundle whose transition functions are complex conjugates
¯ρβα of ρβα. So as a set Ē is the same as E, but if v is in any fiber of Ē and
λ ∈ C, λ.(v) = λ̄.v. Here the left hand side is the action of C in Ē and the
right hand side is the action of C on E. Equivalently Ē as a space is the same
as E but the local trivialization h̄α : p−1(Uα) → Uα × Cn is the composition
(id × (̄)) ◦ hα, where hα is the local trivialization of E, and (̄) : Cn → Cn is
the coordinate wise conjugation. Now if B is paracompact and L → B is a
complex line bundle then presence of Hermitian matrices allows us to choose
transition functions ρβα : Uα ∩Uβ → GL1(C) = C \ {0} to actually take values
in the subgroup S1 ∈ C\{0}. Since the transition functions of L̄ are ¯ρβα, hence
L⊗ L̄ ∼= B × C, as ρβα. ¯ρβα = 1.

6.3.5 Pullback

Let p : E → B be a vector bundle, with transition functions ρβα. Let f :
A → B a continuous map. Then f∗E, the pullback of E along f is the vector
bundle whose transition functions are ρβα ◦f |f−1(Uα∩Uβ). Suppose E′ is the set
E′ := {(a, v) ∈ A× E|f(a) = p(v)}. This set can be equipped with the subspace
topology coming from A×E. Then E′ is a vector bundle over A and E′ ∼= f∗E.

Example 6.3.7. 1. Pullback of a trivial bundle is trivial bundle.

2. Let p : E → S1 be the Möbius bundle and let f : S1 → S1 be the function
given by z 7→ z2, then f∗E ∼= S1 ×R. Indeed, there is always a map from
g : S1 → E such that p ◦ g = f and g ∩ s0 is empty. Then this gives a non
zero section g′ : S1 → f∗E.
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We also have the following isomorphisms:

1. For g : A → B, f : B → C and a vector bundle E → C, we have
(f ◦ g)∗E ∼= g∗(f∗E).

2. id∗E ∼= E.

3. f∗(E1 ⊕ E2) ∼= f∗E1 ⊕ f∗E2.

4. f∗(E1 ⊗ E2) ∼= f∗(E1)⊗ f∗(E2).

Let f0, f1 : A → B be continuous maps such that ∃ a continuous map H :
A × [0, 1] × A → B, such that F (0, A) = f0 and F (1, A) = f1, then we say
that f0 is homotopic to f1. Two maps from A → B being homotopic gives
an equivalence relation on the set of continuous maps C(A,B). We denote by
[A,B] the set of equivalence classes modulo this equivalence relation.

Theorem 6.3.8. Let p : E → B a vector bundle and f0, f1 : A → B be two
homotopic maps. Then f∗0E ∼= f∗1E if A is paracompact.

Ref. 1, Theorem 1.6. �

Let A be a space and let V ectn(A) be the set of isomorphism classes of
rank n vector bundles over A.

Corollary 6.3.9. If f : A → B is a homotopy equivalence between paracompact
spaces then f∗ : V ectn(B) → V ectn(A) is a bijection. In particular, every
vector bundle over a paracompact contractible space is trivial.

Theorem 6.3.10. For a paracompact topological space X, the natural map of
sets [X,Gn(R∞)]→ V ectn(X) given by (f : X → Gn(R∞)) 7→ f∗(En(R∞)) is
bijective.

Ref.1. [Theorem 1.16] �

Example 6.3.11. Let p : TSn → Sn be the natural map. For x ∈ Sn the fiber
p−1(x) is an n-dimensional subspace of Rn+1. Hence we have a map f : Sn →
Gn(R∞) given by f(x) = p−1(x). Then f∗(En(R∞)) ∼= TSn.

6.4 Clutching function

The aim of this section is to understand the construction of vector bundles over
the real spheres Sk. We will see that in this case there is a difference between
complex and real vector bundles. For us F will be either R or C. Let E → Sk

be a F vector-bundle of rank n. The space Sk can be covered by two open discs
Dk

+ and Dk
− such that the intersection Dk

+ ∩ Dk
− = Sk−1 × (−ε, ε). Now Dk

+

and Dk
− are contractible hence E restricted to these open discs are isomorphic

to trivial vector bundles. If we make a choice of these isomorphisms, we get
local trivializations, and the transition function (it depends on the choice of
the isomorphism) Sk−1 × (−ε, ε) → GLn(F ) gives a unique function (unique
upto homotopy) f : Sk−1 → GLn(F ).
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Conversely, given any continuous map f : Sk−1 → GLn(F ) (such functions
are called clutching functions) we can extend it to f̃ : Sk−1×(−ε, ε)→ GLn(F )
such that at each time t it is f . Then

Ef :=
Dk

+ × Fn
∐
Dk
− × Fn

∼ ,where (x, v) ∼ (x, f̃(x)(v)),

for (x, v) ∈ Dk
+ ∩ Dk

− × Fn. The evident projection map Ef → Sk gives a
F -vector bundle of rank n. Suppose we have two maps f, g : Sk−1 → GLn(F )
such that f and g are homotopic by a map F : Sk−1×I → GLn(F ). Then using
the same method as before we can construct a vector bundle EF → Sk×I such
that EF |Sk×0 = Ef and EF |Sk×1 = Eg and hence Ef ∼= Eg . This obviously
gives a map ΦF : [Sk−1, GLn(F )]→ V ectnF (Sk). The following result is due to
the fact that GLn(C) is path connected.

Proposition 6.4.1. The map ΦF is bijective for F = C. It is not in general
bijective for F = R.

In the case of F = R, the sub Lie group GLn,+(R) of matrices of positive
determinant is the connected component of the identity and any clutching func-
tion f whose image is in GLn,+(R) gives a vector bundle Ef which is oriented.

Example 6.4.2. 1. Every complex vector bundle over S1 is trivial as
V ectnC(S1) = π0(GLn(C)) = ∗.

2. In this example we are interested in vector bundles over CP 1. Recall
that CP 1 is the quotient space of C2 \ {0} under the equivalence rela-
tion (z0, z1) ∼ λ(z0, z1) for λ ∈ C \ {0}. Writing the equivalence class of
(z0, z1) as [z0, z1], we get a homeomorphism CP 1 → C∪ {∞} ∼= S2 which
is given by [z0, z1] 7→ z0/z1 if z1 6= 0 and [z0, 0] 7→ ∞. Under this identifi-
cation, the points in the disk D2

0 inside the unit circle S1 can be expressed
uniquely in the form [z, 1] with |z| ≤ 1 and the points in the disk D2

∞
outside S1 can be uniquely written in the form [1, z−1] with |z−1| ≤ 1.

Let H → CP 1 be the canonical line bundle. Recall that H :={
(l, v) ∈ CP 1 × C2|v ∈ l

}
. Over D2

0 a section of the line bundle H is given
by [z, 1] 7→ (z, 1) and over D2

∞ it is given by [1, z−1] 7→ (1, z−1). This gives
trivializations of H over these disks. The common intersection of the two
disks is S1 and here we can go from one trivialization to another trivializa-
tion by multiplication by z. After identifications D2

0 = D2
− and D2

∞ = D2
+

we get that the clutching function f : S1 → GL1(C) = C \ {0} of H is
given by f(z) = z.

One can also explicitly use the map

CP 1 → S2 =
{

(z, t) ∈ C× R||z|2 + t2 = 1
}

which is given by

[z0, z1] 7→ 1

|z0|2 + |z1|2
(2z̄0z1, |z0|2 − |z1|2),
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and the inverse is given by

(z, t) 7→ [(1 + t) : z].

Now we want to show that

H ⊕H ∼= (H ⊗H)⊕ 1.

Here 1 is the trivial vector bundle of rank 1. For this it is enough to show
that clutching functions of both sides are homotopic. As the clutching
function of H is f(z) = z, therefore the clutching function of H ⊕ H is
given by the function

z ∈ S1 7→
[
z 0
0 z

]
,

and the clutching function of (H ⊗H)⊕ 1 is given by

z ∈ S1 7→
[
z2 0
0 1

]
.

Now, let αt be the path in GL2(C) from the identity matrix to the matrix

[
0 1
1 0

]
.

Then the function F : S1 × I → GLn(C), given by

(z, t) 7→ (f ⊕ 1)(z).αt.(1⊕ f)(z).αt,

gives the required homotopy. Here

(f ⊕ 1)(z) =

[
z 0
0 1

]
,

and

(1⊕ f)(z) =

[
1 0
0 z

]
.

The last computation will be useful in the K-theory part.

6.5 Complex K-theory and Bott periodicity

K-theory is an invariant which captures the obstruction of a vector bundle
to being trivial. In this section we will see the basic definition of K theory of
complex and real vector bundles. Again let F denote either R or C and 1n → X
denote the trivial F -vector bundle of rank n. Also 10 = X and 1 is the trivial
bundle of rank 1.

In the collection of vector bundles on X we can define the following two
equivalence relations.
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Definition 6.5.1. 1. Let E1 → X and E2 → X be two F vector bundles on
X. Set E1 ∼ E2 if E1 ⊕ 1n ∼= E2 ⊕ 1m as F vector bundles for some
m,n ∈ N. Denote by [E] the equivalence class of a vector bundle E → X
under this equivalence relation.

2. We say that E1 → X and E2 → X are stably isomorphic (denoted by
E1 ∼s E2 if E1⊕1n ∼= E2⊕1n for some n. Denote by [E]s the equivalence
class of a vector bundle E → X under this equivalence relation.

The operation ⊕ of vector bundles can be extended to the equivalence
classes for ∼ or ∼s by the formula [E] ⊕ [E′] = [E ⊕ E′] (same for ∼s). It is
easy to verify that ⊕ on equivalence classes is well defined, commutative and
associative. For every vector bundle E → X, for X compact Hausdorff, we
have a vector bundle E′ → X such that E ⊕ E′ ∼= 1n for some n. The next
proposition is the formal consequence of this.

Proposition 6.5.2. X is compact Hausdorff, then the set of ∼ equivalence classes
of vector bundles on X forms an abelian group with respect to ⊕. For F = R
we denote this group by K̃O(X) and for F = C we denote this group by K̃(X).

Note that [1m] ⊕ [E] = [E] and [1m] = [1n] = [10] for the equivalence
relation ∼. It is also obvious that ∼s does not give a group structure as the class
[10]s = [1n]s implies n = 0 and E ⊕ E′ ∼s 10 implies E and E′ are isomorphic
to 10. But we have cancellation for ∼s. Suppose E1 ⊕ E2 ∼s E1 ⊕ E3 and X
is compact Hausdorff, then there exists E′ such that E1 ⊕E′ ∼= 1n for some n.
Hence E1 ⊕ E′ ⊕ E2 ∼s E1 ⊕ E′ ⊕ E3. This implies, there exists N ≥ n such
that 1N ⊕ E2

∼= 1N ⊕ E3 or E2 ∼s E3. So the equivalence classes modulo ∼s
forms a monoid ( ⊕ being the composition of the monoid and [10]s being the
class of the unit) such that cancellation holds.

This is similar to the case of Z \ {0} with multiplication of integers as
monoid operation. The universal group Q \ {0} where we formally add the
inverse of each element in Z \ {0} is given by the following construction

Q \ {0} :=
{(a, b) ∈ Z \ {0} × Z \ {0}}
{(a, b) ∼ (c, d)|ad = bc} .

We will follow the same method to define K theory.

Definition 6.5.3. Let X be a compact Hausdorff space. Set K(X) and KO(X)
as

K(X) :=
{E − E′|E,E′ ∈ V ectC(X)}

=
,

KO(X) :=
{E − E′|E,E′ ∈ V ectR(X)}

=
.

Here E1 − E′1 = E2 − E′2 iff E1 ⊕ E′2 ∼s E2 ⊕ E′1.

The relation = being transitive requires cancellation theorem. Indeed,
E1⊕E′2 ∼s E2⊕E′1 and E2⊕E′3 ∼s E′2⊕E3, gives the equation E1⊕E2⊕E′3 ∼s
E2⊕E′1⊕E3, now cancelling out E2 from both sides gives us E1−E′1 = E3−E′3.
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6.5.1 The abelian group structure

Note that K(X) or KO(X) is an abelian group where the addition is defined
for the equivalence classes by the following rule

[E1 − E′1] + [E2 − E′2] := [E1 ⊕ E2 − E′1 ⊕ E′2].

From this it is easy to verify that [E−E] = [E′−E′] and [E1−E′1]+ [E−E] =
[E1−E′1]. Also inverse of [E−E′] is [E′−E]. Moreover every element [E−E′]
is equal to [E ⊕ E′′ − 1n] for some n such that E′ ⊕ E′′ ∼= 1n. If we have
[E−1n] = [E′−1m] then E⊕1m ∼s E′⊕1n, hence E ∼ E′. This way we get a

natural group homomorphism K(X) → K̃(X) (resp. KO(X) → K̃(X)) given
by [E − 1m] 7→ [E]∼. This homomorphism is clearly surjective. Kernel of this
homomorphism are all those [E−1m] such that E ∼ 10 or E ∼s 1n for some n.
But this implies [E− 1m] = [1n− 1m]. Therefore the kernel is isomorphic to Z,
where [1n − 1m] is identified with n−m. Also there is a group homomorphism
(even a ring homomorphism) K(X) → K(x) (resp. KO(X) → KO(x)) for
x ∈ X given by restriction of vector bundles to x. This homomorphism gives
isomorphism when restricted to the subgroup of the elements of type [1n −
1m]. Hence we get K(X) ∼= K̃(X) ⊕ Z (resp. KO(X) ∼= K̃O(X) ⊕ Z). This
isomorphism depends on the choice of the point x ∈ X. For every non zero
vector bundle E → X there exists a non-zero class [E − 10] ∈ K(X).

6.5.2 The ring structure and external product

There is a well defined multiplication on K(X) (resp. KO(X)) given by the
following formula.

[E1 − E′1][E2 − E′2] := [(E1 ⊗ E2)⊕ (E′1 ⊗ E′2)− (E1 ⊗ E′2)⊕ (E′1 ⊗ E2)].

It is easy to verify that the product structure is really well defined using can-
cellation law and we leave this verification to the reader. With this product
structure K(X) (resp. KO(X)) is a commutative unital ring with identity
the class of [1 − 10]. For instance [E − 10][E′ − 10] = [E ⊗ E′ − 10] and
[E − 10][1n − 10] = [En − 10]. Here En means direct some of n-copies of E.

Let f : X → Y be a map, then f∗ : K(Y ) → K(X) is defined by the
formula f∗([E − E′]) := [f∗E − f∗E′]. Upto isomorphism pullback preserves
tensor product, Direct sum and trivial vector bundles. Also pullbacks of a vector
bundle by two homotopic maps are isomorphic. These shows that the map f∗

is a well defined ring homomorphism satisfying the following properties.

1. (Id)∗ = Id.

2. (f ◦ g)∗ = g∗ ◦ f∗.
3. If f and g are homotopic then f∗ = g∗.

4. For x ∈ X, the kernel of the ring homomorphism K(X) → K(x) is an

ideal isomorphic to K̃(X) (same statement holds for KO(X)).
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The external product µ : K(X)⊗K(Y )→ K(X × Y ) is given by

µ(a⊗ b) = pr∗1(a).pr∗2(b),

where pr1 : X×Y → X and pr2 : X×Y → Y . The abelian group K(X)⊗K(Y )
is a ring with multiplication given by

(a⊗ b).(c⊗ d) = (a.c⊗ b.d).

Therefore

µ((a⊗ b).(c⊗ d)) = µ(a.c⊗ b.d) = pr∗1(a.c).pr∗2(b.d) =

= pr∗1(a).pr∗2(b)pr∗1(c).pr∗2(d) = µ(a⊗ b)µ(c⊗ d).

This shows that µ is a ring homomorphism.
Now if we take Y = S2, we get µ : K(X) ⊗ K(S2) → K(X × S2). But

S2 ∼= CP 1 and the relation (H⊗H)⊕1 ∼= H⊕H gives the relation (H−1)2 = 0
in K(S2). Here H is the canonical complex line bundle on CP 1. So there exists
a unique ring homomorphism α : Z[t]/(t − 1)2 → K(S2) which maps t to
the class of H in K(S2). Therefore we get by composition the following ring
homomorphism

µ′ : K(X)⊗ Z[t]/(t− 1)2 id⊗α−−−→ K(X)⊗K(S2)
µ−→ K(X × S2).

A weak formulation of Bott Periodicity is the following theorem.

Theorem 6.5.4. The ring homomorphism µ′ : K(X)⊗Z[t]/(t−1)2 → K(X×S2)
is an isomorphism. Therefore K(S2) ∼= Z[t]/(t− 1)2.

Ref. 1. [Theorem 2.2]. �

K̃(X). The interested reader can see [Ref. 1][Theorem 2.11] for the statement
and the proof.

6.5.3 Non zero vector field on S2

Now let us focus on the following question posed in the introduction.
Consider the unit 2-sphere S2 as a subspace of R3. Can we have a contin-

uous map from f : S2 → R3, such that ∀x ∈ S2,

1. f(x)⊥x.

2. f(x) 6= 0.

Suppose there exists such f . Then it is a non-vanishing vector field on X.
This means f = v1 : S2 → TS2 such that v1(x) ∈ TxS

2 is non zero for all
x ∈ S2. Now using the inner product on TS2 we can construct a v2 : S2 → TS2

such that v1(x) is orthogonal to v2(x) for all x ∈ S2. Hence, v1(x), v2(x) forms

There is a version of the previous theorem using the reduced K-theory, i.e.,
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a basis of the tangent space TxS
2 for all x ∈ S2. Now using Gram-Schmidt

process we can make x, v1(x), v2(x) orthonormal for all x ∈ S2. We may also
assume that e1, v1(e1), v2(e1) are the standard basis e1, e2, e3 of R3. This way we
get a map α : S2 → SO(3) such that α(x) is the linear transformation sending
the standard orthonormal basis to the orthonormal basis x, v1(x), v2(x). Now α
gives a map µ : S2×S2 → S2 given by (x, y) 7→ α(x)(y). Note that α(e1)(y) = y
and α(x)(e1) = x by assumption. The structure µ : S2 → S2×S2 thus obtained
makes S2 an H-space. Roughly, an H-space is a topological space which has
multiplication and two sided identity but lacks associativity and inverse. For
example S1, S3, S7 are all H-spaces since R2,R4,R8 are all algebras with norms.

The map µ : S2 × S2 → S2 induces a map on K-theory µ∗ : K(S2) →
K(S2×S2). We know by Bott-periodicity K(S2) = Z[γ]/(γ2) and K(S2×S2) =
Z[α, β]/(α2, β2). Hence we can identify µ∗ with a ring homomorphism

µ∗ : Z[γ]/(γ2)→ Z[α, β]/(α2, β2).

Every element of Z[α, β]/(α2, β2) can be written as k+mαα+mββ+mα.β for
some k,mα,mβ ,m ∈ Z. Hence µ∗(γ) = k + mαα + mββ + mα.β. Let us show
that k = 0,mα = mβ = 1.

Set i1 : S2 → S2 × S2 given by x 7→ (x, e1) and i2 : S2 → S2 × S2 given
by x 7→ (e1, x). Since S2 is an H-space with identity e1, we have µ ◦ ij = id
for j ∈ {1, 2}. This implies (µ ◦ i1)∗(γ) = α and (µ ◦ i2)∗(γ) = β. This implies
k = 0,mα = mβ = 1 as (µ ◦ ij)∗ = i∗j ◦ µ∗ and (i1)∗(α) = α and (i1)∗(β) = 0
(similarly (i2)∗(β) = β and (i1)∗(α) = 0).

Now µ∗(γ) = α+β+mα.β implies µ∗(γ2) = (α+β+mα.β)2 = 2α.β. The
element 2α.β 6= 0 ∈ Z[α, β]/(α2, β2). This gives us a contradiction as γ2 = 0. In
general using Bott Periodicity of K-theory one can prove the following stronger
theorem.

Theorem 6.5.5. There exist n − 1 vector fields on Sn−1 which are linearly in-
dependent at each point (equivalently the tangent bundle is trivial) if and only
if n ∈ {1, 2, 4, 8}.

For a proof of this theorem, see Ref.1, Theorem 2.16.
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II An introduction to the Chern-Weil Theory in vector bundles

6.6 Introduction

To understand the properties of a smooth manifold at an infinitesimal level,
one studies the tangent space at each point on the manifold and also how the
tangent space changes as the base-point moves on the manifold. One would,
therefore, like to study the tangent bundle consisting of the tangent spaces at
all points on the manifold. It turns out that the tangent bundle of a smooth
manifold has a natural smooth structure. Generalizing the notion of the tangent
bundle one constructs a vector bundle over a smooth manifold by associating
a vector space of a fixed dimension (known as the rank of the vector bundle)
at each point of the manifold in a way that given the smooth structure of the
manifold, the set of all these vector spaces at all points of the manifold acquires
a natural smooth structure. The simplest example of a vector bundle of rank n
over a smooth manifold M is the product manifold M ×Rn where n ∈ N. This
is known as the trivial vector bundle of rank n over M. Any vector bundle of
a given rank n over a smooth manifold M locally looks like a product U × Rn
where U is some open subset of M, but two different vector bundles of the
same rank over the same manifold may differ in the process in which the local
product structures are glued together to obtain a global smooth structure of
that vector bundle. In order to classify the vector bundles (of a given rank)
over a given manifold, one thus requires a global invariant which distinguishes
two vector bundles depending on this gluing process. Characteristic classes are
crucial global invariants which are used to understand how much twisted a
vector bundle is how far it is from being a trivial bundle.

6.7 Connection and curvature in a vector bundle

6.7.1 Connection in a smooth manifold and curvature

The idea of connection has been used in transporting some topological or ge-
ometric data related to a smooth manifold along a curve in the manifold in
a nice and consistent manner. Depending on the context and what is to be
transported, a connection is defined in an appropriate manner. Let’s start with
the simplest version of connection, known as an affine connection on a smooth
manifold, which provides a standard technique for transporting tangent vectors
from one point to another along a curve of the manifold. Thus it helps to com-
pare the tangent spaces of two points in a manifold which are joined by a curve.
An affine connection is also described in terms of a covariant derivative, which
prescribes a way to take a derivative of a vector field with respect to another
vector field on a manifold to transport a vector field infinitesimally in a
given direction.

, i.e.,

, i.e.,
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Definition 6.7.1. Let M be a smooth manifold of dimension n. An affine con-
nection on M is a R-bilinear map

∇ : χ(M)× χ(M) → χ(M)

(X,Y ) 7→ ∇XY, X, Y ∈ χ(M)

satisfying the following properties

∇fXY = f(∇XY ) and

∇X(fY ) = X(f)Y + f(∇XY ) for f ∈ C∞(M),X,Y ∈ χ(M)

Then∇XY is called the covariant derivative of Y with respect to X.

Considering the vector fields on a smooth manifold M as the sections of
the tangent bundle TM, an affine connection on M can be re-interpreted as a
way to translate the sections of the tangent bundle and to compare the fibers
of TM at different points in M. One refers to an affine connection on a smooth
manifold as a connection in its tangent bundle.

It can be checked that there are infinitely many connections on any smooth
manifold. In particular, given any Riemannian metric g on M, there is a nat-
ural choice of an affine connection ∇g on M which also satisfies the following
additional properties

∇gXY −∇gYX = [X,Y ] and

Z(g(X,Y )) = g(∇gZX,Y ) + g(X,∇gZY ) for X,Y,Z ∈ χ(M)

∇g is called the Riemannian connection of the metric g.

Example 6.7.2. The Riemannian connection ∇gE on the Euclidean space
(Rn, gE) equipped with the standard Euclidean metric gE , is given by the
directional derivative of vector fields given vector fields X,Y on Rn,
∇gEX Y = X(Y ). More explicitly, if Y = (Y 1, ..., Y n) with respect to the stan-
dard Euclidean (global) co-ordinates where Y i : Rn → R, are smooth functions
for each i = 1, ..., n, then ∇gEX Y = (X(Y 1), ..., X(Y n)) where at a point p ∈ Rn,
X(Y i)(p) = DY i(p)(X(p)) denotes the usual directional derivative of the func-
tion Y i in the direction of the vector X(p).

With this background, one can talk about translating a vector field along
a curve on the manifold as follows. First of all, let us define vector fields and
covariant derivative of vector fields along a curve on a manifold.

Definition 6.7.3. A vector field X along a smooth curve c : [a, b] → M is a
smooth map X : [a, b]→ TM such that X(t) ∈ Tc(t)M for each t ∈ [a, b].

The covariant derivative of a vector field X(t) along a curve c(t) is again
a vector field along the same curve denoted by DX

dt , and obtained by taking the
covariant derivative of X with respect to the tangent vector field c′(t) of the
curve c.

, i.e.,
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Figure 6.1: Parallel translation of the vector v0 along the loop PNQP on S2

using the Riemannian connection of the round metric

Definition 6.7.4. A vector field X(t) along a curve c(t) is said to be parallel if
DX
dt = 0.

It can be checked that given a smooth curve c : [a, b] → M and any
v ∈ Tc(t0)M for some t0 ∈ [a, b], there exists a unique parallel vector field V
along c such that V (t0) = v (see Ref. 1for details). V (t) is called the parallel
translate of the vector v = V (t0) along the curve c. More precisely, we define

Definition 6.7.5. The parallel translation along a curve c from c(t0) to c(t),
is the linear map Pt : Tc(t0)M → Tc(t)M which sends a vector v ∈ Tc(t0)M
to the vector V (t) ∈ Tc(t)M where V denotes the parallel vector field along c
satisfying V (t0) = v.

In the Euclidean space, parallel translation of a vector v ∈ Tc(t0)M along
any curve c literally means translating that vector to c(t) (i.e., it does not
depend on the curve but on the points c(t0) and c(t) together with the vector
v) and parallel translation of a vector along a loop brings the vector back to
itself. But this is not true in general. In particular, parallel translation of a
vector along a loop does not usually bring the vector back to itself. Consider
the example in the round sphere Sn described by Fig. 6.1, where the vector v0

at the point P is parallel translated along the loop denoted by PNQP to the
vector v1 which makes an angle θ with the initial vector v0. It is not difficult
to check that the angle θ through which the initial vector is rotated measures
the area inside the loop.

Given a Riemannian manifold (M, g) with its Riemannian connection ∇g,
one can describe the curvature of the manifold denoted by R, as the map
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that assigns to every pair of vector fields X,Y ∈ χ(M) the linear operator
R(X,Y ) : χ(M)→ χ(M) given by the following formula:

R(X,Y )Z = ∇gX∇gY Z −∇gY∇gXZ −∇g[X,Y ]Z, X, Y, Z ∈ χ(M)

A straight forward computation then implies the following

Lemma 6.7.6. The curvature R of a Riemannian manifold (M, g) satisfies the
following properties:

1. R(X,Y ) = −R(Y,X),

2. R(f1X, f2Y )(f3Z) = f1f2f3R(X,Y )(Z), and

3. R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 for X,Y, Z ∈ χ(M), and
fi ∈ C∞(M), i = 1, 2, 3.

Proof. Left as an exercise. (Hint: Use the properties of Lie bracket and ∇g.) �

Let (U, (xi)) be a co-ordinate chart around a point p in the manifold M .
If X = ∂

∂xi
and Y = ∂

∂xj
are coordinate vector fields on U, then [X,Y ] = 0 and

therefore the above formula reduces to

R(X,Y )Z = ∇gX∇gY Z −∇gY∇gXZ
which says that curvature of the Euclidean space with respect to the Eu-

clidean metric is zero. In other words, the curvature of a Riemannian manifold
measures the extent to which the covariant derivative is non-commutative.

6.7.2 Connections in a vector bundle

Consider a vector bundle π : E → M over a smooth manifold M. Let Γ(E)
denote the sections of the vector bundle. One would like to find a way of trans-
porting the sections of this vector bundle along a curve in the base manifold
M in a consistent way or equivalently transporting a section infinitesimally in
a given direction. Generalizing the notion of the covariant differentiation or an
affine connection on the tangent bundle of a smooth manifold, one can make
the following definition.

Definition 6.7.7. A connection in a vector bundle π : E →M denoted by ∇ is
a R-bilinear map

∇ : χ(M)× Γ(E)→ Γ(E)

(X, s) 7→ ∇Xs
satisfying the following conditions:

∇fXs = f(∇Xs) and

∇X(fs) = X(f)s+ f(∇Xs) for f ∈ C∞M,X ∈ χ(M), s ∈ Γ(E).

We will refer to ∇Xs as the covariant derivative of s with respect to X.
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Lemma 6.7.8. Every vector bundle admits a connection.

Proof. We first prove the result for the trivial bundle M × Rn, n ∈ N of rank
n over a smooth manifold M :

In fact, consider the standard co-ordinates (x1, ..., xn) of Rn. Then {si =
∂
∂xi
}ni=1 is a set of n-linearly independent (global) sections of M × Rn. We

will call s1, ....sn the (global) frame field on M × Rn. Set ∇Xsi = 0 for each
i = 1, .., n and each X ∈ χ(M). Any section s of the trivial bundle is of the
form s =

∑n
i=1 fisi where fi ∈ C∞(M). Define

∇Xs =

n∑

i=1

X(fi)si, ∀X ∈ χ(M).

This gives a well defined connection on M ×Rn where the covariant derivative
∇Xs is nothing but the directional derivative of s (considered as an Rn valued
smooth map on M) in the direction of X. ∇ as defined here is called a trivial
connection on M × Rn.

Next we consider any arbitrary vector bundle π : E → M of rank n. Let
{Uα}α be a locally finite open covering of M (i.e., for any p ∈ M, there are
only finitely many Uαs containing p) such that {π−1(Uα)} is a trivial bundle
over Uα for each α and let ∇α denote a trivial connection in each {π−1(Uα)}.
Consider a partition of unity {fα}α subordinate to the covering {Uα}α i.e., is
a family of non- negative smooth functions {fα} on M such that supp(fα) =
{p ∈M : fα(p) 6= 0} ⊂ Uα and for any point p ∈ M ,

∑
α fα(p) = 1 (since

{Uα}α is locally fine, the sum is finite for any p). To check that such functions
exist, the reader is referred to Ref. 4.

Now we can define

∇Xs =
∑

α

fα∇αXs, ∀X ∈ χ(M), s ∈ Γ(E).

It follows directly that ∇ defined above is a connection in the vector
bundle π : E → M . It is also easy to see from the definition that infinitely
many connections can be constructed likewise in any vector bundle.

�

Connections as differential forms

A connection ∇ in a vector bundle π : E → M can locally be expressed in
terms of differential forms as follows. Let U be an open subset of M such that
π−1(U) = E|U is trivial and let {si}ni=1 be linearly independent sections giving
the frame field on E|U . Given any vector field X defined on U, one has

∇Xsj =

n∑

i=1

ωij(X)si
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where ωij(X) is a smooth function on U for each i = 1, .., n. From Definition

6.7.7, it follows that ωij(fX) = fωij(X) for each i, j = 1, 2, ..n and for any

f ∈ C∞(U). Consequently, each ωij defines a differential 1-form on U. Let

ω = (ωij). Then ω is a n× n matrix whose components are differential 1-forms
on U. Such a matrix is called a M(n,R) valued differential 1-form. From now
on, we will refer to ω as the connection form of ∇ on U. Clearly, the connection
∇ is completely determined by ω on U.

6.7.3 Curvature in a vector bundle

Given a connection ∇ in an arbitrary vector bundle π : E → M of rank
n as above, one can talk about its curvature. The definition generalizes the
notion of the curvature of a Riemannian connection in the tangent bundle
of a Riemannian manifold. For any X ∈ χ(M), the corresponding covariant
derivation ∇X : Γ(E) → Γ(E) is a linear operator which in case of the trivial
bundle M×Rn, is precisely the action of the fixed vector field X on smooth Rn
valued functions on M. Thus when ∇ denotes a trivial connection, it follows
from the construction of ∇ and from the definition of Lie bracket that

∇X∇Y −∇Y∇X −∇[X,Y ] = 0,

i.e.,

∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s = 0 ∀ X,Y ∈ χ(M); s ∈ Γ(M × Rn).

This formula is not true for an arbitrary vector bundle E with an arbitrary
connection which leads to defining the curvature of a vector bundle with respect
to a given connection as follows.

Definition 6.7.9. Given a connection ∇ on a smooth vector bundle π : E →M
over a smooth manifold M, the curvature corresponding to the connection ∇
denoted by R, is the map that assigns to every pair of vector fields X,Y ∈ χ(M)
the linear operator R(X,Y ) : Γ(E)→ Γ(E) defined by

R(X,Y )(s) =
1

2
{∇X∇Y s−∇Y∇Xs−∇[X,Y ]s}, s ∈ Γ(E).

Thus curvature of a trivial vector bundle with respect to a trivial con-
nection is zero. The curvature of an arbitrary vector bundle, thus, in a way
measures its deviation from a trivial bundle with a trivial connection.

Lemma 6.7.10. The curvature R of a vector bundle π : E →M with a connec-
tion ∇ satisfies the following properties:

1. R(X,Y ) = −R(Y,X),

2. R(f1X, f2Y )(f3s) = f1f2f3R(X,Y )(s) for any X,Y ∈ χ(M), and
fi ∈ C∞(M), i = 1, 2, 3; and s ∈ Γ(E).

Proof. Left as an exercise. (Hint: Use the properties of Lie bracket and of the
connection ∇.) �
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Curvature as a differential form

Just like a connection ∇ in a vector bundle π : E → M, the corresponding
curvature R can also be expressed locally in terms of differential forms. As in
Section 6.7.2, consider an open subset U of M such that π−1(U) = E|U is
trivial and let {si}ni=1 be linearly independent sections of E|U . Let ω = (ωij)
be the connection form of ∇ on U as defined in Section 6.7.2. Given any two
vector fields X,Y on U, one can write

R(X,Y )sj =

n∑

i=1

Ωij(X,Y )si (6.1)

where Ωij(X,Y ) is a smooth function on U for each i, j = 1, .., n. Using

Lemma 6.7.10, one can see that Ωi
j(X,Y ) = −Ωij(Y,X) and Ωij(f1X, f2Y ) =

f1f2Ωij(X,Y ) for each i, j = 1, 2, ..n and for any f1, f2 ∈ c∞(U) i.e., in other

words, each Ωij defines a differential 2-form on U. Writing Ω = (Ωij), one ob-

tains a n × n matrix Ω whose components Ωi
j are differential 2-forms on U.

Thus Ω defines a M(n,R) valued differential 2-form on U and we will call it
the curvature form of ∇ on U.

It is but natural to expect a relation between the connection and the
curvature form of ∇ on U as ∇ and R are closely related. The relation is
described below.

Theorem 6.7.11. Given a vector bundle π : E → M and a connection ∇, the
connection form ω and the curvature form Ω are related as follows

Ω = ω ∧ ω + dω

where ω ∧ ω = (ω ∧ ω)ij and dω = (dω)ij , i, j = 1, ..n; are n × n ma-
trices whose components are differential two forms defined on U given by
(ω ∧ ω)ij =

∑n
l=1 ω

i
l ∧ ωlj and (dω)ij = d(ωij) respectively. Writing the above

relation component-wise, for i, j = 1, ..n; one obtains

Ωij =

n∑

l=1

ωil ∧ ωlj + d(ωij) (6.2)

Proof. Combining definitions of curvature R(X,Y ) (for vector fields X,Y ) on
an open set U and the connection form as above,

2R(X,Y )sj = ∇X(∇Y sj)−∇Y (∇Xsj)−∇[X,Y ]sj

= ∇X
(

n∑

i=1

ωij(Y )si

)
−∇Y

(
n∑

i=1

ωij(X)si

)
−

n∑

i=1

ωij([X,Y ])si

=

n∑

i=1

X(ωij(Y ))si +

n∑

i,l=1

ωlj(Y )ωil(X)si

−
n∑

i=1

Y (ωij(X))si −
n∑

i,l=1

ωlj(X)ωil(Y )si −
n∑

i=1

ωij([X,Y ])si (6.3)
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Now using the following formulae (check them!!)

2dωij(X,Y ) = X(ωij(Y ))− Y (ωij(X))− ωij([X,Y ]),

2ωil ∧ ωlj(X,Y ) = ωil(X)ωlj(Y )− ωil(Y )ωlj(X);

in (6.3) and writing the expressions in terms of matrices, the required result
follows. �

Corollary 6.7.12. As above let π : E → M be a vector bundle of rank n with a
connection and its curvature form ω and Ω respectively defined on an open set
U in M. Then the exterior derivative of Ω (also defined on U) is given by

dΩ = Ω ∧ ω − ω ∧ Ω

i.e., writing component-wise for each i, j = 1, ..n;,

d(Ωij) =

n∑

l=1

{Ωil ∧ ωlj − ωil ∧ Ωlj}.

Proof. Using Theorem 6.7.11, one has for each i, j = 1, ..n;

Ωij =

n∑

l=1

ωil ∧ ωlj + d(ωij).

Taking exterior derivative on both sides, and using the fact that d2 = 0, one
obtains;

d(Ωij) =
n∑

l=1

{d(ωil) ∧ ωlj − ωil ∧ d(ωlj)}

Thus in terms of matrices one obtains,

dΩ = dω ∧ ω − ω ∧ dω
= (Ω− ω ∧ ω) ∧ ω − ω ∧ (Ω− ω ∧ ω)

= Ω ∧ ω − ω ∧ Ω.

�

6.7.4 Behaviour of the connection and curvature forms under change

of (local) trivializations

So far the connection form ω and the curvature form Ω have been studied in a
single open set U of M where the restriction E|U = π−1(U) of the vector bundle
π : E →M is trivial. One would like to understand how the local expressions of
connection and curvature form change if one moves from one local trivialization
to another around the same point in M. these transformation formulae are
described below.
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As before, consider a vector bundle π : E →M of rank n with a connection
∇ Also consider two open subsets Uα, Uβ in M such that Uα ∩ Uβ 6= ∅ with
trivializations

φα : π−1(Uα)→ Uα × Rn,

φβ : π−1(Uβ)→ Uβ × Rn,

and the transition function hαβ : Uα ∩ Uβ → GL(n,R). Let ωα,Ωα and ωβ ,Ωβ
denote the connection and curvature forms on Uα, Uβ respectively. Then the
following transformation formulae hold on Uα ∩ Uβ .

Proposition 6.7.13. With ωα,Ωα; ωβ ,Ωβ and Uα, Uβ as above, one has the
transformation formulae

(a) ωβ = h−1
αβωαhαβ + h−1

αβd(hαβ),

(b) Ωβ = h−1
αβΩαhαβ .

Proof. (a) Start with the frame fields s1, ..sn and s̃1, ..s̃n on Uα and Uβ corre-
sponding to the trivializations φα and φβ respectively. For p ∈ Uα ∩ Uβ , one
can write for each j = 1, ..n;

s̃j =

n∑

i=1

(hαβ)ij(p)si (6.4)

which follows from the properties of local trivializations and corresponding
transition functions where hαβ = ((hαβ)ij). For X ∈ χ(M), consider the co-

variant derivation operator ∇X : Γ(E) → Γ(E). Recall that ωα = ((ωα)ij) and

ωβ = ((ωβ)ij) for i, j = 1, ..n. Applying ∇X to (6.4) and using the properties of
connection form, one obtains

n∑

l=1

(ωβ)lj(X)s̃l =

n∑

i=1

d((hαβ)ij)(X)si +

n∑

i,l=1

(hαβ)ij(ωα)li(X)sl (6.5)

Combining (6.4) and (6.5), and equating the i-th components from both sides,
one further obtains

n∑

l=1

(ωβ)lj(X)(hαβ)il = d((hαβ)ij)(X) +

n∑

l=1

(hαβ)lj(ωα)il(X) (6.6)

As X ∈ χ(M), is arbitrary and the above equation holds for each i, j = 1, ...n;
one can write in matrix form

hαβωβ = ωαhαβ + d(hαβ). (6.7)

which implies (a).
(b) From Theorem 6.7.11 it follows that on Uβ , one has

Ωβ = ωβ ∧ ωβ + d(ωβ)
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i.e., writing componentwise as in (6.2),

(Ωβ)ij =

n∑

l=1

(ωβ)il ∧ (ωβ)lj + (d(ωβ))ij .

For simplicity of notations, denote hαβ by h. Using (6.7), one makes the fol-
lowing observations

ωβ ∧ ωβ = (h−1ωα ∧ ωαh+ h−1dh) ∧ (h−1ωαh+ h−1dh)

= h−1ωαh+ h−1ωα ∧ dh+ (h−1dhh−1) ∧ ωαh+ (h−1dhh−1) ∧ dh

and
dωβ = (dh−1 ∧ ωα)h+ (h−1dωα)h− h−1ωα ∧ dh.

Combining the above two equations and using the fact that h−1h = Id (and
therefore, taking exterior derivative, h−1dh+ hdh−1 = 0), one finally obtains

Ωβ = h−1ωαh+ h−1dωαh = h−1Ωαh (6.8)

�

6.7.5 Connections and curvature in a complex vector bundle

One can talk about connections and corresponding curvature of a complex vec-
tor bundle over a smooth manifold in a manner similar to the case of real vector
bundles discussed earlier, although one needs to make suitable modifications.
Consider a complex vector bundle π : E →M of complex rank n over a smooth
manifold M. Here the set Γ(E) of all sections of the vector bundle forms a mod-
ule over the ring of all complex valued smooth functions C∞(M ;C) on M. A
connection can be defined as follows.

Definition 6.7.14. A connection ∇ in a complex vector bundle π : E →M is a
complex bilinear map

∇ : χ(M)× Γ(E)→ Γ(E)

(X, s) 7→ ∇Xs
satisfying the following conditions:

∇fXs = f(∇Xs) and

∇X(fs) = X(f)s+ f(∇Xs) for f ∈ C∞(M,C),X ∈ χ(M), s ∈ Γ(E).

One can define the connection form of ∇ locally as follows. First consider
the complex linear combinations of differential l-forms on M and call them
the complex differential l-forms on M. Let us denote the set of all complex
differential l-forms on M by Al(M,C). One can define the exterior deriva-
tive d : Al(M,C) → Al+1(M,C) by extending the ordinary exterior derivative
complex linearly. Then one obtains the co-chain complex {Al(M,C), d} and
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the corresponding complex de Rham cohomology which can be denoted by
HDR(M,C) and one can check that

H∗DR(M,C) ≡ H∗(M,C)

where H∗(M,C) denotes the singular cohomology of M over C. On an open set
U ⊂ M with E|U = π−1(U) trivial, consider a frame field s1, ...sn ∈ Γ(E|U).
Then as in the case of a real vector bundle, one can write

∇Xsj =

n∑

i=1

ωij(X)si

where each ωij defines a complex differential 1-form on U and ω = (ωij) is the
n × n matrix known as the connection form of ∇ on U. In a similar fashion,
one can define the curvature form Ω = (ωij) whose components (ωij) are com-
plex differential two forms defined U. Thus in this case, ω and Ω respectively
define M(n,C) valued 1-form and 2-form on U. It also follows directly from
the construction of ω and Ω that Theorem 6.7.11, Corollary 6.7.12 and both
the transformation formulae given in Proposition 6.7.13 continue to hold in the
complex vector bundle set up as well. The only difference is that the transition
functions hαβ (as described in Proposition 6.7.13) in this case will have values
in GL(n,C).

6.8 Characteristic classes

The next step would be to construct some global invariants for a vector bundle
that respect natural bundle maps and work as tools to distinguish two given
vector bundles of the same rank over a manifold. (Recall that given two vector
bundles πi : Ei → Mi, i = 1, 2; a bundle map between these two bundles is
described by a pair (f, F ) where f : M1 → M2 and F : E1 → E2 are smooth
maps such that the following diagram commutes

E1
F−−−−→ E2yπ1

yπ2

M1
f−−−−→ M2

and for each x ∈M1, the restricted map F : E1|x → E2|f(x) which preserves the
fibers of the bundles, is linear.) The first thing to observe is that the curvature
of a vector bundle endowed with some connection is described in terms of locally
defined differential forms on the base manifold giving local information about
the vector bundle and its deviation from the trivial bundle of the same rank.
Using these local information and properties of a curvature form, one can try
to construct global differential forms on the base manifold. If one can further
prove this form to be closed, then it corresponds to a de Rham cohomology
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class of the manifold which is a topological invariant. With this strategy one
proceeds as follows. First one combines all these local differential forms into a
global one using an algebraic entity known as invariant polynomials which is
described below.

6.8.1 Invariant polynomials

Definition 6.8.1. Let M(n,K) denote the space of all n × n matrices and
GL(n,K) the space of all invertible matrices of the same order over K where
K denotes the field of real or complex numbers. A polynomial function P :
M(n,K) → K (by a polynomial function P : M(n,K) → K, one means a
polynomial in the entries of matrices) is said to be an invariant polynomial if

P (X) = P (A−1XA) ∀ X ∈M(n,K), A ∈ GL(n,K).

Two of the most elementary examples of invariant polynomials are the
determinant and trace of an n × n matrix. These are invariant polynomials
of degree n and 1 respectively. It can be checked that the set all invariant
polynomials as defined above is a commutative algebra denoted by In with
respect to the standard addition and multiplication of polynomials.

Properties of an invariant polynomial
A few properties of invariant polynomials are given here. For a detailed

proof of these properties see Ref. 4.
(1) P is an invariant polynomial if and only if

P (XY ) = P (Y X) ∀ X,Y ∈M(n,K).

(2) An invariant polynomial P can be uniquely expressed as a real or
complex polynomial of elementary symmetric functions σ1, ..., σn where the
elementary symmetric functions are as follows. Given X ∈ M(n,K), σi(X)
denotes the i-th elementary symmetric function of the eigenvalues of X given
by the equation

det(I + tX) = 1 + tσ1(X) + t2σ2(X) + ...+ tnσn(X).

Then it follows from the above equation that for each i = 1, .., n; σi : M(n,K)→
K is an invariant polynomial.

Constructing global differential forms on a smooth manifold using (local) cur-
vature forms

In this section we will construct global differential forms on a smooth mani-
fold from (local) curvature forms of a given vector bundle over the manifold.
Naturally, one needs the transformation formulae for the curvature forms while
moving from one local trivialization of the vector bundle to another around the
same point on the manifold and then an invariant polynomial to define a well
defined global differential form.
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Consider a (real or complex) vector bundle π : E →M of (real or complex)
rank n over a smooth manifold M with a connection ∇ and curvature R. Then
there is an open covering {Uα} of M such that for each α, E|Uα is trivial and
the curvature R is given by the curvature form Ωα = ((Ωα)ij), an n× n matrix

whose components are differential two forms (Ωα)ij defined on Uα. Moreover,
the curvature forms {Ωα} and {Ωβ} defined respectively on Uα and Uβ are
related to each other on Uα ∩ Uβ by

Ωβ = h−1
αβΩβhαβ

where hαβ : Uα ∩Uβ → GL(n,K), K = R or C, denotes the transition function
as before.

Combining the locally defined curvature forms together one defines
M(n,K) valued global differential forms on M (i.e., n×n matrices whose com-
ponents are differential forms on M) in the following manner. Observe that the
forms Ωα and Ωβ are similar to each other in Uα ∩Uβ . Applying any invariant
polynomial P on the n × n matrices Ωα one obtains a globally well defined
differential form as in this case one has P (Ωα) = P (Ωβ) whenever Uα∩Uβ 6= ∅.
Let us denote this global differential form on M by P (Ω) for any invariant
polynomial P. In fact, one makes a stronger conclusion.

Proposition 6.8.2. Given an invariant polynomial P ∈ In of degree l, the global
differential form P (Ω) as defined above is a closed 2l-form on M.

In the case of a complex vector bundle π : E → M of complex rank n,
P (Ω) as above (P is an invariant polynomial of degree l acting on n×n complex
matrices) defines a closed complex differential 2l-form on M .

For a proof of the above proposition, see Ref. 4.
For an invariant polynomial P of degree l acting on n×n real or complex

matrices, consider the de Rham cohomology class [P (Ω)] ∈ H2l
DR(M,K), K = R

or C, of the closed (real or complex) differential form P (Ω) of degree 2l on a
smooth manifold M. One observes that

Proposition 6.8.3. The de Rham cohomology class [P (Ω)] ∈ H2l
DR(M,K), K = R

or C, for each l is independent of the choice of the connection ∇ on the (real
or complex) vector bundle π : E →M.

For a proof of the above proposition, see Ref. 4.
The above proposition says that not only the differential forms are inde-

pendent of local trivializations of the vector bundle but are also independent
of which connection is chosen. Thus given a vector bundle, a connection or
its curvature play only an auxiliary role to define some de Rham cohomology
classes of the manifold which are global invariants. Therefore one can denote
P (Ω) by P (E) and call it the characteristic class of E corresponding to the
invariant polynomial P.

Furthermore, one has the following result which in particular says that
two isomorphic vector bundles have the same characteristic classes. The proof
of this result is not discussed in this note. See Ref. 4 for proof.
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Proposition 6.8.4. The characteristic class is natural with respect to a bundle
map, i.e., if f : N → M is a smooth map between manifolds and π : E → M
is a vector bundle (real or complex) over the smooth manifold M, then for the
pull back bundle f∗(E) over N one has

P (f∗(E)) = f∗(P (E)) ∈ H2k(N,C), for any invariant polynomial P,

where the pull back bundle f∗(E) over N is defined fiber-wise by

f∗(E)|x = E|f(x),

for each x ∈ N.

6.8.2 Chern classes and Pontrjagin classes

In this section we will talk about two important characteristic classes. The
former, called the Chern classes, are defined for complex vector bundles; while
the latter, called Pontrjagin classes, are defined for real vector bundles.

Chern classes

Definition 6.8.5. For a complex vector bundle π : E → M of complex rank n
over a smooth manifold M, the Chern class of degree l denoted by cl(E) is the
characteristic class corresponding to the degree l invariant polynomial

(−1

2πi

)l
σl ∈ In(C),

where σl denotes the elementary symmetric function of degree l. As a cohomol-
ogy class in terms of the local curvature form Ω of the vector bundle, one can
write,

[
det

(
Id−

(−1

2πi

)
Ω

)]
= 1 + c1(E) + c2(E) + ...+ cn(E) ∈ H∗DR(M,C).

The expression on the right hand side is called the total Chern class of the
vector bundle denoted by c(E).

The first observation that one makes is that

Proposition 6.8.6. For each l, 1 ≤ l ≤ n, the Chern class cl(E) defines a real
cohomology class i.e., cl(E) ∈ H2l

DR(M,R).

Again we have skipped the proof here which can be found in Ref. 4.
In fact, one can say more. The normalizing constant term attached to the

symmetric function in the definition of the Chern class of degree l ensures that
this represents a de Rham cohomology class with integral coefficients i.e., for
each l, 1 ≤ l ≤ n, cl(E) ∈ H2l

DR(M,Z) for a complex vector bundle E of rank
n over M.
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Pontrjagin classes

Definition 6.8.7. For a real vector bundle π : E →M of rank n over a smooth
manifold M, the Pontrjagin class of degree l denoted by pl(E) ∈ H4l

DR(M,R)
is the characteristic class corresponding to the degree 2l invariant polynomial

(
1

2π

)2l

σ2l ∈ In(R),

where σ2l denotes the symmetric function of degree 2l. In terms of the local
curvature form Ω of the vector bundle one can write,

[
det

(
Id−

(
1

2π

)
Ω

)]
= 1 + p1(E) + p2(E) + ...+ p[n2 ](E) ∈ H∗DR(M,R).

The expression on the right hand side is called the total Pontrjagin class of the
vector bundle denoted by p(E).

As for the Chern classes, here also the normalizing constant attached to
the symmetric function in the definition of the Pontrjagin class of degree l en-
sures that this represents a de Rham cohomology class with integral coefficients
i.e., for each l, 1 ≤ l ≤ [n/2], pl(E) ∈ H4l

DR(M,Z) for a real vector bundle E
of rank n over M.

Remark 6.8.8. The above definition of the Pontrjagin class of degree l is quite
similar to that of the Chern class of degree 2l for a complex vector bundle.

view of the following fact (for a proof of the fact see Ref. 4), one only considers
symmetric functions of even degrees.

Proposition 6.8.9. Given an invariant polynomial P of odd degree, the charac-
teristic class P (E) = 0 where π : E →M is areal vector bundle.

This is not true when E is a complex vector bundle.

Relating Chern and Pontrjagin classes

Given a real vector bundle π : E →M of rank n over a smooth manifold M, one
has its Pontrjagin classes pl(E) ∈ H∗DR(M,Z). Consider the complexification
E ⊗ C of E which is a complex vector bundle of complex rank n over M.
Then one can talk about the Chern classes cl(E) ∈ H∗DR(M,Z). These two
characteristic classes are closely related to each other as given by the following
proposition.

Proposition 6.8.10. Let π : E → M be a real vector bundle of rank n over
a smooth manifold M, and E ⊗ C its complexification. Then with notations
described above, one has

pl(E) = (−1)lc2l(E ⊗ C) ∈ H4l
DR(M,Z).

The difference is that, in the real case while defining Pontrjagin classes, in, i.e.,
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For a proof of the above proposition the reader is referred to Ref. 4. The
above formula can also be used as the definition of the Pontrjagin classes of
a real vector bundle E (in terms of the Chern classes of its complexification
E ⊗ C).

Both the Chern and Pontrjagin classes behave well with respect to the
sum of two vector bundles as described below. For a verification of the following
result the reader is referred to Ref. 4.

Proposition 6.8.11. (1) If E and F are complex vector bundles over a smooth
manifold M, then

cl(E ⊕ F ) =

l∑

j=0

cj(E)cl−j(F ),

and hence the total Chern class is given by

c(E ⊕ F ) = c(E)c(F ).

(2) If E and F are real vector bundles over a smooth manifold M, then

pl(E ⊕ F ) =
l∑

j=0

pj(E)pl−j(F ),

and hence the total Pontrjagin class is given by

p(E ⊕ F ) = p(E)p(F ).

6.8.3 Examples

From the previous discussions, it follows that all the Chern and Pontrjagin
classes of trivial bundles (real and complex respectively) over any smooth man-
ifold are zero. In fact, the curvature of a trivial connection on a trivial vector
bundle vanishes identically. One would like to know about the Chern (or Pon-
trjagin) classes of some non-trivial vector bundles. Here we discuss the simplest
example of the tangent bundle of sphere and its characteristic classes.

(a) The tangent bundle of the Riemann sphere
Consider the Riemann sphere (which can be thought as the complex pro-

jective space CP 1) with a holomorphic local co-ordinate chart (U, (z)). Let
TCP 1 denote the complex tangent bundle of CP 1. A complex tangent vector
at a point in U is of the form λ ∂

∂z , λ ∈ C. One can show that c1(TCP 1) 6= 0.
(Since this is a real vector bundle of rank two, there is no question of the
existence of its Pontrjagin classes.)

Consider the Kähler metric g which with respect to the holomorphic co-
ordinate (z), is of the form

g =
dzdz̄

(1 + |z|2)2
.
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Consequently, in this co-ordinate chart U, the curvature 2-form Ω looks like

Ω =
2dz ∧ dz̄

(1 + |z|2)2
,

and the first Chern class is given by

c1(TCP 1) =

[
i

2π
tr(Ω)

]
.

Computing its integral over CP 1, one obtains
∫
c1dz ∧ dz̄ =

i

π

∫
dz ∧ dz̄

(1 + |z|2)2
= 2.

Thus it represents a non-zero cohomology class, i.e., TCP 1 is not a trivial
bundle.

(b) The tangent bundle of the sphere of dimension bigger than two
The tangent bundle of sphere Sn, n ≥ 3; is real vector bundle of rank

n. Although, in general, it is not a trivial bundle, but it turns out that all its
Pontrjagin classes vanish. This can be seen as follows.

of Rn+1. Then its restriction E = TRn+1|Sn is also a trivial real vector bundle
over Sn of rank n+ 1 and all its Pontrjagin classes

pj(E) = 0, for1 ≤ j ≤ [
n+ 1

2
],

vanish identically. Define the sub-bundle L of E by L = (TSn)⊥ in E. Then L
is real line bundle over Sn such that

E = TSn ⊕ L.
Then using the formula in the second part of Proposition 6.8.11, it follows that
all the Pontrjagin classes pj(TS

n) = 0 for j, 1 ≤ j ≤ [n2 ]; also vanish identically.

References

[1] S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, Third edition,
(Springer-Verlag, Berlin, 2004).

[2] J. W. Milnor and J. D. Stasheff, Characteristic Classes, (Princeton Univer-
sity Press, 1976).

[3] R. O. Wells Jr. , Differential Geometry on Complex Manifolds, (Prentice
Hall, 1973; Springer, 1979)

[4] S. Morita, Geometry of Differential Forms (American Mathematical Soci-
ety, Providence, RI, 2001).

[5] S. Morita, Geometry of Characteristic Classes (American Mathematical So-
ciety, Providence, RI, 2001).

Consider the trivial bundle TRn+1 = Rn+1×Rn+1 the tangent bundle, i.e.,
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Special Topics: A Crash Course on
Knots

Mahan Mj

We give a quick introduction to Knot Theory following standard
sources in the subject. With the help of examples, we illustrate the
ideas of knot invariants, knot groups, Wirtinger presentation, tor-
sion, Seifert surfaces, Skein relations, Alexander and Jones polyno-
mials, and linking number. A few examples of knots and links are
given in the appendix.

7.1 Introduction: Equivalence between Knots

We shall be mainly using Dale Rolfsen’s Knots and Links [1] as the primary
source below.

Definition 7.1.1. An embedded copy of the circle S1 in Euclidean 3-space R3

or the 3-sphere S3 is called a knot.

The union of finitely many copies of S1 in Euclidean 3-space R3 or the
3-sphere S3 is called a link.1

Knot theory mainly attempts to answer the question:

Question 7.1.2. Given two knots K1,K2 in R3 are they equivalent?

To answer this question, we need to come up with appropriate notions of
equivalence. Usually two equivalent notions are used:

1See Appendix for diagrams of a few simple knots and links.
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144 7. Knot theory

Definition 7.1.3. K1 and K2 are said to be equivalent if there is an orientation-
preserving homeomorphism h : R3 → R3 such that h(K1) = K2.

K1,K2 are said to be isotopic if there is a one-parameter family ht of
embeddings (t ∈ [0, 1]) of S1 in R3 such that h0(S1) = K1 and h1(S1) = K2.

An isotopy ht is called an ambient isotopy if ht can be extended to a
one-parameter family of diffeomorphisms of R3.

The Isotopy Extension Theorem shows that two knots are equivalent if
and only if they are isotopic.

A weaker equivalence between knots is obtained by demanding only that
their complements in R3 (equipped with an orientation) are homeomorphic via
an orientation-preserving homeomorphism.

In a famous paper Knots are determined by their complements. J. Amer.
Math. Soc. 2 (1989), no. 2, 371-415, by Cameron Gordon and John Luecke, the
authors showed that if the complements of two tame knots are homeomorphic
via an orientation-preserving homeomorphism, then the knots are equivalent.
This is referred to cryptically as:

Theorem 7.1.1. Knots are determined by their complements.

7.2 Knot Invariants

It therefore suffices to study algebraic invariants of the knot complement R3\K.
Here, by an algebraic invariant of a space X, we mean a natural way of associat-
ing to X an algebraic gadget, e.g. a group or a module, or a polynomial A(X),
such that if X and Y are homeomorphic, then A(X) and A(Y ) are isomorphic.

Examples include:

1. The fundamental group π1(X),

2. More generally, higher homotopy groups πn(X),

3. Homology groups Hn(X),

4. (The dual) Cohomology groups Hn(X).

These invariants have been discussed in various chapters of this book.2

7.3 The Knot Group

In general, the conceptually simplest invariant is the knot group π1(R3\K). This
is quite a sensitive invariant and distinguishes between most distinct knots. It
is also easy to compute given a planar projection of the knot as we show below.
The problem with the invariant is that if the same knot has two different planar
projections, then they give two different presentations of the same group; and
in general it is hard to decide if two presentations give isomorphic groups or
not (this is the so-called Isomorphism Problem).

2We refer, in particular, to Chaps. 1, 3, 4, and 5 for more details on these topics.



7.3. The Knot Group 145

x

x

x

x

α αβ

1

4

2

3

ii
i+1

α1
α

α

2

3

4
α

Figure 7.1: Wirtinger presentation of a knot. The strands between two succes-
sive crossings are denoted by αi. In this figure, actually for a figure-8 knot,
there are four strands, α1, ...α4. In the lower figure, βi represents any other
strand.

7.3.1 Wirtinger presentation

Instead of giving a general description of the algorithm to compute the
Wirtinger presentation, we illustrate it by means of the example in Fig. 7.1.

For the example of Fig. 7.1, the generators of the group are x1, · · · , x4,
which are constructed as described below. In the general situation, we consider
an oriented loop starting from a point ∗ very far away coming down to the plane
on which the knot is projected, going below a strand and then going back to
∗. For convenience we only give an orientation on the piece of this loop that
crosses the knot below a strand of the knot. In Fig. 7.1 x1 crosses the strand α1

from below. Proceeding anticlockwise, we come to the encircled region, where
there is a knot crossing. Then x2 crosses the strand α2 from below. Note that
the loop indicated by x1 cannot be homotoped to the loop indicated by x2 as
the strand indicated by α4 comes in the way. Thus all maximal strands not
disconnected by another strand crossing from the top gives rise to a generator
of the knot.
Relations: Now we compute the relations:

At the encircled crossing in the diagram, there are three of the x’s. x4

crosses from right to left both below and above the crossing, x1 crosses from
bottom to top on the left of the crossing and x2 crosses from bottom to top on
the right of the crossing. This gives rise to the relation

x4x1 = x2x4.
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Note that this could also be written as

x4x1x
−1
4 = x2.

Similarly for the other crossings, we get

1. x2x3 = x4x2

2. x1x3 = x2x1

3. x4x3 = x3x1

This gives us a full presentation of the complement of the knot described above,
which is also called the figure 8 knot (see Fig. 7.5).

It turns out that (any) one of the relations can always be dropped as it is
a consequence of the remaining ones.

7.3.2 The first homology

it is the group obtained by declaring that all the generators commute.

Theorem 7.3.1. H1(R3\K) = Z for any knot K.

Again we illustrate this in the figure 8 knot complement case. We need to
abelianize the 4 relations above. These give, respectively,

1. x1 = x2

2. x3 = x4

3. x3 = x2

4. x4 = x1

Thus we have that

H1(R3\K) = 〈x1, x2, x3, x4 : x1 = x2 = x3 = x4〉 = Z.

7.4 Torsion

Since all knots have the same first homology, H1(R3\K) is of no use as a knot
invariant. However, it can be used to extract finer invariants by passing to finite
index subgroups of π1(R3\K).

Let X = S3\K and let Xj be the j−fold cyclic cover of X. The torsion-
part of H1(Xj) is called the j−th torsion invariant of K.

This can be defined purely algebraically as follows.
π1(S3\K) → H1(S3\K) = Z be the abelianization map. Compose this with
the map Z → Z/k. Let Nk be the kernel of this map. Then the abelianization
of Nk is H1(Xk) and its torsion part is the k−th torsion invariant of K. We
refer the reader to Dale Rolfsen’s Knots and Links, Chapter 6, pgs. 145-150
where explicit computations of torsion invariants of the trefoil knot (Fig. 7.5)
are made [1]. In particular, the second torsion invariants of the trefoil and the
figure eight knots are Z/3 and Z/5 respectively.

The first homology H1(X) is the abelianization of the fundamental group, i.e.,
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7.5 Seifert surfaces

A Seifert surface for a knot or link K is a connected bicollared compact surface
Σ with ∂Σ = K. Any oriented knot or link K has an oriented Seifert surface
bounding it. A Seifert surface for K is constructed as follows. Take a planar

Twisted band

Figure 7.2: Seifert surface for the trefoil (see Fig. 7.5). The thick circles bound
oriented disks. These are glued together using twisted bands as on the left.

projection of K. Near each crossing point, delete the over- and undercrossings
and replace them by ’short-cut’ arcs preserving orientation. This gives rise to
a disjoint collection of oriented simple closed curves. They bound disks, which
may be pushed slightly off each other if necessary to make them disjoint. Finally
we connect these disks together at the original crossings using half-twisted
strips. The result is a surface with boundary K.

7.6 Alexander Polynomial

To compute torsion invariants we used finite cyclic covers. The Alexander poly-
nomial is computed using an infinite cyclic cover corresponding to the map
π1(S3\K) → H1(S3\K) = Z. Let X denote the knot complement and S a
Seifert surface. Cut X open along S and attach infinitely many copies end to
end to obtain the infinite cyclic cover Y . Let t be the generators of the deck
transformation group (isomorphic to H1(S3\K) = Z ). Thus H1(Y ) can be
regarded as a Z[t, t−1]−module called the Alexander module. The presentation
matrix for the Alexander module is called the Alexander matrix. When the
number of generators, k, is less than or equal to the number of relations, s,
then the ideal generated by all k × k minors of the Alexander matrix is called
the Alexander ideal. When the Alexander ideal is principal, its generator is
called an Alexander polynomial of the knot. A detailed computation of the
Alexander polynomial of the trefoil (= t2 − t+ 1) may be found in Dale Rolf-
sen’s Knots and Links, Pages 163-165. [1] For a list of Alexander polynomials
for knots, see Table 1 of Ref. [6].
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7.7 Skein Relations

Skein relations are of the form

F (L0, L+, L−) = 0,

where L0, L+, L− are the three possible crossings at a point. The three knots
that differ at one point, because of these three crossing patterns, are denoted
by K0,K+,K−.

An example is given by the following figure (from Mina Aganagic’s article
[2]).

− q = (q     − q      )−1/21/2q −1

L+ L− L0

Figure 7.3: Skein relation for the Jones polynomial

Finding an F which produces polynomials independent of the planar pro-
jection used in a recursion is not easy. Jones uncovered an underlying structure
of skein relations when he discovered planar algebras. A skein relation can be
thought of as defining the kernel of a quotient map from the planar algebra of
tangles. Such a map gives rise to a knot polynomial if all closed diagrams are
taken to some (polynomial) multiple of the image of the unknot.

7.7.1 Alexander polynomial

We have given a geometric description of the Alexander polynomial above.
Conway discovered the following skein relation that computes the Alexander
polynomial.

AK+
−AK− = (q

1
2 − q− 1

2 )AK0
.

7.7.2 Jones polynomial

The Jones polynomial was discovered by Vaughan Jones in 1984. It is a Laurent
polynomial in q

1
2 . The figure given above actually gives us the way to compute

the Jones polynomial by furnishing the skein relation the Jones polynomial
satisfies:

q−1JK+
− qJK− = (q

1
2 − q− 1

2 )JK0 ,

and its value for the unknot. An example of computation of J(trefoil) with the
choice of J(unknot) = 1, can be found in Chap. 14 of this book.
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7.8 Linking Number

The linking number is an invariant of a link having two components, K1 and
K2. In a sense this was the oldest knot or link invariant. It was discovered
by Gauss. Choose a planar projection of the link onto a plane and define the
linking number to be half the number of crossings counted with sign (using the
right hand thumb rule after orienting the link, or using the ± convention of
Fig. 7.3), i.e.,

m(K1,K2) =
1

2

∑

crossings(K1,K2)

sign(crossing).

See the following figure (from Ref. [2])

m = 3

Figure 7.4: A planar projection of a link.

Gauss’s discovery of the linking number came from his study of electro-
statics, and he gave the following formula (see Ref. [2,3] for instance) describing
the same topological invariant:

m(K1,K2) =
1

2π

∮

K1

∮

K2

x1 − x2

|x1 − x2|3
· (dx1 × dx2),

where x1,x2 are the position vectors on loops K1,K2 respectively. Some use of
this Gauss formula can be found in Chapter 9.

For a list of Alexander polynomials and linking numbers for a class of
links, see Table II of Ref. [6].
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Appendix: Examples of knots and links

A few common examples of knots are given in Fig. 7.5.

unknot trefoil figure-8

Figure 7.5: Examples of knots [8].

Two common links are shown in Fig. 7.6.

Hopf link Borromean rings

Figure 7.6: Examples of links [9].
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Special Topics: A Short Course on
Group Theory

Bobby Ezhuthachan

These lectures provide a brief introduction to group theory, largely
focussing on finite groups. After giving the basic definition of groups,
we start with a discussion on abelian groups followed by a discussion
on non-abelian groups in the next section. Along the way, we define
normal subgroups and conjugacy classes and discuss the commuta-
tor subgroup and abelianization. In the final sections, we discuss the
examples of the Quaternionic group, as well as two examples of con-
tinuous groups- the rotation group, in particular its connection with
the group of special unitary matrices in two dimensions as well as
the conformal group.

8.1 Groups and Physics

Symmetry plays an important role in Physics. In classical theory, Noether’s
theorem relates symmetries of the action to conservation laws. So for instance,
if the action, or Hamiltonian in the phase space formulation, is invariant under
rotations, then the system described by the action, has total angular momen-
tum conserved in time, just as invariance of the action under translation in
space implies the conservation of total momentum in time. The set of such
symmetry transformations which leaves something invariant (the action in this
case), forms what is mathematically called a “group”. The action of these sym-
metry transformations on a physical system are described by matrices- called
group representations. Taking products of such matrices, corresponds to doing
successive symmetry transformations of the system.

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
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The ideas of symmetry transformations and groups are even more power-
ful in quantum theory. For instance in quantum mechanics, if a system has some
symmetry, then the corresponding group-matrices commute with the Hamilto-
nian. This fact along with a well known theorem called the Schur’s lemma, can
help in solving the problem of finding the energy levels of a system in some
cases.

Group theory helps in classifying the various particles found in nature,
since the various fundamental particles of nature, as described by the stan-
dard model of particle physics, correspond to different representations of the
corresponding symmetry group.

It is sometimes the case that the ground state is invariant under a smaller
set of symmetries than the Hamiltonian. This is known as ‘ spontaneous sym-
metry breaking’ and plays a crucial role in very important and diverse physical
phenomenon, like superconductivity and the ‘Higgs mechanism’ which gives
mass to various fundamental particles in nature. Most phases of matter can
be classified by the amount of symmetry that they break. As an example, in
crystals, the underlying invariance of the Hamiltonian under continuous trans-
lations is broken to a set of discrete translations in the crystalline phase.

So, in short, the study of Group theory is well motivated in Physics.
Before discussing some properties and examples of groups, we begin with the
basic definition of groups in the next section.

8.2 Basic definition

A Group G is a set of elements (g1, g2, ...), equipped with a composition rule,
that basically tells us how composing any two elements of this set gives rise to
a third gi ◦ gj = gk. This set along with the composition rule, has to satisfy the
following conditions.

• Associativity: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk)

• Existence of an identity element denoted by e such that e ◦ gi = gi ∀ i.
• Existence of an inverse element for every element gi for which we use the

notation by g−1
i such that g−1

i ◦ gi = e

As a corollary of these properties, it follows that e and g−1
i are unique

and that g ◦ e = g and g ◦ g−1 = e.
If the elements of the set G can be labelled by an integer, then the group

is called discrete, while if its labelled by continuous numbers, then the group
is called continuous . If a discrete group has a finite number of elements, then
the number of elements is called the order of the group and is usually denoted
by the symbol |G|.

In general, the composition rule for the group elements is not commuta-
tive. However if in special cases, the composition rule is commutative for all
elements, then such a group is called an abelian group, else its called non-
abelian.
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The condition that two elements gi, gj commute, can be recast as g−1
i ◦

g−1
j ◦gi◦gj = e. An element of a group g ∈ G is called a commutator if it can be

expressed as g = a−1 ◦ b−1 ◦a◦ b ≡ [a, b]. Where a, b are any two elements of G.
Stated in terms of the commutator, a group is abelian iff the only commutator
element of the group is the identity.

Some simple examples of Groups:

• The set of integers under addition (Z).

• The set of continuous rotations of a rigid body

• Permutation of n objects

• The set of unitary n× n Matrices.

In the next section, we will first discuss the abelian case, and then in later
sections discuss non-abelian groups.

8.3 Abelian Groups

For the abelian group, as is standard, we will borrow the notation from Z. We
therefore denote the composition rule by the addition symbol (+), the identity
element by 0 and the inverse by −g. So that gi+gj = gk and g+(−g) ≡ g−g = 0.

If a subset of elements of a group, itself forms a group under the same
composition law, then its called a subgroup. For example, the group Z has a
subgroup which is simply obtained by multiplying each element by any specific
integer say N , that is: NZ is a subgroup of Z. Given an abelian group G and
some subgroup H, we can form a set of equivalence classes , called coset , where
the elements of each class consists of all such elements, (g, x) which are related
as: {g, x ⊂ G; such that g = x+ h; where h ⊂ H}. It is easy to check that the
above relation is an equivalence relation (which we denote as: (g ∼ x)), because
the relation is reflexive, transitive and associative.

• (a) reflexivity: g ∼ g, because g = g + 0

• (b) transitivity: g ∼ x⇒ x ∼ g, because g = x+ h ⇒ x = g − h
• (c) associativity: if g ∼ x and x ∼ y ⇒ g ∼ y, because if g = x + h1 and
x = y + h2, then g = y + h1 + h2

Each such coset class, is denoted by [g], where g is any representative
element of that class. For abelian groups the coset , which is the set of all such
distinct equivalence classes, also has a group structure and hence is also called
the Quotient Group. The notation used for such a Quotient group formed out
of G and H is G/H. The identity element of this group denoted by [0] is simply
the set of all elements of the type (0 + h) which is just the full subgroup H.

In particular, for G = Z and H = NZ, the elements of G/H are the
equivalence classes ([0], [1], ...[N − 1]). For example with N = 2, we have
the elements [0] and [1]. Where [0] = (0, 2,−2, 4,−4, 6,−6, ...) and [1] =
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(1,−1, 3,−3, 5,−5, 7,−7, ....). Its easy to see that, [0] + [1] = [1], [1] + [1] ≡
2[1] = [0]. This Group is therefore in one - one correspondence with the group
of two elements (0, 1) under the composition law addition modulo two, (a+b =
c mod 2). This group is denoted as Z2. Similarly for general N , N [1] = 0 and
the quotient group Z/NZ ∼= ZN , which is the group of N integers-(0, 1, ...N−1)
under the composition rule addition modulo N , (a+ b = c mod N)

In a general abelian group, the element obtained by adding the same
element many times must be again an element of the group. If the group is finite,
then it must be the case that for some positive integer N , g+g+g...(Ntimes) ≡
Ng = 0. Then, N is called the order of the element g. The set of all elements of
finite order, in an abelian group forms a sub group, called the torsion subgroup
and denoted by t(G).

Problem 8.3.1: Show that t(G) is a subgroup.

If all elements of a group is generated by a set of elements (g1, g2, ...gr),
their inverse and the identity, the group is called a finitely generated abelian
group (FGAG). That is, g =

∑r
i=1Nigi; ∀ g ∈ G. Here, Ni ∈ Z. If these

generators are linearly independent, that is: 0 =
∑r
i=1Nigi; ⇒ Ni = 0 ∀i ,

then the FGAG is called free. A free FGAG with r independent generators is
said to have rank r. A group generated by one element is called cyclic. The
group Z is a cyclic group of order infinity, while ZN is a cyclic group of finite
order N .

Definition 8.3.1 (Group Homomorphisms). Given two groups (not neces-
sarily abelian) G and H, if there exists a map f(G), which maps elements of
G into elements of H, then such a map is called a Homomorphism.

1. f(g) ∈ H; ∀g ∈ G
2. f(g1 ◦ g2) = f(g1) • f(g2); ∀gi ∈ G

Here the ◦ and the • denote the composition laws in G and H respectively.

The subset of elements (x) of the group G, which maps to the identity in
H is called ker f . (x ∈ kerf ; f(x) = e). While Im f is the subset of elements
y in H which have been mapped from some element of G. ie: y = f(g).

Problem 8.3.2: Show that both ker f and Im f are subgroups of G and H
respectively.

It is clear that the map from G to Im f is not in general an isomorphism.
That is, the map need not be one-one onto. This is so because, more than one
element in G, can map to same element in H. f(g1) = f(g2). This means that
f(g1) • f−1(g2) = e⇒ f(g1 ◦ g−1

2 ) = e⇒ g1 ◦ g−1
2 ∈ kerf .

Returning to the case of abelian groups, this means that g1 - g2 = h, h ∈
kerf . This implies that any two elements which map to the same element in
H belong to the same equivalence class, and therefore is a single element of
the Quotient group G/kerf . This Quotient group has now elements in one
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to one correspondence with the elements of Im f , so that the two groups are
isomorphic. ie: G/kerf ∼= Imf

A few applications of this result are given below.

1. Consider the homomorphism between the group Z and Z2. f(2n) = 0 and
f(2n+1) = 1. The kernel of this map f(x) = 0 is simply all even integers:
ie: kerf = 2Z, so that we recover: Z/2Z ∼= Z2.

2. Consider any group H which is a free FGAG of rank r generated by the set
(g1, ..., gr). This can be thought of as the image of the homomorphism from
the group G =

⊕r
i=1 Z. The map being simply: (N1, ...Nr) ∈ G; f(g) =∑r

i=1Nigi ∈ H. Since the group H which is the image of f is a free
FGAG, the kerf = {0}. Then it follows that any free FGAG of rank r,
H ∼=

⊕r
i=1 Z.

3. By a similar argument, any cyclic group G with generator g of finite order
N , (x ∈ G; x = ng; Ng = 0) is isomorphic to ZN . To get this result,
we simply start from the group Z and then take f(n) = ng; n ∈ Z.
Since Ng = 0, it follows that kerf = NZ. Therefore, any cyclic group
G ∼= Z/NZ ∼= ZN .

4. More generally, any FGAG with r generators (g1, ...gr) not necessar-
ily free, is isomorphic to Z

⊕
Z
⊕

Z...(m times)
⊕

Zk1
⊕

Zk2 ...
⊕

Zkn ,
where the set of integers (m, k1, ...kn) are fixed for a given FGAG, and
m+ n = r. m is known as the rank of the FGAG.

We sketch a proof of the last statement below.

Problem 8.3.3: For a free FGAG of rank = r with generators (g1, ..., gr),
the subset of elements generated by (k1gi1 , ...kpgip) is always a subgroup. Where
(gii ....gip) are any p generators from the set of r generators of the free FGAG
and (k1, ..., kp) are all integers.

In fact, it turns out that all subgroups of a FGAG can be generated
this way. This means, that any subgroup H of a free FGAG is isomorphic to
k1Z

⊕
k2Z

⊕
...
⊕
kpZ.

We can now construct a homomorphism, as before, from the group G =⊕r
i=1 Z to H = FGAG. The map being, again as before, f(G) = f(N1, ...Nr) =∑r
i=1Nigi. Then the kernel of this map, being a subgroup of G,

• kerf ∼= k1Z
⊕
k2Z

⊕
...
⊕
kpZ, for some set of positive integers

(p, k1, ...kp).

Then the desired result follows.

• H = Imf ∼= G/kerf = Z
⊕

Z
⊕

Z...(m times)
⊕

Zk1
⊕

Zk2 ...
⊕

Zkp ,
with m+ p = r
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8.4 Nonabelian cases: Conjugacy class, cosets

In this section, we will start discussing the non-abelian case. We will intro-
duce some definitions, some of which we have already seen in the abelian case,
and some which are interesting and non-trivial only when the group is non-
abelian. For the non abelian groups, we will use the notation gh for denoting
the composition g ◦ h.

Definition 8.4.1 (conjugacy classes). All the elements of a group can be placed
in various conjugacy classes. Two elements (x, y) of a group G are said to be
conjugate to each other, if there exists some element g of the group G, such
that gxg−1 = y. The conjugation relation is an equivalence relation.

Problem 8.4.1: Show that conjugation is an equivalence relation

All elements which are so related belong to the same conjugacy class. It is
trivial to see that for abelian groups, there are no non-trivial conjugacy classes.
Every element is conjugate only to itself.

• For the group of rotation matrices in three dimensions, all rotations by
the same angle but about different axis fall into the same conjugacy class.

• For the group of two dimensional special unitary matrices, all matrices
having the same trace are conjugate to each other.

Definition 8.4.2 (coset). Given any element (g) in G, and a subgroup H, one
can form a set denoted as [g], which has elements (g, gh1, gh2, ..); ∀hi ∈ H.
This subset of elements is denoted as gH ≡ [g]. A coset is a set whose elements
are all such distinct classes [g1], [g2].... Its usually denoted as G/H.

Problem 8.4.2: Show that if there are two such classes [g1] and [g2], then either
they share all elements or none.

The number of elements in each such class [g] is equal to |H|- the order
of H. Therefore |G|/|H| = number of distinct coset classes. So it follows that
for any subgroup H of G, |H| factorizes |G|.

Cosets have been introduced in the context of abelian groups. Unlike in the
abelian case however, cosets do not form a group in general. This is because the
coset classes do not satisfy the composition rule for groups. ie: All elements of
[g1][g2] 6= [g1g2]. This is so because due to the non-abelian nature of the group,
g1h1g2h2 6= g1g2h3 for any gi ∈ G and hi ∈ H. Another way of expressing this
is g1Hg2H 6= g1g2H, A coset would have been a Group, iff (giHg

−1
i = H ∀ i).

This brings us to the definition of a normal subgroup.

Definition 8.4.3 (Normal Subgroup and Quoient Groups). A subgroup which
satisfies the property that gHg−1 = H; ∀g ∈ G is called a normal subgroup.

This means that the conjugate of any element of H is also in H. If we
construct a coset out of a normal subgroup, then the coset so formed is a Group,
called the Quotient Group. For the abelian case, all subgroups are trivially
normal.
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Problem 8.4.3: Show that kerf , where f is a homomorphism between two
groups G and H is a normal subgroup of G

8.5 Commutator subgroup and abelianization

As an example of a normal subgroup, we consider the commutator sub group.
Given a group G, the commutator subgroup [G,G] is the subgroup which is gen-
erated by all the commutator elements [a, b]. So, the elements of the subgroup
[G,G] are (x ∈ [G,G]; x = [a1, b1]n1 [a2, b2]n2 ...[ai, bi]

ni ...). This automatically
implies that the product of two commutator elements is also a commutator
element. All such elements clearly form a group. In fact it forms a Normal
subgroup. This follows from the following two properties.

• [a, b]−1 = b−1a−1ba ≡ [b, a]

• g[a, b]g−1 = [ac, bc]; ac = gag−1 and bc = gbg−1

This further means that

1. ∀ x ∈ [G,G], x−1 ∈ [G,G]

2. ∀ x ∈ [G,G] and ∀g ∈ G, gxg−1 ∈ [G,G]

• The first property along with the fact that the identity is also a commu-
tator element implies that [G,G] is a subgroup.

• From the second property, it follows that [G,G] is a normal subgroup.

The Quotient group G/[G,G] is always abelian. This means that
g1[G,G]g2[G,G] = g2[G,G]g1[G,G]. As a check of this statement, do the fol-
lowing problem.

Problem 8.5.1: Show g1[a1, b1]g2[a2, b2] = g2[ac1, b
c
1]g1[g1, g2][a2, b2] where

ac = g−1
2 g1ag

−1
1 g2 and similarly for bc.

This process of constructing an abelian group from a non-abelian group
is called abelianization.

8.6 Examples of Groups

In this and the following section, we will consider various examples of groups.

8.6.1 The Quaternionic Group

The Quaternionic group is the set of elements denoted as
(1,−1, i, j,k,−i,−j,−k), with the composition rule: ii = jj = kk = −1
and ij = −ji = k, jk = −kj = i, ki = −ik = j. (1, −1) commute with all
elements. In particular, 1 is the identity element and −1 has order two. (-i, -j,
-k) are the inverse elements of (i, j, k) respectively

One representation of these elements are as 2 × 2 σ matrices and the
identity matrix.
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Problem 8.6.1: Check that the following representations of the elements of the
Quaternionic group, indeed satisfy the group composition rules.
i ≡ iσ1, j ≡ iσ2, k ≡ −iσ3, ±1 ≡ ±I2×2

Problem 8.6.2: Write down all the conjugacy classes of the group.

Problem 8.6.3: Write down all the subgroups of the Quaternionic group. Check
that the order of these subgroups are indeed factors of the order of the Quaternionic
group.

Problem 8.6.4: Check which of these subgroups are normal subgroups.

Problem 8.6.5: Using the definition of the commutator subgroup show that for
the Quaternionic group, the commutator subgroup is {1,−1}.

Problem 8.6.6: Abelianization of the Quotient Group: Since the commuta-
tor subgroup is a Normal subgroup, the coset formed out of it G/[G,G] is a
Quotient group. We will now check that it is abelian and identify which abelian
group it is.

• Find the cosets gH where H is the commutator subgroup. Show that they
are (1,−1), (i,−i), (j,−j), (k,−k)

• Denoting each of these classes as [1], [i], [j], [k] respectively, show that they
form an abelian group. Show explicitly that the composition rule of the
Quotient group is [i][i] = [j][j] = [k][k] = [1], [i][j] = [j][i] = [k],
[j][k] = [k][j] = [i]

and [j][i] = [i][j] = [k]

• Using the notation for abelian groups, where we use + for composition, 0 for
identity, so that [1] = 0, write the above rules as: 2[i] = 2[j] = 2[k] = 0 and
[i] + [j] = [k], [j] + [k] = [i], [i] + [k] = [j].

• Simplify the above and show that not all are independent relations. Show that
the independent relations are:

• 2[i] = 2[j] = 0 and [i] + [j] = [k].

• Hence show that the Quotient group obtained by abelianization of the Quater-
nionic group is isomorphic to Z2 ⊕ Z2

8.6.2 Rotations of a rigid body

Now we will consider examples of continuous groups. The first example we
consider is that of continuous rotations of a rigid body. These are characterized
by 3× 3 marices which satisfy

RRτ = RτR = I3×3, with det[R] = +1 (8.1)

Here Rτ is the transpose matrix. Its easy to check, the set of all such matrices
form a group. This is the group SO(3). Here R is a three dimensional real
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matrix. The above equation reduces the number of independent elements of
the matrix to just three. Under rotations, the length of a vector Vremains
invariant. ie RV ·RV = V ·V. Let W be an eigenvector of R with eigenvalue
λ. Physically we expect that under rotation the vector remains real, so that we
take λ to be real. Then,

RW ·RW = λ2W ·W = W ·W

Also the determinant condition means that λ1λ2λ3 = 1. Taken together, this
means that there exists atleast one eigenvector with eigenvalue = +1. Therefore
this eigenvector does not change under rotations. This eigen-direction is called
the axis of rotation.

Problem 8.6.7: Choose a basis, where the z − axis is the axis of rotation,
and the x and y axes are any two orthonormal directions. In this basis show, using
equation(1), that R can be written as follows:

R =




1 0 0
0 cos(θ) sin(θ)
0 − sin(θ) cos(θ)




The angle θ is called the angle of rotation. So that any Rotation matrix is
fully characterized by an angle and an axis of rotation. It follows from this
form of R that cos(θ) = trR−1

2 . So the angle of rotation is given in terms of the
trace of R.

So any rotation is characterized by (n̂, θ). We can now parametrize this
space as follows.

• Let n̂ be any direction on the sphere. This means that we distinguish
between the axis of rotations n̂ and -n̂.

• Then we measure θ in counter-clockwise direction of n̂. This way, we can
restrict the range of θ to values 0 ≤ θ < π. This is because, in this way of
parametrizing, rotation by angle π + θ in counter clockwise direction to
n̂, is same as counter clockwise rotation by π − θ around -n̂.

• In particular, rotation by π around n̂ is same as rotation by π around -n̂.

• We can now geometrically represent the space of all SO(3) matrices as
points inside a ball of size π, where the radial direction is the n̂, and the
length along this direction is θ and because of the identification mentioned
in the previous bullet, the surface of this ball has its diametrically opposite
points identified. Therefore the configuration space of SO(3) Matrices is
in one to one correspondence with the points of a Ball/Z2, where the Z2

action identifies the opposite points on the surface of the ball.

There is another way in which we can represent these SO(3) matrices.
Since these represent continuous rotations, we can build a finite rotation as a
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series of several smaller rotations, in the limit where each rotation is taken to
be infinitesimal and the number of such rotations is taken to be infinity. ie:

R = ΠN
i=1R(ε), lt : (N →∞, ε→ 0, Nε = 1). (8.2)

Here R(ε) is a infinitesimal rotation. An infinitesimal rotation can be
parametrized as

R(ε) = I3×3 + εT (8.3)

Using the equation RRτ = I3×3, we can show that T is an antisymmetric
matrix. Any antisymmetric matrix in three dimensions may be parametrized
in terms of three generators {Ti}, T =

∑3
i=1 tiTi, where ti are independent

parameters, and

T1 =




0 1 0
−1 0 0

0 0 0


 T2 =




0 0 1
0 0 0
−1 0 0


 T3 =




0 0 0
0 0 −1
0 1 0




These generators satisfy the following algebra: [Ti, Tj ] = εijkTk, where[A,B] =
AB − BA and εijk is the completely antisymmetric tensor with entries ±1.
ε123 = 1. We can now build a finite rotation, as a product of such infinitesimal
rotations.

R(t1, t2, t3) = lim
N→∞

(
I3×3 +

1

N

3∑

i=1

tiTi

)N
= exp

(
3∑

i=1

tiTi

)
(8.4)

It is more conventional to express

R(ti) = exp

(
i

3∑

i=1

θiLi

)
= exp(iθn̂ · L) (8.5)

Where Li = iTi, θi = −ti, (θ =
√
t21 + t22 + t23), θ n̂ = (θ1, θ2, θ3) and L =

(L1, L2, L3).
The Li’s are Hermitian matrices and satisfy the following algebra:

[Li, Lj ] = iεijkLk. This algebra is identical to that satisfied by the two di-
mensional σ matrices. As we will see in the next section, the σ matrices are the
generators of the SU(2) matrices in two dimensions. This isomorphism between
the two algebras is because of the fact that the SU(2) and SO(3) groups are
related by a homomorphism, which we will discuss in the next section.

8.7 SU(2) and SO(3)

In this final section, we will discuss the group of two dimensional SU(2) ma-
trices and write down a homomorphism from this group to the group of SO(3)
matrices.
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8.7.1 SU(2) matrices

SU(2) matrices in two dimensions are complex matrices with determinant +1
and satisfying

UU † = I (8.6)

Its easy to show that any such matrix can be parametrized as

U =

(
α β

−β∗ α∗

)
=

(
a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

)
= a0I + ia · σ

where, α = a0 + ia3, β = a2 + ia1 are complex numbers and (a2
0 + a · a = 1)

a = (a1, a2, a3) and σ = (σ1, σ2, σ3)

Problem 8.7.1: Show it.

Therefore it follows that the configuration space of all SU(2) matrices are
in one-one correspondence with the points on a S3.

Parametrizing a0 = cos(θ) and |a| = sin(θ), we can write: U = eiθn̂·σ,
where n̂ = a

|a| . So the σ matrices are the generators of the SU(2) group in

the same sense that Li’s were of the SO(3) group. Also, the SU(2) and SO(3)
generators satisfy the same algebra. We will now see that the two groups are
homomorphic.

Homomorphism from SU(2) to SO(3)

We start with the observation that for every 3 dimensional vector one can write
a corresponding two dimensional traceless, hermitian matrix as follows:

V =



V1

V2

V3


 ⇒ υ =

(
V3 V−
V+ −V3

)
= V · σ, V± = V1 ± iV2

The length of the vector is related to the determinant of the matrix as:
|V |2 = −det(υ).

After rotation vector V goes over to vector V′ = RV with the same length.
|V ′| = |V |. This means that the corresponding two dimensional matrices, υ and
υ′ = V′ · σ must have the same determinant. Since both these matrices are
Hermitian, have the same trace and same determinant, it must be that they
are related by a unitary transformation as given below:

υ′ = URυU
†
R (8.7)

In fact we can take the UR to be SU(2) matrices, because the det(U) and
det(U †) cancel each other in the RHS of the above equation. So, we can con-
clude that the rotation of a vector V in three dimensions, corresponds, in two
dimensions, to acting on the matrix υ by a SU(2) matrix and its inverse from
the left and right respectively.
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We can use this equation to find an explicit map from SU(2) to the R
matrices. We first note that:

υ′ =
∑

i

V ′i σi =
∑

i

RijVjσi = (a0I + ia · σ)(V · σ)(a0I− ia · σ), (8.8)

where Rij ’s are the components of the rotation matrix.
One can then simplify the LHS further by using the following identities:

(V · σ)(W · σ) = (V ·W)I + i(V ×W) · σ, (8.9a)

V′ = a2
0V + a(V · a) + (V × a)× a + 2a0(V × a). (8.9b)

We then get

RijVj =
(

(a2
0 − a · a)δij + 2aiaj + 2a0εijkak

)
Vj . (8.10)

Then comparing the coefficient of Vj on both sides we get the desired
explicit form of Rij

R =



a2

0 + a2
1 − a2

2 − a2
3 2(a1a2 + a0a3) 2(a1a3 − a0a2)

2(a1a2 − a0a3) a2
0 + a2

2 − a2
1 − a2

3 2(a2a3 + a0a1)
2(a1a3 + a0a2) 2(a2a3 − a0a1) a2

0 + a2
3 − a2

1 − a2
2


 ,

where as before, a2
0 + a · a = 1. R(a0,a) is therefore the desired map which

takes an element of SU(2) labelled by (a0,a) to an element of SU(3). We can
easily show that the kernel of this map is a2

0 = 1, a = 0. ie: R(±1,0) = I.
Therefore the kernel is simply ±I2×2. This is the subgroup Z2. Z2 is called the
centrer of SU(2). In general, the centre of a group is the subset of all elements
which commutes with every other element. For SU(N) group the centre is ZN .
So we get the relation that SU(2)/Z2

∼= SO(3). Thus there is two-one relation
between elements of the SU(2) and SO(3).

We can further identify the angle and axis of rotation with the ϕ and n̂
appearing in the parameterization of the SU(2) matrix UR = eiϕn̂·σ as follows:
θ = 2ϕ and angle of rotation is same as n̂. This is left as an exercise below.
This relation between the angles θ and ϕ is related to the existence of half
integral spin particles in quantum mechanics— a direct consequence of the
SU(2) representation of rotations.

Problem 8.7.2: Prove the identity given by Eq. (8.9a).

Problem 8.7.3: Using the identity of Eq. (8.9a), show Eq. (8.9b).

Problem 8.7.4: By choosing V ‖ a, show that V′ = V, and thus prove that
n̂ is indeed the direction of the axis of rotation.

Problem 8.7.5: By choosing V ⊥ a, and using the fact that the angle of
rotation cos(θ) = V′ ·V/|V |2, show that θ = 2ϕ. So that UR can be parametrized
directly in terms of the axis and angle of rotation as UR = ei(θ/2)n̂·σ.
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8.8 Conformal transformations

Conformal transformations are transformations which preserve the angle be-
tween curves. The angle between two curves at a point of intersection p is the
angle that the tangents to the two curves make at p. It is given by

cos(θ) =
ds1.ds2

|ds1||ds2|
,

where ds1 and ds2 are infinitesimal vectors along the tangent directions at the
point p. It is clear, from the expression of the angle that it is invariant under:

• global translations (x→ x+ a),

• global rotations(or Lorentz transformations, depending on whether the
space is Euclidean or Minkowskian)(xi → Rijxj)

• global scaling of coordinates (x → λx). In this case, Both ds1.ds2 and
|ds1||ds2| scale by a factor of λ2, but these factors cancel in the denomi-
nator and numerator terms.

• In fact, the expression would be invariant if the numerator and denom-
inator both scaled locally by the same function f(x), which could then
cancel among each other. This would mean demanding that ds1.ds2 →
f(x)ds1.ds2 and |ds1||ds2| → f(x)|ds1||ds2|. We can now ask, what kind
of coordinate transformations x→ x′(x) can achieve such a local scaling.

To find such coordinate transformations, it is useful to consider the invariant
distance dS2 = gijdx

idxj . The distance dS2 is defined to be invariant under
any general coordinate transformations, which means that under any coordinate
transformations, when

dxi → ∂x′i

∂xj
dxj , the metric gij →

∂xk

∂x′i
∂xl

∂x′j
gkl,

so that the statement that ds1.ds2 → f(x)|pds1.ds2 is the same as demanding
that the metric gij → 1

f(x)gij .

• So a conformal transformation is a coordinate transformation x′(x) under
which gij(x) → g′ij(x

′) = h(x)gij(x) where h(x) is any local function of
the coordinates.

• It is easy to see that these transformations form a group. Under two such
transformations, x→ x′(x)→ x′′(x′(x)), the metric will transform as

gij(x)→ g′ij(x
′(x)) = h′(x)gij(x),

g′ij(x
′)→ g′′ij(x

′′) = h′′(x′)g′ij(x
′) = h′′(x′(x))h′(x)gij(x) = ĥ(x)gij(x),

where ĥ(x) = h′′(x′(x))h′(x). The inverse coordinate transformation, as-
suming it exists, is the inverse element while the identity is x′(x) = x.
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We study these transformations by first looking at the infinitesimal forms
of coordinate transformations. So, we look at x′(x) = x + ε(x) and h(x) =
1 + g(x). Under these transformations, the metric change is as follows:

∂xa

∂x′i
∂xb

∂x′j
gab(x) = h(x)gij(x), (8.11)

which for infinitesimal transformations becomes

(δai − ∂iεa)(δbj − ∂jεb)gab = (1 + g(x))gij(x) (8.12)

We will be working mostly on flat space, so that we can take gij = δij . Then
the above equation simplifies to:

∂iεj + ∂jεi = −g(x)δij (8.13)

We will first analyze these equations in two dimensions, where it is simple.
In two dimensions, i, j take values 1, 2. Then the above two equations are:

∂1ε1 = ∂2ε2, and ∂1ε2 = −∂2ε1. (8.14)

These are just the Cauchy-Riemann conditions, and it means that in two dimen-
sions, under a conformal transformations, (z = x + iy) → f(z) and similarly
for z̄ = x − iy → f̄(z̄). So any holomorphic transformation is a conformal
transformation in two dimensions.

We now try to construct the generators of these conformal transforma-
tions. To find the generators, let us first recall how it is done for the case of
translations and rotations.

• The generator of translations is simply the derivative operator ∂
∂xi . Any

function f(x+ a) = ea∂xf(x). For a infinitesimal,

f(x+ a) = f(x) + a∂xf(x) = (1 + a∂x)f(x).

In particular for f(x) = x, x′ = x+ a = (1 + a∂x)x.

• Similarly for the case of two dimensional infinitesimal rotations x′ = x+yε
and y′ = y− εx, we know that the generator is simply (x∂y − y∂x), as for
any function

f(x′, y′) = f(x+ εy, y − xε) = f(x, y) + ε(y∂x − x∂y)f(x, y).

In particular, for f(x) = x we have x′ = (1 + ε(y∂x−x∂y))x and similarly
y′ = (1 + ε(y∂x − x∂y))y.

So, now we can use the same method to find the generators for the conformal
transformations in two dimensions. We first write

z′ = z + ε(z) =

[
1 +

( ∞∑

n=−∞
εnz

n+1

)
∂z

]
z, (8.15)
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where in the RHS, we have done a Laurent expansion of ε(z) and εn are its
infinitesimal coefficients. So the generators are Ln = zn+1∂z. We have similar
generators from the anti holomorphic transformations on z̄, viz., L̃n = z̄n+1∂z̄.
These generators, satisfy the following algebra:

[Ln, Lm] = (m− n)Lm+n, [L̃n, L̃m] = (m− n)L̃m+n (8.16)

These are the generators of the conformal transformations in two dimen-
sions. In d > 2 however, the analysis of Eq. (8.12) will lead to a finite set of
symmetries. The analog of these in two dimensions are the ones generated by the
following subset, which form a subalgebra— the set generated by (L−1, L0, L+1)
and (L̃−1, L̃0, L̃+1) . We will try to see what finite transformations these cor-
respond to.

1. L−1 + L̃−1 = ∂z + ∂z̄ = ∂x,

2. i(L−1 − L̃−1) = ∂y,

3. L0 + L̃0 = z∂z + z̄∂z̄ = x∂x + y∂y = r∂r =
coordinate)

4. L0 − L̄0 = x∂y − y∂x,
5. L1 = z2∂z = −∂z−1 .

From the above, we can conclude that:

1. L−1 ± L̃−1 generate translations,

2. L0 + L̃0 = ∂ln(r), from analogy with translations, generates translations
along . But translations along corresponds to constant scaling of r
and therefore of x, y. So this is the generator for constant scaling.

3. L0 − L̃0 is the generator of rotation.

4. L1 = −∂z−1 , again generates translations in 1
z . So it takes

1

z
→ 1

z
+ a⇒ z → z

1 + az
,

where a is complex. Written in terms of X = (x, y) the transformation is

X′ =
X + a(|X|2)

1 + 2a ·X + |a|2|X|2 , a = (a1, a2). (8.17)

This is known as the Special Conformal transformation(SCT)

5. Taken together the translations, rotations, scaling and special conformal
transformations together form a group — the global conformal group. For
any d ≥ 2 this group is isomorphic to SO(d + 1, 1), which is the Lorentz
group in d+2 dimensions. For d > 2, this is the full conformal group, while
in d = 2 this group of transformations is a part of the infinite dimensional
transformations, that we discussed.

∂ ln(r), (r is the usual radial

lnr lnr
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Use of Topology in physical problems

Somendra M. Bhattacharjee

Some of the basic concepts of topology are explored through known
physics problems. This helps us in two ways, one, in motivating the
definitions and the concepts, and two, in showing that topological
analysis leads to a clearer understanding of the problem. The prob-
lems discussed are taken from classical mechanics, quantum mechan-
ics, statistical mechanics, solid state physics, and biology (DNA), to
emphasize some unity in diverse areas of physics.

It is the real Euclidean space, Rd, with which we are most famil-
iar. Intuitions can therefore be sharpened by appealing to the relevant
features of this known space, and by using these as simplest examples
to illustrate the abstract topological concepts. This is what is done in
this chapter.

9.1 The Not-so-simple Pendulum

An ideal pendulum is our first example. It is not necessarily a simple harmonic
oscillator (SHO), though the small amplitude motion can be well approximated
by a linear oscillator. This difference is important for dynamics, and a topolog-
ical analysis brings that out.

The planar motion of a pendulum in the earth’s gravitational field is
described by a generalized coordinate q where q is the angle θ as in Fig. 9.1.

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
Matter Physics, Texts and Readings in Physical Sciences 19,
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9.1.1 Mechanics

The equation of motion (with all constants set to 1) can be written as a second
order equation or two first order equations involving the momentum p as

q̈ + sin q = 0, or

{
q̇ = p,
ṗ = − sin q,

(9.1)

where a dot represents a time derivative, and the conserved energy as

E =
1

2
q̇2 + (1− cos q). (9.2)

g

θ

(a) 

S

R
0 2π 4π 6π−4π −2π

1
(b)

(c)

Figure 9.1: Planar pendulum: (a) A bob of mass m(= 1) is suspended by a
massless rigid rod of length L(= 1) in a uniform gravitational field with g(= 1)
as the acceleration due to gravity. The generalized coordinate q is angle θ. The
configuration space for θ is (b) a circle S1 or, (c) the real axis with equivalent
points x = x + 2nπ, n ∈ Z. Here Z represents the set of all integers, positive,
negative, 0. We may choose q = x to be the length of the arc along the circular
contour. A simple harmonic oscillator corresponds to q = x ∈ R without any
equivalent point.

Let us make a list of some of the relevant results known from mechanics.

1. The potential energy has minima at q = 2nπ, and maxima at q = (2n +
1)π, n = 0,±1, ..., i.e., n ∈ Z. These represent the stable and the unstable
equilibrium points.

2. The stable motion for small energies, E < 2, are oscillations around the
minimum energy point q = 0. Let’s call these type-O motion.

3. For larger energies, E > 2, the motion consists of rotations in the vertical
plane, clockwise or anticlockwise. These are type-R motion.

4. There is a very special critical one that separates the above two types,
viz., the case with E = 2, when E is equal to the potential energy at the
topmost position (q = π). Let’s call it type-C.
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The strangeness of the critical one is its infinite time period1. Since most
of the time is spent near the top, it looks like an inverted pendulum at
the unstable equilibrium point.

5. For all problems of classical mechanics or statistical mechanics, there are
two spaces to deal with, the configuration space for the set of values taken
by the degrees of freedom, and the phase space, where the configuration
space is augmented by the set of values of the momenta. What sort of
“spaces” are these?

6. That there are three different classes of orbits cannot be overemphasized.
The equation of motion is time reversible under t → −t, q → q, p → −p.
This time reversibility is respected by the type-O motion, but not by
type-R because a right circular motion would go over to a left one. For
type-R, the symmetry is explicitly broken by the initial conditions, which,
however, do not play any crucial role for type-O.

7. As a coupled first order equations, Eq. (9.1), has fixed points at q =
nπ, p = 0, which are centres for even n but saddle points for odd n.

9.1.2 Topological analysis: Teaser

A topological analysis of the motion would be based on possible continuous
deformations of one solution or trajectory to the other, without involving any
explicit solution of Eq. 9.1.

Why deform? This is tantamount to asking whether there is any qualita-
tive change in motion, as opposed to a detailed quantitative one, for a small
change in energy or in the initial conditions. A small change in the amplitude
of vibration due to a small change in energy is like a continuous deformation
of the trajectory. In topology, the rule of deformation is to bend or stretch
in whatever way we want except that neither distinct points be identified (no
gluing) nor any tearing be done.2 Such transformations are called continuous
transformations.3

If the energy is changed continuously from E0 to E1 by defining a continu-
ous function E(τ), say E(τ) = E0+(E1−E0)τ with τ ∈ [0, 1] do the trajectories
in phase space get deformed continuously?4 The answer is not necessarily yes.
This is where the global properties of the phase space or the configuration space
come into play. The continuous deformations then help us both in characteriz-
ing the phase space and in classifying the trajectories. We show that the three

1This can be seen by integrating Eq. 9.2 for the time taken to go from q = 0 to q = π as∫ π
0

√
sec(q/2) dq →∞ (from q → π).

2Why these restrictions? We shall see in Sec. 9.2.1 that “gluing” is an equivalent relation
that changes the space. Similarly, tearing changes the space by redefining the neighbourhoods
at the point of cut.

3See Sec. 9.6 for a discussion on continuous functions
4This is a virtual change and not a real time-dependent change of energy. At every τ , the

pendulum executes the motion for that energy
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types of motion, O, R and C belong to three different classes of curves in the
appropriate phase space.

The topological analysis is done by identifying (i) the configuration space
and the phase space, (ii) the possible trajectories on these spaces, and for
Hamiltonian systems, (iii) the constant energy “surface” (or manifolds) for
possible real motions. We do these qualitatively first and then discuss some of
the features in more detail.

RxS1

=x

(a)

(ii)

(i)

(i)

(ii)

(b)

(c)

Figure 9.2: (a)The direct product phase space is a cylinder. (b) Type-1 and
type-2 trajectories are marked (i) and (ii) in (b) and (c). The trajectory going
completely around the circle in (b) maps to an open line in (c). Consequently
any closed loop on R can be shrunk to a point. The real line is the universal
cover of S1.

Configuration space and phase space:

The first step is to construct the configuration and the phase spaces. The values
taken by the degrees of freedom defines a set. One then defines a topology on it
by defining the open sets, thereby generating the topological space to be called
the configuration space. The phase space is obtained by adding the momenta
variables to the configuration space.

For a pendulum, with q an angle, the configuration space is a circle S1. It
is also possible to represent the configuration space as the real line R with an
identification of all points x = x+ 2nπ, n ∈ Z as in Fig. 9.1. The momentum,
being real, trivially belongs to R, the real line. The phase space is therefore
S1 × R. The direct product phase space is the surface of a cylinder (see Fig.
9.2), where the radius of the cylinder is not important.

Note that the phase space can also be viewed as the extended space R×R
with proper interpretation of one R.
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Trajectories:

Since the generalized coordinates and the conjugate momenta change continu-
ously with time, the motion of the bob generates a curve in the phase space.
This curve is called a trajectory. The second step is to construct all the possible
trajectories.

As Eq. (9.1) is time reversible, any piece of trajectory in the upper half
plane of the (q, p) phase space with arrow to the right (indicating the direction
of motion), has a mirror image in the lower half (p→ −p) with arrow towards
left. As a corollary, this time-reversed pair meets to form a closed orbit, if and
only if there is a point with p = 0. In addition, uniqueness of solution for a
given initial condition forbids crossing of distinct trajectories.

Let us now combine all the above features. We find that the possible
trajectories in the extended R2 space are either closed loops around q = 2nπ
or open curves. See Fig. 9.3. There is the transitional one that connects the
saddle points at q = (2n+ 1)π at p = 0. On the cylindrical phase space, all are
closed orbits; one type (for E < 2) enclosing the stable fixed point (0, 0), and
another type encircling the cylinder (with E > 2). The latter can be grouped
into two inequivalent classes, namely the time reversed partners (see item 6
in Sec. 9.1.1). It is obvious that one type cannot be deformed into the other
one if we follow the rules of deformation on the cylinder. The special one is
E = 2, a conjoined twin connected at one point. It requires a pinching (i.e.,
identification) of two points on the curve for E < 2. A tearing is required
as E exceeds 2 by any amount no matter how small. Moral: The topology of
the phase space naturally separates the three types of orbits. The cylindrical
topology forbids transformation of one to the other.

Another way to see the change is to use energy E(p, q) as a parameter or
replace p by E. As E depends quadratically on p, the cylindrical phase space
becomes a U-tube. To be noted that the horizontal p = 0 circle on the cylinder
has now become the vertical circle in the middle of the U as the minimum
energy is zero for θ = 0 but 2 for θ = π. The motion is then given by the
intersection of the U-tube with an E =const plane. See Fig. 9.3. The three
classes of closed loops are now easy to see. The corresponding orbits in the
configuration space are shown in Fig. 9.2.

The peculiarity of the critical case is revealed by the response of the pen-
dulum to a vanishingly small random perturbation at say the turning or the top
point. There will be no drastic change for the E > 2 or the E < 2 cases. But for
the figure eight case, when E = 2, the motion would consist of any combination
of clockwise (C) and anticlockwise (A) orbits like CCAAAACACCC... . That
is to say, all infinitely long two letter words are possible trajectories, and any
two words differing in at least one letter are distinct.

Problem 9.1.1: Suppose acceleration due to gravity g = 0. The phase space is
still a cylinder but the motion is different. Discuss how the topological arguments
change, by focusing on the change in the U-tube for energy as g → 0.
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(a)

E>2

E=2

E<2
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S1 S1
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θ=0
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E=2
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1 1
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Figure 9.3: Trajectories on (a) the cylindrical phase space, and (b) the extended
space R2. The closed orbits around θ = 0 in (a) are equivalent to the closed
orbits around the stable points q = 2nπ denoted by filled dots in (b) for E < 2.
In contrast, the closed orbits in (a) encircling the cylinder for E > 2 correspond
to the open ones in (b). The critical trajectory connects the unstable points
q = (2n + 1)π represented by unfilled squares in (b) but it just encircles the
cylinder in (a) with a point of contact. The U-tube space when E is used
as an axis is shown in (c). The actual trajectories are the E =const plane
intersections of the U-tube. On the right, three different types of intersections:
closed for E < 2 (topologically equivalent to a circle S1), figure 8 for E = 2
(two circles with one common point, called the wedge sum S1 ∨ S1), and two
disconnected closed pieces for E > 2 (disjoint union of two circles, S1 ∪ S1 but
with S1 ∩ S1 = ∅ ).

9.2 Topological analysis: details

We now discuss how topology is used in the description. Let us remember that
a topology on a set X of points require a set of subsets, τ , to be called open sets,
such that (i) ∅ (Null set) and full set X are open, i.e., ∅, X ∈ τ , (ii) any finite or
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infinite union of open sets is also open, (iii) any finite intersection of open sets,
i.e. members of τ , belongs to τ . Under these conditions, the set of subsets, τ , is
called a topology on X, while (X, τ) is said to constitute a topological space.
See Ref. [4].

A useful procedure to define a topology on a set is to embed it in a known
space. Then use the intersections of the open sets of the known space with
the set in hand to define the open sets in it. For example, S1 can be drawn
in a two dimensional space and the open sets on this curve can be defined
as the intersection of the curve with the rectangles (or Disks). The open sets
on the circle then form the basis for the topology on S1. The topology thus
defined is called the Inherited topology or the subspace topology. Since we shall
mostly be working with these inherited topologies, we shall not be explicit
about it anymore, unless something else is meant. Such embeddings are useful
in most physics problems but there are many cases for which no embeddings
are possible.

Right now we rely on our intuition of spaces.

9.2.1 Configuration Space

Our familiarity with the real d-dimensional Euclidean space Rd allows us the
luxury of thinking of other spaces in terms of Rd. With that, it might be pos-
sible to make topological identifications of spaces. There should be a statutory
warning that proving the topological equivalence of spaces in general could be
a notoriously difficult problem.

S1 as the configuration space

Our intuition of angle leads us naturally to S1. If we think of the set of values q ∈
[0, 2π], we get S1 only if we identify 0 and 2π. This can be seen by gluing the two
ends of a piece of a string (i.e. implement the “periodic boundary condition”).
A simple but concrete way of seeing this is to note that a continuous map takes
q → z = eiq with z defining the unit circle in the complex plane.

R as the configuration space: equivalence relation, quotient space

A slightly different identification is required for the extended real line used in
Fig. 9.1. This involves an equivalence relation that any x ∈ R is equivalent to
all points x+na for n ∈ Z. It is like a translational symmetry in one dimension.
Any point on R can then be brought into the interval [0, a] or [−a/2, a/2] by
addition or subtraction of suitable multiples of a. E.g.,−a/2 = a/2−a sets−a/2
as equivalent to a/2. This finite closed interval with end point identification is

this equivalence condition, the relevant space is different from R. It is denoted
by R/∼, and is called the quotient space for the equivalence relation ∼. The
space obtained via an equivalence as R/∼ is topologically equivalent to S1. A

S1. If the equivalence is denoted by the symbol ∼, i.e. ∼ x+ na, then under, x
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general feature we see here is the possibility of construction of new spaces from
a given space by defining an equivalence relation on it.

More examples For the closed interval I = [0, 1], we may define the periodic
boundary condition as an end point equivalence relation 0 ∼ 1. Then I/∼ is
homeomorphic to S1, where homeomorphism is synonymous to “topologically

f : I → S1 as f(x) = ei2πx, and successive maps (ii) a map f1 : I → I/∼, and
(iii) an inverse map f2 : I/∼ → S1, so that f2(f1(x)) = f(x) for all x ∈ I.

Note that, we do not get S1 from [0, 1] if the end points are not identified.
That they are different can be seen by removing one point from each one of the
two sets. In the closed interval case we get two disconnected pieces whereas for
S1 we get an open interval. If we take an open interval5 like q ∈ (0, 1), then
it is actually equivalent to the whole real line as one may verify by the map
x→ X = tan[π(x− 1

2 )] with X ∈ (−∞,+∞).

Problem 9.2.1: The change in the topological space by an equivalence relation
has important consequences in physics too. Take the case of [0, 1] and S1 under
the equivalence condition. For single particle quantum mechanics, the first case
corresponds to the boundary condition where the wave function ψ(x) = 0 at
x = 0, 1 while the second one to periodic boundary condition with ψ(0) = ψ(1).

Take the conventional momentum operator −i~d/dx with the eigen value
equation −i~dψdx = pψ. Show that there is no valid solution (i.e., p is not real) for
the [0, 1] case while p is real for S1.

Pendulum vs harmonic oscillator:

The importance of the topology of the configuration space can be understood
by comparing the S1 case with the space for the linearized simple pendulum.
For the latter, the configuration space is just a small part of the circle (small
angles), which can be extended to the whole real line as for a linear harmonic
oscillator. For this space R, there is only one stable fixed point at x = 0, and
the phase space has only one kind of orbit, namely the closed orbit of libration
type. All the richness of the full pendulum at various energies come from the
nontrivial topology of the configuration space.

9.2.2 Phase space

Now that we know the configuration space, we may go over to the phase
space. The momentum part is easy - it is a real number for the pendulum,

and so the space for the momenta is R× R...× R = Rn. Since the momentum

5The standard convention is to use parenthesis (, ) to denote openness. Here the boundary
points a, b are not in the set (a, b).

identical”. To be more systematic, one defines (i) a direct map (i.e., a function)

p ∈ (−∞,+∞), i.e. ∈ R. For n degrees of freedom there are n momenta,, p
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and the position are independent variables, we have a product space of Rn×C
where C is the configuration space, as seen for the planar pendulum.

The motion of the pendulum is restricted to the constant energy subspace
of the phase space as shown in Fig. 9.3. Beyond visualization, the differences
in the nature of the spaces show up through their topological invariants, e.g.,
by the fundamental group.

Topological invariants — homotopy groups:

One way of exploring a topological space X is by mapping known spaces like
circles, spheres, etc in X. The case with circles tells us how many classes of
nonequivalent closed loops that start and end at a point x0 can exist in X. Any
point in X can be chosen as the base point x0. Two loops that can be deformed
into one another are called homotopic [5]. All such homotopic loops can be
clubbed together as a single class, with any one of them as a representative
one. One may also define a product of two loops C1 and C2 by going along C1

and then from x0 along C2. There will be classes of loops that are homotopic
to C, and therefore the multiplication is for the classes. Representing a class
by [γ] for all loops homotopic to γ, the multiplication rule can be written as
[C] = [C2] [C1]. An inverse of a loop C can be defined as the loop traversed

loop). More formally, all these imply that the closed loops rooted at x0 form
a group under the operation of loop multiplications. This group is called the

can be connected by a path in X, the special point, the base point can be chosen
arbitrarily. We shall therefore drop x0 from the notation.

The fundamental group of the space for E < 2 is π1(“E < 2”) = Z
where the base point has been dropped. This part of the space is like the outer
surface of a bowl. In contrast, the space for E > 2 is disjoint – two tubes, and
the loops will depend on whether the base point, x0, is in one or the other
circle. Although π1(“E > 2”, x0) = Z, but x0 in one circle cannot be connected
by a path to the point on the other. Such a disjoint set is characterized by
the zeroth homotopy group π0(“E > 2”) = {−1, 1} ≡ Z2 with two elements
signifying two components. The critical surface is again two circles but with
one common point forming figure 8. Such a union of spaces with one common
point is called a wedge sum, indicated by a ∨. This fundamental group is now
a nonabelian group π1(“E = 2”) = Z ? Z a free group of two elements.

The difference in the fundamental group tells us that the spaces are not
identical, i.e., not homeomorphic.

Problem 9.2.2: Show that a square with periodic boundary conditions is equiv-
alent to S1×S1. Take a piece of paper and glue the sides parallelly. This is a torus
which is associated with two holes. Define the appropriate equivalence relation (∼),
and convince yourself that the compact notation is [0, 1] × [0, 1]/ ∼= S1 × S1.
This “=” means “homeomorphic” or loosely speaking “topologically equivalent”.

in the opposite direction, so that C C−1 is homotopic to a point (i.e., a trivial

fundamental group of X, π1(X,x0). For a connected space, i.e., if any two points
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We have already seen two spaces formed by two circles in the case of a pendu-
lum. Compared to the disconnected space with π0 = {−1, 1}, a torus has π0 = 0,
just as figure 8 which we obtained from two circles with one point equivalence.
Both (torus and figure 8) are connected spaces. That a torus is not topologically
figure 8 is established by π1(S1 × S1) = Z× Z while π1(figure 8) = Z ? Z.

Problem 9.2.3: Discuss the connection between the fundamental groups of the
constant energy spaces mentioned above and the real trajectories of the pendulum.

Problem 9.2.4: The phase space for a simple harmonic oscillator is R2 with
π1(R2) = 0. Discuss the motion with respect to the corresponding E-x surface.

Problem 9.2.5: The energy of a free one-dimensional quantum particle is given
by Ek = ak2 with the wavevector k ∈ R. The state with the wavefunction described
by k may called left-moving or right moving for k < 0 or k > 0. For a particle
on a lattice (lattice spacing=1), the translational symmetry makes two k values
equivalent if they differ by a reciprocal lattice vector. In other words the k-space is
like Fig. 9.1c. The equivalence relation makes the relevant space S1 as in Fig. 9.1b.
A linear representation of S1 is the interval [−π, π] with the identification of the
two end points. With this identification, a right moving particle at k = π becomes
a left moving particle at k = −π as defined earlier, but one should keep in mind
the presence of reciprocal lattice vectors . Draw Ek vs k in this 1st Brillouin zone.

Problem 9.2.6: (a) Argue that the configuration space of the pendulum in
full space (spherical pendulum) is S2 (surface of a three dimensional sphere). (b)
Discuss the possible types of motions using topological arguments. (c) In spherical
coordinates S2 can be described by (θ, φ) where θ ∈ I = [0, π], and φ ∈ [0, 2π].
Why is S2 not a product space I × S1?

Problem 9.2.7: If all the boundary points of a square are made equivalent, then
it is topologically equivalent to a surface of a sphere S2. Take a piece of cloth or
paper and use a string to bring all the boundary points together, as one does to
make a bag. Or take a square and an isolated point. Connect all the points on the
boundary to that point.

Problem 9.2.8: Bloch’s theorem, in solid state physics, is generally proved for
a lattice with periodic boundary conditions, i.e., on a torus (an n-torus for an n-
dimensional crystal. E.g., a torus is obtained by identifying opposite edges of a
square. Note that if all points on the boundary of a square are identified (spher-
ical boundary condition) one gets S2. Is Bloch’s theorem valid for the spherical
boundary condition? Are the reciprocal vectors defined for the spherical boundary
condition?

Problem 9.2.9: Bulk and edge states: In the tight binding model, a quantum
particle hops on a square lattice. Find the energy eigen states under the following
situations. Pay attention to bulk and edge states. (i) A particle on S1 × S1. In
this case there are only bulk states. (ii) With spherical boundary condition, i.e.,
on S2. There are no edges. But are the bulk states same as in (i)? (iii) Klein
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Bottle. No edges but different from (i) and (ii). (iv) Periodic boundary condition in
one direction, i.e., on a finite cylinder. There are now two edges. (v) Antiperiodic
boundary condition, i.e., a Möbius strip. There is now one single edge.

Problem 9.2.10: Argue that the configuration space for the planar motion of a
double pendulum is S1 × S1. If we consider the full three dimensional space, then
the configuration space is S2 × S2.

Problem 9.2.11: A classical Hamiltonian system with n degrees of freedom is
integrable if there exists n conserved quantities or “first integrals”. In such a case,
the motion is confined on an n-torus S1×...×S1. Here the product space indicates
that the motions can be handled independently. This is easy to see in the action
angle variables where the n angles constitute the n-tori. Convince yourself about
this for the pendulum case and for the well-known Kepler problem. This result is
useful in the context of the important KAM theorem.

Problem 9.2.12: Kapitza Pendulum: The equation of motion of a pendulum
under a periodic vertical drive is θ̈ + (g + a(t)) sin θ = 0 where a(t) = a(t+ τ) is
the periodic vertical modulation of the point of suspension. The inverted pendulum
at θ = π is stable if the amplitude of the drive exceeds some critical value. This is
called a Kapitza pendulum. By eliminating high frequency components, the Kapitza
pendulum can be described by an effective potential, Veff = −g cos θ − g2 cos 2θ.
Discuss the motion of an inverted pendulum under a periodic vertical drive or under
Veff vis-a-vis Fig. 9.3.

Problem 9.2.13: Show that a plane with a hole is equivalent (homeomorphic)
to a cylinder. With the hole as the origin, use polar coordinates r, φ so that r = 0
is excluded (=hole). Now do a mapping r → X = ln r so X ∈ (−∞,+∞), i.e.,
X ∈ R and φ defines S1. Therefore R2−{0} (also written as R2\{0}) is a cylinder.

Solve the free particle quantum mechanics problem in R2 − {0} in r, φ co-
ordinates. What are the boundary conditions? Do the same on the cylinder by
transforming the Schrödinger equation to X,φ variables. The main point of this
exercise is to see the importance of one missing point that changes the topology
of the space.

Problem 9.2.14: Show that a sphere with a hole S2\N (N=north pole) is
equivalent to a plane. The formal proof is by stereographic projection. A sphere
with two holes (north and south poles) is like a cylinder, which in turn is a plane
with a hole. What about a sphere with three missing points?

Problem 9.2.15: What is the advantage of going from the cylinder to the ex-
tended real plane as in Fig. 9.3? The real line or plane has the special feature that
any closed loop can be shrunk to a point. Such a space is called simply-connected
(as opposed to multiply-connected as in the previous problem). A practical useful-
ness may be seen by considering a damped pendulum described by θ̈+γθ̇+sin θ = 0,
where γ is the friction coefficient. Now energy is not conserved, dE/dt < 0, so
that the pendulum ultimately for t → ∞ comes to rest at the stable fixed point
θ = 0. Draw the possible trajectories (phase portrait) of this damped pendulum for
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different values of γ and starting energy (E > 2, E < 2) both on the cylinder and
on the extended space.

9.3 Topological spaces

Is the combination of two real variables q, p equivalent to a two dimensional
Euclidean plane? The question arises because even if we take q, and p as the
two directions of the xy plane, still we may not be in a position to define a
distance between two points (q1, p1) and (q2, p2). The second point is that for a
physical system described by two variables, the state space may locally be like a
plane (two dimensional) but different global connectivities may imply important
qualitative differences. E.g., for a torus and a sphere, a small neighbourhood of
a point may be described by the tangent plane at that point and would look
similar, but globally they are different. Let us concentrate on the first issue
now.

The absence of a metric (or distance) is a generic problem we face when-
ever we want to draw a graph of two different parameters. Take, for example,
a plot of pressure P and volume V for a verification of Boyle’s law. The plot
reassuringly gives us a branch of a hyperbola, which is defined as the locus of
a point such that the difference in the distance from two fixed points remain
constant. But it would be ridiculous to define an Euclidean distance between
(P1, V1) and (P2, V2). Still, we know, graph plotting does work marvelously.

The identification is done in steps through topology. First an appropriate
topological space is defined which can be identified with the similar topological
space in R2. Then, use the equivalence of this topological space and a metric
or distance based R2.

Let’s start with the real line. To define a topology we need a list or a
definition of open sets. Let’s define all sets of the type (a, b), (b > a) and their
unions as open sets. The null set ∅ and the full set are also members of the set
of open sets. That these subsets form a topology on R is easy to check. The
set of subsets with the union and intersection rules then defines a topological
space. For the real line we used only the “greater than” or “less than” relation,
without defining any distance or metric.

R
21

b

b
2

a a
1 2

Figure 9.4: Basis for R2 as a topological
space: open rectangles or disks.

This topology can be extended to R2 = R×R by defining the sets of open
rectangles (a1, a2)× (b1, b2). See Fig. 9.4. By doing this we defined a topology
in R2 without using any distance. The next step is to define a metric, the usual
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Euclidean distance in R2 with which open disks D = (x, y|(x−a)2+(y−b)2 < ε)
can be defined around a point (a, b). It is known that the topology defined by
the open rectangles and their unions is the same as the one defined by the disks.

By this procedure, with the help of boxes, the (q, p) phase-space can be
taken as a topological space equivalent to R2. This equivalence allows one to
see all the geometric features of R2 in the graphs we plot or in the phase space,
without explicitly defining the distance.

An important feature of the topology of the phase space is that it is

point, and any two paths connecting two points can be deformed into each
other.6 A connected phase space is nice because that is a sufficient condition for
the applicability of equilibrium statistical mechanics (generally called ergodicity
— that one can go from any state to any other). However, a phase space may
as well be in disconnected pieces in the sense that two parts may be separated
by infinite energy barriers. Such spaces might be relevant for phase transitions
where the phase space may get fragmented into pieces (“broken ergodicity” or
ordered systems).

Problem 9.3.1: In Fig. 9.4, an infinite number of open boxes are used as “basis”
sets to define the topology of R2. As a vector space, we need only two unit vectors
i, j where the number 2 of R2 determines the number of basis vectors. Where is this
“2” when defined as the topological space? Argue that this dimensionality comes
from the number of spaces required to construct the boxes.

Problem 9.3.2: We defined the topology for S1 by embedding it in R2 (sub-
space topology). Is it possible to define a topology on S1 without any embedding?

−a  0 a

(a)
V(x)

x
−a  0 a

(b)

x

V(X)

Figure 9.5: (a) A double well potential. (b) A double well potential but with
an infinite barrier inbetween. The barrier cannot be crossed.

6A connected space has zeroth homotopy group π0 = 0. A simply-connected space means
π1 = 0.

connected and simply connected, i.e., one may go from any point to any other
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Problem 9.3.3: Consider the one-dimensional motion of a particle in a double
well V (x) = 1

2K(x2−a2)2. See Fig.9.5(a). Discuss the nature of the configuration
space and of the phase space. Locate the fixed points and draw the phase space
portrait.

Problem 9.3.4: Suppose the barrier of the double well potential is infinitely
high (Fig. 9.5b.) Argue that the configuration space consists of disconnected pieces.
Draw the possible phase portraits.

9.4 More examples of topological spaces

Let us now consider a few other well-known spaces used in condensed matter
physics. Once the spaces are identified, their topological classifications in terms
of fundamental groups and higher homotopy groups help us in identifying the
defects that may occur, the type of particles that may be seen and so on. Here
we just construct the spaces in a few cases.

A class of condensed matter systems involve ordered states. like crystals,
magnets, liquid crystals, etc. These states or phases have a symmetry described
by a groupH which is a subgroup of the expected full symmetry G. For example,
the Hamiltonian of N interacting particles is expected to be invariant under
full translational and rotational symmetry, G, but a crystal, described by the
same Hamiltonian has only a discrete set of space group symmetries. Such
phenomena of ordering is known as symmetry breaking. The ordered state is
then described by a parameter that reflects this subgroup structure of the state.
The allowed values of the order parameter constitutes the topological space for
the ordered state and this space is called the order parameter space. Of all
the ordered states, ferromagnets and liquid crystals are easy to describe. We
discuss these spaces below.

9.4.1 Magnets

A ferromagnet is described by a magnetization vector M. In the paramagnetic
phase M = 0 but a ferromagnet by definition has M 6= 0. For simplicity (e.g.
at a particular temperature or zero temperature) we take M =const , only its
direction may change.

Magnets can be of different types depending on the nature of the vector.
If M takes only two directions up or down, then it is to be called an Ising
magnet. If M is a two dimensional vector, it is an xy magnet, and for a three
dimensional vector it is an Heisenberg magnet. In the ferromagnetic phase the
origin (M = 0) is not allowed and so any vector space description will be of
limited use. What is then required is a topological description of the allowed
values of the magnetization. Since ferromagnetism is a form of ordering of the
microscopic magnetic vectors, we call the space an order parameter space O.

It is now straightforward to see that the order parameter spaces O are of
the following kinds:



9.4. More examples of topological spaces 185

(i) Ising: O = Z2, (0,1) i.e., up or down
(ii) xy: O = S1 (circle), i.e., the angle of orientation, θ.
(iii) Heisenberg: O = S2 (surface of a 3-dimensional sphere), i.e., angle of
orientation, i.e., θ, φ.
(iv) n-vector model: there are situations where the space could be Sn, n > 2.

If we take a macroscopic d-dimensional magnet, then at each point of the
sample (x ∈ Rd) we define a magnetization vector M(x) or a mapping M :
Rd → O. That such a mapping can be nontrivial has important implications.
Instead of a fullfledged analysis of the mapping, it helps to see how loops
and spheres in real space map to the orderparameter space. E.g., when we
move along a closed loop in real space, the order parameter describes a closed
loop in O. The nature of these closed loops in O is given by the fundamental
group π1(O). A nontrivial π1 indicates there are loops that cannot be shrunk
to a point. This, in turn, means that if a loop in real space is shrunk, there
will be problems with continuous deformation of the spins; there has to be a
singularity where the orientation of the spin cannot be defined. These are called
topological defects. In d = 2, loops will enclose point defects while in d = 3,
loops will enclose line defects, with the elements of π1(O) as the “charges” of
these defects.

We just quote here the results [5] that π1(S1) = Z, and π1(Sn) = 0, n > 1.
These mean that only for the xy-magnet there will be point defects in two di-
mensions and line defects in three dimensions. In particular, Heisenberg mag-
nets will have no point (line) defects in two (three) dimensions. Any Heisenberg
spin configuration in real space can be changed to any other by local rearrange-
ments of spins. In contrast, for a 2-dimensional xy magnet, a configuration with
a point defect of say charge=1 cannot be converted by local rearrangements of
the spins to a defectless configuration. The question of continuity of a mapping
(i.e., a function) using topology is discussed separately in Sec. 9.6.

Problem 9.4.1: There seems to be an obsession for Sn, but that’s not for
no reason. Prove that Sn is the only compact simply-connected7 “surface” in n-
dimensions (n ≥ 2).8 (Poincaré’s conjecture.)

Problem 9.4.2: Berezinskii-Kosterlitz-Thouless transition: it is known that the
cost to create a unit charge defect in the 2-d xy model is ε lnL for, say, a square
lattice of size L×L. Since the defect can be anywhere on the lattice, argue that the
free energy of a single defect at temperature T is f(T ) = ε lnL− cT lnL, where
c is some constant. Take the defect free state as of zero free energy. Show that
free defects may form spontaneously if T > TBKT = ε/c. This phase transition is
called the Berezinskii-Kosterlitz-Thouless (BKT transition).

7A simply-connected space is one where any loop can be contracted to a point. This means
its fundamental group is trivial, π1 = 0.

8Any compact, simply connected n-dimensional “surface” is equivalent to Sn. Remember
that Sn is the surface of a sphere in (n+ 1)-dimensional space,

∑n+1
i=1 x2

i = 1.
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9.4.2 Liquid crystals

Nematics: RP 2

Lest we created the impression that the world is just Sn’s, we look at a different
ordered system, namely liquid crystals. A nematic liquid crystal consists of rod
like molecules where the centres of the rods are randomly distributed as in a
liquid but the rods have a preferred orientation N. This looks like a magnet

arrow. A flipping of a rod won’t change anything in contrast to M→ −M. As a
direction in 3-dimensions, the order parameter space Onematic should have been
S2 but not exactly. Two points on a sphere which are diametrically opposite
represent the same state, and therefore there is an equivalence relation on the
sphere that antipodal points are equivalent, N → −N. This is not just the
hemisphere but a hemisphere with the diametrically points identified on the
equator. This is called the real projective plane S2/Z2 = RP 2. In general,
Sn/Z2 = RPn.

As an ordered system, we would like to know how the headless arrows can
be arranged in space. This requires the behaviour of the map N : Rd → RP 2.

Biaxial nematics

Instead of rod like molecules, one may consider rectangular parallelepiped with
2-fold rotational symmetry corresponding to the 2π rotations around the three
principal axis. Such a liquid crystal is called a biaxial nematics. The order
parameter space is the sphere S2 with the equivalence relation, ∼, under the
three rotations. This ”∼” is not just the identification of the antipodal points
but, in addition, the equivalence of four sets of points (corners of the box) on
the surface of the sphere. The generic notation O = S2/∼ is too cryptic to have
any use. This is where the symmetry operations as a group is useful.

The sphere is actually a representation of the rotational symmetry. If
n1, n2 are any two allowed values of the order parameter, they are related by the
three dimensional rotation group G = SO(3). By keeping any one value fixed,
say n1, all others can be generated by the application of the group elements of
G. However, the special symmetry of the biaxial nematics, a subgroup of four
elements, H = D2, keeps the order parameter invariant, i.e., if h ∈ H, then
n1 = hn1. Then, there is some g ∈ G, for which n2 = gn1 = ghn1, so that n2

is generated by all group elements of the type gh with h ∈ H and g ∈ G but
not in H. What we get is the coset of H in G, G/H. So, instead of the generic
representation as S2/∼, we may use groups to represent the order parameter
space as a coset space, O = SO(3)/D2. The similarity of notations (quotient
space in topology and coset space in group theory) is not accidental but is
because of the similarity of the underlying concepts. It is now straightforward
to generalize to any other point group symmetry. It will be the corresponding
coset space.

but it isn’t so because a rod does not have a direction, i.e., it is like a headless
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Problem 9.4.3: Instead of SO(3), one may consider SU(2). Under this map-
ping, show that D2 goes to a eight member nonabelian group, Q, the group of
quaternions. Therefore, O = SU(2)/Q.

Problem 9.4.4: Show that the order parameter spaces for magnets can be
written in terms of groups as the following coset space:

1. the xy case: O = SO(2), or O = U(1). Note that the coset space is a group
in this case.

2. the Heisenberg case: O = SO(3)/SO(2), or O = SU(2)/U(1).

What is RPn?

A real projective space is obtained by identifying the points which differ by a
scale factor. If any point x ∈ Rn+1 is equivalent to λx for any real λ 6= 0, then
under this equivalence relation (Rn+1\{0})/∼= RPn. Geometrically, all points
on a straight line through the origin are taken as equivalent. The space then
consists of unit vectors n with n equivalent to −n.

Problem 9.4.5: What is the configuration space of a rigid diatomic molecule
in 3 dimensions?
Ans: R3 for the centre of mass and S2 for orientation of the molecule. In case the
two atoms are identical then it is R3 × RP 2.

(a) (b)

S
1

S
1

Figure 9.6: (a) Twist a circle which brings two antipodal points together. Then
fold the two circles so that again antipodal points are on top of eachother. (b)
The space of all lines through origin. Any point on a line, except the origin, are
equivalent to all others on the same line. This space is S1.

RP 1: Take a circle and identify the diametrically opposite points. See Fig.
9.6a. This is easy to do with a rubber band. The folding process shows that
S1/Z2 = RP 1 = S1. Another way of looking at RP 1 is shown in Fig. 9.6b. Take
all straight lines through origin in two dimensions. Then declare all points on a
line, except the origin, as equivalent. We may choose any point (not origin) on
a line as a representative point. Draw a circle through the origin with the center



188 9. Use of Topology

on the y-axis. Every line meets this circle at a point (again exclude the origin)
which can be taken as a representative point of the line. There is therefore one-
one correspondence between the points on the circle and the lines through the
origin. The excluded point on the circle (the origin of R2) can then be included
as the representative point for the x-axis. Hence the topological equivalence of
RP 1 and S1.

In contrast, RP 2 is not simple. In the Euclidean case any two straight
lines intersect at one and only one point, unless they are parallel. Parallel lines
do not intersect. In the real projective plane, any two straight lines always
intersect either in the finite plane or at infinity9.

9.4.3 Crystals

Take the case of a crystal which has broken translational symmetry. If we move
an infinite crystal by a lattice vector, the new state is indistinguishable from
the old one. For concreteness let us take the crystal to be a square lattice of
spacing a in the xy plane. Consider the atoms to be slightly displaced from the
chosen square lattice. Now, if one atom is at r0 from one particular lattice site,
it is at rmn = r0 +maî+ naĵ from a site at (m,n). All of these are equivalent.
The order parameter space is then the real plane R2 under the equivalence
condition of translation of a square lattice. There is now an equivalence relation
that any point r is equivalent to a point r +maî+naĵ for m,n ∈ Z. The order
parameter space is therefore a torus. Note that this is a generalization of the
one dimensional case of Fig. 9.2 to 2-dimensions, except that we are now going
from Fig 9.2c to Fig. 9.2b.

9.4.4 A few Spaces in Quantum mechinics

We consider the forms of a few finite dimensional Hilbert spaces.

Complex projective plane CPn

In quantum mechanics, the square integrable wave functions form a Hilbert
space. Any state |ψ〉 can be written as a linear combination of a set of orthonor-
mal basis set {|j〉} as |ψ〉 =

∑
j cj |j〉. Let’s keep the number of basis vectors

finite, n <∞. The set of n complex numbers {cj} is an equivalent description
of the state so that the state space is an n-dimensional complex space Cn.
Since only normalized states matter, {cj} and {λcj} for any complex number
λ represent the same state. Hence there is an equivalence relation {cj} ∼ {λcj}
in Cn. The relevant space for wave functions is then (Cn\{0})/∼= CPn−1, a
complex projective space in analogy with real projective spaces.

9In paintings, for proper perspective, parallel lines are drawn in a way that gives the
impression of meeting at infinity.
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Two level system

A particular case, probably the simplest, is a two level system (a qubit), like
a spin 1/2 state with |+〉 and |−〉 states. The space of states is therefore the
one-dimensional complex projective plane CP 1. Any normalized state can be
written as

|ψ〉 = cos
θ

2
|+〉+ eiφ sin

θ

2
|−〉, with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. (9.3)

The two angular parameters θ and φ allow us to map CP 1 to S2, called the
Bloch sphere, though there are problems with the representation of |+〉 and |−〉.
To get rid of this problem one actually needs two maps. From the equivalence
relation (c1, c2) ∼ (λc1, λc2), we may choose λ to write (c1, c2) ∼ (1, z) or
(c1, c2) ∼ (1/z, 1) so that the two original basis vectors |±〉 come from z = 0 or
z =∞. The addition of the point at infinity to the complex plane gives us the
Riemann sphere, also called one point compactification of the complex plane.

The sphere allows us to define a metric in terms of θ, φ, which then acts
as a metric, the Fubini-Study metric, for CP 1.

Space of Hamiltonians for a two level system

The Hamiltonian for a two state system is a 2× 2 Hermitian matrix. Therefore
we may consider the space of all such Hamiltonians. Any Hermitian 2×2 matrix
can be expressed in terms of the Pauli matrices10

H =

(
ε1 a− ib
a− ib ε2

)
=
ε1 + ε2

2
I + a σx + b σy +

ε1 − ε2
2

σz. (9.5)

In general, the space of the 2× 2 Hermitian Hamiltonians is a real four dimen-
sional space with (I, σx, σy, σz) as the basis vectors.. It has to be a real space
because hermiticity requires all the four numbers, ε1, ε2, a, b to be real.

In some situations a further reduction in the dimensionality of the space
is possible. By a shift of origin, we may set ε1 = −ε2 = ε to make H traceless.
In this situation,

H = d · σ = |d|n · σ, (9.6)

with n = d/|d|, a unit vector. The set of all such traceless Hamiltonians can
be described by the vector n, provided |d| 6= 0. Therefore, the space of the
Hamiltonians of any two level system is S2. The center of the sphere corresponds
to the degenerate case, |d| = 0, when the two energy eigenvalues are same.

A practical example is a spin-1/2 particle in a magnetic field with H =
−h · σ, where h may depend on some external parameters including time.

10Pauli matrices are taken in the standard form, where σy is complex, as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (9.4)
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Another example is a two band system. For a one dimensional lattice, consider
two bands ε1(k), ε2(k) with some symmetry such that ε1 + ε2 =const for all k.
Choosing the constant to be zero, we now have Hamiltonian of the type Eq. 9.6
with d(k) a function of the quasimomentum k, where k is in the first Brillouin
zone, −π ≤ k ≤ π. We therefore have a map S1 → S2. In two dimensions, the
Brillouin zone is a torus and therefore we need to study the map T2 → S2.
Some aspects of these maps are considered in Sec. 9.7.7.

Problem 9.4.6: Construct the topological space for the Hamiltonian of a three
level system. Explain why it is reasonable to expect SU(3) and not a spin s = 1
state. Generalize it to m-level system for any m.

Problem 9.4.7: The Bloch sphere describes the pure states. The density matrix
of a state |ψ〉 is ρ = |ψ〉 〈ψ|, with ρ2 = ρ, Tr ρ = 1. These two conditions on
ρ can be taken as the definition of a pure state without any reference to wave
functions. In this scheme, mixed states are those for which Tr ρ = 1, but ρ2 6= ρ.
This means P = Tr ρ2 < 1. P is called the purity of the state. For the two state
system, mixed states are given by 2× 2 Hermitian, positive semidefinite11 matrices
with trace 1. Show that these mixed states are points inside the Bloch sphere. The
relevant space is now a 3-ball (a solid sphere).

9.5 Disconnected space: Domain walls

Of all the order parameter space for a magnet defined in Sec 9.4.1, the Ising
class is special because here the space is disconnected. i The same result is
obtained by using the φ4 theory with an energy functional

E[φ(x)] =

∫ ∞

−∞
dx

[
1

2

(
dφ

dx

)2

+
1

2
K
(
φ(x)2 − φ2

0

)2
]
, (9.7)

so that the minimum energy states correspond to φ(x) = ±φ0. For finite energy
states, we require φ(x) to be nonconstant but going to ±φ0 as x → ±∞. The
requirement at infinity gives us four possibilities, shown in a tabular form below.

φ|x→−∞ φ|x→∞
(a) φ0 φ0

(b) −φ0 −φ0

(c) −φ0 φ0

(d) φ0 −φ0

Table 9.1: Boundary conditions at
±∞.

11Positive semidefinite means all the eigenvalues, λi’s satisfy λi ≥ 0. For a density matrix
we need 0 ≤ λi ≤ 1,

∑
i λi = 1.
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These four cases are distinct because there is no continuous transformation
that would change one to the other.

For cases (a) and (b), local changes (like spin flipping) can reduce the
energy to zero and these represent small deviations from the fully ordered
uniform state of φ0 or −φ0. These two states are related by symmetry but they
are distinct.

For cases (c) and (d), no continuous local transformation can change the
boundary conditions to the uniform state. Therefore, they represent different
types of states. These finite energy states are called topological excitations
because their stability is protected by topology. This is a domain wall or in-
terface separating the two possible macroscopic state ±φ0. These topological
excitations are called kink for (c) and anti-kink for (d).

More generally for any discrete or disconnected configuration space, i.e.,
if its π0 (zeroth homotopy) is nontrivial, there will be domain walls. A better
description of a disconnected space is via the zeroth homology, H0, for which
we refer to Ref. [6].

(a) (b)

(c) (d)

Figure 9.7: Four possible boundary conditions for an Ising magnet with
spins=±1. The up (down) arrow indicates spin +1(−1). An interface exists
for (c) and (d).

One may see this boundary condition induced domain walls in the ordered
state of a two dimensional Ising model on a square lattice. If we take a long
strip with four different boundary conditions as in Fig. 9.7 along one direction,
we force domain walls in cases with opposite boundary conditions as in Fig.
9.7c,d. The energy of the interface is obtained by subtracting the free energy
of (a) or (b) from (c) or (d). This is ensured in Eq. (9.7) by taking the energy
at infinity to be zero.

Problem 9.5.1: Use the energy functional of Eq. (9.7) to determine the domain
wall energy.

Problem 9.5.2: The previous discussion allows for only one type of domain
wall to exist in a configuration. A generalization would be to consider a case of
several disconnected pieces of the configuration space, as in the Potts model. In this
model, each “spin” can take q discrete values. A lattice Hamiltonian with nearest
neighbour interaction can be of the form H = −J∑nn δ(si, sj), J > 0. Show
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that the ground state is q-fold degenerate. Discuss the nature of domain walls or
kinks/antikinks in the Potts model.

Problem 9.5.3: The boundary conditions in Fig. 9.7 can be classified as periodic
(a,b) and antiperiodic (c,d). If we join the two vertical edges (equivalence relation)
in a way that matches the arrows, show that we get a cylinder for (a) and (b) while
a Möbius strip for (c) and (d). See Appendix A for a problem on flux through such
surfaces.

9.6 Continuous functions

So far our focus has been on the topological spaces defined for various sets. In
the process functions are also defined as maps between two given spaces. It is
necessary to define a continuous function in topology without invoking the ε, δ
definitions of calculus.

The topological definition of a continuous function is in terms of its inverse
function. A function f : A→ B is continuous if f−1 maps open sets of B to open
sets of A. The definition in calculus is that given any ε no matter how small, if
we can find a δ(ε), which depends on ε, such that |f(x+δ)−f(x−δ)| < ε, then
f(x) is continuous at x. In this ε-δ definition, continuity is linked to closeness
as measured by a distance-like quantity. The topological definition replaces the
neighbourhoods by the open sets, the constituent blocks of the space, but, in
addition, it involves the inverse function. That should not be a surprise if we
recognize that, by specifying ε for f and then finding δ for x is like generating
the inverse function.

0m 0m

m

h−m
0

h

m

0−m

(
)

} 
[ )0

0
0

Figure 9.8: A discontinuous function. Magnetization vs magnetic field for a
ferromagnet. At h = 0,m = 0 and limh→0±m(h) = ±m0. The example on
the right shows an open interval (−ε,m1), ε > 0,m1 > m0, maps on to a
semiclosed interval [0, h1) for h, with m(h1) = m1. The inverse function maps
an open interval of m to a semi-open interval of h.

We illustrate this with the help of a known physical example, namely the
magnetization of a ferromagnet in a magnetic field, m(h) with m,h ∈ R. See
Fig 9.8. Take any open set (hi, hf ), the corresponding values of m form an open
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set (m(hi),m(hf )), missing the “discontinuous” nature at the origin, whereas
the inverse image of (−ε,m1) maps to the semiopen set [0, h1).12

The definition of continuity in terms of the inverse image has implications
in physical situations too. The response function, susceptibility, defined as χ =
∂m(h)
∂h loses its significance at h = 0. The relevant quantity in this situation

is the inverse susceptibility χ−1 which may be defined as ∂h(m)
∂m in terms of

the inverse function h(m). In thermodynamics or statistical mechanics, the
inversion is done by changing the ensemble. In a fixed magnetic field ensemble,
the free energy F (h) is a function of h while in a fixed magnetization ensemble
the free energy F(m) is a function of the magnetization. These two free energies
are related in thermodynamics by a Legendre transformation. By generalizing
to free energy functionals, the two response functions are defined as

χ(r, r′) =
∂m(r)

∂h(r′)
= − δ2F

δh(r) δh(r′)
, χ−1(r, r′) =

∂h(r)

∂m(r′)
=

δ2F
δm(r) δm(r′)

,

(9.8)
such that

∫
χ−1(r, r′) χ(r′, r′′)dr′ = δ(r− r′′). Such inverse response functions

lead to vertex functions in field theories.

Problem 9.6.1: Consider a field theory like the φ4 theory of Eq. (9.7), defined
in a d-dimensional space. Show that the two point vertex function for this field
theory corresponds to an inverse response function.

9.7 Quantum mechanics

A few examples of use of topology in elementary quantum mechanics are now
discussed. These examples are not to be viewed in isolation but in totality with
all other examples discussed in this chapter We shall mix classical examples
here too to show the broadness of the topological concepts and topological
arguments. Later on these ideas in the quantum context will be connected to
another, completely classical, arena of biology involving DNA.

9.7.1 QM on multiply-connected spaces

We now consider quantum mechanics on topologically nontrivial spaces in quan-
tum mechanics, for which we need to reexamine two traditional statements,
namely,

1. Wave functions are single valued.

2. An overall phase factor, ψ(x)→ eiφψ(x) does not matter.

The singlevaluedness criterion gets translated in the path integral formulation
as the sum over all paths in the relevant configurational space with weights

12In this one-dimensional example, an interval has two boundaries. If one boundary is a
member of the set but not the other one, then it is called a semi-open set.
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determined by the action along the path. These are actually valid for simply-
connected spaces, but not necessarily for a multiply-connected space. An ex-
ample of such a case is the problem of a single particle on a ring which is
discussed in some detail, avoiding a full fledged general analysis. The result can
be extended to the case of a plane with a hole (See Prob. 2.13) as we shall do
below.

9.7.2 Particle on a ring

A particle is constrained to move on a ring (a circle) of circumference L. We
use the coordinate x to denote the position on the ring.

For a circle S1 and its universal cover R, refer to Fig. 9.1b,c and Fig
9.2b,c. To maintain generality, we use notations F and F̃ as the topological
space in question, and its universal cover respectively. These are related by
F = F̃/G, where G is a discrete group expressing the equivalence relations. For

the ring, F = S1, and F̃ = R, and G = Z (See Sec. 9.2.1). The requirement that

π1(F̃) = 0, sets π1(F) = G.

A trivial loop in F, see Fig. 9.2, maps to a loop in F̃, whereas all nontrivial
loops in F become open paths in F̃. A point q in F maps to many points (all

equivalent) in F̃. Let us choose one such point q̃0 arbitrarily. A closed loop C

in F from q0 to q0 maps to a unique path C̃ in F̃ from q̃0 to another equivalent

to C). By denoting all such homotopic paths by [C] or [C̃] as the case may be,
we write q̃′0 = [C] q̃0, without using any tilde on C.

It is now reasonable to expect

ψ̃([C]q̃) = a([C]) ψ̃(q̃), (9.9)

with a as a phase factor. Two loops C,C ′ in F based at q0 can be combined
into one13, [C ′′] = [C ′] [C]. In F̃ the corresponding paths C̃ connects q̃0 to [C]q̃0

while the subsequent C̃ ′ connects [C]q̃0 to [C ′][C]q̃0 which is also [C ′′]q̃0. For
the wavefunction, we get the combination rule for the phase factors as

a([C ′])a([C]) = a([C ′] [C]) = a([C ′′]), (9.10)

i.e., a’s follow the group multiplication rules of π1. These a’s therefore constitute
a one-dimensional representation of the fundamental group.

A simple path in F connects any point q to q0. Simple here means the
path shrinks to a point as q → q0. Such paths allow us to map all the points of
F to a domain containing q̃0 in F̃. For the circle case, this is reminiscent of a
unit cell in R. The equivalence relation or the nontriviality of G suggests that
there are other equivalent domains, as many as the number of elements of G.
As an example, in Fig. 9.1, the domains can be chosen as (−π, π], (π, 3π]..., an

13This rule, in fact, generates the fundamental group π1(F).

point q̃′0. The end point is the same for all paths homotopic to C (i.e., deformable
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infinite of them as Z is countably infinite. The wavefunction is single valued
in each of these domains but those in two different domains differ by a phase
factor. As any of these domains is isomorphic to F, any one of these wavefunc-
tions can be taken as the wavefunction on F. We end up with a multivalued
wavefunction on F whose branches are the wavefunctions on the “unit cells” of
F̃. In short, quantum mechanics on a multiply connected space requires a mul-
tivalued wavefunction, unlike the simple cases studied in Euclidean spaces.14

This, fortunately, is not the end of the story. With the help of examples, we
shall see that we may still choose single valued wavefunction, at the cost of
an extra phase though. This is Berry’s phase which goes beyond topology and
appears in many problems as a geometrical phase

Let us consider a few special cases.

a = 1: single-valued wavefunction

The identity representation is the trivial representation of any group. Let us
choose a = 1 for all elements of G = Z. The free particle Hamiltonian

H =
p2

2m
, with Hψ(x) = E ψ(x), and ψ(0) = ψ(L). (9.11)

The periodic boundary condition, which incorporates our requirement of a = 1,
gives the known energy eigenfunctions and eigenvalues as

ψk(x) = eikx. k =
2πn

L
, n ∈ Z, and En =

2π2~2n2

mL2
. (9.12)

Importantly, the wavefunction is single-valued.

an = einθ: multi-valued wavefunction

Let us now consider the case of multivalued wavefunction. By using gauge
transformation, the multivaluedness is linked to the behaviour of a particle
when the ring is threaded by a magnetic flux. A connection between the two
problems is then obtained via Berry’s phase.

A. Multi-valuedness
Let us choose, respecting Eq. (9.10), a unitary representation

an = einθ, n ∈ Z, (9.13)

It is, as per Eq. (9.9), equivalent to a twisted boundary condition

ψ(0) = e−iθψ(L), (9.14)

14An analogy: In the complex plane, f(z) =
√
z is multivalued but it is single-valued on

the extended Riemann sheets. Each sheet defines one branch of f(z). Compare this with

multivalued ψ(q) on F but single-valued ψ̃ on F̃.
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thereby making the wavefunction multivalued.
The energy eigenvalues and eigenfunctions are still given by Eq. (9.12)

but with

k =
2πn+ θ

L
, and En =

2π2~2(n+ n0)2

mL2
, n ∈ Z, (9.15)

where n0 = θ/(2π).

B. Gauge transformation, magnetic flux
We may do a gauge transformation for the wavefunction, Ψ(x) =

eiΘ(x)ψ(x) = Uψ(x), where U is the unitary transformation operator. Such
a transformation changes the boundary condition to

Ψ(L) = eiΘ(L)ψ(L) = eiΘ(L)eiθψ(0) = eiΘ(L)e−iΘ(0)eiθΨ(0). (9.16)

The choice

Θ(L)−Θ(0) = −θ, or ,Θ(x) = − θ
L
x, (9.17)

gives us a θ-independent boundary condition, Ψ(L) = Ψ(0) as in Sec. 9.7.2.
Moreover, a direct substitution shows that Ψ(x) is the eigenfunction of a trans-
formed Hamiltonian15 but with the same energy,

Hθ = eiΘ(x)He−iΘ(x) =
1

2m

(
p+

~θ
L

)2

, and HθΨn(x) = EnΨn(x),

(9.18)
where E is given by Eq. (9.15) The quantum problem turns out to be equivalent
to a charged particle in a magnetic vector potential, but with a θ-independent
periodic boundary condition for the wave function.

Suppose there is a thin solenoid of radius b carrying a magnetic field B
at the center of the ring in a direction perpendicular to the plane of the ring .
There is no magnetic field on the ring but there exists a vector potential

A =
Bπb2

2πr
, (9.19)

on a circle of radius r in the angular direction. The Hamiltonian of a particle of
charge q is then Hmag = 1

2m (p−qA/c)2, c being the velocity of light. Comparing

this form with Eq. (9.18), we see that θ = 2π Φ
Φ0

, where φ0 = 2π~q/c, the
standard flux quantum if the charge q is the electronic charge e.

It needs to be recognized at this point that the circular ring per se is
not special here; geometry does not matter. The analysis is valid for a two
dimensional plane threaded by an impenetrable thin flux line, which is like a
hole (See Prob. 2.13). Phase θ is independent of path, allowing us to claim that
it is topological in nature. This phase is known as the Aharonov-Bohm phase.

15Under a unitary transformation |ψ′〉 = U |ψ〉, the average of an operator A remains the
same so that 〈ψ|A|ψ〉 = 〈ψ′|A′|ψ′〉 = 〈ψ′|U†AU |ψ′〉, identifying the transformed operator
A′ = U†AU .
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Figure 9.9: (a) A particle on a ring threaded by a flux line through origin.
(b) A box, confining the particle, centered on R on the circle. The position of
the particle inside the box is r. (c) The boxed is taken around the full circle
adiabatically in a continuous manner, or, say, in three steps so as to enclose
the flux.

9.7.3 Topological/Geometrical phase

The extra phase we derived in the preceding case is not the only one. Such
phases occur in many situations, classical or quantum. For waves in classical
physics, such a phase is called the Pancharatnam phase while in quantum me-
chanics it is Berry’s phase. As an angle it can be found in classical problems
as Hannay angle, writhes in DNA and so. Often the angle may be geometric
in origin, not necessarily topological. What it means is the the angle one gets
may depend on the path chosen unlike the path independence of a topological
quantity. In this respect it is important to distinguish between a geometrical
phase and a topological phase.

Berry’s phase

We established the equivalence of two QM problems, viz.,

1. a charged particle on a ring enclosing a constant flux, with single valued
wave function,

2. a particle on a ring in zero flux but with a multivalued wave function.

This equivalence raises the following question,

What is the analogue of the extra phase (case 2) responsible for
the multivaluedness in the singlevalued version of case 1?

The answer lies in Berry’s phase.
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Phase – an Angle: two formulas

In order to see the emergence of the phase, let us take a wavepacket localized
on the ring. One way to achieve this is to enclose the particle in a small box
centered on a point on the ring, and then move the box around the circle. Let
the box position (centre of the box) be R on the ring. The particle is now
described by

[
1

2m

(
p− qA(r)

c

)2

+ V (r−R)

]
χ(r,R) = Eχ(r,R), (9.20)

where A(r) is given by Eq. (9.19). Within the finite-sized box the wavefunction
is single valued.

Now this box is taken adiabatically around the circle through a complete
turn as shown in Fig 9.9. We assume that the wave function changes very slowly,
though, in fact, we shall see that the speed doe not matter. For two positions
R1,R2, the phase difference is defined as

exp(−iφ12) =
〈χ(r,R1)|χ(r,R2)〉
|〈χ(r,R1)|χ(r,R2)〉| , or φ12 = −Im ln 〈χ(r,R1)|χ(r,R2)〉.

(9.21)
This phase between two points is somewhat arbitrary because it can be changed
by a gauge transformation at any one of the points R1 or R2. In spite of this
arbitrariness, it can be combined with the phases from the remaining steps to
define an overall phase as (r is suppressed in the notation)

γ = −Im ln (〈χ(r,R1)|χ(r,R2)〉〈χ(r,R2)|χ(r,R3)〉.〈χ(r,R3)|χ(r,R1)〉)
(9.22)

Note that the arbitrariness of phases at the intermediate points get cancelled in
the product. Consequently the total phase γ modulo 2π is a phase that cannot
be removed by a gauge transformation, and, as a gauge invariant quantity, must
have physical consequences. This phase is an example of what is called Berry’s
phase.

We may take a continuum limit where the closed loop is traversed by
infinite number steps, with Ri+1 = Ri + dR. Using continuity, χR + dR) =
χ(R) +∇Rχ(R) · dR, and then expanding the logarithm, the phase factor can
be written as an integral (taking the wavefunctions to be normalized)

γ = i

∮
dR · 〈χ(R)|∇Rχ(R)〉, (9.23)

taking the wavefunctions to be normalized.
Whenever a Hamiltonian depends on a parameter (no quantum evolution

of this parameter) and the parameter goes through a cyclic path in the param-
eter space, the parameter-dependent wavefunction develops a phase given by
either Eq. (9.22) or Eq. (9.23). In numerical computation where the eigenfunc-
tions are determined numerically – and therefore with unknown phases – Eq.
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(9.22) is preferable because, by construction, the intermediate unknown phases
cancel out. In many analytical approaches for which a continuous wavefunction
is known, Eq. (9.23) is useful.

Berry’s phase and the Aharonov-Bohm phase

We now show that the unavoidable Berry’s phase in the formulation with a
magnetic flux is the extra phase in the multivalued formulation.

Eq. (9.20) can be solved by a gauge transformation χ = eig(x)χ̃ so that

[
p2

2m
+ V (r−R)

]
χ̃(r−R) = Eχ̃(r−R), with g(x) =

q

~c

∫ r

R

A(r′)dr.

(9.24)
This is very similar to what we did earlier in Sec B2, but here the wave function
χ̃ remains singlevalued, mainly because the interior of the box is a simply-
connected region.

To use Eq. (9.23), we need ∇Rχ(r,R) which can be written as16

∇Rχ(r,R) = ∇R{eigχ̃(r−R)} = −i q
~c
A(R)χ− eig∇rχ̃(r−R)}, (9.25)

so that (taking normalized χ̃)

〈χ(R)|∇Rχ(R)〉 = −i q
~c
A(R)− 〈χ̃(r−R)|∇rχ̃(r−R)〉. (9.26)

As the average momentum in the localized state in the box is zero, we obtain
the overall phase on taking the box around the loop once

γ =

∮
q

~c
A(R) · dR =

q

~c

∫
dS · ∇R ×A(R) =

q

~c
Φ = 2π

Φ

Φ0
= θ, (9.27)

precisely the same angle we saw in Eq. (9.14). The line of arguments here in-
dicates that the angle is independent of the size and shape of the loop in the
plane so long it encloses the origin once. The answer is ultimately determined
by the number of times (=1) the flux tube pierces the surface used in the sur-
face integral. The Aharonov-Bohm phase, viewed as Berry’s phase, is therefore
topological in essence.

To summarize, in a topologically nontrivial space, we may either use mul-
tivalued wavefunctions or use a gauge transformation to a magnetic field like
problem with singlevalued wavefunction that admits a geometric phase, Berry’s
phase. A generalization, without proof, is that a topological phase (Berry’s
phase) occurs17 if (i) a parameter, R, defined on a multiply-connected space, is
taken around a nontrivial loop, and (ii) the space of the wavefunctions remains

R.

16Note that ∇Rf(r−R)) = −∇rf(r−R))
17With complex wavefunctions, Berry’s phase may occur in simplyconnected spaces too.

the same as the parameter is changed, i.e., the Hilbert space is independent of
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Another lesson we learnt from this is that a hole or impenetrable region
can be replaced by a vector potential or a gauge term where the θ parameter
determines the effective flux. Such assignments of flux tubes become useful in
many situations like anyons.

9.7.4 Generalization – Connection, curvature

Proper settings for generalization of the above ideas require the concepts of
fibre bundles and differential forms. Without going into those, let us define the
terms – with a little abuse of definitions – connection and curvature. The vector
potential A we defined is called Berry connection, though actually it should be
a 1-form meaning something like A · dr. The “magnetic field” is the curvature.
Again, curvature should be a 2-form meaning objects like B · ds with ds as the
area element. In our convention, the integrals will have the infinitesimals dr, ds
explicitly.

The general formulas for connection and curvature for a state, labelled by
m, and, dependent on a set of parameters Rµ, are

Berry connection : Aµ = i 〈mR |∂µ|mR〉 ,
(
∂µ ≡

∂

∂Rµ

)
, (9.28)

Berry curvature : Ωµν = ∂µAν − ∂νAµ. (9.29)

In three dimensions, i.e., if R has three components, the curvature tensor can
be written as a vector,

Bλ =
1

2
i ελµν

(
∂Rµ〈mR|

)
(∂ν |mR〉) , (9.30)

where ελµν is the usual antisymmetric tensor. The state index m has been
omitted from the notation of A,Ω. The connection is like the vector potential,
while, from Eq. (9.30), B = ∇×A is like a magnetic field. For generality, instead
of linking these to electromagnetism, we call Ωµν as the Berry curvature per
unit area. An integral of the curvature over an open surface S (with boundary)
gives the phase (Berry’s phase) associated with the closed loop, the boundary
of S.

For a given Hamiltonian H(R), every eigenstate will have its own
Berry connection and Berry curvature. Defining the eigenvalue equation as
H(R)|nR〉 = En|nR〉, with no degeneracy, a straightforward manipulation
shows that the Berry curvature for the nth state is (see problem)

Ωnµν = i
∑

p 6=n

〈nR|∂µH(R)|pR〉〈pR|∂νH(R)|nR〉
[Ep(R)− En(R)]2

− {µ↔ ν}, (9.31)

which has the advantage that the derivatives are now of the Hamiltonian and
not of the wavefunctions. It also follows from the antisymmetric nature that

∑

n

Ωnµν = 0. (9.32)
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Eq. (9.31) shows that the Berry curvature is large for “near degeneracies” or,
equivalently, a large Berry curvature can be taken as a signal for nearby eigen-
values. If there is a degeneracy, then one has to project out that part of the
space leading to nonabelian issues.

The degeneracy points are singular points in the d-dimensional parameter
space. The loops for Berry’s phase need to enclose these singular points for
a nonzero value. The loops actually tell us about the first Homotopy group
of the allowed part of the space as the loop is not allowed to go through the
singular point. Loops in 2-dimensions enclose point defects, in 3-dimensions
line defects and so on, so that the singular points in d-dimensions must form
a (d − 2)-dimensional space (or manifold) for the first homotopy group of the
allowed space to be nontrivial. This restriction provides a quick check when not
to expect any topological phase.

9.7.5 Chern, Gauss-Bonnet

In the examples we consider, the space of the parameter R is an even dimen-
sional closed surface M. For concreteness, let M be a two-dimensional closed
orientable surface that can be embedded in three dimensions. By orientable we
mean at at each point we can define a unique normal to the surface. Simple
examples are S2,T2, etc. There are now two topological problems in hand. One
is the topological characterization of M and the other one is that of the map
from M to the manifold of wavefunctions. Two theorems are useful here, (i)
the Gauss-Bonnet theorem involving the geometric curvature ofM and Chern’s
theorem involving the Berry curvature.

Chern’s theorem states that the integral of the Berry curvature (a geo-
metric quantity) over the closed surface is equal to 2π times an integer, i.e.,

C1 =
1

2π

∫

M
Ω · dS = n ∈ Z, (Chern′s theorem). (9.33)

This number C1 is called the first Chern number.18 Two mappings (or states in
this case) with different first Chern numbers cannot be continuously deformed
into each other. In other words, to go from one to the other by tuning some pa-
rameter (not R), there has to be a topology change at some special value of the
parameter. This corresponds to a phase transition or a quantum critical point.
Of these, C1 = 0 is called a trivial phase while C1 6= 0 are nontrivial topological
phases.19 As an analogy one may refer to Fig. 9.2c, where the oscillatory and
the circular motions are separated by the special figure 8 space.

18The 1/(2π) factor actually comes from a general factor 2/Kd, where Kd = 2πd/2

Γ(d/2)
is the

volume of Sd−1 or the surface area of a d-dimensional sphere, which occurs for the theorem
for a higher dimensional closed surface. This is applicable to the Gauss-Bonnet theorem too.
For Eq. (9.33), put d = 3.

19Warning: Phase here means a state of the system like liquid, gas etc, and not the phase
of a wavefunction!



202 9. Use of Topology

The Chern number is a topological characteristic of the manifold of the
energy eigenstate defined on M and is not just a topological property of M.
The topological characteristic of M comes from the Gauss-Bonnet theorem,
which for a closed two dimensional surface states that the surface integral of
the Gaussian curvature is a topological quantity, viz.,

1

2π

∫
KdS = χ = 2(1− g), (Gauss− Bonnet theorem) (9.34)

where χ is the Euler characteristic and g is the genus of the surface. Both χ
and g are topological properties of any surface. For a sphere of radius r, the
Gaussian curvature (=product of the two principal curvatures at a point) is
uniform, K = 1/r2, and its genus g = 0. Eq. (9.34) is then obviously satisfied.

9.7.6 Classical context: geometric phase

To show that the angle is not just a quantum mechanical issue, let us take a
classical example.

N

A

B

O

(a) (b) (c)

t

a

a a

a

a

(ON)

(OA)

(OB)

(ON)

Figure 9.10: (a) A long bar of rectangular cross section. Unit vector t is along
the axis, and n perpendicular to one side. (b) The bar is bent into a twisted
form. The two vectors at intermediate positions are as shown. A change in the
orientation of n by π/2 is visible as t returns to its original orientation. (c) S2 as
the space for vector t. As one moves along the bar, t goes from ON to OA, OA
to OB, and then back to ON, a closed path on S2. The solid angle subtended
by the closed region NABN is π/2. In the quantum mechanics problem, there
is an extra factor of 1/2 (see Eq. (9.37)).

Take a long bar of rectangular cross section so as to identify the sides
easily. See Fig. 9.10. Define unit vectors t along the axis, and a perpendicular
to one side. Orientations are to be kept fixed locally. The bar is bent into a
twisted form as in Fig. 9.10b. The two vectors are monitored along the tube,
keeping their orientations fixed locally. A π/2 change in the orientation of a is
visible even when t gets back to its original orientation. To see this change, we
note that vector t, as a unit vector, spans a sphere S2 as in Fig. 9.10c. As one
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moves along the bar, t goes from ON to OA, OA to OB, and then back to ON,
a closed path on S2. The solid angle subtended by the closed region NABN is
1/8 of the sphere, i.e. 2 which is the change in orientation of n. One may
straighten the bar in Fig. 9.10b to see that there is a twist though the axis may
remain straight.

This is an example of a geometric phase, not necessarily topological, be-
cause the solid angle subtended by a closed loop depends on the details of
the loop. The rotation of the Foucault pendulum as the earth rotates under
it is another example of this geometric phase. This particular example and its
generalizations are important in macromolecules like DNA and is called twist.

For a classical wave, polarized light, with n as the polarization direction
and t as the direction of propagation, one may see a change in the direction of
polarization. The angle appears as a phase there and is the classical analog of
Berry’s phase. The classical phase is called the Pancharatnam phase. In classical
dynamics, such an angle also occurs and is known as the Hannay Angle. For
details on these see Ref. [7]

Analogous to this classical example, Berry’s phase is generally a geomet-
rical phase, and in special situations, like the Aharonov-Bohm case, it becomes
a topological phase. To repeat, a topological phase is independent of the de-
tails of the path (same for all homotopic loops) while a geometrical phase is,
in general, dependent on the details of the loop.

9.7.7 Examples: Spin-1/2, Quantum two level system, Chern insula-

tors

Spin-1/2 in a magnetic field

A counterpart of the problem discussed in Sec. 9.7.6 is a spin 1/2 in a magnetic
field with a Hamiltonian H = −d.σ, where σ is the 3-d vector of the Pauli
spin matrices (See Sec 9.4.4). For a given field d, there are two eigenstates,
±|d| with eigenvectors parallel or antiparallel to the direction of d. As a vector,
the field of constant magnitude |d| can be in any direction in 3-dimensions,
d = |d| (sin θ cos φ, sin θ sin φ, cos θ) with θ, φ as the usual polar angles,
spanning a sphere. The relevant space for the field is S2. Let us choose the
eigenstate for energy +|d|, (compare with Eq. (9.3)),

|u〉 =

(
sin θ

2e
−iφ

− cos θ2

)
, (9.35)

upto an arbitrary phase factor. This |u〉 is a spinor, but, is, otherwise, fixed
by the direction of the field d. If the magnetic field is now rotated, it forms a
closed loop on the sphere. To get the phase acquired by the wavefunction as

, π/
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given by Eq. (9.27), embed the sphere in three dimensions 20 to obtain

A = 〈u|i∇d|u〉 =
sin2 θ

2

|d| sin θ
φ̂ =

1

2

1− cos θ

|d| sin θ
φ̂, with Ω = ∇×A = −1

2

d

|d|3 ,
(9.36)

in the radial direction. The line integral may be converted to a surface integral
with the help of Stokes’ theorem, by choosing the enclosed part of the sphere
as the relevant surface. As the area vector is radial, we see

γ =

∫
Ω · ds = −1

2

∫
dω = −1

2
0c, (9.37)

dω, being the angular part of the spherical integral and 0c is the solid angle
formed by the closed loop. The similarity with the classical case of Fig 9.10
is to be recognized, except for the factor of 1/2 which is purely a quantum
mechanical contribution. A solid angle is a geometrical quantity, dependent
on the closed path, and so the phase here, unlike the Aharonov-Bohm phase,
is not topological. The form of the “magnetic field” B shows that there is a
singularity at d = 0, the degeneracy point and the functional form of Ω satisfies
∇ · Ω = 4π δ(r) with g = −1/2 and δ(r) as the Dirac δ-function. With Ω as
a “magnetic field”, it looks like there is a magnetic monopole g = −1/2 at the
center, and the Berry phase is the flux due to this monopole through the loop.

The magnetic monopole interpretation helps us in identifying a topological
invariant, using the equivalent of the Gauss theorem. An integration over the
whole sphere is the flux through the closed surface and it counts the number
of monopoles enclosed by the sphere. In other words

C1 ≡
1

2π

∫

S2

Ω · ds = n ∈ Z. (9.38)

This is the first Chern number as defined in Eq. (9.33).
It is important to see from a different view point why C1 6= 0. Let us

divide the surface integral into parts at the equator. The closed loop integral∮
A ·dl can be evaluated with the help of Stokes’ theorem with either the upper

hemisphere containing the North pole or the lower hemisphere containing the
South pole, provided A can be defined uniquely on the chosen surface and
the equator. Since Eq. (9.35) is valid for the part of the sphere that encloses
the North pole, we get, for the upper hemisphere (uh),

∮
A · dl =

∫
uh
ds · Ω

which evaluates to +π. However, this choice of |u〉 cannot be used for the lower
hemisphere (lh), as the spinor, Eq. (9.35), has undefined phase at the South

20We are embedding to take advantage of the vector notation. In spherical polar coordi-
nates, for any vector A = Ar r̂ +Aθ θ̂ +Aφφ̂,

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
, ∇×A =

 (r2 sin θ)−1r̂ (r sin θ)−1θ̂ r−1φ̂
∂/∂r ∂/∂θ ∂/∂φ
Ar rAθ r sin θAφ

 .



9.7. Quantum mechanics 205

pole (θ = π) where |u〉 = (eiφ 0)T ≡ (1 0)T . A possible choice (“choice of
gauge”) is |ulh〉 = (sin(θ/2),− cos(θ/2)eiφ)T which is now defined everywhere

on the sphere except the North pole (θ = 0). With this choice A = − 1
2

1+cos θ
|d| sin θ φ̂,

though the curvature (Ω) remains the same as Eq. (9.36). A direct line integral
over the equator (θ = π/2) gives −π = π−2π. In other words it differs from the
upper hemisphere result by −2π which does not matter as an angle. If Stokes’
theorem is used,

∮
A · dl = −

∫
lh

Ω · ds with a minus sign coming from the
direction rule of the theorem. Since it is the same line integral, We must have
(
∫
uh

+
∫
lh

)Ω · ds = 0 upto 2πn, n ∈ Z. In this particular case, we find −2π
whose origin lies in the nonuniformity of the gauge choice. If a single gauge
choice can be done over the whole surface, then the surface integral would have
been zero. Thus the zero Chern number corresponds to the trivial case, while
a nonzero Chern number tells us that more than one map is needed to cover
the whole closed surface. In this case we need two.

For the S2 case, the state is given by −n̂ which is also the normal to the
surface. The Berry curvature, Eq. (9.29) is given by

Ωlm = −1

2
n̂ ·
(
∂n̂

∂Rl
× ∂n̂

∂Rm

)
, (9.39)

where the derivatives are now the angular derivatives, and it is same as B in
Eq. (9.36). The Chern number can therefore be written as

C1 = − 1

4π

∫

S2

ds n̂ ·
(
∂n̂

∂θ
× 1

sin θ

∂n̂

∂φ

)
= −1. (9.40)

The analysis for Berry’s phase can be done for the other state |v〉 with
eigenvalue −|d|. In that case the monopole will be of charge +1/2 so that the
total of all the states is zero, consistent with Eq. (9.32).

Case of two bands: Chern insulators

The results of the two level system in the previous section finds a ready use in
a two band system. This situation arises for a band insulator where we may
focus on the last occupied band and the next unoccupied band.

The bands are described by the pseudomomentum k in the first Brillouin
zone. The Hamiltonian can be written as H = −d(k) ·σ, with the bands given
by ±|d(k)|. For a two dimensional problem, the k-space (or the first Brillouin
zone) is a torus T2, while unit vector n̂(k) = d(k)/|d(k)| maps out a sphere
S2. It may be visualized as a three component vector n attached to every point
of the Brillouin zone torus. One may compare with the Heisenberg magnet
example of Sec. 9.4.1, where we looked at the arrangements of three-vectors in
Euclidean space. Here, instead of the Euclidean space, we now have a torus. All
possible insulators can now be characterized by the “spin arrangements” on the
torus. In the real space case of magnets, we found π1(S2) = 0, and so there is no
topological distinction among the spin configurations in space. In the present
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E+|d(k)|

−|d(k)| k space (torus)

k

n = ^
d(k)

|d(k)|

(a) (b)
T        S

2 2

Figure 9.11: (a) Schematic diagram of two bands vs k. The band energies are
±|d(k)|. (b) In two dimensions the k-space is a torus T2 while unit vector
n̂(k) = d(k)/|d(k)| lies on a sphere. This gives a T2 → S2 map.

case, the mapping is nontrivial, and that tells us that all insulators are not
topologically equivalent. In other words, there are topologically inequivalent
classes of insulators, identified by the arrangements of the gap vector d on
the Brillouin Zone, which is a torus. The nontrivial ones are called topological
insulators, even though the band structure looks the same.

As we move along the torus, the k-vector changes, and it acts as the
parameter for Berry’s phase or equivalently the curvature. The topological in-
variant is then the first Chern number that tells us how many times (with sign)
vector n̂ goes around the sphere as one traverses the torus. This number comes
from the Chern formula

C1 =
1

4π

∫ ∫
d2k n̂ ·

(
∂n̂

∂kx
× ∂n̂

∂ky

)
. (9.41)

We have talked about the homotopy groups which allows one to explore a
space by spheres Sn for various integer n. But, instead of spheres, we may
explore the space by tori as well. For the problem in hand, we are classifying
the configurations of 3-component vectors on the torus. This is described by
homotopy[T2, S2] which is known to be Z. The first Chern number is a concrete
way of getting this integer for a particular case.

Let us choose an example,

d(k) = (sin kx, sin ky, r + cos kx + cos ky)). (9.42)

If |r| is very large, n̂ is nearly along (0, 0,±1), and so does not wind completely
the sphere. The Chern number is zero as can be checked from Eq. (9.41) for
|r| > 2. One can easily check that C1 = 1 if −2 < r < 0, while C1 = −1 if
0 < r < 2. There is topology change but the change is not obvious from the
band structure. The Chern number is not defined at r = 0,±2, the transition
points. Exactly at r = −2, we see |d| = 0 at kx = ky = 0; this means the
gap closes (no longer an insulator) at one point. For r = 2, the gap closing
occurs at (π, π), while for r = 0, it occurs at (π, 0) and (0, π). The mapping to
a sphere fails when a gap closes, and, consequently, a gap closing is important
for a change of topology.
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Band insulators with first Chern number=0 are called trivial insulators
while those with C1 6= 0 are called Chern insulators. [9].

show that Berry’s phase can be 0 or π.

Problem 9.7.2: General spin case: A spin-J particle is in a magnetic field with
Hamiltonian H = −d ·J. Consider any of the eigenstates, say, state |J MJ〉 which
is an eigenstate of the Hamiltonian. Calculate the Berry phase when d rotates as
in Sec. 9.7.7. It is easier to use Eq. (9.31). The answer is −MJ0c, generalizing Eq.
(9.37).

Problem 9.7.3: Take the problem of a particle on a ring of radius 1, in presence
of a magnetic flux threading the ring. This is the problem discussed above but there
is now a potential V (x) = vδ(x) on the ring so that the Hamiltonian is

H =
1

2m
(p+ θ)2 + vδ(x), (9.43)

under periodic boundary condition ψ(x) = ψ(x + 2π). Use topological arguments
and necessary gauge transformations to identify this problem as the Dirac comb
problem (one dimensional Kronig Penny model). Use Bloch’s theorem to show that
θ plays the role of the quasi-momentum.

Problem 9.7.4: For a one dimensional model, the Brillouin zone is a circle. The
two band problem then corresponds to a mapping S1 → S2. Discuss the nature of
this mapping.

Discuss the general d-dimensional case, T d → S2.

Problem 9.7.5: Complete the calculations for the Berry phase, Berry curvature
and the monopole, counterparts of Eqs. (9.36)- (9.40), for the eigenstate with
eigenvalue −|d|.

Problem 9.7.6: Take the example of Eq. (9.42) for three different values of
r, r = −1, 1, 3. Draw the energy bands (3d plot) against kx, ky. Separately, map
out the region on a sphere traced out by n = d(k)/|d(k)| as k is taken over the
Brillouin zone.

Problem 9.7.7: The two bands in Sec. 9.7.7 are taken to have a special symme-
try so that the midpoint of the gap is independent of k. In general, the form of the
Hamiltonian should be H = −d(k) · σ + d0(k)I, so that the space for the Hamil-
tonian is 4-dimensional. Show that the arguments of that section are not affected
by d0(k). In other words, it is justified to consider a 3-dimensional subspace.

Problem 9.7.8: For the Aharonov-Bohm geometry, we saw the importance of
winding around the hole. Consider the free particle case in a plane with a hole at
origin. By a transformation t = iτ (imaginary time transformation), the Schrödinger
equation can be converted to a diffusion equation which describes a Brownian
particle in continuum. The winding of the Brownian particle around the hole can

Problem 9.7.1: If the Hamiltonian for a two level system is real, i.e., dy = 0,
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be measured by making the angle θ a real variable (refer to Fig. 9.1b,c). Show
that for such a Brownian particle in a plane with a hole at origin, the probability
distribution for winding angle θ(t) for large t is

P (n) =
1

π

1

1 + x2
, where x =

2θ(t)

ln t
. (Spitzer law) (9.44)

The infinite variance of this distribution is because of the large number of very
small windings a particle can do around the hole.

9.8 DNA

A situation where the topology of two circles is needed is DNA. We saw the
importance of two circles S1 in Fig. 9.3. DNA involves a different type of
topological problem.

twist2π(a) (b) (c)

Figure 9.12: DNA. (a) open DNA with N base pairs. On melting it gives two
separate strands. (b) A circular DNA on melting gives two separate rings. (c)
If a 2π twist is given before forming the closed loop, then on melting there are
again two nonpaired rings but now topologically linked. Helicity of the DNA is
ignored here.

Double stranded DNA consists of two chains, called strands, connected
together by base pairings. Suppose there are N base pairs, making the strand
length proportional to N . See Fig 9.12. In the completely bound state, the
energy is E = −Nε, where −ε is the hydrogen bond energy and N is large. If
the double stranded DNA has an entropy sb per base pair, then the bound state
free energy is given by Fb = −Nε−TNsb at temperature T . On the other hand
if all the hydrogen bonds are broken, then there are two nonpaired separate
chains, each with entropy s0 per base. Since there is no energetic contribution,
the free energy of the unbound state Fu = −2NTs0. Evidently, the entropy
per base of a single strand is higher than that of a double stranded DNA,
and so a phase transition from the bound to the unbound state is possible at
Tc = ε/(2s0−sb). This is called the melting transition of a DNA. A real melting
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is a slightly more complicated phenomenon but this simple minded picture is
sufficient here for our purpose. DNA strands can also be separated by force at
T < Tc and that is called unzipping transition.

DNA strands need to be separated because, as per semi-conservative repli-
cation, each of the new daughter molecules carry one of the original strands.
DNA can be open or closed like a circular ring (or a ribbon). For example in
many virus or bacteriophages, DNA is in an open state but after infection it
closes to form a circular DNA. A circular DNA (with N →∞) will also undergo
similar melting transition into two separate circular DNA as in Fig. 9.12b. It
is possible that there are other events disrupting a smooth joining of the ends.
Suppose there is a 2π twist of the ribbon before joining to form a twisted cir-
cular DNA (not a Möbius strip). This long DNA will also undergo a melting
transition to give two nonbonded single stranded circles, but the two circles are
linked topologically. From a thermodynamics ot statistical mechanical point of
view, the slight change in the “boundary conditions” in the three cases shown
in Fig. 9.12 do not matter but from a biological point of view, case (c) is dead
or inactive because two the strands cannot be shared by the daughter virus
or phages. We recognize the importance of topological constraints in biology
though it does not affect the thermodynamical quantities like energy or entropy
much.
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Figure 9.13: (a) Two loops with contour variables k1 and k2, and position vec-
tors used in Eq. (9.45). (b)The coiling of the axis of the loop is called writhe.
In DNA this leads to supercoiling. (c) Two linked DNA with TopoIV (Topoi-
somerase IV is a type of Topoisomerase II). TopoIV cuts both the starnds of a
DNA, allows the other double stranded DNA to pass through the cut, and then
rejoins the cut strands. Left to right: TopoIV unlinks the two DNA’s; right to
left: two unlinked DNA’s get topologically linked.

9.8.1 Linking number

That cases (b) and (c) of Fig. 9.12 are different can be seen by studying a
topological invariant called Gauss linking number. For simplicity we assume
that each of the strand is free to cross itself (“phantom” chain) but they are
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mutually avoiding. In other words a chain cannot cross the other. This prevents
the two circles becoming disentangled in case (c). If risi denotes the position
vector of the point of chain i(i = 1, 2) at position si measured along the chain
from an arbitrarily chosen point si = 0, then the Gauss linking number is given
by [8]

Lk =
1

4π

∮
ds1

∮
ds2

[(
∂r1s1

∂s1

)
×
(
∂r2s2

∂s2

)]
· r1s1 − r2s2

|r1s1 − r2s2 |3
, (9.45)

where the integrals are from si = 0, N , assuming both the chains to be of same
length. Lk is zero for cases (a) and (b), but nonzero for (c) for which it is 1.
Since each chain can cross itself, one of the two, say 1, can be flattened into
a planar circle. The linking number then counts the number of times chain 2
pierces loop 1. If we put a direction on each of the two strands in the direction
of increasing s1, s2 as if there are currents in the loops, then the counting rule
can be proved by using Ampere’s law in magnetism (see problem). Because of
the directions on the loops, Lk can be positive or negative.

The two integrals over the closed loops of the contour variables s1, s2,
can be rewritten as a two dimensional integral over a torus, k = (s1, s2), as
S1 × S1 = T2. If we define a unit vector

n̂(k) =
r1s1 − r2s2

|r1s1 − r2s2 |
,

then the integral in Eq. (9.45) can be written as

Lk =
1

4π

∫∫

T2

d2k n̂ ·
(
∂n̂

∂s1
× ∂n̂

∂s2

)
, (9.46)

which is identical in form as the Chern number integral for insulators, Eq.
(9.41). Since n̂ maps out a sphere, the linking number actually counts how
many times n̂ winds around the sphere as one covers the whole torus. This is
the same number one looks for Chern insulators, but now the context is vastly
different.

9.8.2 Twist and Writhe

As mentioned already, the linking number remains invariant under melting,
which does not allow chain breaking. For the unbound phase, this is the only
relevant topological invariant of interest, but for the bound phase there can be
other geometrical quantities. Refer to Fig. 9.10. Consider a ribbon like object
by making the cross-section very thin. The unit vector along the axis, t(s)
represents the local DNA orientation in space, while a(s) is the hydrogen bond
vector at contour position s measured along the axis of the ribbon. With the
third direction, we have a triad, a local coordinate system. The ribbon or the
bar is closed so that at the end of the loop, t comes back to its original position
(t(0) = t(L), thereby forming a closed loop on S2 as in Fig. 9.10c. The solid



9.8. DNA 211

angle formed by the loop is the change in the orientation of a. The twist can
be defined by

Tw =
1

2π

∮
ds a(s) ·

(
∂a

∂s
× ∂t

∂s

)
, (9.47)

which need not be an integer. There is another geometric quantity that deter-
mines the twisting of the axis as in Fig. 9.13b. It is given by a formula similar
to the linking number formula except that both the integrations are over the
same loop formed by the axis,

Wr =
1

4π

∮
ds

∮
ds′
[(

∂rs
∂s

)
×
(
∂rs′

∂s′

)]
· rs − rs
|rs − rs′ |3

. (9.48)

Note that s = s′ does not pose a problem because the crossproduct is also
zero. Wr is a continuous variable and can be changed by deforming the loop.
It depends only on the shape but not on the scale. The sign of Wr tells us the
overall handedness of the coil – right or left handed. An important theorem
by Călugăreanu connects the topological invariant Lk to the two geometrical
quantities as

Lk = Tw +Wr. (9.49)

If we now consider the ensemble of all possible closed configurations of the
double stranded DNA, with the relaxed state (energetically minimum state)
with zero twist and zero writhe, we have 〈Lk〉 = 〈Tw〉 = 〈Wr〉 = 0. Intuitively,
twist and writhe are independent. Therefore, the variances are additive, 〈Lk2〉 =
〈Tw2〉 + 〈Wr2〉. For a real DNA of length L with a helical pitch of γ, the
normal relaxed state will have Tw0 = L/γ In that case the averages satisfy
〈Tw − Tw0〉 = 〈Wr〉 = 0, and 〈(∆Lk)2〉 = 〈(∆Tw)2〉 + 〈(∆Wr)2〉 where ∆
denotes deviation from the average. The variances of Tw,Wr can be related to
the elastic constants of the DNA, allowing us to link topological or geometrical
features to the elastic constants. Although, Lk remains constant at melting but
Tw,Wr lose their meaning in the unbound phase, or even in partially unzipped
state.

9.8.3 Problem of Topoisomerase

Biological processes require trivial L. Two closed loops with different L cannot
be deformed into one another and therefore belong to topologically different
classes. Note that this is true only in three dimensions (r’s are 3-dimensional
vectors). An example is shown in Appendix B on opening up this link in four
dimensions without any cut-paste.

There are enzymes called Topoisomerase II (topoisomerase IV to be pre-
cise) that can cut a double stranded DNA at a crossing, change the value of
Lk as shown in Fig. 9.13c, and rejoin the cut DNA. This is needed in biology
to separate two circular DNAs after replication. What is surprising is that the
topoisomerase can locally do a cut-paste to make the change. In the figure only
minimal number of crossings are shown. There could be many trivial crossings.
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As the topological feature is a global one (the integrations over the two loops
are equivalent to scanning the whole chains), how an object, acting locally, can
achieve this is a big puzzle. It is easy to see that, in thermal equilibrium, any
crossing changed at random can produce a link as often as it may open it up.
One wonders if Topoisomerase knows of the fourth dimension!

Problem 9.8.1: Show the equality of the two expressions in Eqs. (9.46) and
(9.45).

Problem 9.8.2: Use the standard formula of magnetic field dB(r) at r due to
a small current element dl at r′(l), dB(r) ∝ dl ×∇ 1

|r−r′(l)| and Stokes’ theorem

to prove that Lk in Eq. (9.45) is an integer..

twists for pieces. Show that writhe is zero for a planar figure.

Problem 9.8.4: Prove Călugăreanu’s theorem.

Problem 9.8.5: Show that for a double stranded DNA loop, Topoisomerase IV
changes writhe by ±2.

9.9 Summary

In this chapter we explored several simple problems from classical mechanics,
statistical mechanics, and quantum mechanics by using topological arguments.
These, in turn, allowed us to explain some of the basic ideas of elementary
topology in terms of the known physical phenomena, and the common link
among diverse topics.

Problem 9.8.3: Show that Tw is additive, i.e., it can be computed by adding



9.9. Appendix A: Möbius and Stokes 213

Appendix A: Möbius strip and Stokes’ theorem

Let us now discuss a different type of problems involving integrals of vector
fields. Stokes’ theorem states that the surface integral of the curl of a vector
field is equal to the line integral of the field over the boundary of the surface.

cylinder

 boundaries

 strip

 (a)

 (b)

Mobius strip

:
Figure 9.14: Cylinder, Möbius strip and Stokes’ law.

Take a rectangular strip (say, a long piece of paper) of length 2πR and
width 2L as in Fig. 9.14a. Now use the arrows to define “equivalence” condition,
namely periodic boundary condition in the x-direction to get a cylinder and
with a twisted boundary condition (“half-twist”) to get a Möbius strip. These
two in 3 dimensions can be described by

cylinder : x(t, θ) = R cos θ, y(t, θ) = R sin θ, z(t, θ) = t, (9.50)

Möbius : x(t, θ) =

(
R− t sin

θ

2

)
cos θ, y(t, θ) =

(
R− t sin

θ

2

)
sin θ,

z(t, θ) = t cos θ, (9.51)

for −L ≤ t ≤ L and 0 ≤ θ < 2π.
The cylinder has two boundaries at t = −L and t = L, but the Möbius

strip has only one boundary. For the Möbius strip, we reach the same point by
going around twice, so that the boundary can be described by Eq. (9.51) with
t = L and 0 ≤ θ ≤ 4π. It actually consists of the two original boundaries at
t = L, 0 ≤ θ ≤ 2π and t = −L, 0 ≤ θ ≤ 2π joined together to form an unknot,
as can be seen in Fig. 9.14b.

Suppose we have a vector field

A = k̂ × ~ρ

ρ2
,

where ~ρ = xı̂ + ŷ in the same three dimensional coordinate system. For this
field ∇×A = 0 everywhere except for the z-axis.

We now consider the three geometries of Fig. 9.14a separately.
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1. Let us now put the strip in Fig. 9.14 say parallel to the z axis with the
centre at (R, 0, 0). The surface integral

∫ ∫
d~S · (∇ × A) = 0. It is easy

to check that Stokes’ theorem is valid by showing that the line integral∮
A · dl = 0, where the integration is along the boundary, as shown in the

left figure of Fig. 9.14b.

2. For the cylinder placed along the z-axis with the centre of the cylinder at
the origin, there are two boundaries along which one has to do the line
integral. Since the directions are opposite for the two rings at z = ±L
(middle fig of Fig. 9.14b), the total line integral is zero. In other words
Stokes’ theorem is explicitly verified.

3. For the Möbius case, the line integral along the boundary curve is

∮

boundary

A · dr =

∫ 4π

0

A(x(θ), y(θ), z(θ)) · r′ dθ 6= 0,

where r′ = dr/dθ. For the parametrization used, A · r′ = 1 so that the
integral is 4π. There seems to be a violation of Stokes’ law.

This paradox is resolved by noting that the area vector dS cannot be
defined on the Möbius strip. If we slide a small area element along the strip
through 2π the area vector will not point in the same direction. Another way of
seeing the difference is to colour the surfaces without any abrupt change. Two
colours are needed to paint the surfaces of the strp and the cylinder, but one
is enough for the Möbius strip. Such a surface, like the Möbius strip, is called
a nonorientable surface and Stokes’ theorem is not applicable there.21

Problem 9.9.1: Is it possible to generalize the Möbius strip construction so
that the boundary curve is, say, a trefoil knot? (Hint: three half-twists)

Appendix B: Disentanglement via moves in 4-dimensions

Take two loops with linking number one. It is a common knowledge that the
two loops cannot be taken apart if the chains do not cross each other. We now
show a set of local moves in four dimensions (x-y-z-w space) that takes (b) to
(c) in Fig. 9.15.22

Let t be a parameter, t ∈ [0, 1], so that chain 1 can be parameterized in
4-dimensions by

f0(t) =





(−a,−a,−1, 0) (0 ≤ t ≤ 3
8 )

(−a+ 8a(t− 1
8 ),−a+ 8a(t− 1

8 ),−1, 0) ( 3
8 ≤ t ≤ 5

8 )

(a, a,−1, 0) ( 5
8 ≤ t ≤ 1)

(9.52)

21See Chapter 5 for a discussion on Stokes’ theorem.
22This is based on the online mathjournal article by Jeff Boersema and Erica J. Taylor,

https://www.rose-hulman.edu/mathjournal/archives/2003/vol4-n2/paper2/v4n2-2pd.pdf



9.9. Appendix B: Disentanglement in 4-d 215

(a) (b) (c)

(1) (2) (1) (2)

(−a,−a,−1)

(a,a,−1)

(a,−a,0)

(−a,a,0)

Figure 9.15: (a) Linked loops. The crossing indicted by the dotted circle is
shown in (b). In three dimensions, chain 1 in (b) is in the plane z = −1 while
the other one is at z = 0 so that chain 1 is below chain 2. The crossing point
is taken to be at x = y = 0 when projected in the xy plane. If the chain
configurations can be changed to type (c), then the two loops can be unlinked.
This is possible in 4-dimensions but not in three.

We shall deform the chain in three mutually exclusive ways, (i) in the xy plane,
or, (ii) in the z-direction, or, (iii) in the 4th w direction. The variable t is used
to describe the configuration of the chain, while a second variable s ∈ [0, 1] is
to be used for the deformation so that the chain is described as fs(t).

First we deform in the x-y-w space keeping z = −1 fixed. The new chain
at s = 1/3 is given by

f1/3(t) =





(−a,−a,−1, 8t), (0 ≤ t ≤ 1
8 )

(−a,−a,−1, 1), ( 1
8 ≤ t ≤ 3

8 )

(−a+ 8a(t− 3
8 ),−a+ 8a(t− 3

8 ),−1, 1), ( 3
8 ≤ t ≤ 5

8 )

(a, a,−1, 1), ( 5
8 ≤ t ≤ 7

8 )

(a, a,−1, 1− 8(t− 7
8 )), ( 7

8 ≤ t ≤ 1)

(9.53)

Next, we deform the z coordinate from -1 to 1 taking the chain above the other
one as

f2/3(t) =





(−a,−a,−1, 8t), (0 ≤ t ≤ 1
8 )

(−a,−a,−1 + 16(t− 1
8 ), 1), ( 1

8 ≤ t ≤ 2
8 )

(−a,−a, 1, 1), ( 2
8 ≤ t ≤ 3

8 )

(−a+ 8a(t− 3
8 ),−a+ 8a(t− 3

8 ), 1, 1), ( 3
8 ≤ t ≤ 5

8 )

(a, a, 1, 1), ( 5
8 ≤ t ≤ 6

8 )

(a, a, 1− 16(t− 6
8 ), 1), ( 5

8 ≤ t ≤ 7
8 )

(a, a,−1, 1− 8(t− 7
8 )), ( 7

8 ≤ t ≤ 1)

(9.54)
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Finally, we bring back the fourth w coordinate to zero as,

f1(t) =





(−a,−a,−1, 0), (0 ≤ t ≤ 1
8 )

(−a,−a,−1 + 16(t− 1
8 ), 0), ( 1

8 ≤ t ≤ 2
8 )

(−a,−a, 1, 0), ( 2
8 ≤ t ≤ 3

8 )

(−a+ 8a(t− 3
8 ),−a+ 8a(t− 3

8 ), 1, 0), ( 3
8 ≤ t ≤ 5

8 )

(a, a, 1, 0), ( 5
8 ≤ t ≤ 6

8 )

(a, a, 1− 16(t− 6
8 ), 0), ( 5

8 ≤ t ≤ 7
8 )

(a, a,−1, 0), ( 7
8 ≤ t ≤ 1)

(9.55)

It is now straight forward to construct a map fs(t) linear and continuous in s
– it is already linear and continuous in t – that goes from f0(t) → f1/3(t) →
f2/3(t) → f1(t). For example, for 2/3 ≤ s ≤ 1 a continuous map from f2/3(t)
to f1(t) can be constructed by replacing the w values of f2/3 by 3w(1 − s).
Note that we get back the same boundary points (−a,−a,−1, 0) at t = 0 and
(a, a,−1, 0) at t = 1 for all s ∈ [2/3, 1].

The two loops can therefore be delinked via these local deformations in
the 4th dimension.
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What is dimension?

Somendra M. Bhattacharjee

This chapter explores the notion of “dimension” of a set. Various
power laws by which an Euclidean space can be characterized are used
to define dimensions, which then explore different aspects of the set.
Also discussed are the generalization to multifractals, and discrete
and continuous scale invariance with the emergence of complex di-
mensions. The idea of renormalization group flow equations can be
introduced in this framework, to show how the power laws determined
by dimensional analysis (engineering dimensions) get modified by ex-
tra anomalous dimensions. As an example of the RG flow equation,
the scaling of conductance by disorder in the context of localization is
used. A few technicalities, including the connection between entropy
and fractal dimension, can be found in the appendices.

10.1 Introduction

The purpose of this chapter is to explore the idea of “dimension” of a set.
E.g., what does superscript 1 mean when we talk of S1? The vector space idea
of the minimum number of basis vectors is too restrictive to be applicable to
even many subsets of standard Euclidean manifolds, which are not necessarily
vector spaces. Generalizations of the definition of dimension consistent with
the intuitions based on Euclidean spaces give a large number of possibilities,
with each one describing some aspect of the set. These dimensions need not be
integers anymore. If various physical phenomena are studied on these subsets,
which “dimension” will matter?

Once released from the integer constraint, there is no restriction on the
value of dimension, with examples of positive, negative, real, and complex, d,

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
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even cases which require more than one d. Such varieties are not possible in
ordinary Euclidean spaces Rd because all definitions give the same d for them.

It is amusing to note that the word “dimension” means several different
things in physics. It is used in statements like “a line is one dimensional”, and
that is the “dimension” we are interested in this chapter.1 The other one is
the dimension in the context of “Units and Dimensions”, as for example, force
has dimension MLT−2, where M, L,T are the dimensions of mass, length, and
time respectively. With the available scales of a problem, like the interaction
strength, thermal energy (kBT ), ~ (action), c (velocity), we may, if we wish,
express all physical quantities in terms of length only.2 The power of L we
get by the dimensional analysis is to be called the engineering dimension of
the quantity. One of the aims of this chapter is to bring these two usages of
“dimension” in the same framework. In the process we shall argue that the
framework allows ways to apparently “violate” dimensional analysis, and how
extra “anomalous dimensions” emerge.

The definitions of dimensions are based on various power laws by which
an Euclidean space can be characterized. This procedure opens up a new way
of studying power laws, beyond geometrical objects, like the divergences of
response functions, e.g., susceptibility, near critical points. The idea of renor-
malization group can be introduced in this framework, to show, as just men-
tioned, how the power laws determined by engineering dimensions get modified
by extra anomalous dimensions.

Mostly well-known examples are considered in this chapter. For generali-
ties and more mathematical issues, see Refs. [1–3].

10.2 Does “dimension” matter?

Many phenomena when viewed in a broad way, are found to depend on the
dimensionality of the system. Let’s take a few examples where d, the dimension
of the space, occurs explicitly.

1. For noninteracting gases, classical or bosons or fermions, in d-dimensions,
the thermodynamic fundamental relation is PV = 2

d U for pressure P ,
volume V , and total energy U .

2. Debye specific heat c ∼ T d for a d-dimensional crystal at low temperatures
T .

1Common usages like “love adds a new dimension to the conflict” or “the dimensions of
this box are 10cm×20cm×30cm” can possibly be traced to the meaning of “dimension” as
used in this chapter!

2As an example consider the path integral form of the propagator of a free particle in
quantum mechanics , which involves a sum over all trajectories of exp(iS/~), where ~ is the
Planck constant divided by 2π, S = (m/2)

∫
dt (dx/dt)2 is the action, m and x are the mass

and the position of the particle, t being time. Since S/~ is necessarily dimensionless, we may
define τ = ~t/m to write S/~ = (1/2)

∫
dτ (dx/dτ)2. With this form, x has dimension L

while redefined time τ has dimension L2.
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3. The probabilityPt of a random walker coming back to the starting point
in time t satisfies Pt ∝ t−d/2.

4. A diffusing particle has the characteristic mean square displacement R2 ∼
t in time t, in all dimensions so that the volume occupied is td/2.

5. In quantum mechanics, a particle in a short range attractive potential
may not have a bound state if d > 2, but there is always a bound state if
d < 2.

6. Take an Ising type model with short-range interactions. It is known that
there is a phase transition (critical point) if d > 1. For vector spins, a
critical point exists only if d > 2. The critical behaviour is mean-field like
if d > 4. Inbetween, the critical exponents depend on d and a few other
gross features.

These are just a few. What do we mean by d in these statements?

10.3 Euclidean and topological dimensions

That a square lattice is two dimensional is easy to see if its vector space property
is known. A cube, consisting of vertices and edges, can be drawn on a piece of
paper. Fig 10.1 shows possible constructions of hypercubes and hyperspheres
Sn (drawn in d = 2). 3 That the cube is in some sense not a two dimensional
object becomes clear if one wants to draw on a plane larger lattices or graphs
with such cubes as units.

10.3.1 Euclidean dimension

A common procedure is to embed the lattice in an Euclidean space of large
enough dimensions. From any point, draw a sphere of radius R and count the
number N of points enclosed by the sphere. Our expectation is that, for a
d-dimensional set, 4 N ∼ Rd. Exploiting this intuition, a definition of d can be

d = lim
R→∞

lnN

lnR
, (Euclidean) (10.1)

the asymptotic slope of a log-log plot of N vs R. The above definition may be
written in a more useful form as

R
∂N(R)

∂R
= d N(R), (10.2)

3Convention: Sn denotes the surface of an (n + 1)-dimensional sphere while Bn denotes
an n-dimensional ball, i.e., a sphere with its interior and its boundary surface. For example
S1 is the set of points in two dimensions, x2 + y2 = 1, while B2 is the set of points with
x2 + y2 ≤ 1. This is equivalent to saying S1 is the surface or boundary of B2.

4A symbol ∼ indicates the functional relation without worrying about dimensional anal-
ysis, prefactors etc, while ≈ will be reserved for approximate equality.
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d=0 d=1

d=2

d=3

d=4

d=3

d=4

S

S

S

1

3

2

x <00 0
x >0

(a) (b)

Figure 10.1: (a) Construction of a d-dimensional cube (hypercube) by combin-
ing pairs of (d−1)-dimensional cubes. The dotted lines are the new connections
or bonds. (b) Hyperspheres may also be constructed that way. Take two closed
intervals with the identification of the boundary points as indicated by the
dashed lines to get S1. Similarly, two full spheres Bd, unit d-balls, one for
x0 < 0 and another one for x0 > 0 with the identification of the boundaries
gives Sd. E.g., take two disks (d = 2) and place one top of the other both
centered at origin. Since the boundaries are identified, puff the object (think of
making luchi [https://en.wikipedia.org/wiki/Luchi]) giving an extra dimension

as x0 = ±
√

1−∑d
i=1 x

2
i , the boundary being at x0 = 0. The net result is Sd,

∑d
i=0 x

2
i = 1. This construction is not possible for solid cubes or solid balls.

where the coefficient of the linear term on the right hand side corresponds to
the dimension of the space.

An equation like Eq. (10.2) is suggestive of the form used in renormal-
ization group approach and can be linked to dimensional analysis for various
physical quantities. If a physical quantity A, on dimensional grounds, depends
on length as Lc, then there is an equation equivalent to Eq. (10.2), viz.,

L
∂A

∂L
= c A, (10.3)

where c will be called the engineering dimension of A.

d via analytic continuation

In many problems, especially in renormalization group calculations (ε-
expansion), one generalizes the Euclidean dimension, Eq. (10.1), to a continuous
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variable. This is more of an analytic continuation with the help of the metric
than by any real construction of any space. A Gaussian integral in d dimensions
can be written as

∫
e−ar

2

ddr = Kd

∫ ∞

0

e−ar
2

rd−1dr, with Kd =
2πd/2

Γ(d/2)
, (10.4)

as the surface area of a unit sphere. An integration like the left hand side of
Eq. (10.4) above is metric dependent. Once converted to a one-dimensional in-
tegral of a function where d appears as a parameter (like the right hand side
of Eq.(10.4)), it is defined for any value of d allowing an analytic continuation
to the whole complex plane of d. This is very useful to handle singularities
or divergent integrals (dimensional regularization) in many problems. In this
analytic continuation approach, there is no association of any space with non-
integer d and so we do not get into detailed discussion on this approach in this
chapter. (See Prob 3.1).

10.3.2 Topological dimension

It is possible to avoid any reference to an embedding space by using the intrinsic
characteristics of the lattice. By lattice we mean a set of points connected by
bonds and these bonds can be taken as a unit or a scale for the connectivity of
the points. We take an L step path on the lattice from any one point and count
all the new points visited that were not seen upto the (L − 1)th step. This is
like counting the boundary points of an intrinsically defined sphere of radius
L. Based on the expectation that the boundary “area” grows like Nb ∼ Ld−1,
the definition of the dimension is

dt = 1 + lim
L→∞

lnNb
lnL

. (topological) (10.5)

This will be called the topological dimension of the object. It is topological
because this number does not change under continuous deformation of the
space. In other words two homeomorphic spaces have the same topological
dimension.

A formal definition of the topological dimension is via the covers. A crude
definition is that if δ is the dimension of the space (or lowest dimension of
all possible spaces) that separates our space into disconnected pieces, then the
topological dimension of our space is 1 + δ.

We make a convention that a null set ∅ has dimension −1 while a point
set has dimension 0. All others follow from the above rule.

There are ambiguities. As an example, take a line. A line is broken into two
pieces by removing a point. A point by definition is of zero dimension. Hence
a line is a one-dimensional object. This is however a bit tricky. If we think of a
line in three dimensions, it can be broken into two pieces by another line or by a
plane etc. In such situations, we need to choose the smallest dimensional object

to determine δ. Another example could be a figure • ( a line and a disk). Being
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disconnected, a null set separates them, and, therefore, the dimension should
be 1 + (−1) = 0. But individually these are 1 (line) and 2 dimensional (disk)
spaces. In such a situation we define a local dimension and choose the largest
one. In this particular case it will be d = 2.

The above rules may be formalized by an iterative procedure with the
basis sets of the space. (a) If the boundaries of the basis sets are of dimensions
≤ d− 1, then the space is of dimension ≤ d. (b) If this is true for d but not for
d− 1, then the space has dimension d.

For the disk-bar example above, the basis sets for the bar has boundaries
d = 0 while the disk has basis sets with boundaries d = 1, i.e., the dimension
of the boundaries of the basis sets satisfy d ≤ 1. Therefore d ≤ 2. Invoke (b) to
rule out d = 1 or any number greater than 2.

Let us take R with the usual topology defined by the open sets (a, b), b > a.
The boundaries are 0-dimensional points for all such open sets. Hence R has
dimension d = 1. With inherited topology for S1, the basis sets (open arcs of a
circle) have boundaries of dimensionality 0. Therefore S1 has d = 1.

All the definitions used so far would give the dimension of Rd to be d. This
number d happens to be the number of independent vectors needed to span the
space when viewed as a vector space. The dimensionality of a topological space
is a topological invariant in the sense that if there is a continuous mapping or
homeomorphism that takes Rm to Rn, then m = n.

Problem 10.3.1: A problem on dimensional regularization. Show that the one-
dimensional integral I1(x) =

∫∞
−∞

dz√
x2+z2

is divergent.

To tackle this divergence, generalize the integral to d dimensions as

Id(x) =

∫ ∞

−∞
...

∫ ∞

−∞

ddr

µd−1
√
x2 + r2

= Kd

∫ ∞

0

rd−1dr

µd−1
√
x2 + r2

, (10.6)

where an arbitrary length µ is introduced to maintain the correct dimensions (engi-
neering dimension!). Formally, Id is I1 for d = 1. The form on the right hand side
can be defined for any d. With d as a continuous variable, the integral is divergent5

for d ≥ 1 but convergent for d < 1. This signals the possibility of a singularity in
the complex d-plane at d = 1. By doing the integral in the convergent domain in
the d-plane, show, by using Gamma functions and analytic continuation, that

Id(x) =

(√
π
x

µ

)d−1

Γ

(
1− d

2

)
=

2

ε
− 2 ln(x/µ̃) +O(ε), (10.7)

where ε = 1− d is a small parameter for the expansion. Absorb some O(1) factor
in µ to define µ̃.

This particular example appears in the calculation of the electrostatic potential
due to an infinitely long uniformly charged wire [4].

5Important here is the behaviour at the upper limit, which we may see by putting a

cutoff L as I
(L)
d ∼

∫ L rd−2dr ∼ Ld−1/(d − 1), for d 6= 1. For d = 1, I
(L)
d=1 ∼ lnL. Therefore

Id≥1 →∞ as L→∞. In such analytic continuations of integrals, log divergences are always
very special.
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Problem 10.3.2: (Mathematical) Show that the definition of d obtained by
using a basis is independent of the basis chosen.

One way of doing it is to define d without any basis but with the help of the
open sets. The iterative definition of the dimension of a topological space T for a
set X would be as follows: The dimension is d if for any point x ∈ X and any set
U ∈ T containing x, there exists an open V with x ∈ V such that the closure of V
is contained in U with dim(∂V ) ≤ d− 1. If this is satisfied for d but not for d− 1,
then the dimension of the space is d. It is assumed that dim(T )=-1 if X = ∅.

Problem 10.3.3: (Mathematical) Prove that if Rm is topologically equivalent

invariant.

10.4 Fractal dimension: Hausdorff, Minkowski (box) dimensions

Let us now look at some nontrivial examples. We shall see that topological
dimension (dt) is not enough; a few others are needed. First among these is the
Hausdorff dimension (df) that one gets by embedding the set in a real space
Rn of appropriate dimension n.

In the following the Cantor set (defined below) is taken as a paradig-
matic example because of its apparent simplicity. It is an example of a space
of topological dimension 0 but it is not just a finite collection of points.

10.4.1 Cantor set: dt = 0, df < 1

There are many ways to define Cantor sets. The middle 1/3 rule used below is
historically the first one defined by Cantor and will be called the Cantor set.

L Cn nn

1

1/3

1/9

2

1

4

7/9 8/9

0

1

2

0 2/3 11/31/9 2/9

Figure 10.2: Construction of a cantor set

The set is constructed iteratively by taking a closed interval 0 to 1, and
then removing the middle 1/3 to get two closed intervals. In the next step, the
middle one third of the two branches are removed leaving us with 4 intervals
(Fig. 10.2). This iterative process leaves a set of disconnected points,

S0 = [0, 1] ,
S1 =

[
0, 1

3

]
∪
[

2
3 , 1
]
,

S2 =
[
0, 1

9

]
∪
[

2
9 ,

3
9

]
∪
[

6
9 ,

7
9

]
∪
[

8
9 , 1
]
,

...





S = ∩∞n=0Sn. (10.8)

(i.e., homeomorphic) to Rn, then m = n. This means the dimension is a topological
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First note that the lengths of intervals removed are successively 1
3 ,

2
32 , ... so

that the total length removed is
∑
n

2n−1

3n = 1. Since the total length we started
with is 1, the remaining points have no “length” and therefore cannot be one-
dimensional. The set is disconnected. Therefore the topological dimension is
dt = 0. Despite this 0-dimensionality, there is still a nontrivial structure like
self-similarity. If any one part of the nth iterate is multiplied by 3, we get back
the state in the (n − 1)th iterate. This geometric structure is described by a
different dimension, to be called the self-similarity dimension or box dimension
or Hausdorff dimension.

For a regular object like the Cantor set, the pattern is obtained by scaling
the nth iterate by a scale b < 1 and combining Cb of them. Here, b = 1/3 and
Cb = 2. On successive rescaling how the number grows is given by the Hausdorff
dimension

dH =
ln(Cb)

ln(1/b)
. (Hausdorff) (10.9)

For the Cantor set, dH = ln 2
ln 3 ≈ 0.63 < 1. We have assumed a power law

dependence, Cb ∼ b−dH .
Another practical procedure is to cover the set by boxes. Consider the set

as a part of Rd. Cover it by boxes of length L and count the number of boxes
occupied by the set. Let this be BL. If the length is changed to bL by a scale
factor b < 1, the number changes to BbL. The box dimension is then defined as

df = lim
n→∞

ln(BbnL/BL)

ln(1/bn)
. (Box or Minkowski) (10.10)

By using successive generations, we may also write the above equation as

df = lim
n→∞

ln(BbnL)− ln(Bbn−1L)

ln(1/bn)− ln(1/bn−1)
, (Box or Minkowski) (10.11)

which is the discrete version of Eq. (10.2).
For the Cantor set, if we choose b = 1/3, then Bbn = 2n, and, therefore,

df = ln 2
ln 3 = log3 2 = dH. The box dimension is also called the Minkowski

dimension.
The occurrence of ln 3, or log base 3, is not accident. It comes from the

scale 1/3 under which the Cantor set is scale invariant. If we choose an arbitrary
scale factor, say b = 1/2.9, the scale invariance of the Cantor set is not obvious.
This existence of a special scale, here 1/3 or its powers, is an example of discrete
scale invariance. In Appendix B we discuss how a discrete scale invariance leads
to complex dimensions.

Whenever the Hausdorff dimension is different from the topological di-
mension, the set is called a fractal [5]. For most regular fractals, dH = df , but
there are cases where they may differ. When they are same, they may be called
the fractal dimension or the scaling dimension.

A subtle difference in the way the Hausdorff and the Minkowski dimen-
sions are defined may be noted here. The Hausdorff dimension is obtained by
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Figure 10.3: Covering by boxes. Count the number of
boxes required to cover the object for different box sizes
like those represented by the solid grid and the dotted
grid. The dotted grid is finer and therefore would in-
volve larger number of boxes.

going to the large size limit by scaling up the structure, while the Minkowski
dimension is from the opposite limit. In the latter case, one explores to the
short scale behaviour by using progressively smaller boxes. From an experi-
mentalist’s point of view, the Hausdorff dimension is obtained when probed
in the long wavelength limit, called the infrared limit, while the Minkowski
(box) dimension is obtained when probed using shorter wavelengths, called the
ultraviolet limit.

When Hausdorff 6= Minkowski

An example of a case of different Hausdorff and Minkowski dimension is the set
of rational numbers in (0, 1). If we want to cover this set by linear “boxes”, every
box will contain some points. It follows from the fact that the rationals form a
dense set in (0, 1). Therefore the box dimension or Minkowski dimension is one.
On the other hand, each rational number is an isolated point with dimension
zero. A countable union of points will then have a Hausdorff dimension of zero.
Generally if F is a dense subset of an open region of Rn, then its box dimension
is n. Note however that Cantor set does not belong to this category because it
is uncountable.

Inhomogeneous scaling

Let us write the definition of dH in Eq. (10.9) in a different way as Cλdf = 1,
where λ(= 1/b) < 1 is the scale factor and C is the number of such scaled
objects combined to generate the next generation. This equation may now be
extended to a situation of inhomogeneous scaling where each of the C objects
has its own scale factor λi < 1. The fractal dimension is then the solution of
the equation

∑C
i=1 λ

df
i = 1.

Fractal dimension as a Continuous variable

Instead of the 1/3 rule of the Cantor set, we may remove any open interval
(x, 1− x), x < 1/2. After that we remove the appropriate (1 − 2x)L part from
each of the remainders of length L. Let’s call it th x-rule. For b = x, Cbn = 2n.
The fractal dimension is

df(x) =
ln 2

ln(1/x)
, (continuous) (10.12)
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with df(x = 0) = 0, df(x = 1/2) = 1 as expected. It is therefore possible to
construct a family of fractals with fractal dimension df as a continuous variable
in the range [0, 1].

Fractals of dimension df > 1 can be constructed by taking advantage of
product spaces. Given a 1 < df < m, where m is an integer (> 1), use the
x-rule to construct a fractal F of d′f = df/m < 1. Then construct the direct
product space F × ...× F . For the scale factor b, we now need m-dimensional
boxes so that the number of boxes covered is CmbL. The fractal dimension, by
Eq. (10.10), is m d′f = df .

Since m can be any integer greater than the chosen value of df , we end
up with many different product spaces all of the same fractal dimension df .
Therefore, df is a necessary but not a sufficient characterization of the space.

Configuration space of the Ising model

We raised the question of the configuration space of the Ising model which
consists of N spins si = ±1. For each spin we have a discrete topological space
{0, 1} so that for infinitely many spins arranged in a one-dimensional lattice,
the total configuration space is a product space {0, 1}Z . We now show that the
configuration space can be mapped on to a set of real numbers ∈ [0, 1], whose
fractal dimension can be determined.

Let us first consider a particular case using ternary expansion of numbers.
By construction, any member of the Cantor set can be expressed as

y =
∑

n=1

an
3n
, where an = 0 or 2. (10.13)

This is because every point in Sn exists in all the previous generations. There-
fore any point can be tracked as belonging to either the 0th or the 2nd interval
of the previous step.6 Equivalently, the points can be represented by an infinite
string (a1a2a3....an....), like (02220220002....) , or by dividing by 2, an infinite
string of 0’s and 1’s. For an infinitely long chain of Ising spins, a configuration
(s1s2...sn...) can be converted to a real number

x =

∞∑

n=1

2sn
3n

, with sn = 0, 1, (10.14)

similar to Eq. (10.13). In other words, the topological space of the Cantor
set can be mapped on to {0, 1}Z , or, equivalently, can be mapped onto the
configuration space of an infinitely long Ising chain.

6Warning: there are two possible representations of some numbers like 1
3

=
∑
n

2
3n

, i.e.,
in base 3 notation, (10000...) and (2222...) denote the same number. We omitted the decimal
point in front of the numbers. Similarly 1

4
= 2

9
+ 2

92 + ... = 1
3
− 1

32 + 1
33 − 1

34 + .... In such
cases we choose the representation involving 0 and 2. This restriction to 0 and 2 makes the
binary string to Cantor set a one-to-one and onto mapping.
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The entropy per spin of the Ising model in the high temperature limit is
kB ln 2 where kB is the Boltzmann constant What we learn from this analysis is
that the entropy (in this case the high temperature entropy) of the Ising system
(or, for that matter, any two state model) is determined by the dimension log3 2
of the set of real numbers equivalent to the configuration space . The connection
between the dimension of the equivalent set of real numbers and the entropy is
discussed in Appendix A where we also show that base 3 is nothing special.

Problem 10.4.1: The Ising two state problem can be mapped on to the Cantor
set as the collection of all infinite strings of 0 and 1 occurring with equal probability.
Suppose, instead, 0 occurs with probability p, and 1 with q = 1− p. The physical
entropy per spin is known to be s = −kB(p ln p+q ln q), where kB is the Boltzmann
constant. Show that the fractal dimension of the set of real numbers is df ∝ S,
because df = −(p ln p+ q ln q)/ ln 3.

Problem 10.4.2: A generalization of the above problem is to consider the set
of all strings of base m numbers, i.e., strings of 0, 1, ...m− 1. A string {an}, an =
0, 1, ...m−1, corresponds to a real number x =

∑∞
1 an/m

n. If the digits 0, 1...m−1
occur with probabilities pn, n = 0, ...,m − 1, then the fractal dimension of the et
consisting of x’s is df = −(

∑
n pn ln pn)/ lnm.

A consequence of this result is that if only sn = 0, 1 occur with probabilities
p, q = 1 − p, then df = −(p ln p + q ln q)/ lnm,, e.g., for the set x =

∑
n(m −

1)sn/m
n (a generalization of the standard Cantor set).

Problem 10.4.3: Consider the infinitely long Ising chain configurations, but now
with a restriction that no two 0’s can be adjacent (or nearest neighbours). This
occurs in nonabelian anyon chains discussed in later chapters. (See Ref. [6]). For N
spins, the total number of configurations is not 2N any more. If CN is the number of
N spin configurations under this restriction, then show that CN = CN−1 +CN−2.
Hint: If the first spin is 1, then the second onwards can be any of the allowed N−1
spin configurations. This is CN−1. If the first one is 0, then by restriction, the next
one has to be 1 but the spins are free after that. The number of such configurations
is CN−2. Note that C1 = 1, C2 = 3. This is the Fibonacci sequence.

If CN ∼ τN for large N , then show τ = (1 +
√

5)/2 (golden mean), as
expected for the Fibonacci numbers. Show that the fractal dimension of the corre-
sponding real number set is ∝ ln τ (see problems 4.1 and 4.2).

A number like τ here, different from the standard value 2, is often called
the quantum dimension of the anyonic chain, . Suppose we consider spin-1/2
particles. For each spin the Hilbert space is 2 dimensional. Then the Hilbert space
for N spins is the tensor product with dimensions 2 × 2 × 2... = 2N . In contrast
for the (Fibonacci-) anyon chains, even though individually the spaces are two
dimensional, the dimension of the N -anyon Hilbert space is τN for large N . This
is as if the effective dimension of individual Hilbert space is τ . To recognize this
difference, this dimension is called “quantum dimension”. It is interesting to note
that the topological entanglement entropy is determined by ln τ . This goes beyond
the scope of this chapter.



228 10. What is dimension?

n=0 n=1 n=2

1L
n

4/3 (4/3)
2

4/9

n=3

(4/3)
3

(4/9)
2

1

(a) (b)

nAδ

Figure 10.4: (a)Iterative construction of the Koch curve. An interval of length 1
is divided into 3 equal parts. The middle segment is replaced by an equilateral
triangle of side length 1/3 without the base. This procedure is repeated for
each segment. The length of the curve (Ln) and the area (An) under it for the
first few generations are given. (b) Similar construction with a triangle. After
infinite iteration we get a closed loop of infinite perimeter but of finite area.
This is equivalent to S1 where “1” refers to the topological dimension.

Problem 10.4.4: What is the configuration space of Ising spins on a square
lattice? Explore if there is any mapping to real numbers, or any connection with
the fractal dimension of the set of numbers, as found for a one dimensional chain
of spins.

10.4.2 Koch curve: dt = 1, df > 1

A Koch curve is defined in Fig. 10.4. Instead of deleting the middle 1/3 as in
the Cantor set, we add an extra piece increasing the length of the line. This
curve has the following properties:

1. A point disconnects it. Therefore it has a topological dimension dt = 1.

2. The generation-wise lengths are 1, 4
3 ,
(

4
3

)2
, ...
(

4
3

)n
, ... so that the length

Ln →∞ as n→∞. However the area under the curve is 1+ 4
9 +
(

4
9

)2
+... =

9
5 .

3. For a stick length ln = 1/3n, the number of sticks is Cn = 4n. For a scale
factor b = 1/3, the ratio of the two numbers Cn+1/Cn = 4. The fractal

dimension is df = limn→∞
ln(Cn/Cn−1)

ln(1/b) = ln 4
ln 3

A practical procedure is to cover the curve with a square grid of unit length
l = 1 and count the number of boxes Cl occupied by the curve. Then change
the grid size by a scale factor b and count Cbl. One may then use the slope of
the log-log plot with the definition of Eq. (10.10) to determine df .

If we take ε = 1/3n as the length of the measuring stick with ε → 0
as n → ∞, then the measured length (4/3)n is dependent on the scale via
n = − ln ε/ ln 3. We may generalize this result. The length measured at scale ε
behaves as

L(ε)
ε→0
= L0ε

−α, with α = df − dt. (10.15)



10.4. Fractal dimension: Hausdorff, Minkowski (box) dimensions 229

Figure 10.5: (a)Iterative construction of the Sierpinski gasket. One way is to
view it as an aggregation of triangles so that the side length increases by a
factor of 2, with the inner one missing (shaded triangles). Another view is to
punch holes and remove the inner 1/3 of every triangle. The length for counting
(ln) and the number (Cn) of triangles are noted underneath.

For those cases where the two dimensions match (as in R), the length is inde-
pendent of the scale. In such cases, one may talk of the length of the curve,
and such curves are called rectifiable curve.

We see a curve of topological dimension 1 but of a fractal dimension be-
tween 1 and 2. Koch curve is also an example of a continuous but nowhere
differentiable curve. As a closed curve, Fig. 10.4b, we get a continuous curve
enclosing a finite area, though of infinite length. Fig. 10.4b is therefore topologi-
cally equivalent to S1, where we now recognize the superscript as the topological
dimension of the boundary.

Problem 10.4.5: Construct a space filling curve, i,e, a curve of topological
dimension 1 but of fractal dimension 2. An example is the Peano curve. See Ref. [5].

10.4.3 Sierpinski Gasket: dt = 1, df > 1

The construction of the Sierpinski gasket is shown in Fig. 10.5. This frac-
tal can be disconnected by isolated points and is therefore topologically one-
dimensional.

A fractal that can be disconnected by a finite set of points is called a
finitely ramified fractal. A finitely ramified fractal is therefore has a topological
dimension 1. The fact that we need 3 copies at a scale factor of 2 tells us that
the fractal dimension of the Sierpinski gasket is df = ln 3

ln 2 .

An intuitive way of arguing that its fractal dimension is less than 2 is to
note that there are holes at every scale, and therefore holes will be present no
matter at what resolution we look at, unlike a compact object. This of course
requires n→∞.

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

����
����
����
����
����

����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����
��
��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�

��

���
���
���
���
��

��
��
��
��

�
�
�
�

���
���
���
���
��

��
��
��
��

�
�
�
�

n

0n 1 2 3
1

C 1 3 9 27

1/81/41/2nl



230 10. What is dimension?

Problem 10.4.6: Show that the Sierpinski gasket is topologically equivalent to
S1 but it is not rectifiable (i.e., its length →∞).

Problem 10.4.7: Sierpinski Carpet: Take a square of side length 1. Divide each
side into three pieces of length 1/3 and remove the inner square of area 1/9. Repeat
this process ad infinitum.

(a) Show that the total area is zero.
(b) Show that the carpet consists of points with a ternary expansion

(
∑∞
n=1

an
3n ,
∑∞
n=1

bn
3n ) where (an, bn) ∈ S, S = {0, 1, 2} × {0, 1, 2} − {(1, 1)}.

The topological space is SZ+ .
(c) Identify the Cantor sets along the diagonal and the medians.
(c) Show that the fractal dimension is df = ln 8

ln 3 .
(d) Show that it is an infinitely ramified fractal, but with topological dimension

= 1. Note that the topological dimension by definition is an integer. For the carpet,
it has to be less than 2, and it is not 0. Hence it is 1. Construct a direct proof of
this.

(e) Show that the Sierpinski Gasket can be homeomorphically embedded in
the Sierpinski carpet. Prove a more general statement: “any Jordan curve7 can be
homeomorphically embedded in the Sierpinski carpet.” This was proved by Sierpin-
ski in 1916.

Problem 10.4.8: Hierarchical lattices

 branchesb 
A hierarchical lattice is built by successive replacement of a bond by a motif.

In the example the motif consists of a diamond like object with b branches and
2b bonds. This is also called a diamond hierarchical lattice. Show that the fractal
dimension is df = ln 2b

ln 2 .
The hierarchical construction of such lattices helps in easy implementation of

renormalization group transformations or scaling [7].

Problem 10.4.9: Julia set: For an iterated map zn+1 = f(zn), an arbitrary
point z would flow to a stable fixed point given by z∗ = f(z∗). In the complex
z plane, there may however be a set of points which do not flow to any of these
stable fixed points. An obvious example is the unstable fixed point. This set of
special points which do not flow to any of the fixed points on iterations is called
the Julia set of the map [10]. As an example consider zn+1 = z2

n + c, where c is a
complex number. Choose any complex number c and find the Julia set.
HINT: Write a computer program to do the iteration and plot the special points
in the complex plane.

7A Jordan curve is a planar simple closed curve homeomorphic to a circle. Simple here
means nonintersecting.
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Take c = 0. (i) Show that any z, |z| < 1, flows to zero, while z, |z| > 1 flows
to infinity. (ii) The map has three fixed points 0, 1,∞, of which z = 1 is unstable.
(Do it for real z.) (iii) Check that the points on the unit circle |z| = 1 do not flow
to 0 or ∞. Therefore, the Julia set for c = 0 is the unit circle with dimension = 1.

For c 6= 0, show that, for small |c|, the Hausdorff dimension of the Julia set
is given by (Ref. [11])

dH = 1 +
|c|2

4 ln 2
+ ....

10.4.4 Paths in Quantum mechanics: dt = 1, df = 2

We now argue that the trajectories of a nonrelativistic quantum particle is a
fractal obeying Eq. (10.15). The traditional Brownian motion also belongs to
the same class.

From the uncertainty principle, fluctuations in position (δx) and momen-
tum (δp) are related by δx δp ∼ ~ and δp = mδx/δt, (t being time), it follows
that [12]

(δx)2 ∼ δt. (10.16)

Take these δx, δt as the scales for space and time to measure the length of a
trajectory from (x1, t1) to (x2, t2). The time interval T = t2 − t1 consists of
N = T/δt pieces so that the length is

L = N δx =
T

δt
δx =

T

δx
, (10.17)

where Eq. (10.16) has been used. Therefore, L → ∞ as δt → 0. We conclude,
by comparing with Eq. (10.15), that the fractal dimension of the trajectory is
df = 2, though a path, by definition, has a topological dimension dt = 1.

Problem 10.4.10: For the cases where the propagator in the path integral
approach can be calculated exactly, it is observed that only the classical path
contributes. By definition, a classical path has df = dt = 1. Show that this happens
because of the interference of the nearby quantum paths.

10.5 Dimensions related to physical problems

To go beyond topology and geometry, we need to study some physical problem
on a fractal. These could be of several types as mentioned in Sec. 10.2. Let’s
consider those cases one by one [13].

10.5.1 Spectral dimension

A physical way to explore a space is to use a probe that would in principle
involve the whole space. In Euclidean space, a few such probes are (1) diffusion
processes or random walks, (2) elastic waves or lattice vibration and (3) any
quantum mechanics problem. The common link among the three types is via
the Laplacian in the Euclidean space as follows.
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1. The diffusion process is described by the differential equation for any
diffusing field ψ,

∂ψ

∂t
= D∇2ψ, (10.18)

where D is the diffusion constant.

2. The free particle Schrödinger equation is described by

i~
∂ψ

∂t
= − ~2

2m
∇2ψ, (10.19)

where m is the mass of the particle and ~ is the Planck constant divided
by 2π.

3. The wave equation, e.g., describing sound waves is

∂2ψ

∂t2
= c2∇2ψ. (10.20)

The diffusion equation also occurs in heat transport and defining the Laplacian
for any space is often called the heat-kernel problem. For some of the fractals,
it is easier to consider the lattice vibration problem or the scalar version the
resistor problem in the zero frequency limit. The dimensionality of the space
can then be defined by the appropriate generalization of the Euclidean results.
This we do below. The dimension we obtain in this way is called the spectral
dimension ds.

Diffusion, random walk

For a diffusion problem in Rd8 the probability distribution of the end to end
vector R is a Gaussian

P (R) =
1

(2πt)d/2
exp

(
−dR

2

2t

)
≡ 1

(2πt)d/2
f(R/

√
t). (10.21)

In this limit short scale details are not expected to be important. A general
form allowing a dimensionality dependence is to write it as

P (R) ∼ t−ds/2 f(R/
√
t1/dw), (10.22)

defining a walk dimension dw and a spectral dimension ds. For Rn, ds = n, dw =
2. Since probability is normalized, where the integration over R involves the
fractal dimension, a change of variable gives

∫
ddfR P (R) ∼ tdf/dw−ds/2.

8For a random walk on a lattice, the Gaussian distribution of Eq. (10.21) is valid for
lengths.
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Since the power of t should be zero, it follows that

ds = 2
df

dw
. (10.23)

Only for dw = 2, the Hausdorff and the spectral dimensions match. This turns
out to be the case for hierarchical lattices of Prob. 3.6.

Based on Eq. (10.22), the spectral dimension can be defined from the
return to origin probability P (0, t) as

ds = −2 lim
t→∞

lnP (0, t)

ln t
. (10.24)

As for the paths in quantum mechanics (Sec. 10.4.4), dw is the fractal dimen-
sion of the walk. It may also be seen as the scaling relation between space
rescaling and time rescaling as determined by the dynamics. In such contexts,
dw, denoted by z, is called the dynamic exponent. For diffusion like processes
z = 2. The dynamic exponent is an important characteristic quantity near
various phase transitions.

Density of states

For a quantum mechanical problem with energy dispersion relation ω = Ckp

for small wave vector k = |k| in d dimensions, the density of states for ω → 0
is ρ(ω) ∼ ω−1+d/p, with the integrated density of states as I(ω) ∼ ω−d/p. For
the electronic problem with a quadratic dispersion relation, p = 2 and one
gets ρ(ω) ∼ ω−1+d/2, I(ω) ∼ ωd/2. For phonons, p = 1 and so, ρphonon(ω) ∼
ωd−1, which gives the Debye law for specific heat. The low energy excitations
involve k → 0 (long wavelength) for which small scale details do not matter.
In other words, the large scale dynamical features of the fractal or the object
are probed by the long wavelength propagation.9 As a generalization, d in the
above densities may be replaced by ds which is called the spectral dimension.

It is shown in Appendix B that ds for the Sierpinski Gasket is different
from its fractal dimension by explicitly calculating the spectral dimension.

10.6 Which d?

We now go back to the questions asked at the beginning of this chapter, Sec.
10.2.

10.6.1 Thermodynamic equation of state

The thermodynamic relation alluded to at the beginning actually comes from
the density of states. In the grand canonical ensemble, the grand potential

9One may recall that the planar (two dimensional) structure of graphite was predicted
from the T 2 dependence of the low temperature lattice specific heat.
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(the equivalent of free energy) is −PV , and for a noninteracting gas, it can be
written as

PV = kBT

∫
dε ρ(ε) lnZ(ε, β, µ), (10.25)

where ε is the energy, ρ(ε) the density of states, β = 1/kBT the inverse tem-
perature, µ the chemical potential, and Z is the single state grand canonical
partition function,

Z =
∞∑

n=0

gn exp[−β(ε− µ)n], (10.26)

where

gn =





1, for bosons,
(n!)−1, for classical particles,

[
1, if n = 0, 1
0, if n > 1

for fermions,

(10.27)

though the explicit form is not required for our argument.
The average particle number and the average energy are then given by

〈N〉 =

∫
dε ρ(ε) n(ε, β, µ), and U =

∫
dε ρ(ε) ε n(ε, β, µ), (10.28)

where

n(ε, β, µ) = kBT
∂ lnZ
∂ε

. (10.29)

We now take the definition of spectral dimension to write ρ(ε) = Aε−1+ds/2 for
free particles of mass m with a dispersion relation ε = p2/2m, with A some
constant. The density of states may be divergent but is always integrable. With
these information in hand, an integration by parts of the integral for U in Eq.
(10.28), in conjunction with the (negative) grand potential in Eq. (10.25) gives
us the required relation

PV =
2

ds
U. (10.30)

The thermodynamic fundamental relation for an ideal gas involves the spectral
dimension of the space.

10.6.2 Phase transitions

The notion of lower critical dimension arose from studies of symmetry breaking
in various dimensions. See Refs. [8,9] for an introduction to critical phenomena.

Two different cases are to be considered, namely a discrete or a continuous
symmetry breaking. To be concrete, it is better to consider a particular case. A
typical Hamiltonian is H = −J∑<ij> Si · Sj where Si is a unit n-component
spin vector at site i of say a hypercubic lattice. For the Ising model Si = ±1 is
just a discrete variable with n = 1. Continuous cases correspond to n ≥ 2; the
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planar xy model has n = 2, the three dimensional spin n = 3 is the Heisenberg
ferromagnet, etc. The Hamiltonian allows an ordered ground state where all
spins are parallel. Therefore at zero temperature (T = 0) we get a ferromagnetic
state that breaks the rotational invariance of H. Note that H remains invariant
under a rotation of the spins by any amount if performed on all the spins (global
symmetry). For the Ising case, the symmetry is discrete with Si → −Si. As we
raise temperature, thermal fluctuations tend to destroy the perfect alignment
of spins due to entropic reasons. Therefore the question arises whether the
broken symmetry state persists at nonzero temperatures. It is known that at
very high temperatures entropy wins yielding a paramagnetic phase. In case
the ordered state persists, then there has to be a special temperature T = Tc
(called the Curie point) at which a phase transition takes place. If we look at
this particular H in various dimensions, then Tc 6= 0 only for d > dl, where dl
is called the lower critical dimension. For the Ising case, dl = 1 while for n ≥ 2,
dl = 2. For a fractal, to which d are we referring?

Discrete case: Ising model

The Landau-Peierls argument for the Ising Hamiltonian is a generic way of
determining the lower critical dimension for discrete symmetry breaking. Let
us start with an ordered state, say all up spins at T = 0, and isolate a domain of
opposite spins (down spins). By symmetry, the two states have the same energy,
and, therefore, the cost of flipping the spins is in the creation of the boundary.
Furthermore, same number of down spins can be enclosed by boundaries of
different shapes. The boundary therefore has an entropy associated with it.
Since the boundaries define the topological dimension of the system, we may
write the change in free energy as

∆F = σLdt−1 − Ts0L
dt−1, (10.31)

where σ is the energy cost of creating a unit “area” boundary and s0 is the
associated entropy. E.g., for the Ising case on a square lattice, σ = 2J . The
free energy expression in Eq. (10.31) is valid for dt > 1 for which such flipped
domains may not destroy the ordered state if T < σ/s0. Thus a ferromagnetic
state with broken symmetry can exist at nonzero temperatures. If dt = 1, the
cost in energy is independent of the size but the flipped block can be placed
anywhere on the lattice giving an entropy ∝ lnN where N is the size of the
system. For large N , entropy dominates, and so the system goes over to a
paramagnetic state at any nonzero T . The lower critical dimension is therefore
one, and it is the topological dimension that matters. This means the Ising
model on a Sierpinski Gasket does not show a ferromagnetic state.

The above simple picture is not complete, because we have seen that
the topological and the fractal dimensions are not sufficient to characterize all
fractals. For example, the Ising model does not show any phase transition for the
Sierpinski Gasket, a finitely ramified fractal, but does show a transition on the
Sierpinski carpet, an infinitely ramified fractal, even though both fractals have
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topological dimension 1. With many parameters, the lower critical dimension
loses its significance. In any case, one may safely say that, for discrete symmetry,
the condition of topological dimension ≤ 1 is necessary but not sufficient for
no symmetry breaking transition [14].

Continuous case: crystal, xy, Heisenberg

Let us first consider the case of crystal, and ask the question whether the crys-
talline state, a state of continuous symmetry breaking, can survive in presence
of lattice vibrations due to thermal fluctuations. Let u(r) be the small displace-
ment of the particle at site r of the crystal. The thermally averaged correlation
function C(r) = 〈u(0) ·u(r)〉 tells us if the crystal state can be defined. In case
this correlation does not decay to zero for large separation r, the long range
order of the state gets destroyed. The independent vibration modes are the
Fourier modes, u(k), with a dispersion relation ωk = v|k|, at least for small
k, in Euclidean spaces. As independent oscillators, by equipartition theorem,
〈u(k)2〉 ∼ kBT/ω

2 with ω in the range (0, ωmax). The real space correlation
then involves an integral over all the modes,

C(r) ∼
∫
ρ(ω)

1

ω2
dω.

With ρ(ω) ∼ ωds−1, the correlation seems to diverge for ds ≤ 2. The divergence
comes from the low frequency part which corresponds to vibrations spanning
large distances, thus exploring the real space. It is therefore the spectral dimen-
sion that matters. The symmetry is restored by thermal fluctuations if ds ≤ 2.
Note that ds = 2 is excluded for the ordered state to exist.

Similar arguments can be used for the xy or the Heisenberg magnets. It is
still important to know why the arguments for the discrete symmetry cannot
be applied here. As the order parameter space is continuous and connected10,
there is no well defined domain wall separating the states. Even if we start
with a sharp wall, the variations near the wall can be smoothened-out to make
a thicker wall. The thicker the wall, the less costly it is, invalidating the Landau-
Peierls argument for discrete symmetry.

10.6.3 Bound states in quantum mechanics

Let us consider a particle in an attractive short range potential well. We know
from explicit solutions that though a bound state is guaranteed in low dimen-
sions, it is not so in higher dimensions. What is the borderline dimension?

In a path integral approach, the trajectories spending a large fraction of
time in the well contribute to the propagator for a bound state. These paths
also involve excursions in the classically forbidden region. But once it is out of
the well, it must come back for a bound state. The overall distance spanned

10See Chapters 1, 2 and 9 of this book.
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(generally measured by the root mean squared distance) in the classically for-
bidden region determines the width, ξ, of the bound state wavefunction. The
larger the width, the smaller is the bound state energy. By uncertainty princi-
ple, the energy, E, is given by |E| ∼ 1/ξ2, with E → 0 as ξ →∞. The question
therefore is tantamount to asking whether ξ can be infinite even when the well
is not vanishing.

Suppose, we want the propagator or the Green function for the particle
from the center of the well (origin) to origin, K(0T |00) in time T → ∞. Let
Kb(0t2|0t1) and Kc(0t2|0t1) be the propagators for paths inside the well and
in the classically forbidden region from time t1 to t2, and v be the tunneling
coefficient. Then, treating time as a discrete variable (for simplicity)

K(0T |00) = Kb(0T |00)+
∑

t1,t2

Kb(0T |0t2)vKc(0t2|0t1)vKb(0t1|00)+.... (10.32)

Generating functions can be introduced as

G(z) =
∑

t

K(0t|00)zt, Gb(z) =
∑

t

Kb(0t|00)zt, Gc(z) =
∑

t

Kc(0t|00)zt,

so that Eq. (10.32) for T →∞ can be written as a geometric series

G(z) = Gb(z) +Gb(z)v2Gc(z)Gb(z)

+Gb(z)v2Gc(z)Gb(z)v2Gc(z)Gb(z) + ...

=
Gb(z)

1− v2Gc(z)Gb(z)
. (10.33)

The singularity coming from the denominator of Eq. (10.33) determines the
quantum bound state energy, while the singularities of Gb and Gc determine
the energies of the classical bound state and the unbound state.

The important quantity here is then the return probability, that a particle
going from the origin comes back to origin in time t. The probability of returning
to origin in time t is given by Kc ∼ t−ds/2, as we saw in Sec. 10.5.1. Gc(z) is
then determined by ds. A direct analysis of the singularities of G(z) shows that
a bound state with excursions in the classically forbidden region may not exist
if ds > 2. We refer to Ref. [15] for details. In short, the existence of a bound
state is determined by the spectral dimension of the space.

10.7 Beyond geometry: engineering and anomalous dimensions

It is possible to go beyond geometric figures, and use the ideas of the previous
sections in a broader context. Any function f(x) is to be called scale invariant
if f(x) = bη f(bx), under a scale transformation x→ bx. If this is true for any
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b, we may choose b = 1/x to get f(x) = x−ηf(1), a pure power law. Most often
scale invariance and power laws are used synonymously.11

10.7.1 Engineering dimension

In order to distinguish a pure power law from other types, let us consider a few
special cases like,

f2(x) =
1

(x+ a)c
, f3(x) = e−x/a, and f4(x) =

e−x/a

xc
. (x > 0) (10.34)

None of these functions show scale invariance in the true sense, but can be
written as

fj(x) = x−c Fj
(x
a

)
, (j = 2, 3, 4), (10.35)

with c = 0 for f3, and Fj another function. Such forms are called scaling forms
and can be arrived at by a dimensional analysis. Taking x, a as lengths, if fi(x)
has a dimension of L−c, L being the dimension of length, then the prefactor
x−c takes care of the dimension of the function, with Fj taking care of the
additional dependence on x and on a. Since Fj(z) has to be dimensionless, its
argument can only be x/a. This leads to the form of Eq. (10.35). The exponent
−c that comes from dimensional analysis is called the engineering dimension
of fj (see Eq. (10.3)).

If we scale all lengths by a factor b, x → bx, a → ba, then (keeping the
a-dependence explicitly in the arguments)

f2,4(bx, ba) = b−c f2,4(x, a), and f3(x, a) = f3(bx, ba), (10.36)

where the power of b in the prefactor just reflects the power one expects from di-
mensional analysis, its engineering dimension. By choosing b = 1/x, we recover
the forms in Eq. (10.35).

10.7.2 Anomalous dimension

In situations where a refers to a small scale of the problem while x is a large
length, e.g. a may be the microscopic range of interaction or lattice spacing
while x may be a macroscopic distance, then x/a → ∞ can be achieved by
making x� a, or even by taking a→ 0. In this situation, naively a may be set
to 0, with Fi approaching a constant. Here we see, f2,4(x � a) ∼ x−c, while
f3(x) ≈ 0.

There could be situations where f(x) = x−cF (x/a) is the correct form

with the engineering dimension but F (z)
z→∞→ (x/a)−η, then for x/a � 1,

f(x) ∼ aηx−c−η. Most importantly, even in the limit x � a, a cannot naively

11In contrast to the examples discussed earlier which had a discrete scale invariance (only
particular values of b are allowed), this is a case of continuous scale invariance. This distinction
is important.
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be set to 0. The problem is often stated in a dramatic way by setting a = 1 to
write f(x) ∼ x−c−η creating an illusion of violation of the standard dimensional
analysis. Consequently, this additional exponent η is called the anomalous di-
mension of f . It is more natural to call c+ η the scaling dimension.

There is actually no violation of dimensional analysis as can be seen by
scaling both x and a because

f(bx, ba) = b−cf(x, a). (10.37)

If we just scale x, the large length scale, without scaling the intrinsic lengths
like a, we get

f(bx, a) = b−c−η f(x, a), (10.38)

which, by choosing b = 1/x, says, f(x, a) = const x−c−η Note that scaling just
a gives

f(x, ba) = bηf(x, a). (10.39)

Eq. (10.39) gives f(bx, ba) = bηf(bx, a), which can be combined with Eq.
(10.37), to write f(bx, a) in the form of Eq. (10.38). This suggests that the
scaling behaviour of f for large x, i.e., how the function changes as the variable
x is changed by a scale factor, can be determined by combining dimensional
analysis (engineering dimension) with the changes expected as the short dis-
tance scale is changed.12

10.7.3 Renormalization group flow equations

One way to generate the anomalous scaling behaviour is to obtain the renor-
malization group (RG) flow equations. Let us treat a as a continuous variable
and take b = 1 + δl so that ba = a + δa, with δa = a δl. Then Eq. (10.39), by
Taylor expansion, can be written as

a
∂f

∂a
= η f. (10.40)

If we define a dimensionless quantity f̂ = ac f , then by direct differentiation
with respect a, and using Eq. (10.40), we obtain

a
∂f̂

∂a
= cf̂ + η f̂ . (10.41)

For η = 0, the above equation is the expected equation with the engineer-
ing dimension c (compare with Eq. (10.3)). The extra η-dependent term gives
the anomalous contribution. Such equations that describe the change in the
function as a microscopic cut-off like variable (here a) is changed, are called
renormalization group flow equations. In general, in an RG flow equation, η
would be dependent on the parameters of the problem, and only in special sit-

at the fixed points, a proper power law is obtained. Proper scale invariance is
observed at these fixed points.

12In many practical situations, a plays the role of short distance cut-off.

uations (called fixed points), η becomes a constant. Under those conditions, i.e.,
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Examples of flow equations

As an example. let there be two variables v1, v2 with engineering dimensions
c1, c2 respectively. With an arbitrary length L, the dimensionless parameters
are u1 = v1L

−c1 , and u2 = v2L
−c2 . The L dependence can be written in a form

analogous to Eq. (10.2)

L
∂u1

∂L
= −c1u1, and L

∂u2

∂L
= −c2u2, (10.42)

where v1, v2 are held constant. Now if it so happens that, due to interactions
or nonlinearities, the actual L dependence takes a form

L
∂u1

∂L
= −c1u1 +b1u

2
1 +O(u3

1), and L
∂u2

∂L
= −c2u2 +b12u1u2 + ..., (10.43)

then u1 attains a scale independent value at the fixed point u1 = 0 and u∗1 =
c1/b1. These are fixed points because ∂u1/∂L = 0.

Around u1 = 0, it is the engineering dimension that matters even for u2,
but at the nontrivial fixed point u∗1 = c1/b1, it seems that u2 acquires a new
dimension −ĉ2 = −c2 +η, where η = b12u

∗
1 = b12c1/b1. This η is the anomalous

dimension of u2. The idea of renormalization group (RG) is to obtain equations
like Eq. (10.43) to study deviations from trivial behaviours. “Trivial” here, of
course, means results obtained by dimensional analysis. [8, 9]

β(
1

u
1u

1
*

u )

* 0

Figure 10.6: RG flow of u1. The flow is
described the β-function as given by Eq.
(10.43). The zero of the β-function, u∗1
gives a critical point in this case as it is
an unstable point. The flows on the two
sides of u∗1 are indicated by the arrows.

Length scales from RG flow equations

To elaborate on the renormalization group behaviour, we define the RG flow
equation as L∂u1/∂L = β(u1). For concreteness, take c1, b1 > 0 with u∗1 > 0.
The β-function is shown in Fig. 10.6, with u∗1 as a stable fixed point, a zero of
the β-function. Any u1 < u∗1 flows to zero, while u1 > u∗1 flows to infinity. These
can be checked by a direct integration of the flow equation for u1. Therefore,
u1 = u∗1 is a critical point separating the two phases described by u1 = 0 and
u1 =∞.

The growth of u1 away from the fixed point is also an important charac-
terization of the function. By linearizing around u1 = u∗1, with δu = u1 − u∗1,

L
d δu

dL
=

(
dβ

du1

)

u1=u∗1

δu, or, δu = |u10 − u∗1| (L/L0)1/ν , (10.44)
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for the initial condition u1 = u10 at L = L0, and ν =
[
(dβ/du1)u1=u∗1

]−1
. We

see that δu reaches a preassigned value ∆ at a length ξ, where ξ ∼ |u10 −
u∗1|−ν . In other words, ξ diverges as u10 approaches u∗1. The existence of a
diverging length is the hallmark of a critical point. It is at this critical point,
the nontrivial fixed point in this example, that u2 was found to acquire an
anomalous dimension.

Problem 10.7.1: Consider a particle in three dimensions in a central potential

of the form (i) V (r) = −A/(r + a), (ii) V (r) = − e−αrr , each of which reduces to
the attractive Coulomb potential for a, α → 0. Discuss qualitatively the nature of
the spectrum by comparing with the Hydrogen atom spectrum.

HINT: Which part of the Coulomb potential is changed by a or α? Conse-
quently which part of the Hydrogen atom bound state spectrum (En ∼ −n−2, En
being the energy of the nth state), will show a drastic change, small n or large n?
It may help to compare the size of the nth state with the length scales from a or
α.

10.7.4 Example: localization by disorder - scaling of conductance

Let us consider the conductance g(L) of a metallic sample in the shape of a cube
of side length L. For small sizes, the conductance of the sample is determined by
the conductivity, σ0. A macroscopic sample is obtained by successive rescaling
L to 2L and so on. Now, the conductance is due to the propagating electrons.
In a pure metal (say a crystalline sample), the electrons are completely delo-
calized as, e.g., described by the Bloch waves. In contrast, strong disorder, like
impurities in the system, destroys the translational symmetry, and can, instead,
produce localized states for the electrons. If these are localized over a length
ξ, then one may observe some conductance for lengths < ξ but not for L� ξ.
A question of importance is whether a macroscopic sample remains metallic
under disorder or there is a critical strength of disorder beyond which a metal
becomes an insulator. A simpleminded RG approach helps in answering this
question.

For a good conductor, we have g(L) = σ0L
d−1/L ∼ Ld−2 for a d-

dimensional hypercube, because the conductance is proportional to the geo-
metric factor Ld−1/L. Defining t = 1/(2πg), the scaling of t can be expressed,
in analogy with Eq. (10.3) and Eq. (10.42), as 13

∂ ln t(L)

∂ lnL
= ε ≡ (2− d), or, L

∂t(L)

∂L
≡ β(t) = εt, (small t). (10.45)

This is the metallic regime.14

13It is made dimensionless by the the universal constant e2/~, where e is the electronic
charge.

14This definition of the beta function follows the convention in statistical physics. The
definition used in the original paper [16] involves the log derivative.
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Figure 10.7: (a) Rescaling of a hypercubic box of side length L to 2L. The
conductance (> 0) goes from g(L) to g(2L). (b) The RG beta function β(t),
for d > 2, goes from β(t) ∼ −t for small t to positive values ∼ t ln t, for large
t. The dotted line is a possible extrapolation which necessarily goes through a
zero, β(t∗) = 0. Here, t∗ is the RG fixed point. (c) For d = 2, the β-function
has zero slope at origin. Therefore, there are two possibilities, one with a zero
and one without any. (d) For d < 2, the slope at origin is positive, and there is
unlikely to be any zero. The dashed lines are possible extrapolations

On the other hand, if the states are localized in the strong disorder limit,

can be expressed as g(L) = g0 exp(−L/ξ). In the limit of large L, g → 0, and
so we expect

L
∂g(L)

∂L
= g ln g, (g → 0), or, L

∂t(L)

∂L
= t ln t, (t→∞). (10.46)

By assuming that β(t) depends only on t (one parameter scaling, as for u1 in
Eq. (10.43), we combine Eqs. 10.45 and 10.46 as

β(t) =

{
ε t, for t→ 0,
t ln t, for t→∞. (10.47)

We see that β(t) for d = 3 goes from a negative value for small t(> 0) to a
positive value, as shown schematically in Fig. 10.7. This means that there is a
fixed point, β(t∗) = 0, where the parameter t does not change with scale (“scale

i.e., all states are localized with a localization length ξ, then the conductance
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invariant”). It is straightforward to see that for any initial value t0 < t∗, the
flow equation on integration to large L takes t → 0. Therefore on large scales
the system behaves like a metal. In contrast for t0 > t∗ the flow goes to t→∞,
an insulator. The difference in behaviour on the two sides of t∗ is ensured by
β′(t∗) ≡ dβ(t)/dt|t∗ > 0. The unstable fixed point therefore represents a metal-
insulator transition.

The power of the RG flow equation can be seen in several ways. If there

transition point. Since no such fixed point exists for d < 2, the flow always goes
to the insulator region. In other words, all states will be localized for d < 2.
The linearized form around the fixed point is

L
d∆t

dL
≈ β′(t∗) ∆t, ∆t ≡ t− t∗. (10.48)

For small ∆0 ≡ |t0 − t∗|, we may now find the length scale ξ at which ∆t
reaches a predetermined value ∆̃. On integration, Eq. 10.48 gives (omitting the
subscript of t0)

ξ ∼ |t− t∗|−ν , where ν =
1

β′(t∗)
∼ 1

|ε| . (10.49)

In fact, Eq.10.49 is a very general prediction from RG for any critical point.

Problem 10.7.2: The disorder problem involves a Hamiltonian with random ma-
trix elements. Depending on the symmetry, the disorder problem can be classified in
several groups with distinct β-functions. For each of the following β-functions, de-
termine the fixed point and the corresponding value of ν, and discuss the behaviour
in two dimensions (i.e., for ε = 0).

1. For a class, called the orthogonal symmetry class, β(t) = εt+ 2t2 + .... Show
that t∗ ≈ |ε|/2 and ν = 1/|ε|, ε < 0. In two dimensions, the flow is towards
the insulator side, i.e., to a state where all states are localized.

2. For a class, called the unitary symmetry class, β(t) = εt+2t3 + .... Show that
t∗ ≈

√
|ε|/2, ν = 1/(2|ε|), ε < 0. The two dimensional behaviour is same as

the previous one, i.e., all states are localized.

3. There is a class called the symplectic class for which β(t) = εt−t2 + .... Show
that at d = 2, the behaviour is different from the above two, because now
the flow is towards the metal side.

For more details see F. Evers and A. D. Mirlin, Rev.Mod.Phys. 80, 1355 (2008).

10.8 Multifractality

For completeness we mention another idea, namely multifractality. For a de-
tailed discussion, see Ref [17].

is a fixed point with β′(t∗) > 0,i.e., an unstable fixed point, it represents a
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In the quantum mechanics context, the difference between the wavefunc-
tions of a bound state and an unbound state can be expressed in terms of the
finite size behaviour. For a bound particle the size L of the box is not important
so long it is much larger than the width of the wavefunction. For an unbound
state ψ ∼ L−d/2. These can be combined to write the behaviour of the finite
size effect of the moments of the wavefunction as

∫
ddr |ψ(r)|2q ∼





L0, (bound),
L−d(q−1), (unbound),
L−τq , (critical),

(10.50)

where we introduced a new class called “critical” wave function for which τq
is not linear in q (note that the normalization condition requires τ1 = 0). For
the bound state of width ξ, the insensitivity of the boundary, for L� ξ, is ex-
pressed by the power law L0. For extended states, the moments are completely
determined by the size of the box, with the exponent d(q − 1) following from
dimensional analysis. In contrast, for the critical case, we find that for every
moment a new length scale τp is required so that a critical wave function re-
quires an infinite number of length scales to describe it. It is generally written
as τq = d(q − 1) + ∆q, where ∆q is the anomalous dimension. In other words,
moments of ψ explore different aspects of how the wave function is spread out
in space.

For a large system, we may also revert to the box counting method of Sec.
10.4 as follows. For a wave function ψ(x), the probability p(x) = |ψ(x)|2. So in
the box method, instead of counting elements, we put an weight as

Pq =
∑

i

(∫

ith box

ddx |ψ(x)|2
)q

=
∑

i

(∫
ddxp(x)

)q
,

where the summation is over all the boxes of size b covering the sample.15 There
are n = (L/b)d number of boxes. Necessarily, P1 = 1, P0 = n. In analogy with
Eq. (10.50), we define

Pq ∼
(
L

b

)−τq
. (10.51)

In such a situation, the quantity of interest is the fractal dimension of the set
of points where p = |ψ|2 ∼ L−α. Let the fractal dimension be given by f(α),
i.e., the measure of the set of point with |ψ|2 ∼ L−α is Lf(α). This fractal
dimension depends continuously on α, justifying the name of “multifractal”.
We just state here that the multifractal spectrum f(α) is related to τq by a
Legendre transformation as

f(α) = qα− τq, where α = ∂τq/∂q.

15In cases involving disorder, as in the localization problem, a sample averaged quantity
[Pq ]dis is to be calculated, where [...]dis denotes an averaging over samples of disorder. For
convenience, we drop the averaging symbol.
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The wavefunction at the localization transition mentioned in the Sec. 10.7.4 is
an example of a multifractal wave function.

A tractable example of multifractal-like behaviour would be a power law
decay of a wave function ψ(r) which for large r behaves as ∼ r−u, where
1/2 < u < 1 In this situation, since

∫
dr|ψ|2 is convergent, the wave function

is normalizable, and therefore represents a bound state. The unusual nature of
the bound state can be seen from the behaviour of the qth moment given by∫
dr rq |ψ|2 which is divergent for q > 2u − 1. Note that q is not necessarily

an integer. A bound state with energy E < 0 gives a length scale, ξ ∼ 1/
√
|E|

which one may associate with the scale beyond which the wave function decays
exponentially as exp(−r/ξ). In a sense this gives the width of the wave function
and for most cases, like the square well potential or short range potentials, this
scale is enough. However the situation we are considering corresponds to the
case where for ξ → ∞, the wave function goes over to the power law decay so
that for E very close to zero, there will be an intermediate range where the
power law form is visible; for example a form like ψ(r) ∼ r−u exp(−r/ξ). A
length scale to characterize the wavefunction in this intermediate range can

be obtained from the moments as
∫
dr rq |ψ|2 ∼

∫ ξ
dr rq−2u ∼ ξq−2u+1, for

ξ → ∞. In this limit the normalization constant is a number independent of
ξ. We therefore find lq ∼ ξτq where τq = 1 − (2u − 1)/q, with an anomalous
exponent Dq = −(2u− 1)/q. This is not a carefully crafted example but occurs
at the unbinding transition of a quantum particle in a potential V (r) + a/r2 in
three dimensions where V (r) is a short range attractive potential. By tuning
the short range potential, a zero energy bound state can be formed whose wave
function decays in the power law fashion just mentioned.

10.9 Conclusion

In this chapter, we explored various definitions of dimensions, like the topo-
logical, the Hausdorff, the box or Minkowski, and the spectral dimensions by
embedding the set in Euclidean space. When the Hausdorff and the box di-
mensions are the same, it is called the fractal dimension, and the set is called
a fractal if this fractal dimension is different from the topological dimension.
For Euclidean spaces, all these definitions give the same number, which, by
construction, is a positive integer. However we have explicitly constructed var-
ious subsets of the Euclidean space whose dimensions are not integers. Fur-
ther generalizations are made to study power law behaviour of various physical
quantities in terms of renormalization group flow equations. The flow equations
show the emergence of anomalous dimensions at certain special fixed points as
opposed to engineering dimension determined by dimensional analysis. We also
discussed how various physical properties are determined by various dimensions
of the space.
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Appendix A: Entropy and fractal dimension

We here establish the relation between entropy per spin of a chain of spins
and the fractal dimension of the configuration space when mapped on to real
numbers. The discussion is for a semi-infinite chain of spins which can be labeled
by integers, 1, 2, ....

Let us consider a chain of spins, each taking two values, 0, and 1. If all
configurations are equally likely to occur, then the number of configurations
for N spins is CN = 2N . The entropy per spin is therefore s = kB(lnCN )/N =
kB ln 2. In general, the entropy per spin can be written as a derivative

s = kB
lnCN+1 − lnCN

(N + 1)−N = kB
∂ lnCN
∂N

∣∣∣∣
N→∞

, (10.52)

where the last term is in the continuum limit.
Now we convert the strings of 0 and 1, (sn = 0, 1|n = 1, ..., N), to a real

number by using base m = 3 as

x =

N∑

n=1

2sn
mn

. (10.53)

As discussed in Sec. 10.4.1, for N → ∞, x forms the Cantor set. We chose 3
because of our familiarity with the Cantor set, but m = 3 is nothing special.

The fractal dimension of the subset of real numbers generated by all the
spin configurations is given by the box dimension Eq. (10.11). As we go from N
to N+1 in the number of spins, we add a higher order term 2sN+1/m

N+1 in x.
This is equivalent to changing the scale of the box size from m−N to m−(N+1),
the latter being the finer scale. In other words, the “box”size has been changed
by a scale factor 1/m. The denominator of Eq. (10.11), with b = 1/m, becomes
lnmN+1 − lnmN = [(N + 1) − N ] lnm. The fractal dimension of the set is
therefore

df =
1

lnm

lnCN+1 − lnCN
(N + 1)−N =

1

lnm

s

kB
,

where we used Eq. (10.53). This establishes the connection between the entropy
per spin and the fractal dimension of the set of real numbers equivalent to the
configuration space.

For the Ising case, with m = 3, we see s ∝ ln 2/ ln 3 = log3 2.
One may wonder, why we chose base 3 (m = 3). In general, for any choice

of m ≥ 2, the real numbers

x =

N∑

n=1

(m− 1)sn
mn

, (10.54)

form a subset of [0, 1]. As the above result shows, we could have chosen any
m to get s ∝ ln 2/ lnm. The extra factor lnm could easily be absorbed in kB
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which is equivalent to changing the base of the logarithm. Our choice of m = 3
is motivated by the fact that it is the smallest integer for uniqueness of the
mapping, and our familiarity with the Cantor set.

Let us clarify the problem of mapping by taking the simplest situation of
base 2 (m = 2). For any string we define x =

∑∞
i=1 sn/2

n, so that x ∈ [0, 1].
Note that we get the whole interval. However, two strings s1s2...sn011111....
gives the same value of x as s1s2...sn1000000...., like in traditional decimal
system where 1.0 = 0.9999999.... Therefore with base 2, we get a mapping from
the binary strings to the real numbers ∈ [0, 1], but it is not unique; this is a
many to one mapping. In contrast, with base m ≥ 3, we get a unique one-to-one,
onto and invertible mapping via Eq. (10.54). Nevertheless, as Prob 4.3 shows,
the entropy can be related to the dimension of the space of points generated
out of the strings with any base m. This includes m = 2 with log2 2 = 1, the
dimension of the interval [0, 1]!

In fields, like computing and telecommunication, log2 2 = 1 is used as a
unit (called Shannon) of information content of one bit (same as entropy) [18].

The connection between entropy and fractal dimension for more general
situations of spin chains are given as problems (Prob 4.1,4.2,4.3). Whether this
connection can be extended to more general systems or general lattices remain
to be seen.

Appendix B: Complex dimension: continuous and discrete

Scaling

This appendix is technical in nature and may be skipped without loss of con-
tinuity [3, 19].

The self similarity discussed so far is of geometric nature. This may be
true for any property of a system. If a function f(x) satisfies a relation f(x) =
bµf(bx) then f(x) is said to be scale invariant as b may be viewed as a scale
factor for the variable. If b is arbitrary, then we may choose bx = 1 to obtain
f(x) ∼ x−µ, a power law dependence on x. Thus power laws are synonymous
to scale invariance - something one sees near critical points. Since b is arbitrary,
such a scale invariance is called a continuous scale invariance.

The scale invariance we saw for the geometric fractals are not continuous
but discrete. Instead of choosing powers of 3, suppose we choose some other
b, 3n < 1/b < 3n+1 as the scale factor for the Cantor set. For such a scale factor
x = 1/b, the number of pieces would remain the same, changing only when x
matches with the correct scaling factor. It is then possible to write

Cx = CxdfF

(
lnx

ln 3

)
, (10.55)

where F (z) is a periodic function of periodicity 1. A Fourier expansion gives

F (z) =
∑

n

(ane
i2πnz + a∗ne

−i2πnz), (10.56)
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where ∗ denotes complex conjugation. On substitution in Eq. (10.55), one gets
a simpler power law form with

d′f = df + i
2πn

ln 3
, n ∈ Z, (10.57)

a tower of complex dimensions. Restricting to the first mode, the oscillatory
behaviour is of the form

Cx ∼ xdf cos

(
2π

lnx

ln 3

)
. (10.58)

Such an oscillatory behaviour for an arbitrary scale factor is a distinct signature
of a discrete scale invariance. Whether these will have any important perceptible
effect ultimately depends on the amplitudes an. In many situations, |an| turns
out to be extremely small compared to the nonoscillatory terms.

A notable example of a continuous scale invariance breaking into a discrete
one is the Efimov effect in three body quantum mechanics or its classical analog
in three stranded DNA.

B.1 Cantor string

Consider the complement of the Cantor set in the closed interval [0, 1]. This is
the set of disjoint lengths (open intervals) which add up to a length 1, but still
it is the whole line segment minus the set of points belonging to the Cantor
set. A bounded open set of R is a fractal string, and the particular one we are
discussing is the Cantor string. A poetic name is a one-dimensional drum with
fractal boundary. A relevant question is ”Does one hear the shape of a drum?”

The fractal sting is described by the set of lengths lj , j = 1,∞. For
the Cantor string, these are 1

3 ,
1
9 ,

1
9 , ..., keeping track of the multiplicities (i.e.,

degeneracies), length lj occurring mj times. Let us define a zeta function

ζ(s) =

∞∑

j=1

mj l
s
j , (10.59)

where s is a complex number so that the series is convergent. For s = 1,
ζ(1) = 1, the length of the string. Since lj < 1, the series is definitely convergent
for large positive real s. The minimum real value of s for which it is convergent
happens to be the fractal dimension of the boundary. On analytic continuation,
one may define ζ(s) over the complex s-plane with singularities which are the
complex dimensions of the boundary set. With an abuse of definition, the fractal
dimension of the boundary is also called the dimension of the string.

For the Cantor string, lj = 1
3j with degeneracy mj = 2j−1, so that

ζ(s) =
∑

j=1

1

3s

(
2

3s

)j−1

=
3−s

1− (2× 3−s)
, (10.60)
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which has poles at 3s = 2, with s given by Eq. (10.57).
Why should such a zeta function be useful? This becomes clear if we look

upon Eq. (10.59) as a transformation for the weights wj . Since lj < 1 and
lj → 0 for j → ∞, one may, in a very nonrigorous way, write the function as
an integral

ζ(s) =

∫ ∞

0

x−sw(x)dx, (10.61)

identifying the zeta function as the Mellin transformation of the weight func-
tion. A quantity of interest is the number of intervals of size less than x ,
N(x) ∼

∫ x
0
w(x)dx for which the zeta functions are useful.

Appendix C: Spectral dimension for the Sierpinski Gasket

We show how to calculate the spectral dimension in a particular case, viz., a
scalar phonon problem on a Sierpinski gasket [20].

A scalar phonon problem on the Sierpinski gasket involves springs along
the bonds of with equal masses at the sites but the restoring forces are added
added disregarding the vectorial nature of the forces. This is equivalent to a
resistor problem of finding the equivalent resistance between two sites if all the
bonds are occupied by 1 Ohm resistors. By Kirchoff’s law, all the voltages are
linearly added.

x

x

z

x

1

23

1z
2

z
3

1XZ 1
=

Z3

Figure 10.8: Notations for displace-
ments or voltages in the scalar phonon
problem. The capital letters will survive
on elimination of the small letter vari-
ables from the equations.

With the notation λ = mω2/K where m is the mass at the sites and the
spring constant on the bonds, the equation of motion for say x1 is

(4− λ)x1 − x2 − x3 = X2 +X3, (10.62)

while the equations for x2, x3 are obtained by appropriate permutations of the
variables. Similarly for zi’s. For the capital variables,

(4− λ)X1 = x2 + x3 + z2 + z3, (10.63)

and so on. It is now straightforward to eliminate xi’s and zi’s to obtain an
equation involving only the capital variables, as

(4 = λ′)X1 = X2 +X3 + Z2 + Z3, λ′ = λ(5− λ). (10.64)
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so that for small frequencies, λ′ = 5λ.
Because of the change in the number of degrees of freedom under this

scale change by b = 2, the density of states should change as

ρL/b(ω) = b−dfρL(ω), (10.65)

while the frequency itself may scale as

ω(L) = b−κω(L/b). (10.66)

Since the number of states remain invariant, i.e., ρL/b(ω
′)dω′ = ρL(ω)dω, we

have (using Eqs. (10.65,10.66))

ρL/b(ω) = b−κρL(ωb−κ) = b−dfρL(ω). (10.67)

If we choose ωb−κ = 1, then ρL(ω) = ωdf/κ−1. The spectral dimension is
therefore ds = df/κ.

From λ′ ≈ 5λ, we have z2κ = 5, or, κ = ln 5
2 ln 2 6= 1. Combining all, we find

the spectral dimension of the Sierpinski Gasket to be

ds =

(
ln 3

ln 2

)/( ln 5

2 ln 2

)
= 2

ln 3

ln 5
, (10.68)

using the fractal dimension, df = ln 3/ ln 2.

References

[1] Benoit B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman
and Company, 1982).

[2] K. Falconer, Fractal Geometry: Mathematical Foundations and Applica-
tions, (Wiley, 3rd Edition, 2014).

[3] M. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Di-
mensions and Zeta Functions Geometry and Spectra of Fractal Strings,
(Springer, New York, 2013).

[4] Michel Hans, Am. J. Phys. 51, 694 (1983).

[5] For a list of fractals with fractal dimensions, see
https://en.wikipedia.org/wiki/List of fractals by Hausdorff dimension

[6] See Sec 9.14 of the online notes, J.Preskill,
http://www.theory.caltech.edu/∼preskill/ph219/topological.pdf

[7] Robert B. Griffiths and Miron Kaufman, Phys. Rev. B 26, 5022 (1982).

[8] S. M. Bhattacharjee, “Critical Phenomena: An Introduction from a mod-
ern perspective” in “Field theoretic methods in condensed matter physics”
(TRiPS, Hindusthan Publising Agency, Pune, 2001). (cond-mat/0011011).



10.9. References 251

[9] J. Cardy, Scaling and Renormalization in Statistical Physics, (Cambridge
Univ. Press, London, 1996).

[10] John Milnor, Dynamics in One Complex Variable, 3 ed, Hindusthan
Book Agency, Pune, India (2012) (Indian edition). For a shorter version,
https://arxiv.org/pdf/math/9201272v1.pdf.

[11] D. Ruelle, Ergod. Th. & Dynam. Sys., 2, 99 (1982) (Appendix B).
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Quantum Geometry and Topology

R. Shankar

Attempts to understand the phenomenon of the robustness of the
values of the Hall conductivity in quantum Hall systems led to the
idea of characterizing the ground state of many electron systems using
topological invariants. The discovery of the so called geometric phase
in quantum systems led to the exploration of the quantum geometry
of many electron ground states.

Quantum geometry is a general concept applicable to any quan-
tum system. The physical states of any quantum system is the space
of rays of a Hilbert space. The inner product induces a natural geom-
etry in this space characterized by the so called quantum geometric
tensor. These general features of quantum systems can be discussed
in the context of one particle quantum mechanics. In these lectures,
we do so in the context of a such a class of models relevant to con-
densed matter physics, namely, tight binding models.

We begin by introducing the quantum geometry in general. We
then apply the concepts to tight binding models and discuss the quan-
tum metric and the so called Pancharatnam curvature associated with
the spectral bands. Finally we present some physical manifestations
of these geometric constructs.

11.1 Introduction

Geometry is the mathematical description of shapes. It has been used in physics
from the time physics became quantitative, eg. characterizing the shapes of the
planetary orbits. Topology may loosely be thought of as the mathematics of
connectivity. It has not been used as much as geometry for quantifying physical

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
Matter Physics, Texts and Readings in Physical Sciences 19,
https://doi.org/10.1007/978-981-10-6841-6_11
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systems. However, in the past few decades, after the discovery of the quan-
tum Hall effect, there has been continuous research activity applying ideas of
both geometry and topology to understand and characterize the phases (ground
states at zero temperature) of many electron systems. While several of the ideas
and concepts used are intrinsically “many-body”, many of them can be under-
stood and illustrated at the level of single-particle quantum mechanics. This
set of lectures attempts to do this.

We begin by giving an example of what we mean by “geometry and topol-
ogy” in quantum mechanics. Consequences of symmetry are heavily exploited
to analyze quantum systems. Symmetry is a geometric property since it is a
characteristic of the shape of the wavefunctions. A widely used consequence
of symmetry is selection rules. For example, consider a rotationally invariant
atomic system for which

[J, H] = 0, (11.1)

where H is the Hamiltonian and J is the angular momentum operator. We then
have simultaneous eigenstates of the Hamiltonian, J · J and Jz,

H|n, j,m〉 = Enj |n, j,m〉, (11.2a)

J · J|n, j,m〉 = ~2j(j + 1) |n, j,m〉, (11.2b)

Jz|n, j,m〉 = ~m |n, j,m〉. (11.2c)

These lead to selection rules as to what transitions are possible and what are
prohibited when the system interacts with an electromagnetic field. A direct
consequence of Eq.(11.2a) is that matrix elements of the Hamiltonian between
states of different j,m vanish.

Next, we describe a consequence of quantum topology, the so called super-
selection rules. We are taught that there are two qualitatively different values for
angular momentum, integer valued and half-odd integer valued. The particles
with integer valued j are bosons and particles with half-odd integer valued j are
fermions. The statistics of the particles is relevant only when we are considering
two-particle (or more) wavefunctions. However, there is a consequence of the
fact that these two are “qualitatively” different even in single particle quantum
mechanics.

Consider a state which is a superposition of a j = 1
2 and a j = 1 state,

|ψ〉 = α

∣∣∣∣
1

2
,

1

2

〉
+ β|1, 1〉. (11.3)

Now let us perform a 2π rotation about the z-axis on |ψ〉,

U(2π, z)|ψ〉 = −α
∣∣∣∣
1

2
,

1

2

〉
+ β|1, 1〉. (11.4)

The minus sign with the half-odd integer spin is exactly the “qualitative” dif-
ference between integer and half-odd integer spins. The consequence is that a
2π rotation on |ψ〉 changes it,

U(2π, z)|ψ〉 6= eiφ|ψ〉. (11.5)
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However, it is a physical requirement that 2π rotations leave the physical state
unchanged. Thus we are led to the conclusion that physical states cannot be
superpositions of integer and half-odd integer angular momentum states. This
is a super-selection rule which is a consequence of quantum topology.

Geometry and Topology of what manifold? What is the relation of of that
space to the physics of the system? Hopefully, the following sections will shed
some light on these questions.

11.2 The space of physical states

11.2.1 Rays in Hilbert space

Quantum theory represents physical states by rays in a Hilbert space. What
we mean by a “ray” in Hilbert space is the following. Consider a vector in
Hilbert space, |ψ〉. We take it to be normalized, 〈ψ|ψ〉 = 1. If |ψ〉 represents
a physical state, then eiφ|ψ〉 represents the same physical state. This is the
statement that the phase of the wave-function is not physically detectable.
Thus the correspondence between normalized vectors in a Hilbert space and
physical states is many-to-one.

If we think of an analogous situation in a three dimensional real Euclidean
space: the set of normalized vectors are the set of unit vectors n̂. Two unit
vectors n̂ and −n̂ represent the same state. So each state is a direction, where
we do not distinguish between the forward and backward direction. These are
what we call rays.

The set of objects in the Hilbert space which are in one-to-one corre-
spondence with physical states are the so called pure state density matrices or
projectors [1],

ρ(ψ) ≡ |ψ〉〈ψ|〈ψ|ψ〉 . (11.6)

It is easy to see that if we substitute λ|ψ〉 for |ψ〉 in Eq. (11.6), where λ is
any complex number, then ρ(ψ) is unchanged. Thus, the set of pure state
density matrices are in one-to-one correspondence with physical states. These
are generally defined by,

ρ2 = ρ, trρ = 1. (11.7)

The space of physical states, namely the space of rays of a Hilbert space is
called the projective Hilbert space.

11.2.2 Two level systems

To illustrate the above concepts, let us examine the simplest Hilbert space,
namely a two level system. We denote an orthonormal basis by, |n〉, n = 0, 1.
The general normalized vector can be written in terms of three parameters,

|Ω, θ, φ〉 = eiΩ
(

cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉

)
. (11.8)
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The physical state does not depend on Ω. Further, |Ω, 0, φ〉 represents the same
physical state for all φ. Similarly, |Ω, π, φ〉 also represents the same physical
state for all φ. These identifications are the properties of the polar coordinates
on the sphere. (θ, φ) = (0, φ) all represent the north pole and (π, φ) all represent
the south pole. Thus the space of physical states of a two level system is a 2-
sphere called the Bloch sphere.

This becomes very clear when we write down the projectors,

ρ (θ, φ) ≡ |Ω, θ, φ〉〈Ω, θ, φ| (11.9)

=
1

2
(I + n̂ · τ ) (11.10)

where I is the identity matrix, τ are the three Pauli spin matrices and n̂ is the
unit vector,

n̂ ≡ sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (11.11)

Eq. (11.9) explicitly shows that the physical states of a two level system are
in one-to-one correspondence with the set of unit vectors, namely points on a
sphere.

11.2.3 N -level systems

We denote an orthonormal basis by, |n〉, n = 0, . . . , N − 1. The general vector
can be written as

|z〉 =

N−1∑

n=0

zn|n〉 (11.12)

where zn are N complex numbers (2N real parameters). We denote the pro-
jector corresponding to |z〉 by,

ρ(z) ≡ |z〉〈z|〈z|z〉 (11.13)

It follows that ρ(z) = ρ(λz), where λ is any complex number.
The space of physical states of an N level system are hence parameterized

by 2N−2 real parameters. They define a manifold called the complex projective
space, denoted by CPN−1.

11.3 Quantum Geometry

11.3.1 The inner product and Bargmann invariants

Quantum theory gives a physical interpretation to the inner product of two
states. Inner product 〈ψ|χ〉 is defined to be the probability amplitude of find-
ing the system to be in the state |ψ〉, given that it is in |χ〉. The probability
amplitude is not measurable. The measure-able quantity is the modulus square
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of the probability amplitude, which is the probability of the event. This can be
written in terms of the projectors,

|〈ψ|χ〉|2 = tr (ρ(ψ)ρ(χ)) . (11.14)

It is clear that any measure-able quantity has to be expressible in terms
of the projectors. We define a sequence of such quantities called Bargmann
invariants [2].

B(N)(ψ1, ψ2, . . . , ψN )) ≡ tr

(
N∏

n=1

ρ(ψn)

)
. (11.15)

B(2)(ψ, χ) is exactly the quantity in Eq. (11.14). We can write B(3) explicitly
as,

B(3)(ψ1, ψ2, ψ3) = 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉. (11.16)

By construction, B(3) is measure-able. It is a complex number with a magnitude
and a phase. Much of these notes will attempt to understand the physical
meaning of the phase, in the context of the dynamics of a particle in a periodic
potential.

11.3.2 Distance and Geometric Phase

The second Bargmann invariant has been used to define a distance between
two states ψ1 and ψ2 [2],

d(ψ1, ψ2) =

√
1−

(
B(2)(ψ1, ψ2)

)λ
2 , (11.17)

where λ is a real number ≥ 1. The maximum distance between any two states is
1. This occurs when the two states are orthogonal to each other. The minimum
distance of 0 occurs only between a state and itself. For λ ≥ 1 the distance
formula satisfies the triangle inequality,

d(ψ1, ψ2) + d(ψ2, ψ3) ≥ d(ψ3, ψ1). (11.18)

We denote the phase of the Bargmann invariants by,

B(N)(ψ1, . . . ψN ) ≡ eiΩ(N)(ψ1,...,ψN )
∣∣∣B(N)(ψ1, . . . ψN )

∣∣∣ . (11.19)

It is easy to check that the following additive law is valid,

Ω(4)(ψ1, ψ2, ψ3, ψ4) = Ω(3)(ψ1, ψ2, ψ3) + Ω(3)(ψ1, ψ3, ψ4). (11.20)

It then follows that the phase of any Bargmann invariant can be con-
structed as a sum of 3-vertex Bargmann invariants. An N−vertex invariant
defines an N -sided polygon in the space of rays, depicted for N = 4 in Fig.
11.1. This polygon can always be triangulated. The phase of the N -vertex in-
variant is the sum of the phases of the 3-vertex invariants of the triangles.
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Figure 11.1: A depiction of the 4 states ψ1, ψ2, ψ3 and ψ4 as discussed in Eq.
(11.20).

Mukunda and Simon had identified the phase of the Bargmann invari-
ant with the so called geometric phase (also called the Berry phase or the
Pancharatnam-Berry phase) of quantum mechanics. We refer the reader to the
original paper [1] for a detailed and general discussion. Below, we will discuss
the relation in a more restricted context.

11.3.3 The quantum geometric tensor

The space of physical states is very large and we are rarely interested in the
whole space. In most cases, we are only interested in a small corner of it dictated
by the physics of the problem. Eg., typically in condensed matter systems, we
are interested in the ground state and low lying excitations. While these states
are not known a-priori, very often we can guess that, to a good approximation,
they lie in some sub-space. We then project our problem into this subspace and
work there.

So in this section we concentrate on a subspace of the space of physical
states of (real) dimension NS . We parameterize the subspace by setting up a
local coordinate system. We denote the local coordinates by ξa, a = 1, ..., NS ,
where ξa are real numbers. The projectors representing the physical states are
denoted by ρ(ξ).

We will first examine the distance between nearby points and define a
metric, gab(ξ), on this subspace. We put the square of the distance between
ρ(ξ + dξ) and ρ(ξ) equal to gab(ξ)dξ

adξb. We have,

d2(ξ + dξ, ξ) = 1− (tr (ρ(ξ + dξ)ρ(ξ)))
λ
2 . (11.21)

The fact that ρ(ξ) are projectors implies

trρ2 = trρ = 1 ⇒ tr (ρ∂aρ) = 0 ⇒ tr (∂aρ∂bρ) = −tr (ρ∂a∂bρ) , (11.22)
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Figure 11.2: A depiction of the three states close to each other as discussed in
Eq. (11.25).

where we use the notation ∂a ≡ ∂
∂ξa . Expanding the RHS of Eq. (11.21) in a

Taylor series and using the properties in Eq. (11.22),

d2(ξ + dξ, ξ) =
λ

4
tr (∂aρ(ξ)∂bρ(ξ)) dξadξb. (11.23)

Thus the distance formula in Eq. (11.21) implies a metric on the subspace,

gab(ξ) =
λ

4
tr (∂aρ(ξ)∂bρ(ξ)) . (11.24)

Next let us examine the phase of the 3-vertex Bargmann invariant when
the three vertices are very close to each other,

Ω(ξ, ξ + dξ1, ξ + dξ2) = Im ln (tr (ρ(ξ)ρ(ξ + dξ1)ρ(ξ + dξ2))) . (11.25)

Expanding the RHS of Eq. (11.25) in a Taylor series and using the properties
in Eq. (11.22),

Ω(ξ, ξ + dξ1, ξ + dξ2) =
1

2i
tr (ρ(ξ) [∂aρ(ξ), ∂bρ(ξ)]) dξa1dξ

b
2. (11.26)

Before going further, let us discuss the RHS of Eq. (11.26) for the case of
NS = 3, i.e., when a, b = 1, 2, 3. We can re-write it as,

Ω(ξ, ξ + dξ1, ξ + dξ2) =
1

2i
tr (ρ(ξ) [∂aρ(ξ), ∂bρ(ξ)])

1

2

(
dξa1dξ

b
2 − dξb1dξa2

)

=
1

2i
tr (ρ(ξ) [∂aρ(ξ), ∂bρ(ξ)])

1

2
εabc (dξ1 × dξ2)

c
,

to express it in terms of vectors as

Ω(ξ, ξ + dξ1, ξ + dξ2) =
1

2
B(ξ) · (dξ1 × dξ2) , (11.27a)

Ba(ξ) ≡ 1

2i
εabctr (ρ(ξ) [∂bρ(ξ), ∂cρ(ξ)]) . (11.27b)
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Eq. (11.27a) implies that the phase can be interpreted as the flux of a vector
field, B defined in Eq. (11.27b), passing through the small triangle depicted in
Fig. 11.2. Note that 1

2dξ1 × dξ2 is the area element of the small triangle.
This interpretation, suitably generalized, holds for all dimensions. 1We

define an anti-symmetric tensor,

Fab(ξ) ≡ 1

2i
tr (ρ(ξ) [∂aρ(ξ), ∂bρ(ξ)]) . (11.28)

We parametrize the points on the small triangle by two parameters, ξ(s, t) such
that ξ(s + ds, t) = ξ + dξ1 and ξ(s, t + dt) = ξ + dξ2. Thus dξa1 = ∂sξ

ads and
dξa2 = ∂tξ

adt. Eq. (11.26) can now be written as,

Ω(ξ, ξ + dξ1, ξ + dξ2) = Fab(ξ)
1

2

(
∂sξ

a∂tξ
b − ∂sξb∂tξa

)
dsdt(11.29a)

= Fab(ξ) dξa ∧ dξb. (11.29b)

Thus the phase of the 3-vertex Bargmann invariant can be interpreted as the
integral of a two-form over a surface with the small triangle as the boundary.

As mentioned earlier, an N -vertex Bargmann invariant defines an N -sided
polygon in the ray space. It can always be triangulated and its phase is the sum
of the phases of these triangles. Since any closed curve in the ray space is a
limit of polygons, we can use the above results and associate a phase with every
closed curve in the ray space,

Ω(∂Σ) =

∫

Σ

Fab(ξ)dξa ∧ dξb, (11.30)

where we have denoted the closed curve by ∂Σ and a surface whose boundary
is ∂Σ by Σ.

The triangulation can be done in many ways, i.e., there are many surfaces
with a given closed curve as its boundary. However, by construction, the phase
of the Bargmann invariant is independent of the triangulation. This implies
that F must be a closed 2-form (dF = 0),

∂aFbc + ∂bFca + ∂cFab = 0. (11.31)

It can be explicitly verified from Eq. (11.28) that this is indeed true. The fact
that F is closed implies that it can be locally expressed as dA, where A is a
one-form,

Fab = ∂aAb − ∂bAa. (11.32)

In terms of A, the phase of the Bargmann invariant on ∂Σ can be written as a
line integral along the curve thus manifestly showing that it does not depend
on what surface, Σ, is chosen, provided its boundary is ∂Σ. Therefore,

Ω(∂Σ) =

∮

∂Σ

Aadξa. (11.33)

1See Chapter 1 (Sec. 1.3) and Chapter 5 (Sec. 5.2) for differential forms, and Chapter 4
for triangulation.
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The reader can explicitly verify that the following choice of A reproduces F
defined in Eq. (11.28),

Aa =
1

i
〈ξ|∂a|ξ〉. (11.34)

This is exactly the definition of the so called Pancharatnam-Berry (PB) con-
nection. F is then the PB curvature. Thus the phase of the Bargmann invariant
is the geometric phase of quantum mechanics.

A closed 2-form that we (physicists) are very familiar with is the dual
to the magnetic field (∇ · B = 0). So this analogy is made quite often in the
literature.

The quantum geometric tensor: Definition

We have defined two second rank tensors, namely, the metric, gab, which is a
symmetric tensor, and the PB curvature, Fab, which is anti-symmetric. The
sum of the two is often called the quantum geometric tensor, 2

Qab ≡ gab + Fab. (11.35)

Note that the PB connection and the curvature are not the same as the
affine connection and the Riemann curvature that can be constructed from the
metric. The Christoffel symbols constructed from the metric define the parallel
transport of vectors in the ray space, whereas the PB connection defines the
parallel transport of wave-functions.

11.3.4 Examples

We will now work out some explicit examples of simple sub-spaces, the two level
system described earlier and the set of coherent states of a one-dimensional
particle.

Two level systems

As discussed earlier, the ray space for a two level system is the Bloch sphere
and the projectors are given by Eq. (11.9),

ρ(θ, φ) =
1

2
(I + n̂ · τ ) . (11.36)

Let us work out the components of the quantum metric using Eq. (11.24). Using
the notation, ξ1 = θ, ξ2 = φ,

gab(θ, φ) =
λ

8
∂an̂ · ∂bn̂. (11.37)

2See Chapters 5 and 6.
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The three independent components can be worked out to get,

gθθ =
λ

8
, gθφ = 0, gφφ =

λ

8
sin2 θ. (11.38)

This is proportional to the standard metric on a sphere induced by a Euclidean
metric in the three dimensional space that it is imbedded in.

The PB curvature tensor has only one independent non-zero component.
From Eqs. (11.28) and (11.36) we have,

F(θ, φ)θφ =
1

2
n̂ · (∂θn̂× ∂φn̂) (11.39a)

=
1

2
sin θ. (11.39b)

The geometric phase of a curve bounding a region Σ on the sphere is
therefore,

Ω =
1

2

∫

Σ

sin θ dθdφ. (11.40)

This is (half) the area of, or (half) the solid angle subtended by Σ. In the
analogy with the magnetic field, it would correspond to the magnetic field of a
monopole of strength 1/2 placed at the center of the Bloch sphere.

Coherent states

Coherent states are an extremely useful subset of the states of a quantum me-
chanical particle. They are in one-to-one correspondence with points in the clas-
sical phase space. They are minimum uncertainty wave-packets peaked around
a position and momentum.

Restricting ourselves to one dimension for simplicity, we denote the posi-
tion and momentum operators by,

[x̂, p̂] = i~. (11.41)

The coherent state vectors are defined as,

|x, p〉 ≡ e i~ (xp̂−px̂)|0〉, (11.42)

where |0〉 is a real gaussian wave packet, peaked about x = 0. It is easily verified
that,

〈x, p|x̂|x, p〉 = x, 〈x, p|p̂|x, p〉 = p. (11.43)

The projectors provide a resolution of the identity,
∫
dxdp

2π~
|x, p〉〈x, p| = I. (11.44)

The 2-vertex Bargmann invariant is computed to be,

|〈x1, p1|x2, p2〉|2 = e−
1
~ ( 1

mω (p1−p2)2+mω(x1−x2)2). (11.45)
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This leads to a metric on the phase space,

gpp =
λ

2mω~
, gpx = 0, gxx =

λmω

2~
, (11.46)

where λ is a part of the the definition of the distance, and mω is a part of the
definition of the coherent states and is the parameter that determines how the
minimum uncertainty is distributed between the position and the momenta.

The phase of the 3-vertex Bargmann invariant can also be explicitly com-
puted to get,

Ω ((x1, p1), (x2, p2), (x3, p3)) =
1

2~
((x1 − x2)(p2 − p3)− (x2 − x3)(p1 − p2)) .

(11.47)
The RHS is the area of the triangle in phase space, (x1, p1), (x2, p2), (x3, p3),
in units of ~. In terms of the analogy to the magnetic field, we have a constant
magnetic field perpendicular to the phase space plane. The PB curvature has
only one independent non-zero component,

Fpp = 0 = Fxx, Fpx =
1

~
= −Fxp.

This is called the symplectic 2-form in classical mechanics where it describes
the Poisson bracket structure.

11.4 Periodic systems

11.4.1 Tight-binding models

The application of the ideas of quantum geometry discussed in section 11.3 were,
to this authors knowledge, first applied to the system of electrons in a periodic
potential by Mazari and Vanderbilt [9]. In this section we will examine the
quantum geometry of a class of such systems, NB-band tight binding models.

Consider a d-dimensional Bravais lattice with sites given by

RI =

d∑

i=1

Iiei, (11.48)

where ei are the d basis vectors. We will be mainly interested in d = 2, 3. Each
unit cell has NB orbitals centered at RIα = RI + rα, α = 1, . . . , NB . We
denote the wave functions of the orbitals by |RI , α〉 and assume they form an
orthonormal basis,

〈RI , α|RJ , β〉 = δαβ

d∏

i=1

δIiJi , and
∑

RI ,α

|RIα〉〈RIα| = I. (11.49)

The Hamiltonian is given by,

ĥ =
∑

Iα,Jβ

|RIα〉hαβ(RI −RJ)〈RJβ|. (11.50)
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Translation invariance and the Brillouin zone

The Hamiltonian in Eq. (11.50) is invariant under lattice translations,

T̂i|RI , α〉 = |RI + ei, α〉. Thus we can have simultaneous eigenstates of ĥ and
T̂i (Bloch’s theorem). We choose these to be,

|k, α〉 =
∑

I

eik·RIα |RI , α〉, (11.51)

where k are the pseudo-momenta taking values in the Brillouin zone. Namely
from the above equation, the state |k, α〉 and the state |k+Gi, α〉 are the same
if,

Gi · ej = 2πδij . (11.52)

Therefore, k and k + G, represent the same state.
The Hamiltonian in the |k, α〉 basis is,

ĥ =
∑

k∈BZ

∑

α,β

|kα〉hα,β(k)〈kβ|, (11.53)

where BZ stands for the Brillouin zone which is a d-torus defined by the iden-
tifications,

k ∼ k + Gi, i = 1, . . . , d. (11.54)

11.4.2 Spectral bands

The eigenstates of ĥ are of the form,

|nk〉 = unα(k)|kα〉, (11.55)

where,
hα,β(k)unβ(k) = εn(k)unα(k). (11.56)

The spectrum of ĥ is therefore,

ĥ|nk〉 = εn(k)|nk〉. (11.57)

Thus, at each point in the Brillouin zone, k, we have an NB level system. The
space of physical states for this system is CPNB1. The hopping matrix h(k) has
NB energy eigenvalues labelled by n. Generically these eigenvalues are non-
degenerate but of course not necessarily so. These are the energy bands.

The surface of energies

Each energy band, εn(k), is a function on the Brillouin zone. We can visual-
ize it as a d-dimensional surface in the d + 1-dimensional space consisting of
the Brillouin zone and an extra orthogonal dimension representing the single
particle energy (the E-k space). The resulting space is T d × R1, where T d is
the d-dimensional torus and R1 the real line. All the energy eigenvalues of the
tight-binding Hamiltonian form NB surfaces in this space, one corresponding
to each band. Wherever two of the eigenvalues are degenerate, the surfaces of
the corresponding bands touch.
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The surface of states

The eigenstate of ĥ, corresponding to each energy band, defines a map from
the Brillouin zone to the space of physical states, CPNB−1,

k→ ρn(k) ≡ |nk〉〈nk|. (11.58)

Thus each band of states can be visualized as a surface in the space of rays.

11.4.3 Examples

Let us examine some examples of two band models, NB = 2. In this case, at
each k, we have a two level system. The space of physical states is the Bloch
sphere.

1-d hopping

Consider spinless particles hopping on a one-dimensional lattice, with alter-
nating hopping matrix elements. This system is a two band system in one
dimension (d = 1, NB = 2). We denote the orbitals by |Iα〉, α = 1, 2. The
Hamiltonian is

ĥ =
∑

I

(|I, 1〉〈I, 2|+ h.c) + t′ (|I, 1〉〈I + 1, 2|+ h.c) . (11.59)

The Brillouin zone is a circle, which we take to be −π ≤ k ≤ π. In the k basis,
as in Eq. (11.53),

ĥ =

∫ π

−π

dk

2π
|kα〉hαβ(k)〈kβ|. (11.60)

The Fourier transform of the hopping matrix can be written as,

h(k) = α ·Π(k), (11.61)

αx =

(
0 1
1 0

)
, (11.62)

αy =

(
0 −i
i 0

)
, (11.63)

Πx(k) = (1 + t′ cos k) , (11.64)

Πy(k) = −t′ sin k. (11.65)

It is simple to solve for the spectrum. The two energy eigenvalues are,

ε±(k) = ±
√

(1− t′)2 + 4t′ cos2
k

2
≡ ±ε(k). (11.66)

The density matrices of the corresponding two eigenstates are

ρ±(k) =
1

2

(
I ± 1

ε
h(k)

)
. (11.67)
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Figure 11.3: The two energy surfaces (curves) of the 1-d model are plotted on
top. The positive energy band in dark and the negative energy band in light.
The values of the parameter t′ are indicated on the top. The surface (curve)
of states of the positive energy band on the Bloch sphere (grey) is plotted in
dark color at the bottom. The curve of the negative energy band will be the
antipodal points.

To visualize the mapping of the BZ to the Bloch sphere, we use the pa-
rameterization in Eq. (11.9). The two polar angles of the points on the Bloch
sphere corresponding to the two eigenstates are,

θ±(k) =
π

2
, (11.68)

φ±(k) = sin−1

(
∓ sin k

ε(k)

)
. (11.69)

We see that the map lies on the equator. Figure 11.3 plots the energy surfaces
and the surface of states for t′ = 0.8 and 1.5. Only the positive energy band
eigenstates are shown. For t′ ≤ 1, the curve is an arc of the equator. Examining
the eigenstates, we can see that in this parameter range, two values of k map
on to the same value of φ. Thus the map is not one to one. In the case of t′ ≥ 1,
we have a one to one map and the curve winds around the equator once.
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Honeycomb lattice

Next, consider the honeycomb lattice shown in Fig. 11.4. The sites of the lattice
are,

RIα = I1e1 + I2e2 + rα, (11.70)

e1 = x̂ e2 = −1

2
x̂+

√
3

2
ŷ, (11.71)

rA(B) = +(−)

√
3

8
ẑ. (11.72)

Figure 11.4: The honeycomb lattice. The basis vectors of the triangular Bravais
lattice are e1 and e2. The two sub-lattices are formed by the square and the
round symbols.

We study the Hamiltonian corresponding to a staggered onsite potential
and nearest neighbour hopping,

ĥ =
∑

I

∆ (|RIA〉〈RIA| −RIA〉〈RIA|)

+
∑

〈Iα,Jβ〉
(|RIα〉〈RJβ |+ |RJβ〉〈RIα|) , (11.73)

where the symbol 〈Iα, Jβ〉 denotes that the sum is only over nearest neighbours.
The Brillouin zone is

k =
1

2π
(k1G1 + k2G2) ,−π ≤ k1, k2 ≤ π,
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where the reciprocal lattice vectors Gi are defined in Eq. (11.52). The Fourier
transform of the hopping matrix in Eq. (11.73) is,

h(k) = α ·Π(k) + β∆, (11.74)

β =

(
1 0
0 1

)
, (11.75)

Πx(k) = (1 + cos k1 + cos k2) , (11.76)

Πy(k) = (sin k1 − sin k2) . (11.77)

The α matrices are defined in Eqs. (11.62, 11.63). The two energy eigenvalues
are,

ε±(k) = ±
√

Π(k) ·Π(k) + ∆2 ≡ ±ε(k). (11.78)

The projectors on the two corresponding eigenstates are,

ρ±(k) =
1

2

(
I ± 1

ε(k)
h(k)

)
. (11.79)

In the parameterization in Eq. (11.9), we have

θ(k) = cos−1

(
∆

ε(k)

)
, (11.80)

φ(k) = tan−1

(
Πy(k)

Πx(k)

)
. (11.81)

Fig. (11.5) shows the energy surfaces for three values of ∆ the gap between
the two bands decreases with ∆ and touch at the so called Dirac points at
∆ = 0. The lower panel shows the positive energy eigenstates on a regular
100 × 100 grid on the Brillouin zone plotted on the Bloch sphere. At large
∆ all the states map on to a small region around the north pole. The region
expands with decreasing ∆. For small ∆ most of the points map into a small
band around the equator. At ∆ = 0, it can be analytically seen that all the
states collapse into the equator.

The Haldane model

The Haldane model [3] is a model that was invented by Haldane to show that
the quantum Hall effect could be induced by the band structure even in ab-
sence of an external magnetic field. It is defined on the honeycomb lattice. The
Hamiltonian includes next nearest neighbour hopping,

ĥ =
∑

I

∆ (|RIA〉〈RIA| −RIA〉〈RIA|)

+
∑

〈Iα,Jβ〉
χα (|RIα〉〈RJβ |+ |RJβ〉〈RIα|)

+
i∆′

3
√

3

∑

〈〈Iα,Jβ〉〉
(|RIα〉〈RJβ | − |RJβ〉〈RIα|) . (11.82)
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Figure 11.5: The energy surfaces and the surface of states on the Bloch sphere
for the honeycomb lattice model at three values of ∆. The light grey crosses
on the dark grey Bloch sphere are the eigenstates of the positive energy band
computed on a regular 100× 100 grid on the Brillouin zone.

where the symbol 〈〈. . . 〉〉 denotes that the sum is over the second nearest neigh-
bours. χA = 1 and χB = −1. The Fourier transform of the hopping matrix in
Eq. (11.82) is,

h(k) = α ·Π(k) + β∆̃(k), (11.83)

∆̃(k) = ∆− 2∆′

3
√

3
(sin k1 + sin k2 + sin k3) , (11.84)

where k3 ≡ −k1 − k2 and all the other quantities are as defined in Eqs.
(11.62,11.63,11.75-11.77).

The energy surfaces and the surface of states of the positive energy band
is shown in Fig. 11.6. The plots are at ∆ = 0.3 and ∆′ = 0.02, 0.2 and 0.5.
At ∆′ = 0, the model reduces to the honeycomb lattice model discussed in the
previous section. As ∆′ increases from zero, the gap between the two bands
decreases at one point. The states continue to map on to the northern hemi-
sphere alone. At ∆′ = ∆, the gap closes, namely the two energy surfaces touch
at a point. As we will discuss in detail later, the map to the Bloch sphere is
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Figure 11.6: The energy surfaces and the surface of states on the Bloch sphere
for the Haldane model with ∆ = 0.3 and three values of ∆′. The light grey
crosses on the dark grey Bloch sphere are the eigenstates of the positive energy
band computed on a regular 100× 100 grid on the Brillouin zone. The axes in
the top figures are same as in Fig. 11.5.

not well defined at this point. At ∆′ > ∆ the gap opens up again but now the
map covers the entire Bloch sphere.

11.4.4 Quantum geometry of the spectral bands

To summarize our discussion of tight binding models so far, the spectrum
breaks up into bands. The energy eigenvalues of each band defines a surface
in the energy-(quasi) momentum space. The eigenstates define mapping of the
Brillouin zone to the space of physical states of an NB-level system, namely
CPNB−1. Thus each band corresponds to a surface in CPNB−1. We call this the
image of the Brillouin zone.

The quantum geometry discussed in section 11.2 can be applied to char-
acterize the “shape” of this surface. Recall, that in section 11.2 we were consid-
ering a subspace of the space of physical states parameterized by some param-
eters, ξa. The surface in the physical space of states defined by the each band
is a such a subspace parameterized by the quasi-momenta, k. Thus, as in Eq.
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(11.24) we can define a metric for the nth band,

gnij(k) ≡ λ

4
tr∂iρn(k)∂jρn(k). (11.85)

This metric gives the distance between the eigenstates of the nth band at k and
k + dk to be,

ds2(k,k + dk) = gnij(k)dkidkj . (11.86)

We will discuss the physical manifestation of the metric in the next section.
We define the Pancharatnam-Berry curvature (PBC) for each band as in

Eq. (11.28),

Fnij(k) =
1

2i
tr (ρn(k) [∂iρn(k), ∂jρn(k)]) . (11.87)

The integral of Fn over any surface, Σ, in the Brillouin zone is the geometric
phase picked up when the eigenstate of the nth band is transported around the
boundary of Σ.

The Chern invariant

The integral of the PBC of a band over any closed two dimensional surface in
the Brillouin zone is a topological invariant, in the sense that it is insensitive
to smooth changes in the surface. Thus for two dimensional systems, the inte-
gral of the the PBC over the full Brillouin zone is a topological invariant that
characterizes the band. This invariant, called the Chern invariant or the Chern
number, was identified with the Hall conductivity of the system in the path
breaking paper by Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [4].

To see why the integral of the PBC over a closed two dimensional surface
is insensitive to smooth changes of the surface, recall that as discussed in sec-
tion 11.3, the integral of the PBC over a surface is the phase of the Bargman
invariant constructed along the boundary of that surface. Therefore, it’s value
is the same for any other surface with the same boundary. Note that since it is
a phase, this equality is up to an additive factor of 2nπ, where n is an integer.
More precisely, if we have two surfaces, Σ′ and Σ′′ with the same boundary, C,
then we must have,

∫

Σ′
Fijdki ∧ dkj =

∫

Σ′′
Fijdki ∧ dkj + 2nπ. (11.88)

The union of Σ′ and Σ′′ is a closed surface which we call Σ, as schematically
depicted in figure 11.7. Now consider shrinking C to a point. In the limit, we
have Σ′ = Σ and the integral over Σ′′ in Eq. (11.88) vanishes. We then have,

∫

Σ

Fijdki ∧ dkj = 2nπ. (11.89)

Thus, the value of the PBC integrated over any closed surface in the Brillouin
zone has to be an integral multiple of 2π. Note that this argument does not
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Figure 11.7: The two surfaces Σ′ and Σ′′ sharing the boundary C are shown in
the left. Their union is the closed surface Σ. C has been shrunk to a point in
the sketch on the right.

imply that n is non-zero. What it implies that if the integral does not vanish,
then it has to be an integral multiple of 2π. Further, since the integral depends
only on C and not on Σ′, in the limit of C vanishing we expect it to be invariant
under smooth changes of Σ.

It can be explicitly verified that there are systems where the Chern in-
variant is non-zero. With a little patience, the expression for the PBC of the
Haldane model can be analytically computed using Eq. (11.87). Figure 11.8
shows the result of the calculation for ∆ = 0.3 and ∆′ = 0.0, 0.2 and 0.4. At
∆′ = 0, the PBC is anti-symmetric under reflections and the PBC integrates
to zero. It is peaked around two points on the Brillouin zone, normally referred
to as the K and K ′ points. As ∆′ increases, the reflection symmetry is broken,
the positive peak becomes higher and narrower and the negative peak becomes
lower but broader, as shown for ∆′ = 0.2 in Fig. 11.8. For ∆′ < ∆, the PBC
continues to integrate to zero. When ∆′ > ∆, the high and narrow positive peak
becomes a high and narrow negative peak, as shown in Fig. 11.8 for ∆′ = 0.4.
The Chern invariant in this regime is −2π.

11.4.5 Dirac points and topological transitions

We have seen in the previous section that the Haldane model exhibits a topo-
logical transition at ∆′ = ∆, in the sense that the Chern invariant changes from
zero at ∆′ < ∆ to −2π at ∆′ > ∆. In this section, we will examine the model
more closely in the vicinity of the transition. We concentrate on the ∆ > 0
regime. The other regime is similar.

As can be seen from figure 11.8, the action occurs near the K and K′

points. These are the points with (k1, k2) = ±
(

2π
3 ,

2π
3

)
. At these points, we

have Π(k) = 0.
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Figure 11.8: The PBC of the Haldane model, at ∆ = 0.3 and the indicated
values of ∆′, plotted as a function of k1 and k2. Note that the scale of the
z-axis is much larger in the two bottom right plots.

When ∆ > ∆′ the states of the positive energy band at K and K′ map
on to the north pole of the Bloch sphere and the states of the negative energy
band at these points map on to the south pole. When ∆ < ∆′, the situation
is the same at K′. However at K, the situation is reversed since the sign of
δ changes. The state of the positive energy band now maps to the south pole
and the state of the negative energy band maps to the north pole. At ∆ = ∆′,
we have h(K) = 0. The two eigenvalues are degenerate and any state is the
eigenvector. Thus, there is an ambiguity is which state should be assigned
to the positive energy band and which one to the negative energy band. This
ambiguity manifests as a singularity in the PBC at K. Consequently, the Chern
invariant is ill defined at the transition point ∆ = ∆′.

To see this explicitly, we compute the PBC in the vicinity of K. we put
k = K + q and expand to linear order in q. We have,

Πx(K + q) = −
√

3

2
(q1 + q2) , (11.90)

Πy(K + q) = −1

2
(q1 − q2) , (11.91)

∆̃(K + q) = ∆−∆′, (11.92)

where q1(2) = e1(2) · q. So we choose a coordinate system, x̂ ≡ −(e1 + e2), ŷ =

− 1√
3
(e1 − e2) and write,

hK(q) =

√
3

2
α · q + βδ, (11.93)
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where δ ≡ ∆−∆′. The PBC is easy to compute using Eq. (11.87). The answer
is

Fij(K + q) =
3

2

δ
(

3
4q

2 + δ2
) 3

2

εij . (11.94)

The RHS of the above equation is ill defined when δ, q2 → 0. If the δ → 0 limit
is taken first, it is zero. On the other hand, if the q2 → 0 limit is taken first, it
diverges.

Thus, at the transition point, the energy bands touch at the so called Dirac
points. This degeneracy implies an ambiguity of the mapping of the Dirac points
to the Bloch sphere. Consequently, the PBC and hence the Chern number are
ill-defined at the transition point. This is why the Chern number can change
discontinuously in the transition.

11.5 Physical manifestation

As mentioned earlier, the identification of the Chern number with the Hall con-
ductance of two dimensional systems [4] initiated the interest in exploring the
quantum geometry of quantum Hall systems. The PBC was shown to physically
manifest itself as an anomalous velocity [5–7], which results in a component of
the current perpendicular to the applied electric field, the Hall current. The role
of the quantum metric in fractional quantum Hall systems has been explored
recently [8].

The Haldane model [3] showed that the band structure could induce a
PBC leading to a quantum Hall state even in absence of a magnetic field.
These systems are called Chern insulators. The quantum metric was related
to the so called localization tensor leading to a characterization of the ground
states of insulators [10].

In this section, we will discuss these physical effects, namely the relation
of the PBC to the Hall current and the metric to the localization tensor.

11.5.1 Dynamics constrained to a Band

The band gaps in most materials tend to be rather high (∼ eV ) compared to
typical temperatures (∼ meV ) and the energy that external fields can impart
to the electrons. In such cases, to a good approximation, the dynamics is con-
strained to remain in a band. In other words, to a good approximation, we can
project to the subspace of states of the form,

|ψn〉 =

∫

BZ

ψn(k)|nk〉. (11.95)

The projection operator into this band is,

P̂n =

∫

BZ

ρn(k). (11.96)
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The semiclassical dynamics of wave packets in such a system was in the
presence of slowly varying external fields, a scalar potential, V (R), and a mag-
netic field, Fij(R), was analyses by Sundaram and Niu [6]. They derived the
following equations the central position, R, and momenta ~k of the wavepack-
ets,

dRi
dt

=
1

~
∂εn

∂ki
+ Fij(k)

dkj
dt
, (11.97)

~
dki
dt

= −e ∂V
∂Ri

+ eFij
dRj
dt

. (11.98)

These equations, beautifully symmetric between R and k, motivate the inter-
pretation of the PBC as a magnetic field in momentum space. The second term
in Eq. (11.97) is called the anomalous velocity. The Lorentz force gives a veloc-
ity dependent acceleration to the particle, analogously the anomalous velocity
is an acceleration dependent velocity.

Eq. (11.98) in 11.97), we get

dRi
dt

=
1

~
∂εn

∂ki
− e

~
Fij(k)Ej . (11.99)

Thus we see that the PBC provides a component of the velocity that is per-
pendicular to the electric field E = −∇V .

The analogy can be extended. In the presence of a magnetic field, the
components of the velocities do not commute. The velocity operators are,

v̂ =
1

m

(
p̂− eA(R̂)

)
. (11.100)

This implies,

[v̂i, v̂j ] =
i~e
m2

Fij . (11.101)

The Heisenberg equation of motion for the velocity gives the Lorentz force,

dv̂i
dt

=
1

i~

[
v̂i,

m

2
v̂ · v̂

]
,

⇒ m
dv̂i
dt

= eFij v̂j . (11.102)

In the next two subsections, we will discuss the analogy in the momentum
space. We will first show that the component of the position operators, when
projected to a band, have anomalous commutators. These lead to the anomalous
velocity.

The anomalous commutators

We first analyze the position operator, projected to the nth band. The position
operator is,

R̂ =
∑

Iα

|Iα〉RIα〈Iα|. (11.103)

If we turn off the external magnetic field, i.e set Fij = 0, and substitute.
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We compute the matrix elements of the components of R̂Iα between two states
in the nth band,

〈χn|R̂i|ψn〉 =

∫

k′,k∈BZ

∑

Iα

χ∗n(k′)〈nk′|Iα〉RIαi〈Iα|nk〉ψn(k).(11.104)

We now use the facts,

〈Iα|nk〉 = unα(k)eik·RIα , (11.105)∑

I

ei(k−k
′)·RIα = (2π)dδd(k− k′), (11.106)

to obtain,

〈χn|R̂i|ψn〉 =

∫

k′,k∈BZ
χ∗n(k′)unα

∗(k′)

(
−i ∂
∂ki

δd(k− k′)

)
unα(k)ψn(k)

=

∫

k∈BZ
χ∗n(k)

(
i
∂

∂ki
−Ani (k)

)
ψn(k), (11.107)

Ani (k) ≡ 1

i
un†(k)

∂un(k)

∂ki
. (11.108)

Thus, when projected to the nth band, the position operator is represented by,

R̂n = i∇k −A(k). (11.109)

It then follows that the components of the position operator do not commute
and that the commutator is exactly the PBC, viz.,

[
R̂ni, R̂nj

]
= iFnij(k). (11.110)

In the full Hilbert space, the components of the position operator of course
commute. The anomalous commutator is a consequence of the projection into
a band. This is not uncommon. Eg., consider the two 3 × 3 matrices,

A =




0 1 0
0 0 1
1 0 0


 , and B =




0 0 1
1 0 0
0 1 0


 . (11.111)

It is easy to check that [A,B] = 0. In fact B = A2. If these matrices are
projected to the subspace consisting of the top two components,

A′ =

(
0 1
0 0

)
, and B′ =

(
0 0
1 0

)
. (11.112)

We then have,

[A′, B′] =

(
1 0
0 −1

)
6= 0. (11.113)
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The anomalous velocity

We consider the system in the presence of slowly varying external potential
V (RIα). The Hamiltonian, projected into the nth band is,

ĥn = ε̂n + eV̂n, (11.114)

ε̂n ≡
∫

k∈BZ
|nk〉εn(k)〈nk|, (11.115)

V̂n ≡ V (R̂n). (11.116)

The Heisenberg equation for the time evolution of the position operator is,

d

dt
R̂ni =

1

i~

[
R̂ni, ĥn

]
. (11.117)

It is easy to show that,

i~
[
R̂ni, ε̂n

]
=

∫

k∈BZ
|nk〉1

~
∂εn(k)

∂ki
εn(k)〈nk| ≡ v̂ni. (11.118)

It is not possible to give a general expression for the commutator of R̂ni with
V (R̂n) without knowing the functional form of V . However, in the classical
limit we can write,

[
R̂ni, V (R̂n)

]
=

∂V

∂Rj

[
R̂ni, R̂nj

]
+ . . . , (11.119)

where the . . . in Eq. 11.119 denote terms higher order in ~ when we work
in terms of the momenta,p = ~k, instead of the wave vectors. Eg., R̂ni =
i~ ∂
∂pi
− ~A(p), Ai(p) ≡ −iun† ∂

∂pi
un. Thus, in the semi-classical limit we have

the Heisenberg equation of motion,

d

dt
R̂ni = v̂i + eFnijEj . (11.120)

The anomalous commutators give rise to the anomalous velocity.

The localization tensor

Consider the expectation value of the anti-commutator of the position operators
in a band eigenstate,

〈nk|
{
R̂ni, R̂nj

}
|nk〉 =

((
i
∂

∂ki
−Ani

)
un
)†(

i
∂

∂ki
−Ani

)
un + i↔ j

= ∂iu
n†∂ju

n −Ani Anj + i↔ j. (11.121)

With some algebra, the RHS can be shown to be equal to

∂iu
n†∂ju

n −Ani Anj + i↔ j = tr∂iρn(k) ∂jρn(k). (11.122)
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Thus we have the result,

gij(k) =
λ

4
〈nk|

{
R̂ni, R̂nj

}
|nk〉. (11.123)

When the RHS is integrated over the Brillouin zone, it is known as the lo-
calization tensor, which is a measure of the spatial spread and shape of the
wavefunctions in the band.

11.6 Summary

To summarize our discussion, we started by discussing quantum systems in
general. The space of physical states for any quantum system is the space of
rays in a Hilbert space, namely a projective Hilbert space. The pure state
density matrices are in one-to-one correspondence with the physical states and
hence are a good representation of them.

The inner product of the Hilbert space defines a natural geometry on
the space of physical states. This geometry is nicely described in terms of the
so called Bargmann invariants which are traces of products of the pure state
density matrices. A distance between any two physical states and a geometric
phase for every closed curve in the space of physical states are defined in terms
of the Bargmann invariants. The distance between two infinitesimally separated
states defines a metric in the space of physical states and the geometric phase
of an infinitesimal loop dines a curvature, the Panchathnam-Berry curvature.

We then applied these ideas to tight binding models. The discrete trans-
lation symmetry of these models implies that the quasi-momenta that define
the Brillouin zone are conserved. The spectrum of these models breaks up into
spectral bands. Each band is defined by a set of energy eigenvalues and eigen-
vectors at every point on the Brillouin zone. Thus there is an energy surface and
a surface of states for every band. The quantum metric and PBC of the surface
of states induces a metric and PBC on the Brillouin zone. The PBC, integrated
over the Brillouin zone is a topological invariant, the Chern invariant.

A semiclassical analysis of dynamics restricted to a band shows that the
PBC can be interpreted as a “magnetic field” in the quasi-momentum space.
It induces an acceleration dependent anomalous component of the velocity,
analogous to the Lorentz force which induces a velocity dependent component
of the acceleration. The anomalous component of the the velocity results in
a Hall current for many particle systems that is proportional to the PBC.
This leads to a semi-classical understanding of the classic result of TKNN [4]
which identified the Hall conductivity of quantum Hall systems with the Chern
invariant.

In the presence of a magnetic field, the components of the velocity oper-
ators do not commute and the commutator is proportional to the field tensor.
Analogously, the position operators projected to a band do not commute and
their commutator is proportional to the PBC of that band. Further, the anti-
commutator of the projected position operators is proportional to the quantum
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metric. The integral of the metric over the Brillouin zone, is the second moment
of the position operator and is called the localization tensor, which plays an
important role in characterizing insulators [10].
Acknowledgement

I am grateful to my colleague, S.R. Hassan, IMSc., for motivating me to
get interested in the quantum geometry of condensed matter systems and many
long discussions on the topic.

References

[1] N. Mukunda and R. Simon, Annals of Physics 228, 205-268 (1993).

[2] V. Bargmann, J. Math. Phys. 5, 862 (1964).

[3] F.D.M Haldane, Phys. Rev. Lett. 61, 2015 (1988).

[4] D.J. Thouless, M. Kohmoto, M.P. Nightingale and M. den Nijs, Phys. Rev.
Lett. 49, 405 (1982).

[5] R. Karplus and J.M. Luttinger, Phys. Rev. 95, 1194 (1954).

[6] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).

[7] F.D.M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).

[8] F.D.M. Haldane, Phys. Rev. Lett. 107, 116801 (2011).

[9] N. Mazari and D. Vanderbilt, Phys. Rev. B 26, 12847 (1997).

[10] R. Resta, Eur. Phys. J. B 79, 121 (2011).



12

Topology, geometry and quantum
interference in condensed matter
physics

Alexander Abanov

The methods of quantum field theory are widely used in condensed
matter physics. In particular, the concept of an effective action was
proven useful when studying low temperature and long distance be-
havior of condensed matter systems. Often the degrees of freedom
which appear due to spontaneous symmetry breaking or an emergent
gauge symmetry, have non-trivial topology. In those cases, the terms
in the effective action describing low energy degrees of freedom can
be metric independent (topological). We consider a few examples of
topological terms of different types and discuss some of their conse-
quences. We will also discuss the origin of these terms and calcu-
late effective actions for several fermionic models. In this approach,
topological terms appear as phases of fermionic determinants and
represent quantum anomalies of fermionic models. In addition to the
wide use of topological terms in high energy physics, they appeared
to be useful in studies of charge and spin density waves, Quantum
Hall Effect, spin chains, frustrated magnets, topological insulators
and superconductors, and some models of high-temperature super-
conductivity.

S. M. Bhattacharjee et al. (eds.), Topology and Condensed
Matter Physics, Texts and Readings in Physical Sciences 19,
https://doi.org/10.1007/978-981-10-6841-6_12

© Springer Nature Singapore Pte Ltd. 2017 and Hindustan Book Agency 2017



282 12. Topology, geometry and quantum interference

12.1 Introductory remarks

12.1.1 Theory of Everything in condensed matter physics

In condensed matter physics, we believe that we know the “Theory of Ev-
erything” – the fundamental equations potentially describing all observable
phenomena in condensed matter physics. Essentially, those equations are
Schrödinger equations for electrons and nuclei, together with the Maxwell equa-
tions describing electromagnetic interactions. [1] However, there is a long way
from knowing fundamental equations and being able to actually describe col-
lective behavior of 1020 or so nuclei and electrons forming condensed matter
systems, like, liquids, solids, superfluids, superconductors, quantum Hall sys-
tems, etc. Having “more” particles makes macroscopic systems behave very
differently from collections of just a few particles. New qualitative features ap-
pear when one goes from microscopic to macroscopic systems. [2] We refer to
new phenomena appearing at macroscopic scales as to “emergent phenomena”.

The goal of condensed matter physics is not finding fundamental laws but
rather finding their consequences. In particular, we are interested in finding
efficient ways to describe emergent macroscopic phenomena. While it is very
hard to derive macroscopic phenomena by solving fundamental equations we
have few guiding principles that allow us to write effective descriptions of those
phenomena. Such principles include the use of symmetries and associated con-
servation laws, mechanisms of spontaneous symmetry breaking, the concept of
quasiparticles etc. Early examples of effective descriptions include thermody-
namics and hydrodynamics.

In these lectures, we focus on the “topological properties” of condensed
matter systems and their descriptions. Topological properties, in general, are
the properties robust with respect to continuous deformations. They are emer-
gent properties and it is important to understand them in the context of con-
densed matter physics as they might be the most stable properties insensitive to
deformations and perturbations always present in realistic materials. The main
focus of these lectures will be on topological properties related to quantum
physics.

12.1.2 Spontaneous symmetry breaking and an emergent topology

If there were no separation of scales in Nature, the task of theoretical physicists
would be formidable. Fortunately, in many cases one can “integrate out” fast
degrees of freedom and effectively describe properties of microscopic systems
at low temperatures, low frequencies, and large distances using relatively sim-
ple continuous field theory descriptions. This happens due to the presence of
exact or approximate symmetries in the underlying microscopic system. More
precisely, it is due to a phenomenon of spontaneous symmetry breaking.

Suppose that the exact Hamiltonian of some condensed matter system
has some continuous symmetry given by Lie group G. A good system to keep
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in mind as an example is an isotropic ferro- or antiferromagnet with an SU(2)
symmetry with respect to global rotations of all spins. Then it is possible that
at some values of parameters of the Hamiltonian,1 the ground state of the
system breaks the symmetry up to some subgroup H of G. If this happens,
we say that the symmetry of the Hamiltonian is spontaneously broken by its
ground state. One can characterize this ground state by some element n of a
coset space G/H. In our example of the magnet we take H = SO(2) = U(1)
and G/H = SU(2)/U(1) = S2. The element of a coset space in this case is a
point of two-dimensional sphere S2 which labels the direction of magnetization
of our system and subgroup H is just the group of all rotations around the
direction of magnetization which is obviously a symmetry of the Hamiltonian
and of the ground state of the system. In the presence of spontaneous breaking
of a continuous symmetry the ground state is infinitely degenerate, since any
n ∈ G/H gives the ground state with the same energy. Indeed, any two states
characterized by n1, n2 ∈ G/H have the same energy since they can be trans-
formed into one another by some element g ∈ G, which is an exact symmetry
transformation of the Hamiltonian.

Now consider another state of the quantum system which is locally in the
vicinity of spatial point x, and is very close to the ground state of the system
labeled by some n(x) ∈ G/H. We assume that n(x) is not constant in space but
changes very slowly with a typical wavenumber k. In such a case, n(x) is called
an order parameter of the system. We denote the energy of this state per unit
volume measured from the energy of the ground state ε(k). The limit of small
k → 0 corresponds to the order parameter which is constant in space n(x) = n0

and, therefore, ε(k)→ 0 as k → 0. We obtain that when continuous symmetry
is spontaneously broken, the ground state of the system is not isolated but there
are always excited states whose energies are infinitesimally close to the ground
state energy. These heuristic arguments can be made more rigorous and lead
to the Goldstone theorem2. The theorem states that in quantum field theory
with spontaneously broken continuous symmetry there are massless particles
which energy ε(k)→ 0 as k → 0.

If one is interested in low energy physics one necessarily should take these
massless modes (or Goldstone bosons) into account. Moreover, the nature of
these massless modes is dictated essentially by the symmetry (and its breaking)
of the system, and one expects, therefore, that the correct low energy descrip-
tion should depend only on symmetries of the system but not on its every
microscopic detail.

1We consider here the case of zero temperature for simplicity.
2For a full formulation of the Goldstone theorem for relativistic field theory as well as for

its proof see e.g., Ref. [3]. We avoid it here because we are generally interested in a wider
range of systems, e.g., without Lorentz invariance. There are still some analogs of Goldstone
theorem there. For example in the case of a ferromagnet there are still massless particles –
magnons. However, the number of independent massless particles is not correctly given by
the Goldstone theorem for relativistic systems.
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A natural variable describing the dynamics of Goldstone modes is the
order parameter itself. For example, in the case of relativistically invariant
system described by the order parameter n ∈ S2, we immediately write

SNLSM =

∫
dd+1x

1

2g
(∂µn)2 + (other terms). (12.1)

We have written here the most obvious term of an effective action which is
both Lorentz invariant and SU(2) invariant (with respect to rotations of a unit,
three-component vector n2 = 1). Here g is a coupling constant which should
be obtained from a detailed microscopic theory. The “other terms” are the
terms which are higher order in gradients and (possibly) topological terms. The
model Eq. (12.1) is referred to as a “non-linear σ-model”3. In different spatial
dimensions, higher gradient terms of non-linear σ-models might be relevant.
We are not discussing those terms as well as the issue of renormalizability of
σ-models, concentrating instead on the allowed topological terms. Therefore,
we will keep only the kinetic term 1

2g (∂µn)2 in the gradient expansion of an
effective Lagrangian as well as all allowed topological terms.

Before proceeding to our main subject – topological terms, let us make two
important remarks. Firstly, very often (especially in condensed matter systems)
the symmetries of the Hamiltonian are approximate and there are terms in the
Hamiltonian which explicitly but weakly break the symmetry. This does not
invalidate the speculations of this section. The difference will be that would-
be-Goldstone particles acquire small mass. The weaker the explicit symmetry
breaking of the Hamiltonian the smaller is the mass of “Goldstone” particles.
One can proceed with the derivation of the non-linear σ-model which will con-
tain weak symmetry breaking terms (such as easy-axis anisotropy for magnets).
This model will have non-trivial dynamics at energies bigger than the smallest
of masses.

Second remark is that there are other mechanisms in addition to the spon-
taneous symmetry breaking which result in low energy excitations. One of the
most important mechanisms is realized when local (or gauge) symmetry is
present. Then, gauge invariance plus locality demands the presence of massless
particles (e.g, photons) in the system. The low energy theories in this case are
gauge theories. Similar to an explicit symmetry breaking, in case of Goldstone
particles there are mechanisms which generate masses for gauge bosons. These
are, e.g., Higgs mechanism and confinement of gauge fields. We will have some
examples of topological terms made out of gauge fields in these lectures al-
though our main focus will be on non-linear sigma models4. We also do not
consider here cases with massless fermionic degrees of freedom we concentrate
exclusively on bosonic effective theories.

3The origin of the term is in effective theories of weak interactions [4,5]. Non-linear comes
from the non-linear realization of symmetries in this model. E.g., constraint n2 = 1 is non-
linear. Sigma (σ) is a historic notation for the “order parameter” in theories of weak inter-
actions.

4Non-linear sigma models and gauge theories have a lot in common [6].



12.2. Motivating example: a particle on a ring. 285

12.1.3 Additional reading

The focus of these lectures is on the effect of topological terms in the action on
physical properties of condensed matter systems. We are not discussing here
classification of topological defects in textures in ordered media. The latter is
a well developed subject (see the classical review [7]). For reader’s convenience
we collected a few exercises on topological textures and related examples in
Appendix A.

The subject of topological terms or broader “topological phases of matter”
is huge, and we do not do it justice in these lectures. In particular, I do not try
to give a complete bibliography in these lectures. Instead, with a few exceptions
I refer not to the original papers but to textbooks or reviews.

The subject of homotopy classification of topological defects and textures
in ordered media is not discussed in this lectures. However, it is a necessary
prerequisite to understanding topological terms discussed here. I recommend a
classic reference [7]. To make this text more self-contained I also collected few
exercises on that topic in Appendix A, groups in Appendix C.

I would recommend the following textbooks close in spirit to the point of
view presented here [6, 8, 9]. Some of the technical details of fermionic deter-
minant calculations can be found in [10, 11]. Topological terms are intimately
related to geometric or Berry phases [12] and to quantum anomalies in field
theories [13].

In these lectures, I avoid using any advanced topological and geometrical
tools. However, I highly recommend studying all necessary mathematics seri-
ously. See, for example, other chapters of this book. In addition, there are many
beautiful books that give good introduction to the subject for physicists. See,
for example Refs. [14–18].

These notes are based on the lectures given by the author at “SERC School
on Topology and Condensed Matter Physics” in Kolkata, India in December
2015.

12.2 Motivating example: a particle on a ring.

12.2.1 Classical particle on a ring: Action, Lagrangian, and Hamilto-

nian

As a simple motivating example let us consider a particle on a ring. Classically,
the motion can be described by the principle of least action. A classical action
S of a particle can be taken as

S[φ] =

∫
dtL(φ, φ̇), (12.2)

L =
M

2
φ̇2 +Aφ̇, (12.3)
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should be minimal (locally) on classical trajectories. Here, the angle φ(t) is
chosen to be a generalized coordinate of the particle on a ring, M is a moment
of inertia of a particle (or mass for a unit ring), A is some constant.

Euler-Langrange equations of motion are given in terms of Lagrangian L
by d

dt
∂L
∂φ̇
− ∂L

∂φ = 0, or explicitly

Mφ̈ = 0. (12.4)

A particle with a given an initial velocity moves with a constant angular velocity
along the ring. Notice, that the last term of Eq. (12.3) does not have any effect
on the motion of the particle. Indeed, this term is a total time derivative and
can not affect the principle of least action [19].

Given an initial position of a particle on a ring at t = t1 and a final
position at t = t2 there are infinitely many solutions of Eq. (12.4). They can
be labeled by the integer number of times the particle goes around the ring
to reach its final position. This happens because of the nontrivial topology of
the ring – one should identify φ = φ + 2π as labeling the same point on the
ring. This is not very important classically as we can safely think of the angle
φ taking all real values from −∞ to +∞. Given initial position φ(t1) = φ1 and
initial velocity φ̇(t1) = ω1 one can unambiguously determine the position of the
particle φ(t) at all future times using Eq. (12.4).

Let us now introduce the momentum conjugated to φ as

p =
∂L

∂φ̇
= Mφ̇+A, (12.5)

and the Hamiltonian as

H = pφ̇− L =
1

2M
(p−A)2. (12.6)

Corresponding Hamilton equations of motion

φ̇ =
1

M
(p−A), (12.7)

ṗ = 0, (12.8)

are equivalent to Eq. (12.4).
Notice that although the parameter A explicitly enters the Hamiltonian

formalism, it only changes the definition of generalized momentum Mφ̇ + A
instead of more conventional Mφ̇. It does not change the solution of equations
of motion and can be removed by a simple canonical transformation p→ p+A.
We will see below that this changes for a quantum particle.

12.2.2 Quantum particle on a ring: Hamiltonian and spectrum

Let us now consider a quantum particle on a ring. We replace classical Pois-
son’s bracket {p, φ} = 1 by quantum commutator [p, φ] = −i~ and use φ-
representation, i.e., we describe our states by wave functions on a ring ψ(φ). In
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the following, we will put ~ = 1. In this representation, we can use p = −i∂φ
and rewrite Eq. (12.6) as a quantum Hamiltonian

H =
1

2M
(−i∂φ −A)

2
. (12.9)

The eigenstates and eigenvalues of this Hamiltonian are given by solutions
of stationary Schrödinger equation Hψ = Eψ. We impose periodic boundary
conditions requiring ψ(φ+ 2π) = ψ(φ), i.e., the wave function is required to be
a single-valued function on the ring. The eigenfunctions and eigenvalues of Eq.
(12.9) are given by

ψm = eimφ, (12.10)

Em =
1

2M
(m−A)2, (12.11)

where m = 0,±1,±2, . . . is any integer number — the quantized eigenvalue
of the momentum operator p = −i∂φ. We notice that although the classical
model is not sensitive to parameter A, the quantum one is, because of the
quantization of p. The parameter A can be interpreted as a vector potential of
the magnetic flux penetrating the ring. This vector potential is not observable
in classical mechanics but affects the quantum spectrum because of multiple-
connectedness of the ring (there are many non-equivalent ways to propagate
from the point 1 to the point 2 on a ring). More precisely our parameter A
should be identified with the vector potential multiplied by e

~c . It corresponds
to the magnetic flux through the ring Φ = AΦ0, where Φ0 is a flux quantum
Φ0 = 2π ~c

e .
The A-term of the classical action – topological term – can be written as

Stop =

∫ t2

t1

dtAφ̇ = 2πA
φ2 − φ1

2π
= θ

∆φ

2π
. (12.12)

It depends only on the initial and final values φ1,2 = φ(t1,2), and changes by θ =
2πA every time the particle goes a full circle around the ring in counterclockwise
direction. The conventional notation θ for a coefficient in front of this term gave
the name topological theta-term for this type of topological terms.

The spectrum Eq. (12.11) is shown in Figure 12.1 for three values of flux
through the ring θ = 0, π, π/2 (A = Φ/Φ0 = 0, 1, 1/2).

Several comments are in order. (i) An integer flux A-integer or θ - multiple
of 2π does not affect the spectrum. (ii) There is an additional symmetry (parity)
of the spectrum at θ multiples of π (integer or half-integer flux). (iii) For half-
integer flux θ = π, the ground state is doubly degenerate E0 = E1.

Finally, let us try to remove the A term by canonical transformation as
in the classical case. We make a gauge transformation ψ → eiAφψ and obtain
p→ p+A and H = 1

2M (−i∂φ)2. One might think that we removed the effects
of the A term completely. However, this transformation changes the boundary
conditions of the problem replacing them by twisted boundary conditions ψ(φ+
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Figure 12.1: The spectrum of the particle on a ring is shown for A = θ/2π =
0, 1/2, 1/4 respectively. The classical energy E(p) is represented by a parabola
and does not depend on the parameter A.

2π) = e−i2πAψ(φ). The eigenfunctions satisfying twisted boundary conditions
are ψm = ei(m−A)φ and produce the same eigenvalues Eq. (12.11). We conclude
that it is not possible to remove the effects of topological A-term in quantum
mechanics. The parameter A can be formally removed from the Hamiltonian
by absorbing it into the boundary conditions. This, however, does not change
the spectrum and other physical properties of the system.

12.2.3 Quantum particle on a ring: path integral and Wick’s rotation

Quantum mechanics of a particle on a ring described by the classical action Eq.
(12.3) can be represented by path integral

Z =

∫
Dφ eiS[φ], (12.13)

where integration is taken over all possible trajectories φ(t) (with proper bound-
ary values). In this approach the contribution of the topological term to the
weight in the path integral is the phase eiθ∆φ/(2π) which is picked up by a
particle moving in the presence of the vector potential.

Let us perform Wick’s rotation replacing the time by an imaginary time
τ = it. Then

∫
dt
Mφ̇2

2
→ i

∫
dτ

Mφ̇2

2
, (12.14)

∫
dtAφ̇ →

∫
dτ Aφ̇, (12.15)

where in the r.h.s dot means the derivative with respect to τ . The path integral
Eq. (12.13) is then replaced by a Euclidean path integral

Z =

∫

ei[φ(T )−φ(0)]=1

Dφ e−S[φ], (12.16)
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where the action

S =

∫ β

0

dτ

[
M

2
φ̇2 − iAφ̇

]
. (12.17)

0 < τ < β. This requires periodic boundary conditions in time eiφ(0) = eiφ(β).
We notice here that because the A-term is linear in time derivative, it

does not change its form under Wick’s rotation Eq. (12.15) and therefore, is
still imaginary in Euclidean formulation Eq. (12.17). Without imaginary term
one could think about e−S as a Boltzmann weight in the classical partition
function.

One can satisfy the boundary conditions as φ(β)− φ(0) = 2πQ with any
integer Q. We can rewrite the partition function Eq. (12.16) as:

Z =

+∞∑

Q=−∞
eiθQ

∫

φ(β)−φ(0)=2πQ

Dφ e−
∫ β
0
dτ M2 φ̇

2

. (12.18)

We notice here that θ = 2πn – multiple of 2π – is equivalent to θ = 0. Second,
we notice that the partition function is split into the sum of path integrals
over distinct topological sectors characterized by an integer number Q which is
called the winding number. The contributions of topological sectors to the total
partition function are weighed with the complex weights eiθQ.

For future comparisons, let us write Eq. (12.17) in terms of a unit two-
component vector ∆ = (∆1,∆2) = (cosφ, sinφ), ∆2 = 1.

S =

∫ β

0

dτ

[
M

2
∆̇2 − iA(∆1∆̇2 −∆2∆̇1)

]
. (12.19)

This is the simplest (0 + 1)-dimensional O(2) non-linear σ-model.

12.2.4 Quantum doublet

Let us consider a particular limit of a very light particle on a circle M → 0
in the presence of half of the flux quantum A = 1/2, θ = π. With this flux,
the ground state of the system is doubly degenerate E0 = E1 and the rest of
the spectrum is separated by the energies ∼ 1/M →∞ from the ground state
Eq. (12.11). At large β (low temperatures) we can neglect contributions of all
states except for the ground state.

We write the general form of the ground state wave function as α|+1/2〉+
β|−1/2〉, where |+1/2〉 = ψ0 and |−1/2〉 = ψ1. The ground state space (α, β)
coincides with the one for a spin 1/2. One might say that Eqs. (12.16-12.17)
with M → 0 realize a path integral representation for the quantum spin 1/2.
This representation does not have an explicit SU(2) symmetry. We will consider
an SU(2)-symmetric path integral representation for quantum spins later.

Meanwhile, let us discuss some topological aspects of a plane rotator prob-
lem.

We considered the amplitude of the return to the initial point in time β, i.e.,
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12.2.5 Full derivative term and topology

From a mathematical point of view, the motion of a particle on a unit circle
with periodic boundary conditions in time is described by a mapping φ(τ) :
S1
τ → S1

φ of a circle formed by compactified time S1
τ = τ ∈ [0, β] into a circle

S1
φ = φ ∈ [0, 2π]. This mapping can be characterized by an integer winding

number Q which tells us how many times the image φ goes around target space
S1
φ when variable τ changes from 0 to β.

It can be shown that two such mappings φ1(τ) and φ2(τ) can be contin-
uously deformed into one another, if and only if they have the same winding
number. Therefore, all mappings are divided into topological classes enumer-
ated by Q = 0,±1,±2, . . .. Moreover, one can define a group structure on
topological classes. First, we define the product of two mappings φ1 and φ2 as

φ2 · φ1(τ) =

{
φ1(2τ), for 0 < τ < β/2 ,
φ1(β) + φ2(2τ − β), for β/2 < τ < β .

If φ1 belongs to the topological class Q1 and φ2 to Q2, their product belongs to
the class Q1 +Q2. One can say that the product operation on mappings induces
the structure of Abelian group on the set of topological classes. In this case this
group is the group of integer numbers with respect to addition. One can write
this fact down symbolically as π1(S1) = Z, where subscript one denotes that
our time is S1 and S1 in the argument is our target space. One says that the
first (or fundamental) homotopy group of S1 is the group of integers.

There is a simple formula giving the topological class Q ∈ Z in terms of
φ(τ)

Q =

∫ β

0

dτ

2π
φ̇ . (12.20)

Let us now assume that we split our partition function into the sum over
different topological classes. What are the general restrictions on the possible
complex weights which one can introduce in the physical problem. One can de-
form smoothly any mapping in the class Q1 +Q2 into two mappings of classes
Q1 and Q2 which are separated by a long time. Because of the multiplicative
property of amplitudes, this means that the weights WQ associated with topo-
logical classes must form a (unitary) representation of the fundamental group
of a target space. The only unitary representation of Z is given by WQ = eiθQ

with 0 < θ < 2π labelling different representations. In the case of plane rota-
tor, these weights correspond to a phase due to the magnetic flux piercing the
one-dimensional ring.

In more general case of, say, particle moving on the manifold G (instead
of S1) we have to consider the fundamental group of the target space π1(G),
find its unitary representations, and obtain complex weights which could be
associated with different topological classes.
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12.2.6 Topological terms and quantum interference

As it can be seen from Eq. (12.18) the presence of a topological term in the
action (θ 6= 0) results in the interference between topological sectors in the
partition function. The Boltzmann weight calculated for a trajectory within a
given topological sector Q is additionally weighted with complex phase eiθQ.
This interference can not be removed by Wick’s rotation.

12.2.7 General definition of topological terms

We define generally topological terms as metric-independent terms in the action.
A universal object present in any field theory, is the symmetric stress-

energy tensor Tµν . It can be defined as a variation of the action with respect
to the metric gµν . More precisely, an infinitesimal variation of the action can
be written as

δS =

∫
dx
√
g Tµνδg

µν , (12.21)

where
√
g dx is an invariant volume of space-time.

It immediately follows from our definition of topological terms that they
do not contribute to the stress-energy tensor. If in a field theory all terms
are topological we have Tµν = 0 for such a theory. These theories are called
topological field theories.

A particular general covariant transformation is the rescaling of time.
Topological terms do not depend on a time scale. Therefore, the corresponding
Lagrangians are linear in time derivatives. They do not transform under Wick’s
rotation and are always imaginary in Euclidean formulation. They describe
quantum interference which is not removable by Wick rotation.

12.2.8 Theta terms and their effects on the quantum problem

Theta terms are topological terms of a particular type. They appear when there
exist nontrivial topological textures in space-time. Essentially, these terms are
just complex weights of different topological sectors in the path integration. We
will go over more details on θ-terms later in the course.

In addition to being imaginary in Euclidean formulation as all other topo-
logical terms θ-terms have also some special properties. These properties dis-
tinguish them from other types of topological terms. The following is a partial
list of the features of topological θ-terms and of their manifestations.

• θ-terms assign complex weights in path integral to space-time textures
with integer topological charge Q.

• Realize irreducible 1d-representations of πD(G), where D is the dimension
of space-time and G is a target space.

• Quantum interference between topological sectors

• Do not affect equations of motion
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• Affect the spectrum of a quantum problem by changing quantization rules

• Periodicity in coupling constant θ. 5

• θ is not quantized (for Q ∈ Z)

• For θ = 0, π, there is an additional (parity) symmetry

• θ = π – degeneracy of the spectrum. Gapless excitations.

• Equivalent to changes in boundary conditions.

• θ is a new parameter which appears from the ambiguity of quantization
of the classical problem for multiply-connected configurational space.

12.2.9 Exercises

Exercise 1: Particle on a ring, path integral

The Euclidean path integral for a particle on a ring with magnetic flux through the
ring is given by

Z =

∫
Dφ e

−
∫ β
0 dτ

(
mφ̇2

2
−i θ

2π
φ̇

)
.

Using the decomposition

φ(τ) =
2π

β
Qτ +

∑
l∈Z

φle
i 2π
β
lτ
,

rewrite the partition function as a sum over topological sectors labeled by winding
number Q ∈ Z and calculate it explicitly. Find the energy spectrum from the
obtained expression.

Hint : Use summation formula

+∞∑
n=−∞

e−
1
2
An2+iBn =

√
2π

A

+∞∑
l=−∞

e−
1

2A
(B−2πl)2 .

Exercise 2: Spin 1/2 from a particle on a ring

Calculate the partition function of a particle on a ring described in the previous
exercise. Find explicit expressions in the limit m→ 0, θ → π but θ − π ∼ m/β. One
can interpret the obtained partition function as a partition function of a spin 1/2.
What is the physical meaning of the ratio (θ−π)/m in the spin 1/2 interpretation of
the result?

Hint : see Sec. 12.2.4.

5We assume that configurations are smooth and the space-time manifold is closed (no
boundary).
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Exercise 3: Metric independence of the topological term

The classical action of a particle on a ring is given by

S =

∫
dtp

(
mφ̇2

2
− θ

2π
φ̇

)
,

where tp is some “proper” time. Reparametrizing time as tp = f(t) we have dtp = f ′dt,
and dt2p = f ′

2
dt2 and identify the metric as g00 = f ′

2
and g00 = f ′

−2
. We also have√

g00 = f ′. Rewrite the action in terms of φ(t) instead of φ(tp). Check that it has a
proper form if written in terms of the introduced metric. Using the general formula
for variation of the action with respect to a metric (g = det gµν)

δS =
1

2

∫
dx
√
g Tµνδg

µν ,

find the stress-energy tensor for a particle on a ring. Check that T00 is, indeed, the
energy of the particle.

12.3 Path integral for a single spin

Wess and Zumino introduced an effective Lagrangian to summarize the anoma-
lies in current algebras [20]. E. Witten considered global (topological) aspects
of this effective action [21]. Simultaneously, S. P. Novikov studied multi-valued
functionals [22]. The corresponding topological terms are referred to as Wess-
Zumino-Novikov-Witten terms or more often as just Wess-Zumino terms. In
this section, we consider the simplest quantum mechanical (0+1 dimensional)
version of such a term which is relevant for path integral formulation of a
quantum mechanics of a single spin.

12.3.1 Quantum spin

Let us consider a simple example of how Wess-Zumino effective Lagrangian
appears from the “current algebra”. To simplify the story we take an example
of quantum spin S. This is a quantum mechanical system with an SU(2) spin
algebra playing the role of “current algebra” of quantum field theory. We have
standard spin commutation relations

[Sa, Sb] = iεabcSc, (12.22)

where a, b, c take values x, y, z. We require that

S2 = S(S + 1), (12.23)

where 2S is an integer number defining the representation (the value of spin).
Let us consider the simplest possible Hamiltonian of a quantum spin in a con-
stant magnetic field

H = −h · S (12.24)
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and derive an operator equation of motion

∂tS = i[H,S] = −i[h · S,S] = S× h. (12.25)

In the classical limit S → ∞ (or ~ → 0) it is convenient to write S → Sn so
that n is a classical unit vector n2 = 1 and equation of motion Eq. (12.25)
becomes classical equation of motion

∂tn = n× h. (12.26)

The natural question immediately occurs is what classical action corresponds
to this equation of motion. It turns out that writing down this action is not
completely trivial problem if one desires for the action to have explicitly SU(2)
invariant form. Let us first derive it using non-invariant parameterization in
terms of spherical angles n = (sin θ cosφ, sin θ sinφ, cos θ). We assume that the
angle θ is measured from the direction of magnetic field h = (0, 0, h). The
Hamiltonian Eq. (12.24) becomes H = −hS cos θ and equations of motion
Eq. (12.26) become φ̇ = −h and θ̇ = 0 – precession around the direction of
magnetic field. We obtain these equations as Hamilton’s equations, identifying
the momentum conjugated to φ coordinate as

pφ = −S(1− cos θ). (12.27)

Then the classical action of a single spin in magnetic field can be written as

S[n] = −4πSW0 +

∫
dt S h · n, (12.28)

where W0 is defined using a particular choice of coordinates as

W0 =
1

4π

∫
dt (1− cos θ)∂tφ =

1

4π

∫
dφ (1− cos θ) =

Ω

4π
, (12.29)

where Ω is a solid angle encompassed by the trajectory of n(t) during time
evolution. The first term in the action Eq. (12.28) has a form of

∫
dt pφφ̇ and

the second is a negative time integral of the Hamiltonian.
Although Eq. (12.29) has a nice geometrical meaning it is written in some

particular coordinate system on two-dimensional sphere. It would be nice to
have an expression for W0 which is coordinate independent and explicitly SU(2)
invariant (with respect to rotations of n). Such a form, indeed, exists

W0 =

∫ 1

0

dρ

∫ β

0

dt
1

8π
εµνn · [∂µn× ∂νn] . (12.30)

Here we assume periodic boundary conditions in time n(β) = n(0), ρ is an
auxiliary coordinate ρ ∈ [0, 1]. n-field is extended to n(t, ρ) in such a way that
n(t, 0) = (0, 0, 1) and n(t, 1) = n(t). Indices µ, ν take values t, ρ.

Wess-Zumino action Eq. (12.30) has a very special property. Although it
is defined as an integral over two-dimensional disk parameterized by ρ and t its
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Figure 12.2: The unit vector n(τ) draws a closed line on the surface of a
sphere with unit radius during its motion in imaginary time. Berry phase is
proportional to the solid angle (shaded region) swept by the vector n(t). One
can calculate this solid angle by extending n into the two-dimensional domain
B as n(ρ, t) and calculating (12.30).

variation depends only on the values of n on the boundary of the disk—physical
time. Indeed one can check that

δW0 =

∫ 1

0

dρ

∫ β

0

dt
1

4π
εµνn · [∂µδn× ∂νn]

=

∫ 1

0

dρ

∫ β

0

dt ∂µ

{
1

4π
εµνn · [δn× ∂νn]

}

=
1

4π

∫ β

0

dt δn · [ṅ× n] , (12.31)

where we used that δn · [∂µδn× ∂νn] = 0 because all three vectors δn, ∂µn, and
∂νn lie in the same plane (tangent to the two-dimensional sphere n2 = 1. Due
to this property classical equation of motion does not depend on the arbitrary
extension of n to ρ 6= 1.

In quantum physics, however, not only the variation δW0 but the weight
e2πiW0 should not depend on unphysical configuration n(t, ρ) but only on
n(t, ρ = 1). To see that this is indeed so, we consider the configuration n(t, ρ)
as a mapping from two-dimensional disk (t, ρ) ∈ B+ into the two-dimensional
sphere n ∈ S2. Suppose now that we use another extension n′(t, ρ) and rep-
resent it as a mapping of another disk B− with the same boundary (physical
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B

B

t

+

-

n

Figure 12.3: Two extensions n(t, ρ) and n′(t, ρ) define a mapping S2 → S2.
The difference W0[n]−W0[n′] gives a winding number of this mapping.

time) into S2. We have

W0[n]−W0[n′] =

∫

B+

d2x
1

8π
εµνn · [∂µn× ∂νn]

−
∫

B−
d2x

1

8π
εµνn′ · [∂µn′ × ∂νn′]

=

∫

S2=B+∪B−
d2x

1

8π
εµνn · [∂µn× ∂νn] = k , (12.32)

where we changed the orientation of B− and considered B± as an upper (lower)
part of some two-dimensional sphere (see Fig.12.3). One can recognize the last
integral [15] as a winding number k of the first sphere (B+ ∪ B− around the
second n ∈ S2). This number is always an integer proving that e2πiW0 does
not depend on the particular way of an extension n(t, ρ). We notice here that
in general the topological term W0 can appear in the action only with the
coefficient which is a multiple of 2πi. Otherwise, it depends on the unphysical
values of n(t, ρ) and is not defined. Such a term is called6 “Wess-Zumino term”
or “WZ term” by names of Wess and Zumino who discovered a similar term
first in the context of four-dimensional quantum field theories [20]. If Wess-
Zumino term is present with some coupling constant g so that the weight in
partition function is proportional to e2πigW0 we immediately conclude that g
must be an integer. This phenomenon is called “topological quantization” of
physical constant g and is a very important consequence of Wess-Zumino term.

6It is also often called WZW or Wess-Zumino-Witten or even WZWN or Wess-Zumino-
Novikov-Witten term to honor E. Witten [21,23] and S.P. Novikov [22].
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To obtain the equations of motion from Eq. (12.28,12.30) we use Eq.
(12.31) and introduce Lagrange multiplier λ to enforce constraint n2 = 1. Then
we obtain for the variation of the action

δn
(
S[n] + λ(n2 − 1)

)
= −4πS

1

4π
[ṅ× n] + Sh + 2λn = 0 . (12.33)

Vector-multiplying Eq. (12.33) from the right by n we arrive at Eq. (12.26).

In this simplified treatment we just found some classical action which
reproduces the classical limit of operator equations of motion Eq. (12.25). One
can proceed more formally starting with commutation relations Eq. (12.22) and
quantum Hamiltonian Eq. (12.24) and derive the classical action Eq. (12.28)
using, e.g., coherent states method [9].

The purpose of this exercise was to illustrate that the Wess-Zumino term
W0 summarizes at the classical level the commutation relations Eq. (12.22).
One can also show that reversely the path integral quantization of Eq. (12.33)
produces the commutation relations Eq. (12.22).

12.3.2 Fermionic model

In this section, we use a very simple quantum mechanical example to show how
topological terms are generated when one passes from microscopic theory to
an effective description. Generally, in condensed matter physics we are dealing
with some system of electrons interacting with each other as well as with other
degrees of freedom such as a lattice. Let us assume that at some low energy
scale we reduced our problem to fermions interacting to a bosonic field. The
bosonic field may originate both from the collective behavior of electrons, e.g.,
magnetization or superconducting order parameter, and from independent de-
grees of freedom, e.g., from the vibrations of the lattice. For our illustrative
example we consider [24]

S =

∫
dt ψ† [i∂t +mn · σ]ψ, (12.34)

where m is a coupling constant, ψ = (ψ1, ψ2)t is a spinor, and σ is a triplet
of Pauli matrices. In this case, the fermions are represented by just one spinor
and the bosonic field by a single unit vector n = (n1, n2, n3), n ∈ S2. The latter
means that n takes its values on a two-dimensional sphere, i.e., n2 = 1. This
model can originate, e.g., from electrons interacting with a localized magnetic
moment. Then coupling constant m > 0 corresponds to a Hund’s coupling
between electrons (one electron for simplicity) and the direction n of a localized
moment. Notice, that a more complete theory must have the bare action of a
moment n added to a Eq. (12.34). We, however, are interested only in the action
of n induced by an interaction with fermions.

For future convenience, we will use a Euclidean formulation here and in
the rest of the paper. It can be obtained by “Wick rotation” t→ it. A Euclidean



298 12. Topology, geometry and quantum interference

action obtained from Eq. (12.34) is

SE =

∫
dt ψ† [∂t −mn · σ]ψ. (12.35)

Effective action by chiral rotation trick

We consider partition function

Z =

∫
DψDψ̄Dn e−SE =

∫
Dn e−Seff , (12.36)

where the last equality is a definition of an effective action

Seff = − ln

∫
DψDψ̄ e−SE = − ln detD, (12.37)

where we defined an operator D ≡ ∂t −mn · σ. To calculate the logarithm of
the fermionic determinant we use “chiral rotation”. Namely, we introduce the
matrix field U(t) ∈ SU(2) such that U†n · σU = σ3 so that

D̃ = U†DU = ∂t − iâ−mσ3 = G−1
0 − iâ, (12.38)

with

â ≡ U†i∂tU, (12.39)

and

G0 = (∂t −mσ3)−1 . (12.40)

Then we write7

Seff = − ln detD = − ln det D̃ = −Tr ln D̃. (12.41)

Let us now write D̃ = G−1
0 (1−G0iâ) and expand

Seff = −Tr ln D̃ = Tr

[
lnG0 +G0iâ+

1

2
(G0iâ)2 + . . .

]

= S(0) + S(1) + S(2) + . . . . (12.42)

The expansion Eq. (12.42) has the following diagrammatic representation

Seff = const+ +
1

2
+ . . . . (12.43)

7Notice that the second equality in Eq. (12.41) is the common source of miscalculated
topological terms. Quantum anomalies might be present making chiral rotation technique
inapplicable. In this case this is a legitimate procedure because of the absence of so-called
global anomalies [11, 25].
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The zeroth order term S(0) is an (infinite) constant which does not depend on
â. The first order term is given by

S(1) = = Tr [G0iâ] =

∫
dω

2π
tr

[
1

−iω −mσ3
iâω=0

]
. (12.44)

Here âω=0 =
∫
dt â(t) and tr is taken over sigma-matrices. Closing the integral

in an upper complex ω-plane we obtain

S(1) =

∫
dω

2π
tr

[
1

−iω −mσ3
iâω=0

]
= −ia3

ω=0 = −i
∫
dt a3(t), (12.45)

where only the term containing a3 (â = akσk, k = 1, 2, 3) does not vanish when
trace over Pauli matrices is taken.8

We may proceed and obtain for the second term of an expansion

S(2) =
1

2
=

1

2
Tr [G0iâG0iâ]

=
1

2

∫
dΩ

2π

∫
dω

2π
tr

[
1

−iω −mσ3
iâ−Ω

1

−i(ω + Ω)−mσ3
iâΩ

]

=
1

8m

∫
dΩ

2π
tr
[
â−ΩâΩ − σ3â−Ωσ

3âΩ

]
+ o

(
1

m

)

=
1

2m

∫
dt
[
(a1)2 + (a2)2

]
+ o

(
1

m

)
. (12.46)

We neglected here the terms of higher order in 1/m. Therefore, for an effective
action we obtain up to the terms of the order of 1/m and omitting constant

Seff = S(1) + S(2) = −i
∫
dt a3(t) +

1

2m

∫
dt
[
(a1)2 + (a2)2

]
. (12.47)

The effective action Eq. (12.47) is expressed in terms of an auxiliary gauge field
â. However, one should be able to re-express it in terms of physical variable n
as it was defined by Eq. (12.37) which contains only n. Let us start with the
second term. Using an explicit relation n · σ = Uσ3U† and the definition Eq.
(12.39) one can easily check that (∂tn)2 = 4

[
(a1)2 + (a2)2

]
and the last term

of Eq. (12.47) indeed can be expressed in terms of n as

S(2) =
1

2m

∫
dt
[
(a1)2 + (a2)2

]
=

1

8m

∫
dt (∂tn)2. (12.48)

Obtaining S(1) is a bit more subtle. The gauge field is defined as Eq. (12.39)
with matrix U defined implicitly by n · σ = Uσ3U†. One can see from the

8We notice that the ω-integral in Eq. (12.45) is formally diverging. However, being regu-
larized, it becomes the number of fermions in the system. In our model we have exactly one
fermion and the regularization procedure in this case is just the closing of the contour of an
integration in an upper complex plane.
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latter expression that the definition of U is ambiguous. Indeed, one can make
a “gauge transformation”

U → Ueiσ
3ψ (12.49)

with ψ(t) any function of t without changing n. Under this transformation the

gauge field is transformed as â→ e−iσ
3ψâeiσ

3ψ − σ3∂tψ, or

a3 → a3 − ∂tψ, (12.50)

a1 → a1 cos 2ψ − a2 sin 2ψ, (12.51)

a2 → a1 sin 2ψ + a2 cos 2ψ. (12.52)

Therefore, S(1) → S(1) + i
∫
dt ∂tψ, and we notice that S(1) transforms non-

trivially9 under the change of U and therefore, can not be expressed as a simple
time integral over the function which depends on n only. One might question the
validity of our derivation because it seems that S(1) defined by Eq. (12.45) is not
invariant under the transformation Eq. (12.49) but we notice that S(1) changes
only by the integral of a full time derivative. Moreover, if we require periodicity
in time, i.e., time changes from 0 to β and ψ(β) = ψ(0)+2πn with an integer n,

then S(1) → S(1) + 2πin and “Boltzmann” weight e−S
(1)

is invariant under Eq.
(12.49). Therefore, the contribution to the partition function from the S(1) term
depends only on the physical variable n. To understand what is going on let
us calculate S(1) explicitly. We parametrize n = (sin θ cosφ, sin θ sinφ, cos θ).
Then, the most general choice of U is

U =

(
cos θ2 e−iφ sin θ

2

eiφ sin θ
2 cos θ2

)
eiσ

3ψ,

where ψ(t) is an arbitrary function of t with ψ(β) = ψ(0) + 2πn. It is straight-
forward to calculate

a3 = −1− cos θ

2
∂tφ− ∂tψ.

We see that the last term can be discarded by reasons given above, and we
have

S(1) = 2πiW0, (12.53)

with W0 defined in Eq. (12.29).

Combining Eq. (12.48) and Eq. (12.53) together we obtain

Seff = 2πiW0 +
1

8m

∫
dt (∂tn)2 + o

(
1

m

)
. (12.54)

In the case where N species of fermions coupled to the same n field are
present, one obtains an overall factor N in effective action, i.e., Seff → NSeff .

9Notice that Eq. (12.48) does not transform under this gauge transformation.
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Topological term

Let us notice that the first term 2πiW0 of gradient expansion Eq. (12.54) is
very different from, say, the second one in the following respects

1. It is imaginary.

2. It does not depend on the value of the mass parameter m.10

3. It does not change under reparameterization of time t → f(t). In partic-
ular, it is scale invariant and does not change when t→ λt.

The property 3 makes it natural to call the term 2πiW0 topological as it does
not depend on time scales but only on the trajectory of n(t). In fact, properties
1, 2 are consequences of 3 and are the general properties of all topological terms.

Path integral representation of quantum spin

Before going to the next section let us consider some application of derived
topological term. We generalize our model slightly so that in Eq. (12.35) ψ
denotes N species of fermions which are all coupled to the same bosonic field
n. We consider the special limit m→∞ of the model Eq. (12.35). The Hamil-
tonian of the model −mn · ψ†σψ in this limit forces all spins of ψ particles to
be aligned along n. Therefore, we expect that, in this limit, after an integration
over fermions, we will obtain an effective action of a quantum spin S = N/2
written in terms of the direction n of its quantization axis. Multiplying Eq.
(12.54) by the number of fermion species N , and taking limit m → ∞, we
obtain

S = 2πiNW0. (12.55)

One can show that upon quantization11 the components of n become the com-
ponents of the quantum spin S = N/2 so that na → Ŝa/S. The action Eq.

spin can only be integer or half-integer. Therefore, in path integral formulation
the quantization of spin is a consequence of the Wess-Zumino term in the action
of the spin.

12.3.3 Derivation of a WZ term from fermionic model without chiral

rotation

Here we give an alternative derivation of an effective action Eq. (12.54) from
Eq. (12.37) which does not use chiral rotation trick. [10]

10If we allow m to be negative this term becomes 2πi( sgnm)W0 and depends only on the
sign of m, not its magnitude.

11The easy way to show that we are dealing with the spin is to add coupling to an external
magnetic field −

∫
dt Sh · n to Eq. (12.55) and write down the classical equation of motion

for n using Eq. (12.31) and constraint n2 = 1. We obtain ṅ = [n × h] where we assumed
S = N/2 and changed to the real time t→ it. The obtained equation is indeed the classical
equation of spin precession.

(12.55) is explicitly SU(2) invariant and is well-defined for integer 2S = N , i.e.,
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Consider

Z =

∫
DψDψ̄Dn e−S , (12.56)

where

S =

∫ T

0

dt ψ̄ (i∂t − imn · τ )ψ. (12.57)

Here ψ = (ψ1, ψ2) is a Grassmann spinor representing spin 1/2 fermion, τ
the Pauli matrices acting on spinor indices of ψ, and n2 = 1 is a unit, three-
component vector coupled to the spin of fermion ψ̄τψ with the coupling con-
stant m. Integrating out fermions in Eq. (12.56) we obtain

Z =

∫
Dn e−Seff (n), (12.58)

with

Seff(n) = − ln det (i∂t − imn · τ ) . (12.59)

Let us denote D = i∂t − imn · τ and D† = i∂t + imn · τ . We calculate the
variation of the effective action

δSeff = −Tr
{
δDD−1

}
= −Tr

{
δDD†(DD†)−1

}

= imTr
{
δn · τ (i∂t + imn · τ )(−∂2

t +m2 −mṅ · τ )−1
}

(12.60)

Expanding the fraction in ṅ, calculating the trace, and keeping only lowest
orders in ṅ/m, we obtain:

δSeff =

∫
dt

{
1

4m
δṅ · ṅ− i

2
δn · [n× ṅ]

}
. (12.61)

Restoring the effective action from its variation we have:

Seff =

∫ T

0

dt
1

8m
ṅ2 − 2πiW0, (12.62)

where the Wess-Zumino action

W0 =

∫ 1

0

dρ

∫ T

0

dt
1

8π
εµνn · [∂µn× ∂νn] . (12.63)

Here ρ is an auxiliary coordinate ρ ∈ [0, 1]. Also, the n-field is extended to
n(t, ρ) in such a way that n(t, 0) = (0, 0, 1) and n(t, 1) = n(t). Indices µ, ν take
values t, ρ.

The Wess-Zumino action, Eq. (12.63), has a very special property. Al-
though it is defined as an integral over two-dimensional disk parameterized by
ρ and t its variation depends only on the values of n on the boundary of the
disk—physical time.
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12.3.4 Quantum spin as a particle moving in the field of Dirac

monopole

Let us think of the action Eq. (12.62) as of the action of a charged particle
moving on a surface of two-dimensional sphere with unit radius so that n is
a position of particle on the sphere. Then the first term of Eq. (12.62) is a
conventional kinetic energy of the particle. The second term should then be
interpreted as a phase picked by particle moving in the field a magnetic charge
2S (Dirac monopole) placed in the center of the sphere.

One could have started with the problem of particle of the mass m moving
in the field of magnetic monopole of charge 2S. Then the ground state is 2S-
degenerate and is separated by the gap ∼ 1/m from the rest of the spectrum.
In the limit m→ 0 only the ground state is left and we obtain a quantum spin
problem in an approach analogous to the plane rotator from Sec.12.2.4.

12.3.5 Reduction of a WZ term to a theta-term

Let us consider the value of Eq. (12.29) assuming that the polar angle is kept
constant at θ(τ) = θ0. Then Eq. (12.29) becomes

W0 =
1− cos θ0

2

∫ β

0

dτ

2π
∂τφ, (12.64)

and we recognize Eq. (12.53) with Eq. (12.64) as the theta-term Eq. (12.12)
corresponding to the particle on a ring with the flux through the ring given by

A =
1− cos θ0

2
. (12.65)

In particular, for θ0 = π/2, the topological term in the action of a particle on
a ring in magnetic field A = 1/2.

12.3.6 Properties of WZ terms

WZ terms

1. do not depend on the metric of spacetime

2. are imaginary in Euclidean formulation

3. do not contribute to stress-energy tensor (and to Hamiltonian).

4. do not depend on m – the scale, below which an effective action is valid
(but do depend on sgn (m))

5. are antisymmetric in derivatives with respect to different space-time co-
ordinates (contain εµνλ...)

6. are written as integrals of (D+1)-forms over auxiliary (D+1)-dimensional
space - disk DD+1 such that ∂DD+1 = SD - compactified space-time
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7. are multi-valued functionals. Multi-valuedness results in quantization of
coupling constants (coefficients in front of WZ terms)

8. do change equations of motion by changing commutation relation between
fields (Poisson’s brackets), not by changing Hamiltonian

9. might lead to massless excitations with “half-integer spin” (see Sec. 12.4.5)

10. describe boundary theories of models with θ-terms (see Sec. 12.4.5)

11. being combined (see the spin chains Sec. 12.4.2) produce θ-terms

12. can be calculated by gradient expansion of the variation of fermionic de-
terminants

13. produce θ terms as a reduction of target space (see Sec. 12.3.5). [10]

Among the listed properties the first five 1-5 are the properties of all topological
terms while the others are more specific to WZ terms.

12.3.7 Exercises

The exercises Eq. (4-9) were solved in the main text. Try to solve them inde-
pendently and test your understanding by solving exercises Eq. (10-11).

Exercise 4: WZ term in 0 + 1, preliminaries

Consider a three-dimensional unit vector field n(x, y) (n ∈ S2) defined on a two-
dimensional disk D. Define

W0 =

∫
D

d2x
1

8π
εµνn · [∂µn× ∂νn] =

∫
D

1

16πi
tr [n̂dn̂dn̂], (12.66)

where the latter expression is written in terms of differential forms and n̂ = n · σ.
a) Calculate the variation of W0 with respect to n. Show that the integral

becomes the integral over disk D of the complete divergence (of the exact form).
b) Parametrize the boundary ∂D of the disk by parameter t, apply Gauss-Stokes

theorem and express the result of the variation using only the values of n(t) at the
boundary.

values of n-field. See Eq. (12.31) for the answer.

Exercise 5: WZ term in 0 + 1, definition

Assume that we are given the time evolution of n(t) field (n ∈ S2). We also assume

disk D which boundary ∂D is parametrized by time t ∈ [0, β]. The WZ term is defined
by

SWZ = i4πSW0[n], (12.67)

where S is some constant, W0 is given by Eq. (12.66), and n(x, y) is some arbitrary
smooth extension of n(t) from the boundary to an interior of the disk.

Let us show that the WZ term is well defined and (almost) does not depend on
the extension of n(t) to the interior of D.

We showed that the variation of W depends only on the boundary (i.e., physical)

that time can be compactified, n(t = β) = n(t = 0). Consider the two-dimensionali.e.,
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Consider two different extensions n(1)(x, y) and n(2)(x, y) of the same n(t) and

corresponding values W
(1)
0 and W

(2)
0 of the functional W0. Show that the difference

W
(1)
0 −W (2) is an integer number - the degree Q of mapping S2 → S2. The second

S2 here is a target space of n. How did the first S2 appear?
We see that SWZ [n(t)] is a multi-valued functional which depends on the exten-

sion of n to the disk D. However, the weight in partition function is given by e−SWZ

and can be made single-valued functional if the coupling constant S is “quantized”.
Namely, if 2S ∈ Z (S - half-integer number) the e−SWZ is a well-defined single-valued
functional.

For the answer see Eq. (12.32).

Exercise 6: WZ in 0 + 1, spin precession

Let us consider the quantum-mechanical action of the unit vector n(t) with the (Eu-
clidean) action

Sh = SWZ [n(t)]− S
∫
dth · n(t), (12.68)

where SWZ is given by Eq. (12.67) and h is some constant three-component vector
(magnetic field).

Find the classical equation of motion for n(t) from the variational principle
δSh = 0. Remember that one has a constraint n2 = 1 which can be taken into
account using, e.g., Lagrange multiplier trick.

The obtained expression is the equation of spin precession and SWZ is a proper,
explicitly SU(2) invariant action for the free spin S.

For the answer see Eq. (12.33,12.26).

Exercise 7: WZ in 0 + 1, quantization

Show that the classical equations of motion obtained from Sh correspond to Heisen-

berg equations (in real time) ∂tŜ = i
[
H, Ŝ

]
for the quantum spin operator Ŝ[

Sa, Sb
]

= iεabcSc (12.69)

obtained from the Hamiltonian of a spin in magnetic field

H = −h · Ŝ. (12.70)

Obtain the commutation relations of quantum spin Eq. (12.69) from the topo-
logical part SWZ . Notice that this topological action is linear in time derivative and,
therefore, does not contribute to the Hamiltonian. Nevertheless, it defines commuta-
tion relations between components of the spin operator.

Hint : You can either use local coordinate representation of the unit vector in
terms of spherical angles n = (cosφ sin θ, sinφ sin θ, cos θ) or use the general formalism
of obtaining Poisson bracket from the symplectic form given in SWZ .

Exercise 8: Reduction of the WZ-term to the theta-term in 0 + 1

Let us assume that the field n(t) is constrained so that it takes values on a circle
given in spherical coordinates by θ = θ0 = const. Find the value of the topological
term SWZ on such configurations (notice that this constraint is not applicable in
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the interior of the disk D, only at its physical boundary). Show that the obtained
topological term is a theta-term in 0 + 1 corresponding to S1 → S1.

What is the value of the coefficient in front of that topological term? What is the
value of corresponding “magnetic flux” through a ring? For S = 1/2, which reduction
(value of θ0) corresponds to the half of the flux quantum?

For the answer see Sec. 12.3.5.

Exercise 9: WZ in 0 + 1, derivation from fermions

Consider a Euclidean action of a fermion coupled to a unit vector

SE =

∫
dτ ψ†Dψ, (12.71)

where
D = ∂τ −mn · τ , (12.72)

with n ∈ S2 and τ the vector of Pauli matrices. We obtain an effective action for n
induced by fermions as

e−Seff =

∫
DψDψ†e−SE = DetD, (12.73)

or
Seff = − log DetD = −Tr logD. (12.74)

We calculate the variation of Seff with respect to n as

δSeff = −Tr δDD−1 = −Tr δDD†(DD†)−1, (12.75)

where D† = −∂τ −mn · τ . We have

DD† = −∂2
τ +m2 −mṅ · τ = G−1

0 −mṅ · τ . (12.76)

Expand Eq. (12.75) in 1/m up to the term m0 and calculate functional traces.
Show that the term of the order m0 is a variation of the WZ term in 0+1 dimensions.
Restore Seff from its variation. What is the coefficient in front of the WZ term? To
what value of spin does it correspond?

For the answer see Sec. 12.3.3.

Exercise 10: Fermionic determinant in two dimensions

Let us consider two-dimensional fermions coupled to a phase field φ(x) (φ ≡ φ+ 2π).
The Euclidean Lagrangian is given by

L2 = ψ̄
[
iγµ(∂µ − iAµ) + imeiγ

5φ
]
ψ, (12.77)

where µ = 1, 2 is a spacetime index, γ1,2,5 is a triplet of Pauli matrices, and Aµ is an
external gauge field probing fermionic currents.

We assume that the bosonic field φ changes slowly on the scale of the “mass”
m. Then one can integrate out fermionic degrees of freedom and obtain an induced
effective action for the φ-field as a functional determinant.

Seff = − log DetD, (12.78)

D = iγµ(∂µ − iAµ) + im eiγ
5φ. (12.79)
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We calculate the effective action using the gradient expansion method. Namely,
we calculate the variation of Eq. (12.78) with respect to the φ and A-fields and use

δSeff = −δ log DetD = −Tr δ logD = −Tr δDD−1 = −Tr δDD†(DD†)−1. (12.80)

a) Calculate DD† for Eq. (12.79). Observe that this object depends only on
gradients of φ-field.

b) Expand (DD†)−1 in those gradients. This will be the expansion in 1/m. (It
is convenient to introduce notation G−1

0 = −∂2
µ +m2).

c) Calculate functional traces of the terms up to the order of m0. Use the plane
wave basis to calculate the trace

Tr (X̂)→
∫
d2x

∫
d2p

(2π)2
e−ip·xX̂eip·x

.
d) Identify the variation of the topological term in the obtained expression. It

contains the antisymmetric tensor εµν and is proportional to sgn (m).
e) Remove the variation from the obtained expression and find Seff up to the

m0 order.
f) Which terms of the obtained action are topological? Can you write them in

terms of differential forms?
For the answer see Ref. [10].

Exercise 11: “Dangers” of chiral rotation

Try to calculate the determinant of the previous exercise using “chiral rotation trick”.

Namely, consider chiral rotation ψ → e−iγ
5φ/2ψ. Then ψ† → ψ†eiγ

5φ/2 and ψ̄ →
ψ̄e−iγ

5φ/2. Use the identity γµγ5 = −iεµνγν and anti-commutativity of Pauli matrices
to show that the operator D(Aµ, φ) transforms into

D̃(Aµ, φ) = e−iγ
5φ/2D(Aµ, φ)e−iγ

5φ/2 = D(Aµ +
i

2
εµν∂νφ, 0) = D(Ãµ, 0).

Try to calculate log Det D̃ = log DetD(Ã, 0) using expansion in Ã. You will see that
the result does not match the effective action obtained in the previous exercise. Why?
What one should add to the chiral rotation trick to make the correct calculation?

Answer: The Jacobian of the change of variables corresponding to the chiral
rotation. See Refs. [10] and [26].

12.4 Spin chains.

Here we study how topological terms appear in effective theories for quantum
spin chains. We emphasize an interplay between different types of topological
terms and the effects of topological terms on field dynamics. In addition to
original papers, the useful references for this section include: [6, 9, 27].

Let us start with the model of quantum magnet

H =
∑

<kj>

JkjSk · Sj −
∑

j

hj · Sj . (12.81)
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Here the summation is taken over the sites k, j of some d-dimensional lat-
tice, Jkj are exchange integrals and hj is an external (generally space and
time-dependent) magnetic field. The quantum spin operators Si have SU(2)
commutation relations (a, b, c = 1, 2, 3)

[
Saj , S

b
k

]
= iδjkε

abcScj . (12.82)

Commuting the spin operator Saj with the Hamiltonian Eq. (12.81) one obtains
Heisenberg equation of motion for the spin operator

∂tSj = i[H,Sj ] = −
∑

k

JjkSk × Sj + hj × Sj . (12.83)

12.4.1 Path integral for quantum magnets

Path integral for the magnet on a lattice

The classical action for the magnet Eq. (12.81,12.82) can be written as

S = −4πiS
∑

j

W0[nj ] +

∫
dτ H , (12.84)

where we introduced classical unit vectors ni and summed the terms Eq. (12.63)
for each spin. The classical Hamiltonian used in Eq. (12.84) is obtained from
Eq. (12.81) substituting Si by Sni. Variation of the action Eq. (12.84) over nj
with the use of Eq. (12.31) produces classical equation of motion

−iS ∂τnj × nj + S2
∑

k

Jkjnk − S
∑

i

hj = 0 . (12.85)

Taking a cross-product with nj gives a classical analogue of Eq. (12.83)

−i∂τnj = S
∑

k

Jkjnk × nj −
∑

i

hj × nj . (12.86)

Remember that −i∂τ = ∂t.
The path integral over trajectories of unit vectors nj(τ) with the ampli-

tude e−S corresponding to the classical action Eq. (12.84) gives the quantiza-
tion corresponding to Eqs. (12.81,12.82). Our goal now is to find a continuum
quantum field theory description of this lattice magnet.

Here important remark is in order. A given lattice theory does not neces-
sarily have a reasonable continuum description. One needs a special reason for
continuum approximation to be applicable. Such reasons could be the vicinity
to a second order phase transition where correlation length becomes much big-
ger than the lattice spacing or some other reasons for scale separation. In the
following we will try to first derive a continuum limit for the theory and then
check the self-consistency of the continuum approximation. Another important
point is that the way to take a continuum limit depends crucially on the state
of the system. In the following we first consider the ferromagnetic state and
then go to the collinear antiferromagnetic state.
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Continuum limit for Quantum Ferromagnet

Let us assume for simplicity that Jjk = J < 0 for nearest neighbor sites j, k
of a spin chain in 1d, square lattice in 2d and cubic lattice in 3d and magnetic
field is constant hj = h. The classical Hamiltonian is then

H = −|J |S2
∑

<kj>

nk · nj − S
∑

j

h · nj . (12.87)

spins are almost perfectly aligned. We replace spins nj at lattice sites by a
continuous field n(x) and proceed as follows. Up to a constant, nj+ex · nj →
− 1

2 (nj+ex − nj)
2 → − 1

2a
2(∂xn)2 etc. Here a is the lattice constant. Replacing

the summation over j by the integration over space, we obtain the continuum
limit of the Hamiltonian Eq. (12.87)

H = −1

2
|J |S2a2

∫
ddx

ad
(∂µn)2 − S

∫
ddx

ad
h · n . (12.88)

Similarly, we have for the full action Eq. (12.84)

S[n] = −4πiS

∫
ddx

ad
W0[n(x, τ)]

−1

2
|J |S2a2

∫
dτ
ddx

ad
(∂µn)2 − S

∫
dτ
ddx

ad
h · n . (12.89)

Variation of this action with respect to the continuous unit vector field n(x, τ)
produces the well-known classical Landau-Lifshitz equation for magnetization
(to go to real time one should replace i∂τ → −∂t)

i∂τn = |J |Sa2 (n×∆n)− h× n . (12.90)

Let us remark here that W0[nj ] is a topological term for an individual spin
nj on the site j of the lattice. However, due to the integration over space, the
first term of the continuum action Eq. (12.89) depends on the spatial metric
(e.g., distortions of the lattice will change it). Therefore, this term cannot be
considered topological. Nevertheless, it is linear in time derivative and therefore
time-reparameterization invariant. Therefore, it remains imaginary after Wick’s
rotation and results in a very essential interference even in imaginary time path
integral.

Bloch’s law: the dispersion of spin waves in ferromagnet

As an application of the continuum theory for magnetization in ferromagnets,
let us derive the dispersion of spin waves starting from Eq. (12.90). We assume
that magnetic field is constant and uniform h = (0, 0, h), and that there is a
long range ferromagnetic order with spins oriented in the same direction. We

We assume that there is a short range ferromagnetic order, i.e., nearest neighbor
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also assume that spin fluctuations are small and write n = (u1, u2, 1), where
u1,2 are components of n in x, y directions in spin space that are assumed to
be small so that n2 = 1 + u2

1 + u2
2 ≈ 1 up to quadratic terms in u. Substituting

all this in Eq. (12.90) we obtain

−iωu = −i|J |Sa2k2u− ihu . (12.91)

Here we introduced complex notation u = u1 + iu2 and made Fourier transform
∆→ −k2 and i∂τ → −∂t → iω. We immediately obtain the dispersion of spin
waves

ω = |J |Sa2k2 + h, (12.92)

the result known as the Bloch’s law. In the absence of external magnetic field
the dispersion of spin waves is quadratic in wave vector k.

To conclude our brief discussion of the ferromagnetic case we have to recall
that the continuum theory was derived under the condition that fluctuations of
n are small compared to 1 or |u| � 1. Given a temperature and other parame-
ters of the theory, one should calculate the average value of those fluctuations.
The condition 〈|u|2〉 � 1 is then the necessary condition for the self-consistency
of the continuum approximation.

12.4.2 Continuum path integral for Quantum Antiferromagnet

Let us consider a more subtle case of quantum antiferromagnet. We again start
with the Hamiltonian Eq. (12.87). However, we assume now that J > 0 and
write

H = JS2
∑

<kj>

nk · nj − S
∑

j

h · nj . (12.93)

Although Eq. (12.93) looks very similar to Eq. (12.87) the unit vectors nj tend
to be antiparallel on nearest sites (we again assume square lattice here so that
the antiferromagnetic order is not frustrated). One cannot use the continuous
field n(x) instead of lattice vectors nj . Taking continuum limit is more involved
and can be achieved through the following substitution

nj = (−1)jm(x) + al(x) . (12.94)

Here we assume that both fields m(x) and l(x) are good continuous (smooth)
fields. 12 The former represents the smooth staggered magnetization while the
latter is a ferromagnetic component. It is expected that the ferromagnetic com-
ponent is small and the corresponding rescaling by the lattice constant a is
made. As n2

j = 1 we have

n2
j = m2 + 2(−1)ja(m · l) + a2l2 = 1 . (12.95)

12We emphasize that in the following we take a particular continuum limit which assumes
short range ordered antiferromagnetic state. It is believed to be appropriate for large S
Heisenberg antiferromagnets. However, it is not appropriate, e.g. for spin chains at so-called
Bethe Ansatz integrable points.
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We solve this condition to the order of a2 by two conditions

m2 = 1 , m · l = 0 . (12.96)

Using Eq. (12.94) we have up to constants

nj+ex · nj → 1

2
a2
[
(∂xm)2 + 4l2 + 4(−1)j∂xm · l

]
,

h · nj → (−1)jh ·m + ah · l .

Substituting these expressions into Eq. (12.93) we obtain

H = JS2
∑

j

1

2
a2
[
(∂µm)2 + 4dl2 + 4(−1)j∂µm · l

]

−S
∑

j

((−1)jh ·m + ah · l) .

→ JS2a2 1

2

∫
ddx

ad
[
(∂µm)2 + 4dl2

]
− Sa

∫
ddx

ad
h · l . (12.97)

In the last step, we dropped all oscillating terms and replaced summation by
integration over space.

The next step is to do a similar procedure with the term in the action
coming from the summation of topological terms. We proceed as follows

∑

j

W0[nj ] =
∑

j

W0[(−1)jm(x) + al(x)]

≈
∑

j

(−1)jW0[m(x) + (−1)jal(x)]

≈
∑

j

(−1)jW0[m(x)] +

∫
ddx

ad

∫
dτ al(x)

δW0[m]

δm

We now use the variation formula Eq. (12.31) and its consequence

W0[m(x+ ex)]−W0[m(x)] ≈ 1

4π

∫
dτ (a∂xm) · (m× ∂τm)

and obtain

The first term of Eq. (12.98) is written for any spatial dimension d. In the
second term, we assumed the three-dimensional case. Notice that while the

∑
j

W0[nj ] ≈
1

4π

∫
ddx

ad

∫
dτ ad l(x) · (m× ∂τm)

+
∑
jy,jz

(−1)jy+jz
1

8π

∫
dx

a

∫
dτ (a∂xm) · (m× ∂τm) .

(12.98)
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sign alternation was taken into account in x direction there is still a sum to be
taken with the factor (−1)jy+jz in other two directions. That summation will
suppress this term and, therefore, it is relevant only in one spatial dimension.
We summarize for the topological contribution

−4πiS
∑

j

W0[nj ] ≈ −iSa1−dd
∫
dτ ddx l(x) · (m× ∂τm)

−iS
2
δd,1

∫
dτ dx ∂xm · (m× ∂τm) . (12.99)

Collecting all terms together to get the continuum limit of the action Eq.
(12.84) we obtain

S[m, l] = i
S

2
δd,1

∫
dτ dx ∂xm · (m× ∂τm)

−iSa1−dd
∫
dτ ddx l(x) · (m× ∂τm)

+JS2a2−d 1

2

∫
dτ ddx

[
(∂µm)2 + 4dl2

]
− Sa1−d

∫
dτ ddxh · l

= i
S

2
δd,1

∫
dτ dx ∂xm · (m× ∂τm) + JS2a2−d 1

2

∫
dτ ddx (∂µm)2

+

∫
dτ

ddx

ad

(
2JS2a2dl2 − Sa1l ·

[
h + id (m× ∂τm)

])
.(12.100)

The obtained expression is the continuum limit of Eq. (12.84) derived in the
antiferromagnetic regime with the assumption of small fluctuations around the
short range collinear antiferromagnetic order. The field l describing the mag-
netization of the magnet enters the action in a very simple way and can be
“integrated out”. For details of derivation see the Appendix B. Here we present
the results dropping the external magnetic field for simplicity. In two and higher
spacial dimensions, d > 1, we have

S[m] =
1

2g

∫
dτ

ddx

ad−1

[
1

vs
(∂τm)2 + vs(∂µm)2

]
, (12.101)

where

vs =
2JSa√

d
, g =

2

S
√
d
. (12.102)

The one-dimensional case is special and has an additional topological term
in the action

S[m] =
1

2g

∫
dτ dx

[
1

vs
(∂τm)2 + vs(∂xm)2

]

+iθ

∫
dτ dx

1

4π
m · (∂τm× ∂xm) , (12.103)
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where

vs = 2SaJ , g =
2

S
, θ = 2πS . (12.104)

The model, Eq. (12.103), is known as O(3) nonlinear sigma model with topolog-
ical theta-term. It is the low energy, long distance description of the antiferro-
magnetic Heisenberg spin chain with large spin S � 1 with the correspondence
between parameters of the model and the parameters of the spin chain given
by Eq. (12.104). Let us start with the discussion of the nonlinear sigma model
without topological term.

12.4.3 RG for O(3) NLSM

The model, Eq. (12.103), without topological term (θ = 0) can be re-written as

S[m] =
1

2g

∫
d2x (∂µm)2 , (12.105)

where µ = τ, x and we re-defined τ → τ/vs. The action Eq. (12.105) with
the constraint m2 = 1 is known as O(3) nonlinear sigma model (NLSM). It is
relativistically invariant with spin wave velocity vs playing the role of the speed
of light. This relativistic invariance is emergent and we should remember that
the next order gradient corrections to the model and various perturbations are
generally not relativistically invariant.

At small values of the coupling constant g corresponding to large values of
S one can treat Eq. (12.105) perturbatively and ask how the coupling constant
renormalizes when one goes to longer distances. It turns out [28] that g increases
with the scale. The increase of g signals the tendency of the m-field to disorder.
More precisely, the effective coupling of Eq. (12.105) at the length L satisfies
renormalization group (RG) equation

dg

d logL
=

1

2π
g2 +O(g3), (12.106)

and gives

g(L) =
g0

1− g0
2π log(L/a)

, (12.107)

where g0 = g(a) is the coupling constant at UV (lattice) scale a. At the scale
L ∼ ξ with

ξ ∼ ae2π/g0 , (12.108)

the effective coupling constant g(ξ) becomes of the order of unity and we cannot
trust RG equation Eq. (12.106) at this point.

We stress here that RG analysis is not conclusive. The only conclusion
we can make is that the effective length ξ given by Eq. (12.108) emerges. At
this scale, the m field is somewhat disordered, but we cannot say anything
about the nature of the phase and about the long distance behavior of m-field
correlation functions. There are essentially two scenarios. The first one is that
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the actual model has a gap of the order of vs/ξ, the field m is disordered with all
correlations decaying exponentially with the correlation length ξ Eq. (12.108).
The second possibility is that the RG flow leads to a new fixed point and
behavior of the model at scales larger than ξ is governed by that fixed point (in
particular, long range correlation functions might decay as power laws etc.). It
turns out that this is the former scenario that is realized for 2d O(3) nonlinear
sigma model Eq. (12.105). We know this because O(3) NLSM has been solved
exactly by Bethe Ansatz [29] and has a gap separating the ground state from
excitations. In the next section we will argue that the second scenario might
be relevant when topological term is present in NLSM.

Bethe Ansatz solution of the model Eq. (12.105) is outside of the scope
of these lectures. Instead, to have some understanding of how finite gap (corre-
lation length) appears in NLSM we refer the reader to the Exercise 13 “O(N)
NLSM” below where the correlation length is obtained for the O(N) NLSM in
the limit of large N .

12.4.4 O(3) NLSM with topological term

Let us now consider the O(3) NLSM with topological theta term

S[m] =
1

2g

∫
d2x (∂µm)2 + iθQ , (12.109)

where

Q =

∫
d2x

1

4π
m · (∂τm× ∂xm) . (12.110)

We assume that the boundary conditions m(x) → m0 =const, as x → ∞ so
that the winding number Q is an integer. The parameters corresponding to the
AFM spin chain are given by Eqs. (12.103,12.104), i.e., g = 2/S and θ = 2πS.
Following Haldane [30,31], we notice that the topological term in Eq. (12.109)
contributes the complex weight to path integral given by eiθQ = (−1)2SQ. This
weight depends crucially on the integer-valuedness of spin. If the spin S is half-
integer, the weight is non-trivial (−1)Q, and results in interference of topological
sectors characterized by different topological charges Q. On the other hand, if
S is integer, the weight is unity and does not affect the path integral. 13 Based
on this observation Haldane conjectured that AFM spin chains with integer
spin S have singlet ground states separated by finite gap from all excitations
similar to O(3) NLSM without topological term. On the other hand, AFM spin
chains with half-integer spin have gapless excitations similar to the spin-1/2
chain. For the latter, the spectrum of excitations has been known from the
exact solution by Bethe [32]. The Haldane’s conjecture has been supported by
numerical simulations and experiments.

13This statement is not quite correct. The topological term can still be important for various
boundary conditions and due to the presence of singularities.
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1/g

1/2 3/2
θ/2π

Figure 12.4: The schematic RG flow for nonlinear sigma model with theta term
is shown. The vertical axis is the inverse coupling constant g while the horizontal
axis is the topological angle θ. The picture has exact symmetry with respect
to θ → θ + 2π and with respect to reflection relative to half integer θ/2π. The
horizontal dashed line corresponds to g ∼ 1. Below this line the perturbative
RG is not working and interpretation of the flow is more subtle.

It is instructive to think about RG flow for the NLSM with theta term. The
model has two parameters g and θ and it is appealing to think about RG flow
in the plane labeled by those parameters. First of all, we notice that starting
with dimerized spin chain one obtains values of θ which are not necessarily
multiples of π (see Exercise 12 “Dimerized spin chain” below). Therefore, it is
tempting to draw the flow diagram similar to the one for integer quantum Hall
effect [33,34] (see figure 12.4).

It is not difficult to see that conventional perturbative calculation results
in non-renormalizability of θ. This is reflected by strictly vertical flow at small
g (large 1/g) in figure 12.4. One can argue following [33] that taking into ac-
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count instanton configurations (configurations with Q 6= 0) will result in the
deviations of flow from the vertical one as shown in the figure. However, the
instanton contribution is suppressed by factors of the order of e−2π/g and it is
very hard to develop consistent perturbation theory taking into account expo-
nentially small terms but neglecting terms of higher order in coupling g. More
straightforward interpretation of figure 12.4 is that it shows the flow of some
observables which correspond to 1/g and θ at small values of g and change
with scale as shown in the figure (in analogy with observable conductances σxx
and σxy of [33]). We will not dwell on the interpretation of figure Eq. (12.4).
However, it is believed that as shown on that figure the long distance behavior
of spin chains of half-integer θ/(2π) is governed by new infrared fixed points
while the spin chain with any other θ flows to the models with finite gap in the
spectrum. In fact, it was clarified that the critical description of half-integer
spin chains is given by Wess-Zumino-Witten (WZW) model (see Ref. [35]). In
particular, the staggered magnetization correlation decays as power law at large
distances.

In the limit of large S, we have the following picture for the correlator
〈m(x) ·m(0)〉. At distances shorter than ξ ∼ aeπS (obtained form Eq. (12.108)
at g = 2/S) there is a short range antiferromagnetic order 〈m(x)·m(0)〉 ∼ 1. At
larger distances x� ξ, the order is destroyed, and there is no long-range order
in agreement with the Mermin-Wagner theorem. However, the way in which
correlations decay at large distances depend crucially on S. If S is integer,
the decay is exponential 〈m(x) ·m(0)〉 ∼ e−x/ξ, while at half-integer S, it is
algebraic (power-law) with 〈m(x) · m(0)〉 ∼ x−1. 14 This power-law signals
the emergent scale invariance (in fact, conformal invariance) and is captured
by the infrared fixed point of effective WZW model. Interestingly, for half-
integer spins the symmetry of the spin chain is enlarged at the critical point. In
addition to the fluctuations of the staggered magnetization m(x), fluctuations
of dimerization become soft as well. They combine into the effective SU(2)
“order parameter” which is an SU(2) degree of freedom of WZW model. We
refer the reader to [35] for more detailed analysis of critical behavior of spin
chains.

12.4.5 Boundary states for spin 1 chains with Haldane’s gap

We argued at the beginning of Sec. 12.4.4 that for integer S the topological
term is “ineffective” and the model Eq. (12.109) behaves similarly to the O(3)
NLSM without topological term Eq. (12.105). This is not quite correct. The
argument is essentially based on the integer-valuedness of the topological charge
Q. However, it is necessarily integer only for smooth m-field configurations for
compact boundary conditions (e.g., m→m0 at x, t→∞). Let us consider an
example when boundary conditions are different.

14At non-zero temperature there is another length scale ξT ∼ aJS2/T , and the power-law
decay of correlations will be eventually replaced by an exponential decay at large distances
due to thermal fluctuations.
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We assume that the spin chain is long but has a finite length L with free
boundary conditions (boundary spins at x = 0, L can take arbitrary values).
Then the topological term can be written as

Stop[m] = iθ

∫
dτ

∫ L

0

dx
1

4π
m · (∂τm× ∂xm)

= iθ

[
ΩL
4π

+Q− Ω0

4π

]
. (12.111)

Here we decomposed the winding number Eq. (12.110) into integer part Q and
the difference of solid angles Ω0,ΩL subtended by boundary vectors m(0) and
m(L), respectively. Assuming θ = 2π, we drop the integer part and end up
with the contribution

Stop = i

[
ΩL
2
− Ω0

2

]
, (12.112)

which is written in terms of boundary vectors only. Comparing with Eq. (12.29)
we recognize Eq. (12.112) as the action of two spin-1/2 located at the ends of
the spin chain. As we expect that the bulk degrees of freedom have a gap in
the spectrum (S = 1 is an integer) we conclude that the S = 1 AFM spin chain
in the gapful phase (Haldane’s phase) should have gapless boundary spin 1/2
excitations.

We would like to stress again how unusual is the conclusion we have just
made. It is well known that “adding” finite number of spin 1s one can get only
superposition of integer valued spins. For example, two spin-1 particles can only
have sectors with total spins 0, 1, and 2. However, we managed adding large
number of spin 1s to get two boundary spin 1/2 as low lying excitations of
the finite spin chain with free boundary conditions! 15 Most amazingly, these
boundary spin 1/2 have been observed in experiment. [36, 37]

This example illustrates very interesting connection between θ and WZW
topological terms. The gapful model with θ terms might produce massless
boundary theory of one dimension lower described with the use of WZ terms.

12.4.6 AKLT model

To understand better how the bulk gap and boundary spin 1/2 states are formed
in the Haldane’s phase of S = 1 antiferromagnetic spin chain let us consider
the deformation of the Heisenberg Hamiltonian known as AKLT model [38,39]

H = J
∑

j

(
Sj · Sj+1 +

1

3
(Sj · Sj+1)2

)
. (12.113)

15Actually, for the finite length of the spin chain those two boundary spin 1/2 are effectively
interacting with the strength of interaction ∼ e−L/ξ. Only in the limit of an infinite length
we obtain truly non-interacting spin 1/2 degrees of freedom.
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mm

m

L

0

Figure 12.5: Time evolution of boundary magnetizations (unit vectors) m0(τ)
and mL(τ) is shown. For periodic time these vectors sweep solid angles Ω0 and
ΩL, respectively. The shaded area is given by Eq. (12.111) which is up to integer
Q is given by the difference of solid angles ΩL and Ω0 as in Eq. (12.112).

One should think about this model as fine tuned model with the coefficient J ′

in front of the biquadratic term being exactly 1/3 of the coefficient in front
of Heisenberg exchange term. Changing J ′ from 0 to J/3 interpolates between
Heisenberg spin chain and AKLT model Eq. (12.113). It can be shown that the
ground state of Eq. (12.113) is separated by the finite gap from excitations. If
this gap is not closed in the process of changing J ′ from J/3 to zero then the
Heisenberg spin chain has a gap as well and we say that AKLT and Heisenberg
model are adiabatically connected and are in the same phase.

Let us now see why AKLT model is much easier to analyze than the
Heisenberg model for S = 1. It turns out that the Hamiltonian Eq. (12.113) up
to constant can be written as

H = 2J
∑

j

P2(Sj + Sj+1) , (12.114)

where

P2(S1 + S2) =
1

2
Sj · Sj+1 +

1

6
(Sj · Sj+1)2 +

1

3
(12.115)

is a projector on the state with the total spin S = 2 (see the Exercise 15
“Projector to S = 2”). Then schematically (see Refs. [38, 39] for details) one
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1 2 L

Figure 12.6: The schematic picture of the ground state of AKLT model. Ovals
represent the sites of the spin chain. Spin 1 at each site is split in two spin 1/2s.
The horizontal segments represent singlet states of spin 1/2-s from neighbor
sites. Notice that one of spin 1/2-s at the site 1 and at the site L are not parts
of singlets. They are the boundary spin 1/2 states of the AKLT spin 1 chain.

can think about the ground and excited states of Eq. (12.114) in the following
way. We split every spin Sj into two spins 1/2 (let us call them A and B.
Taking one of those two spin 1/2 from the site j and one of spin 1/2 from the
site j+1 we form a singlet state and make a product of all these singlets. Then
we project the result back to the total spin 1 on each site. The obtained state

P
∏

j

(
|+〉j,A|−〉j+1,B − |−〉j,A|+〉j+1,B

)

has a property that the sum of two neighbor spins is never 2 and is, therefore,
the ground state of Eq. (12.114) and of Eq. (12.113). 16 It is also physically clear
that to excite this system one should break one of the singlets and pay finite
energy. Schematically we illustrate the construction in figure 12.6. In particular,
one can see that the boundary spin 1/2 in this case are just uncoupled “halves”
of the end spins of the chain. In some sense AKLT provides a “chemical” model
with singlets being covalent bonds and spin 1/2-s being physical electrons. We
refer to AKLT model as to a strong coupling limit of the Haldane’s phase of a
spin-1 chain.

12.4.7 Exercises

Exercise 12: Dimerized spin chain

Start with the spin-chain Hamiltonian

H =
∑
k

Jk Sk · Sk+1

with Jk = J > 0 if k even and Jk = J ′ > 0 if k odd. Repeat the derivation of the
section 12.4.2 and show that the continuum limit is still given by O(3) NLSM with

16Of course, these speculations are not rigorous at all. For rigorous treatment see Ref. [38,39]
or modern treatment using the technique of matrix product states (MPS).
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theta term Eq. (12.103) but instead of Eq. (12.104) the parameters of the model are
given by

vs = 2Sa
√
JJ ′ , g =

1

S

(√
J

J ′
+

√
J ′

J

)
, θ = 2πS

[
1− J − J ′

J + J ′

]
. (12.116)

Notice that the model is self-dual with respect to the duality transformation J ↔ J ′,
θ → 4πS − θ corresponding to the reflection symmetry of the 1d lattice and the
Hamiltonian.

Exercise 13: O(N) NLSM

Let us consider the model given by the action Eq. (12.105), where the unit vector field
m2 = 1 has N components m = (m1,m2, . . . ,mN ). This model is known as O(N)
nonlinear sigma model. We replace Eq. (12.105) by

S[m, λ] =
1

2g0

∫
d2x

[
(∂µm)2 + iλ(m2 − 1)

]
. (12.117)

We introduce here the field λ(x, t) so that functional integration over it gives the local
constraint m2 = 1. Assuming that the functional integral over λ(x, t) is performed
exactly one should not worry about the constraint in Eq. (12.117). Let us now make
an approximation assuming that the functional integral corresponding to Eq. (12.117)
is dominated by the saddle point iλ = M2 = const. Then the path integral over m is
Gaussian.17

Compute this Gaussian integral and find 〈m2〉 for a given M . Assume that all
divergent integrals can be cut off by the lattice scale a. Write down the consistency
equation 〈m2〉 = 1. This is the so-called gap equation which determined the saddle
point value of M . Show that it is given by

M ∼ 1

a
exp

(
− 4π

Ng0

)
. (12.118)

Consider now fluctuations of λ around the saddle point, and show that these fluc-

saddle point approximation self-consistent.

As a result of this exercise we obtained that the correlation functions of m-
field behave as the ones for the field with the mass M given by Eq. (12.118), i.e.,
〈m(x) ·m(0)〉 ∼ exp(−Mx).

For the answer to this exercise see Ref. [6].

17At this step we essentially replace the local constraint m2 = 1 for the global one∫
d2xm2 = const and hope that fluctuations of local magnitude of m are not important.

tuations are suppressed by the parameter 1/N , i.e., one needs large N limit to make
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Exercise 14: Boundary spin 1/2 states of a Haldane’s chain

Consider the “action” of a two-dimensional O(3) non-linear sigma model with topo-
logical term

S = SNLSM + Sθ , (12.119)

SNLSM =
1

2g

∫
d2x (∂µn)2 , (12.120)

Sθ = iθQ , (12.121)

Q =

∫
d2x

1

8π
εµνn · [∂µn× ∂νn] . (12.122)

This action can be derived as a continuum limit of the Heisenberg spin chain with
large spins on sites. In the latter case, g = 2/S and θ = 2πS. In the case of integer S,
the spin chain is massive, and there are no bulk excitations at low energies (smaller
than the gap).

Let us assume that the action Eq. (12.119) is defined on the open chain of the
length L. Show that the topological theta-term Eq. (12.121,12.122) formally defined
on the open chain reduces to two WZ (0+1-dimensional) terms at the boundary of

spins living at the ends of the spin chain. Show that the coefficient in front corresponds
to the value of those spins S/2. In particular, it means that the boundary states of
S = 1 spin chain correspond to spin-1/2!

Remark : Neglecting the NLSM part of the action is possible in this exercise only
because of the gap in the bulk at the integer value of spin.

For the answer see Sec. 12.4.5.

Exercise 15: Projector to S = 2

Show that the operator Eq. (12.115) projects any state of two spins S = 1 onto the
state with total spin S = 2.

Hint: use the identity (S1 · S2) = 1
2

[
(S1 + S2)2 − 4

]
for two spin-1 operators

S2
1 = S2

2 = S(S + 1) = 2.

12.5 Conclusion

In these lectures, we considered a few examples of topological terms that ap-
pear in effective actions used in condensed matter theory. We discussed some of
the properties of those terms and their physical consequences. We also showed
how these terms can be generated by fermionic degrees of freedom as phases
of fermionic determinants. Of course, these lectures can serve only as an intro-
duction to a quickly developing field of topological phases of matter. Because
of limited time we focused on topological terms in sigma-models and did not
consider the ones made out of background and dynamic gauge fields. The latter
are related to the physics of quantum Hall effect (see Ref. [40] for some recent
developments) and to the physics of topological insulators and superconductors
(e.g., see Ref. [41]). Other interesting but much less understood topics include
topological terms for singular processes (defects in space-time configurations,

spacetime, i.e., at the ends of the spin chain. This means that we expect two quantum
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such as monopoles, hedgehogs and vortices), the role of topology for phases
with gapless fermions, topology and physics out of equilibrium etc. My hope is
that these lectures were stimulating enough to encourage the reader to study
and to work on applications of topology to physics.
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Appendix A: Topological defects and textures

In this appendix we collect few exercises on the topic of homotopy classifica-
tions of topological defects and textures in media with spontaneously broken
symmetry. A detailed exposure of the topic could be found in the classic ref-
erence [7]. Some of known homotopy groups for various spaces are collected in
Appendix C.

Exercise 16: Nematic

Nematic is a liquid crystal characterized by an order parameter which is the unit three-
component vector n = (n1, n2, n3), n2 = 1 with an additional condition n ∼ −n. The
latter means that two unit vectors which are opposite to each other describe the same
state. Such an order parameter is called “director”.

What are the types of topological defects and textures allowed for three-
dimensional nematic? What about two-dimensional one?

Exercise 17: Crystal

One can view a crystalline state as a continuous translational symmetry broken to the
subgroup of discrete translations. Then the order parameter space should be identified
(for three-dimensional crystal) with M = G/H = R3/(Z× Z× Z).

a) What (geometrically) is the order parameter space for this system?

b) What are the homotopy groups of this manifold π0,1,2,3(M) ?

c) What types of topological defects and textures are allowed in such a system?
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Exercise 18: Superfluid 3He−A

The order parameter of superfluid 3He − A can be represented by two mutually
orthogonal unit vectors ∆1, ∆2. That is, at each point in three-dimensional space
one has a pair of vectors with properties ∆2

1 = ∆2
2 = 1 and ∆1 ·∆2 = 0.

a) What is the order parameter space for this system?

b) What are the homotopy groups of this manifold π0,1,2,3(M) ?

c) What are the types of topological defects and textures allowed in such a system?

Exercise 19: Heisenberg model

What topological defects and textures should one expect in the ordered state of a
three-dimensional classical Heisenberg model? What changes if the order parameter
is a director instead of a vector? A “director” means a vector without an arrow, i.e.,
one should identify S ≡ −S. The models with a director as an order parameter are
used to describe nematic liquid crystals (see Ex. 16).

Exercise 20: Continuum limit of XY model

Let us start with the XY model defined on a cubic d-dimensional lattice. The allowed
configurations are parameterized by a planar unit vector ni = (cos θi, sin θi) on each
site i of the lattice. The energy is given by

E = −
∑
〈ij〉

J cos(θi − θj) . (12.123)

We assume that the most important configurations are smooth on a lattice scale and
one can think of θi as of smooth function θ(x) defined in Rd - continuous d-dimensional
space. Show that the energy is given in this continuous limit by

E =
J

2

∫
ddx

ad
a2(∂µθ)

2 , (12.124)

where a is the lattice constant. The combination ρ
(0)
s = Ja2−d is referred to as bare

spin-wave stiffness (or bare superfluid density).

Compute the energy of the vortex in such a model. Remember that the divergent
integrals should be cut off by lattice constant a and by the size of the system L at
small and large distances, respectively.

For the answer see Ref. [6].

Exercise 21: Correlation function 〈(θ(x)− θ(0))2〉

Calculate the correlation function 〈(θ(x)− θ(0))2〉 in the XY model in d dimensions
neglecting the topology of θ, i.e., neglecting vortices, and thinking about θ as of real
number without periodicity. Divergencies at small distances should be cut off by the
lattice constant a.

Hint: consider
∫
ddq e

iq·x

q2
with proper cutoffs. For the answer see Ref. [6].
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Exercise 22: Correlation function 〈n(x)n(0)〉. Low temperatures.

Using the result of the previous exercise calculate the correlation function 〈n(x)n(0)〉
in the XY model in d dimensions neglecting the topology of θ. Write 〈n(x)n(0)〉 =
〈cos(θ(x)− θ(0))〉 = R〈ei(θ(x)−θ(0))〉 and use the properties of Gaussian integrals.

Make the conclusion about the existence of a true long range order in XY model
in 2d and relate it to the Mermin-Wagner theorem.

For the answer see Ref. [6].

Exercise 23: Correlation function 〈n(x)n(0)〉. High temperatures.

Let us consider high temperatures. Assume that J/T � 1. Using high temperature ex-
pansion for XY-model Eq. (12.123) show that correlation function 〈n(x)n(0)〉 decays
exponentially. Find the correlation length at high temperatures.

For the answer see Ref. [6].

Exercise 24: Vortex unbinding

Make an estimate of the BKT phase transition temperature in 2d XY model. Use the
energy of the vortex calculated previously, the estimate of the entropy of the vortex,
and the condition F = 0 for the free energy of the vortex.

For the answer see Ref. [6].

Appendix B: Integrating out l field

Consider the l dependent part of the action Eq. (12.100)

∫
dτ

ddx

ad

(
2JS2a2d (l)2 − Sa1l ·

[
h− λm + id (m× ∂τm)

])
. (12.125)

Here we added the Lagrange multiplier λ. The variation with respect to λ
produces the constraint l·m = 0. The field l enters the action quadratically and
can be integrated out just by substituting l given by the variational principle.
After adding the Lagrange multiplier we can vary over l without any constraints
and obtain

4JS2a2−dd l− Sa1−d
[
h− λm + id (m× ∂τm)

]
= 0

or

l =
1

4JSad

[
h− λm + id (m× ∂τm)

]
.

Substituting the latter expression into Eq. (12.125) we obtain

1

8Jadd

∫
dτ ddx

[
h− λm + id (m× ∂τm)

]2
. (12.126)

Variation over λ gives

0 = m ·
[
h− λm + id (m× ∂τm)

]
= m · h− λ
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which determines λ = h ·m and gives for the Eq. (12.126)

− 1

8Jadd

∫
dτ ddx

[
h−m(h ·m) + id (m× ∂τm)

]2

= − 1

8Jadd

∫
dτ ddx

[
h2 − (h ·m)2 − d2 (m× ∂τm)2 − 2idh · (m× ∂τm)

]

→ 1

8Jad

∫
dτ ddx

[
d (∂τm)2 + 2ih · (m× ∂τm)

]
. (12.127)

In the last step we dropped terms independent of m and the term quadratic
in h. Putting all results together, we obtain the effective action which is the
functional of the m field only.

S[m] = i
S

2
δd,1

∫
dτ dxm · (∂τm× ∂xm)

+JS2a2−d 1

2

∫
dτ ddx (∂µm)2 +

d

8Jad

∫
dτ ddx (∂τm)2

+i
1

4Jad

∫
dτ ddxh · (m× ∂τm) .

Appendix C: Homotopy groups often used in physics

In this appendix, we collect some of the homotopy groups often used in physics.
Many of these groups can be found in [42].

Generalities

If M and N are two topological spaces then for their direct product we have

πk(M ×N) = πk(M)× πk(N) .

If M is a simply-connected topological space (π0(M) = π1(M) = 0) and group
H acts on M then one can form topological space M/H identifying points of
M which can be related by some element of H (x ≡ hx). Then we have the
following relation

π1(M/H) = π0(H) .

In particular, if H is a discrete group, π0(H) = H, and

π1(M/H) = H .

For higher homotopy groups, we have the relation

πk(M/H) = πk(M), if πk(H) = πk−1(H) = 0 . (12.128)
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Homotopy groups of spheres

For a circle

π1(S1) = Z,
πk(S1) = 0, for k ≥ 2.

For higher-dimensional spheres, it is true that

πn(Sn) = Z,
πk(Sn) = 0, for k < n.

Homotopy groups of spheres πn+k(Sn) do not depend on n for n > k + 1
(homotopy groups stabilize). In the table below we show in shaded cells the
entries from which homotopy groups remain stable (constant along the diagonal
of the table).

Homotopy groups of spheres

π1 π2 π3 π4 π5 π6 π7 π8 π9

S1 Z 0 0 0 0 0 0 0 0

S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3

S4 0 0 0 Z Z2 Z2 Z× Z12 Z2 × Z2 Z2 × Z2

S5 0 0 0 0 Z Z2 Z2 Z24 Z2

S6 0 0 0 0 0 Z Z2 Z2 Z24

S7 0 0 0 0 0 0 Z Z2 Z2

S8 0 0 0 0 0 0 0 Z Z2

Here and thereon we denote by Z the group isomorphic to the group of
integer numbers with respect to addition. Zn is a finite Abelian cyclic group. It
can be thought of as a group of n-th roots of unity with respect to a multipli-
cation. Alternatively, it is isomorphic to a group of numbers {0, 1, 2, . . . , n− 1}
with respect to addition modulo n. Or simply Zn = Z/nZ.

Homotopy groups of Lie groups

Unitary groups

Bott periodicity theorem for unitary groups states that for k > 1, n ≥ k+1
2

πk(U(n)) = πk(SU(n)) =

{
0, if k-even;
Z, if k-odd.
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The fundamental group π1(SU(n)) = 0 and π1(U(n)) = 1 for all n.

In the following table, we show in shaded cells the entries from which Bott
periodicity theorem “starts working” and table entries become the same further
down the column.

Orthogonal groups

Bott periodicity theorem for orthogonal groups states that for n ≥ k + 2

πk(O(n)) = πk(SO(n)) =





0, if k = 2, 4, 5, 6 (mod 8);
Z2, if k = 0, 1 (mod 8);
Z, if k = 3, 7 (mod 8).

In the following table, we show in shaded cells the entries from which Bott
periodicity theorem “starts working”.

Homotopy groups of unitary groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

U(1) Z 0 0 0 0 0 0 0 0 0 0 0

SU(2) 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

SU(3) 0 0 Z 0 Z Z6 0 Z12 Z3 Z30 Z4 Z60

SU(4) 0 0 Z 0 Z 0 Z Z24 Z2 Z120 × Z2 Z4 Z60

SU(5) 0 0 Z 0 Z 0 Z 0 Z

Homotopy groups of orthogonal groups

π1 π2 π3 π4 π5 π6 π7 π8

SO(2) Z 0 0 0 0 0 0 0

SO(3) Z2 0 Z Z2 Z2 Z12 Z2 Z2

SO(4) Z2 0 (Z)×2 (Z2)
×2 (Z2)

×2 (Z12)
×2 (Z2)

×2 (Z2)
×2

SO(5) Z2 0 Z Z2 Z2 0 Z 0

SO(6) Z2 0 Z 0 Z 0 Z Z24

SO(n > 6) Z2 0 Z 0 0 0
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Symplectic groups

Bott periodicity theorem for symplectic groups states that for n ≥ k−1
4

πk(Sp(n)) =





0, if k = 0, 1, 2, 6 (mod 8);
Z2, if k = 4, 5 (mod 8);
Z, if k = 3, 7 (mod 8).

In the following table, we show in shaded cells the entries from which Bott
periodicity theorem “starts working”.

Exceptional groups

Homotopy groups of exceptional groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

G2 0 0 Z 0 0 Z3 0 Z2 Z6 0 Z× Z2 0

F4 0 0 Z 0 0 0 0 Z2 Z2 0 Z× Z2 0

E6 0 0 Z 0 0 0 0 0 Z 0 Z Z12

E7 0 0 Z 0 0 0 0 0 0 0 Z Z2

E8 0 0 Z 0 0 0 0 0 0 0 0 0

Homotopy groups of some other spaces

Tori

An n-dimensional torus can be defined as a direct product of n circles Tn =
(S1)×n. One can immediately derive that

π1(Tn) = (Z)×n ,

πk(Tn) = 0, for k ≥ 2 .

Homotopy groups of symplectic groups

π1 π2 π3 π4 π5 π6 π7 π8 π9 π10 π11 π12

Sp(1) 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

Sp(2) 0 0 Z Z2 Z2 0 Z 0 0 Z120 Z2 Z2 × Z2

Sp(n ≥ 3) 0 0 Z Z2 Z2 0 Z 0 0 0 Z Z2
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Projective spaces

The real projective space RPn can be represented as RPn = Sn/Z2. For n = 1
RP 1 = S1. We have from Eq. (12.128)

π1(RP 1) = Z ,
π1(RPn) = Z2, for n ≥ 2 ,

πk(RPn) = πk(Sn), for k ≥ 2 .

Homotopy groups of real projective spaces

π1 π2 π3 π4 π5 π6 π7 π8 π9

RP 1 Z 0 0 0 0 0 0 0 0

RP 2 Z2 Z Z Z2 Z2 Z12 Z2 Z2 Z3

RP 3 Z2 0 Z Z2 Z2 Z12 Z2 Z2 Z3

RP 4 Z2 0 0 Z Z2 Z2 Z× Z12 Z2 × Z2 Z2 × Z2

Similarly, for complex projective spaces CPn we have CP 1 = S2 and,
generally, CPn = S2n+1/S1. We have for homotopy groups

π1(CPn) = 0,

π2(CPn) = Z,
πk(CPn) = πk(S2n+1), for k ≥ 3.
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Dirac quasiparticles and Majorana
modes in condensed matter systems

K. Sengupta

We present a pedagogical introduction to Dirac fermions and
Majorana bound states which appear as emergent quasiparticles in
several condensed matter systems.

13.1 Introduction

The concept of quasiparticles has been central to understanding correlated con-
densed matter systems for many decades. The quantum many-body ground
states of such systems result from competition between the kinetic energy and
the (screened) Coulomb interactions of their constituent 1023 electrons. Such a
competition is known to lead to extremely complicated ground states specially
when the interaction dominates over the kinetic energy of the electrons. A spe-
cific example of such systems is a Quantum Hall system in the ultra strong
magnetic field regime. The presence of such a strong magnetic field leads to a
complete quenching of the kinetic energy of the electrons and leads to a huge
ground state degeneracy provided that the magnetic field is strong enough to
create more states in the lowest Landau level than the number of electrons Nel

in the system (fractional quantum Hall effect regime). This degeneracy is lifted
by the Coulomb interaction leading to exotic many-body ground states; indeed,
when the number of flux quanta Nφ, passing through the two dimensional (2D)
plane where the electrons are confined, satisfies Nel = νNφ, one observes Hall
conductance plateaus for specific values of ν: σxy = νe2/h, where e is the elec-
tron charge and h = 2π~ is the Planck’s constant and we shall restrict our
discussion to fractions where ν = 1/(2n+ 1) with integer n. The quasiparticles
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of such correlated ground state turns out to be significantly different from elec-
trons; they happen to have fractional charge νe. Moreover, these quasiparticles
turn out to be anyons; exchanging two such quasiparticles lead to an exchange
phase of exp(iθ) with θ = νπ. These quasiparticles, which are detectable in re-
alistic experiments, therefore serve as a tool for unraveling the complex nature
of the many-body correlated ground states.

The physics of the fractional quantum Hall effect and several other related
spin and fermionic models made it clear a few decades back that strong inter-
actions may lead to exotic quasiparticles whose properties differ significantly
from those of dressed electrons. However, in the last decade or so, it has been
realized that novel quasiparticles whose properties differ significantly from that
of electrons may also appear in weakly interacting condensed matter systems
either due to specific nature of their band structure or as a consequence of novel
topological feature of the system ground state. Examples of such quasiparticles
involve Dirac fermions and Majorana modes. The former mimics several prop-
erties of relativistic Dirac electrons which are qualitatively different from those
of their non-relativistic counterparts while the latter are non-Abelian anyonic
quasiparticles localized, for example, at the end of a 1D superconducting wire,
with zero energy. In the rest of the article, we shall focus on the properties of
these quasiparticles.

The plan of the rest of this article is as follows. In Sec. 13.2, we detail out
the origin and some of the properties of Dirac quasiparticles. This is followed
by Sec. 13.3, where we outline the origin and properties of localized Majorana
modes in unconventional superconductors.

13.2 Dirac Fermions in Graphene and Topological Insulators

13.2.1 Graphene band structure

The emergence of Dirac-like quasiparticles in condensed matter may most sim-
ply occur due to specific properties of the band structure of the system. The
simplest example of this is graphene, a well-known 2D sheet of carbon atoms
which is essentially a single layer of the well-known carbon allotrope graphite.
In graphene, the carbon atoms form a honeycomb lattice. The electrons of these
atoms undergo sp2 hybridization leaving behind a single pz orbital. Ab-initito
calculations confirm that the all the transport properties of graphene comes
from electrons from these pz orbitals.Also such calculations lead to a tight-
binding model for the kinetic energy of graphene electrons which we are going
to use in what follows.

Such a tight-binding model mimics the kinetic energy electrons to com-
prise of hopping between near-neighbor sites; in what follows, for simplicity,
we shall assume that only nearest-neighbor hoppings are non-zero. This is cer-
tainly not the case for realistic graphene systems; however, the basic qualitative
features of the graphene quasiparticles that we would like to point out do not
change due to this assumption. Within this approximation the tight-binding
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Hamiltonian for the graphene electrons can be written as

H = −t
∑

〈r,r′〉
ψ†rψr′ + h.c., (13.1)

where t denotes the hopping amplitude and ψr denotes the electron annihila-
tion operator at site r. At this point, we make an important observation. The
honeycomb lattice of graphene posses a property that any two nearest neigh-
bor sites of the lattice are inequivalent from a crystallographic point of view.
This is most easily seen by noticing that if the surrounding sites of any given
site form a Y, then the surrounding sites of all its neighbor form an inverted
Y. These two group of sites form two different sublattice which is commonly
known as A and B sublattice of graphene. In the presence of such a sublattice
structure, one can meaningly talk about probability amplitude of electrons be-
ing on an A or a B sublattice. Thus one can write the electron wavefunction
as Ψ(r) ≡ (ΨA(r),ΨB(r)), where ΨA and ΨB denotes probability amplitudes
of the electron being on the A or B sublattice. This situation is analogous to
the having a (fictitious) spin index whose up and down states correspond to
the electrons being on the A and the B sublattice. This analogy has led to the
terminology “pseudospin” for describing the sublattice degree of greedom for
electrons in graphene.

Since the nearest-neighbor hopping of electrons always happens between
different sublattices, the tight-binding Hamiltonian of the electrons can be writ-
ten as

H = −t
∑

〈rr′〉
ψ†A(r)ψB(r′) + h.c., (13.2)

where the sum over r is now over all A sublattice sites. In momentum space,
H can be written as

H = −
∑

k

ψ†A(k)φkψB(k) + h.c., (13.3)

φk = t
(

2 exp(−i
√

3aky/2) cos(3kxa/2) + exp(i
√

3kya)
)
,

where a is the lattice spacing. The energy spectrum can be obtained by diago-
nalizing H and is given by

E±k = ±|φk|, |φk| = t
√

3 + gk

gk = 2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2). (13.4)

The two energy bands E+k and E−k are called conduction and valence band of
graphene. Note that they can intersect only at zero energy. Such an intersection
takes places at six corners of the hexagonal Brillouin zone of graphene. Out of
these six points, only two are inequivalent; the rest are connected by reciprocal
lattice vectors. Furthermore, around these two points, commonly called as the

K = (0, 4π/(3
√

3a)), and K ′ = (0, 4π/(3
√

3a))
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points or valleys, the Hamiltonian has a 2×2 matrix structure corresponding to
the pseudospin degree of freedom and a linear dispersion given by Ek = ±vF |k|
where vF =

√
3ta/2 and k is now measured from the K or K ′ valleys. Around

these points, the Hamiltonian can be written (by expanding φk around K or
K ′ points) in terms of a two component pseudospinor ψ = (ψA(k), ψB(k)) as

HDirac = ~vF
∫

d2k

(2π)2
ψ†(k)(±σxkx + σyky)ψ(k). (13.5)

Thus the low-energy quasiparticles around K and K ′ obey Dirac-like equation
with vF replacing the speed of light c.

The above discussion brings out how the details of band structure and
the underlying lattice structure of a non-interacting system of electrons may
lead to effective Dirac-like nature of its low-energy quasiparticles. These quasi-
particles have qualitatively different properties compared to their Schrodinger
counterpart. We shall list some of them in Sec. 13.2.3; but before that let us
look into one more system where the topology of the bulk band structure of a
3D solid may lead to Dirac-like quasiparticles at the edge.

13.2.2 Topological Insulators

The topological properties of the bulk electronic spectrum often lead to inter-
esting properties at the edge of a system; this perispomenon goes by the name
of the bulk-boundary correspondence. There are several important examples of
this phenomenon in condensed matter system.

The first and probably the simplest example of this phenomenon is the
well-known quantum Hall effect. In these systems, the presence of an external
magnetic field breaks time-reversal symmetry in the bulk and lead to a finite
Hall conductance σ0 = ne2/h, where n is an integer for integer Hall effect and
could be fractional for fractional Hall effect. The action describing the system
must therefore, when probed by external electromagnetic field, contain a term

S ∼ σ0

∫
d2r dt εµνλ Aµ∂νAλ, (13.6)

where εµνλ is the anti-symmetric tensor. Now let us consider that the quantum
Hall sample is finite and let us demand that S must be gauge-invariant. Making
the transformation Aµ → Aµ+∂µΛ, we find that we are left with an additional
surface term

δS ∼ σ0εµνλ

∫
dxµ dt Λ ∂νAλ. (13.7)

This term is usually non-zero since there is no reason (unlike the case in infinite
systems) for the applied electromagnetic fields to vanish at the sample edge.
However, this seems to lead us to a gauge-dependent action which is clearly
nonsense. The only resolution out of this conundrum is to allow for additional
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modes localized at the edge such that its action, under the same gauge trans-
formation, cancels δS. Thus we are forced by the gauge invariance principle to
the conclusion that time reversal symmetry breaking in the bulk of a system
must lead to additional modes at the sample edge.

Once this connection between symmetry breaking in the bulk and the
presence of chiral edge modes is understood, it is natural to look for instances
where this can take place. In particular, the question asked by the community
at this point was whether such a bulk-edge correspondence be achieved without
breaking time-reversal symmetry. The answer to this query is affirmative and
can be understood by considering systems with strong spin-orbit coupling. To
see the connection, let us consider a 2D system of electrons in the x-y plane
with a spin-orbit coupling term with strength α

HSO = α

∫
d2r ψ†LzSzψ(r),

Lz = (xpy − ypx), and ψ†(r) = (ψ†↑(r), ψ
†
↓(r)). (13.8)

The total Hamiltonian of the system can be written as

H =

∫
d2r ψ†(r)

(
p2

2m
I + αLzSz

)
ψ(r) (13.9)

=

∫
d2r ψ†(r)

[
(px −mαysz)2 + (py +mαxsz)

2
]

2m
ψ(r),

where we have neglected terms O(α2) which are usually small. Thus we find that
H takes the form of a Hamiltonian of electrons in the presence of an effective
magnetic field along z but with opposite direction for each spin species. Thus,
just as electrons in the presence of a magnetic field exhibits chiral edge states,
the present systems will have two chiral edge states carrying opposite spins and
with opposite velocities. Note that this system does not break time-reversal
symmetry; the edge states do not carry any net charge. However, they do carry
a net spin-current. Such systems are called spin-Hall systems and they exhibit
a quantized spin-Hall conductance.

Topological insulators turn out to be 3D counterparts of spin-Hall insu-
lators. In these systems the presence of strong spin-orbit coupling and time
reversal symmetry results in energy bands to occur in pair (known as Kramer’s
pairs) which satisfy Eσ(k) = Eσ̄(−k). Such bands can only cross at momenta
k∗ = 0,G/2, where G is the reciprocal lattice vector of the system. These cross-
ings turn out to play an important part in band topology and can be shown to
lead to gapless states at the edge whose quasiparticles obey an effective Dirac
Hamiltonian. The details of how this happens can be found in Ref. [1]. Here,
we merely note that the bulk-band correspondence in these systems do lead
to presence of Dirac fermions at the surface. The Hamiltonian of the Dirac
fermions atop a topological insulator surface can be written as

HDirac = ~vF
∫

d2k

(2π)2
ψ†(k)[ẑ · (σ × k)]ψ(k) (13.10)
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where ψ†(k) = (ψ†↑(k), ψ†↓(k)) is a two-component electron creation operator,
vF is the Fermi velocity of the surface electrons, σ = (σx, σy, σz) is the Pauli
matrix, and we have denoted the direction orthogonal to the surface as ẑ.

13.2.3 Properties of Dirac quasiparticles

Several properties of the Dirac quasiparticles discussed in the last section is
significantly different from their Schrodinger counterparts. We shall discuss
three such properties in this section.

The first of these concerns helicity of the Dirac electrons which is well-
known for massless relativistic fermions in particle physics. To see how this
appears in the present context, let us consider Dirac electrons on the surface
of graphene whose Hamiltonian is given by Eq. 13.5. The eigenfunctions of
the quasiparticles obeying this Hamiltonian can be obtained by solving the
associated Dirac equation HDiracψ = Eψ and is given by

ψ = (u, v) = (1,± exp(±iθ)), (13.11)

where +(−) signs correspond to electrons in the K(K ′) valleys and θ =
arctan(ky/kx). Note that if the electrons moves along x, ky = 0 and in this
case its eigenfunctions is (1,±1). This implies that the pseudospin of a quasi-
particle in K(K ′) valley points along (opposite to) x. One can repeat this cal-
culation for any direction of electrons opposite with the same result, namely,
the pseudospin of these quasiparticles in K(K ′) valley point along (opposite
to) their direction of motion. This property is qualitatively different from that
of a Schrodinger quasiparticle for which there is no connection between spin
and direction of motion. An analogous calculation with the Dirac Hamiltonian
for quasiparticles atop a topological insulator surface (Eq. 13.10) yields

ψ = (u, v) = (1, i exp(iθ)). (13.12)

In this case, the spin of the electron points orthogonal to its direction of motion.
The second property concerns Dirac electrons atop a topological insulator

surface in the presence of a magnetic field parallel to the surface. To see how the
behavior of Dirac electrons differ from their Schrodinger counterparts in such a
situation, we consider the Dirac Hamiltonian given in Eq. 13.10 in the presence
of a magnetic field along x: B = B0x̂. Since the field is applied parallel to the
plane, it is not going to affect the orbital motion of the electrons irrespective of
whether they obey Schrodinger or Dirac equations. This can be best understood
by noting that the vector potential of the applied field may be chosen to just
have Az 6= 0 in which case the field does not couple to any in plane momenta
operators. However, the spin of the electrons still sees the applied field through
a Zeeman term; for Schrodinger electrons, one may simply choose the spin
quantization axis of the electrons along the field direction leading to

HSch
Z =

∫
d2k ψ†(k)gµBB0σzψ(k),
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where µB is the Bohr magneton and g is the gyromagnetic ratio. This term
is responsible for Zeeman splitting of electron energy levels. However, for a
quasiparticle obeying Dirac equations, one can not choose the spin quantization
axis along the magnetic field since in writing Eq. 13.10, one has already chosen
that axis to be along z. Thus the form of the Zeeman term becomes

HDir
Z =

∫
d2k ψ†(k)gµBBσxψ(k).

Thus the total Hamiltonian in the presence of the applied field becomes

HDirac = ~vF
∫

d2k

(2π)2
ψ†(k)[σx(ky − βB0)− σyky]ψ(k),

where β = gµB/(~vF ). This demonstrates that a constant applied field along
the plane simply leads to a constant shift in kx (or ky or both depending on
the field direction); thus such a field appears as a constant gauge potential
to the Dirac quasiparticles and can not change its energy spectrum. We note
here, however, that if the applied field has appropriate spatial dependence (for
example if B0 ≡ B0(y)), the Dirac quasiparticle will perceive its effect as the
gauge potential of a (fictitious) magnetic field along z. Here the word “fictitious”
is to be understood in the sense that the field is not prepared in the laboratory;
however, we note that its effect can lead to measurable effect in motion of
the Dirac quasiparticles. We also note that for this effect to occur, the Dirac
electrons must have a matrix structure in spin space; thus an applied magnetic
field do not lead to similar behavior for graphene electrons which are Dirac
pseudo-spinors. In their case, an applied strain field may have similar effect.

Finally, we discuss the transmission properties of the Dirac quasiparticles
in the presence of a potential barrier. The simplest barrier that can be used
to demonstrate the difference between Schrodinger and Dirac quasiparticles is
the square potential barrier: V = V0 for 0 ≤ x ≤ d and V = 0 otherwise. In
what follows, we wish to compute the transmission probability of an electron
approaching the barrier with a fixed energy E < V0.

For a classical particle which undergoes deterministic Newtonian dynam-
ics the transmission probability turns out to be zero since the particle will
always bounce back after scattering from the potential barrier. This is exactly
analogous to throwing a ball at a wall; if the height of the ball is less that of the
wall, the ball will bounce back with unit probability. For Schrodinger electrons,
which obeys non-relativistic Schrodinger equation, the probability turns out to
be finite. A straightforward textbook calculation shows that the transmission
probability is given by

TSch =

[
1 +

(
k2 + χ2

2χk

)2

sinh2(χ)

]−1

, (13.13)

χ =
2d(V0 − E)

~vd
, vd =

~
md

, k2 =
2mEd2

~2
.
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We note that for V0 � E, TSch is a monotonically decreasing function of V0

which seems to give us the intuitively expected answer that the probability of
tunneling through a barrier decreases with its height.

This intuition essentially fails for a quasiparticle which obeys Dirac equa-
tion. Let us consider that a Dirac quasiparticle travels form region I to the
barrier and it gets transmitted with a probability TDir. A straightforward
calculation shows that in the thin barrier limit (V0 → ∞ and d → 0 with
χ0 = V0d/(~vF ) held finite) yields

TDir =
cos2 γ

1− cos2 χ sin2 γ
, (13.14)

where γ = arctan(ky/kx) is the angle at which the incident particle hits the
barrier. We note that TDir is an oscillatory function of the barrier strength
and it reaches unity for χ = nπ; this phenomenon is known as transmission
resonance of Dirac electrons which has no analog for Schrodinger electrons in
the presence of a single barrier.

Finally, we note from the expression of TDir that the transmission becomes
unity for any barrier strength provided the electrons approaches the barrier with
normal incidence (γ = 0). This paradoxical result goes by the name of Klein
paradox and was discovered by Klein right after the discovery of Dirac equation.
One way to understand this paradoxical result is the following. Consider an
electron approaching the barrier at normal incidence. This implies, that its
spin or pseudospin points at a fixed angle with its direction of motion. If the
barrier has to reflect the electron which has a fixed helicity, it will also have
to flip its spin or pseudospin upon scattering. However, the barrier potential
that we have chosen does not depend on the electron’s spin or pseudospin; in
other words, its a scalar in spin or pseudospin space. Its an elementary result
in quantum scattering theory that scattering from such barriers can never flip
spin or pseudospin. Thus the barrier has no choice but to let the electron with
γ = 0 pass which leads to unit transmission. This phenomenon depends the
presence of a fixed helicity of an electron and thus does not occur in case of
Schrodinger electrons.

13.3 Majorana modes in unconventional superconductors

Majorana fermions were first proposed in the late thirties by Ettore Majorana
who found real valued wavefunctions as solutions of Dirac equations which
represented fermionic particles which are their own antiparticles. Majorana
fermions in the context of high energy physics have not been detected yet;
they, however, are candidate particles for several cases including neutrinos and
dark matter. In all of these instances, they are neutral fermionic particles which
can be represented by real fields.

In contrast Majorana modes in condensed matter are emergent fermionic
states at zero energy in a many-body system in 2D systems which have non-
Abelian statistics and can be represented by real-valued wavefunctions. To see
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how such modes may appear, we shall look at the edge states of unconventional
superconductors with p-wave pairing symmetry. We shall also assume that the
pairing occurs in the triplet channel with mz = 1 (equal spin pairing); in this
case the Bogoliubov- de Gennes (BdG) equations describing the quasiparticles
of the superconductor can be written as

Ekψk = [(εk − µ)τ3 + ∆kτ1]ψk, (13.15)

where εk = ~2k2/2m is the energy dispersion of the electrons in the super-
conductor, µ is the chemical potential, ∆k = ∆0kx/kF is the superconducting
pair-potential, kx is the x component of kF , τ3 and τ1 are Pauli matrices in
the particle-hole space, and ψk = (uk, vk) is the two component wavefunc-
tion describing the BdG quasiparticles. These quasiparticles, in the bulk of the
superconductor has an energy Ek = ±

√
(εk − µ)2 + ∆2

k. Note the spectrum
of these quasipartciles is gapped at all points on the Fermi surface except at
(kx, ky) = (±kF , 0) where the gap closes. These states are extended and can
not occur for Ek < |∆k|. In what follows, we are going to take an example.

This situation changes when we try to solve the BdG equation with an
edge at x = 0. Here we need to use the boundary condition that ψ(x = 0) = 0.
The most natural way to incorporate such a boundary condition is to write the
wavefunction as a superposition of left and right moving waves generated due to
reflection from the edge at x = 0. It turns out that such wavefunctions admit a
zero energy solution of the Bogoliubov equations with E = 0 and ψ ∼ exp[−κx],
where κ = ∆0/~vF is the inverse of the localization length. The presence of
such states crucially depend on the fact that a quasiparticle reflected from the
barrier leading to a reversal of the sign of its momenta (kx → −kx) sees a
different sign of the pair-potential. These states do not mix with the bulk state
due to the presence of the superconducting energy gap, and are hence stable.

The creation of operator for a BdG quasipartciles are given by γ†k =

u∗kc
†
k + vkc−k. For the edge modes, it turns out that u = v = 1/

√
2, so that

γ† = γ. This indicates that these quasiparticles are their own anti-particles.
Thus these localized states represents Majorana modes. Also these modes are
charge neutral; this can be understood by noting the fact that u and v represent
the electron and the hole amplitudes of a BdG quasiparticle.

The detection of such Majorana modes are done through several ways.
We shall first discuss the possibility of the detection of such modes using tun-
neling conductance (G) measurement in this article. In a typical experiment
such measurement is carried across a N-B-S junction where a normal metal-
lic region (N) is fused with the superconductor (S) with a barrier (B) region
separating the two. The tunneling conductance of such a junction for a given
energy eV of the incident electrons, in the limit of large barrier strength, reflects
the density of states ρ(eV ). Clearly, in the absence of any zero energy states,
the tunneling conductance will then be zero for subgap voltages (eV < ∆0).,
In contrast, if these states are present G(eV ) will show a peak at zero energy.
Theoretical calculations, following standard Landauer-Butticker approach, pre-
dicts that G(eV = 0) = 2e2/h if a Majorana mode is present and G(eV ) ' 0
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if it is absent. This prediction has recently been tested in experiments where
the presence of a midgap state is verified in 1D wires with strong spin-orbit
coupling and proximity-induced superconductivity. However, it turns out that
it is not entirely clear if the peak occurs due to presence of Majorana modes; for
example, the amplitudes of these peaks turn out, for yet unexplained reason,
to be 0.2e2/h.

Another phase sensitive detection of Majorana modes occur through
Josephson current measurements. It turns out that for Josephson junctions
made out of superconductors which hosts zero energy states, the Josephson
current becomes a 4π periodic function of the phase difference between the su-
perconductors: IdcJ = ∆0 sin(φ/2). Since in any standard junction, the presence
of a DC voltage leads to φ = 2eV t/~, these junctions exhibit AC Josephson ef-
fect at a fractional frequency IACJ = ∆0 sin(ωJ t) with ωJ = eV/~. This leads to
what is dubbed as fractional Josephson effect. Moreover, when such junctions
are irradiated with microwave radiation of frequency ω, only even Shapiro steps
occur at 2eV = 2n~ω (as opposed to standard Shapiro steps for conventional
superconductors at 2eV = n~ω). The absence of odd Shapiro steps has been
seen in recent experiments with 1D superconducting wires and this constitutes
the most robust experimental signature of Majorana modes.

In conclusion, we have provided a brief overview of the physics of Dirac
quasiparticles and Majorana modes in condensed matter systems. These quasi-
particles and modes appear as emergent modes; the reason for their appearance
may be traced to either properties of band-structure of the system or topological
properties of the bulk which, via bulk-boundary correspondence, lead to gapless
states at the edge of the system. These quasiparticle and modes have strikingly
different properties from those of their Schrodinger counterparts. Such proper-
ties can be tested in table-top experiments thus leading us to first experimental
observation of Dirac and Majorana physics. Moreover, the presence of interac-
tion between these quasiparticles allows us to study the result of combination of
many-body interaction and Dirac/Majorana nature of quasiparticles. For more
details on these subject we refer the readers to several review articles on the
subject [2–5].
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Vertex Models and Knot invariants

P. Ramadevi

Knots are closed non-self-intersecting curves in three dimensional
space. In order to classify knots, we require quantitative description
which are called ‘knot invariants.’ Well-known knot invariants are
Alexander polynomial, Jones’ polynomial, Kauffman and HOMFLY-
PT polynomials. We will briefly recapitulate the salient features of
knots . Then we will present the computation of Jones’ polynomial
for a knot. As these knots can be obtained from braids, we can re-
produce knot invariants using braid groups and their representations.
Six vertex model corresponds to placing spin half states on the edges
of a square lattice. Using the Boltzmann weights corresponding to
the six vertex model, we review a braid group representation and the
construction of Jones’ polynomials. This procedure can be applied to
higher spins placed on the edges of the square lattice which we will
briefly summarize.

14.1 Introduction

In the 19th century, Lord Kelvin [1,2] thought that the atoms are to be viewed
as vortex lines intertwined in the homogeneous ether medium. Contemporary
physicist Tait attempted writing the periodic table of vortex like atoms as pe-
riodic table of knots leading to knot tables. Once the presence of ether medium
was ruled out, the study of knots were no longer pursued by physicists. In fact,
these ideas led to the emergence of a new research area called ‘knot theory’
investigated by mathematicians leading to the construction of knot polynomi-
als [3–5]. The exciting work of Witten [6] showed that a topological quantum
field theory known as ‘Chern-Simons field theory’ provided a natural arena for
the study of knots. This probably motivated physicists to work again in the
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M3

31

(a) (b)

+

+
+

Figure 14.1: Trefoil knot

area of knot theory from late eighties. Particularly, the physicists attempted
the construction of the knot polynomials from statistical mechanical models [7],
topological quantum field theory and rational conformal field theory. Thus the
area of knot theory has been a meeting ground for both physicists and mathe-
maticians. Our theme in this set of lectures is to highlight the construction of
knot polynomials from vertex models. In the following section, we will briefly
recapitulate salient features of knots and links and the computation of knot
polynomials.

14.2 Salient Features of Knots

Mathematically, a knot is an embedding of a circle S1 in a three-manifold M3.
In Fig. 14.1(a), we have illustrated a knot called ‘trefoil’ embedded in a three
manifold. Clearly the topological nature of the knot is independent of shape or
size. Links are collection of many such non-intersecting knots. These knots can
be drawn as projections onto a two-dimensional plane with over crossing and
under crossings as drawn in Fig. 14.1(b). The number of minimal crossings is
called crossing number. Rolfsen knot tables [8] gives the table of knots in the
increasing order of crossing number. For instance, the three crossing trefoil is
denoted as 31 and subscript denotes a specific inequivalent knot. There are in
fact two inequivalent five crossing knots denoted as 51, 52 in the Rolfsen table.
Clearly, crossing number is not a good knot invariant.

In Fig. 14.1(b), we have placed an arrow(orientation) on the trefoil and
assigned σ = +1 to each of the crossing. For a general knot, we can assign a
sign σ = ±1 depending upon whether the crossing is right handed (+) or left
handed (-). Writhe ω of any knot is defined as the sum of the crossing signs
of the knot. Even though ‘writhe’ is a knot invariant, there are more than one
sharing the same value. Therefore, writhe ω are referred to as ‘weak invariants’.

It is one of the challenging problems to determine whether any two knots
are topologically equivalent or inequivalent. For example, see Fig. 14.2(a) and
deduce whether the two knots are equivalent or inequivalent. Interestingly, there
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I

II

III

(a) (b)

??

Figure 14.2: (a) Equivalence of knots through (b) Reidmeister moves

is a prescribed set of moves called Reidmeister moves as shown in Fig. 14.2(b)
performed on one knot. If the second knot is obtained by this set of three
moves, we consider that the two knots are equivalent. Definitely, this is a tedious
process. We need a quantitative description for deducing topological equivalence
of two knots. Such a quantity is called ‘knot invariant’. The construction of knot
invariant must incorporate the fact that the invariant remains same under these
Reidmeister moves.

There are skein/recursion relation giving well known polynomial invari-
ants for knots and links. They were put forth by mathematicians. Alexander
polynomial ∆(K) [3] is the first one variable knot invariant which distinguished
many inequivalent knots K. Unfortunately, the polynomial is same for many
knots and their mirror images. After nearly 60 years, Jones’ [4] came up with
another recursive relation whose polynomials J(K)are different for many knots
and their mirror images. Later on, two-variable generalization of skein relations
of Jones’ were given independently by six mathematicians and the polynomial
is known as HOMFLY-PT [5] P (K). Around the same time, unoriented knot
polynomials with a modified recursion relation involving two variables was given
by Kauffman [9].

+ - 0

(a) (b) (c)

Figure 14.3: (a) Overcrossing (b) Undercrossing (c) No crossing

Concentrating on any particular crossing of a knot, we can write the skein
relations between involving three knots K+, K− and K0 where the subscript
denotes overcrossing, undercrossing and no crossing as indicated in Fig. 14.3.
The skein relations of Alexander polynomial, Jones’ and HOMFLY-PT are as
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follows:

∆(K+)−∆(K−) = (q
1
2 − q− 1

2 )∆(K0) (14.1)

q−1J(K+)− qJ(K−) = (q
1
2 − q− 1

2 )J(K0) (14.2)

a−1P (K+)− a(K−) = (q
1
2 − q− 1

2 )P (K0) (14.3)

We observe from the tables for these well known knot polynomials, this recursive
approach takes care of same polynomial invariants for equivalent knots but does
not guarantee the converse. There are many inequivalent knots sharing the same
polynomials. In this sense, these well known polynomial invariants do not give
one to one onto map to inequivalent knots. This is the famous ‘classification
problem of knots’ which calls for some radical approach. It appears that the
methods in physics suggest a possibility leading to improving classification of
knots. For completeness and some hands on exposure on evaluating Jones’
polynomial, we show the calculation of trefoil knot polynomial. We normalize
the unknot polynomial J [©] = 1 and compute Hopf link and then the trefoil
as illustrated below:

J [ ] = J[ ] J[ ]q2 q3/2-q1/2+

-q1/2 (q2+1)

J [ ] = J [ ]q2 J [ ]
=

 = q3+q-q4

+ q3/2-q1/2

=1= -(q1/2+q-1/2 )

= 1 -q1/2 (q2+1)= 

Hopf Link

31 knot

14.3 Knots from braids

These knots can be constructed from closure of braids. Take n identical parti-
cles on a plane, there are two independent exchanges between ith particle and
i+1th particle (See Ref. [10]). In fact, the clockwise and anticlockwise exchange
is indicated as under crossing and over crossing respectively. Mathematically,



14.3. Knots from braids 347

we denote this exchange as bi for clockwise exchange and inverse b−1
i for anti-

clockwise exchange. Any arbitrary exchange is given by a word involving bi’s
and their inverses. These bi’s are called generators of a group Bn commonly
known as braid group. All braid words are not independent and are subjected
to the following defining relations:

bibj = bjbi if |i− j| > 1; bibi+1bi = bi+1bibi+1 . (14.4)

We will see in the next section that the trilinear relation is similar to the Yang-
Baxter equation which appears in the context of integrable vertex models [11].

The knots can be obtained from braids by identifying the initial state
of n identical particles before exchange with the final state of these particles
after exchange (also known as closure). This is sometimes denoted as a trace
operation of a braid word.

Figure 14.4: Closure of braids

We have illustrated above the closure of the braid word b1 ∈ B2 giving a simple
circle known as ‘unknot’. Similarly the braid word b31 ∈ B2 gives trefoil knot
and braid word b1b

−1
2 b1b

−1
2 ∈ B3 gives figure-eight knot.

It is important to stress that the braid to knot is not one to one but
there is a definite set of moves called Markov moves which removes this non-
uniqueness as indicated in Fig. 14.5. Concatenating braid word A ∈ Bn with
B ∈ Bn will give braid word AB. Similarly concatenating B with A will give
different braid word BA. These two braid words are related by Markov move
I. Under closure, both braid words will give the same knot. Markov move II
corresponds to combining b±1

n to any braid word A ∈ Bn and this operation
will not change the knot.

Hence construction of knot invariants involves taking a braid group rep-
resentation and defining a trace operation which is unchanged under Markov
moves. In the next section we will elaborate on the braid group representations
from vertex models and the formula enabling evaluation of knot invariants.
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A

B

A A A

B

A

(a) (b)

Figure 14.5: (a) Markov move I (b) Markov move II

Hydrogen

Oxygen

Figure 14.6: Ice-type model

14.4 Vertex model

In the following section, we will briefly review a statistical mechanical model
with the aim of constructing braid group representation. This will enable com-
putation of knot polynomials directly by postulating a suitable trace operation
on the braid group elements which remain unaltered under Markov moves.

14.5 Ice Type model

Ice-type model is a well known square lattice model where every vertex in the
lattice has an oxygen atom. The hydrogen atoms are placed on the four edges
intersecting every vertex such that two of them are near and the other two
atoms are far away from oxygen atom. This is depicted in Fig. 14.6 where
the arrows provide equivalent presentation. That is, near hydrogen atoms is
replaced by arrows going into the vertex and similarly far away hydrogen atoms
is replaced by outgoing arrow from the vertex. Clearly, the arrows on the four



14.5. Ice Type model 349

Figure 14.7: N -state Vertex model

edges intersecting every vertex satisfy the following arrow rule: the number of
ingoing arrows equals the number of outgoing arrows.

The above lattice model can be generalized to N state vertex model where
we place the possible states of spin n = (N − 1)/2 on the edges denoted by
Greek letter µi, αi, βi, νi, γi ∈ {n, n− 1, . . .− n} in Fig. 14.7. The arrow rule is
generalized to the conservation of spin states for the edges intersecting every
vertex. The Boltzmann weight associated to the vertex in Fig. 14.8 will be
w(µ1, α1|β1, µ2) which is non-zero if and only if the spin conservation µ1 +
α1 = β1 + µ2 is satisfied. We will discuss in detail the vertex model with spin
n = 1/2. There are two possible states at every edge denoted as ± ≡ ±1/2. Spin
conservation allows six possible vertex configurations as drawn in Fig. 14.9.

µ1

β1

α1

µ2

Figure 14.8: Boltzmann weight w(µ1, α1|β1, µ2) for the vertex

Sometimes, the N = 2 vertex model, where the edges have spin 1/2 states, is
also referred to as six vertex model as there are six non-zero Boltzmann weights.
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Figure 14.9: Allowed Boltzmann weights for six vertex model

14.5.1 Six vertex model

We will now study the construction of braid group representation from the
Boltzmann weights of the vertex model. For completeness, let us tabulate the
non-zero Boltzmann weights for this model after imposing symmetry(valid in
the absence of external field) w(µ1, α1|β1, µ2) = w(−µ1,−α1| − β1,−µ2):

µ1, α1\β1, µ2 → ++ +− −+ −−
++ a 0 0 0

+− 0 b c 0

−+ 0 c b 0

−− 0 0 0 a

where the explicit form of a, b, c in terms of energies εi at temperature T =
β−1/kB (kB is Boltzmann constant) are

w(+ + |+ +) = w(−− | − −) = a = exp (−ε1β)

w(+− |+−) = w(−+ | −+) = b = exp (−ε2β)

w(+− | −+) = w(−+ |+−) = c = exp (−ε3β) (14.5)

Formally, the partition function Z describing the vertex model will be

Z =
∑

i

e−βEi
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where the summation i is over all possible configurations of the spin states ±
on the edges and Ei is the energy for the ith configuration. Equivalently, we
can introduce row to row transfer matrix Vαβ

Vαβαβαβ =
∑

µ1µ2...µN

w(µ1 α1|β1 µ2)w(µ2 α2|β2 µ3) . . .

and rewrite Z as

Z =
∑

αi1α
i
2...α

i
N

Vα1α2α1α2α1α2 Vα2α3α2α3α2α3 . . . VαNα1αNα1αNα1 = Tr(V N ) = λNmax

where λmax is the maximum eigenvalue of the transfer matrix Vαβ . Attempting
to find the eigenvectors and eigenvalues of the transfer matrix shows that the
Boltzmann weights are parametrized in the following manner [11]:

a : b : c = sinh(λ− u) : sinh(λ) : sinh(λ+ u)

Further the solutions for the eigenvectors are dependent on

∆ = (a2 − b2 + c2)/(2ac) = − cosh(λ) (14.6)

This gives the freedom of choosing infinite number of transfer matrices V (u)
parametrized by u possessing the same eigenvectors. The parameter u is usually
called spectral parameter. Equivalently, we can say that there are infinite family
of commuting transfer matrices

V (u)V (v) = V (v)V (u) . (14.7)

The above commutative condition on the transfer matrices will imply trilinear
relation involving Boltzmann weights (see Chapter 9 in [11]) known as Yang-
Baxter equation:

Xi+1(u)Xi(u+ v)Xi+1(v) = Xi(v)Xi+1(u+ v)Xi(u) , (14.8)

where Xi(u), known as Yang-Baxter operator, in terms of Boltzmann weights
is

(Xi)αβαβαβ = δα1β1
δα2β2

. . . w(αi, αi+1|βiβi+1)δαi+2βi+2
. . .

Interestingly, the Yang-Baxter equation (14.8) resembles braid group relation
(14.4) if we remove the dependence on the spectral parameter. We need to
take a suitable limit of the spectral parameters and check whether the Yang-
Baxter operator approaches a finite value. Taking the limit u, v, u+ v →∞ on
Yang-Baxter operator Xi(u), we need to obtain finite operator:

lim
u→∞

Xi(u) = bi

where bi is the braid group generator. In order achieve such a finite operator
bi, we perform the following asymmetrization on the Boltzmann weights

w̃(α1, α2|β1β2)) = exp {µu(α2 − α1 − β1 + β2)}w(α1, α2|β1β2) (14.9)
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which satisfies Yang-Baxter equation (14.8). We will take a suitable choice
for the parameter µ so that we get a finite bi as spectral parameter u tends
to infinity. Using this asymmetrization condition, the new Boltzmann weights
w̃(α1, α2|β1β2) will be

α1, α2\β1β2 → ++ +− −+ −−
++ a 0 0 0

+− 0 c̃1 c 0

−+ 0 c c̃2 0

−− 0 0 0 a

where c̃1 = b exp {−2µu} ; c̃2 = b exp {2µu} . Taking u → ∞, µ = 1/2 and
exp (2λ) = q and suitable normalization, we get following finite limit on the
Boltzmann weights:

lim
u→∞

w(α1, α2|β1β2)

w(+ + |+ +)
= σ(α1, α2|β1β2)

which is tabulated below:

σ(α1, α2|β1β2) =

α1, α2\β1β2 ++ +− −+ −−
++ 1 0 0 0

+− 0 0 −q1/2 0

−+ 0 −q1/2 1− q 0

−− 0 0 0 1

The above 4× 4 matrix satisfies the following relation:

σ2 = (1− q)σ + q . (14.10)

We can define the braiding generators bi’s involving σ- matrices as

bi = lim
u→∞

Xi(u) = I⊗ I . . .⊗ Ii−1 ⊗ σ4×4 ⊗ Ii+2 ⊗ . . . (14.11)

From the above two equations, we can deduce

b2i = (1− q)bi + qI .

Applying this relation on any undercrossing of a knot, drawn as closure of braid,
will reproduce skein relation (14.3) giving Jones’ polynomials.

So far, we have reviewed the derivation of matrix representation for a braid
group generators from the six vertex model Boltzmann weights. We would like
to attempt a direct construction of a polynomial invariant for knots without
going through the skein relation approach. Basically, an algebraic formula for
knots, obtained from braids, must be written such that the formula is un-
changed when we perform Markov moves I and II. For a braid word A ∈ Bn
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the following algebraic formula α(A) respects Markov moves and hence can be
called knot invariant [7]:

α(A) = (τ τ̄)−(n−1)
( τ̄
τ

)(e/2)

φ(A) (14.12)

where e is the exponent sum of the bi’s appearing in the braid word A, τ =
1/(1 + q) and τ̄ = q/(1 + q). Here φ(A), referred to as Markov trace, can be
computed as

φ(A) = Tr{HA} (14.13)

where H is a tensor product of 2× 2 matrix h

H = h⊗ h⊗ h⊗ . . . h︸ ︷︷ ︸
n

with the entries of h matrix as follows:

h =
1

(1 + q)

(
1 0
0 q

)
.

14.5.2 Knot Polynomials

We shall evaluate the knot polynomials directly using the above data in for-
mula (14.12) for some knots drawn in Fig. 14.4. In fact, unknot and trefoil are
obtained from closure of two-strand braid. So we will have only powers of the
generator b1 ∈ Bn=2 to compute α(A) where A ∈ Bn=2. For braid group B2,
b1 ≡ σ:

b1 =




1 0 0 0
0 0 −√q 0
0 −√q 1− q 0
0 0 0 1




For trefoil, whose braid word is b31, e = 3. It is straightforward to write the
matrix for braid word b31. Multiply matrix b31 with h⊗ h

H = h⊗ h =




1
(1+q)2 0 0 0

0 q
(1+q)2 0 0

0 0 q
(1+q)2 0

0 0 0 q2

(1+q)2




to give a 4 × 4 matrix whose trace will give φ(b31). The final answer for the
trefoil (Eq. 14.12) is

α(b31) = q + q3 − q4 (14.14)

For unknot, whose braid word is A = b1 in Fig. 14.4, the invariant α(b1) = 1.
The next knot in the knot table is figure-eight with four crossings. Here

the braid word involves both b1, b2 and hence the braid group is Bn=3. The
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explicit matrix form for the two generators ( b1 = σ ⊗ I2X2, b2 = I2X2 ⊗ σ) of
Bn=3 will be 8× 8 matrix:

b1 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 −√q 0 0 0
0 0 0 0 0 −√q 0 0
0 0 −√q 0 1− q 0 0 0
0 0 0 −√q 0 1− q 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




;

b2 =




1 0 0 0 0 0 0 0
0 0 −√q 0 0 0 0 0
0 −√q 1− q 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 −√q 0
0 0 0 0 0 −√q 1− q 0
0 0 0 0 0 0 0 1




The 8× 8 matrix form for the braid word A = b1b
−1
2 b1b

−1
2 , corresponding

to figure-eight knot, can be obtained using the b1 and b2 matrices. Multiplying
the matrix corresponding to A with the H = h⊗ h⊗ h

H =




1
(1+q)3 0 0 0 0 0 0 0

0 q
(1+q)3 0 0 0 0 0 0

0 0 q
(1+q)3 0 0 0 0 0

0 0 0 q2

(1+q)3 0 0 0 0

0 0 0 0 q
(1+q)3 0 0 0

0 0 0 0 0 q2

(1+q)3 0 0

0 0 0 0 0 0 q2

(1+q)3 0

0 0 0 0 0 0 0 q3

(1+q)3




and taking trace will determine Tr(HA). The exponent sum e = 0 for figure-
eight knot and the polynomial invariant turns out to be

α(41) = 1 + q−2 − q−1 − q + q2 . (14.15)

We hope the direct evaluation of knot polynomials which we have elaborated
for trefoil and figure-eight clarifies the necessary mathematical steps to deter-
mine polynomials for arbitrary knots obtained from braids. These polynomials,
obtained from braid group representation derived using six-vertex model, are
the Jones’ polynomials.
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This methodology can be generalized to N -state vertex model. We will
briefly discuss the construction of braid group representation from N = 3 state
vertex model where we place spin 1 states ±1, 0 on the edges of the square
lattice. It is a simple exercise to check that there are nineteen allowed vertices
obeying spin conservation for N = 3 vertex model. Hence nineteen non-zero
Boltzmann weights leading to the nomenclature ‘nineteen vertex model’.

14.5.3 Nineteen vertex model (Spin-1 particles)

Just like the way we did a suitable asymmetrization and normalization to six-
vertex model Boltzmann weights to obtain braid generators bi’s, we could ob-
tain the braid generators from nineteen vertex model Boltzmann weights. The
matrix form for σ(α1, β1|α2, β2) will be 9× 9 matrix

σ =




1 0 0 0 0 0 0 0 0
0 0 0 −q 0 0 0 0 0
0 0 0 0 0 0 q2 0 0
0 −q 0 1− q2 0 0 0 0 0
0 0 0 0 q 0 −√q + q5/2 0 0
0 0 0 0 0 0 0 −q 0
0 0 q2 0 −√q + q5/2 0 1− q − q2 + q3 0 0
0 0 0 0 0 −q 0 1− q2 0
0 0 0 0 0 0 0 0 1




The matrix h involved in Markov trace for the three state system will be 3× 3
matrix:

h =
1

(1 + q + q2)




1 0 0
0 q 0
0 0 q2




Similar to six vertex model, we will take H = h ⊗ h which is 9 × 9 matrix for
evaluation of Markov trace Tr(HA) for braid words A ∈ B2. The values of τ
and τ̄ will be

1

1 + q + q2
, and

q2

1 + q + q2
,

respectively. With this data, we can work out the knot polynomials for tre-
foil using the braid group representation obtained from nineteen vertex model
Boltzmann weights.

For figure-eight, the braid word is an element of braid group B3. We
need to use 27 × 27 matrix representation for the two braiding generators:
b1 = σ ⊗ I3×3 and b2 = I3×3 ⊗ σ and H = h ⊗ h ⊗ h which is again 27 × 27.
Using these matrix representation, knot invariant for any braid word A ∈ B3

can be computed. For completeness, we tabulate the polynomials obtained from
braid group representation using nineteen vertex model Boltzmann weights.
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These polynomials are different from Jones’ polynomial and they agree with
two-variable Kauffman polynomials for a specific choice of the variables. In
ref. [12], for knots obtained from braid words in B3, polynomials are computed
and listed.

14.6 Summary and Discussions

In this chapter we have discussed the construction of braid group representation
using the Boltzmann weights of N -state vertex model. In particular, we have
elaborated on the matrix representation of braiding generators from six vertex
model. Using an algebraic formula (Eq. 14.12) for knot invariants, we have
explicitly evaluated Jones’ polynomial for trefoil and figure-eight. Finally, we
have indicated the approach for nineteen vertex models and tabulated the knot
polynomials for unknot, trefoil and figure-eight.

There is a neat reverse method of constructing spectral parameter depen-
dent Yang-Baxter operator for many new exactly solvable models beyond the
already known six, nineteen, forty-four vertex models. This is achieved by us-
ing infinitely many new braiding eigenvalues obtained from the study of knots
and links through Chern-Simons theory(see section 4 in Ref. [13]). In fact, this
reverse approach suggest a way of deriving Yang-Baxter operators Xi(u)’s for
new solvable models which appears difficult to be obtained by conventional
methods [11].
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15

Concepts of polymer statistical
topology

Sergei Nechaev

This chapter reviews a few conceptual steps in an analytic de-
scription of topological interactions involving topology and statistical
physics of fluctuating non-phantom rope-like objects. The main in-
gredient here is the statistics of Brownian bridges in a non-Euclidean
space of constant negative curvature. After an introduction to the role
of knots and topological constraints in polymeric systems, following
topics are discussed, (i) the conformal methods for entangled ran-
dom walks, (ii) conditional Brownian bridges in hyperbolic spaces,
and (iii) the crumpled globule phase of polymers.

15.1 What are we talking about?

How to peel an orange, without removing its skin? Can one make an omelet
from unbroken eggs? Can one smoothly (without tops) comb hairy billiard ball
(the sphere), or a donut (the torus)? Why cannot one tie a knot on a telegraph
wire, stretched along the railway line? These and similar, often entertaining and
seemingly naive, questions are directly related to topology. I will be interested in
a rather narrow range of problems associated with the so-called low-dimensional
topology, i.e., with the topology of systems containing long linear hurly-burly
threads of different physical nature. As these objects, one can play with poly-
meric chains, vortex lines in superconductors, strings in quantum field theory,
etc.

It is worth noting that the low-dimensional topology is a pretty insidi-
ous, or, better to say “serpentine” science, because the daily use of ropes and
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wires, being trivial for “kitchen tasks”, becomes almost useless for mathemat-
ical description of knots. Careful tying of shoe laces does not help much in
constructing topological invariants, determination of physical and geometric
properties of highly entangled polymeric networks, folded proteins, DNAs in
chromosomes, etc. Moreover, even obvious notions from everyday’s experience
seem to be incorrect: for example, any child knows what a knotted rope is,
and what its difference is from an unknotted one. However, this knowledge fails
being translated into mathematically rigorous terms: one cannot define a knot
on any open curve, and to talk seriously about knots, only closed paths should
be dealt with. Indeed, having free ends of the thread, one can always transform
any two arbitrary conformations of threads into each other by a continuous
deformation. Therefore, for open threads it would be more correct to speak of
quasi-knots (instead of knots) tied on a closed curve consisting of the thread
itself, and, say, the segment joining its open extremities. In the case when the
knot has a size substantially smaller than the thread’s length, the difference
between the knot and quasi-knot becomes negligible.

History has brought to us the name of one of the first topologists-
experimenters, Alexander the Great (IV century BC), who, being unable to
untie the Gordian knot, just slashed it with the sword. Surprisingly, modern
algebraic topology partly borrows ideas of Alexander the Great to build topo-
logical invariants by splitting intersections of wires on a plane knot projection.
For introduction to these constructions, please look up Ref [1].1 Nobody knows
how the Gordian knot looked exactly, however, there is an opinion that it re-
sembled the so-called celtic knot, whose typical plane projection (knot diagram)
is shown in the Fig.15.1.

Figure 15.1: Sample of celtic knot projection to the plane (knot diagram).

1See Chaps.7 and 14 of this book.
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Unknotting heavily tangled ropes, we are not even surprised that long
threads, left to themselves, have the feature of getting entangled most unpleas-
ant way of all. We just heave a bitter sigh, when an almost unravelled ball of
wool accidentally falls into the clutches of a curious kitten, and our hard work
goes to hell...

As a rule, we do not think about physical reasons for such “injustice”,
considering it as one of manifestations of the general law of life: unpleasant
things happen more often than pleasant ones, and the sandwich usually falls
butter side down. And we are quite aware that the spontaneous knotting of long
strands, managed by the laws of probability theory, is a consequence of non-
Euclidean geometry of the phase space of knots, i.e., such hypothetical space
that contains all possible knots and in which there is a concept of the metric,
or the distance between “topologically similar” knots. The more different topo-
logical types of two knots, the greater the distance between them in this space.
In general, the construction of this space, called the universal covering, and
the description of its properties are extremely challenging. However, for some
special cases, to which I address a little later, this space can be exhaustively
described in geometric terms. So, it turns out that, in order to untie ropes in
a purely scientific way, one has first to understand the Lobachevsky-Riemann
geometry and its relation to the knot theory, and then to learn how the prob-
ability theory works in this non-Euclidean space. Before going further, let me
briefly digress and discuss some of physical questions in which the topological
interactions play a crucial role.

Mathematicians primarily are interested in the question how to construct
characteristics of entangled curves, that depend only on their topological state,
but not on their shapes. Besides the traditional fundamental topological issues
concerning the construction of new knot invariants, description of knot homolo-
gies, homotopic classes etc, there exists an important set of adjoint but much
less studied problems related to probability theory and statistical physics. First
of all, I mean the problem of so-called “knot entropy” evaluation. Suppose we
know everything about a set of entangled curves and know how to classify
their topology. In order to understand which issue is interesting for physicists,

crosslinked at their extremities such that they form a connected network. When
the network is deformed as shown in the Fig.15.2, the ensemble of available con-
formations of each individual subchain in the network changes, resulting in an
essential decrease of the entropy, S. So, one says that the elasticity of stretched
rubber is of entropic nature.

topologically frozen. If the applied deformations do not break the subchains, the
topological constraints like entanglements between different subchains, at high
extensions enter into the game as new effective quasi-links, providing additional
restrictions on the ensemble of available subchain conformations. Therefore, the
topological constraints contribute to the stress-strain dependence of polymeric

imagine that one has a sample of rubber, i.e., the collection of polymer chains

Once being prepared, the network sample cannot change its topology, i.e., is
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Figure 15.2: Emotional view on elastic deformation. This sculpture, displayed
at the Ujazdowski Castles Center for Contemporary Art in Warsaw (Poland),
was made by Agnieszka Kalinowska in 2002.

networks, being the origin of so-called Mooney-Rivlin corrections to the classical
Hooke’s law [2].

In general, the non-phantomness of a polymer chain causes two types of
interactions: i) volume interactions vanishing for infinitely thin chains, and ii)
topological interactions, which survive even for chains of zero thickness. For
sufficiently high temperatures, a polymer molecule strongly fluctuates without
a reliable thermodynamic state called a coil state. However for temperatures
below some critical value, θ, the polymeric chain forms a weakly fluctuating
dense globular (drop-like) structure [2], and one may expect that just in the
globular state the topological interaction manifest themselves in all their glory.
The crucial difficulty in description of topological interactions comes from their
non-locality: the entropic part of a polymeric chain free energy, F = −TS,
strongly depends on the global chain topology. Saying more formally, the topo-
logical interactions in dense polymer systems cannot be treated in a perturbative
way and new ideas of nonperturbative description are demanded.

The general problem we are dealing with, can be formulated as follows.
Consider a 3D cubic grid, and let Ω be the ensemble of all possible closed
non-self-intersecting N -step paths on this grid with one point fixed. Denote
by ω (ω ∈ Ω) some particular realization of a path. Our aim is to calculate
the partition function, Z{Inv}, for a knot to be in a specific topological state
characterized by the topological invariant Inv (yet non-specified). This can be
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written formally as

Z{Inv} =
∑

{ω∈Ω}
∆
{

Inv(ω)− Inv
}
, (15.1)

where Inv(ω) is a functional representation of the invariant for the path ω, Inv
is a specific topological invariant of the knot which we would extract, and ∆ is
the Kronecker delta-function. The entropy, S{Inv}, of a topological state, Inv,
is defined as

S{Inv} = lnZ{Inv}. (15.2)

Based on the above definition, we can see that the statistical-topological prob-
lems are similar to those encountered in physics of disordered systems and in
particular, of spin glasses. Indeed, the topological state of a path plays the
role of a “quenched disorder” and the entropy, S{Inv}, is averaged over the
ensemble of trajectories fluctuating at the “quenched topological state” [3]. In
the context of this analogy, it seems challenging to extend the concepts and
methods developed over the years for disordered systems to the scopes of sta-
tistical topology. The main difference between the systems with topological
disorder and the standard spin systems with disorder in the coupling constant,
deals with the strongly nonlocal character of interactions in the first case: a
topological state is determined for the entire closed path and is its “global”
property.

Below I review a few conceptual steps in analytic description of topological
interactions, which constitute the basis of a new interdisciplinary branch in
mathematical physics, emerged at the edge of topology and statistical physics of
fluctuating non-phantom rope-like objects. This new branch is called statistical
(or probabilistic) topology. Yet its most fascinating manifestation is connected
with the nonperturbative description of DNA packing in chromosomes in a form
of a crumpled globule [4,5]. After experimental works of the MIT-Harvard team
in 2009 [6], the concept of crumpled globule became a kind of a new paradigm
allowing us to understand the mathematical origin of many puzzled features of
DNA structuring and functioning in a human genome.

To intrigue the reader, I can say that the mathematical background of
the crumpled globule deals with the statistics of Brownian bridges in the non-
Euclidean space of constant negative curvature. Forthcoming sections are writ-
ten to uncover this abracadabra.

15.2 Milestones

15.2.1 Abelian epoch

In 1967 S.F. Edwards laid the foundation of the statistical theory of topo-
logical interactions in polymer physics. In [7] he proposed the way of exact
computation of the partition function of a single self-intersecting random walk
topologically interacting with the infinitely long uncrossable string (in 3D), or
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obstacle (in 2D). Sir Sam Edwards was the first to recognize the deep analogy
between Abelian topological problems in statistical mechanics of Markov chains
and quantum-mechanical problems (like Bohm-Aharonov ones) of the charged
particles in the magnetic field. The review of classical results is given in physical
context in [8], some rigorous results, including application in financial mathe-
matics were discussed in [9], and modern advances are summarized in [10]. The
works of S.F. Edwards opened the “Abelian” epoch in the statistical theory of
topological interactions.

In his work S.F. Edwards used the path integral formalism combined with
the functional representation of the Gaussian linking number. All these steps
have been many times reproduced in the literature, so we do not discuss the
details, just recall that one finally arrives at the quantum problem of a free
charged particle (with an imaginary magnetic charge) in a solenoidal magnetic
field. If the magnetic flux (the obstacle) is located at the origin and is orthog-
onal to the plane, then for the probability P (r1, rN , θ, n,N) to find an N -step
polymer chain, whose extremities are located at the distances r1 and rN with
r̂1, rN = θ and which makes n full turns around the origin, we get:

P (r1, rN , θ, n,N) =
1

πNa2
e−

r21+r2N
2Na2

∫ ∞

−∞
dν I|ν|

(
r2
1 + r2

N

2Na2

)
eiν(2πn+θ), (15.3)

where I|ν|(...) is the modified Bessel function of order |ν|, and a is the size of the
monomer (the typical step of the random walk). Obviously, the normalization
condition is fulfilled,

∞∑

n=−∞
P (r1, rN , θ, n,N) =

1

πNa2
e−

(r1−rN )2

Na2 , (15.4)

which means that the summation over all windings, n, (−∞ < n <∞) gives the
Gaussian distribution. I will reproduce the result Eq. (15.3) in the next Section
using the conformal approach. Though it is less popular in polymer physics
than the path-integral formalism, it can be straightforwardly generalized to
the non-Abelian multi-obstacle case.

It should be noted that the exact computation of the partition function of
the self-intersecting random walk topologically entangled with two uncrossable
obstacles in the plane, despite the huge number of works since 1967, still is
an open problem. However, apparently this gap will be filled soon, because
its quantum-mechanical counterpart, the Abelian problem of Bohm-Aharonov
scattering in presence of two magnetic fluxes in the plane, has been solved in
2015 by E. Bogomolny [11]. To my point of view, his solution has opened the
Pandora’s Box in the field, since he showed the deep mathematical connection of
this particular problem to the theory of Painleve equations, integrable systems
etc.
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15.2.2 Non-Abelian epoch

Each time when we consider statistics of sufficiently dense polymer system, we
encounter the extremely difficult problem of classification of topological states
of polymer chains. Even the simplest physically relevant questions dealing with
the knotting probability of a polymer chain, cannot be answered using the
Gauss invariant due to its weakness. The Gauss linking number, becomes inap-
plicable since it does not reflect the sequence in which a given topological state
was formed. For example, when some trial trajectory encloses two obstacles, the
path is entangled with two obstacles simultaneously, while being not entangled
with them separately, as shown in Fig.15.3.

Figure 15.3: Topological configuration of a polymer entangled with two obsta-
cles simultaneously but not entangled with any one of them separately (so-called
Pochhammer contour).

Interestingly, I have not found in the literature any example of the path
entangled with three obstacles simultaneously, while not entangled with any
separate obstacle and any pairs of obstacles. Formally the question can be for-
mulated as follows: find the element X ∈ F3 of a free group of three generators,
F3, such that X belongs both to the commutant of F3 and to the commutant
of commutant of F3.

For dense polymer systems, one encounters many configurations as shown
in Fig.15.3, and they should be properly classified and treated using the invari-
ants stronger than the Gauss linking number. So, to summarize, the Abelian
(commutative) invariants become inapplicable for dense polymers and should
be replaced by the non-Abelian (noncommutative) ones.

Methods of algebraic topology in polymer statistics. Topology as quenched
disorder

A very useful and powerful method of knots classification has been offered by a
polynomial invariant introduced by Alexander in 1928. The breakthrough in the
field of polymer statistics was made in 1975-1976 when the algebraic polyno-
mials were used for the topological state identification of closed random walks
generated by the Monte-Carlo method [12]. It has been recognized that the
Alexander polynomials being much stronger invariants than the Gauss linking
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number, could serve as a convenient tool for the calculation of the thermody-
namic properties of entangled random walks. To my point of view, 1975 is the
year of the second birth of the probabilistic polymer topology, since the main
part of our modern knowledge on knots and links statistics in dense polymer
systems is obtained with the help of these works and their subsequent develop-
ments.

Other polynomial invariants for knots and links were suggested by V.F.R.
Jones [13] (Jones polynomials) and by J. Hoste, A. Ocneanu, K. Millett, P.J.
Freyd, W.B.R. Lickorish, and D.N. Yetter [14] (HOMFLY polynomials). The
Jones invariant arise from the investigation of the topological properties of
braids [15]. V.F.R. Jones succeeded in finding a profound connection between
the braid group relations and the Yang-Baxter equations representing a nec-
essary condition for commutativity of the transfer matrix offered the relation
with integrable systems [16].2 It should be noted that neither the Alexander,
Jones, and HOMFLY invariants, nor their various generalizations are complete;
however, these invariants are successfully used to solve many statistical prob-
lems in polymer physics. A clear geometric meaning of Jones invariant was
provided by the works of Kauffman, who demonstrated that Jones invariant
can be rewritten in terms of the partition function of the Potts spin model [1].
Later Kauffman and Saleur showed that the Alexander invariants are related
to a partition function of the free fermion model [17]. The list of knot invari-
ants used in polymer physics would be incomplete without mentioning Vassiliev
invariants [18] and Khovanov homologies [19].

How to define the knot complexity?

There are many definitions of knot complexity. Some authors use the concept of
minimal number of crossings [20–24]. In other works (see, for example [24,25])
knot complexity is associated with a properly normalized logarithm of a kind
of knot torsion, log |∆K(−1)|, where ∆K(t) is the Alexander polynomial of the
knot K. The estimate of knot complexity using the knot energy was discussed
in the works [26–28] and to my point of view is yet underappreciated concept
by polymer physicists.

Another approach deals with the fashionable concept of knot inflation [29].
This topological invariant is defined as the quotient, µ, of the contour length
of the knot made of an elastic tube to its diameter in the maximal uniformly
inflated configuration as shown in the Fig.15.4 for two different torus knots of
same tube length. One sees that the more complex the knot is, the thinner is
the limiting tube. Such approach was introduced and exploited in [5, 29].

Knot invariants like the minimal number of crossings, as well as those
built on the basis of the knot inflation concept, are similar to the invariants
defined as the degree of algebraic polynomial used in the works [30, 31]. All
of them have one common ancestor – the so-called primitive path, appeared in

2See Chaps. 7, 14 of this book.
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Figure 15.4: Affine inflation of a torus knot.

physical literature in 1970s in the works on entanglements in polymer melts.
Introduced by P. de Gennes (see, for example [32]), the primitive path was
served to describe topological effects in the dynamics of individual chains in
concentrated polymer solutions. Later on, the same concept has been used
in the computation of equilibrium properties of polymer chains in lattices of
topological obstacles [33,34] (I discuss this issue in detail in the next Section).

The notion of a primitive path and its relation to the knot inflation concept
can be elucidated as follows. Consider a closed path of fixed length entangled
with the lattice of obstacles (see Fig.15.5a). Performing an affine extension (in-
flation) of the lattice of obstacles (preserving the length of the path), one arrives
eventually at the unfolded fully stretched configuration, see Figs.15.5b-c. Just
the configuration in the Fig.15.5c is called the primitive path and it charac-
terizes the topological state of a path with respect to the lattice of obstacles.
Let us associate the properly normalized length of the chain and the spacing
between obstacles, with the length of an elastic tube in the “knot inflation
concept” and its diameter. In that way, the relationship between the primi-
tive path, the minimal number of crossings and the quotient µ in the maximal
inflated tube configuration becomes intuitively clear by construction. In more
detail this relationship was discussed in [5].

In 1991 it was realized [35] that the concept of a primitive path has a
straightforward interpretation in terms of a geodesics in a space of constant neg-
ative curvature. In the forthcoming section, we show how the geodesic length,
in turn, may be related via its matrix representation to the degree of the poly-
nomial invariant. Though our construction is restricted to the particular case
of knots on narrow strips, the very idea can be used to attack more general
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Figure 15.5: Affine inflation of a lattice of obstacles. The corresponding contour
becomes “less folded”.

models. The relationship between primitive paths and the maximal degree of
the corresponding polynomial invariants has been discussed in [36] and will be
overviewed in the next Section.

Conformal methods in statistics of entangled random walks

In 1985-1988 we have adopted the knowledge of stochastic processes in the Rie-
mannian geometry to the statistical topology of polymers in multi-punctured
spaces [34,37,38]. In particular, we have shown that the probability for a random
walk (a polymer chain without volume interactions) to be unentangled with the
regular lattice of topological obstacles in the plane is asymptotically described
by the probability to form a Brownian bridge (BB) in the Lobachevsky plane
(the non-Euclidean plane with a constant negative curvature). To have a trans-
parent geometric image, though rather naive, the problem can be formulated
as a “snake in a night forest”. Suppose that a very long snake, lost in a dense
forest at night, would like to grasp randomly its own tail in such a way, that the
formed ring is not entangled with any tree. What is the probability, P (L, d),
of such an event, if L is the length of the snake and d is the average distance
between the trees? What is the typical size, Rg(N, d), of the snake (in polymer
statistics, where a closed snake is replaced by a polymer ring, Rg is called the
“gyration radius”)?

Conformal methods provide straightforward answers to these questions.
The key idea is to find the conformal transformation w(z) which maps the
complex plane, z = x + iy, with obstacles (branch points), to the “universal
covering” space, w = u+ iv, free of branchings in any finite domain. The main
ingredient of this approach is the “conformal invariance” of Laplace operator,
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∆(z). Under the conformal mapping w(z) the Laplacian ∆(z) = ∂2
xx + ∂2

yy is
transformed to ∆(w) = ∂2

uu + ∂2
vv as follows

∆(w) = ∂2
uu + ∂2

vv = |w′(z)|2(∂2
xx + ∂2

yy), (15.5)

where w′(z) = dw(z)
dz . Define also z(w), the inverse function of w(z). If we are

lucky enough and found the desired conformal mapping w(z), then, in the uni-
versal covering space, our initial topological problem looks formally extremely
simple: we have just to solve the diffusion-like equation in time t with the
diffusion coefficient D:

∂tP (w, t)−D|z′(w)|−2(∂2
uu + ∂2

vv)P (w, t) = δ(w − w0)δ(t), (15.6)

without any topological constraints since all information about the topology
is encoded now in the boundary conditions of the corresponding Cauchy prob-
lem in the covering space w. In the theory of stochastic processes Eq. (15.6)
describes the diffusion in the “lifted” time, since it can be considered as a
standard diffusion in the new metric-dependent time t, where ∂t = |z′(w)|2∂t.
However the simplicity of Eq. (15.6) in majority of cases is rather illusory:
finding conformal mapping z(w), and then solving Eq. (15.6) analytically, both
these tasks are challenging problems. Despite these hurdles, a few nontrivial
cases can be treated and solved at least asymptotically.

To demonstrate how the method of conformal mappings works, let us
return to the Abelian problem and reconsider entanglement of the random walk
with the single obstacle in the plane. Place the obstacle (the branch point) at
the origin, make a cut along the positive part of the x-axis of the complex plane
z = x + iy as shown in Fig. 15.6 and perform a conformal transform with the
function w(z) = ln z to the universal covering space w = u+ iv.
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Figure 15.6: Conformal mapping of a plane with one branch point (obstacle)
to the multi-sheet universal covering plane.



370 15. Polymer statistical Topology

By elementary computations we get:




u = ln |z| ≡ ln ρ, v = arg z,

|z′(w)|−2 = e−2u.
(15.7)

If the path C makes n full turns around the branch point in z, it means that
in the w-plane the distance between extremities of the image of C along the
v-axis is 2πn. So, closed paths crossing the cut in z are transformed into the
open paths in w. The Cauchy problem in the lifted space is periodic in v and
in each Riemann sheet (the strip of width 2π in the plane w) can be written as
follows 



∂tP (u, v, t)−D e−2u(∂2

uu + ∂2
vv)P (u, v, t),

P (u0, v0, t) = δ(u− u0)δ(v − v0)δ(t),
(15.8)

where δ(...) is the Dirac δ-function. Making use of the substitution ρ = eu,
and taking into account the periodicity in v, we can rewrite Eq. (15.8) in the
following form

∂tP (ρ, v, t) +D

(
∂2
ρρ +

∂ρ
ρ

+
∂2
vv

ρ2

)
P (ρ, v, t) =

δ(ρ− ρ0)

(ρρ0)1/2
δ(v − v0)δ(t). (15.9)

Seeking the solution of Eq. (15.9) in the form

P (ρ, v, t) =

∞∑

m=−∞
Pme

im(v−v0), (15.10)

we get for Pm the expression

Pm =
1

πta2
e−

ρ20−ρ
2

ta2 I|ν+m|

(
2ρρ0

ta2

)
, (15.11)

where we have taken into account the expression for the diffusion coefficient in

form D = a2

4 . Since

∞∑

m=−∞
eim(v−v0) = 2π

∞∑

n=−∞
δ(v + 2πn− v0), (15.12)

we arrive at Eq. (15.3), where we should make the replacements θ ↔ v and
N ↔ t.

Now we are in position to attack our favourite problem – finding the
probability that the random walk of length t not entangled with respect to the
triangular lattice of obstacles in the complex plane z, as shown in Fig. 15.7a.
To solve the problem, we should construct the conformal mapping of the multi-
punctured plane z to the universal covering space free of obstacles w and take
the corresponding Jacobian of transformation, |z(w)|−2. In this particular case
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Figure 15.7: Conformal mapping z(w) is realized as a composition of three
mappings: z(ζ) [(a)–(b)], ζ(r) [(b)–(c)], and r(w) [(c)–(d)]. Finally we have
z(ζ(r(w))).

finding such a mapping is more elaborated task than for one-punctured plane,
though still doable. The conformal mapping z(w) of the flat equilateral triangle
ABC located in z onto the zero-angled triangle ABC in w, is constructed in
three sequential steps, shown in Fig. 15.7a-d.

First, we map the triangle ABC in z onto the upper half-plane ζ of auxil-
iary complex plane ζ with three branch points at 0, 1 and∞ – see Fig. 15.7a-b.
This mapping is realized by the function z(ζ):

z(ζ) =
Γ( 2

3 )

Γ2( 1
3 )

∫ ζ

0

dξ

ξ2/3(1− ξ)2/3
, (15.13)

with the following coincidence of branching points:





A(z = 0) ↔ A(ζ = 0),

B(z = 1) ↔ B(ζ = 1),

C(z = e−i
π
3 ) ↔ C(ζ =∞).

(15.14)
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Second step consists in mapping the auxiliary upper half-plane Im ζ > 0
onto the circular triangle ABC with angles {α, α, 0} – the fundamental do-
main of the Hecke group [39] in r, where we are interested in the specific case
{α, α, 0} = {0, 0, 0} – see Fig. 15.7b-c. This mapping is realized by the function
ζ(r), constructed as follows [40]. Let ζ(r) be the inverse function of r(ζ) written
as a quotient

r(ζ) =
φ1(ζ)

φ2(ζ)
, (15.15)

where φ1,2(ζ) are the fundamental solutions of the 2nd order differential equa-
tion of Picard-Fuchs type:

ζ(ζ − 1)φ′′(ζ) +
(
(a+ b+ 1)ζ − c

)
φ′(ζ) + abφ(ζ) = 0. (15.16)

Following [40,41], the function r(ζ) conformally maps the generic circular
triangle with angles {α0 = π|c − 1|, α1 = π|a + b − c|, α∞ = π|a − b|} in the
upper halfplane of w onto the upper halfplane of ζ. Choosing α∞ = 0 and
α0 = α1 = α, we can express the parameters (a, b, c) of Eq. (15.16) in terms of
α, taking into account that the triangle ABC in Fig. 15.7c is parameterized as
follows {α0, α1, α∞} = {α, α, 0} with a = b = α

π + 1
2 , c = α

π + 1. This leads us
to the following particular form of Eq. (15.16)

ζ(ζ − 1)φ′′(ζ) +
(α
π

+ 1
)(

2ζ − 1
)
φ′(ζ) +

(α
π

+
1

2

)2

φ(ζ) = 0, (15.17)

where α = π
m and m = 3, 4, ...∞. For α = 0, Eq. (15.17) takes an especially

simple form, known as Legendre hypergeometric equation [42, 43]. The pair of
possible fundamental solutions of Legendre equation are

φ1(ζ) = F
(

1
2 ,

1
2 , 1, ζ

)
,

φ2(ζ) = iF
(

1
2 ,

1
2 , 1, 1− ζ

)
,

(15.18)

where F (...) is the hypergeometric function. From Eq. (15.15) and Eq. (15.18)

we get r(ζ) = φ1(ζ)
φ2(ζ) . The inverse function ζ(r) is the so-called modular function,

k2(r) (see [42–44] for details). Thus,

ζ(r) ≡ k2(r) =
θ4

2(0, eiπr)

θ4
3(0, eiπr)

, (15.19)

where θ2 and θ3 are the elliptic Jacobi θ-functions [44,45],

θ2

(
χ, eiπw

)
= 2ei

π
4 r
∞∑

n=0

eiπrn(n+1) cos(2n+ 1)χ,

θ3

(
χ, eiπr

)
= 1 + 2

∞∑

n=0

eiπrn
2

cos 2nχ,

(15.20)
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and the correspondence of branch points in the mapping ζ(r) is as follows





A(ζ = 0) ↔ A(r =∞),

B(ζ = 1) ↔ B(r = 0),

C(ζ =∞) ↔ C(r = −1).

(15.21)

Third step, realized via the function r(w), consists in mapping the zero-
angled triangle ABC in r into the symmetric triangle ABC located in the unit
disc w – see Fig. 15.7c-d. The explicit form of the function r(w) is

r(w) = e−iπ/3
e2iπ/3 − w

1− w − 1, (15.22)

with the following correspondence between branching points:





A(r =∞) ↔ A(w = 1),

B(r = 0) ↔ B(w = e−2πi/3),

C(r = −1) ↔ C(w = e2πi/3).

(15.23)

Collecting Eqs. (15.13), (15.19), and (15.22) we arrive at the following
expression for the derivative of composite function,

z′(ζ(r(w))) = z′(ζ) ζ ′(r) r′(w), (15.24)

where ′ stands for the derivative. We have explicitly:

z′(ζ) =
Γ( 2

3 )

Γ2( 1
3 )

θ
16/3
3 (0, ζ)

θ
8/3
2 (0, ζ) θ

8/3
0 (0, ζ)

,

and

ζ ′(r)| = iπ
θ4

2 θ
4
0

θ4
3

; i
π

4
θ4

0 =
d

dζ
ln

(
θ2

θ3

)
.

The identity

θ′1(0, eiπζ) ≡ dθ1(χ, eiπζ)

dχ

∣∣∣∣
χ=0

= πθ0(χ, eiπζ) θ2(χ, eiπζ) θ3(χ, eiπζ), (15.25)

enables us to write
|z′(r)|2 = h2

∣∣θ′1
(
0, eiπr

)∣∣8/3 , (15.26)

where h =
(

16
π

)1/3 Γ( 2
3 )

Γ2( 1
3 )
≈ 0.325, and

θ1(χ, eiπr) = 2ei
π
4 r
∞∑

n=0

(−1)neiπn(n+1)r sin(2n+ 1)χ. (15.27)
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Differentiating Eq. (15.22), we get

r′(w) =
i
√

3

(1− w)2
,

and using this expression, we obtain the final form of the Jacobian of the
composite conformal transformation J(z(ζ(r(w)))):

J(z(w)) = |z′(w)|2 = 3h2 |η(r(w))|8
|1− w|4 , (15.28)

where
η(r) =

(
θ′1(0, eiπr)

)1/3
,

is the Dedekind η-function

η(w) = eπiw/12
∞∏

n=0

(1− e2πinw), (w = u+ iv), (15.29)

and the function r(w) is defined in Eq. (15.22).
Thus, we arrive at the diffusion equation in the unit disc |w| < 1:

∂tP (w, t)− a2

4
J(z(w))

(
∂2
uu + ∂2

vv

)
P (w, t) = δ(w − w0)δ(t), (15.30)

with the function J(z(w)) given by Eq. (15.28). The probability to find the two-
dimensional random walk unentangled with the lattice of obstacles after time
t, is given by the solution of Eq. (15.30), where we should plug at the very end
w = w0 = 0. The probability of returning to the same point w0 = 0 in the initial
Riemann sheet (the gray triangle in Fig. 15.7d) ensures that the trajectory is:
i) closed, and ii) “contractible” (i.e., topologically trivial with respect to the
lattice of obstacles).

Exact solution of Eq. (15.30) is unknown, however its asymptotic behav-
ior we can extract relying on modular properties of Dedekind η-function Eq.
(15.29). Consider the normalized Jacobian, defined as follows:

f(w) = J(z(w))
(
1− (u2 + v2)

)2
, (15.31)

where |z| =
√
u2 + v2 and ψ = arg z are radial and angular coordinates in the

Poincaré unit disc disc |w| < 1. In Fig. fig:07a we have shown the density plot
of the function f(w) within the unit disc |w| < 1 for f(w) > f0 = 0.15. As one
can see from Fig. 15.8, the function f(w) has identical local maxima in all the
centers of circular triangles shown in Fig. 15.7d. Thus, we conclude that the
Jacobian J(z(w)) in the centers of circular cells (domains) coincides with the
metric of the Lobachevsky plane in the Poincaré disc,

ds2 =
du2 + dv2

(1− (u2 + v2))
2 (15.32)
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Figure 15.8: Density plot of the function f(w) (see Eq. (15.31)) above the level
f0 = 0.15.

Note that the profile shown in Fig. 15.8 has striking similarities with the 3-
branching Cayley tree and can be interpreted as a “continuous Cayley tree”.

If we slightly modify our random walk model, we can exploit the connec-
tion with the Lobachevsky geometry. Namely, consider the random walk which
stays in the vicinity of the center of a circular cell and then rapidly jumps to
the center of the neighboring cell, stays there, then jumps again, and so forth...
Such a random jumping process we can approximately describe by the diffusion
in the Poincaré disc with the Lobachevsky plane metric Eq. (15.32) and the
diffusion coefficient D:

∂tP (w, t)−D
(
(1− (u2 + v2)

)2(
∂2
uu + ∂2

vv

)
P (w, t) = δ(u)δ(v)δ(t). (15.33)

Making use of the change of variables (r, ψ)→ (ρ, ψ), where ρ = ln 1+r
1−r , we get

the unrestricted random walk on the surface of the one-sheeted hyperboloid,
H obtained by the stereographic projection from the Poincaré unit disc. Cor-
respondingly the probability P (ρ, t) reads

P (ρ, t) =
e−

tD
4

4π
√

2π(tD)3

∫ ∞

ρ

ξ exp
(
− ξ2

4tD

)

√
cosh ξ − cosh ρ

dξ. (15.34)

The physical meaning of the geodesic length, ρ, on H is straightforward:

the shortest trajectory remaining after all topologically allowed contractions of
ρ is the length of the primitive path in the lattice of obstacles, i.e., the length of
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the random path in the lattice of obstacles. Hence, ρ can be considered a non-
Abelian topological invariant, more powerful than the Gauss linking number.
This invariant is not complete except one point, ρ = 0, where it precisely
classifies the paths belonging to the trivial homotopic class in the lattice of
obstacles.

Group-theoretic methods in statistics of entangled random walks

Non-Abelian entanglement of the path with two obstacles on the plane can be
treated in the group-theoretic setting. Let us associate the generators g1 and
g2 with the clockwise full turns around obstacles 1 and 2 respectively, and the
inverse generators g−1

1 and g−1
2 – around the counterclockwise turns around 1

and 2, as shown in Fig. 15.9. Suppose that g1, g2, g
−1
1 , g−1

2 are the generators of
the free group Γ2 which by definition has no commutation relations. Thus, the
possible contractions in the group Γ2 are g1g

−1
1 = g−1

1 g1 = g2g
−1
2 = g−1

2 g2 = I,
where I is the identity element.

g1 g1

-1
g2 g2

-1

O O

1 12 2

(a) (b)

Figure 15.9: Generators of free group Γ2.

Any closed path entangled with the obstacles 1 and 2 can be topologi-
cally presented by a word written in terms of generators g1, g2, g

−1
1 , g−1

2 . For
example, the Pochhammer contour shown in Fig. 15.3 reads: g1g2g

−1
1 g−1

2 . Since
the group Γ2 is noncommutative (non-Abelian), we have g1g2 6= g2g1, thus we
cannot exchange the sequence of letters and replace g1g2 by g2g1. However, in
the commutative (Abelian) group generated by the set {f1, f2, f

−1
1 , f−1

2 }, we
can do so, since f1f2 = f2f1, and the Pochhammer contour in the Abelian
representation becomes contractible:

f1f2f
−1
1 f−1

2 = f2 f1f
−1
1

I

f−1
2 = f2f

−1
2

I

= I.

Suppose now that we have a set S = {g1, g2, g
−1
1 , g−1

2 } and write random
words of N letters by sequential addition of generators from the set S. Each
generator in S we take with the probability p = 1

4 . We are interested in com-
puting the partition function ZN (x) for all N -letter random words to have the
irreducible (“primitive”) word of x letters. The partition function ZN (0) gives
the number of N -letter words that are completely reducible (i.e., unentangled)
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with the obstacles 1 and 2. The word counting problem in the free group Γ2

can be visualized as the trajectories (built by sequential adding of letters) on
the 4-branching Cayley tree shown in Fig. 15.10a. The irreducible (primitive)
word is the shortest “bare” path along the tree connecting the extremities of
the trajectory.
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Figure 15.10: Visualization of commutation relations in free (a) and commuta-
tive (b) groups.

The partition function, ZN (x), of all N -step paths on the 4-branching
Cayley tree, starting at the origin and ending at some distance x from it,
satisfies the following recursion relation





ZN+1(x) = 3ZN (x− 1) + ZN (x+ 1), x ≥ 2,

ZN+1(x) = 4ZN (x− 1) + ZN (x+ 1), x = 1,

ZN+1(x) = ZN (x+ 1), x = 0,

ZN (x) = 0, x ≤ −1,

ZN=0(x) = δx,0,

(15.35)

where x is the distance (the bare path) from the root of the Cayley graph,
measured in number of generations of the tree. By making a shift x → x + 1,
one can rewrite Eq. (15.35) as





ZN+1(x) = 3ZN (x− 1) + ZN (x+ 1) + δx,2 ZN (x− 1), x ≥ 1,

ZN (x) = 0, x = 0,

ZN=0(x) = δx,1,
(15.36)

where δx,y is the Kronecker δ–function: δx,y = 1 for x = y and δx,y = 0 for
x 6= y.
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Eq. (15.36) can be symmetrized by the substitution

ZN (x) = ANBxWN (x). (15.37)

Selecting A = B =
√

3, we arrive at the equation





WN+1(x) = WN (x− 1) +WN (x+ 1) +
1

3
δx,2WN (x− 1), x ≥ 1

Wn(x) = 0, x = 0

WN=0(x) =
δx,1√

3
.

(15.38)

Introducing the generating function

W(s, x) =

∞∑

N=0

WN (x)sn,

(
WN (x) =

1

2πi

∮
W(s, x)s−N−1 ds

)
, (15.39)

and its sin–Fourier transform

W̃(s, q) =
∞∑

x=0

W(s, x) sin qx,

(
W(s, x) =

2

π

∫ π

0

W̃(s, q) sin qx dq

)
,

(15.40)
one obtains from Eq. (15.38)

W̃(s, q)

s
− sin q

s
√
p− 1

= 2 cos q W̃(s, q) +
2

π

1

3
sin 2q

∫ π

0

W̃(s, q) sin q dq. (15.41)

Solving Eq. (15.41) and performing the inverse Fourier transform, we arrive at
the following explicit expression for the generating function W(s, x):

W(s, x) =
2

π

∫ ∞

0

W̃(s, q) sin qx dq

=
1

s
√

3

(
1−
√

1− 4s2

2s

)x(
1 +

2
(
1−
√

1− 4s2
)

12s2 − 1
(
1−
√

1− 4s2
)2

)
. (15.42)

Since, by definition, ZN (x) = ANBxWN (x) (see Eq. (15.37)), we can write
down the relation between the generating functions of ZN (x) and of WN (x):

Z(λ, x) =

∞∑

N=0

ZN (x)λN =

∞∑

N=0

ANBxWN (x)λN = BxW(λA, x). (15.43)

Thus,

Z(λ, x) = 3x/2W(λ
√

3, x), (15.44)
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where W(λ
√

3, x) is given by Eq. (15.42) and we should substitute λ
√

3 for s.
The partition function, Z(λ, x), of the random walk ensemble reads

Z(λ, x) =

6λ

(
1−

√
1− 4λ2(p− 1)

2λ

)x

18λ2 −
(
1−
√

1− 12λ2
) . (15.45)

For the grand partition function of all trajectories returning to the origin,
Z(λ) ≡ Z(λ, x = 0), we get the following expression

Z(λ) =
6λ

18λ2 −
(
1−
√

1− 12λ2
) . (15.46)

To extract the asymptotic behavior of the partition function ZN (the number
of trajectories returning to the origin after N steps, one should perform the
inverse transform similar to Eq. (15.39)

ZN =
1

2πi

∮
Z(λ)λ−N−1dλ ∼

(
2
√

3
)N

N3/2
. (15.47)

As it should be, the probability to return to the origin on a 4-branching Cayley
tree, ZN/(4

N ) is exponentially small.
Let us note some striking topological similarity between the Cayley tree

structure of the noncommutative group Γ2 shown in Fig. 15.9 and the metric
structure of the modular group, visualized in Fig. 15.7. This similarity is not
occasional. Having the graph of the group Γ2, we can ask the question in which
Riemann surface the graph of the group Γ2 can be isometrically embedded.
The answer is that the Cayley tree is the graph of isometries (one of many) of
the Lobachevsky plane (the Riemann surface of constant negative curvature).
This is schematically depicted in Fig. 15.11 where the chip (the saddle) is the
example of the surface with constant negative Gaussian curvature. Contrary
to that, the commutative group {f1, f2, f

−1
1 , f−1

2 }/[f1f2 = f2f1] isometrically
covers the planar square lattice – see Fig. 15.10b.

Conditional Brownian bridges in Hyperbolic spaces

The result formulated in this Section is the central point, connecting statistics
of random walks in Hyperbolic spaces and the topology of knotted random
walks. There are a few different incarnations of one and the same question
concerning the conditional return probability of the symmetric random walk in
the Hyperbolic geometry:

(i) For the problem of the conditional paths counting on the Cayley tree,
we are interested in the following question. Let ZN (x) be the number of N -step
path on the Cayley tree starting from the origin and ending at some distance
x measured in number of the tree generations (“coordinational spheres”) from
the root point. Let the paths starting from the tree root, reach the distance



380 15. Polymer statistical Topology

o

o

A

B

C

Figure 15.11: Isometric embedding of the free group into the Lobachevsky plane
(Riemann surface of constant negative curvature).

x after M steps, and then return to the origin at the very last step, N . The
corresponding conditional distribution, P (x,M,N) we can compute as follows

P (x,M,N) =
ZM (x)ZN−M (x)

ZM (0)V (x)
. (15.48)

The expression Eq. (15.48) means that the entire N -step Brownian bridge (the
path returning to the origin) consists of two independent parts: the M -step
part of the path form the root point to some point located at the distance
x, and N −M -step part of the path from the root point again to some point
located at the distance x. Now we have to ensure that the ends of these two M -
and N −M -parts coincide at the point x. The factor V (x) in the denominator
of Eq. (15.48) is the number of different points located at the distance x from
the root of the tree, V (x) = 4 × 3x−1 for the 4-branching Cayley tree. Thus,
ZM (x)V −1(x) is the probability that the M -step part ends in some specific
point x. Substituting expressions for ZM (x), ZN−M (x), ZN (0) in Eq. (15.48),
we arrive at the following asymptotic form of P (x,M,N) at x� 1:

P (x,M,N) ∼
√

N

2πM(N −M)
ex

2( 1
2M + 1

2(N−M) ). (15.49)

Computing
〈
x2
〉

with the function P (x,M,N), we get

x̄ =
√
〈x2〉 =

∑∞
x=0 x

2P (x,M,N)∑∞
x=0

=

√
M(N −M)

N
. (15.50)

As one sees, for any M = cN (c = const, 0 < c < 1), the average distance x̄
has the behavior typical for an ordinary random walk,

x̄ =
√
a(1− a)

√
N. (15.51)
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Thus, the typical behavior of intermediate points of the Brownian bridge on
the Cayley tree is statistically the same as on the one-dimensional lattice, i.e.,
the drift on the tree which occurs due to asymmetry of the random walk (the
probability to go from the root is larger than the probability to come back
to the root) is completely compensated. This is the key point for existence of
topologically nontrivial crumpled globule structure, which will be discussed in
the following Section.

(ii) Consider now the asymptotics of the conditional Brownian bridge
in the Lobachevsky plane. Construct the desired conditional probability,
W (x,M,N) as follows

W (ρ, τ, t) =
P (ρ, τ)P (ρ, t− τ)

P (0, t)
v(ρ), (15.52)

where P (ρ, t) defines the probability that the random path after time t ends
in the specific point located at the distance ρ of the Lobachevsky plane, and
v(ρ) = sinh ρ is the circumference of circle of radius ρ in the Lobachevsky plane.

The diffusion equation for the density P (q, t) of the free random walk on
a Riemann manifold is governed by the Beltrami-Laplace operator:

∂tP (q, t) = D 1√
g

∂

∂qi

(√
g
(
g−1

)
ik

∂

∂qk

)
P (q, t), (15.53)

where
P (q, t = 0) = δ(q).
∫ √

gP (q, t)dq = 1,
(15.54)

and gik is the metric tensor of the manifold; g = det gik. For the Lobachevsky
plane one has

||gik|| =
∣∣∣∣∣

∣∣∣∣∣
1 0

0 sinh2 ρ

∣∣∣∣∣

∣∣∣∣∣ , (15.55)

where ρ stands for the geodesics length in the Lobachevsky plane. The corre-
sponding diffusion equation now reads

∂tP (ρ, ϕ, t) = D
(
∂2
ρρ + coth ρ∂ρ +

1

sinh2 ρ
∂2ϕϕ

)
Pp(ρ, ϕ, t). (15.56)

The radially symmetric solution of Eq.(15.56) is

P (ρ, t) =
e−

tD
4

4π
√

2π(tD)3

∫ ∞

ρ

ξ exp
(
− ξ2

4tD

)

√
cosh ξ − cosh ρ

dξ

' e−
tD
4

4πtD

(
ρ

sinh ρ

)1/2

exp

(
− ρ2

4tD

)
,

(15.57)
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(compare to Eq. (15.42)). Substituting Eq. (15.57) into Eq. (15.52), we get for
the conditional probability W (ρ, τ, t) the following asymptotic expression

W (ρ, τ, t) =
N

4πDτ(t− τ)
ρ exp

{
− ρ2

4D

(
1

τ
+

1

t− τ

)}
. (15.58)

Hence we again reproduce the Gaussian distribution function with zero mean.
(iii) Eqs. (15.49) and (15.58) describing the conditional distributions of

Brownian bridges on the Cayley tree and on the Riemann surface of constant
negative curvature, have direct application to the conditional distributions of
Lyapunov exponents for products of non-commutative matrices. Consider for
specificity the random walk on the group SL(2, R). Namely, we multiply se-

quentially N random matrices Mj =

(
aj bj
cj dj

)
∈ SL(2, R), whose entries

{ai, bj , cj , dj} are randomly distributed for any j = 1, ..., N in some finite sup-
port subject to the relation ajdj− bjcj = 1. Thus we have a product of random
matrices

Q(N) =

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
...

(
aM bM
cM dM

)
...

(
aN bN
cN dN

)
. (15.59)

ΛN ∼ eδ1N (15.60)

where δ1 is the group– and measure–specific, though N -independent, “Lya-
punov exponent”.

Motivated by examples (i) and (ii), consider the conditional Brownian
bridge in the space of matrices, i.e., consider such products Q(N) that are
equal to the unit matrix and ask about the typical behavior of the largest
eigenvalue of first M as shown below:

ΛM=?(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
...

(
aM bM
cM dM

)
...

(
aN bN
cN dN

)
=

(
1 0
0 1

)
.

(15.61)

The answer to this question is as follows: ΛM = eδ2
√
M(N−M)

N

(0 < c < 1), one has

ΛM = eδ3
√
N , (15.62)

where we have absorbed the constants in δ3 = δ2
√
a(1− a). The proof of the

corresponding theorem using the method of large deviations, can be found
in [35], however the result Eq. (15.62), which holds for random walks on
any noncommutative group, is easy to understand qualitatively. It is suffi-
cient to recall that the Lobachevsky plane H can be identified with the group

The asymptotic N → ∞ behavior of the largest eigenvalue, ΛN of the typ-
ical (i.e., averaged over different samples) value of Q(N) is ensured by the
Fürstenberg theorem [46], which states that

i.e., forM = cN
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SL(2, R)/SO(2). Thus, the Brownian bridge on the group SL(2, R)/SO(2), can
be viewed either as the conditional random walk governed by the Beltrami-
Laplace operator, or as the product of random matrices.

We arrive at the following conclusion. The Brownian bridge condition for
random walks in the space of constant negative curvature makes the curved
space effectively flat and turns the corresponding conditional distribution for
the intermediate time moment of random walks to the Gaussian distribution
with zero mean. This result is very general and can be applied to random walks
on various noncommutative groups, such as modular group, SL(n,R), braid
groups Bn, etc. This result is crucial in our further discussions of the crumpled
state of collapsed unknotted polymer chain.

15.2.3 Crumpled globule: Topological correlations in collapsed unknot-

ted rings

In 1988 we have theoretically predicted the new condensed state of a ring
unentangled and unknotted macromolecule in a poor solvent. We named this
state “the crumpled globule” and studied its unusual fractal properties [4]. That
time our arguments were rather hand-waving and more solid understanding
came essentially later, around 2005 [31,36]. As we shall show, the most striking
physical arguments of the estimation of the degree of entanglement of a part
of a long unknotted random trajectory confined in a small box are provided by
the statistics of conditional Brownian bridges in the space of constant negative
curvature.

First of all one has to define the topological state of a part of a ring
polymer chain. As we discussed in the Introduction, mathematically rigorous
definition of the topological state exists for closed or infinite paths only. How-
ever, everyday’s experience tells us that open but sufficiently long rope can be
knotted. Hence, it is desirable to introduce a concept of a quasiknot available
for topological description of open paths. For the first time the idea of quasi-
knots in a polymer context had been formulated by I.M. Lifshits and A.Yu.
Grosberg [47]. They argued that the topological state of a linear polymer chain
in a collapsed (globular) state is defined much better than topological state of
a random coil. Actually, the distance between the ends of the chain in a globule
is of order R ∼ aN1/3, where a is a size of a monomer and N is a number of
monomers in a chain. Taking into account that R is sufficiently smaller than
the contour length N and that the density fluctuations in the globular state
are negligible, we may define the topological state of a path in a globule as
a topological state of composite trajectory consisting of a chain itself and a
segment connecting its ends. This composite structure can be regarded as a
quasiknot for an open chain in a collapsed state. Later we shall repeatedly use
this definition.

The influence of topological constraints on statistical properties of poly-
mers, namely, the random knotting probability, in confined geometries has been
numerically considered in Ref. [48], while the paper Ref. [49] has been devoted
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to the determination of the equilibrium entanglement complexity of polymer
chains in melts. In the works Ref. [36] we take a further step, considering the
topological state of a part of ring unknotted polymer chain in a confined ge-
ometry, where the compact configuration of the polymer is modelled by dense
lattice knots. The knot is called “dense” if its projection onto the plane com-
pletely fills the rectangular lattice M of size Lv × Lh as shown in Fig. 15.12a,
resembling the celtic knot in Fig. 15.1. The lattice M is filled densely by a
single thread, which crosses itself in each vertex of the lattice in two different
ways: “up” or “down”. The topology of a lattice diagram is defined by the
up-down passages, and by the prescribed boundary conditions. The “woven
carpet” shown in Fig. 15.12a corresponds to a trivial knot. To avoid any pos-
sible confusion, we apply our model to the polymer ring located in a thin slit
between two horizontal plates as shown in Fig. 15.12b. It is evident that the
ring chain in a thin slit becomes a quasi two-dimensional system. Our lattice
model is oversimplified (even for the polymer chain in a thin slit) because it
does not take into account the spatial fluctuations of a knotted polymer chain.
However, we expect that our model properly describes the condensed (globu-
lar) structure of a polymer ring because the chain fluctuations in the globule
are essentially suppressed and the chain has reliable thermodynamic structure
with a constant density [47].

Figure 15.12: (a) Random woven carpet corresponding to the trivial knot; (b)
Dense knot confined in a thin slit.

We are interested in the following statistical-topological question inspired
by the conditional Brownian bridge ideology. Define at each intersection of

variable εk, taking values

εk =

{
+1 for “up” crossing,

−1 for “down” crossing.
(15.63)

The set of independently generated quenched random variables {ε1, ..., εN} in
all vertices of the lattice diagram, together with the boundary conditions, define
the knot topology.

Suppose that we consider such a sub-ensemble of crossings {ε1, ..., εN} that
corresponds to the trivial entire (“parent”) knot. Let us cut a part of a parent
trivial knot and close open ends of the threads as it is shown in Fig. 15.13.

vertical and horizontal threads (i.e., in each “lattice vertex”) k the random
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This way we get the well defined “daughter” quasiknot. We are interested in
the typical topological state of daughter quasiknots under the condition that
the parent knot is trivial. I think, the reader can feel in this formulation the
flavor of conditional Brownian bridges...

"parent knot" "daughter knot"

L
w

L
t

L
h

Figure 15.13: (a) Trivial “parent” knot; (b) “Daughter” knot obtained by cut-
ting a part of the parent knot.

The averaged knot complexity, n, understood as the minimal number of
crossings on the knot diagram, for the unconditional random knotting of knot
diagram behaves as n ∼ N where N is the initial size of the lattice knot. By
the semi-analytic and semi-numeric arguments we have shown in [36] that the
typical conditional complexity, n∗, of the daughter knot of size M behaves as

n∗ ∼
√

M(N−M)
N and for M = cN (0 < c < 1), N � 1, has the asymptotic

behavior

n∗ ∼
√
a(1− a)

√
N. (15.64)

Thus, each macroscopic part of a dense lattice trivial knot is weakly knotted
(compared to the unconditional random knotting).

In 2015 we have performed in Ref. [50] extensive Monte-Carlo simulations
for self-avoiding polymer chains in confined geometry in 3D space. The role
of topological constraints in the equilibrium state of a single compact and un-
knotted polymer remains unknown. Previous studies [4, 5] have put forward a
concept of the crumpled globule as the equilibrium state of a compact and un-
knotted polymer. In the crumpled globule, the subchains were suggested to be
space-filling and unknotted. Recent computational studies examined the role
of topological constraints in the non-equilibrium (or quasi-equilibrium) poly-
mer states that emerge upon polymer collapse [6,51–54]. This non-equilibrium
state, often referred to as the fractal globule [6, 55], can indeed possess some
properties of the conjectured equilibrium crumpled globule. The properties of
the fractal globule, its stability [56], and its connection to the equilibrium state
are yet to be understood.
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Elucidating the role of topological constraints in equilibrium and non-
equilibrium polymer systems is important for understanding the organization
of chromosomes. Long before experimental data on chromosome organization
became available [6], the crumpled globule was suggested as a state of long DNA
molecules inside a cell [5]. Recent progress in microscopy [57] and genomics [58]
provided new data on chromosome organization that appear to share several
features with topologically constrained polymer systems [6,59,60]. For example,
segregation of chromosomes into territories resembles segregation of space-filling
rings [61–63], while features of intra-chromosomal organization revealed by Hi-C
technique are consistent with a non-equilibrium fractal globule emerging upon
polymer collapse [6,55,64] or upon polymer decondensation [59]. These findings
suggest that topological constraints can play important roles in the formation
of chromosomal architecture [65].

In Ref. [50] we have examined the role of topological constraints in the
equilibrium state of a compact polymer. We performed the equilibrium Monte
Carlo simulations of a confined unentangled polymer ring with and without
topological constraints. Without topological constraints, a polymer forms a
classical equilibrium globule with a high degree of knotting [2,66,67]. A polymer
is kept in the globular state by impenetrable boundaries, rather than pairwise
energy interactions, allowing fast equilibration at a high volume density.

In the work of Ref. [50] we found that topological states of closed subchains
(loops) are drastically different in the two types of globules and reflect the
topological state of the whole polymer. Namely, loops of the unknotted globule
are only weakly knotted and mostly unconcatenated. We also found that spatial
characteristics of small knotted and unknotted globules are very similar, with
differences starting to appear only for sufficiently large globules. Subchains of
these large unknotted globules become asymptotically compact (RG(s) ∼ s1/3),
forming crumples. Analysis of the fractal dimension of surfaces of loops suggests
that crumples form excessive contacts and slightly interpenetrate each other.
Overall, in the the asymptotic limit (for very long chains) we have supported
the conjectured crumpled globule concept [4]. However, the results of Ref. [50]
also demonstrate that the internal organization of the unknotted globule at
equilibrium differs from an idealized hierarchy of self-similar isolated compact
crumples.

In the simulations a single homopolymer ring with excluded volume inter-
actions was modelled on a cubic lattice and confined into a cubic container at a
volume density 0.5. The Monte Carlo method with non-local moves (see [50] and
references therein) allowed us to study chains up to N = 256 000. If monomers
were prohibited to occupy the same site, this Monte Carlo move set naturally
constrains topology, and the polymer remains unknotted. The topological state
of a loop was characterized by κ, the logarithm of the Alexander polynomial
evaluated at −1.1 [61, 66, 67]. To ensure equilibration, we estimated the scal-
ing of the equilibration time with N for N ≤ 32 000, extrapolated it to large
N , and ran simulations of longer chains, N = 108 000 and 256 000, to exceed
the estimated equilibration time. We also made sure that chains with topolog-
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ical constraints remain completely unknotted through the simulations, while
polymers with relaxed topological constraints become highly entangled.

To understand the role of topological correlations, we asked how the topo-
logical state of the whole polymer influences the topological properties of its
subchains. Because a topological state can be rigorously defined only for a

occupying neighboring lattice sites. Fig. 15.14a presents the average knot com-
plexity 〈κ(s)〉 for loops of length s for both types of globules. We found that
loops of the knotted globule were highly knotted, with the knot complexity
rising sharply with s. Loops of the unknotted globule, on the contrary, were
weakly knotted, and their complexity increased slowly with s.
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Figure 15.14: Topological properties of polymer loops in the knotted and un-
knotted globules. (a) Knot complexity of polymer loops as a function of their
length, s, for chains of different length N (shown by colors) in knotted (dashed)
and unknotted (solid) globules. (b) Distribution of the linking numbers for non-
overlapping loops of length s = 9000 to 11 000 in 32 000-long globules.

This striking difference in the topological states of loops for globally knot-
ted and unknotted chains is a manifestation of the general statistical behavior

closed contour, we focused our analysis on loops, i.e., subchains with two ends
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of so-called matrix–valued Brownian Bridges (BB) [36]. The knot complexity
κ of loops in the topologically unconstrained globule is expected to grow as
κ(s) ∼ s2. In contrast, due to the global topological constraint imposed on the
unknotted globule, the knot complexity of its loops grows slower, κ(s) ∼ s,
which follows from the statistical behavior of BB in spaces of constant negative
curvature (see Fig. 15.15a, and Refs. [31, 36] for details).

Another topological property of loops of a globule is the degree of con-
catenation between the loops. We computed the linking number for pairs of
non-overlapping loops in the knotted and crumpled (unknotted) globules, and
found that loops in the unknotted globule are much less concatenated than
loops in the knotted globule. Taken together, these results show that the topo-
logical state of the whole (parent) chain propagates to the daughter loops.
While loops of the unknotted globule are still slightly linked and knotted, their
degree of entanglement is much lower than for the loops in the topologically
relaxed knotted globule.
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Figure 15.15: Schematic representation of knots by braids: a) unconditional
random distribution of black boxes produces a very complex knot; b) condi-
tional distribution implies the whole knot to be trivial, which imposed strong
constraints on complexity of any subpart of the braid.

Our topological problem to determine the complexity of a subloop in a
globally trivial collapsed polymer chain allows natural interpretation in terms
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of Brownian bridges. Suppose the following imaginative experiment. Consider
the phase space Ω of all topological states of densely packed knots on the lattice.
Select from Ω the subset ω of trivial knots. To simplify the setting, consider
a knot represented by a braid, as shown in Fig. 15.15, where the braid is de-
picted by a sequence of uncorrelated “black boxes” (each black box contains
some number of up- and down-crossings. If crossings in all black boxes are iden-
tically and uniformly distributed, then the boxes are statistically similar. Cut a
part of each braid in the subset ω, close open tails and investigate the topolog-
ical properties of resulting knots. Just such a situation has been qualitatively
studied in Ref. [31, 36]. The crumpled globule hypothesis states the following:
if the whole densely packed lattice knot is trivial, then the topological state of
each of its “daughter” knot is almost trivial. We have shown that the compu-
tation of the knot complexity in the braid representation depicted in Fig. 15.15
can be interpreted as the computation of the highest eigenvalue of the product
of noncommutative matrices designated by the black boxes.

To proceed, consider first the typical (unconditional) complexity of a knot
represented by a sequence of N independent black boxes. This question is sim-
ilar to the growth of the logarithm of the largest eigenvalue, Λ, of the product
of N independent identically distributed noncommutative random matrices.
According to the Fürstenberg theorem [46], in the limit N � 1 one has

ln Λ(N) ∼ γ1N, (15.65)

where γ1 = const is the so-called Lyapunov exponent (compare with Eq.
(15.60)). Being rephrased for knots, this result means that the average knot
complexity, κ, understood as a minimal number of crossings, M , necessary to
represent a given knot by the compact knot diagram, extensively grows with

the typical number of crossing, M , on the knot diagram grows as M ∼ s2,
leading to the scaling behavior for the knot complexity κ:

κ ∼ s2. (15.66)

This is perfectly consistent with the well known fact: the probability of spon-
taneous unknotting of a polymer with open ends in a globular phase is ex-
ponentially small. Following the standard scheme [12, 66, 67], we character-
ize the knot complexity, κ, by the logarithm of the Alexander polynomial,

As seen from Fig. 15.14, the conjectured dependence ln Al(t = −1.1) ∼ s2 is
perfectly satisfied for ordinary (knotted) globule.

Consider now the conditional distribution on the products of identically
distributed black boxes. We demand the product of matrices represented by
black boxes to be a unit matrix (topologically trivial). The question of interest
concerns the typical behavior of ln Λ∗(M,N), where Λ∗(M,N) is the largest
eigenvalue of the sub-chain of first M matrices in the chain of N ones. The
answer to this question is known [35]: if n = cN (0 < c < 1 and N � 1), then

lnλ∗(n = cN,N) ∼
√
c(1− c)

√
N = γ2(c)

√
N, (15.67)

M , i.e., κ ∼ M . In the ordinary globule, for subchains of length N2/3 < s < N ,

ln[Al(t = −1.1)Al(t = −1/1.1)], i.e., we set κ = ln[Al(t = −1.1)Al(t = −1/1.1)].
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where γ2(c) absorbs all constants independent on N . Translated to the knot
language, the condition for a product of N matrices to be completely reducible,
means that the “parent” knot is trivial. Under this condition we are interested
in the typical complexity κ∗ of any “daughter” sub-knot represented by first
n = cN black boxes.

Applying the Eq. (15.67) to the knot diagram of the unknotted globule, we
conclude that the typical conditional complexity, κ∗ expressed in the minimal
number of crossings of any finite sub-chain of a trivial parent knot, grows as

κ∗ ∼
√
s2 ∼ s, (15.68)

with the subchain size, s. Comparing Eqs. (15.68) and (15.66), we conclude
that subchains of length s in the trivial knot are much less entangled/knotted

constraint for a parent knot to be trivial is relaxed. Indeed, this result is per-
fectly supported by Fig. 15.14 which show linear growth of κ̃ = ln[Al(t =
−1.1) Al(t = −1/1.1)] with s for the unknotted globule, while quadratic growth
for the knotted globule.

15.3 Conclusion

15.3.1 The King is dead, long live The King!

The very concept of the crumpled (fractal) globule as of possible thermody-
namic equilibrium state of an unknotted ring polymer confined in a small vol-
ume, appeared in 1988 in a joint work by A. Grosberg, S. Nechaev and E.
Shakhnovich [4]. Soon after, in 1993, A. Grosberg, Y. Rabin, S. Havlin, and A.
Neer published a paper where they proposed the crumpled globule model to be
a possible condensed state of DNA packing in a chromosome [5]. Then, over
decades, the interest to the crumpled globule was moderate: it was considered
as an interesting, though sophisticated artificial exercise. The attempts to find
the crumpled structure in direct numeric simulations, or in real experiments on
proteins or DNAs were not too convincing.

Still, a few interesting exceptions, which fuelled some discussions around
the crumpled globule, should be mentioned: (i) the observation of the two-stage
dynamics of collapse of the macromolecule after abrupt changing of the solvent
quality, found in light scattering experiments by B. Chu and Q. Ying [53];
(ii) the experiments on compatibility enhancement in mixtures of ring and
linear chains [68], the construction of the quantitative theory of a collapse of
N–isopropilacrylamide gel in a poor water [69]; (iii) the experiments on supere-
lasticity of polymer gels prepared in diluted solutions [70]; (iv) the indications
of observation of the crumpled globule in numerical simulations [71, 72]. The
breakthrough in the interest to the crumpled globule happen after the brilliant
experimental work of the MIT-Harvard team in 2009 [6]. Immediately after,
the concept of crumpled (fractal) globule became the candidate for the new

than subchains of same lengths in the unconditional structure, i.e., when the
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paradigm explaining many realistic features the DNA packing and functioning
in a human genome.

Analysis of chromatin folding in human genome based on a genome-wide
chromosome conformation capture method (Hi-C) [6, 73] provides a compre-
hensive information on spatial contacts between genomic parts and imposes
essential restrictions on available 3D genome structures. The experimental Hi-
C maps obtained for various organisms and tissues [6, 58, 74–78] display very
rich structure in a broad interval of scales. The researchers pay attention to
the average contact probability, P(s), between two units of genome separated
by a genomic distance, s, which decays in typical Hi-C maps approximately as
P(s) ∼ 1/s (see [6]).

The crumpled globule is a state of a polymer chain which in a wide range
of scales is self-similar and almost unknotted, forming a fractal space-filling-
like structure. Both these properties, self-similarity and absence of knots, are
essential for genome folding: fractal organization makes genome tightly packed
in a broad range of scales, while the lack of knots ensures easy and independent
opening and closing of genomic domains, necessary for transcription [5, 55]. In
a three-dimensional space such a tight packing results in a space-filling with
the fractal dimension Df = D = 3. The Hi-C contact probability, Pi,j , between
two genomic units, i and j in a N -unit chain, depends on a combination of
structural and energetic factors. Simple mean-field arguments (see, for example,
[6]) demonstrate that in a fractal globule with Df = 3 the average contact

probability, P(s) = (N − s)−1
∑N−s
i=0 Pi,i+s, between two units separated by

the genomic distance s = |i− j|, decays as P(s) ∼ s−1. It should be noted that
recent numeric simulations [50, 61], and more sophisticated arguments beyond
the mean-field approximation [60, 79], point out that the contact probability
decays as P(s) ∼ s−γ with γ ' 1.05− 1.09.

Despite the crumpled globule being our “favourite child”, I should clearly
state that it does not explain exhaustively all details of the chromatin fold-
ing and definitely should be combined with more refined models and concepts.
Theoretical models of chromatin packing in the nucleus, which can possibly
explain the observed behavior of intra-chromosome Hi-C contact maps, split
roughly into two groups. The first group of works relies on specific interac-
tions within the chromatin, like loop or bridge formation, [80–86] and these
authors do not believe in crumpled globule, while the second group aims to
explain the chromatin structure in terms of large-scale topological interac-
tions [5, 6, 50, 55, 59, 60, 79, 87, 88] based on the crumpled model of the poly-
mer globule [4]. For example, in [89] we combined the assumption that chro-
matin can be considered as a heteropolymer chain with a quenched primary
sequence [90], with the general hierarchical fractal globule folding mechanism.
With this conjecture we were able to reproduce the large-scale chromosome
compartmentalization, not assumed explicitly from the very beginning. To show
the compatibility of the hierarchical folding of a crumpled globule with the fine
structure of experimentally observed Hi-C maps, we suggested in Ref. [89] a
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simple toy model based on the crumpled globule folding principles together
with an account of quenched disorder in primary sequence.

To summarize, my feeling of the current state of the art called “the crum-
pled globule” is formulated in the title of this Section. All together we have come
a long way from the nonperturbative description of topological constraints in
collapsed polymer phase to real biophysical applications, we have understood
on this way constructive connection of statistics of polymer entanglements with
Brownian bridges in the non-Euclidean geometry, we have got new results for
statistics of random braids, and finally we have explained some features of DNA
packing in chromosomes. Keeping our eyes open, we clearly see that the ap-
pearance of new experimental results demonstrates that our initial topological
arguments were too crude and too naive. However they gave birth to a new
understanding of the role of topology in genomics and have led to new ideas
and methods which constitute the modern STATISTICAL TOPOLOGY OF
POLYMERS.

15.3.2 Where to go

I think we are only at the beginning of a highway, where the statistics of random
walks is intertwined with the geometric group theory, algebraic topology and
integrable systems in mathematical physics, as well as has various incarnations
in physics dealing with the crumpled globule concept. Let me name some but
a few such directions.

I would like to mention random walks on braid groups, growth of ran-
dom heaps, viewed as random sequential ballistic deposition (random “Tetris
game”). Introducing the concept of the “locally free group” as an approximant
of the braid group, one can solve exactly the word problem in the locally free
group and obtain analytically the bilateral estimates (from above and from be-
low) for the growth of the volume of the braid group Bn for arbitrary n [91–93].
Interesting new results beyond the mean-field approximation for entanglement
of threads in random braids have been obtained recently in Ref. [94].

Sequential ballistic deposition (BD) with the next-nearest-neighbor inter-
actions in a N -column box can viewed as a time-ordered product of N × N -
matrices consisting of a single sl2-block which has a random position along
the diagonal. One can interpret the uniform BD growth as the diffusion in the
symmetric space HN . In particular, the distribution of the maximal height of a
growing heap can be connected to the distribution of the maximal distance for
the diffusion process in HN , where the coordinates of HN can be interpreted
as the coordinates of particles of the one-dimensional Toda chain. The group-
theoretic structure of the system and links to some random matrix models was
discussed in Ref. [95].

As concerns the impact of crumpled globule concept in physics, we have
demonstrated that folding and unfolding of a crumpled polymer globule can be
viewed as a cascade of equilibrium phase transitions in a hierarchical system,
similar to the Dyson hierarchical spin model. Studying the relaxation properties
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of the elastic network of contacts in a crumpled globule, we showed that the
dynamic properties of hierarchically folded polymer chains in globular phase
are similar to those of natural molecular machines (like myosin, for example).
We discuss the potential ways of implementations of such artificial molecular
machine in computer and real experiments, paying attention to the conditions
necessary for stabilization of crumples under the fractal globule formation in
the polymer chain collapse [64,96].

The ability of crumpled globule to act as molecular machine definitely
provokes a new angle on an eternal problem of the origin of life, related to
overcoming the “error threshold” in producing and selecting complex molecu-
lar structures during the prebiotic evolution [97]. This permits us to put forward
a conjecture about a possibility for the crumpled globule to be a sort of the
“primary molecular machine” naturally formed under the prebiotic conditions.
The primary crumpled globule molecular machine (CGMM) made by polymers
(not necessarily of biological nature), could perform some specific functions
typical for true biological molecular machines. The diversity of CGMM may
be concerned mainly with the attracting manifold, in which the CGMM ac-
tion is performed. This allows for functional variability without altering the
structural archetype. Certainly, the idea that crumpled globule could be the
prebiotic molecular machine needs experimental verification. However, the re-
sults [64, 98] provide a rather optimistic view on the evolutionary scenarios in
which the primary molecular machines, themselves, are taken out of the bio-
molecular context. In this paradigm, the beginning of biological evolution is
associated with the spontaneous appearance of complex functional systems of
primary “artificial” CGMM capable of performing collective reproduction and
autonomous behavior, which then are replaced in evolution by more effective
biomolecular systems. On this optimistic note I would like to end the story.

These notes are based on several lectures at the SERC School on Topology
and Condensed Matter Physics (organized in 2015 by RKM Vivekananda Uni-
versity at S.N Bose National Center for Basic Sciences, Calcutta, India). I would
thank Somen Bhattacharjee for kind invitation, opportunity to explore some
wonderful places in India and strong push to arrange lectures as a written text.
The topics discussed above summarize the subjects of millions conversations
over many years with my friends and colleagues, Alexander Grosberg, Anatoly
Vershik, Vladik Avetisov, Leonid Mirny, Michael Tamm. Particularly I would
like to thank Maxim Frank-Kamenetskii and Alexander Vologodsky, whose nice
review in 1981 fuelled my interest to polymer topology, and to Alexey Khokhlov
with whom we got first results beyond the Abelian theory of polymer entan-
glements in 1985. The importance of conditional Brownian bridge concept in
statistics of non-commutative random walks was recognized in joint work with
Yakov Sinai in 1991. Especially I would like to highlight the role of Alexander
Grosberg whose ironic and deep comments and ideas tease and support me for
more than a quarter of century.
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Introduction to abelian and
non-abelian anyons

Sumathi Rao

In this set of lectures, we will start with a brief pedagogical introduc-
tion to abelian anyons and their properties. This will essentially cover
the background material with an introduction to basic concepts in
anyon physics, fractional statistics, braid groups, and abelian anyons.
The next topic that we will study is a specific exactly solvable model,
called the toric code model, whose excitations have (mutual) anyon
statistics. Then we will go on to discuss non-abelian anyons, where
we will use the one dimensional Kitaev model as a prototypical ex-
ample to produce Majorana modes at the edge. We will then explicitly
derive the non-abelian unitary matrices under exchange of these Ma-
jorana modes.

16.1 Introduction

The first question that one needs to answer is why we are interested in anyons
[1]. Well, they are new kinds of excitations which go beyond the usual fermionic
or bosonic modes of excitations, so in that sense they are like new toys to
play with! But it is not just that they are theoretical constructs - in fact,
quasi-particle excitations have been seen in the fractional quantum Hall (FQH)
systems, which seem to obey these new kind of statistics [2]. Also, in the last
decade or so, it has been realized that if particles obeying non-abelian statistics
could be created, they would play an extremely important role in quantum
computation [3]. So in the current scenario, it is clear that understanding the
basic notion of exchange statistics is extremely important.
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Figure 16.1: Sum over paths from q(t1) to q(t2)

So if we want to start by explaining [4–6] what an ‘anyon’ is, to someone
who may be hearing the word for the first time, we can tell them that just as
fermions are particles obeying Fermi-Dirac statistics and bosons are particles
obeying Bose-Einstein statistics, anyons are particles obeying ‘any’ statistics.
Clearly, they are not as ubiquitous as bosons and fermion, else they would have
been just as familiar to everyone as bosons and fermions. But as we shall see
later in this lecture, even theoretically, anyons can only occur in two dimensions,
whereas the world is three dimensional. So it is only in planar systems, or in
systems where the motion in the third dimension is essentially frozen, that
excitations can be anyonic.

Hence, although the theoretical possibility of anyons was studied as early
as 1977 [1], it shot into prominence only in the late eighties and early nineties,
when not only the excitations in the FQH systems were found to be anyonic,
for a while, there was also speculation that anyons could explain the unusual
features of high temperature superconductivity [7].

The easiest way to understand the notion of phases and statistics under
exchange of particles in quantum mechanics is to think about how particles
move around each other and from this point of view, the easiest way of un-
derstanding the quantum motion of these particles is via path integrals. Here,
we will assume that you have some familiarity with the idea of path integrals,
although not many details will be required. To recollect it, we just mention the
following few things. In quantum mechanics, the probability amplitude to go
from one space-time point to another is given by

A =
∑

paths

eiS , (16.1)

where S =
∫
Ldt is the action for the particular trajectory or path. In other

words, quantum mechanically, we need to include all possible paths between
the initial and final points of the trajectory see Fig.16.1). But most of these
paths will interfere destructively with each other and hence will not contribute
to the probability amplitude. The only exception is the classical path and the
paths close to it, which interfere constructively with the classical path - i.e.,
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Figure 16.2: Direct and exchange paths

the most important contribution will be from the classical path. That is all the
information that we need here.

With this introduction, we come to the details of what we will study here.
In Sec.(II), we will explain the basic notions of anyon physics and why they can
exist only in two spatial dimensions. We will analyze a simple physical model
of an anyon and use it to understand the quantum mechanics of two anyons
and see that even in the absence of any interactions, it needs to be studied as
an interacting theory, with the interactions arising due to the anyonic exchange
statistics. Then, in Sec.(III), we will study the exactly solvable toric code model
as an example of a system with anyonic excitations. Finally, in Sec.(IV), we
will discuss non-abelian statistics, where again, we will explain many features
of non-abelian anyons using the one-dimensional Kitaev model as a typical
example.

16.2 Abelian anyons

16.2.1 Basic concepts of anyon physics

The term ‘exchange statistics’ refers to the phase picked up by a wave-function
when two identical particles are exchanged. But this definition is slightly am-
biguous. Does statistics refer to the phase picked up by the wave-function when
all the quantum numbers of the particles are exchanged (i.e., under permutation
of the particles) or the actual phase that is obtained when two particles are adi-
abatically transported giving rise to the exchange? In three dimensions, these
two definitions are equivalent but not in two dimensions. In quantum mechan-
ics, we deal with interference of paths of particles and hence, it is the second
definition which is more relevant, and we will show how it can be different from
the first definition.

Let us first consider the statistics under exchange of two particles in three
dimensions. By the path integral prescription, the amplitude for a system of
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Now, since we have eliminated coincident points, the wavefunction is non-singular and

well-defined at all points in the configuration space. In particular, it is non-singular on the
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exchange of the two particles is also well-defined and does not change under continuous
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the motion of the particles is along each of the three paths - A (no exchange), B (single
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surface of the sphere and can be continuously shrunk to a point. So this path cannot

impart any phase to the wavefunction. Path B, on the other hand, involves the exchange

of two particles and goes from a point on the sphere to its diametrically opposite point

- again a closed path. Since the two endpoints are fixed, by no continuous process can

this path be shrunk to a point. Hence, this path can cause a non-trivial phase in the

wavefunction. However, path C which involves two exchanges, forms a closed path on

the surface of the sphere, which, by imagining the path to be a (physical!) string looped

around an orange (surface of a sphere), can be continuously shrunk to a point. So once

again, the wavefunction cannot pick up any phase under two adiabatic exchanges. This

leads us to conclude that there are only two classes of closed paths that are possible in

this configuration space - single exchange or no exchange. Let η be the phase picked up by
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Figure 16.3: Paths in three dimensional configuration space with fixed radius

particles that moves from (r1(t1), r2(t1)) to (r1
′(t2), r2

′(t2)) is given by

A =
∑

paths

ei
∫ t2
t1
dtL[r1(t),r2(t)] . (16.2)

If the two particles are identical, then there are two classes of paths (see
Fig.16.2). How do we see this? If we use the convention that we always re-
fer to the position of the first particle first and the second particle second,
then we see that the final configuration remains the same whether we have
(r1(t2), r2(t2)) or (r2(t2), r1(t2)) because the two particles are identical. Even
though the particles are exchanged in one path and not in the other, the final
configuration is the same. In terms of the centre of mass (R = (r1 + r2)/2)
and relative coordinates (r = r1− r2), we see that the centre of mass motion is
the same for both the paths, but the relative coordinate changes for both the
paths. Also, since the CM motion moves both the particles together, it is inde-
pendent of any possible phase under exchange. For convenience in visualizing
the configuration space, let us keep |r| fixed and non-zero, i.e, the two particles
do not intersect. Then, the vector r takes values on the surface of the sphere.

Now let us draw the paths in configuration space as shown in Fig.16.3.
It is clear that the paths can only move along the surface of the sphere as the
two particles move, since |r| is fixed. But once they get back to their original
positions or get exchanged, since they are indistinguishable, the path is closed.
In other words, closed paths on the surface of the sphere are formed by the
particles coming back to their original positions (no exchange) or going to
the antipodal point (r → −r or getting exchanged). But if we exchange the
particles another time, then r comes back to itself, after having gone around
the sphere once. In terms of diagrams, this is shown in Fig.16.13. Since we have
eliminated coincident points, the wave-function is non-singular and well-defined
at all points in the configuration space, and consequently on the surface of the
sphere. So the phase picked up by the wave-function is also well-defined and
does not change under continuous deformations of the path. Let us consider
the possible phases of the wave-function when the motion of the particles is
along each of the three paths, - A (no exchange), B (single exchange) and C
(two exchanges) - depicted in Figs. 16.3(a),(b) and (c). Path A is a closed path
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which does not involve any exchange and can clearly be shrunk to a point.
Hence, the wave-function cannot pick up any phase other than unity. Path B
involves the exchange of the two particles and goes from a point on the sphere
to its diametrically opposite point. Since the two end points are fixed, this path
cannot be shrunk to a single point. So this exchange can have a non-trivial phase
in the wave-function . However, path C which forms a closed loop on the surface
and involves two exchanges can be continuously shrunk to a point by imagining
the path to be a physical string looped around a sphere. So this again cannot
pick up any phase. Let η be the phase picked up under a single exchange. Since
two exchanges are equivalent to no exchange, η2 = +1 =⇒ η = ±1. Hence,
the only statistics possible in three dimensions are Fermi statistics or Bose
statistics.

With slightly more mathematical rigour, one can say that the configura-
tion space of relative coordinates is given by (R3 − origin)/Z2. Here R3 is just
the three dimensional Euclidean space spanned by the relative coordinate r. We
subtract out the origin because we have assumed that paths do not cross (which
is true for all particles other than bosons, because of hard core repulsion and
for bosons, is not relevant anyway, because the exchange phase is unity). The
division by Z2 is because of the identification of r with −r, which is because
the particles are indistinguishable. To study the phase picked up by the wave-
function of a particle as it goes around another particle, we need to classify all
paths in this configuration space. The claim, from the pictorial analysis above,
is that there are just two classes of paths. Mathematically, this is expressed in
terms of the first homotopy group Π1 of the space, which is the group of in-
equivalent paths (paths not deformable to each other), passing through a given
point in the space, with group multiplication being defined as traversing paths
in succession and group inverse as traversing a path in the opposite direction.
Thus

Π1(R3 − origin)/Z2) = Π1(RP2) = Z2, (16.3)

where RP2 stands for real projective space and is the notation for the surface
of the sphere with diametrically opposite points identified and Z2 = (1,−1) is
a group of just two elements.

Now that we have determined that there are two classes of paths in three
dimensions, in terms of path integrals, the amplitude can be written as

A[r1(t1), r2(t1))→ (r1
′(t2), r2

′(t2)] =
∑

direct paths

eiS +
∑

exchange paths

eiS .

(16.4)
The direct paths involve all closed paths which end at the same point and the
exchange paths involve all paths which end on antipodal points, (which are
also closed paths). In terms of the path integral, we can also introduce a phase
between the two classes of paths and write

A[r1(t1), r2(t1))→ (r1
′(t2), r2

′(t2))] =
∑

direct paths

eiS + eiφ
∑

exchange paths

eiS .

(16.5)
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Here, however, several closed paths are possible. The path A that involves no exchanges
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circle and back. However, the path B that exchanges the two particles is just as obviously
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the anti-clockwise direction) cannot be contracted to a point. This is easily understood
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Figure 16.4: Paths in two dimensional configuration space with fixed radius

Since have already seen that exchanging the particle twice leads again to the
direct path, it is clear that e2iφ = 1, which implies that φ can only be 0, π
giving rise, as before, to bosons and fermions.

What changes in two dimensions? The point is that the topology of the
configuration space is now different. In two spatial dimensions, the configuration
space of the relative coordinates is given by (R2 − origin)/Z2. Just as before,
for ease of visualization, we shall keep the magnitude of the relative coordinate
fixed, so that configuration space can be represented by a circle, and since the
particles are indistinguishable, diametrically opposite points are identified (see
Figs.16.4(a),(b),(c)). Here, however, several closed paths are possible. The path
A that involves no exchanges can obviously be shrunk to a point, since it only
moves along the circle and back. But path B that exchanges the two parti-
cles is non-contractible since the end-points are fixed. But even path C, where
both the solid and dashed line are followed in the clock-wise direction (or anti-
clockwise direction) cannot be contracted to a point. This is easily understood
by visualizing the paths as physical strings looping around a cylinder. Thus,
if η is the phase under single exchange, η2 is the phase under two exchanges,
η3 is the phase under three exchanges and so on. All we can say is that since
the modulus of the wave-function remains unchanged under exchange, η has
to be a phase - η = eiθ. This explains why we can get ‘any’ statistics in two
dimensions.

The distinction between the paths in two and three dimensions can also
be seen as follows. In three dimensions, the loop that is formed by taking a
particle all around another particle (two exchanges) can be lifted off the plane
and shrunk to a point as shown in Fig.16.5. This is not possible if the motion is
restricted to a plane, as long as we disallow configurations where two particles
are at the same point (removal of the origin).

The mathematical crux of the distinction between configuration spaces in
two and three dimensions, is that the removal of the origin in two dimensional
space, makes the space multiply connected (unlike in three dimensional space,
where removal of the origin keeps it singly connected). So it is possible to define
paths that wind around the origin. Mathematically, we can say that

Π1((R2 − origin)/Z2) = Π1(RP1) = Z, (16.6)
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Figure 16.5: Path of A around B being lifted off the surface and shrunk to a
point

where Z is the group of integers under addition. RP1 is just the notation for
the circumference of a circle with diametrically opposite points identified. The
different paths are labelled by integer winding numbers.

So in terms of path integrals, we now see that paths starting and ending
at the same positions (upto exchanges due to indistinguishability) can be di-
vided into an infinite number of classes, all distinct. So we can write the total
amplitude as

A =
∑

direct paths

eiS + eiφ
∑

single exchange

eiS + e2iφ
∑

two exchanges

eiS + . . . , (16.7)

where φ = 0, π give the usual bosons and fermions, but since in general, einφ 6= 1
for any n, φ can be anything and as we said earlier, ‘any’ statistics are possible
in two dimensions.

Note that if we do want to understand exchange of particles in the Hamil-
tonian formulation without invoking path integral ideas, we need to pin down
the particles by using a confining potential - i.e., by putting them in a box -

H =
∑

i

p2
i

2m
+
∑

i

Vbox(xi −Ri). (16.8)

The particles can now be moved around by changing Ri as a function of time.
Since the particles are identical, exchanges are equivalent to closed paths, and
do not depend on the geometry of the paths Ri(t) involved. So the statistics of
the particles under exchange can be found by computing the Berry phase when
the particles are exchanged. However, in this review, we shall basically use the
path integral formalism.

16.2.2 Anyons obey braid group statistics

The distinction between the phase of the wave-function when the quantum
numbers of the particles are exchanged and the phase obtained under adia-
batic transport of particles should now be clear. Under the former definition,
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Figure 16.6: Elements of the braid group B4

the phase η2 after two exchanges is always unity, whereas the phase under the
latter definition has many more possibilities at least in two dimensions. Math-
ematically, the first definition classifies particle under the permutation group
PN , whereas the second one classifies particles under the braid group BN . The
permutation group PN is the group formed by all possible permutations of
N objects with group multiplication defined as successive permutations and
group inverse as undoing the permutation. It is clear that permuting two ob-
jects twice brings the system back to the original configuration. Thus particles
that transform as representations of the permutation group can only be bosons
or fermions.

On the other hand, when we adiabatically exchange two particles, we can
visualize the process as paths in space-time with time being the vertical axis
and space being the horizontal axis as shown in Fig.16.2. The particles can
circle around each other and form closed paths by coming back to their orig-
inal positions (upto permutations of the positions). The adiabatic exchange
of particles classifies particles under the braid group. As we saw earlier, even
under adiabatic exchange, in three spatial dimensions, we only have fermions
or bosons, whereas in two dimensions, there are many other possibilities. For-
mally, the braid group BN is the group of inequivalent paths that occur when
adiabatically transporting N particles. Since they represent a configuration of
N particles, at some particular time (say t = 0), evolving to a configuration of
N particles at some later time t = T , the world lines cannot cross each other
or form knots around each other or loop back. At each time, we want to have
only N particles. Each history or set of trajectories of the N particles becomes
a braid. For example, in Fig.16.6, we show an example of some elements of the
braid group B4, which is the braid group of 4 particles. Exchanges of neighbour-
ing particles (by some counting rule, since the particles are in two dimensional
space) form the generators of the group. For instance, the generators of the
group B4 are given in Fig.16.7 and are denoted as σj , j = 1, 2, 3. σj describes
exchange of jth particle with (j + 1)th particle in a counter-clockwise direction
(by definition), so that the clockwise exchange is denoted by (σj)

−1. The iden-
tity element is given by σ0 where there is no exchange, and group inverse by the
clockwise exchange (σj)

−1 as shown in Fig.16.8. Group multiplication is defined
as following one trajectory by another in time as shown in Fig.16.9. Note that
we have put crosses on the time-lines which are identified (are at equal times)
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Figure 16.8: The identity and the inverse of the generator σ1.
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Figure 16.9: Group multiplication.

in the figure. It is now easy to check that (σj)(σj)
−1 = σ0 as shown in Fig.16.10

(without the crosses). It is also easy to see that (σ1)n 6= σ0 for any n, which is
the reason that ‘any’ statistics are allowed in two dimensions. (See Fig.16.11).

=

Fig. 4

and group inverse is defined as a reverse crossing, (Fig.(5))

=
-1

Fig. 5

so that the product of a trajectory and its inverse leads to the identity as shown in Fig.(6).

= =

Fig. 6

Figure 16.10: Product of σ1 and (σ1)−1 giving rise to identity.
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Figure 16.12: Yang-Baxter relations.
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Figure 16.13: Different elements of the braid group, but same element of the
permutation group.

We will end this subsection by mentioning the two defining relations sat-
isfied by the generators of the braid group.

σiσj = σjσi, |i− j| ≥ 2,

σjσj+1σj = σj+1σjσj+1. (16.9)

The second one is called the Yang-Baxter relation. Both these relations can be
easily checked pictorially ( as we show in Fig.16.12 for the generators of B4).

It should be clear by now that the braid group leads to a much finer
classification than the permutation group. For instance, the two elements shown
in Fig.16.13 are different elements of the braid group, but the same element
of the permutation group. So the quantum theory of anyons has the quantum
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states of the anyons transforming as unitary representations of the braid group.
Abelian anyons form one-dimensional representations of the braid group. There
are an infinite number of such representations, because under exchange, the
phase that is picked up is eiθ and θ can take any value. θ = 0 and θ = π represent
bosons and fermions respectively. We will discuss non-abelian representations
in the last section.

16.2.3 Spin of an anyon

Let us start with spin in the familiar three dimensional world. We know that
spin is an intrinsic angular momentum quantum number that labels different
particles. The three spatial components of the spin obey the commutation re-
lations given by

[Si, Sj ] = εijkSk. (16.10)

We shall show that these commutation relations constrain the spin to be either
integer or half-integer. Let |s,m〉 be the state with S2|s,m〉 = s(s + 1)|s,m〉
and Sz|s,m〉 = m|s,m〉. By applying the raising operator, we may create the
state

S+|s,m〉 = [s(s+ 1)−m(m+ 1)]1/2|s,m+ 1〉 = |s,m′〉. (16.11)

Requiring this state to have positive norm for all m, leads to m < s. Thus, it
is clear that for some integer m′ = m+integer, m′ > s unless s = m′, or

s−m = integer. (16.12)

Similarly by insisting that S−|s,m〉 have a positive norm, we get s(s + 1) −
m(m − 1) ≥ 0, which implies that m ≥ −s for all m. Once again, to avoid
m < −s, we need to set

m− (−s) = integer. (16.13)

Adding the equations in Eqs.16.12 and 16.13, we get

2s = integer =⇒ s = integer/2 . (16.14)

Thus, just from the commutation relations, we can prove that the particles in
three dimensions have either integer or half-integer spin.

However, in two dimensions, there exists only one axis of rotation, perpen-
dicular to the plane of the two dimensions. Hence, here spin only refers to S3

which has no commutation relations to satisfy, and hence it can be anything!

16.2.4 Physical model of an anyon

Now let us construct a simple physical model of an anyon [8]. Imagine a spinless
particle of charge q orbiting around a thin solenoid along the z-axis at a distance
r as shown in Fig16.14. When there is no current through the solenoid, the
orbital angular momentum of the charged particle is quantized as an integer
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- lz = integer. When a current is turned on, the particle feels an electric field
that can easily be computed using

∫
(∇×E)d2r =

∫
Bd2r = −∂φ

∂t
, (16.15)

where φ is the total flux through the solenoid. This is just the Aharonov-Bohm
effect. Hence,

∫
E · dl = 2π|r|Eθ = −φ̇, leading to E = − φ̇

2π|r| (ẑ × r) . (16.16)

Thus, the angular momentum of the charge particle changes with the rate of
change given being proportional to the torque - i.e.,

l̇z = r× F = r× qE = − qφ̇
2π
, leading to ∆lz = − qφ

2π
. (16.17)

Thus ∆lz is the change in the angular momentum due to the flux in the solenoid.
In the limit where the solenoid becomes very narrow and the distance between
the charged particle and the solenoid is shrunk to zero, the system may be con-
sidered as a single composite object - a charge-fluxtube composite. In fact in a
planar system, there is no extension in the z direction. So this essentially point-
like composite object with fractional angular momentum can be considered as
a model of an anyon. Note that we have denoted this angular momentum as
the change in the angular momentum due to the flux. So if we start with the
original charge to be spinless, then the spin of the composite particle is given
by lz = sz = qπ/2π. This is also sometimes referred to as a topological spin and
is intrinsic to the anyon. However, this is a little too naive. In an anyon, the
charge and the flux it carries are related - the charge gets turned on along with
the flux. This implies that the q in Eq.16.17 is time-dependent, and q(t) = cφ(t)
for some constant c. Hence, we find

∆lz =
cφ2

4π
=
qφ

4π
, (16.18)

so that the angular momentum of a charge-flux composite with charge propor-
tional to flux is less than what we originally computed by a factor of 1/2. In
the next subsection, we shall see that it has the right statistics, and complete
the identification of the charge-fluxtube composite as an anyon.

16.2.5 Two anyon quantum mechanics

We shall now study the quantum mechanics of two anyons in order to determine
its statistics using the simple physical picture of the anyon that we developed
in the last subsection. The Hamiltonian for the system is given by

H =
(p1 − qa1)2

2m
+

(p2 − qa2)2

2m
, (16.19)
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real concept of statistics in one dimension.

After all this abstract discussion, let us construct a simple physical model of an

anyon [9]. Imagine a spinless particle of charge q orbiting around a thin solenoid along

the z-axis, at a distance r as shown in Fig.(11).

q

Fig. 11

When there is no current flowing through the solenoid, the orbital angular momentum of

the charged particle is quantised as an integer -i.e.,

lz = integer. (1.16)

When a current is turned on, the particle feels an electric field that can easily be computed

using
∫

(∇×E)d2r = − ∂

∂t

∫
Bd2r = −∂φ

∂t
(1.17)

where φ is the total flux through the solenoid. Hence,

∫
E · dl = 2π|r|Eθ = −φ̇ (1.18)

leading to

E = − φ̇

2π|r|(ẑ × r̂). (1.19)

Thus, the angular momentum of the charged particle changes, with the rate of change being

14

Figure 16.14: Physical model of an anyon.

with

a1 =
φ

2π

ẑ × (r1 − r2)

|r1 − r2|2
, and a2 =

φ

2π

ẑ × (r2 − r1)

|r1 − r2|2
, (16.20)

where a1 and a2 are the vector potentials at the positions of the composites
(anyons) 1 and 2 due to the fluxes in composites (anyons) 2 and 1 respectively.
Let us now work in the centre of mass (CM) and relative (rel) coordinates -
i.e., we define respectively

R =
r1 + r2

2
⇒ P = p1 + p2, and r = r1 − r2 ⇒ p =

p1 − p2

2
. (16.21)

In terms of these coordinates, the Hamiltonian can be recast as

H =
P2

4m
+

(p− qa)2

m
with arel =

φ

2π

ẑ × r

|r|2 . (16.22)

Thus the CM motion which translates both the particles rigidly and is inde-
pendent of the statistics is free. The relative motion, on the other hand, which
is sensitive to whether the particles are bosons, fermion or anyons, reduces to
the problem of a single particle of mass m/2 orbiting around a flux φ at a
distance r. Since the composites have been formed of a bosonic charge orbiting
around a bosonic flux, the wave -function of the two composite system has to
be symmetric under exchange and the boundary condition is given by

ψ(r1, r2) = ψ(r2, r1) =⇒ ψrel(r) = ψrel(−r) =⇒ ψrel(r, θ + π) = ψrel(r, θ),
(16.23)

where ψrel is the wave-function of the relative piece of the Hamiltonian and
r = (r, θ) in cylindrical coordinates.

Now, let us perform a (singular) gauge transformation so that

arel −→ a′rel = arel −∇Λ(r, θ), where Λ(r, θ) =
φ

2π
θ . (16.24)

This gauge transformation is singular because θ is a periodic angular co-
ordinate with period 2π and is not single-valued. In the primed gauge,
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a′rel,θ = arel,θ −
1

r

∂Λ

∂θ
=

φ

2πr
− φ

2πr
= 0,

and a′rel,r = arel,r −
∂

∂r
Λ = 0− 0 = 0, (16.25)

i.e., the gauge potential vanishes completely and the Hamiltonian just reduces
to

H =
P2

2m
+

p2

2m
, (16.26)

which is just the Hamiltonian of two free particles. However, in the primed
gauge, the wave function of the relative Hamiltonian has also changed. It is
now given by

ψ′rel(r, θ + π) = e−iqφ/2ψrel(r, θ) , (16.27)

-i.e., the particles obey anyonic statistics. So the problem of two free anyons is
equivalent to the problem of two interacting charge flux composites described
by the Hamiltonian in Eq.16.19. The quantum mechanical problem can be
solved - we need to go back to the boson gauge ( since we do not know how
to solve quantum mechanics problems with non-trivial statistics) and write the
Hamiltonian in terms of centre of mass (CM) and relative coordinates and note
that the CM motion becomes free and the relative motion acquires an extra
qφ/2m factor in the angular momentum term, thus adding to the centrifugal
barrier. The radial part of the relative motion can then be identified as a Bessel
equation. Thus the two anyon wave-function can be written as

ψ(R, r) = ψCM(R)ψrel(r) = eiP·Rei(l+qφ/2m)θJ|l+qφ/2m|(kr), (16.28)

where r = (r, θ). The two particle wave-function can be recast in terms of the
original single particle coordinates - i.e., ψ((R, r) = ψ(r1, r2). However, unless
qφ/2m is either integer or half-integer, the two particle wave-function cannot
be factorized into a product of two suitable one-particle wave-functions. Also,
the energy levels of the two anyon system cannot be obtained as sums of one
anyon energy levels. This is easier to see with discrete energy levels and so we
will next solve the problem of two anyons in a harmonic oscillator potential.

The Hamiltonian for two anyons in a harmonic oscillator potential is given
by

H =
p2

1

2m
+

p2
2

2m
+

1

2
mω2r2

1 +
1

2
mω2r2

2 . (16.29)

The problem can be separated into CM and relative coordinates in terms of
which the Hamiltonian is given by

H =
P2

4m
+

p2

m
+mω2R2 +

1

4
mω2r2 . (16.30)

The problem can now be solved in terms of the cylindrical (R,Θ) and (r, θ)
coordinates. The CM motion is independent of the statistics of the particles
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and one can simply find the energy levels as

ECM = ω(n+ |L|+ 1) . (16.31)

The Hamiltonian for the relative motion can be solved in the same way, except
that because of the phase under exchange, we need to go to the boson gauge,
where there is a dependence on the statistical gauge field - i.e., we have

Hrelψrel = [
(p− qarel)2

m
+

1

4
mω2r2]ψrel = Erelψrel . (16.32)

In terms of the (r, θ) coordinates, we now find that the energy levels are given
by

Erel = ω(n+ |l + α/π|+ 1). (16.33)

Note that α = 0 and α = π give the usual energy levels for bosons and fermions
respectively. Otherwise, they are given by

Ej = (2j + 1 + α/π), degeneracy factor = j + 1,

Ej = (2j + 1− α/π), degeneracy factor = j . (16.34)

Clearly, the levels are not equally spaced and the total energy of the two anyon
system given by

E2anyons = ECM + Erel = (2j + p+ 2± α/π)ω, p, j = integers (16.35)

is not a sum of the one particle levels E = (n+1)ω, with n = integer. Similarly,
the two anyon wave function is also not a simple product of one anyon wave
functions. We find that

ψ(R, r) = e−mω(R2+r2/4)rα/πeiαθ/π

=⇒ ψ(r1, r2) ∝ e−mω(r21+r22)/2(r1 − r2)α/π (16.36)

which does not factorize into a product of two single particle wave-functions
except when α = 0, π. This is why even a system of free anyons needs to be
tackled as an interacting problem. For more details, see Ref. [4].

16.2.6 Many anyon systems

Finally, we briefly mention what happens when we have many anyons. As we
have seen above, even the two free anyon system is an interacting system be-
cause of the statistical interactions. Hence, any many anyon system needs to be
treated as an interacting system, where each particle has long-range statistical
interactions with each of the other particles.

Here, we will just mention one important concept of many anyon systems,
which is that of fusion rules. A system which has anyons must have many types
of anyons. If we have an anyon with statistics parameter θ, then we can combine
two such anyons or make a bound state of two such particles. What would be
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the statistics of the bound state? You may naively think that it should be 2θ.
But that is not correct. One can see this by thinking of the anyon as a charge-
flux composite in two ways. (1) In terms of angular momentum, we can add up
the individual spins of the two anyons: θ/2π+θ/2π = θ/π. But we also need to
include the orbital angular momentum of the anyon pair. Normally, the orbital
angular momentum is an integer because the wave-function of the two particle
system is single-valued, if you take one particle around the other. But here, the
counter-clockwise transport of one anyon around another in a full circle leads
to the phase e−2iθ = ei2πL where L is the orbital angular momentum. Now
adding the spin and orbital angular momentum, we find that the total angular
momentum is θ/π + θ/π = 2θ/π = 4θ/2π which gives the statistics parameter
as 4θ. (2) Here, we note that a single anyon exchange leads to a phase of eiθ.
So when a two anyon molecule exchanges with another 2 anyon molecule, there
are 22 = 4 exchanges and hence the phase acquired will be e4iθ, which agrees
with the total spin of the bound state as well.

Now, we can generalize this to say that more particles can be bound to-
gether to form new bound states or new types of particles. This is called fusion.
The statistics parameter when n such particles are bound together is given by
ein

2θ. One can think of this new particle as an n-charge-n-flux composite. The
formation of a different type of anyon by bringing together two anyons is called
fusion. If we bring together an anyon and anti-anyon with opposite statistics
parameter ( θ and −θ), the result has statistics zero, which is equivalent to
having no particles. The system with no particles (called the vacuum) is often
denoted by the identity I. It is also called a trivial particle.

For abelian anyons, it is clear that if we bring together 2 anyons with
statistics parameter θ, they give rise to an anyon with statistics parameter 4θ
and in general n such particles give rise to anyons with statistics parameter
n2θ. But for non-abelian anyons, this is no longer true. There is no unique way
of combining anyons to form new anyons and one can have different outcomes
by bringing them together (just like two spin1/2 particles can be brought to-
gether to form spin 0 or spin1 particles). These are called fusion channels. The
probability of the different outcomes is specified by a set of numbers which give
rise to the fusion rules.

In the next section, instead of studying anyons abstractly as we have done
in this section, we shall study an explicit lattice model, whose excitations turn
out to be abelian anyons. We will come back to this later when we study non-
abelian anyons.

16.3 Toric code model as an example of abelian anyons

Let us begin this section, by first answering two questions - what is the toric
code and why do we want to study it. The toric code is actually a spin model
defined on a two dimensional lattice. It was engineered by Kitaev [9] to be
exactly solvable and to have low energy excitations that are anyonic. The reason
that this model became so important was because it was shown by Kitaev that



16.3. Toric code model as an example of abelian anyons 415

Av

Bp z

z

z

z x

xx

x

Figure 16.15: The Kitaev toric code model on a square lattice. Spins are placed
on the links. The operator Av is the product of the x-components of the spin
of the four links that cross at the vertex and the operator Bp is the product of
the z-component of the spins around the perimeter of the square.

these anyons could be used, in principle, to perform fault tolerant quantum
computation – fault tolerant because information could be stored in the fusion
properties of anyons, which could not be destroyed by local perturbations. This
model is thus, the prototypical concrete lattice model for many of the more
abstract ideas of quantum computation.

16.3.1 Toric code on a square lattice

In general, the toric code model can be defined on any lattice, but here we
will work on the simplest model which is an exactly solvable spin 1/2 model
on a two dimensional square lattice of N × N points [10, 11]. The spins are
placed on the edges or links of an open lattice as shown in Fig.16.15 and it
is easy to check that we have twice as many spins as the number of lattice
points - 2N2. The components of the spins on different links commute with one
another. On a given link, the spins satisfy the usual anti-commutation relations
{σα, σβ} = 2δαβ where α, β = x, y, z. The Hamiltonian for the model is given
by [10]

H = −Je
∑

v

Av − Jm
∑

p

Bp (16.37)

where
Av = Πj∈vσ

x
j and Bp = Πj∈pσ

z
j (16.38)

are the vertex operator that acts on the four spins surrounding the vertex and
the plaquette operator involving the four spins around the plaquette, respec-
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tively, as shown in Fig.16.15. Note that this is not a very common or physical
looking Hamiltonian since it has four spin interactions, and has explicitly been
engineered for a purpose! As can be easily seen from the diagram, every spin is
a part of two vertex and two plaquette operators. The eigenvalues of both Av
and Bp are ±1. However, the product of the eigenvalues over all the plaquettes
or all the vertices is always unity - i.e.,

Πj∈VAV = Πj∈PBp = +1, (16.39)

where V = total number of vertices in the model is N2 and P = total number
of plaquettes in the model is also N2.

Note that the vertex operators contain the x-component of the spins and
the plaquette operators contain the z-component of the spins. Hence, it is easy
to check that the vertex operators and the plaquette operators commute among
themselves

[Av, Av′ ] = [Bp, Bp′ ] = 0. (16.40)

But it is also true that [Av, Bp] = 0. This is trivially true if they do not
have any spins in common, since spins on different sites commute. But in case,
they do have a spin in common, they will always have two spins in common.
For example, from Fig.16.16, it is clear that the plaquette Bα1 shares spins
with the four vertex operators Aβ1 , ...Aβ4 . But with each of them, it shares 2
spins. For instance, we have

[Bα1
, Aβ1

] = σz1σ
z
2σ

z
3σ

z
4σ

x
1σ

x
2σ

x
5σ

x
6 − σx1σx2σx5σx6σz1σz2σz3σz4 , (16.41)

which is zero because σz1σ
x
1 = −σx1σz1 and σz2σ

x
2 = −σx2σz2 . So the two negative

signs cancel each other. The same thing goes through for the other three vertex
operators as well. So the bottomline is that all the terms in the Hamiltonian
commute with each other, and commute with the Hamiltonian. So all the Av
and Bp operators can be simultaneously diagonalized and their values can be
used to label the states.

The next step is to find the ground state of the Hamiltonian. This means
that the energy of all the terms in the Hamiltonian have be minimized, which,
in turn means that each of the Av and Bp terms have to be maximized. Let us
work in the σz diagonal basis. The eigenvalues of σzj are sj = ±1. Let us also
define ωp(s) , the product of the eigenvalues around the plaquette p (where
s stands for the configuration of {sj}). This can also be just +1 or −1. We
will call this the flux through the plaquette. A configuration where ωp = −1
is called a vortex (or flux) configuration. (See Fig. 16.17 for examples.) Now
suppose that we have only Bp terms in the Hamiltonian, i.e., H = −Jm

∑
pBp.

Here, again the only possible eigenvalues for the operator Bp are +1 and −1
and the configurations are all given in Fig. 16.17. We note that there are eight
configurations with ‘no flux’ (ωp = +1) and eight configurations with non-zero
flux (vortex configurations with ωp = −1) as shown in Fig.16.17. As to why
these are called flux configurations, it turns out that this toric code model
turns out to be the same as the Z2 gauge theory on a lattice, and the flux
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Figure 16.16: Commutation relations of the operators on different links and
same links. See text for details.

is that of the Z2 gauge field. But the study of this connection is beyond the
scope of these lectures and for us here, the word flux can be thought of as just
nomenclature. The ground state is now clearly given by any linear combination
of configurations which have no vortices -i.e, the ground state is given by

|ψ〉 =
∑

{s,ωp(s)=+1∀p}
Cs|s〉, (16.42)

where Cs is arbitrary. All we know about the ground state is that it has no
vortices and

Bp|ψ〉 = |ψ〉 ∀ Bp, (16.43)

because the eigenvalue of Bp acting on |s〉 is always +|s〉. For 2N2 spins, the

ground state degeneracy would be 2N
2

(because pairs have to be either ↑ or

↓). In other words, of the total number of configurations 22N2

, 2N
2

would have

ωp = +1 ( ground state configuration) and 2N
2

would have ωp = −1 ( vortex
configuration).

Now let us add back the vertex terms to the Hamiltonian. The Av acts on
|s〉 by flipping spins, since σxσzσ

−1
x = −σz, but in any plaquette, it will always

flip two spins. So it will keep configurations with ωp = 1 in configurations with
ωp = 1. Hence, operation of Av on |s〉 will only take it to some other |s′〉, which
will also belong to the same set of vortex free configurations with ωp(s) = 1.
But since Av can act on any of the lattice points, Av can be an eigen-operator
for |ψ〉 only if Cs = +1 for all s. So now, we define

|Ψ0〉 =
∑

{s,ωp(s)=+1∀p}
|s〉, (16.44)

as the ground state with all Av and Bp acting on it with eigenvalue 1. (We
could have worked in a σx diagonal basis, and defined a state |s′〉 with ‘no (x)
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Figure 16.17: The configurations of spins on each plaquette on the left have
ωp(s) = 1 and the configurations on the right have ωp(s) = 1

vortices’ in the dual lattice configuration so that Av acting on the state would
give +1 for all v and repeated the same argument. So it is clear that this ground
state is a sum over all spin configurations that have neither x nor z ‘vorticity’.)
It has an energy E = −2N2Je− 2N2Jm. Any excitation over this ground state
must have non-zero vorticity which would imply that at least one of the spins
would have to flip in either the z or x directions. In that case, 2 of the Bp’s or 2
of the Av’s would have eigenvalues −1 and hence, the energy of the excitation
would be either 4Jm or 4Je, but we will come back to these excitations later.

So we have found the ground state of an interacting Heisenberg spin model
in two dimensions exactly, essentially because the Hamiltonian has been con-
structed to be exactly solvable. The ground state can also be written as

|Ψ0〉 = N
∏

v

(1 +Av)|ξ〉, (16.45)

where |ξ〉 is some reference state. For example, we can take |ξ〉 to be the state
with all spins pointing ↑. The easiest way to check that this is the ground state
is to check that for all Av and Bp, we get the eigenvalue +1, when they act on
this state. Let us check this.

Av′ |Ψ0〉 = Av′N
∏

v

(1 +Av)|ξ〉. (16.46)

First consider the terms where v 6= v′. Then Av′Av = AvAv′ . But for v = v′,
Av′(1 +Av′) = Av′ + 1, since A2

v′ = 1. Hence

Av′ |Ψ0〉 = +1|Ψ0〉. (16.47)

Furthermore, we already know that Av acting on any state does not change
its z-vorticity since it always flips two spins. Since the reference state has vor-
ticity = +1 and Bp = +1 on all states with vorticity =+1, we also have

Bp|Ψ0〉 = +1|Ψ0〉 . (16.48)
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Figure 16.18: Flipping the z-component of the spin by σx creates 2 monopoles,
in adjacent plaquettes whereas flipping the x-component of the spin by σz
creates 2 charges at adjacent vertices.

m
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Figure 16.19: (a) A pair of monopoles created by flipping the z-component of
the spin by σx along a string on the dual lattice. (b) Annihilating the monopoles
by closing the string. This configuration again has zero vorticity and commutes
with the Hamiltonian. (Note that the spins that do not change are not shown
in this diagram and in most further diagrams, where they are obvious, in the
interest of not cluttering the diagrams.)

This is essentially a unique ground state on a plane or with open boundary
conditions. We shall see later what happens when we have periodic boundary
conditions which is equivalent to putting the model on a torus. But before that,
let us see how to create excitations over the ground state.
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Figure 16.20: (a) A pair of electric charges created by flipping the x-component
of the spin by σz along a string. Note that the vertices in between the spins all
have spins flipped on two links connected to them. (b) Moving one of the charges
by flipping more spins and increasing the length of the string (c) Annihilating
the charges by closing the string. This configuration has zero vorticity and
commutes with the Hamiltonian.

16.3.2 Excitations over the ground state and fusion rules

There are two types of excitations that we can create on the ground state -
one by applying σx and the other by applying σz. Another way of thinking
about excitations is to note that both Av and Bp acting on the ground state
have eigenvalues +1. One can make excitations if any of these values for some
vertex or some plaquette becomes −1. First, let us try to make the vorticity
in a given plaquette become −1. To do this, we need to flip the z-component
of the spin on one link, which can be done by applying σix on the ith link.
So σix|Ψ〉 flips ↑ to ↓ on the ith spin. However, this gives the value for Bp
to be −1 on two plaquettes, since the link is common to two plaquettes. The
energy of this excitation is clearly 2Jm + 2Jm = 4Jm since the sign change of
a single plaquette costs 2Jm. These excitations are shown in Fig.16.18 where
2 e-excitations have been created on neighbouring vertices and 2 m-excitations
in neighbouring plaquettes.

Note that the the pairs of excitations can be moved away from one another
at no cost in energy. This is most easily seen diagrammatically. The string
Πj∈t′σjx between the two magnetic excitations (or monopoles) changes the z-
component on all the links between the end points as shown in Fig.16.19(a),
but essentially all the intermediate plaquettes have Bp = +1. If we consider
drawing a line between the two monopoles, note that this line (or contour or
string) is defined on the dual lattice.

Similarly, Av = −1 if the x-component of the spin on one of the links gets
flipped. This can be done by applying σz to the ground state. But here again,
the change of the x-component of the spin on a link affects two vertices, and
hence creates a pair of electric excitations with energy 2Je + 2Je = 4Je. Once
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Figure 16.21: A pair of monopoles and a pair of electric charges created by
flipping both the x-component and z-component of the spin by σy. This is
equivalent to a pair of ε excitations.

again, the two members of the pair of excitations can be moved away from one
another at no cost in energy as is shown in Figs.16.20(a,b) by applying a string
of operators, Πj∈tσjz between the two electric excitations. Here if we draw a line
between the e-excitations, the line or string is defined on the lattice. The string
changes the eigenvalues of the x components of all the spins belonging to the
string. However, except at the end points of the string, every vertex will have
two spins flipped and will continue to have Av = +1. It is only at the two ends
of the string, that the vertices will have Av = −1. For instance in Fig.16.20(a),
we have flipped the x-component of 5 spins. However, we have created only two
electric excitations.

We can even make closed string loops that create, move and annihilate
the electric or magnetic charges as shown in Figs.16.19(b) and 16.20(c). These
loops have z or x vorticity =+1 - i.e., they commute with all Av and Bp.
In other words, they commute with the Hamiltonian and can be thought of
as symmetries, and the existence of these symmetries is the reason for the
exact solvability of the model. The ground state can also be thought of as a
superpositions of all these loops.

Are there any other kind of excitations in the toric code? One might think
that by applying σy on the ground state, we may get new excitations. In fact,
it turns out that there is a new excitation, which is a composite of the electric
and magnetic excitations, which is called the ε excitation -

|ε〉 = σizσ
i
x|Ψ0〉 = iσiy|ψ0〉. (16.49)

Essentially, σiy acting on a spin flips both its σx and σz components. So by
applying it on a link as shown in Fig.16.21, it creates a pair of electric and
magnetic excitations, or a pair of ε = e ×m excitations. There are no further
excitations that can be created. So the particle content of the model is given
by I (no particles), m-particles, e-particles and ε = e×m-particles.



422 16. Abelian and non-abelian anyons

Now let us see what happens if we apply two σ operators on the same
plaquette. We know that σjx applied on a state creates a pair of excitations (
m- particles) on two adjoining plaquettes. But if we apply σix twice, we do not
get two pairs of excitations, because (σjx)2 = I and I operating on a state does
not give rise to any excitation. So one cannot have more than one m-particles
in each plaquette. This leads us to what are called fusion rules. We find that

e× e = I, (16.50)

m×m = I, (16.51)

ε× ε = I . (16.52)

Further we had already seen that the first line of the following set of equations
are true and it is not hard to check that the others are true as well -

e×m = ε, (16.53)

e× ε = m, (16.54)

m× ε = e . (16.55)

We had earlier seen that we can define string operators to move particles
away from one another and even annihilate them by forming closed loops. We
said that all these closed loops formed by creating, moving and annihilating
particles, cost no energy and commute with the Hamiltonian. They are products
of Av’s or Bp’s and can be thought of as trivial symmetries of the Hamiltonian
because they map the Hamiltonian onto itself. The ground state is unique and
a linear combination of all these vortex-free states.

16.3.3 Toric code on a torus and topological degeneracy

But a new element is introduced if we have periodic boundary conditions or
equivalently, consider the toric code model on a torus. In this case, there are two
other independent operators, that we can define, which are not the products
of the Av and Bp operators of the Hamiltonian, and which can take the values
+1 and −1. We can write them as

W1γ1 =
∏

j∈γ1
σjz, (16.56)

W2γ2 =
∏

j∈γ2
σjz, (16.57)

where γ1 and γ2 are paths which go from one edge of the torus to the other
in the two orthogonal directions - for definiteness, let us assume that the loop
γ1 is in the vertical direction and the the loop γ2 is in the horizontal direction,
as shown in Fig.16.22. They form non-contractible loops. The paths can be
moved around by multiplying the Wi’s with Bp’s, (because they do not change
anything since they just give +1 on the ground state as shown in Fig.16.23).
But there is precisely one non-contractible loop in each direction, which we can
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Figure 16.22: Operators W1γ1 and W2γ2 which are defined by taking the product
of the z component of the spins, σjz, along the paths γ1 (red) going from top
to bottom and γ2 (cyan) going from left to right

Figure 16.23: The operator W1γ1 can changed by multiplying the operator by
Bp. This essentially changes the path γ1, which is now no longer the straight
vertical path.

take to be the shortest path. It is easy to see that W 2
1 = W 2

2 = 1 which says
that W1,W2 have eigenvalues ±1. They are symmetries, because they commute
with the Hamiltonian. They also commute with one another and hence, they
give rise to a four-fold degeneracy of the ground state

|W1,W2〉gs = |1, 1〉, |1,−1〉, | − 1, 1〉, | − 1,−1〉, (16.58)

because each of the Wi can take values ±1.
Now let us show that this degeneracy is topological and there is no local

operator that can cause transitions between these four ground states.
We shall first see if there are any operators that connect the degenerate

states in the ground state manifold. We have already defined W1 and W2. Let
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us now define also

W3γ1 =
∏

j∈γ1
σjx, (16.59)

W4γ2 =
∏

j∈γ2
σjx, (16.60)

where W 2
3 = W 2

4 = 1. These operators also commute with the Hamiltonian,
but they do not increase the degeneracy, because as we shall see below, they
do not commute with the earlier operators. There are only 4 mutually com-
muting operators that commute with the Hamiltonian. Clearly, [W1,W2] = 0
and [W3,W4] = 0. It is also easy to see that if both the loops are in the
vertical or horizontal direction, they will commute, since they can always be
displaced, i.e., we see that [W1,W3] = 0 and [W2,W4] = 0. However, this
is not true when we consider W1 and W4. With even the simplest choice of
path, they must have at least one spin in common, since one of the paths
is vertical and the other horizontal. (More complicated paths will also al-
ways give odd number of common spins). So if this common spin is at lo-
cation 0, then it is the anticommutator of the two operators which vanishes -
{W1,W4} = {σz(0), σ

x
(0)} = 0 (and similarly {W2,W3} = 0). So it is as if we

can define W1 = σz1 ,W2 = σz2 ,W3 = σx2 ,W4 = σx1 , so that the W ′i s can be
represented as Pauli matrices. Thus, W3 and W4 can change the eigenvalues of
W1 and W2 by acting on the spins one at a time.

Now how do we confirm that the ground state degeneracy is a topological
degeneracy and is topologically protected? The idea is that no local operator
allows transitions between the different ground states. Suppose Ω is a local
operator -i.e., it is of the form

Ω ≡ σαi σβj σδk . . . , (16.61)

where the links i, j, k are nearby in the sense that the maximum distance is
small compared to the thermodynamic limit N . Then, we can always ensure
that

[Ω,Wi] = 0. (16.62)

This means that Ω commutes with both σxi and σzi - i.e., with both Pauli
matrices at a given site. This means that it has to be proportional to the
identity. So it cannot directly cause any transition between different ground
states. It can only lead to transitions if it can cause indirect transitions which
will take it out of the ground state manifold. This would cost an energy E0

which is the energetic distance to the next state. Moreover, since the operator
is local, it would have to be applied N times since the W3,4 operators change
the state of 1 link at a time. So if the relevant matrix element of Ω is ω, we see
that the total transition amplitude is of O((ω/E0)N ) which goes to zero in the
thermodynamic limit as long as ω/E0 < 1. In other words, no local operators
can cause transitions between the degenerate states. One needs a non-local
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Figure 16.24: The exchange of the charges e1 and e2 by operating with the
string operator Πjσ

z
j . In the last step, we have simply removed a closed string

loop of vorticity zero.

measurement to distinguish between the four degenerate ground states. This is
why the ground state is said to have topological order, and this is what makes
it relevant for quantum computation.

16.3.4 Statistics and braiding properties of the excitations

Finally, we want to understand the statistics and braiding properties of the
excitations. Let us first look at the statistics of e-particles. σzi |ζ〉, where |ζ〉 is
the ground state, creates two e-particles in the adjacent vertices to the edge i.
A string Πjσ

z
j can separate the two excitations. As shown in Fig.16.24, the two

particles can even be exchanged by applying the string operators. But since all
σz’s commute with one another, whichever way we move them, we do not get
any phase. Thus, the e-excitations are bosons. Similarly, it is easy to argue that
all m-excitations are also bosons.

But now let us consider the mutual statistics between e and m particles.
We first create pairs of e and m excitations at sites i and j by applying σzi σ

x
j |ζ〉.

We then separate the excitations by applying string operators as shown in
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Fig.16.25(a) and then we move an e-particle all around an m-particle, as shown
in the series of figures in Fig.16.25(b), Fig.16.25(c) and Fig.16.25(d). It is clear
that there is one site at which the σx has to be taken beyond a σz spin. This
anti-commutation gives rise to a minus sign. The closed loop can be removed
and the net effect of the process is that

σzi σ
x
j |ζ〉 → −σxi σxj |ζ〉 . (16.63)

Now let Rem be the operator that exchanges the e and m particles. We have
found that the wavefunction for the creation of the two excitations,

ψ(re, rm)→ R2
emψ(re, rm) = −ψ(re, rm), (16.64)

since taking one particle completely around another is equivalent to two ex-
changes. Hence Rem = e±iπ/2 = ±i, which means that the e and m particles
have mutual anyon statistics.

We have already seen that Ree = Rmm = 1. The e and m particles
are bosons under exchange. What about the ε particles? It is clear that if we
take one ε particle completely around another, it is equivalent to taking an
electron-monopole pair completely around another electron-monopole pair (
since σy|g.s〉 ∼ σxσz|g.s〉). In this case, the phase we expect to get is +1 since
there will be two negative signs coming from anti commuting a σx through a
σz and vice-versa, so two anti-commutations altogether. But this is not enough
to tell us whether a single exchange gives a +1 or a -1. But the fact that taking
the m particle around the e particle gives rise to a -1 can be interpreted as
getting a negative sign when the ε particle is rotated through 2π. This is the
signature of a fermion. It is a ‘spinor’ and requires a rotation through 4π to get
back to itself. Hence, the ε particle is a fermion and we conclude that Rεε = −1.

So now we have all the fusion and braiding rules for the excitations of the
toric code. The particle content of the model is given by I, e,m, ε. The fusion
rules are

e× e = I, m×m = I, ε× ε = I,

e×m = ε, e× ε = m, m× ε = e. (16.65)

and the braiding rules are

Ree = Rmm = 1, Rεε = −1, Rem = i. (16.66)

Hence, this model has mutual (abelian) anyonic statistics. We will leave this
model here and now go on to study a model which has non-abelian anyon
statistics.

16.4 Non-abelian anyons

In this section, we will study a model [12] which has non-abelian anyon excita-
tions. Let me start with a brief explanation of why non-abelian anyons [13,14]
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Figure 16.25: The sequence of steps in taking an m charge around an e charge
by operating with the string operator Πjσ

x
j . In the second step, we note that

a σx has to go past a σz, leading to a negative sign. In going from the third to
the last figure, a closed loop of σx operators has been removed, returning the
configuration to the original configuration in the first figure.

are of interest today, other than being an exotic form of exchange statistics. The
reason is that they are expected to be relevant to quantum computation [15].
Quantum computation requires the possibility of storing quantum information.
This needs a ‘protected’ portion of the Hilbert space which will not be disturbed
by noise, temperature, etc, as long as the length scales are below the gap which
separates the ‘protected’ states from the rest of the states. This protection may
be due to some symmetry or even due to topology, which, in a sense acts like
a robust symmetry, since it cannot be easily destroyed. This leads us to the
idea of topological order, which exists if there is a degeneracy due to topology.
For instance, in the earlier section, we studied the toric code, which had only
abelian (mutual) anyons and no degeneracy on the plane. But the toric code
on a torus has a four-fold degeneracy which was topological and could be used
for quantum computation.
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In general, in models with non-abelian anyons, we will find that the ground
state is degenerate, and if the ground state is separated from all other states by
a gap, then the ground state has topological order and can be used for quantum
computation.

With this motivation, let us now see [17] what one means by non-abelian
excitations. Suppose we have N degenerate states represented by ψα , α =
1 . . . N , representing N particles. The idea is that if we now exchange particles
1 and 2, it can now do more than just give a phase. It can rotate the state
to another wave-function in the same degenerate space. In other words, the
column vector ψ = (ψ1ψ2 . . . ψN )T → ψ′ = Uψ where U ≡ Uαβ is an N × N
unitary matrix. If we now exchange two other particles, say 2 and 3, it could
lead to ψ → ψ′ = V ψ with V another unitary N × N matrix. If U and V do
not commute, which, in general, they will not, the particles are said to have
non-abelian statistics. Clearly, to have non-abelian statistics, we need to have
at least 2 degenerate states, since otherwise, U and V are just phases and
commute and we have abelian anyons.

One could think about generalizing the physical model of any anyon - a
charge orbiting around a flux - to the non-abelian case. In this case, the non-
abelian charge would be a vector |qi〉 =

(
q1 q2 . . qN

)
moving around

a non-abelian flux and returning to its original position, but in the process,
instead of just acquiring phase factors,

|qi〉 → |q′i〉 =
∑

j

Uij |qj〉 , (16.67)

where Uij is the non-abelian flux matrix. But unlike the abelian flux which
was path independent, the non-abelian counterpart U is path dependent. It
depends on where the path begins and ends as well as the contour. If we think
of U as a matrix belonging to the gauge group U(N) or SU(N), it means that
the transport of charge around a flux is gauge dependent because U depends
on the choice of gauge. It is only the eigenvalues of U (also called conjugacy
class of the flux in group G) which is gauge independent. So for the non-abelian
anyons, the physical picture does not help in simplifying or understanding the
model and it is better to deal with the more abstract picture.

The main ingredients for a theory of non-abelian anyons are the following
–
(1) We need a list of types of particles in the model.
(2) We need fusion rules – rules for fusing two constituents into one and also
for splitting a particle into two constituents, which is its inverse.
(3) We need rules for braiding two particles (equivalently exchanging two par-
ticles).

So let us now start with an abstract model. We first need a list of particles
with their charges. Note that here by charges, we mean topological charges.
In a condensed matter system, one can have quasi-particle excitations which
are local or which are topological. For instance, in the toric code model that
we studied in the last section, a spin operator could be applied locally (at a
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Figure 16.26: The first denotes a local excitation, since it can be removed by
flipping two spins locally, whereas the second one is a topological quasi-particle
since it is protected by the boundary conditions which are fixed.

given position) to create a pair of excitations (e-type or m type particles by
applying σx or σz). So a pair of excitations is a local or trivial type of particle
or equivalent to the identity. But individually, the e or m particles carry a Z2

charge which is topological. Another example is that of spin flip excitations in
an Ising model as shown in Figs. 16.26(a) and 16.26(b). A single spin-flip (or
even a few spin flips) is a local excitation and is equivalent to the identity as
far as particle type is considered. But a domain wall is a topological excitation
that is protected by the boundary conditions and cannot be removed by local
perturbations. So let us list the topological particles in our system as a, b, c, . . . .

Next, we need to specify the fusion rules for these particles. The fusion
algebra is defined as

a× b =
∑

c

N c
abc, (16.68)

where N c
ab ≥ 1. This equation simply means that if N c

ab = 0,then the particle
c is not obtained and if N c

ab = 1, then the particle c is obtained as a fusion
product and if N c

ab〉1, then c can be obtained in N c
ab ways. Here, a, b, c are just

labels of the different kinds of particles. For abelian anyons, an anyon with
statistics parameter α1 will fuse with an anyon with statistics parameter α2

to yield a specific anyon with statistics parameter α3 and Nα3
α1α2

= 1 and is
otherwise zero. But this is not true for non-abelian anyons. The fusing of two
anyons could lead to different types of particles with different probabilities. In
that sense, fusion of particles is like a measurement. Given two abelian anyons
a and b, their fusion is well-defined and leads to a unique answer. But for non-
abelian anyons, it does not lead to a single answer. The integers N c

ab define
the probabilities of the outcome. The simplest non-abelian model will have
N c
ab 6= 0 for at least two distinct values of c. The Hilbert space of two (or

more) dimensions formed from these distinct outcomes of fusing two particles
is known as the topological Hilbert space of the pair of non-abelian anyons.

Now, let us consider what happens when we have many non-abelian
anyons. For abelian anyons, each time you bring in a new particle, the fu-
sion rules give you only one possible outcome. But for non-abelian anyons,
since even two anyons can have more than one outcome, a third anyon can fuse
with either of the outcomes and again give rise to more possible outcomes. So
one can get many fusion paths, since fusion is not unique. Since sometimes,



430 16. Abelian and non-abelian anyons

different paths can lead to the same outcomes, there are consistency conditions
that need to be satisfied called pentagon equations. Once we also include braid-
ing matrices in the game, there are also consistency conditions called hexagon
equations which need to be satisfied.

However, instead of going further ahead with the abstract analysis, we will
now change gears and study a concrete model with non-abelian excitations. This
is the Kitaev one-dimensional toy model with unpaired Majorana fermions. We
will explicitly show that these Majorana fermions obey non-abelian statistics
under exchange.

16.4.1 Kitaev model in one dimension

The Hamiltonian for the Kitaev model in one dimension is given by [12]

H = −µ
N∑

x=1

nx −
N−1∑

x=1

(tc†xcx+1 + ∆cxcx+1 + h.c.), (16.69)

where cx represents spinless fermions on site x, t is the amplitude of hopping to
nearest neighbour sites, and ∆ is the superconducting parameter and denotes
p-wave pairing - p wave because the electrons are of the same kind (spinless or
equivalently same projection of spin) - on nearest neighbour sites are paired.
µ is the chemical potential and nx = c†xcx is the number operator, so that
N =

∑
x nx.

Now, let us rewrite the Hamiltonian in terms of new operators called
Majorana operators.

cx =
1

2
(γA,x + iγB,x),

c†x =
1

2
(γA,x − iγB,x) . (16.70)

This implies that γA,x = cx + c†x and γB,x = i(cx − c†x) are hermitian (self-
conjugate) operators. This is the definition of Majorana operators.

Now, let us look at some properties of these Majorana modes. We can
check that they are fermions, in the sense that they anti-commute. More pre-
cisely, they satisfy the algebra given by

{γa, γb} = δab, γ2
a = γ2

b = 1 , (16.71)

whereas genuine fermions satisfy

{ca, c†b} = δab, {ca, cb} = 0, c2a = 0 . (16.72)

Pairs of Majorana fermions (γA and γB) can be combined to form genuine
fermions which can form a single 2 level system, depending on whether the
fermion state is occupied or unoccupied. The next step is to consider what
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Figure 16.27: Here, the bonds are between Majorana modes at the same site.
The ground state is unique and the end Majorana modes do not play any special
role.

happens when we have 2N Majorana fermions. We can pair them up to make
N ordinary fermions -

qx =
1

2
(γA,x + iγB,x), q†x =

1

2
(γA,x − iγB,x), (16.73)

(the same equations used to split the fermions into Majorana modes given in
Eq.16.70) with the number operators at each site x given as Nx = q†xqx = 0, 1.
This gives a 2N dimensional Fock space.

Why is it interesting to rewrite fermions in terms of pairs of Majorana
fermions? Naively, this seems to be something which can always be done, and
does not lead to anything new. But if a pair of Majoranas can be spatially sep-
arated, then the fermion made from them is delocalized. It is hence, protected
from local changes that affect only one of them and hence protected from deco-
herence. This is why Majorana modes are expected to be relevant in quantum
computation.

Now, let us get back to the Kitaev model. To understand the physics in a
simple way, let us consider two simple limits, where the Hamiltonian becomes
particularly simple. First, consider the case when µ = 0 and t = ∆. Here, we
get

H = −it
N−1∑

x=1

γB,xγA,x+1 . (16.74)

In the other limit, we take µ < 0 and t = ∆ = 0 and get

H = −µ
2

N∑

x=1

(1 + iγB,xγA,x) . (16.75)

What do these two limits mean?
We first analyze the second case. Here, the fermion at each site is simply

broken up into two Majorana fermions and the µ term simply couples them as
shown in Fig.16.27. In this case, there is a unique ground state corresponding
to the vacuum state with no fermions. Adding a fermion to the system costs
an energy µ, so the system is gapped.

The first limit, on the other hand, couples Majorana modes at adjacent
sites. In terms of new fermions dx = (γB,x + iγA,x+1)/2, the Hamiltonian can
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�A,1 �B,1 �A,2 �B,2 �A,3 �B,3 �A,4 �B,4

Figure 16.28: Here, the bonds are between Majorana modes on adjacent sites.
There are unpaired Majorana modes at the two ends. The ground state is
doubly degenerate depending on whether the fermion state formed from the
unpaired Majorana modes is occupied or unoccupied.

be rewritten as

H = 2t

N−1∑

x=1

d†xdx. (16.76)

This clearly shows that the system has a gap and the cost of adding a fermion
to the system is 2t. But the interesting point to note is that the Hamiltonian
is completely independent of the two Majorana modes γA,1 and γB,N as shown
in Fig.16.28, at the two ends of the wire. These two Majorana modes can be
combined to form a fermion as

cM =
1

2
(γA,1 + iγB,N ) . (16.77)

But this is a highly non-local fermion, since γA,1 and γB,N are localized at
opposite ends of the chain. Moreover, since this fermion is absent from the
Hamiltonian, the energy is the same whether or not this fermion state is occu-
pied. So the ground state is degenerate. If |0〉 is the ground state, then c†M |0〉
is also a ground state. Note that γ2

a = 1 implies that there is no Pauli principle
for the Majorana modes - in fact, as we saw earlier, there is no notion of oc-
cupation number for a single Majorana mode. Number operators only exist for
fermions formed from pairs of Majorana modes. Depending on the occupation
or not of the zero energy mode of the fermion - i.e, of cM - there exists an odd
or even number of fermions in the ground state referred to as ‘fermion parity’.
To change the parity, electrons have to be added or removed from the supercon-
ductor. This is unlike normal gapped superconductors, (e.g. the second limit),
which have a unique ground state with even fermion parity.

In the more general case, [18] when µ, t and ∆ are non-zero, the general
features of the topologically trivial case with a unique ground state, and the
topologically non-trivial case with the Majorana edge states persist. Why do
we call them topologically trivial and non trivial in the two cases? Well, in the
trivial case there are no edge states and in the non-trivial case, there are edge
states. In terms of the bulk properties of the Kitaev chain, one can find the
bulk quasiparticle spectrum by going to momentum space and rewriting the
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Figure 16.29: Here, we exchange the Majorana modes belonging to the same
fermion. This only gives rise to a phase and hence abelian statistics.

Hamiltonian in Eq.16.69 as

H =
∑

k

ζkc
†
kck +

∑

k

(∆kckc−k + h.c.), (16.78)

using cx = 1√
N

∑
k e

ikxck and cx = cx+N , ζk = −2t cos k − µ and ∆k =

−2i∆ sin k We then find the quasi-particle spectrum by going to Nambu space
and writing the Bogoliubov-de Gennes Hamiltonian as

H = (c†kc−k)

(
ζk ∆∗k
∆k −ζk

)(
c†k
c−k

)
, (16.79)

and finally we get the spectrum Ek =
√

(ζ2
k + |∆k|2). Hence, the model is

gapped, except when µ = −2t when k = kF = 0 or when µ = +2t when
k = kF = ±π. The lines µ = ±2t are where the system becomes gapless. For
µ < 2t, the system is topological and is adiabatically connected to the first
limit with Majorana edge states. For µ > 2t, the system is topologically trivial
and is adiabatically connected to the second limit with no edge states.

16.4.2 Statistics of the Majorana modes

Now, let us consider the statistics [19,20] of the Majorana modes. Let us start
with the simplest case where N = 1. In this case, there are only two Majorana
modes and the braid group only has a single generator τ . As we saw in the
first section, τ is the operator that exchanges the Majorana modes A and B
(as shown in Fig.16.29) -

γA → γ′A = τ †γAτ = eiφγB , (16.80)
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but it does not fix the phase φ which is arbitrary. We can choose it to be +1.
But then the phase of

γB → γ′B = τ †γBτ = eiφγA (16.81)

is forced to be −1. This is because when there are only 2 Majorana modes, and
the system is isolated, the fermion parity is forced to be conserved. The fermion
state formed from the two Majorana modes is either occupied or unoccupied
and we can check that

iγAγB = (1− 2c†McM ). (16.82)

So if the right hand side remains unchanged, then iγAγB has to remain un-
changed, which is only possible, if we choose the phases as shown above, since
γAγB = −γBγA. Here, we can choose the exchange operator to be of the form

τ =
1√
2

(1 + γAγB). (16.83)

It is easy to check that τ defined this way is unitary and that it actually carries
out the exchange by substituting for τ in Eq.16.81. It is also easy to check that
τ can be rewritten as exp(πγAγB/4). If we write it in terms of the fermion
number operator,

τ = eiπ(1−2n)/4, where n = c†McM . (16.84)

Clearly, since n does not change, the statistics parameter is abelian and it
cannot rotate states in the ground state manifold (|0〉, c†M |0〉).

Now, let us see what happens when N = 2. Here, we have 4 Majorana
modes γi, i = A . . .D which can form 2 normal fermions -

c1 = 1
2 (γA + iγB), c†1 = 1

2 (γA − iγB),

c2 = 1
2 (γC + iγD), c†2 = 1

2 (γC − iγD). (16.85)

The degenerate states of the system are given by |n1, n2〉 = c†1c
†
2|0, 0〉 =

{|0, 0〉, |1, 0〉, |0, 1〉, |1, 1〉}. Operator τAB exchanges the Majoranas A and B
keeping C,D unchanged and operator τCD exchanges the Majoranas C and D
keeping A,B unchanged. Similarly, we can define, τAC , τBD, etc.

It is now clear that analogous to the N = 1 case, if we exchange the two
Majorana zero modes from the same fermion, as shown in Fig.16.29, we will
only get a phase - i.e.,

τAB |n1, n2〉 = eiπ(1−2n1)/4|n1, n2〉,
τCD|n1, n2〉 = eiπ(1−2n2)/4|n1, n2〉 . (16.86)

In the first equation, n2 comes along for a ride and in the second equation, n1

comes along for a ride. So both these operators are abelian operators. But now,
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Figure 16.30: Here, we exchange the Majorana modes belonging to two different
fermions. This leads to a unitary rotation in the space of degenerate states and
hence, to non-abelian statistics.

let us exchange one Majorana from one of the fermions with another Majorana
from the other fermion, (as shown in Fig.16.30)

τBC =
1√
2

(1 + γBγC). (16.87)

In terms of the fermions c1 and c2, this can be written as

τBC =
1√
2

[1− i(c1 − c†1)(c2 + c†2)]. (16.88)

Now acting this on |n1, n2〉 does not lead to a phase. Instead, it leads to a
rotation in the space of degenerate states given by

τBC |n1, n2〉 =
1√
2

[|n1, n2〉+ i(−1)n1 |1− n1, 1− n2〉] . (16.89)

If we now consider sequential exchanges, it is clear that different exchanges will
not commute with one another - the final state will depend on the order of the
operations. This is what is meant by saying that the Majorana particles have
non-abelian statistics under exchange.

The derivation of the non-abelian statistics is not dependent on the details
of how the exchange between the particles is carried out, and hence it cannot
be changed by disorder or local details. It is topologically stable.

To understand multiple non-abelian anyons, as we already mentioned, we
need to understand fusion paths, since the fusion rules do not need to unique
results. These fusion paths represent a basis of the degenerate ground state
manifold, and are most conveniently studied in terms of conformal blocks of
the appropriate conformal field theory [3]. But that is beyond the scope of these
lectures and we will stop here.
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16.5 Conclusion

Let me conclude by repeating the main message of these lectures - understand-
ing the notion of anyons and non-abelian anyons is an exciting field today. The
study of these excitations could lead to an understanding of concepts like deco-
herence and entanglement which are relevant in quantum computation. Work
on non-abelian states, in general, is still in its infancy. For young researchers,
hence, this should be a useful and relevant topic of study at the crossroads of
condensed matter physics and quantum information. For more information and
references, there are many recent reviews [2, 3, 15] available on the net.
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An introduction to Quantum Spin
Liquids

Subhro Bhattacharjee

Quantum spin liquids represent phases of condensed matter that
fall beyond the paradigm of Landau’s symmetry based classification.
They, instead, are characterized by the presence of subtle patterns of
long-range many-body quantum entanglement. An ever growing list
of experiments suggests that understanding such phases of matter
forms a crucial step towards the development of a new and general
framework of condensed matter systems. We provide an introduction
to such physics in the context of quantum spin liquids that would be
relevant to frustrated quantum magnets. We take two examples, (1)
the two dimensional Z2 quantum spin liquid in Kitaev’s Toric code
model, and (2) the three dimensional U(1) quantum spin liquid in the
XXZ pyrochlore system, both for spin- 1

2 , to explain some of the in-
herent properties of quantum spin liquids, as we know them. The aim
is to contrast these properties with those of conventional phases like
the magnetically ordered ones. These differences range from novel
excitations such as mutual semions in the form of Ising electric and
magnetic charges in Toric code to emergent photons and fractional-
ized spin- 1

2 excitations in XXZ pyrochlores. These two examples have
been chosen to bring out the differences clearly, without going into
the general structure of emergent gauge theories in quantum spin liq-
uids. However, all the principles introduced here have very general
applications.
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17.1 Introduction

The theoretical framework of modern condensed matter physics, developed over
the last hundred years or so, has been widely successful in describing phases
of many-body systems, both classical and quantum. Most of the technological
advancements that we see around us owe their origin to our growing under-
standing of condensed matter phases like metals, semiconductors, supercon-
ductors, magnets, etc. The framework of understanding many of these phases,
the conventional condensed matter theory, heavily rests on two major orga-
nizing principles that can be traced back to the pioneering works of Landau,
among others. These two organizing principles are: (1) the idea that condensed
matter phases can be classified on the basis of spontaneous symmetry breaking,
and (2) the principle of adiabatic continuity connecting interacting systems to
suitable non-interacting or mean-field descriptions [1–3].

Ever since the discovery of quantum Hall effect in 1980s [4, 5], the above
principles have been repeatedly challenged in terms of their applicability in their
current forms. So, in the last three decades, these ideas had to be suitably gen-
eralized and/or adapted to incorporate description of condensed matter phases
that do not directly fall within the purview of the above conventional under-
standing. Theoretical work, often spurred by fantastic experiments and rapid
developments in material sciences, have opened up to us an ever expanding
array of condensed matter phases whose description require new mathemati-
cal techniques and more importantly new ideas and outlook towards studying
condensed matter systems. These systems have been variously dubbed as quan-
tum ordered [6] as their characterization is often based on features of quantum
entanglement, which do not have a classical counterpart.

In this article, I have presented a brief review of a class of systems that
have emerged as canonical examples of quantum ordered phases by provid-
ing important insights into some of their currently understood features. These
systems consist of a bunch of interacting quantum spins, each sitting on the
sites of some lattice in two or three spatial dimensions (throughout this arti-
cle, I have not described one dimensional systems, which form an interesting
class on their own). These spin systems describe the insulating phase of the so
called Mott insulators where the electrons are localized to the lattice sites by
repulsive electron-electron interactions. While the electronic charge degrees of
freedom are localized, the electron spins sitting at the lattice sites interact with
each other, and these interactions dictate the magnetic properties of such sys-
tems. Several experimental examples of Mott insulators are well known. While
many of them order magnetically at low temperatures, a class remains in the
disordered paramagnetic phase to the lowest experimentally observable tem-
perature [7, 8]. This raises an interesting question — can one have a quantum
paramagnetic ground state in such an interacting spin system which does not
break any symmetry at zero temperature? Here we shall see that such a quan-
tum paramagnet, dubbed a quantum spin liquid, is indeed possible and can
have exotic properties like presence of long range quantum entanglement lead-
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ing to ground state topological degeneracy, emergent photon-like gauge bosonic
excitations and fractionalization of quantum numbers [6–11].

The present article grew out of a set of lectures that I gave at the SERC
school on topological condensed matter in Kolkata during December 2015. This
is a slightly expanded and suitably edited version of those lectures. The plan
for the rest of this article is as follows. I have introduced the basic ingredients of
studying many-body systems and spin Hamiltonians in Section 17.2, followed
by a brief discussion of the conventional paradigm of solid state physics in
Section 17.3 stressing on the ideas of spontaneous symmetry breaking. Then,
instead of going into general discussions of quantum ordered phases, I have
focussed on three central ideas in relation to quantum ordered phases in general
and quantum spin liquids in particular. These are: (1) topological order, (2)
fractionalization of quantum numbers, and (3) associated emergent gauge field
excitations, as discussed in Section 17.4. I have done this in the context of
two well studied microscopic spin systems — the Toric code model [12, 13] in
Section 17.5 and XXZ spin models in pyrochlore lattice [14] in Section 17.6.
I have used these examples to point out the general structure of the phases
and the low energy theories that we encounter in the context of quantum spin
liquids. Unfortunately, I have had to refer to original literature and excellent
review articles for experiments on candidate quantum spin liquid materials [7,8].
Almost all of the topics covered in this article have been taken from recent
research literature and I have tried to provide appropriate references. In that
sense, there is no originality regarding the material content of this article except,
perhaps, in the presentation and choice of topics.

17.2 Introduction to spin systems

In condensed matter physics, we are interested in the properties of systems
consisting of ∼ 1023 particles. These particles can be fermions, bosons or spins
(or even classical particles though here we have exclusively focussed on degrees
of freedoms for which a quantum mechanical description is required) which are
mutually interacting with each other and the system has certain symmetries.
So where do we start to describe such systems? There are essentially three main
ingredients to any condensed matter system:

1. The degrees of freedom: This is done by specifying the Hilbert space.
One of the most important features of Hilbert spaces that is relevant for
condensed matter systems, is that they have a tensor product structure,
i.e.,

H =
⊗

i

Hi. (17.1)

For example, in a system of electrons (fermions) on a lattice, four states are
allowed at each site. These are — (1) no electrons, |0〉, (2) an up electron,
| ↑〉, (3) a down electron, | ↓〉, and (4) two electrons with opposite spins,
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| ↑↓〉. The total Hilbert space for the entire lattice is a direct product of
four such states at each site.

2. Symmetry: The system usually has some symmetry like spin rotation,
lattice translation, lattice rotations, time reversal etc. These symmetries
act in a particular way on the degrees of freedom (states of the Hilbert
space) through unitary operations. Since the Hilbert space has a tensor
product structure, the symmetry acts locally on the degrees of freedom as
a product of local unitary transformations.

3. Hamiltonian: Once the degrees of freedom and the symmetries are speci-
fied, the time evolution of these degrees of freedom, interacting with each
other in a way that is consistent with the symmetries of the system, needs
to be specified. This is done by specifying the Hamiltonian. A key feature
of the condensed matter Hamiltonians is that they often involve a few
degrees of freedom at a time in each term of the Hamiltonian.

It is extremely important to note that the above three features have the
idea of an energy scale built into them. For example, as discussed in Appendix
A, in spin systems, the degrees of freedom are the electron spins which, within
a Hubbard model scenario, arise when the electrons get localized on the lattice
sites due to coulomb repulsion between two electrons and it requires energy to
overcome this repulsion (see for example Ref. [15]) which is nothing but the
charge gap. Below this charge gap, the spins are the right degrees of freedom
and the spin Hamiltonian is the right “effective” Hamiltonian to describe the
system. Somewhat rarely, symmetries may also emerge. In this sense all the
above ingredients are effective. There is no way within an effective model to
calculate the energy scale upto which the description in terms of a given set of
degrees of freedom remains valid. However, we should keep in mind that there
are such energy scales often dubbed as the ultraviolet (UV) scale of the prob-
lem. The problem and the degrees of freedom (just like the spin problem) may
look different well above and well below such energy scales. Indeed two quite
different high energy systems can give rise to a very similar low energy physics,
as can be understood within the framework of renormalization group [2]. This
we already know from our knowledge of superconductors, magnets, etc. For the
low energy effective model, the information of the underlying high energy enters
through certain numbers (often dimensionfull) like critical temperature. Cal-
culating such critical temperatures are usually very hard. However, calculating
universal numbers like the linear dispersion of phase mode in superfluids, are
mostly independent of the exact microscopic details.

17.2.1 Spin systems

Consider a lattice in two or three spatial dimensions (as shown in figure 17.1)
where each site is occupied by a spin- 1

2 . Let us define spin- 1
2 operators of the
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(a) (b)

Figure 17.1: The square and the cubic lattices as examples of two and three
dimensional lattices.

form

sαi =
1

2
σαi , α = x, y, z, (17.2)

where i denotes the sites of the lattice and σα denotes Pauli matrices. These
spins form the degrees of freedom and clearly the Hilbert space has a tensor
product structure. Such systems usually have a list of symmetries, e.g. lattice
symmetries, time reversal, etc. that form a group, the symmetry group. Generic
spin Hamiltonians, invariant under such symmetries, can be written as

H =
∑

ij

Jαβij s
α
i s
β
j +

∑

ijkl

Jαβγδijkl s
α
i s
β
j s
γ
ks
δ
l + · · · , (17.3)

where i, j, k, l denote lattice sites and α, β, γ, δ = x, y, z denote the spin compo-
nents. Both Jαβij and Jαβγδijkl are coupling constants. It is important to note that
one can, in principle derive the above Hamiltonian from a “more microscopic”
electron Hamiltonian (see for example Appendix A)in an effective low energy

limit. This will give an estimate of the coupling parameters Jαβij and Jαβγδijkl in
terms of those of the electron Hamiltonian [15]. However, in a real material,
since the “microscopic” electron Hamiltonian is often extremely complicated,
and also due to renormalization effects, such a derivation of low energy cou-
pling constants is only approximate. Here we would not attempt to derive the
spin Hamiltonians from electrons (except in Appendix A).Instead we invoke
symmetries to write down spin Hamiltonians such as in Eq. 17.3.

The question now is — what is the ground state of this system and what
are the low energy excitations about this ground state that govern the outcome
of most condensed matter experiments? Generally this is impossible to answer
because the ground state is of the form

|ψg〉 =
∑

n

An|{σz}〉n, (17.4)
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where we have chosen an Ising basis to expand the state. For N spin- 1
2 s, there

are 2N complex numbers An, and it is impossible to solve this for systems with
N ∼ 1023. However, it turns out that as long as we ask questions whose answers
are universal numbers, we do not need to know all such details. A suitable way
to progress in the large N limit, is to approximate the exact ground state in
terms of an approximate ground state, i.e.,

|ψg〉 ≈ |ψapproxgs 〉, (17.5)

which captures the basic features of the exact ground state. This, however, does
not solve the problem as important basic features of the system are not known
a-priori.

For conventional magnetic systems which order at low temperature and
hence described by spontaneous symmetry breaking (see next section), the basic
features refer to quantifying the presence of broken symmetry. We first review
such systems before moving on to quantum spin liquids.

17.3 Example of Spontaneous symmetry breaking in spin

systems: Magnetic order

Generally spin systems, described by Hamiltonians like the one in Eq. 17.3,
that are found in nature, often undergoes a magnetic ordering transition at
low temperature. For example, let us focus on a Hamiltonian of a Heisenberg
antiferromagnet on a square lattice which has the particular form

H = J
∑

〈ij〉
si · sj, (17.6)

where J > 0 and 〈ij〉 denotes sum over nearest neighbours. This particular
Hamiltonian can be obtained from Eq. 17.3 by demanding spin-rotation sym-
metry on the first term and neglecting the rest.

The exact ground state of the above system has a very complicated form
of the type given by Eq. 17.4. In the N →∞ limit, the regime of our interest, it
turns out that the exact ground state can be approximated to a great accuracy
by an approximate one which has the form

|ψapproxg 〉 = | ↑↓ · · · ↑↓〉, (17.7)

where all the up spins belong to one sub-lattice while the down ones belong
to the other. Note that, since the Hamiltonian in Eq. 17.6 has spin rotation
symmetry, a state which is obtained by globally rotating the above state by
any angle, but keeping intact the antiparallel nature, would equally satisfy
the criterion of the approximate ground state like the one given in Eq. (17.7)
above. This, therefore, is indeed an incredible simplification where we now need
to specify two numbers, i.e., the Euler angles denoting the orientation of one
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spin to specify the entire motif. Indeed, on calculating the expectation value of
any spin using the above approximate ground-state wave-function, we get

〈ψapproxg |si|ψapproxg 〉 ∼ ± n(θ, φ) 6= 0, (17.8)

where ± refer to the two different sublattices to which the site i may belong
and θ, φ are the two Euler angles needed to specify the direction of n. The
particular values of θ, φ chosen by the system spontaneously results in breaking
of the spin-rotation symmetry.

The incredible simplification obtained in the N → ∞ limit is due to the
fact that out of all the 2N numbers in Eq. 17.4, only a particular set becomes
important to characterize the basic features of the ground state in this limit
which encodes the fact that the ground state spontaneously breaks the spin
rotation symmetry, as given by Eq. 17.8. Indeed equations like Eq. 17.8 are
general to all symmetry broken phases and form the basis of the Curie-Weiss
type of mean-field theories. Expectation values like n quantify the amount of
symmetry breaking, or. in other words, quantify the amount of (magnetic) order
present in the system. Thus such fields are called order parameter fields.

Having obtained the ground state, the low energy states can be obtained
by studying long wavelength fluctuations of the order parameter. In particular,
for spontaneously broken continuous symmetry, such low energy modes are
guaranteed to have a massless spectrum of Nambu-Goldstone bosonic modes
(in the present case, also called spin-waves or magnons). Elementary low energy
excitations above the antiferromagnetically ordered ground state are of the form

|k〉 =
∑

i

eik·ri s̃−i |ψapproxg 〉, (17.9)

where s̃−i = s−i (s+
i ) stands for sublattice of up-spins (down-spins). These

Nambu-Goldstone modes have an energy of the form εk ∝ |k|, where the pro-
portionality constant is a non-universal number. We must note that such modes
can be easily gapped out by putting in perturbations that reduce the symmetry
that is spontaneously broken to a discrete one [15,16].

The above ideas form the starting point for order parameter based
Landau-Ginzburg type of field theories which captures a large class of phases
and phase transitions [1, 2]. However, there are notable exceptions in one and
two spatial dimensions like the Berezinskii-Kosterlitz-Thouless phase transi-
tion [17–21], where the above framework fails due to strong thermal/quantum
fluctuations which invalidates the above arguments. In these cases, fluctuations
about the mean value of order-parameter overwhelm the mean value and hence

parameter [20,21], is needed to be taken into account.
This completes our introduction to the conventional magnetically ordered

phases within the framework of conventional paradigm. From now on, we shall
focus on examples in which the above arguments either do not apply or are
needed to be overhauled to a great extent. By studying such examples in the

the detailed structure of the fluctuations, i.e., topological defects of the order
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context of magnetism, we shall try to understand the nature of the framework,
as far as we understand it today, required to describe the quantum ordered
phases of condensed matter.

17.4 Quantum ordered phases in magnets: Quantum spin

liquids

Having outlined the framework for describing condensed matter phases that
can be captured within the paradigm of spontaneously symmetry breaking, we
now proceed to discuss the basic features of quantum spin liquids which are
examples of a quantum ordered phase. Instead of proceeding with a general
discussion, we shall focus on the following central features of such quantum
spin liquids:

1. Topological order as reflected in presence of long range quantum entan-
glement of the many-body ground state.

2. Topological ground state degeneracy and non-trivial statistics of the ex-
citations.

3. Fractionalization of microscopic quantum numbers.

4. Emergent gauge fields, like a photon-like gapless excitation, whose gap-
lessness is robust to symmetry breaking perturbations.

The above features will be exemplified by discussing two well known spin
systems — (1) The Toric code model [12, 13], and (2) spin- 1

2 XXZ pyrochlore
antiferromagnets [14] that stabilizes quantum spin-liquid ground states.

In both these systems, the ground state does not have any magnetic or-
der. In particular, the Toric code ground state is a two dimensional Z2 quantum
spin liquid [6,10] with gapped bosonic and fermionic excitations. The XXZ py-
rochlore antiferromagnets, on the other hand, stabilizes a three dimensional
U(1) quantum spin liquid [6, 10] which allows gapped fractionalized S = 1/2

son, whose gaplessness (unlike the Nambu-Goldstone mode) is protected by an
emergent gauge invariance at low energy.

excitations and gapless excitations very similar to a photon, i.e., a gauge bo-
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Figure 17.2: The Toric code model on a square lattice. The spin- 1
2 s live on

the bonds (denoted by filled circles). The darker (lighter) simplex around a site
(plaquette) denotes operator Âs (B̂p) for the site (plaquette) as defined in the
main body of the text.

17.5 Topological Order, Excitations with non-trivial statistics

and ground state long range entanglement in Toric code

model

17.5.1 The Toric code model

Consider a model of spin- 1
2 s sitting on the bonds of a square lattice, as shown

in Fig. 17.2, and interacting with a Hamiltonian [12,13]:

HTC = −
∑

s

JsÂs −
∑

�

JpB̂p, (17.10)

with Js, Jp > 0 ∀s, p where s and p denote the sites and plaquette of the square
lattice respectively, as shown in figure 17.2, and

Âs =
∏

i∈s
σxi ; B̂p =

∏

i∈p
σzi . (17.11)

Note that this Hamiltonian does not have spin rotation or lattice symmetries in
general when the coupling constants differ from site/plaquette to site/plaquette.
All symmetries like time reversal that is left can also be broken by adding small
perturbations and still the following discussions will hold. We start by noting
that

A2
s = B2

p = 1. (17.12)
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So the eigenvalues of these operators are ±1. Also, all the operators in the
Hamiltonian commute [12], i .e.,

[As, As′ ] = [Bp, Bp′ ] = [As, Bp] = 0. (17.13)

17.5.2 The ground state

To obtain the ground state of the model, we notice that it must satisfy [12]

As|ψg〉 =|ψg〉, ∀s, (17.14)

and

Bp|ψg〉 =|ψg〉, ∀p. (17.15)

To obtain this ground state, we begin with a state with all spins in σzi = +1
state and call this state

|{σz = +1}〉. (17.16)

Clearly though this state satisfies Eq. 17.15, it does not satisfy the first relation
in Eq. 17.14. In fact, operating Âs on this state gives

Âs|{σz = +1}〉 = |{σz = +1}′{σzi = −1, ∀i ∈ s}〉. (17.17)

This stands for a state where all spins are up, except for the four spins connected
to Âs as shown in Fig. 17.3. Clearly this state also satisfies Eq. 17.15. Similarly,
if one keeps on acting with a string of Âs operators, one gets a state where all
spins are up except for those sitting on the loop described by the string of the
Âs operators. Thus the state

|ψgs〉 =
∏

s

(
1 + Âs

2

)
|{σz = +1}〉, (17.18)

gives an equal superposition of states composed of all closed loops of down spins
living in a sea of up spins. It can now be easily checked that this state satisfies
both Eqs. 17.14 and 17.15.

The above ground state does not break any symmetry of the Hamiltonian.
The spin-spin correlation functions are all short ranged, i.e.
caying function of separation. Indeed all correlation functions of local operators
are exponentially decaying in this ground state [13].

So the central question that one may ask is if the above ground state
“same as” a random product state of the form

| ↑↑↓↑ · · · ↑↑↓↓↑↓〉. (17.19)

The answer to the above question is negative. However, to understand the
basic difference between the ground state in Eq. 17.18 and the random product

, exponentially de-
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Figure 17.3: The action of Âs (the site encircled by the shaded simplex) on an
all σz = +1 state, gives a state where all spins are up except for those on the
closed dotted loop.

state in Eq. 17.19, we need to frame the question in a more quantitative form.
This is what we do in the following and in the process, we shall discover a
number of extremely interesting properties of the Toric code model which are
characteristic of many quantum spin liquids, particularly to those known as Z2

quantum spin liquids.

17.5.3 The excitations

We start by examining the excitations. The excitations are obtained by flipping

As → −1, Bp → −1. (17.20)

This can be done by acting with σzi on a bond i for the first class of excita-
tion, or applying σxi for the second class of excitation, as shown in Fig. 17.4.
Note that such excitations when created by local spin-operators, are always
created in pairs. Thus, the number of sites or plaquette excitations are sepa-
rately conserved modulo 2 [12]. Also, applying σx or σz twice does not create
any excitation as (σα)2 = +1. Thus at any site or plaquette the number of
excitations is an Ising variable which can either be 0 or 1.

The cost of these excitations, with respect to the ground state, is given
by

Es = 2(Js + Js′); E� = 2(Jp + Jp′), (17.21)

where the first expression stands for excitations that sit on the sites, whereas
the second one is for excitations which reside on plaquettes as shown in Fig.
17.4.



450 17. Quantum Spin Liquids

Figure 17.4: The elementary excitations in a Toric code model. The σx(σz)
operator creates two excitations in the adjoining plaquettes (sites) by flipping
B̂p(Âs) operators defined on these plaquettes (sites).

Let us call As = −1 excitations that sites of the square lattice as electric
charges. However, here the electric charge is conserved modulo 2. Hence it is
really an Ising electric charge. Instead of using a single σz operator as shown
in Fig. 17.4, if we use a string of operators

We(s1, s2) =
∏

i∈s1→s2
σzi , (17.22)

where the product is taken over any path starting from the site s1 and ending
at site s2, then it creates two electric charge excitations at the sites s1 and s2

as shown in Fig. 17.5. This is because the We operator commutes with all Bp’s,
and also all the As, except at the two ends s1 and s2. For these end operators

AsaWe = −WeAsa , (a = 1, 2). (17.23)

So it flips As at the two ends. This excited state is given by

|e1, e2〉 = We(s1, s2)|ψg〉. (17.24)

Note that the energy cost is independent of the exact position of the string
and only depends on the position of the end points. Due to this property, if
two such electric charges are created, a similar operator like We can move them
from one site to another. It is now clear that since the path of the string does
not matter, interchanging the position of two electric charges give the same
state, i.e.,

|e1, e2〉 = |e2, e1〉. (17.25)
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Figure 17.5

Thus these charges, that are identical quantum particles, follow bosonic statis-
tics.

Turning to the other class of excitations (Bp = −1) on the plaquettes, we
shall now see that in comparison to the above excitations (which we call Ising
electric charges), the plaquette ones behave as Ising magnetic charges.

Similar to the above We operator, we now define

Wm(p1, p2) =
∏

i∈p1→p2
σxi , (17.26)

an operator that defines a string in the dual lattice as shown in Fig. 17.5
with the creation of two magnetic charges at the end of the string. Again, this
operator commutes with all the Ass and also all the Bps except at the two ends
p1 and p2. For these end operators

BpaWm = −WmBpa , (a = 1, 2). (17.27)

So it flips Bp at the two ends. The excited state is given by

|m1,m2〉 = Wm(p1, p2)|ψg〉. (17.28)

Just like the electric charges, the actual path does not matter. As the path
operators commute with each other, the magnetic charges are also bosons.

17.5.4 Semionic mutual statistics of the electric and the magnetic

charges and the bound state fermions

Consider a situation where there is an electric and a magnetic charge, where the
other partner charges are sitting far off, as shown in Fig. 17.6. The magnetic
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Figure 17.6: An Ising magnetic charge (on the plaquette) is moved around
an Ising electric charge (on the site) as shown by the dotted loop on the dual
lattice. The dashed lines on the dual lattice and the direct lattice run to infinity
and their exact positions are irrelevant (see text).

charge can be moved around the electric charge by moving it through a closed
loop as shown in the figure using an appropriate Wm operator which we call
Wm,◦. However, since this Wm operator necessarily has to cross the We string
(as shown in the figure) an odd number of times (at least once), and the two
strings anti-commute at the bond wherever they cross. Note that while the
positions of the bonds are arbitrary, there are always odd numbers of such
bond. Thus,

Wm◦|e,m〉 = −|e,m〉, (17.29)

i.e., the state gains a negative sign. This is equivalent to saying that the electric
and the magnetic charges see each other as a source of π flux. This is just
an Ising version of Aharonov-Bohm phase. Such particles are called mutual
semions.

One can think about forming a bound state of an electric and a magnetic
charge. Extension of the above argument shows that such a bound state, (e,m),
is a fermion.

17.5.5 The long range quantum entanglement in the ground state

Now that we have discussed the basic excitations, we are now in a position
to answer the question that we raised earlier: what, if at all, distinguishes the
ground state of the Toric code model in Eq. 17.18 from the random product
ground state in Eq. 17.19?
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To start of, we note that the excitations in the Toric code model have
finite energy [12,13]. In other words, the excitation spectrum of Toric code has
a finite energy gap. Let us now consider a Hamiltonian

H ′ = −
∑

i

Γiσ
z
i , (17.30)

where Γi( 6= 0) is a random coupling constant. The random product state given
in Eq. 17.19 is the ground state of this Hamiltonian and it is also clear that
generic excitations in this system are also gapped with the minimum being
given by min(Γi). Now the equivalence or the non-equivalence of the two ground
states in Eq. 17.18 and Eq. 17.19 can be stated as follows.

If we take the two corresponding Hamiltonians in Eq. 17.10 and 17.30,
and consider a continuous one parameter family of Hamiltonians of the form

Hλ = (1− λ)HTC + λH ′, (17.31)

where λ ∈ [0, 1], such that this interpolates between the Toric code Hamiltonian
(for λ = 0) and the random field Hamiltonian (for λ = 1). Suppose that we
calculate the ground state and lowest excited state for arbitrary λ and find
that they are represented by |ψλgs〉 and |ψλ1 〉 respectively. Also consider that the
energy gap from the ground state is given by ∆λ. From the above argument, it
is clear that both ∆λ=0 and ∆λ=1 are non-zero. Thus, if

∆λ 6= 0, ∀ λ ∈ [0, 1], (17.32)

then we can say that the Toric code ground state and the random product
ground state can be connected to each other adiabatically without closing the
energy gap.

On the other hand, if ∆λ becomes zero for at least one intermediate value
of λ, then the two states cannot be adiabatically connected with each other. If
the above argument is true for all paths of interpolation between the Toric code
and the random field Hamiltonians, then the two ground states are necessarily
separated from each other by at least one “transition”.

For the present example, and indeed for all quantum spin liquids, this
second situation occurs, i.e., they can never be adiabatically deformed into a
random or any other product state. The reason why this cannot be done stems
from the fact that the two ground states have different signatures of many-body
quantum entanglement.

A particular measure of such many-body entanglement between different
parts of a quantum many-body system is the entanglement entropy, a brief
discussion of which is given in Appendix B. As discussed in this appendix, the
random product state has a zero entanglement entropy whereas the Toric code
ground state is long range entangled, and this prevents continuous deformation
of one state into another. Such long range entanglement is a characteristic
feature of quantum ordered states like the quantum spin-liquid which does not
have a classical correspondence. Also, note that the above distinction of phases
does not depend on the symmetry based classification of condensed matter
phases discussed above.
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Figure 17.7: The toric code defined on a 2-torus. There are two non-contractible
loops on a 2-torus which are denoted by lighter and darker loops. We denote
the direction of the darker loop as x̂ and the lighter loop as ŷ.

17.5.6 Topological Degeneracy and topological quantum numbers

A direct outcome of such long range entanglement is topological ground state
degeneracy and non-trivial topological quantum numbers which are not related
to any symmetry, but depends only on the topology of the manifold in which
the system is embedded.

To understand these features in context of the Toric code [12], let us look
back at the ground state, but this time on a 2-torus as shown in Fig. 17.7. We
note that on a 2-torus, there are two non-contractible loops as shown in Fig.
17.7. For each such loop, let us define two operators as shown in Fig. 17.8.

Let us focus on the darker loop of Fig 17.7 or Fig. 17.8 which according
to our notation is the x̂ direction. Of the two lines that run in the x̂ direction,
one (the thick dark line in Fig. 17.8) passes through the bonds of the direct
lattice where as the other (the dotted darker line in Fig. 17.8) passes through
the bonds of the dual lattice. Let us denote these two loops as Lex and Lmx
respectively. Similarly for the ŷ direction one can associate two loops as shown
in fig. 17.8 denoted by Ley (for the thick red line in Fig. 17.8) and Lmy (for the
dotted lighter line in Fig. 17.8) respectively.

Now we define four operators for the four loops that we just defined as
follows:

Ẑx̂ =
∏

i∈Lex

σzi ; Ẑŷ =
∏

i∈Ley

σzi ; (17.33)

X̂x̂ =
∏

i∈Lmx

σxi ; X̂ŷ =
∏

i∈Lmy

σxi . (17.34)

Clearly,

Ẑ2
α = X̂2

α = 1, (α = x̂, ŷ). (17.35)
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Figure 17.8: The two operators defined on the two non-contractible loops of the
2-torus (see text for details)

Thus their eigenvalues are ±1. The algebra of the operators is given by

[
X̂α, X̂β

]
=
[
Ẑα, Ẑβ

]
= 0;

[
X̂x̂, Ẑx̂

]
=
[
X̂ŷ, Ẑŷ

]
= 0, (17.36)

and
{
X̂x̂, Ẑŷ

}
=
{
X̂ŷ, Ẑx̂

}
= 0, (17.37)

Since the last two sets do not commute, they do not have simultaneous eigen-
states. However one can always find the eigenstates of commuting operators Ẑx̂
and Ẑŷ which can be denoted by

|Ẑx̂ = ±1, Ẑŷ = ±1〉, (17.38)

It is easy to check that each of the four operators defined above commute
with the Toric code Hamiltonian (Eq. 17.10) on the torus, i.e.,

[
X̂α, HTC

]
=
[
Ẑα, HTC

]
= 0. (17.39)

Thus the energy eigenstates, in particular the ground states, can also be si-
multaneous eigenstates of Ẑx̂ and Ẑŷ. Therefore the ground state is four-fold
degenerate corresponding to the above four states (Eq 17.38).

The ground state in Eq. 17.18, on a 2-torus, corresponds to |Ẑx̂ = +1, Ẑŷ =

+1〉. The other three states can be obtained from this by acting X̂x̂ and X̂ŷ

operators on this state. It should be noted that the degeneracy of the above four
states is not related to any symmetry. The degeneracy depends on the nature
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of the ground state and the definitions of the above operators which in turn
depend upon the non-trivial topology of the 2-torus. Hence it is a topological
degeneracy. Such topological degeneracies and the resultant topological quan-
tum numbers (eigenvalues of Ẑx̂ and Ẑŷ that characterize the ground state)
are manifestations of long range quantum entanglement present in the ground
state.

Further, symmetry related quantum numbers can be easily destroyed by
adding in small local, but, symmetry violating terms to the Hamiltonian. How-
ever, this is not true for topological quantum numbers. To see this, let us destroy
the exact solvability by putting in a small transverse magnetic field of the form

h
∑

i

σxi (17.40)

to the Toric code Hamiltonian of Eq. 17.10. Let us now take the 2-torus that
has a dimension L × L, and let us focus on the two states |1, 1〉 and | − 1, 1〉.
Then the two states are connected at the Lth order of the perturbation theory
by the above perturbing term. The effective “tunnelling” Hamiltonian is given
by

J

[
0

(
h
J

)L
(
h
J

)L
0

]
. (17.41)

This lifts the degeneracy by splitting the energy of the two states. However,
since h/J < 1 for small perturbations, in the thermodynamic limit (L → ∞),
the splitting energy

lim
L→∞

∆E ∼ J
(
h

J

)L
→ 0. (17.42)

So the topological degeneracy is preserved and hence the topological quantum
numbers are robust to such perturbations in the thermodynamic limit.

This completes our discussion of the ideas of using long range entangle-
ment in characterizing quantum order phases. The ideas of topological degen-
eracy, unusual excitations and topological quantum numbers together describe
topological order in the Toric code system. These features are however much
more general and form characteristic features of a large class of gapped quan-
tum spin liquids called Z2 quantum spin liquids.

17.6 Fractionalization of spin and emergent quantum

electromagnetism in S=1/2 Pyrochlore XXZ

antiferromagnets

Having discussed the idea of topological order in gapped quantum spin liq-
uids, we now turn to the idea of emergent gauge theory and quantum number
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Figure 17.9: The pyrochlore lattice as a network of corner sharing tetrahedra.
We choose (without loss of generality) the down tetrahedra as the unit cell.
There are four sub-lattices with the underlying Bravais lattice being a face
centered cubic lattice.

fractionalization. These features are also manifestation of the underlying long
range quantum entanglement present in these systems.

Though these ideas are much more general, like in the previous section
where we used the example of Toric code, we shall study these features using the
concrete example of in S=1/2 XXZ antiferromagnets on pyrochlore lattice [14].

17.6.1 S=1/2 Pyrochlore XXZ antiferromagnets

Consider a network of corner sharing tetrahedra as shown in Fig. 17.9 with
spin- 1

2 s sitting on the vertices. Choosing, without loss of generality, the down
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tetrahedra to define the unit cell, let us define XXZ antiferromagnet given by
the Hamiltonian [14]

H =Jzz
∑

〈ij〉
szi s

z
j − J±

∑

〈ij〉
(s+
i s
−
j + s−i s

+
j ), (17.43)

where Jzz, J±(> 0) denote antiferromagnetic interactions between nearest
neighbour spins, 〈ij〉. Clearly, apart from the lattice symmetries, the above
Hamiltonian has a global U(1) symmetry related to the conservation of total,
sz. Therefore szTotal =

∑
i s
z
i is a good quantum number for this system. We

shall be interested in the particular limit where Jzz � J± in the Hamiltonian
given by Eq. 17.43. To understand the situation we therefore start with the
limit where J± = 0 and hence we have a purely classical Ising model.

17.6.2 Classical Ising limit: Macroscopic Ground state degeneracy

In this limit, exploiting the corner-sharing geometry, the Hamiltonian can be
re-written in the form [22]

H =
Jzz
2

∑

�

(∑

i∈�
szi

)2

+ constant, (17.44)

where the inner summation refers to the spins belonging to the same tetrahedra
and the outer one refers to sum over all such tetrahedra. Clearly the ground
state is obtained by minimizing the total sz separately for each tetrahedra,
which is , equivalent to having

∑

i∈�
szi = 0 (17.45)

separately for each tetrahedron. Clearly this can be done in many ways. For
example in a single tetrahedron, out of the 24 = 16 states, six states satisfy
this two-up-two-down condition. The energy cost of violating this constraint is
of the order of Jzz.

The number of ground states in a pyrochlore lattice in this classical or
Ising limit is exponential in the number of spins, a rough estimate of which
can be obtained as follows [22]: The pyrochlore lattice contains up and down
tetrahedra as shown in the Fig. 17.9 with the up tetrahedra being connected
only with the down tetrahedra. Now if there are N spins then there are N/4
up and N/4 down tetrahedra. Let us first focus on the up tetrahedra and in
each such up tetrahedra we have six possible states that satisfy the ground
state constraint in Eq. 17.45. However given a configuration of spins on the up
tetrahedra that satisfies the constraint (Eq. 17.45), the probability of a down
tetrahedra satisfying the constraint is 6/16. Therefore the a rough estimate of
the number of states that satisfy the minimum energy constraint is given by [22]

Ω ≈ [6]
N/4

[
6

16

]N/4
=

[
3

2

]N/2
. (17.46)
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Therefore the entropy associated with the states is non-zero in the thermody-
namic limit

lim
n→∞

S

N
≈ 1

2
ln(3/2). (17.47)

This entropy is necessarily quenched once quantum terms like J± are turned on.
In general, this can happen in two ways, each being interesting in its own right.
The first way, which will not be a subject of this article, is called quantum order
by disorder. This happens when the energy cost of excitations about different
classically degenerate groundstates are unequal. The system then selects a clas-
sical groundstate around which the cost of excitations are particularly cheap
(softer excitations), thereby gaining resonance energy from quantum tunneling
which may be favoured by the quantum terms [23]. In this case the system can
lower its energy by picking the corresponding ground state and hence undergo
ordering.

A second way, which is relevant to XXZ pyrochlore, is that the quantum
terms can lead to the quenching of the entropy without favouring any particular
classical ground state, but instead choosing a superposition of all/most of them.
Such a situation, in contrast to the above, is called “quantum disorder by
disorder” [24]. The resultant state too gains resonance energy with respect to
the classical state, but there is no ordering. The resultant ground state, due to
the extensive superposition of a macroscopic number of (classically degenerate)
states, give a long range entangled state as in the present case, as far as we
understand [14].

17.6.3 Low energy theory: U(1) quantum spin liquid

At low energies, the effect of the transverse terms in lifting the classical de-
generacy, without leading to magnetic ordering (disorder by disorder), can be
seen as follows [14]: In the limit J±/Jzz � 1, the effective Hamiltonian can
be obtained using degenerate perturbation theory. Since, at this energies, there
are no excitations that violate the two-up-two-down condition in Eq. 17.45, the
low energy Hamiltonian consists of amplitudes connecting different classically
degenerate ground state configurations.

The leading order non-trivial terms in the degenerate perturbation theory,
as shown by Hermele et. al. (Ref. [14]) (also see Appendix C), come from
cooperative flipping of the spins along the smallest closed loop — the hexagons
formed by six tetrahedra as shown in Fig. 17.10. This leads to an effective low
energy Hamiltonian given by

Heff =− J3
±

J2
zz

∑

7
(O7 + h.c.) , (17.48)

where O7 = s+
1 s
−
2 s

+
3 s
−
4 s

+
5 s
−
6 (1, . . . 6 ∈ 7) is an operator that flips a loop of

spins on hexagons as shown in the Fig. 17.10.
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Figure 17.10: The two configurations represent two ground states where the
constraint in Eq. 17.45 is obeyed. However the two configurations differ by
the orientation of the six spins which form part of the hexagon. Starting with
the left configuration, the right configuration can be reached by cooperatively
flipping all the six spins as represented by the effective low energy Hamiltonian
in Eq. 17.48.

17.6.4 Emergent quantum electromagnetism and gapless gauge boson

The low energy physics of the system encoded within the effective Hamiltonian
(Eq. 17.48) becomes transparent following the mapping to an effective problem
of quantum electromagnetism [14]. To this end, we note that each site of the
pyrochlore lattice can be uniquely identified with a bond of the medial diamond
lattice that is obtained by joining the centres of the tetrahedra forming the
pyrochlore lattice. The spins sit on the bonds of this diamond lattice. Then, for
a spin at site i of the pyrochlore lattice, we write

szi = brr′ ; s± = e±iarr′ , (17.49)

where r(r′) denotes the centre of down(up) tetrahedra; Here we have introduced
two new fields brr′ and arr′ which resides on the links of the diamond lattice.
Starting from the spin commutation, it can be shown that the commutation
between brr′ and arr′ is given by

[brr′ , ar′′r′′′ ] = i (δrr′′δr′r′′′ − δrr′′′δr′r′′) , (17.50)

This leads us to identify brr′ is the emergent magnetic field and arr′ is the dual
vector potential that is conjugate to brr′ [25]. The emergent electric field is
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therefore defined by,

ess′ =
∑

hex

© arr′ , (17.51)

where the sum is over all links of the hexagon (in a clockwise manner looking
down on the hexagon). The righthand side, therefore is only a discretized version
of the closed loop integral

∮
dr·a where the integral is taken around the hexagon.

Now by applying Stokes’ theorem, we can convert the line integral to a surface
integral of a over the enclosed area. This identifies the emergent electric field
as the curl of the dual vector potential and the above equation is then nothing
but a discretized form of this curl (i.e.

The emergent electric field, ess′ , therefore, is defined on the links of the
dual diamond lattice whose links are denoted by ss′ in accordance with the
right-hand rule.

On the other hand the ground state constraint, Eq. 17.45, can now be
written as

∑

r′

brr′ = 0, (17.52)

which is nothing but the Gauss law for the magnetic field in absence of mag-
netic monopoles [25]. In terms of the new variables, the effective low energy
Hamiltonian (Eq. 17.48) can be recast as

Heff =
U

2

∑

〈rr′〉
b2rr′ −

J3
±

J2
zz

∑

〈ss′〉
cos[ess′ ] (17.53)

where the second term comes straight-forwardly from Eq. 17.48 following the
above mapping. The first term, however needs explanation. Due to the identi-
fication in Eq. 17.49 between the emergent magnetic field, brr′ and szi , we note
that the magnetic field cannot be trivially zero as szi = ±1/2. For the above
Hamiltonian (Eq. 17.53), this is softly implemented by putting an energy cost
of U and the above model is a faithful representation of the spin model in
Eq. 17.48, in the U/(J2

±/J
2
zz) → ∞ limit. However, universal low energy fea-

tures of Eqs. 17.48 and 17.53 remain identical over a parameter range away
from this strict microscopic limit, as can be explicitly checked through numer-
ical calculations [14, 26]. Hence we shall focus on Eq. 17.53 which is easier to
work and gives the universal physics of Eq. 17.48 in the right parameter regime
U/(J2

±/Jzz
2)� 1.

Clearly this Hamiltonian is invariant under the transformation

arr′ → arr′ + θr − θr′ ; brr′ → brr′ (17.54)

where θr is a function of the sites. This is nothing but a U(1) gauge trans-
formation. Indeed this low energy effective theory is nothing but a pure U(1)
lattice gauge theory in (3+1) dimensional space-time and hence similar to reg-
ular quantum electrodynamics. However, a major difference from the regular

, a lattice curl).
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quantum electrodynamic is the fact that unlike in regular quantum electrody-
namics, in the present case the electric flux can change by 2π due to the cosine
term in Eq. 17.53. Thus what we have in the present case is called a compact
U(1) gauge theory as opposed to a non-compact U(1) gauge theory for regular
electromagnetism [14,27].

While a detailed discussion of pure compact U(1) gauge theories would
lead us too far afield and interested readers can consult Ref. [27, 28], we note
that such theories can have two phases — (1) the confined phase, and (2) the
deconfined phase. It is easy to understand these phases qualitatively in the
light of the discussion in the above paragraph. If the quantum fluctuations
associated with the change of electric flux by 2π are important, then it means
that the electric field in the medium is rapidly changing. Suppose, in such an
environment, we put two oppositely charged test magnetic charges. Because of
the random change in the surrounding electric field, these test magnetic charges
see a random Aharonov-Bohm phase and their amplitude of propagation from
one point in space to another is severely affected by such random phases causing
destructive interferences. Spoken in another way, a magnetic charge cannot
propagate in a background of rapidly changing electric field. However, if the two
oppositely charged magnetic test charges combine to form a neutral particle,
this neutral particle can then propagate almost freely as it is almost insensitive
to the fluctuations of the electric field. Thus, in this phase, oppositely charged
magnetic charges are “confined” to each other to form neutral particles. This
is the confined phase noted above, and it is not of direct interest to us here
since the U(1) quantum spin liquid is described by the deconfined phase of the
above gauge theory which we briefly describe below [14,27,28].

In contrast to the confined phase, in the deconfined phase, the quantum
fluctuations leading to the the change in the electric flux by 2π are not impor-
tant. Hence the fluctuations in the background electric field are smooth, and
as an extension of the ideas presented in the previous paragraph, it can be
argued that test magnetic charges are now free to propagate in the deconfined
phase as the effect of destructive interference is much less due to the absence
random Aharonov-Bohm phases. Therefore, free magnetic charges can almost
freely propagate in the deconfined phase and hence they are “deconfined” as
opposed to the previous phase. This deconfined phase corresponds to a U(1)
quantum spin liquid phase which is of interest to us.

In this deconfined phase, as the fluctuations of the emergent electric field
are smooth, we can expand the cosine terms in Eq. 17.53. While we can keep
on working with the lattice theory in Eq. 17.53, it is often more insightful to
derive a continuum limit of this theory that is valid at long wavelengths and
low energies. The continuum limit is obtained by taking

∑
→ 1

l3

∫
d3r; ess′ = le · l̂ss′ ; brr′ = lb · t̂rr′ ,

where l is a lattice length scale. Here, t̂rr′ and l̂ss′ are the unit vectors in the
direction from s to s′ that forms the links of the direct and dual diamond



17.6. Fractionalization of spin 463

lattice respectively. Thus
∑

r′ t̂
α
rr′ t̂

β
rr′ =

∑
s′ l̂

α
ss′ l̂

β
ss′ = 4

3δ
αβ as can be checked

explicitly. The continuum Hamiltonian is given by:

Hcontinuum
0 =

1

2

∫
d3r

[
U b2 +K0e

2
]
, (17.55)

with U = 4U/3l and K0 =
4J3
±

3lJ2
zz

. This is clearly the Hamiltonian for non-

compact U(1) gauge theory [14, 25, 27], similar to the theory of quantum elec-
tromagnetism which supports gapless excitations akin to photons [29]. Here we
call such excitations as emergent photons.

The gaplessness of the photon is protected by the gauge invariance at low
energy (Eq. 17.54) which prevents the photons from acquiring a mass. This
is very different from the gapless spin-waves discussed earlier as examples of
Nambu-Goldstone bosons which are also massless but due to a spontaneously
broken continuous symmetry (spin rotation symmetry in our case). In the case
of spin-waves, a gap can be easily obtained by explicitly breaking the spin-
rotation down to a discrete group. However to produce a photon mass, one has
to break the gauge structure.

17.6.5 Fractionalization of the spin

The spin of the spin-waves or the magnons is clearly 1 as it is obtained by
flipping a single spin. However, in case of the above model, if we flip one spin in
any of the classical ground states of our present system, we violate the ground
state constraint of Eq. 17.45 in two tetrahedra which shares the spin. Thus two
defects are created which cost an energy of the order Jzz and they together have
sz = 1 as only one spin has been flipped. These point defects are excitations
and the quantum terms (proportional to J±) can move these excitations to form
a gapped band. It is easy to see that these particles obey a bosonic statistics
and since they violate zero divergence constraint for the magnetic field in Eq.
17.52, they can be identified with magnetic monopoles [14,30].

Clearly, the combined sz of two such magnetic monopoles is 1. However,
such magnetic monopoles are deconfined in a sense that, once created, they can
be separated from each other without further energy cost by flipping a string of
spins [14,30]. Also, the spin quantum numbers of the magnetic monopoles must
be identical as there is no distinction between one from the other. Thus each
magnetic monopole must have sz = 1/2. This clearly is different from magnons,
in comparison to which the spin is fractionalized. However, the present magnetic
monopoles do not carry charge of the underlying electrons from which these
spins are made. Hence, they represent excitations with fractionalized quantum
numbers. Such fractionalization of quantum numbers, again, has been possible
due to the presence of underlying long range quantum entanglement.
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17.7 Conclusion

In this article (and indeed in the set of lectures), I have tried to explain the
major features of quantum ordered states in frustrated magnets through the
example of two well-known systems — (1) Toric code model [12,13], and (2) Py-
rochlore XXZ antiferromagnets [14]. At the same time, I have tried to contrast
their features from the conventional magnetically ordered state. Together, the
two examples provide glimpses of the new framework required to understand
quantum phases that lie beyond the conventional paradigm of spontaneous
symmetry breaking.

Needless to say, several things have been left out from the above discus-
sion. From the theoretical side, the general mean field theory to describe the
above type of fractionalized particles in quantum spin liquid theory, variously
called slave boson/ slave fermion/parton mean field theories [11] have been
left out. These mean field theories often form the first step of understanding
the nature of the fractionalization present in the quantum spin liquid where
the fractionalized excitations transform under projective representation of the
symmetry group of the system [6, 10]. Such projective classifications currently
appears to provide a strong framework to describe the interplay of symmetry
fractionalization, topological order and long range quantum entanglement in
quantum spin liquids [6, 10]. However, keeping in mind that the set of lectures
was supposed to be an introduction to the physics of quantum spin liquids, we
thought that providing explicit examples where some of the basic features of
quantum spin liquids emerge would help the readers to get to the core of the
problem at once (within the time-frame of a set of two lectures). The framework
required for the generalization of some of the ideas introduced here then form
the important second step for readers aiming to work in this area.

Another very serious lacuna of the present article is the lack of descriptions
of many exciting experiments that, in a way, have driven the field of strongly
correlated system and provided the constant motivation to develop a more
general framework of condensed matter. However, for that I must refer to other
reviews [7, 8]. Some of these experimental results are very much a topic of
present research and the theoretical ideas described here are intended to provide
a platform for readers to try to seek answers to some of these questions.
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Appendix A: From electron to spin Hamiltonians

Consider electrons hopping on the lattice (like in Fig. 17.1) and repelling each
other through Coulomb repulsion. The long range part of the Coulomb repul-
sions are often screened leading to short range repulsive interactions. These
class of systems, then can be described by Hubbard type of minimal Hamilto-
nians where only on-site repulsion of electrons are retained. Such Hamiltonians
are given as

H =
∑

ij

tσσ
′

ij c†iσcjσ′ + U
∑

i

ni↑ni↓, (17.56)

where c†iσ creates an electron of spin σ =↑, ↓ at site i. U represents the on-

site Coulomb repulsion. On the other hand tσσ
′

ij represents the amplitude of an
electron, at site j and spin σ′, to hop to site i with spin σ. In Eq. 17.56, we
have written an effectively single band model since there are no-orbital index.
In absence of spin-orbit coupling, spin-rotation symmetry is present in terms
of the physical spin σ, σ′. In this case we must have

tσσ
′

ij = t0ijδσσ′ . (17.57)

However, in presence of spin-orbit coupling, σ, σ′ represents a pseudospin-
1
2 that is a combination of the orbital and spin angular momenta. Such a sit-
uation has recently attracted much interest in context of 5d transition metal
Iridium where a pseudo-spin- 1

2 (J = L + s = 1
2 ) emerges as the right low en-

ergy atomic orbital in terms of which a single band Hubbard model (like in
Eq. 17.56) can be written down. In such cases, the hopping amplitude depends
non-trivially on the “spin” indices and is actually a 2 × 2 matrix in this space
which has the following form

tσσ
′

ij = t0ijδσσ′ + itij · σσσ′ (17.58)

where iσ represents the Pauli matrices. tij transforms as a pseudovector under
lattice transformations and can be non-zero in presence of spin-orbit coupling
representing the spin-flip hopping processes.

If the system is at half filling i.e., one electron per site on average, then in
the limit t0ij , tij � U , the system is in a metallic state where all the electrons
can move freely. This state is adiabatically connected to the U = 0 free elec-
tron limit. In the opposite limit, however, the repulsion term tries to force the
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electrons to stay put individually at the lattice sites as double occupancy costs
an energy of the order ∼ U . The electron spins are however free to fluctuate
and the ground state in the U = ∞ limit (at finite t0ij , tij) is macroscopically
degenerate leading to finite ground state entropy. This entropy is quenched by
quantum fluctuation of the electrons which try to gain delocalisation energy
through virtual hopping (to the leading order) from site i to j (say) and back
with the appropriate hopping amplitude. The intermediate virtual state where
there are two electrons at the site j costs an energy ∼ U . From Eq. 17.58, it is
easy to see that there are three kinds of such processes which are:

1. The electron hops between site i ↔ j through the spin conserving am-
plitude t0ij . The resultant scalar coupling is ∼ (t0ij)

2/U which describes
the scalar interaction si · sj where the spin operators are related to the
electron operators as:

si =
1

2
c†iσσσσ′cjσ′ (17.59)

2. The electron hops from i → j through the spin conserving hopping t0ij ,
but while returning it uses spin-flipping amplitude, tij . Thus the coupling
constant is proportional to Dij ∼ t0ijtij/U which is a pseudovector. This
couples to a pseudovector operator si × sj. Note that the opposite order
of t0ij and tij also gives the same term.

3. Finally, the electron can hop between i ↔ j using spin-slip hopping tij ,

which gives a symmetric tensor coupling constant tαijt
β
ij/U where α, β =

x, y, z. This couples to a symmetric tensorial operator sαi s
β
j + sβi s

α
j .

The standard way to perform this strong coupling perturbation theory is
discussed in several textbooks, such as Ref. [15]. All the above terms are of the
form of the first (quadratic) term of Hamiltonian in Eq. 17.3. Extending this
perturbation theory to higher orders in t/U gives further terms like the second
(quartic) term of Hamiltonian in Eq. 17.3.

Thus we find that in the 4t/U � 1 limit, the electrons themselves cease
to be the right degree of freedom in terms of which the higher energy Hubbard
model (Eq. 17.56) is written down. At low energies (smaller compared to U),
spins emerge as the right degree of freedom in terms of which the low energy
spin Hamiltonian is written down. In this sense, the spins emerge as effective
degrees of freedom at low energies from the high energy degrees of freedom, the
electron.

Appendix B: Introduction to Entanglement entropy and its

connection to characterizing quantum spin liquids

In this appendix, we give a short introduction to entanglement entropy as a
measure of long range quantum entanglement. For a quantum many-body sys-
tem in state |ψ〉, it is worthwhile to consider a sub-part of the system denoted by
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A (say) and the rest of the system by Ā (say). A measure of such entanglement
is obtained by considering the density matrix for the entire system ρ̂ = |ψ〉〈ψ|
and integrating out the degrees of freedom in Ā to obtain the reduced density
matrix

ρ̂A = TrĀ [ρ̂] . (17.60)

The entropy of this reduced density matrix

SAĀ = −TrA [ρ̂A ln ρ̂A] , (17.61)

then gives a measure for the entanglement between A and Ā. Note that there
may be other measures of entanglement which we do not discuss here.

Clearly for a product state like the approximate ground state of ferromag-
net in Eq. 17.7 or the random product state in Eq. 17.19, SAĀ = 0. Adding
small superposition to such states induces small amount of entanglement and
hence gives a non-zero value of entanglement entropy of the form

SAĀ = #L, (17.62)

where L is the length of the perimeter of the boundary between A and Ā and
# is a number that is zero for an exact product state.

A naive look at the ground state of Toric code (Eq. 17.18) may suggest
that since the spins are randomly up or down, it may give an entanglement
entropy of the form given above. However, a more careful thought suggest
that there is a pattern in this massively superposed state — the down spins
always lie on a closed loop. Therefore, when we divide the entire system into
subsystems A and Ā, then some of these loops cross the boundary. The number
of intersections from each loop with the boundary must be an even number
as the loops are closed. Therefore, the state in Eq. 17.18 has this one qubit
of information encoded in it that the number of such intersection is 0(mod 2).
This translates into an extra − ln 2 factor in the entanglement entropy, which
cannot be changed continuously (unlike the prefactor of L) and corresponds to
the presence of long-range quantum entanglement in the ground state of the
Toric code model.

Appendix C: Low energy effective Hamiltonian for XXZ

pyrochlore antiferromagnets

In the limit Jzz is larger than J± in the Hamiltonian in Eq. 17.43, we can derive
the effective low energy (below the energy scale of O(Jzz)) [14]. This effective
Hamiltonian is given by

Heff = P [Hp +HpG
′
0Hp + · · · ]P, (17.63)
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where P is the projector to the classical ground state manifold satisfying Eq
17.45 and

Hp = −J±
∑

〈ij〉
(s+
i s
−
j + s−i s

+
j );

G′0 = (1− P)
1

E −Hzz
(1− P);

Hzz = Jzz
∑

〈ij〉
szi s

z
j , (17.64)

First order: At the first order all terms in Hp take the state out of the clas-
sical ground-state manifold. So there are no first order contributions since the
projection operator P in Eq. 17.63 kills all such terms.

Second order: The second order term has the form (see Eq. 17.63)

H
(2)
eff = P [HpG

′
0Hp]P. (17.65)

This can only lead to non-zero contribution when the spins flipped by each of the
two Hp refer to the same bond. In this case, however, the ground state remains
the same, and hence this leads to a constant term of the order O(J2

±) [14]. We
neglect such constants.

Third order The third order term has the form

H
(3)
eff = P [HpG

′
0HpG

′
0Hp]P. (17.66)

The non trivial contributions come from the hexagons shown in Fig. 17.10,
and the two classical ground-states they connect, differ in configuration with
respect to the six spins forming the flippable hexagon. This contribution is of
the type [14]

∼ −J±
3

J2
zz

∑

7,(1,...6∈7)

(
s+

1 s
−
2 s

+
3 s
−
4 s

+
5 s
−
6 + h.c.

)
, (17.67)

which is same as the effective low energy Hamiltonian is Eq. 17.48.
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Topological aspects of quantum
information processing

Ville Lahtinen and Jiannis K. Pachos

In this review we present an introduction to topological quantum com-
putation – quantum computing with anyons. This approach is inher-
ently resilient against errors, thus promising to overcome one of the
main obstacles for the realisation of quantum computers. We first
provide an introduction to anyon models and discuss the general steps
how to use them to encode and process quantum information. Then
we present a toy microscopic model, Kitaev’s p-wave wire, that sup-
ports localised Majorana modes. These are the simplest non-Abelian
anyons, which are the subject of intense theoretical and experimen-
tal research. We outline how quantum computation could be carried
out in this microscopic system in a topologically protected manner,
discuss the nature of the topological fault tolerance and review the
recent experimental developments in realizing Majorana modes.

18.1 Introduction

Physics should remain unchanged when two identical particles are exchanged.
This is a fundamental symmetry with far reaching consequences. In three spa-
tial dimensions it dictates that only bosons and fermions can exist as point-like
particles. A wave function describing them acquires a +1 or a −1 phase, respec-
tively, whenever two particles are exchanged. However, when one goes down to
two spatial dimensions, perhaps somewhat counter-intuitively as the number of
degrees of freedom is reduced, a much richer variety of statistical behaviours is
allowed. In addition to bosonic and fermionic behaviour, arbitrary phase fac-
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tors, or even non-trivial unitary evolutions, can be obtained when two particles
are exchanged [1]. Particles with such an exotic statistics are called anyons.

The fundamental difference between two and three spatial dimensions re-
lies on the topology of space-time evolutions of point-like particles. To under-
stand this principle consider the exchange processes of two particles illustrated
in Figure 18.1. In three dimensions the loop λ2 drawn by the encircling particle
is always continuously deformable to loop λ1 that does not encircle the other
particle. This loop, in turn, is fully contractible to a point, which means that
the wave function of the system must satisfy

3D : |Ψ(λ2)〉 = |Ψ(λ1)〉 = |Ψ(0)〉 . (18.1)

As one particle encircles the other twice, the evolution of the system can be
represented by the exchange operator R such that |Ψ(γ2)〉 = R2 |Ψ(0)〉. The
contractibility of the loop requires that R2 = 1, which has only the solutions
R = ±1 that correspond to the exchange statistics of either bosons or fermions.
Since the order and the orientation of the exchanges are not relevant, the statis-
tics of point-like particles in three spatial dimensions are described by the simple
permutation group.

! 

"0

! 

"1

! 

"2

! 

"2

! 

"1

! 

"0

(a) (b)

Figure 18.1: Exchange statistics in two vs. three spatial dimensions. (a) In three
spatial dimensions the loop λ2 describing two particle exchanges is continuously
deformable to λ1 that encloses no particles, which in turn is contractible to a
point λ0. (b) In two spatial dimensions, however, the loops λ2 and λ1 are
topologically inequivalent, while λ1 is still contractible to a point.

This contrasts with two spatial dimensions, where the loop λ2 is no longer
continuously deformable (the path is not allowed to cross the encircled particle)
to the fully contractible loop λ1. This means that the final state |Ψ(λ2)〉 no
longer needs to be equal to the initial state |Ψ(0)〉

2D : |Ψ(λ2)〉 6= |Ψ(λ1)〉 = |Ψ(0)〉 . (18.2)

Hence the exchange operator R is no longer constrained to square to identity
either. Instead, it can be represented by a complex phase, or even a unitary ma-
trix. The only constraints on it are a set of consistency conditions on the order
and orientation of the exchanges. These derive from a mathematical structure
known as the braid group, which describes all topologically distinct evolutions
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of point-like particles in two spatial dimensions. It is this description of the
statistics by the braid group that allows anyons to exist.

Quantum computation with anyons is referred to as topological quantum
computation. We illustrate the basic principles behind any topological scheme
for quantum computation and motivate why pursuing such an exotic route to
fault-tolerance is to be taken seriously. We start with reviewing the general
structure of consistent anyon models. These models emerge in the low-energy
behaviour of topologically ordered many-body systems. Having thus set the
table, we outline how the anyons could in principle be used to encode and
process quantum information. Importantly we present the main appeal of such
exotic sounding idea: the high fault-tolerance provided by a topology based
encoding. While the discussion up to this point takes place at an abstract
general level, we then illustrate all these concepts in the context of simple
microscopic model – Kitaev’s p-wave wire [20] – whose experimental realization
is a subject of intense contemporary research. This model supports Majorana
modes, simplest types of non-Abelian anyons. We outline how the encoding
and processing of quantum information by topological means could be carried
out in an array of such wires, and conclude by reviewing recent advances to go
beyond Majorana modes.

In this review we focus on the recent developments on the realization
of scalable topological quantum computing with anyons. The closely related
topic of (topological) quantum memories and error correction is covered in
other recent reviews [76, 77]. Before proceeding we provide a brief history of
the key developments in topologically ordered systems and in their application
to quantum computation.

18.1.1 A brief history of anyonic quantum computation

The study of anyons started as a theoretical toy model for quasiparticles with
fractional spin in two spatial dimensions [2]. They were promoted from a the-
oretical curiosity to a serious research direction after the discovery of the frac-
tional quantum Hall effect [3, 4]. This effect emerges when a gas of electrons
confined to two spatial dimensions is subjected to a strong magnetic field and
very low temperatures. Then several distinct phases of matter can be exper-
imentally distinguished by precisely quantised conductivity, which is propor-
tional to a topological invariant characterising the ground state [5]. Thus, such
states became known as topologically ordered. The theoretical breakthrough
for understanding this behaviour was provided by Laughlin, who explained the
physics of these strongly correlated phases in terms of simple effective trial wave
functions [6]. The remarkable property of these fractional quantum Hall wave
functions was the prediction that they could support quasiparticles carrying
fractional charge and behaving as anyons. While the experimental verification
of this prediction was challenging at the time, the fractionalised charge of the
quasiparticles has since been confirmed [69, 73]. The conclusive experimental
verification of the anyonic statistics, however, has remained elusive.
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Due to the rapid progress, the early studies on topological order focused
on fractional quantum Hall states. As the experiments got more precise, a
zoo of different potential topological ordered states at different filling fractions
were discovered and numerous new trial wave functions were proposed to de-
scribe them. Out of these particularly interesting was the Moore-Read state
at the filling fraction 5/2 [24], since it was the simplest state supporting the
so called non-Abelian anyons – anyons associated with non-local degeneracies
and statistics represented by unitary matrices (as opposed to phase factors of
Abelian anyons). While much effort was dedicated to verifying the existence
of these anyons, the experiments proved challenging [73]. Fortunately, as the
understanding of the physics of topologically ordered states grew, it was re-
alised that fractional quantum Hall systems are not the only place to look for
them. A seminal paper by Read and Green showed that they could occur also
in superconductors with special pairing symmetries [21]. Of particular inter-
est of these were the p-wave paired superconductors that were predicted to
support the same type of anyons as the Moore-Read states. In these systems
they would manifest themselves as fractionalized fermion modes, or Majorana
modes, bound to vortex excitations [23].

Parellel to the study of topological order in condensed matter systems, a
lot of research was directed to a promising new field of quantum computation
and quantum information [7]. There the challenge is to store and manipulate
quantum information in a robust manner, which had lead to the study of quan-
tum error correcting codes. While working on a class of them known as surface
codes, Kitaev realised that some of these error correcting codes could be writ-
ten as spin lattice models with special Hamiltonians [39]. The ground states
of these models exhibit decoherence-free subspaces that resembled much the
properties of topologically ordered systems. The simplest of such models came
to be known as the Toric Code – nowadays the archetypal topological quantum
memory– where the errors in the encoded information could be understood
as anyonic excitations. Kitaev then showed that instead of being harmful in
this particular model, anyons in some more complicated system could actually
be used to both encode and process quantum information in a fault tolerant
manner. Thus topological quantum computation was born [38,39].

The main advantage for using anyons for quantum computation is the
existence of a decoherence-free subspace, which can only be evolved through
non-local operations by moving the anyons around each other. Local noise oper-
ators such as the ones employed in realistic noise models, can not cause errors in
this space. In other words, errors would be suppressed at the level of hardware.
The operator of the computer, on the other hand, can in principle implement
such operations through adiabatic transport of the anyons, and thereby im-
plement accurately topologically protected quantum gates. This may sound
straightforward, but the challenge is to first find a system that supports anyons
and enables them to be manipulated in a robust manner. The models emerg-
ing from Kitaev’s construction required many-body interactions and were thus
beyond immediate experimental relevance. A challenge to topological quantum
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computation is also that not all anyons are universal for quantum computation.
Sufficiently complex systems are required in order to obtain a universal gate
set only by braiding the anyons. The zoo of potential fractional quantum Hall
states held the initial promise. The putative filling fraction 12/5 was proposed
to be described by the Read-Rezayi state [8] that was conjectured to support
so called Fibonacci anyons. These, as opposed to the Ising anyons appearing
in the Moore-Read state (equivalent to Majorana modes for most practical
purposes), were universal for quantum computation. Unfortunately, but to no
one’s surprise, the robust experimental realisation of the Read-Rezayi state has
proved even more challenging as the already elusive Moore-Read state.

While progress with the fractional quantum Hall systems has been made,
the current push for topological quantum computation comes from topologi-
cal superconductors. Even though also p-wave superconductors are yet to be
experimentally confirmed in materials, it was realised that qualitatively same
physics could occur when a topological insulator [46], a spin-orbit coupled semi-
conductor [47,50] or a a chain of magnetic atoms [54,55] is placed in the prox-
imity of a regular s-wave superconductor. In particular, wires made of these
materials and deposited on top of a superconductor were predicted to host
Majorana modes at their ends, which could be probed through simple conduc-
tance measurements [20,48,49]. While the explicit verification of their braiding
properties is yet to be carried, several experiments on microscopically distinct
setups strongly support the existence of Majorana modes [40–42, 78]. Experi-
ments have also been proposed for cold atoms in optical lattices that due to
their inherent cleanness and high degree of control will hopefully yield further
evidence [56,57,90].

From the point of view of quantum computation this breakthrough is
slightly bitter sweet, since Majorana modes are not universal for quantum com-
puting by purely topologically protected operations. However, as they are the
first realisable non-Abelian anyons, they hold great promise to experimentally
test the two key elements of topological quantum computation – topological
protection of quantum encoding and the implementation of quantum gates by
braiding anyons. In the following we provide an introduction to the concept
of anyonic models [22, 32] and describe the steps required to realise anyonic
quantum computation.

18.2 Anyon models

The hallmark of topologically ordered phases in two spatial dimensions is the
existence of fractionalised quasiparticles that obey anyonic statistics. Different
types of anyons can be divided into two general classes. If the exchanges of two
quasiparticles makes the wave function of the system to acquire a complex phase
factor the quasiparticles are referred to as Abelian anyons. If the presence of
the quasiparticles is associated with ground state degeneracy, then an exchange
can lead to a unitary evolution in the ground state manifold. In this case the
quasiparticles are known as non-Abelian anyons. While both types of anyons



476 18. Quantum Information

(a)$ (b)$

€ 

Φ

€ 

q

€ 

1 € 

Φ

€ 

q

€ 

2 € 

Φ

€ 

q
γ

Figure 18.2: Toy model for anyons as charge-flux composites. (a) Anyons can
be described effectively as magnetic flux Φ confined to a tube that is encircled
by a ring of electric charge q. When anyon 1 moves around anyon 2 along loop λ,
its charge (flux) circulates the flux (charge) of the other anyon. The Aharonov-
Bohm effect gives rise to the complex phase e2iqΦ, which describes the mutual
statistics of the composite objects. For 2qΦ 6= 2π they are Abelian anyons. (b)
When the composite particle rotates around itself by 2π, the system acquires
the phase factor eiqΦ as its charge circulates its own flux. Thus the composite
particle has the spin h = qΦ/(2π).

have applications to quantum information, it is predominantly the latter that
one refers to when talking about topological quantum computation.

The full microscopic description of strongly correlated systems is often
very complicated. Nevertheless, if such systems are topologically ordered then
the low energy description can be given only in terms of the anyonic quasiparti-
cles. Due to their topological nature the possible evolutions are limited to three
simple scenarios: (i) Anyons are created or annihilated in pairwise fashion, (ii)
they fuse to form other types of anyons and (iii) they can be exchanged (adi-
abatically moved around each other). The physical framework capturing these
properties in a unified fashion goes under the name of a topological quantum
field theory [17]. However, often in physics the details of this rigorous descrip-
tion can be omitted and only a minimal set of data is required to specify the
properties of the anyons corresponding to a particular topological quantum field
theory. Here, as also often is the case in literature, we refer to this minimal in-
formation as an anyon model. Before describing the general structure of anyon
models (for a thorough account we refer to [22]), we warm-up by presenting a
simple toy model for anyons in terms of Aharonov-Bohm effect.

18.2.1 Toy anyons from the Aharonov-Bohm Effect

Let us think of anyons as being composite particles consisting of a magnetic flux
Φ confined inside a small solenoid and a ring of electric charge q around it [2],
as illustrated in Figure 18.2. If one particle encircles the other, then its charge
q goes around the flux Φ, and vice versa. Due to the celebrated Aharonov-
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Bohm effect [10], the wave function of the system will acquire a phase factor
U = e2iqΦ, even if there is no direct interaction between the particles. Since
all the magnetic flux is confined to the solenoid, this phase factor does not
depend in the local details of the path. It depends only on the number of times
one particle circulates the other, which makes it topological in nature. These
observations imply that if

2qΦ 6= 2πn, n = 1, 2, . . . , (18.3)

then the wave function will evolve exactly in the same way as a system of two
Abelian anyons described by the exchange operator R = U1/2. This condition

of the electron charge e) or Φ 6= 2πn, respectively.
The picture of anyons as fractional charge-flux composites, while being a

toy model, demonstrates the intimate connection between anyons and fraction-
alisation [2]. Indeed, as anyons emerge always as localised quasiparticle collec-
tive states of some more fundamental particles (fermions, bosons or spins), one
can also associate them a charge, which the theory predicts to be fractionalised.
This has been experimentally verified [69], for instance, for the charge q = 1/3
Abelian anyons in the Laughlin fractional quantum Hall state [6]. One should
keep in mind though that while this picture provides a simple mechanism for
the origin of anyonic statistics, in real many-body systems anyons are not in
general composites of physical flux and charge. Instead, the charge and flux
of the anyons emerge due to an effective gauge theory that describes the low
energy behaviour of the model [11,17]. With these simple insights in mind, we
now proceed to describe the structure of actual anyon models.

18.2.2 Ising anyons

The principles underlying topological quantum fields theories allow for many
different self-consistent anyon models [32]. We illustrate their structure using
one of the simplest ones – the Ising anyon model. This anyonic model describes
the low energy physics of topologically ordered phases that support localised
Majorana modes. It is currently the most topical of non-Abelian anyon models
due to its likely relevance to numerous research directions, including p-wave su-
perconductors [21], the fractional quantum Hall states at filling fraction 5/2 [24],
spin lattice models [22] and heterostructures of topological insulators / spin-
orbit coupled semiconductors in the proximity of a normal s-wave supercon-
ductor [46,47,50,54,55]. Note that in general there are several different anyon
models that all can be described in terms of Majorana modes, but which have
slightly different statistical properties [22]. We will not be concerned with this
subtlety though and will use Ising anyons and Majorana modes interchangeably
throughout this review.

To specify an anyon model, one needs to list what kinds of particles exist
in the theory (anyon types), how they behave when combined (fusion rules) and
how the system evolves when the particles are exchanged (topological spin of

is satisfied if either the charge or the flux is fractionalised, i.e. �= n (in units, q
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the particles, or equivalently, the braid matrices). These are most conveniently
presented in terms diagrams of the worldlines of anyons as they are exchanged
or fused, as illustrated Figure 18.3. Such diagrams also vividly capture the
topological nature of such processes – two diagrams that can be continuously
deformed into each other will correspond to the same evolution of the system.
The worldline diagrams can also be extended to account for the topological
spins h of the anyons by replacing the lines with ribbons. As illustrated in
Figure 18.4, a rotation of particle around itself by 2π can be conveniently
represented by a twist in the ribbon. This twist results in the overall phase
factor of e2iπh. By spin-statistics theorem the evolution of the particle twist
relates to the exchange evolution R [45], as we shall see later on.

! 

a

! 

b

! 

a

! 

a 

! 

a

! 

b

! 

c

Figure 18.3: Worldline representation of anyon dynamics in 2 + 1 dimensions
with time flowing downwards. Left: A counter-clockwise exchange of two parti-
cles, a and b, is depicted in terms of braided worldlines. Middle: A pair-creation
or annihilation of particle a with its antiparticle ā corresponds to two worldlines
starting or ending at the same position, respectively. Right: Fusion of particles
a and b that gives particle c (a and b are in the fusion channel c) corresponds
to a Y-junction of the worldlines.

The Ising anyon model consists of three particles: 1 (vacuum), ψ (fermion)
and σ (anyon). The statistics follow from their topological spins that are given
by h1 = 0, hψ = 1/2 and hσ = 1/16, respectively. The fractional spin of the σ
particle makes it an anyon, but it does not specify whether it is an Abelian or
a non-Abelian one. This information is encoded in the fusion rules

1× 1 = 1, 1× ψ = ψ, 1× σ = σ,
ψ × ψ = 1, ψ × σ = σ,

σ × σ = 1 + ψ.

As a vacuum label 1 fuses trivial with the two non-trivial particles. The fusion
rule ψ × ψ = 1 implies that when brought together two fermions behave like
there is no particle, while ψ×σ = σ implies that ψ with a σ is indistinguishable
from a single σ. The non-Abelian nature of the σ particles is encoded in the last
fusion rule which says that two of them can behave either as the vacuum or as
a fermion. In other words, for two well separated σ particles there is a non-local
degree of freedom associated with their fusion channel. It is this property that
makes them attractive for quantum computing as we discuss below.
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Figure 18.4: The spin-statistics theorem for anyons. Consider a process where an
anyon a and its anti-particle ā are first created from vacuum, then exchanged
and finally fused back to vacuum. The process is topologically equivalent to
pair creation -annihilation process with one of the anyons rotated by 2π at the
intermediate step (the world-ribbon is twisted, which can be nicely verified with
a belt). Due to the spin h of the anyon a, such twist is equivalent to overall
phase factor of e2πih. Thus we arrive at the spin statistics theorem that related
exchange statistics of two particles to their spins [45].

Physically, the fusion rules can be understood, for instance, in the context
of a topological p-wave superconductor [21]. There, the vacuum 1 is a conden-
sate of Cooper pairs. The fermions ψ are Bogoliubov quasiparticles that can
pair into a Cooper pair and thus vanish into the vacuum. The σ particles, on
the other hand, correspond to vortices that bind localised Majorana modes. As
we will explain below, a Majorana mode corresponds to a “half” of a complex
fermion. A pair of such vortices carries thus a single non-local fermion mode,
the ψ particle, that can be either unoccupied (fusion channel σ × σ → 1) or
occupied (fusion channel σ × σ → ψ).

18.2.3 The Fusion space

The non-Abelian fusion rule for the σ particles implies that there is a two
dimensional Hilbert space associated with a pair of them. The basis in this
Hilbert space can be associated with the two fusion channels and denoted by

{|σ × σ → 1〉 , |σ × σ → ψ〉}. (18.4)

However, the fusion rule for two ψ particles implies that the Ising anyon model
only conserves ψ parity, which means that the two states associated with the
pair of σ particles also belong to different parity sectors. In order to have a non-
trivial fusion space in the same parity sector, one needs to consider at least four
σ particles. Then in the even parity sector, consisting of fusion channels that
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give either 1 or an even number of ψ’s, the basis can be given by the states

| 0〉 ≡ | (σ × σ)× (σ × σ)→ 1× 1 = 1〉 , (18.5)

| 1〉 ≡ | (σ × σ)× (σ × σ)→ ψ × ψ = 1〉 .
These correspond to both σ pairs fusing independently either to 1 or to ψ. We
have named these states as | 0〉 and | 1〉, because in the next section they are
employed as the logical states of a qubit.

Of course, these are not the only possible sequences to make all the par-
ticles fuse to 1. We could have chosen either of the fusion paths (parenthesis
denotes the order of fusing the particles)

[σ × (σ × σ)]× σ = [σ × (1 or ψ)]× σ = [σ]× σ → 1, (18.6)

that differ by the intermediate step yielding either 1 or ψ. Let us denote the
two states associated with these fusion paths as | 0̄〉 and | 1̄〉, anticipating the
connection to a different basis of logical states. There must then exist a unitary
relating these two choices of basis, as diagrammatically illustrated in Figure
18.5. This can be obtained by solving the so called pentagon equations that are
consistency conditions for the fusion rules [22]. For the Ising anyon model one
finds that | 0〉 = F | 0̄〉 and | 1〉 = F | 1̄〉, where the F -matrix is given by

F =
1√
2

(
1 1
1 −1

)
. (18.7)

This corresponds to | 0̄〉 = (| 0〉 + | 1〉)/
√

2 and | 1̄〉 = (| 0〉 − | 1〉)/
√

2. In other
words, if the fusion outcome is completely fixed in one fusion order, then it is
completely random in the other and vice versa. Thus the different fusion orders
correspond to different bases exactly as the basis for a qubit could be chosen
along the z-axis as {| 0〉 , | 1〉} or along x-axis as {| 0̄〉 , | 1̄〉}. As the different basis
states correspond to different pairs of σ particles fusing into 1 or ψ, detecting the
fusion outcomes provides a natural way to perform measurements on different
bases of the fusion space.

The structure of the fusion space for more σ’s generalises in a straight-
forward manner. For 2N particles the dimension of the fusion space in each
parity sector is given by 2N−1 with the bases associated with the different fu-
sion paths. As the dimension of the Hilbert space doubles for every added σ
pair, one may define the dimensional contribution per particle as dσ =

√
2.

This quantity is referred to as the quantum dimension and it is larger than
unity only for non-Abelian anyons. For Abelian anyons, as well as for bosons
and fermions, the quantum dimension is always d = 1. One may also define the
total quantum dimension of an anyon model as

D =

√∑

a

d2
a, (18.8)

where a runs over all distinct particle types of the theory. For Ising anyon model
one obtains DIsing = 2. It is an important quantity since it appears as a constant
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Figure 18.5: Every fusion diagram corresponds to a state in the fusion space.
When the particles are arranged on a line, the basis can be chosen to coincide
with different fusion orders. The corresponding states must be related by uni-
tary, which called the F -matrix. In the two dimensional fusion space associated
with three σ particles in the σ sector (equivalent to four σ particles in the global
vacuum sector), the two states correspond to fusing first the two particles on
the left or on the right.

term in the entanglement entropy of topologically ordered states [18, 19]. As
different anyons models can have the same total quantum dimension, it is not
a unique characteristic of a particular anyon model. It is still an important
concept though, because it can tell whether a given state is topologically ordered
and provide partial information about the nature of the state.

18.2.4 Braiding evolutions
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Figure 18.6: Consider a process where two particles a and b are exchanged k
times and then fused to particle c. The corresponding diagram is topologically
equivalent to twisting k times each the worldribbon by π, such that a and b
are twisted counter-clockwise, while c is twisted clockwise. Thus the effect of
braiding can be fully given in terms of the topological spins of the particles.
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To evolve a state in the fusion space one needs to move the σ particles
around each other. This is in general known as braiding the anyons, with the
corresponding evolutions depending both on the order and orientation of the
way the particles are exchanged. The nature of the evolution dependents on
the type of the anyonic model. The corresponding exchange or braid matrices
R can be obtained by solving another set of consistency equations known as
the hexagon equations. However, there is also a simpler way to obtain the braid
matrices from the topological spins of the particles.

By the well known spin-statistics theorem, a rotation (twisting) of a parti-
cle a with spin ha by 2π will result in the wave function of the system acquiring
an overall phase factor of θa = exp(2πhai). Consider then the process depicted
in Figure 18.6 where two σ particles are first exchanged twice clockwise and
then fused. By a purely topological argument this must be equivalent to twist-
ing first both σ particles counter-clockwise, fusing them and then twisting the
resulting 1 or ψ particle clockwise. In other words, when the two σ’s fuse to
a = 1, ψ, there must hold

(Raσσ)
2

=
θa
θσθσ

= exp[2πi(ha − 1/8)]. (18.9)

If such a braiding was performed on either the left or the right σ pair, then a
generic state expressed in the basis (18.5) would evolve according to the matrix

R2 =

(
(R1

σσ)2 0
0 (Rψσσ)2

)
= e−iπ/4

(
1 0
0 −1

)
. (18.10)

Were the σ’s braided counter-clockwise, then the evolution would be described
by (R†)2. We immediately see that if we encoded a qubit in the fusion space
associated with four σ particles, such a braiding would implement a phase gate.

Since the basis (18.5) is chosen such that both the left and the right pair
both fuse simultaneously either to 1 or to ψ, one may ask what is the nature of
the evolution if instead of braiding particles from same pairs, one would braid
them from different pairs. The corresponding evolution can be obtained by first
using an F -matrix to go to the basis (18.6) where the two middle particles (let’s
label them 2 and 3) are fused first, braiding them using the R-matrix and then
returning back to the original basis using the inverse F -matrix. More precisely,
we obtain

R2
23 = F−1R2F = e−iπ/4

(
0 1
1 0

)
. (18.11)

In other words, if the four σ’s were employed to encode a qubit, this braid
would have implemented a logical NOT-gate. Physically, this corresponds to
changing the intermediate fusion channels of the two σ pairs, as illustrated in
Figure 18.7.

Arbitrary evolutions in the fusion space of 2N σ’s can be obtained using
these simple examples. To work out the effect of braiding any two particles, one
must first use some sequence of F -matrices defined in this larger Hilbert space
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Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].
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that correspond to both σ pairs fusing independently either to 1 or to ψ . Of course,
these are not the only possible sequences to make all the particles fuse to 1. We could
have equally chosen either of the fusion paths (parenthesis denoting the ordering of
fusing the particles)

[σ × (σ ×σ)]×σ = [σ × (1 or ψ)]×σ = [σ ]×σ → 1, (8)

that differ by the intermediate step yielding either 1 or ψ . Denoting the two states
associated with these fusion paths as

�� 0̄
�
and

�� 1̄
�
, there must then exist a unitary

relating these two choises of basis. This can be obtained by solving the so called
pentagon equations that are fusion rule dependent consistency conditions for dif-
ferent fusion paths to be mutually compatible [70]. For the Ising anyon model one
finds that |0�= F

�� 0̄
�
and |1�= F

�� 1̄
�
, where the F-symbol is given by

F =
1√
2

�
1 1
1 −1

�
. (9)

In other words, the the different fusion orders correspond to different bases exactly
as the basis for a qubit could be chosen along the z-axis ({|0� , |1�}) or along x-axis
({
�� 0̄
�
,
�� 1̄
�
}). As the different basis states correspond to different pairs of σ particles

fusing into 1 or ψ , fusing them and detecting the outcome would then correspond
to performing measurements on different bases of the fusion Hilbert space.

The structure of the fusion space for more σ ’s generalizes in a straightforward
manner. For 2N particles the dimension of the fusion space in each parity sector
is given by 2N−1 with the bases associated with the different fusion paths. As the
dimension of the Hilbert space doubles for every added σ pair, one may define the
dimensional contribution per particle as dσ =

√
2. This quantity is referred to as the

quantum dimension and it is larger than unity only for non-Abelian anyons (d = 1
for all other particles be them then bosons, fermions or Abelian anyons). One may
also define the total quantum dimension of an anyon model as

D=
�

∑
a
d2a , (10)

where a runs over all distinct particle types of the theory. For Ising anyon model
one obtains DIsing = 2. It is an important quantity since it appears as a constant term
in the entanglement entropy of topologically ordered states (see Section ???). While
not being a unique characteristic of a particular anyon model, it can tell whether a
given state is topologically ordered and distinguish between some anyons models
for different total quantum dimension.

2.1.2 Braiding evolutions in the fusion space

To evolve a state in the fusion space one needs to move the σ particles around
each other. This is in general known as braiding the anyons, with the corresponding
evolutions depending both on the order and orientation of the way the particles are
exchanged. The nature of the evolution is again anyon model dependent and the
corresponding braid matrices R be obtained by solving another set of consistency
equations known as the hexagon equations. However, there is also a simpler way to
obtain the braid matrices from the topological spins of the particles.

By the well known spin-statistics theorem, a rotation (twisting) of a particle a by
2π will result in the wave function of the system acquiring an overall phase factor
of θa = exp(2πhai). Consider then the a process depicted in Figure 5 where two σ
particles are first exchanged twice clockwise and then fused. By a purely topological
argument this must then be equivalent to twisting first both σ particles, fusing them
and twisting then the resulting 1 or ψ particle. In other words, when the two σ ’s
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Figure 18.7: When σ particles from two different pairs are braided, the fusion
channel of both changes from the 1 channel to the ψ channel. This is allowed,
because of the fusion rule ψ × ψ = 1 both states belong to the global vacuum
sector.

to move to a basis where the desired particles are directly fused and then apply
the braid matrix R. The evolution in the original basis is obtained by applying
afterwards the inverse sequence of the F -matrices. For Ising anyons one can
implement through braiding any operation that is in the Clifford group [33,
34]. This means that Ising anyons, while being non-Abelian, are not universal
for quantum computation by braiding. To overcome this shortcoming, non-
topological schemes have been devised to promote their computational power to
universality [36,37]. While the need for such non-topological operations makes
the system more susceptible to errors, Ising anyons are still the best candidates
we currently have to experimentally test the principles of topological quantum
computation.

In the next section we describe in more detail how such computation would
proceed. Before doing so, we wrap up this section by discussing how the defining
properties of non-Abelian anyons – the fusion space and the braid statistics –
would in general manifest themselves in a quantum many-body system.

18.2.5 Anyons in many-body systems: Ground state degeneracy and

Berry phases

So far we have discussed non-Abelian anyons at an abstract level. In reality,
the anyons appear as collective quasiparticles in strongly correlated many-body
systems. There the fusion space appears as degeneracy of the ground state in a
fixed quasiparticle number sector. Braiding manifests itself as the evolution in
this degenerate manifold when the quasiparticles are transported adiabatically
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around each other. Physically this is captured by the non-Abelian Berry phase
acquired by the system’s wave function under such a process.

Let us consider a system of N Ising anyons σ on the plane, where N is
even. The dNσ -dimensional fusion space manifests itself as the dNσ degenerate
many-body ground states given by

|Ψn(z1, z2, . . . , zN )〉 , n = 1, 2, . . . , dNσ , (18.12)

where zj are the coordinates of the N anyons on the plane. These states are
separated from all other states in the spectrum by some energy gap ∆E. This
contrasts with the ground state in the presence of Abelian anyons, which is
always unique on a plane regardless of the number of anyons present.

To implement braiding of the anyons, one transports them adiabati-
cally around each other. The corresponding evolution of the many-body states
(18.12) is given in terms of the geometric Berry phase [12,13]. Let λ be a cyclic
path in the anyon coordinates that winds one anyon around another. If one
changes the parameters zj slowly in time compared to the energy gap ∆, then
the transport is adiabatic and the system evolves only within the degenerate
ground state manifold spanned by the states (18.12). This evolution is in general
given by

|Ψn(z1, z2, . . . , zN )〉 →
dNσ∑

m=1

Γnm(λ) |Ψm(z1, z2, . . . , zN )〉 , (18.13)

where the non-Abelian Berry phase is defined by [14]

Γ(λ) = P exp

∮

λ

A · dz. (18.14)

Here P denotes path ordering and the components of the non-Abelian Berry
connection are given by

(Aj)mn = 〈Ψm(z1, z2, . . . , zN ) | ∂
∂zj
|Ψn(z1, z2, . . . , zN )〉 . (18.15)

The geometric phases due to the cyclic evolution in anyonic coordinates zj
do not depend on the time it takes to traverse the path λ as long as it is long
enough for the evolution to be adiabatic. Nor do they depend on the exact shape
of the path. Thus they are topological in nature and capture the non-Abelian
statistics of the anyons.

When λ corresponds to an arbitrary sequence of exchanges in a system of
four σ particles, then the resulting non-Abelian Berry phase Γ(λ) evaluates the
corresponding product of the R and F matrices. Any more complicated braid in
the presence of more σ’s could also be evaluated in the same way. Indeed, it has
been explicitly demonstrated by Arovas, Schrieffer and Wilczek [15], that the
statistics of Abelian anyons for the Laughlin fractional quantum Hall state can
be expressed as such a Berry phase. Similar explicit calculation was recently
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generalised also to the non-Abelian Ising anyons emerging in the Moore-Read
state [68]. The non-Abelian statistics as Berry phases have also been evaluated
in the context of p-wave superconductors [16], Moore-Read and Read-Rezayi
states [91, 92] Kitaev’s honeycomb lattice model [28, 79] as well as bosonic
fractional quantum Hall systems [80].

18.3 Quantum computation with anyons

As we discussed above, the characteristic of non-Abelian anyons is the existence
of a non-local fusion space F , that is spanned by a basis corresponding to the
different possible outcomes and orders of fusing all the anyons. In an ideal
situation (infinite spatial anyon separation and infinite energy gap), the states
in this space have three very attractive properties from the point of view of
quantum computation:

(i) All the states are perfectly degenerate.

(ii) They are indistinguishable by local operations.

(iii) They can be evolved by braiding the anyons, with the evolutions only
depending on the topology of the braids.

If this space of states is used as the computational space of a quantum com-
puter, property (i) implies that the encoded information is free of dynami-
cal dephasing, while property (ii) means that it is also protected against any
uncorrelated and local noise operator. Property (iii) means that errors could
only occur under unlikely non-local noise that would create virtual anyons and
propagate them around the encoding ones. However, braiding of the encoding
anyons could be carried out in a robust manner by the controlled operations
of the computer. Property (iii) implies that the corresponding quantum gates
should be error-free and constructible from the F - and R-matrices.

All together these properties mean that quantum computation by such
means would heavily suppress errors already at the level of the hardware, with
little need for often resource intensive quantum error correction. While these
conditions are highly idealised, their desirability led around 2003 to the exotic
idea of employing non-Abelian anyons for quantum computation [38, 39]. We
now discuss the general steps required to carry out such a topological quantum
computation.

18.3.1 The topological qubit and initialisation

The first step of a topological quantum computation is to identify the compu-
tational space H = C2n of n qubits and initialise it in a given state. A slight
complication with the fusion spaces F is that they do not necessarily admit a
tensor product structure. However, usually a subspace H ⊂ F can be identified,
where quantum information can be encoded in the usual way.
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Because of their particular fusion rules, this subtlety is not a concern
when employing Ising anyons. For 2N sigma particles the fusion space has the
dimensionality dim(F) = d2N

a , which increases F by d2
σ = 2 for every additional

σ pair. This means that the fusion space of Ising anyons naturally has a tensor
product structure F = C2N . We restrict to the global vacuum sector, which
is a natural assumption as the particles are always created pairwise from the
vacuum. Then six σ particles can encode two qubits, eight σ’s three qubits,
and so on. The fusion diagrams corresponding to the basis states are given in
Figure 18.8.
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Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

12 Contents

!"
#$
%&
'(
)#
*"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

! 

a

! 

b

! 

c

! 

a

! 

b

! 

c
Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

12 Contents

!"
#$
%&
'(
)#
*"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

! 

a

! 

b

! 

c

! 

a

! 

b

! 

c
Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

12 Contents

!"
#$
%&
'(
)#
*"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

! 

a

! 

b

! 

c

! 

a

! 

b

! 

c
Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

12 Contents

!"
#$
%&
'(
)#
*"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

! 

a

! 

b

! 

c

! 

a

! 

b

! 

c
Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
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from the F- and R-matrices specific to the employed anyons. All together these
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increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
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= exp[2πi(ha−1/8)]. (11)

If such a braiding was performed on either on the left or the right σ pair, then a
generic state expressed in the basis (7) would evolve according to the matrix
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Were the σ ’s braided counter-clockwise, then the evolution would be described by
(R†)2. Thus we immediately see that were the four σ ’s encoding a qubit, such a
braiding would implement a phase gate. We will discuss in more detail in the next
section how a computation with anyons would in principle be carried out.

Since the basis (7) is chosen such that both the left and the right pair both fuse
simultaneously either to 1 ro to ψ , one may ask what is the nature of the evolution if
instead of braiding particles from same pairs, one would braid them from different
pairs. The corresponding evolution can be obtained by first using and F-move to go
the basis (8) where the two middle particles (let’s label them 2 and 3) are fused first,
braiding them using the braid matrix and then returning back to the original basis
using another F-move. More precisely, we obtain

R2
23 = F−1R2F = e−iπ/4

�
0 1
1 0

�
, (13)

which implies that this braiding would have implement a logical NOT-gate, that
physically corresponds to changing the intermediate fusion channels of the two σ
pairs, as illustrated in Figure 6.

Arbitrary evolutions in the fusion space of 2N σ ’s can be obtained using these
simple examples. To work out the effect of braiding any two particles, one must first
use some sequence of F-moves defined in this larger Hilbert space to move to a basis
where the desired particles are fused first, then apply the braid matrix R and the re-
turn back to the original basis using the inverse of the F-moves. For Ising anyons one
can implement through braiding any operation that is in the Clifford group [81]. This
means that Ising anyons, while being non-Abelian, are not universal for quantum
computation through purely topological evolutions. To overcome this shortcoming,
non-topological schemes have been devised to promote their computational power
to universality [83, 84]. While the need for such non-topological operations slightly
tarnishes the appeal of using Ising anyons for quantum computing, due to the recent
progress in realizing them in solid state systems they are still way the best candi-
dates to test the principles of topological quantum computation. In the next section
we will describe in more detail how such a topological quantum computation would
proceed. After that we will describe a simple microscopic model, Kitaev’s p-wave
wire [68], where Majoranas modes could appear and be manipulated.

3 Quantum computation with anyons

As we discussed above, the hallmark characteristic of non-Abelian anyons is the
existence of a non-local fusion space F , that is spanned by basis corresponding to
different possible outcomes as the anyons of type are fused in some order. Assuming
n anyons of type α the fusion space is of dimension dim(F ) = dnα that manisfests
itself as ground state degeneracy of the n anyon number sector. In an ideal situation
(infinite spatial anyon separation and infinite energy gap), the states in this space
have three very attractive properties from the point of view of quantum computation:
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(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.

If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].
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this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
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ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
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quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

Figure 18.8: The fusion diagram for six Ising anyons, restricted to the global
vacuum sector, with the order of fusing proceeding from left to right. Due to
the fusion rule σ × σ = 1 + ψ, the fusion diagram contains two identical, but
independent sections with two possible fusion outcomes (1 or ψ). Thus the
fusion space of six σ’s has tensor product structure F = C2⊗C2. Such Hilbert
space can encode two qubits, each associated with three σ particles. When the σ
pairs are created from the vacuum as shown, the two qubit system is initialised
in the product state | 0〉 | 0〉 that corresponds to both fusion degrees of freedom
being fixed to the vacuum channel.

Consider the case where every neighbouring pair of anyons is created from
the vacuum and the pairs are kept far from each other. This forces the non-
local degree of freedom of each pair to be initialised, independently of each
other, in the fusion channel σ × σ → 1. Defining the logical states as (18.5),
this corresponds to initialising the computational space in the product state
| 0〉 | 0〉.

18.3.2 Topological gates and measurements

To perform a computation in the fusion space is equivalent to specifying a
braid – a sequence of exchanges of the anyons that corresponds to a sequence
of logical gates. Each exchange evolves the computational space. The evolution
corresponding to the full braid can be constructed as a product of the R- and
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F -matrices. In Figure 18.9 we illustrate a simple braid and we evaluate the
corresponding evolution in the fusion space of six Ising anyons. Of course, for
any useful algorithm a much larger number of anyons is required and the braids
required to approximate desired evolutions are much more complicated [43,44].
Still, any algorithm on a topological quantum computer can be written as such
a braid.
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should also be protected against any uncorrelated and local noise operators. Errors
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could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].
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The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
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product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
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increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
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quantum errror correction. While these conditions are highly idealized, their high
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If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
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desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
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quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
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non-local degree of freedom of each pair to be initialized independent of each other
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3.2 Topological gates and measurements

To perform a computation in the fusion space is equivalent to specifying a braid – a
sequence of exchanges of the anyons that corresponds to a sequence of logical gates.
Each exchange will evolve the computational space in a manner such that evolution
corresponding to the full braid can be constructed as a product of the R- and F-
matrices. In Figure 8 we illustrate a simple braid in a two qubit system encoded in
six Ising anyons and the corresponding circuit of quantum gates. Of course, for any
useful algorithm a much larger number of anyons is required and the braids required
to approximate desired evolutions are much more complicated [90, 91].

The final step of a computation is the read-out. Since the basis states in the fusion
space correspond to the possible intermediate fusion outcomes of the non-Abelian
anyons, measurements in the computational basis are then equivalent to detecting
them. To do this, one needs to bring the particles together. For an encoding based on
Ising anyons, bringing two σ particles together and detecting whether they fuse to
either 1 or ψ . In the basis (7) the fusion of of σ ’s form same pair would amount to
a measurement in the z-basis, while fusing them from different pairs would amount
to measurement in x-basis.

In nutshell, these are the basic steps of operating a topological quantum com-
puter. How they are carried out precisely depends on the microscopics of the system
that supports the anyons. In the next section we will describe how a computation
could in principle be carried in one system that supports Ising anyons. Before doing
so, let us briefly consider the weaknesses of topological quantum computation when
the idealized conditions are abandoned.
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If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
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from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].
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space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.

12 Contents

!"
#$
%&
'(
)#
*"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

!"
+,
-.
/'
0.

(*
"

! 

a

! 

b

! 

c

! 

a

! 

b

! 

c
Fig. 5 Suspender diagram about spin-braiding connection

Fig. 6 Diagram about the braiding of anyons from different pairs / the pair teleportation diagram.

(i) All the states are perfectly degenerate.
(ii) They are completely invariant under local operations.
(iii) They can be evolved only by braiding the anyons, with the evolutions only de-

pending on the topology of the braids.
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fuse to a= 1,ψ , there must hold

(Ra
σσ )

2 =
θa

θσ θσ
= exp[2πi(ha−1/8)]. (11)

If such a braiding was performed on either on the left or the right σ pair, then a
generic state expressed in the basis (7) would evolve according to the matrix

R2 =

�
(R1

σσ )
2 0

0 (Rψ
σσ )

2

�
= e−iπ/4

�
1 0
0 −1

�
. (12)

Were the σ ’s braided counter-clockwise, then the evolution would be described by
(R†)2. Thus we immediately see that were the four σ ’s encoding a qubit, such a
braiding would implement a phase gate. We will discuss in more detail in the next
section how a computation with anyons would in principle be carried out.

Since the basis (7) is chosen such that both the left and the right pair both fuse
simultaneously either to 1 ro to ψ , one may ask what is the nature of the evolution if
instead of braiding particles from same pairs, one would braid them from different
pairs. The corresponding evolution can be obtained by first using and F-move to go
the basis (8) where the two middle particles (let’s label them 2 and 3) are fused first,
braiding them using the braid matrix and then returning back to the original basis
using another F-move. More precisely, we obtain

R2
23 = F−1R2F = e−iπ/4

�
0 1
1 0

�
, (13)

which implies that this braiding would have implement a logical NOT-gate, that
physically corresponds to changing the intermediate fusion channels of the two σ
pairs, as illustrated in Figure 6.

Arbitrary evolutions in the fusion space of 2N σ ’s can be obtained using these
simple examples. To work out the effect of braiding any two particles, one must first
use some sequence of F-moves defined in this larger Hilbert space to move to a basis
where the desired particles are fused first, then apply the braid matrix R and the re-
turn back to the original basis using the inverse of the F-moves. For Ising anyons one
can implement through braiding any operation that is in the Clifford group [81]. This
means that Ising anyons, while being non-Abelian, are not universal for quantum
computation through purely topological evolutions. To overcome this shortcoming,
non-topological schemes have been devised to promote their computational power
to universality [83, 84]. While the need for such non-topological operations slightly
tarnishes the appeal of using Ising anyons for quantum computing, due to the recent
progress in realizing them in solid state systems they are still way the best candi-
dates to test the principles of topological quantum computation. In the next section
we will describe in more detail how such a topological quantum computation would
proceed. After that we will describe a simple microscopic model, Kitaev’s p-wave
wire [68], where Majoranas modes could appear and be manipulated.

3 Quantum computation with anyons

As we discussed above, the hallmark characteristic of non-Abelian anyons is the
existence of a non-local fusion space F , that is spanned by basis corresponding to
different possible outcomes as the anyons of type are fused in some order. Assuming
n anyons of type α the fusion space is of dimension dim(F ) = dnα that manisfests
itself as ground state degeneracy of the n anyon number sector. In an ideal situation
(infinite spatial anyon separation and infinite energy gap), the states in this space
have three very attractive properties from the point of view of quantum computation:
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Qubit 1 Qubit 2

Thursday, October 17, 2013

Fig. 7 The fusion diagram for six Ising anyons, restricted to the global vacuum sector, with the
order of fusing proceeding from left to right. Due to the fusion rule σ ×σ = 1+ψ , the fusion
diagram contains two identical, but independent sections with two possible fusion outcomes (1 or
ψ). Thus the fusion space of six σ ’s has tensor product structureF =C 2⊗C 2. Such Hilbert space
can encode two qubits, each associated with three σ particles as shown.

3.3 Challenges under more realistic conditions

The attraction of topological quantum computation is based on the ideally decoher-
ence free encoding and processing of quantum information. However, as always is
the case, such ideal conditions do not exist in the real world. Consider, for instance,
the assumption that the anyons are infinitely apart and the states in the fusion space
are separated by all other states in the system by an infinite energy gap. I real world
the anyons occur always in a finite system and the energy gap ∆ is finite imply-

1   B1
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3.2 Topological gates and measurements

To perform a computation in the fusion space is equivalent to specifying a braid – a
sequence of exchanges of the anyons that corresponds to a sequence of logical gates.
Each exchange will evolve the computational space in a manner such that evolution
corresponding to the full braid can be constructed as a product of the R- and F-
matrices. In Figure 8 we illustrate a simple braid in a two qubit system encoded in
six Ising anyons and the corresponding circuit of quantum gates. Of course, for any
useful algorithm a much larger number of anyons is required and the braids required
to approximate desired evolutions are much more complicated [90, 91].

The final step of a computation is the read-out. Since the basis states in the fusion
space correspond to the possible intermediate fusion outcomes of the non-Abelian
anyons, measurements in the computational basis are then equivalent to detecting
them. To do this, one needs to bring the particles together. For an encoding based on
Ising anyons, bringing two σ particles together and detecting whether they fuse to
either 1 or ψ . In the basis (7) the fusion of of σ ’s form same pair would amount to
a measurement in the z-basis, while fusing them from different pairs would amount
to measurement in x-basis.

In nutshell, these are the basic steps of operating a topological quantum com-
puter. How they are carried out precisely depends on the microscopics of the system
that supports the anyons. In the next section we will describe how a computation
could in principle be carried in one system that supports Ising anyons. Before doing
so, let us briefly consider the weaknesses of topological quantum computation when
the idealized conditions are abandoned.
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If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
with (iii) implying that the corresponding quantum gates could be costructed exactly
from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
errors already at the level of hardware, with little need for often resource intensive
quantum errror correction. While these conditions are highly idealized, their high
desirablity led around 2003 to the exotic idea of employing non-Abelian anyons for
quantum computation [85, 86].

3.1 The topological qubit

The first step of a topological quantum computation is to identify the computational
space H = C 2n of n qubits and initialize the system in given state. A slight com-
plication with the fusion spaces F is that they do not necessarily admit a tensor
product structure. However, usually a subspace H ⊂ F can be identified, where
quantum information can be encoded in the usual way. Because of their fusion rules,
this subtlety does not need to be considered for the Ising anyons. Every pair of σ ’s
increases the dimensionality ofF by d2σ = 2, which means that qubits can be asso-
ciated with each pair, as illustrated in Figure 7. Defining the logical states as (7), the
computational space is physically initialized in the |00 . . .0� state by creating each
σ pair form the vacuum. When the pairs remain far from each other, this forces the
non-local degree of freedom of each pair to be initialized independent of each other
in the fusion channel |σ ×σ → 1�.
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If this space is used as the computational space of a quantum computer, (i) implies
that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
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that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
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that the encoded information is free of dynamical dephasing, while (ii) means that it
should also be protected against any uncorrelated and local noise operators. Errors
would ideally only occur under unrealistic non-local noise that would create new
anyons and/or propagate already existing anyons around each other. However, this
could in principle carried out in a robust manner by the operator of the computer,
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from the F- and R-matrices specific to the employed anyons. All together these
properties mean that quantum computation by such means would heavily suppress
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quantum errror correction. While these conditions are highly idealized, their high
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fuse to a= 1,ψ , there must hold

(Ra
σσ )

2 =
θa

θσ θσ
= exp[2πi(ha−1/8)]. (11)

If such a braiding was performed on either on the left or the right σ pair, then a
generic state expressed in the basis (7) would evolve according to the matrix

R2 =

�
(R1

σσ )
2 0

0 (Rψ
σσ )

2

�
= e−iπ/4

�
1 0
0 −1

�
. (12)

Were the σ ’s braided counter-clockwise, then the evolution would be described by
(R†)2. Thus we immediately see that were the four σ ’s encoding a qubit, such a
braiding would implement a phase gate. We will discuss in more detail in the next
section how a computation with anyons would in principle be carried out.

Since the basis (7) is chosen such that both the left and the right pair both fuse
simultaneously either to 1 ro to ψ , one may ask what is the nature of the evolution if
instead of braiding particles from same pairs, one would braid them from different
pairs. The corresponding evolution can be obtained by first using and F-move to go
the basis (8) where the two middle particles (let’s label them 2 and 3) are fused first,
braiding them using the braid matrix and then returning back to the original basis
using another F-move. More precisely, we obtain

R2
23 = F−1R2F = e−iπ/4

�
0 1
1 0

�
, (13)

which implies that this braiding would have implement a logical NOT-gate, that
physically corresponds to changing the intermediate fusion channels of the two σ
pairs, as illustrated in Figure 6.

Arbitrary evolutions in the fusion space of 2N σ ’s can be obtained using these
simple examples. To work out the effect of braiding any two particles, one must first
use some sequence of F-moves defined in this larger Hilbert space to move to a basis
where the desired particles are fused first, then apply the braid matrix R and the re-
turn back to the original basis using the inverse of the F-moves. For Ising anyons one
can implement through braiding any operation that is in the Clifford group [81]. This
means that Ising anyons, while being non-Abelian, are not universal for quantum
computation through purely topological evolutions. To overcome this shortcoming,
non-topological schemes have been devised to promote their computational power
to universality [83, 84]. While the need for such non-topological operations slightly
tarnishes the appeal of using Ising anyons for quantum computing, due to the recent
progress in realizing them in solid state systems they are still way the best candi-
dates to test the principles of topological quantum computation. In the next section
we will describe in more detail how such a topological quantum computation would
proceed. After that we will describe a simple microscopic model, Kitaev’s p-wave
wire [68], where Majoranas modes could appear and be manipulated.
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1 0

�
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Fig. 7 The fusion diagram for six Ising anyons, restricted to the global vacuum sector, with the
order of fusing proceeding from left to right. Due to the fusion rule σ ×σ = 1+ψ , the fusion
diagram contains two identical, but independent sections with two possible fusion outcomes (1 or
ψ). Thus the fusion space of six σ ’s has tensor product structureF =C 2⊗C 2. Such Hilbert space
can encode two qubits, each associated with three σ particles as shown.

3.3 Challenges under more realistic conditions

The attraction of topological quantum computation is based on the ideally decoher-
ence free encoding and processing of quantum information. However, as always is
the case, such ideal conditions do not exist in the real world. Consider, for instance,
the assumption that the anyons are infinitely apart and the states in the fusion space
are separated by all other states in the system by an infinite energy gap. I real world
the anyons occur always in a finite system and the energy gap ∆ is finite imply-

C

qubit 1 qubit 2

Friday, October 25, 2013Figure 18.9: An example of a topological quantum computation. Creating
three pairs of σ particles from the vacuum initialises the fusion space in
the state | 0〉 | 0〉, where the computational basis is defined diagrammatically
in Figure 18.8. The shown braid evolves this state according to the unitary
U = (1 ⊗ B1)C(B1 ⊗ B−1

2 ), where B1 = R and B2 = F−1RF . The gate
C = eiπ/4σ

x⊗σz due to braiding anyons from different qubits can be obtained
by solving the Yang-Baxter equations (B2 ⊗ 1)C(B2 ⊗ 1) = C(B2 ⊗ 1)C and
(1⊗B1)C(1⊗B1) = C(1⊗B1)C. Fusing the two shown particles and observing
either 1 or ψ will give outcomes e1 and e2, which correspond to measuring both
qubits in the z-basis.

The final step of a computation is the read-out. Since the basis states in the
fusion space correspond to the possible intermediate fusion outcomes of the non-
Abelian anyons, measurements in the computational basis are then equivalent
to detecting them. To do this, one needs to bring the particles together. For an
encoding based on Ising anyons, a measurement corresponds to bringing two σ
particles together and detecting whether they fuse to 1 or ψ. In the basis (18.5)
fusing σ’s from the same pairs would amount to a measurement in the z-basis.
Fusing them from different pairs would amount to measurement in x-basis, as
we illustrate with our toy computation in Figure 18.9.

In a nutshell, these are the basic steps of operating a topological quantum
computer. How they are carried out precisely depends on the microscopics of
the system that supports the anyons. In the next section we describe how a
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topological quantum computation could in principle be carried in one micro-
scopic system that supports Ising anyons, the Kitaev’s p-wave wire.

18.4 Ising anyons as Majorana modes in a microscopic model

Since the work of Ivanov [23], it has been known that quasiparticles in a
two-dimensional system described by Majorana operators would exhibit the
braiding statistics of Ising anyons. Formally, Majorana modes are “half” of a
complex fermion. By this we mean that if fi is a fermion operator satisfying
{f†i , fj} = δij , one can always write

fi =
1

2
(γ1 + iγ2) , (18.16)

where γi = γ†i are Hermitian Majorana operators satisfying {γi, γj} = 2δij and
γ2
i = 1. If two Majorana modes, γ1 and γ2, would exist as localised quasipar-

ticles, then the occupation f†i fi = 0, 1 of the complex fermion shared by them
would constitute a non-local degree of freedom. This would precisely correspond
to the non-local degree of freedom of two σ particles of the Ising anyon model.
If the fermionic mode is unoccupied (f†i fi = 0), then the two Majorana parti-
cles would behave like the vacuum, 1, when brought together. If it is occupied
(f†i fi = 1), then the fusion of two such quasiparticles would leave behind a
fermion that would correspond to the ψ particle. The question then is: could
localised Majorana modes actually exist in solid state systems?

18.4.1 Kitaev’s toy model for a topological nanowire

Theory suggests that Majorana modes could appear in vortices in exotic su-
perconductors, such as the p-wave superconductor [21], or as quasiparticles in
fractional quantum Hall states, like the Moore-Read state proposed for the fill-
ing fraction 5/2 [24]. However, as strongly correlated systems, the experimental
verification of such materials is still an open question. Building on the physics of
p-wave superconductors, Kitaev proposed in 2001 a simplified one-dimensional
model where Majorana modes could appear at the ends of a superconducting
wire [20]. While not having a clear experimental realisation at the time, this
simple toy model provided valuable insights into the mechanisms that give rise
to localised Majorana modes.

The remarkable thing about Kitaev’s toy model is that it is no longer
a toy model. In a seminal work Fu and Kane [46] discovered that topologi-
cal insulators in proximity of a normal s-wave superconductor could reproduce
physics similar to a p-wave superconductor. This soon lead to the prediction
that the same could be achieved with an even simpler settings by replacing the
topological insulator with a spin-orbit coupled semiconductor [47, 50]. When
these ideas were applied to one-dimensional nanowires, it was found that they
could host Majorana end states [48, 49]. This prediction was supported by ex-
periments a few years later [40–42, 78]. Such nanowires are no longer the only
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potential realisations of Kitaev’s toy model. Proposals have been put forward
to realise them also in optical lattices [56, 57, 90], cavity arrays [53], magnetic
molecules [55], nanoparticles [54] and half-metals [51,52]. Regardless of the di-
versity of microscopic realisations, the low energy physics in all of them can
always be cast in the form of the toy model, that we now discuss.

Let us assume the model is defined on a chain of L sites and that the
fermions in the system are spinless (or equivalently spin polarised). The super-
conducting Hamiltonian for the system can then be written as

H =
L∑

j=1

[
−w

(
f†j fj+1 + f†j+1fj

)
− µ

(
f†j fj −

1

2

)
+
(

∆fjfj+1 + ∆∗f†j+1f
†
j

)]
,

(18.17)
where w is the tunnelling amplitude, µ is the chemical potential and ∆ =
|∆|eiθ is the superconducting pairing potential. Following [20] we express this
Hamiltonian for L complex fermions in terms of 2L Majorana operators by
employing the decomposition (18.16). Including the superconducting phase θ in
their definition, we define fj = e−iθ/2(γ2j−1 +iγ2j)/2. In terms of the Majorana
operators the Hamiltonian takes the form

H =
i

2

L∑

j=1

[−µγ2j−1γ2j + (w + |∆|)γ2jγ2j+1 + (−w + |∆|)γ2j−1γ2j+2] ,

(18.18)
which allows us to explore the phase diagram and the edge properties of the
model. There are two special limits in which the ground state can be obtained
immediately.

Trivial phase: When the chemical potential term dominates, we can set
|∆| = w = 0. The Hamiltonian is then given by

H =
i

2

L∑

j=1

−µγ2j−1γ2j = −µ
L∑

j=1

(f†j fj −
1

2
), µ� w, |∆|. (18.19)

The ground state of such a system is trivial. It is given by having a fermion
(f†j fj = 1) on every site, as illustrated in Figure 18.10.

Topological phase: The other limit is to have the kinetic term be compara-
ble to the pairing potential and dominating over the chemical potential. Setting
w = |∆| and µ = 0, we obtain the Hamiltonian

H = iw

L∑

j=1

γ2jγ2j+1 = 2w

L−1∑

j=1

(f̃†j f̃j −
1

2
), w = |∆| � µ, (18.20)

where we have defined a new set of fermionic operators by combining the Ma-
joranas as f̃j = e−iθ/2(γ2j + iγ2j+1)/2. As illustrated in Figure 18.10, the Ma-
jorana operators γ1 and γ2L completely decouple from the Hamiltonian that
now describes interactions only between L− 1 complex fermions. The missing
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of such phases. In addition to supporting fractionalized excitations, the ground state
of the system in this phase can be characterized by a topological invariant [68].

Fig. 9 An illustration about the two distinct phases of the wire. Perhaps also inlucluding a plot
about the form of the Majorana wavefunctions localized at the wire ends.

Of course the limits of w= |∆ |= 0 and µ = 0 are extreme cases of a very ideal-
ized model. Were such a model realized in the topological phase, at best one would
hope to achive a parameter regime where w ≈ |∆ | � µ . This is fine as the system
remains in the topological phase that supports localized Majorana modes at wire
ends for 2w> |µ|. The consequence of being away from the extreme µ = 0 point is
that the Majorana modes will now only be exponentially localized at the wire ends.
Their wave functions localized at the left (L) and right (R) ends of the wire will take
the form

ΓL/R =
2L

∑
j=1

αL/R
j γ j, (19)

where the normalized amplitudes will decays as |αL
j |∝ e− j/ξ and |αR

j |∝ e−(2L− j)/ξ ,
where ξ ∝ |∆ |−1 is the coherence length. This means that for finite wires of length
L, the wavefunctions of the two Majoranas will overlap, which in turn results in a
finite energy splitting ε ∝ e−L/ξ between the two ground states.

As we dicussed earlier in connection with anyon models in general, this is a vivid
explicit example about topologically ordered phases always emerging in strongly
correlated many-body systems, where the anyon model providing the effective low
energy description is exact only in some idealized limit of infinite system size and
energy gap. The anyons themselves are always collective quasiparticle states of
underlying more fundamental particles (electrons in our wire example), that have
also microscopic dynamics of their own. When not negligible, they can endow the
anyons with further properties, such as degeneracy lifting interactions [109], that
are not included in the pure anyon model description. This has been verified in nu-
merous microscopically distinct systems [110, 111, 112], with the interactions even
being able to drive transitions into new topological phases [113]. However, as our
aim here is to demonstrate how topological quantum computation could in principle
be carried out in such a microscopic setting, we will neglect such microscopic cor-
rections and assume perfect localization of the Majorana modes at the wire ends. At
every step of our discussion though, we will comment how the more realistic setting
would affect the robustness of the Majorana encoding.

4.1 The Majorana qubit

Let us view the two localized Majorana modes γ1 and γ2L as a pair σ particles
of Ising anyon model. The occupation of the non-local fermion shared by them
is described by the operator b†b = (1+ iγ1γ2L)/2. For b†b = 0 the two σ ’s will
fuse to vacuum 1, while for b†b = 1 they will leave behind a fermion ψ . The two
degenerate ground states in the topological phase can thus be identified with the two
fusion channel states (6)

iγ1γ2L |σ ×σ → 1� = − |σ ×σ → 1� , (20)
iγ1γ2L |σ ×σ → ψ� = + |σ ×σ → ψ� ,

where

2L
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Figure 18.10: Kitaev’s toy model for a p-wave paired superconducting wire [20].

(a) The original Hamiltonian (18.17) in terms of complex fermions f†j is defined
on a one-dimensional lattice of L sites. (b) When each complex fermion operator
is decomposed into two Majoranas by writing fj = e−iθ/2(γ2j−1 + iγ2j)/2, the
Hamiltonian (18.18) describes free Majorana fermions on a chain of length 2L
(red sites). When µ� w, |∆|, the system is in the trivial phase described by the
Hamiltonian (18.19), whose unique ground state has all the Majorana modes
paired. (c) In the opposing limit, the system is in the topological phase where
the Majorana operators γ1 and γ2L completely decouple from the Hamiltonian
(18.20). The ground state is two-fold degenerate. Both states are localised at the
wire ends (the figure shows a schematic of the Majorana wave functions (18.21)
when µ 6= 0) and correspond to the occupation number of the delocalised
fermion d = (γ1 + iγ2L)/2.

fermion can be described by the operator d = e−iθ/2(γ1 + iγ2L)/2 that is delo-
calised between the two ends of the wire. Since [d†d,H] = 0, the ground state of
this idealised system is two-fold degenerate parameterised by the population of
the d mode. Explicit evaluation of the ground state wave functions reveals that
they are indeed localised at the ends of the wires. This confirms the qualitative
argument for this phase of the system supporting localised Majorana modes.
As opposed to the trivial phase in the w = |∆| = 0 limit, we call this phase
a topological phase. In addition to supporting fractionalised excitations, the
ground state of the system in this phase can be characterised by a topological
invariant [20].

Of course the coupling regimes w = |∆| = 0 or µ = 0 are limiting cases
of idealised models. Were such a model realised in the topological phase, one
would hope to achieve a parameter regime where w ≈ |∆| � µ. This is fine as
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the system remains in the topological phase that supports localised Majorana
modes at wire ends for 2w > |µ|. The consequence of being away from the
extreme µ = 0 point is that the Majorana modes will be exponentially localised
at the wire ends rather than being positioned on a single site. The operators
describing them at the left (L) and right (R) ends of the wire take the form

ΓL/R =

2L∑

j=1

α
L/R
j γj , (18.21)

where the normalised amplitudes will decays as |αLj | ∝ e−j/ξ and |αRj | ∝
e−(2L−j)/ξ, where ξ ∝ |∆|−1 is the coherence length. This means that for fi-
nite wires of length L, the wave functions of the two Majoranas will in general
overlap, which in turn results in a finite energy splitting ∆E ∝ e−L/ξ between
the two ground states.

The energy splitting described above is the first example how the ide-
alised assumptions of anyon models (in this case perfect degeneracy of the
fusion states) are lifted due to the specific microscopics of the system. It serves
as an explicit reminder that topologically ordered phases emerge in strongly
correlated many-body systems, where the anyon model provides an exact effec-
tive low energy description only in an idealised limit of infinite system size and
energy gap. The anyons themselves are always collective quasiparticle states
of underlying more fundamental particles (electrons in the wire example), that
have also microscopic dynamics of their own. In general they are not negligi-
ble and endow the anyons with non-topological properties, such as degeneracy-
lifting interactions [63] that can even induce topological phase transitions when
the anyons form arrays [81–83]. The existince of such interactions has been
verified in numerous microscopically distinct systems that support Majorana
modes [64–66]. The conditions for the formations of the collective states of Ma-
jorana modes, that constitutes the ultimate failure of a topological quantum
computer, have also been studied in several recent works [67,84–89].

18.4.2 The Majorana qubit

Let us view the two localised Majorana modes γ1 and γ2L as a pair of σ parti-
cles corresponding to the Ising anyon model. The occupation of the non-local
fermion shared by them is described by the operator d†d = (1 + iγ1γ2L)/2. For
d†d = 0 the two σ’s will fuse to vacuum 1, while for d†d = 1 they will leave be-
hind a fermion ψ. These two degenerate ground states in the topological phase
can be identified with the two fusion channel states (18.4)

iγ1γ2L |σ × σ → 1〉 = − |σ × σ → 1〉 , (18.22)

iγ1γ2L |σ × σ → ψ〉 = + |σ × σ → ψ〉 ,

where
|σ × σ → ψ〉 = d† |σ × σ → 1〉 .
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However, these two states cannot form a basis for a qubit, because they
belong to different parity sectors of the wire. The fermion parity is described by
the operator P = exp(iπ

∑
j f
†
j fj), which is an exact symmetry of the Hamil-

tonian (18.17). In the two-fold degenerate ground state manifold this operator
acts as P = iγ1γ2L, which means that the two ground states cannot mix in
a closed system. Like in our discussion in Section 18.2.3, to form a qubit one
needs two wires, whose ground state manifold contains two states belonging
to the same parity sector. Choosing the even parity sector (P = 1), the com-
putational basis states can be identified with the fusion channel states (18.5)
as

| 0〉 ≡ | (σ × σ)1 × (σ × σ)2 → 1× 1 = 1〉 ,
| 1〉 ≡ | (σ × σ)1 × (σ × σ)2 → ψ × ψ = 1〉 , (18.23)

where

| (σ × σ)1 × (σ × σ)2 → ψ × ψ = 1〉 = d†1d
†
2 | (σ × σ)1 × (σ × σ)2 → 1× 1 = 1〉 .

The subscripts in the non-local fermion operators di refer to the two wires
hosting the anyon pair denoted by (σ × σ)i.

18.4.3 Manipulating the Majorana qubit

Let us next consider how braiding, and hence topological quantum gates, could
be implemented in the topological nanowire system. As braiding involves mov-
ing the anyons around each other, the obvious problem seems to be that the
Majorana modes are stuck at the wire ends. This obstacle can be overcome
by realising that Majorana modes exist not only at the wire ends, but also at
the interfaces between topological (2w > |µ|) and non-topological (2w < |µ|)
phases.

One can then envisage a scenario where by external control of the chemical
potential part of the wire is made to be in a topological phase and the other is
not. By adiabatically tuning the local chemical potential one can move the in-
terface, and thus the trapped Majorana mode, back and forth on the wire. One
can then consider a T-junction of these wires, as illustrated in Figure 18.11.
This junction enables braiding operations to be executed by manipulating the
local couplings on the wires. It has been explicitly shown [25], that when such
exchanges are performed by adiabatically tuning the chemical potential, the re-
sulting non-Abelian Berry phase (18.13) coincide with the R-matrix of the Ising
anyon model. Correspondingly, the computational states (18.23) transform as
| 0〉 → | 0〉 and | 1〉 → i | 1〉. Thus the simple microscopic toy model reproduces
all the properties expected by the abstract anyon model.

We should point out that while braiding can be implemented by actually
transporting the anyons around each other, it is not the only possibility for im-
plementing the desired evolutions. On way around it is to use measurement-only
topological quantum computation, i.e., using fusion measurements to evolve a
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Thursday, October 17, 2013

Figure 18.11: Braiding Majoranas at a T-junction [25]. By locally tuning the
chemical potential µ along the wires, one can change between the topological
phase (|µ| < 2w, solid red lines) and the trivial phase (|µ| > 2w, dashed black
lines). The shown sequence (i)-(iii) results in the Majorana modes bound at the
domain walls (red dots) to be exchanged such that their worldlines are braided.

subspace of the fusion space [70, 71]. Another option is to control the micro-
scopic interactions to the same end [26,27,31].

18.4.4 How protected is the Majorana qubit?

In Section 18.3 we outlined the general steps for operating a topological quan-
tum computer and in this section we have described how those steps could in
principle be carried out in a microscopic model. While doing so, we discovered
that the ideal properties of anyons, like the exact degeneracy of the non-local
fusion states that makes topological quantum computing appealing, are not
perfectly manifested in microscopic systems. We discuss now how these more
realistic conditions affect the protection provided by topological encoding.

The explicit example we encountered was the lifting by ∆E ∼ e−L/ξ of the
degeneracy of the states shared by the localised Majorana modes. This is due to
finite wire length L and finite energy gap ∆, which gives rise to a finite coherence
length ξ ∼ ∆−1. In fact, such exponential degeneracy lifting is expected not to
apply only to p-wave wires, but to all microscopic topological phases. This has
been explicitly verified for p-wave superconductors [64], fractional quantum Hall
states [65] and spin lattice models [66]. It can rarely be ignored as a macroscopic
number of anyons is required for quantum computation [44], and thus in any
realistic system they must be in proximity of each other. So, what does such
degeneracy lifting mean in general for the promised protection provided by the
anyons?

In essence, the degeneracy lifting means two things. First, logical states
with different energies will dephase with time. While they remain insensitive to
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local operations, the Hamiltonian of the system will distinguish between them.
Thus topological qubits, like non-topological ones, will decohere with time un-
less error correction is applied [93]. Second, quantum gates by braiding are no
longer exact. Finite energy splitting between the ground states implies that
the evolution must be fast enough at the scale of ∆E for the states to appear
degenerate, while still being slow enough at the scale of the energy gap ∆ not
to excite the system [28–30]. In general this balancing between the two energy
scales means that there are small errors in the implemented logical operations.
If they accumulate and are not error corrected, they will become a source of
decoherence. Nevertheless, it is worth noting that the degeneracy lifting can be
exponentially suppressed by the distance between interacting anyons, which in
principle gives a very powerful way to keep it under control. The catch is that
the number of anyons needed to be kept under control for a robust implemen-
tation of quantum algorithms ranges from 103 Fibonacci anyons to a whopping
109 Ising anyons [44]. These numbers, while being rough estimates, vividly il-
lustrate the degree of accuracy required in order not to accumulate errors due
to any non-topological microscopics. Alternatively, braiding can be simulated
by microscopic control of interaction [27,31] or through measurements [71], but
the challenge to make these schemes robust at the energy scales of experiments
remains.

These two general properties imply that while topological quantum com-
putation provides much enhanced protection compared to more conventional
schemes, it is no panacea by itself. Topological qubits can decohere due to the
microscopics, and thus it is expected that any scalable topological quantum
computer architecture will be a hybrid employing both the hardware level pro-
tection provided by the anyons and the software level protection of quantum
error correction [31, 93]. For architectures based on Ising anyons, error cor-
rection will be necessary, also because non-topological operations are needed
for universal quantum computation. Since only quantum gates that are in the
Clifford group can be implemented by braiding, for universality one needs in
addition to implement the π/8-gate. This could be performed, for instance, via
allowing the anyons to interact in a controlled manner [36, 37]. The noise in
such unprotected operations could then be compensated by using distillation
schemes [72].

Like with conventional qubits, another source of decoherence is the uncon-
trolled coupling to a reservoir. In topologically ordered systems the reservoir
could appear in two ways. Either there are additional anyons in the system,

there is a reservoir nearby from where quasiparticles can tunnel into and out
of the system. In the p-wave wire the first scenario could occur due to local
random disorder in the wire. As has been studied in [61,62], sufficiently strong
spatial fluctuations in the chemical potential µ can split the wire into several
domains, some of which are in the topological phase (2w > |µ| locally) and
some of which are in the trivial phase (2w < |µ| locally). The domain walls will
also host additional Majorana modes that couple to the wire end Majoranas

i.e., the full fusion space does not coincide with the computational space, or
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encoding the topological qubit. Unless one keeps track of the fusion space as-
sociated with them, encoded information will leak into this subspace. It is a
general challenge of topological quantum computing schemes to keep precise
track of all the quasiparticles in the system and thereby prevent such leakage.

Coupling to an external reservoir of anyons should in general be pre-
ventable by simply isolating the topologically ordered system, that only occurs
under very precise conditions. However, for Majorana qubits in nanowires or
other hybrid architectures this can still pose a problem. Since the Majorana
qubit is encoded essentially in the ψ fermion parity of a wire, the qubits are
protected only as long as the parity described by the operator P = 1γ1γ2L is
a good quantum number. This is in general a strong demand for hybrid real-
izations of p-wave wires, because in all of them superconductivity is induced to
the otherwise semiconducting wire by the means of a proximity to an s-wave
superconductor [48,49,55]. If Cooper pairs can tunnel in and out of the wire to
this reservoir, why could not also fermionic ψ quasiparticles? Indeed, Majorana
qubits have been shown to be susceptible to decoherence of this type [58–60,97].

Finally, a big question is the robustness of topological schemes at finite
temperature. In principle, the energy gap of topologically ordered systems does
protect the encoded information bt exponentially suppressing thermal fluctua-
tions that would excite virtual anyons and propagate them around the system.
However, studies on Abelian anyon-based topological quantum memories sug-
gest that any finite temperature can be a problem [74, 75], if the system does
not encode some, so far artificial mechanism that suppresses the spontaneous
creation of stray anyons [94, 95]. Experimentally the situation is even more
challenging as the energy gaps tend to be small and thus only formidably low
temperatures can be tolerated even for short times. Fortunately, recent studies
show that Majorana qubits can tolerate small temperatures [96, 98, 99], which
should thus not pose a fundamental obstacle.

18.5 Outlook

In this review we have outlined the three general steps that constitute topo-
logical quantum computation: (i) To have access to a system supporting non-
Abelian anyons, (ii) to be able to adiabatically move them around each other
and (iii) to be able measure their fusion channels. We discussed the implemen-
tation of these steps in the context of p-wave paired superconducting wires,
that have several microscopically distinct experimental realisation, and which
support Majorana modes. Considering the recent progress in experimentally
identifying robust signatures of Majorana modes in them [40–42,78], these sys-
tems are also the current prime candidates to experimentally verify anyonic
statistics [25,100]. Anyon based schemes to encode and process quantum infor-
mation promise hardware level protection, but with their own weaknesses they
are no panacea. However, considering the challenges faced by non-topological
schemes, overcoming these challenges is a fair price to pay for the robustness
that comes with topological quantum computation.
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While Majorana modes are likely to be the first anyons whose braid statis-
tics are to be probed experimentally [25, 100], they are insufficient to perform
universal quantum computation. Recently, progress along the lines of hybrid
schemes for p-wires was made to go beyond Majorana modes. Replacing the
spin-orbit coupled semiconductors with edge states of Abelian fractional quan-
tum Hall states, it shown that one can realise parafermion modes that allow
for a larger, although still non-universal gate set [101, 102]. Collective states
of such generalisations of Majorana modes can, however, in principle give rise
to a state that supports the Holy Grail of topological quantum computation –
the universal Fibonacci anyons [103]. While beyond current technology, strong
hope remains that a scalable fully topological quantum computer can one day
see the daylight. A fascinating future awaits.
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magnetic ordering, 444, 446
magnets, 184
magnons, 445, 463
Majorana modes, 340, 473, 474, 488
Majorana operators, 430
manifold, 35–37, 60, 79–87, 90, 91,

93, 95–98, 103, 104, 125–
130, 134–140

differentiable, 6
Riemannian, 104

Markov moves, 348
mean-field theory, 440, 445
medial lattice, 460
modular group, 35
module, 8
monopoles, 419–421
Moore-Read state, 475
Mott insulators, 440
multifractality, 243
multilinear form, 88
multiply connected, 404
multiply-connected space, 193
mutual statistics

semionic, 451

Nambu-Goldstone bosons, 445, 463
non-contractible loops

torus, 454
nonlinear sigma model, 313
normal subgroup, 158

open set, 28–31, 33, 36, 37, 79, 131,
132

order by disorder (quantum), 459
order parameter, 445
orientation, 59, 92–95, 98

parallel translation, 127

particle on a ring, 194, 285–293
partition function, 350
partition of unity, 116
path integral, 288, 320, 400, 401,

403, 405
for spin 1/2, 289
Euclidean, 288
quantum antiferromagnet, 310
quantum ferromagnet, 309
single spin, 293–307
spin, 301

path-connected, 31, 33, 36, 55
Pauli matrices, 189, 443, 465
Peano curve, 229
pendulum, 171
pentagon equation, 480
Periodicity, 1, 18
permutation group, 406
phase

Aharonov-Bohm, 196, 199
Berry, 197, 198
geometric, 202
geometrical, 197
topological, 197

photon, emergent, 441, 446, 463
plaquette operator, 415, 416
plaquette operator, 416
Poincaré Lemma, 97
Poincaré lemma, 13
Poincaré Lemma, 98
polyhedron, 92, 93, 95, 98

convex, 92, 93
Pontrjagin classes, 138–141
primitive path, 367
profinite topology, 29
projective plane, 75
pseudospin, 335
pullback, 117, 122

quantum coherent systems, 3
quantum computation

anyonic, 473
quantum electromagnetism

emergent, 460, 461, 463

p-wave, 488
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quantum entanglement, 440, 446,
452, 453, 456, 457, 463

quantum geometric tensor, 258
quantum Hall effect, 440
quantum information, 473
quantum mechanics, 188, 193, 218,

231, 236
paths, 231

quantum order, 440, 446
quantum spin liquid, 440, 441, 444,

446, 449, 456
U(1), 446
Z2, 446, 449

quasiknot, 383
qubit, 485

Majorana, 491
quotient sets, 42
quotient topology, 26, 32, 33, 62

random walk, 232
rank of an abelian group, 69
rational conformal field theory, 344
Read-Rezayi state, 475
real projective space, 329, 403
rectifiable curve, 229
recursion relation, 345
Reidmeister moves, 345
renormalization group, 239, 442,

443
flow equation, 239, 240, 243

Schrödinger equation, 232
section, 113, 114, 117, 119
Seifert surfaces, 147
sequentially compact, 31
Sierpinski Gasket, 229

spectral dimension, 249
simplex, 67
simplicial complex, 67
simply connected, 53–56
singly connected, 404
skein relation, 148, 345, 352
space

configuration, 36, 81, 85, 174,
177

contractible, 59

Hausdorff, 30, 32
metric, 26–29, 32, 37, 101
phase, 174, 178
topological, 26, 28–31, 33–37,

41, 45–47, 51, 53, 57, 61,
79, 100, 177, 182

spin 1/2
path integral, 289

spin chains, 307–321
spin-orbit coupling, 337, 465
spin-waves, 445, 463
spontaneous symmetry breaking,

282, 440, 444, 463
stably isomorphic, 121
statistical interactions, 413
statistical mechanical models, 344
statistics, 399

Bose-Einstein, 400
exchange, 399, 401, 427, 472
Fermi-Dirac, 400

Stokes’ theorem, 96, 213
Möbius strip, 213

stress-energy tensor, 291, 293
summation formula, 292
symmetry, 442
symmetry breaking, 236, 337

spontaneous, 282
symmetry group, 443

tangent bundle, 86, 90, 104, 112,
114, 124–126, 128, 140,
141

tangent space, 82–86, 101, 103, 104,
110, 125

tensor product, 87, 88, 116, 122
textures, 322
Theory of everything, 282
theta term, 291
tight-binding model, 263
time reversal symmetry, 337
topoisomerase, 211
topological defect, 322, 445
topological degeneracy, 422, 424,

441, 446, 454, 456
topological field theory, 291
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topological gates, 486
topological group, 33
topological Hilbert space, 429
topological insulator, 336, 475
topological insulators, 21
topological interaction, 363
topological nanowire, 488
topological order, 425, 427, 441,

446, 456, 473
topological quantization, 296
topological quantum computation,

473
topological quantum field theory,

343, 476
topological quantum number, 454,

456
topological superconductors, 475
topological term, 291
topological transition, 272
topology

inherited, 177
subspace, 177

topology of the configuration space,
404

toric code, 401, 414–416, 421, 422,
426–428, 474

Toric code model, 441, 446, 447,
457, 464

Torsion, 105, 146
torus, 34, 35, 42, 56, 74, 80, 81, 454
transition function, 115, 118
transition maps, 6
trefoil, 346, 353
triangulation, 68
trivial vector bundle, 110
trivialization, 111, 119
twist, 210
two level system, 189, 203, 261

curvature tensor, 262

uniformly continuous, 28
unitary transformation, 442
unknot, 150

vector bundle, 4, 18, 110, 120–122
Vector fields, 9

vertex model, 348, 350
N -state, 355
nineteen, 355
six, 350

vertex operator, 415, 416

wave equation, 232
wave function

multi-valued, 195
single valued, 195

weak invariant, 344
wedge product, 7, 87–90
Wess-Zumino action, 294
Wess-Zumino term, 293
Wess-Zumino-Novikov-Witten

term, 293
Wick rotation, 288, 297
winding number, 289, 290, 296, 314,

317, 405
Wirtinger presentation, 145
writhe, 210, 344

XXZ pyrochlores, 441, 446, 457, 464

Yang Baxter equation, 347, 351
Yang-Baxter relation, 408
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