
Chapter 12
Computer Simulations to Explore
Membrane Organization and Transport

Huiying Chu, Yuebin Zhang, Yan Li and Guohui Li

12.1 Introduction

Ever since the first modeling of elastic collision between rigid spheres, the
molecular dynamics (MD) simulation technique has been greatly developed to
achieve atomic-level information. It has become a critical component of the widely
used tool set, and been applied to both material science and biological systems,
such as proteins, nucleic acids and lipid membranes. MD simulations not only
allow the examination of experimental findings at the atomic level, which can test
new hypotheses, but also provide data that cannot be obtained from experiments,
such as the pressure profile of membranes [1]. Cells are normally surrounded and
protected by plasma membranes which consist of different types of lipids, proteins,
and carbohydrates. In the last decade, computer simulation has opened new ways to
study bilayers at the atomic level, yielding a detailed picture of the structure and
dynamics of membranes and membrane proteins [2–4].

Membranes serve many critical biological functions, such as forming barriers
between intracellular and extracellular environments, regulating the transport of
substances [5], detecting and transmitting electric and chemical signals through
protein receptors [6], mediating the communications between cells [7] and so forth.
Also, membrane proteins have been found to comprise approximately one-third of
the human genome [8], and over half of these are known as drug targets. Thus, the
biological functions of membrane proteins have become an important focus in
fundamental research. Unfortunately, even with advanced experimental techniques,

H. Chu � Y. Zhang � Y. Li � G. Li (&)
Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science,
457 Zhongshan Road, Dalian 116023, Liaoning, China
e-mail: ghli@dicp.ac.cn

© Springer Nature Singapore Pte Ltd. 2018
H. Wang and G. Li (eds.), Membrane Biophysics,
https://doi.org/10.1007/978-981-10-6823-2_12

355



it is still difficult to achieve sufficient details of protein structures at the molecular or
even atomic level, not to mention the relationship between structural information
and functionality. To solve this problem, MD simulation is now accepted as an
indispensable tool to achieve structural and dynamical information not available via
experiments.

In principle, all details of molecular structures and interactions can be depicted
by first principles using quantum mechanics. Unfortunately, most of the problems
involving membrane proteins cannot be handled by quantum mechanics for its high
computational cost. Hence, MD simulation applies molecular force fields, which are
mainly based on a kind of potential energy descriptions at different atomic and
molecular levels, to describe the topological structures and dynamic behaviors of
membrane protein molecules. Molecular force fields are usually adopted to calcu-
late the energies of molecules by using positions of atoms, and greatly speed up
calculations compared to quantum mechanics. Thus it can be used to study the
systems that contain tens of thousands of atoms. A lot of studies have shown that
molecular force fields could help to explain many physical problems. In addition,
one of the main approximations of the additive all-atom force fields is related to the
description of electrostatic properties. Additive all-atom force fields of lipid, such as
AMBER [9, 10], CHARMM [11–13], OPLS-AA [14], and united-atom force field
of lipid, such as GROMOS [15], treat the electrostatic interactions with fixed atomic
charges. The fixed partial charge is placed at the nucleus of each atom to represent
its electrostatic properties. In additive force fields, the charge is a parameter which
can be tuned to represent atom polarization effects in an average way through a
mean-field approximation, which responds to different environments that a mole-
cule might experience [16]. For lipid bilayers, the polar headgroups of lipids face
the high-dielectricity water environment on one side and interact with the
low-dielectric hydrocarbon core on the other side [17]. The electronic polarization
experienced exterior or interior of the membrane by an embedded molecule is very
different [18, 19]. Roux et al. [20] have investigated the ion selectivity of several
membrane-binding channels and transporters. The results indicated that although
the fundamental physical properties could be described using the non-polarizable
models, more detailed understanding of the conformation-driven super-selectivity
depended on improvements in force field models considering the explicit
polarizability.

Several advances are made in both software and hardware aspects for simulating
membrane and membrane proteins in the last decade, including the easy-to-use
software for setting up MD simulations, the massively parallel algorithms and the
GPU accelerated computing.

In the following sections, we first introduce the technical principle of MC and
MD. Then the applications of both CG and All-atom model are introduced. And
finally, the protocol is presented.
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12.2 Technical Principle

12.2.1 Monte Carlo Simulations and Molecular Dynamics
Simulation

12.2.1.1 Monte Carlo Simulations

The Monte Carlo simulation was first applied to perform computer simulation on
the molecular system, therefore it occupies a special position in the history of
molecular modeling. The Monte Carlo simulations obtain the conformations of a
system through random changes of the positions of atoms, and meanwhile, change
the system to appropriate orientations and conformations. Monte Carlo methods are
a broad class of computational algorithms that rely on repeated random sampling to
obtain numerical results. Their essential idea is using randomness to solve problems
that might be deterministic in principle. They are often used in physical and
mathematical problems, which can be summarized into three distinct classes [21]:
optimization, numerical integration and generating draws from a probability dis-
tribution. Based on the position of atoms, the system potential energy of each
conformation, and the other values of properties can be calculated. Thus, Monte
Carlo samples are from a 3N-dimensional space of the particles.

The classical expression for partition function Q:

Q ¼ c
ZZ

dpNdrnexp �H rNpN
� �

=KBT
� � ð12:1Þ

where rN is the coordinates of all N particles, pN is the corresponding momenta, and
c is a constant of proportionality. The H(rNpN) is the Hamiltonian of the system,
which depends on the 3N positions and 3N momenta of the particles in the system.
It can be written as the sum of the kinetic and potential energies of the system:

H rNpN
� � ¼XN

i¼1

pij j2
2m

þV rN
� � ð12:2Þ

From the above two equations, the canonical ensemble partition can be separated
into two separate integrals, one is over the positions part, and the other is over the
momenta part.

Though Monte Carlo methods diversify in different aspects, they still follow a
particular pattern: (1) defining a domain of possible inputs; (2) generating inputs
randomly from a probability distribution over the domain; (3) performing a
deterministic computation on the inputs; and (4) aggregating the results.

Here we take a circle inscribed in a unit square for an example. Given that the
area ratio of the circle to the square is p/4, the value of p can be approximated using
a Monte Carlo method [22]: (1) Draw a square and inscribe a circle within it;
(2) Uniformly scatter objects of uniform size over the square; (3) Counting the
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number of objects inside the circle and the total number of objects; (4) The ratio of
the two counts is an estimate of the ratio of the two areas, which is p/4; (5) Multiply
the result by 4 to estimate p. In this procedure, the domain of inputs is the square
that circumscribes the circle. Random inputs are generated by scattering grains over
the square, then computations on each input are conducted (test whether it falls
within the circle). Finally, the results are aggregated to obtain the final output,
which is the approximation of p.

There are two important points to be noted here. Firstly, if the grains are not
uniformly distributed, our approximation will be poor. Secondly, there should be a
large number of inputs, because the approximation is usually poor if only a few
grains are randomly dropped into the whole square. Generally, the approximation
improves as more grains are dropped.

12.2.1.2 Molecular Dynamics Simulation

Molecular dynamics (MD) is a computer simulation method for studying the
physical movements of atoms and molecules and belongs to a type of many-body
simulation. The atoms and molecules are allowed to interact for a fixed period of
time, giving a view of the dynamical evolution of the system. In the most common
version, the trajectories of atoms and molecules are determined by numerically
solving Newton’s equations of motion for a system of interacting particles, where
forces between the particles and their potential energies are calculated using
interatomic potentials or molecular mechanics force fields. The method was orig-
inally used in the field of theoretical physics in the late 1950s [23, 24], and now it is
widely applied in various fields, such as chemical physics, materials science and the
modeling of biomolecules. For example, MD is frequently used to refine
three-dimensional structures of proteins and other macromolecules based on
experimental constraints from X-ray crystallography or NMR spectroscopy. In
biophysics and structural biology, the method is used to study the motions of
biological macromolecules such as proteins and nucleic acids, which is useful for
interpreting the results of certain biophysical experiments and modeling interactions
between molecules.

In principle, MD can be used for ab initio prediction of protein structure by
simulating folding of the polypeptide chain from random coil. The trajectory is
obtained by solving the different equations embodied in Newton’s second law
(F = ma):

d2x
dt2

¼ Fi

mi
ð12:3Þ

The equation describes the motion of a particle of mass mi along one coordinate
(xi) with Fxi being the force on the particle in the corresponding direction, and can
be written as:

358 H. Chu et al.



Fi ¼ �rU ri; . . .; rNð Þ ð12:4Þ

where U (ri, …, rN) is the potential energy function of N particles which contain the
bonded and non-bonded interactions. The bonded interactions describe the inter-
actions of the covalently bound atoms in proteins and lipid molecules, and the
non-bonded interactions can be decomposed into four pieces: Coulomb energy
between two atoms, Polarization interaction between atoms, Dispersion (van der
Waals) potential, and Short-range repulsion. The Coulomb energy can be
calculated as:

UCoul ¼ qiqj
4pe0rij

ð12:5Þ

And the van der Waals potential is calculated based on the Lennard-Jones
potential:

ULJ ¼ 4e r=rð Þ12� r=rð Þ6
h i

ð12:6Þ

Here e is the depth of potential at the minimum (r = 21/6r), and the potential
vanishes at r = r.

Implementation of the Coulomb and LJ terms is straight forward, but a calcu-
lation of the induced polarization requires the iteration of the polarization equations,
which increases the computational cost by several-fold.

Integration Algorithms. Given the position and velocities of N particles at time
t, a straight forward integration of Newton’s equation of motion yields the fol-
lowing at t + Dt

vi tþDtð Þ ¼ vi tð Þþ Fi tð Þ
mi

Dt ð12:7Þ

ri tþDtð Þ ¼ ri tð Þþ vi tð ÞDtþ Fi tð Þ
2mi

Dt2 ð12:8Þ

In the popular Verlet algorithm, one eliminates velocities by adding the
time-reversed position at t − Dt:

ri t � Dtð Þ ¼ ri tð Þ � vi tð ÞDtþ Fi tð Þ
2mi

Dt2 ð12:9Þ

While ri (t + Dt) can be given as:

ri tþDtð Þ ¼ 2ri tð Þ � ri t � Dtð Þþ Fi tð Þ
mi

Dt2 ð12:10Þ
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This is especially useful in situations where one is interested only in the posi-
tions of the atoms. If required, velocities can be calculated from

vi tð Þ ¼ 1
2Dt

ri tþDtð Þ � ri t � Dtð Þ½ � ð12:11Þ

The Verlet algorithm has several drawbacks: (1) positions are obtained by
adding a small quantity to large ones, which may lead to a loss of precision;
(2) velocity at time t is available only at the next time step t + Dt; (3) it is not
self-starting, i.e., at t0, there is no position at t − Dt. These drawbacks can be
avoided in the leap-frog algorithm, where the positions and velocities are calculated
at different times separated by Dt/2:

vi tþDt=2ð Þ ¼ vi t � Dt=2ð Þþ Fi tð Þ
mi

Dt ð12:12Þ

ri tþDtð Þ ¼ ri tð Þþ vi tþDt=2ð ÞDt ð12:13Þ

The initial coordinate can be taken from the Protein Data Bank. After energy
minimization, the coordinates give the t = 0 time atom positions. The initial
velocities are sampled from a Maxwell-Boltzmann distribution:

P vixð Þ ¼ mi

2pkT

� �
exp �miv

2
ix

�
2kT

� � ð12:14Þ

Boundaries and Ensembles. In MD simulations, however, the system size is so
small that one should consider the boundary effects. Using vacuum is not realistic
for bulk simulations because a vacuum creates an ordering of surface waters, which
could influence the dynamics of a biomolecule separated by a few layers of water
from the surface. The most common solution is to use periodic boundary condi-
tions, that is, the simulation box is replicated in all directions just like in a crystal.
The cube and rectangular prism are the obvious choices for a box shape, though
other shapes are also possible. Application of the periodic boundary conditions
results in an infinite system which, in turn, raises the question of accurate calcu-
lation of the long-range Coulomb interactions. This problem has been resolved
using Ewald’s sum, where the long-range part is separately evaluated in the
reciprocal Fourier space.

MD simulations are typically performed in the NVE ensemble, where all three
quantities (number of atoms, volume, and energy) are constant. Due to truncation
errors, keeping the energy constant in long MD simulations can be problematic. To
avoid this problem, the alternative NVT and NPT ensembles are employed. The
temperature of the system is obtained from the average kinetic energy:

Kh i ¼ 3
2
NkT ð12:15Þ
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Thus, an obvious way to keep the temperature constant at T0 is to scale the
velocities as:

vi tð Þ ! kvi tð Þ; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=T tð Þ

p
ð12:16Þ

Because the kinetic energy has considerable fluctuations, this is a rather crude
method. A better method, which achieves the same result more smoothly, is the
Berendsen thermostat, where the atoms are weakly coupled to an external heat bath
with the desired temperature T0:

mi
d2

dt2
ri ¼ Fi þmici

T0
T tð Þ � 1

 �

dri
dt

ð12:17Þ

If T(t) > T0, the coefficient of the coupling term is negative, which invokes a
viscous force slowing the velocity, and vice versa for T(t) < T0. Similarly, in the
NPT ensemble, the pressure can be kept constant by simply scaling the volume.
Again, this is very crude, and a better method is to weakly couple the pressure
difference to atoms using a similar force as above (Langevin piston), which will
maintain the pressure at the desired value of *1 atm.

12.2.2 Additive Force Field

Computational treatment of molecular dynamics is based on inter-atomic forces,
which can be derived by solving the Schrödinger’s equation. And the related
solving approaches are categorized as quantum mechanical method. However, high
calculation costs limit the use of those approaches to relatively simple systems. In
1930, Andrews [25] first proposed the basic conception of molecular force fields, a
bead-spring model was applied to describe the bond length and bond angle, and
compute the interactions of non-bonded atoms by using van der Waals interaction
expressions. Then Lifson and Warshel described consistent force field (CFF) called
empirical function force field in the 1960s, which could be attributed to the modern
molecular force field [26]. MD simulation, on the other hand, builds an empirical
function to model the potential energy of the system. The function can be con-
structed via estimating the intermolecular interaction energies from isolated
monomer wave functions (namely the perturbative method) or via the energy dif-
ferences between isolated monomers and corresponding dimers (namely the
super-molecular calculations) [27]. For different atoms or atoms in different envi-
ronments, parameter sets are introduced as the variables in the potential energy
function. Due to the diversity of interatomic interactions in biological systems, as
well as the complex electrostatic environments, it is challenging to build a uniform
set of parameters that can model the motions of atoms in different situations.

The classical way to estimate the interatomic interactions includes treating atoms
as rigid spheres with fixed charges located on the nucleus. Electron distribution
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among bonded atoms based on electronegativity can be empirically illustrated as a
partial charge, either positive or negative, on each atom. Thus, each atom responds
to the surrounding electrostatic environment in an average way (mean-field
approximation). From this simple treatment, interatomic electrostatic energies can
be simply estimated via the Coulomb’s law, and the total electrostatic energy of the
system is the summation of those pairwise energies. Then the complete potential
energy function can be estimated via a summation of bonded energy terms (in-
cluding bond lengths, bond angles, dihedral angles, and may also include improper
dihedrals and other empirical correction terms), van der Waals interaction term
(usually described by the Lennard-Jones potential), and the electrostatic energy.
According to the targeting system, different force fields have been built. To accu-
rately model the properties of small organic or inorganic molecules such as metals,
crystals, polymers and nanoparticles in materials, force fields such as CFF [28–31],
MM3 [32], MMFF94 [33–35], UFF [36], and DREIDING [37] are implemented.
For the dynamics of macromolecules, force fields like AMBER [38, 39],
CHARMM [40–47], GROMOS [48–59], and OPLS [60, 61] have also been built.

Currently, three force fields AMBER, OPLS, and CHARMM are also used for
the modeling of the ionic liquids. In addition, the MM series force fields and CFF
are suitable for the system of organic compounds. In the 1980s, molecular force
fields such as AMBER, CHARMM, OPLS and GROMOS produce a positive
impact on the research of life science and promote the development of the
molecular force fields targeting life science.

12.2.2.1 Assisted Model Building with Energy Refinement (AMBER)
Force Field

AMBER force field is one of the earliest molecular force field used for the research
of biological macromolecules and covers the simulations of proteins, DNA,
monosaccharide, and polysaccharide. In this force field, –CH2– and –CH3 are
regarded as united atom and used to treat hydrogen bonding interactions. The
simulation results show that the AMBER force field can obtain reasonable
molecular geometry, conformation energy, vibration frequency and solvation free
energy. The parameters of the AMBER force field are obtained as follows: (1) the
parameters of equilibrium bonds length and angles are from the experimental data
of microwave, neutron scattering and molecular mechanics calculations; (2) the
distorted constants are built by microwave, NMR, and molecular mechanics cal-
culations; (3) the non-bonded parameters are obtained through the unit cell calcu-
lations; and (4) the parameters of atomic charges are given by the calculations of
local charge model and ab initio quantum mechanics. For non-bonded interactions
within neighboring four atoms in the AMBER force field, the electrostatic inter-
actions reduce to 1/1.2 of other atoms, while the van der Waals interactions reduce
to 1/2 of other atoms. The bond stretching and angle bending energies in the
AMBER force field are calculated using the harmonic oscillator model, dihedral
angle torsion energy is described by Fourier series form, Lennard-Jones potential is
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chosen to represent the van der Waals force, and the Coulomb formula is applied to
estimate the electrostatic interactions. The functional form of AMBER force field is
shown as follows:

eij ¼ 4eiiejj

e1=2ii þ e1=2jj

� �2 ð12:18Þ

U ¼
X
bonds

Kr c� ceq
� �2 þ X

angle

Kh h� heq
� �2 þ X

dihedral

1
2
Un 1þ cos nu� cð Þ½ �

þ
X
i\j

Aij

R12
ij
� Bij

R6
ij
þ qiqj

eRij

" #
þ

X
H�bonds

Cij

R12
ij
� Dij

R10
ij

" #

ð12:19Þ

where r, h, u are the bond length, angle, and dihedral angle, respectively. The
fourth term represents the sum of the van der Waals and the electrostatic interac-
tions, and the fifth term is the hydrogen bonding interactions.

12.2.2.2 Optimized Potentials for Liquid Simulations (OPLS) Force
Field

The OPLS force field includes united-atom model (OPLS-UA) and all-atom model
(OPLS-AA), and it is suitable for the simulations of organic molecules and peptides
[62]. The bond stretching and bending parameters of OPLS force field are obtained
based on the modifications of the AMBER force field. This force field is committed
to calculate conformation energies of gas-phase organic molecules, solvation free
energies of pure organic liquids and other thermodynamic properties. The OPLS
force field is represented as follows:

U Rð Þ ¼
X
bonds

Kb b� b0ð Þ2 þ
X
angle

Kh h� h0ð Þ2 þ
X

dihedral

ku
2

1þ cos nu� u0ð Þ½ �

þ
X

nonbond

4eij
rij

rij

� 12

� rij

rij

� 6
" #

þ qiqj
rij

( )

ð12:20Þ

12.2.2.3 Chemistry at Harvard Molecular Mechanics (CHARMM)
Force Field

The CHARMM force field is developed by Harvard University, and the force field
parameters are not only from the experimental results but also involve many results
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of quantum chemical calculations. This force field is mostly used to study
multi-molecular systems including small organic molecules, solutions, polymers,
biochemical molecules etc. [63]. It can also be used to perform energy minimiza-
tion, molecular dynamics (MD) and Monte Carlo (MC) simulations. The form of
CHARMM force fields is as follows:

U ¼
X

kb r � r0ð Þ2 þ
X

kh h� h0ð Þ2 þ
X

ku
�� ��� ku cos nuð Þ� �

þ
X

k@ @ � @0ð Þ2 þ
X
i;j

qiqj
4pe0rij

þ
X
i;j

Aij

r12ij
� Bij

r6ij

 !
sw r2ijr

2
on;r

2
off

� � ð12:21Þ

In the CHARMM force, hydrogen bonding interaction energies are computed by
the expression form as follow:

E ¼ A
r6AD

� A
r9AD

� 
cosm uA�H�Dð Þ cosn uAA�H�Dð Þsw r2AD;r

2
on;r

2
off

� �
� sw cos2 uA�H�Dð Þ; cos2 uonð Þ; cos2 uoffð Þ� � ð12:22Þ

where sw is defined as a switching function, and it is used to control the range of the
hydrogen bonding interaction. The subscripts on and off indicate the start and
termination point to calculate the bond lengths and angle values relating to
hydrogen bonds in this function.

Force fields in themselves are not correct forms. If the performance of one force
field is better than another one, it should be desirable. According to selected dif-
ferent simulation unit, the force field can be divided into all-atom models such as
OPLS-AA and united-atom models such as OPLS-UA model.

12.2.2.4 Polarizable Force Field

As a well-established technique, additive force field has its intrinsic limitations. For
systems involving a frequent and large change of electrostatic environment, such as
the passage of small molecules or ions through lipid membrane bilayers, or the
binding of substrate to the hydrophobic interior of an enzyme in water solution, the
electron distribution change of those molecules can hardly be reflected by the fixed
charge model. Thus, extended descriptions of the electrostatic interactions have
been proposed to add polarization effects into the force field.

In general, several theoretical models have been developed to treat the polar-
ization explicitly during the MD simulations: (1) The fluctuating charge/charge
equilibration model; (2) Drude oscillator model, which is used in the CHARMM
Drude FF [64]; (3) Induced dipole model, which has been implemented in the
development of AMOEBA force field. Basic concepts of these models as well as
their strengths and weaknesses will be described below.
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Fluctuating Charge Model. The Fluctuating charges (FQ) model [65] treats the
charges on the atoms as dynamical variables, and the topology can vary during the
MD simulations. FQ model is based on the principle of electronegativity equal-
ization: charges can redistribute among atoms until instantaneous electro-
negativities are equalized, though the overall charge on the whole molecule is
maintained [66]. The charge distribution can be derived from Taylor series
expansion of the energy required to create a charge (qa) on an atom (a) to the
second order:

Uele ¼ Ea0 þ vaqa þ
1
2
Jaaq

2
a ð12:23Þ

Here Ea0 is the electrostatic energy with zero charge being created (qa = 0). va is
the “Mulliken electronegativity” [67] and Jaa is the “absolute hardness” [68].

Considering a system of multiple atoms, the charges are also placed on centres of
the atoms, and the electrostatic interactions between atoms must also be counted
and expressed by the column’s law. Thus, the total electrostatic energy of a system
containing N atoms can be expressed as:

Uele ¼
XN
a¼1

ðEa0 þ vaqa þ
1
2
Jaaq

2
aÞþ

XN
a¼1

X
b[ a

JabðrabÞqaqb ð12:24Þ

Here, the Coulomb potential Jaa(rab) [69] between unit charges on atoms a and
b separated by a distance rab, can be written as:

JabðrabÞ ¼
1
2 Jaa þ Jbbð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
4 Jaa þ Jbbð Þ2r2ab

q ð12:25Þ

Jab(rab) becomes equal to rab − 1 with a large distance (rab > 2.5 Å), making
this component equal to that of a traditional non-polarizable force field.

Practically the extended Lagrangian method [70] can be applied with the charge
on each atom being treated as dynamic particles and a “fictitious” mass being
assigned to these particles, while the positions of atoms are propagated based on
Newton’s equations of motion. The force on each charge is equal to the deviation of
its own electronegativity to the averaged one. The Lagrangian strategy is also used
in other polarizable models due to the requirement to perform self-consistent field
calculations.

Compared with other models, one significant advantage of the FQ model is that
the number of interactions being calculated is not increased, however, there are also
some drawbacks. FQ model may cause non-physical charge distribution among
atoms with large separations. Thus, FQ model leads to a non-physical charge
distribution between infinitely separated atoms. This error exists in dealing with
large polymers, making the polarization increase fast along the polymer chain [71].
To solve this problem, some variations of the FQ model, including atom-atom
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charge transfer (AACT) [72] and bond-charge increment (BCI) [73, 74] have been
developed by restricting charge distributions between directly bonded atoms.
However, these approaches cannot reproduce out-of-plane polarization in planar
systems, such as benzene [75]. Besides, over polarization may also be resulted from
an intrinsic reduction of polarizability in the condensed phase. As an example,
extreme charges on polar atoms was obtained in condensed-phase simulations using
electrostatic parameters derived from gas-phase experimental results [71]. To
compensate for the over-polarization effect, hardness and electronegativity can be
scaled or treated as a function of atom charge [76]. On the basis of the elec-
tronegativity equalization method, a modified electronegativity equalization method
(MEEM) was developed by Yang et al. [77, 78], and the method was further
developed to the atom-bond electronegativity equalization method (ABEEM),
which allows more accurate estimation of electron distribution and electrostatic
energy of large molecules.

CHEQ model has been successfully performed on the investigation of proteins,
ion solvation, etc. [76]. Patel and co-workers have developed a polarizable force
field for dimirystoylphosphatidylcholine (DMPC) and dipalmitolphosphatidyl-
choline (DPPC) based on the charge equilibration (CHEQ) force field approach
[8, 79]. The CHEQ force field has been applied to the studies of bilayers and
monolayers of lipids, as well as membrane-bounded protein channels, such as
gramicidin A [80]. Taking the water permeation for example [79], the simulations
using the polarizable force field showed higher permeation than the results with
non-polarizable models. It was suggested that fixed-charge force field could not
produce the expected dielectric property of the nonpolar hydrocarbon region, and
water molecules in membrane interior had large dipole moments similar to the
waters in the bulk [81].

Drude Oscillator Model. In the Drude oscillator model [82], a polarizable point
dipole is introduced to each atom by connecting to a Drude particle with a harmonic
spring, which is a direct extension of additive force field. A “core” charge and an
opposite “shell” charge are assigned to the parent atom and the Drude particle [83]
to maintain the normal atom charge state, that is to simulate the induced polar-
ization via its displacement under the influence of an electric field.

Thus, the dipole moment of this two-particle system in presence of an electric
field (E) can be expressed as:

li ¼ qidi ¼ q2i E
k

ð12:26Þ

Here, the induced dipole moment li is dependent on the charge (qi) of Drude
particle and the spring distance di, which is controlled by the spring force constant
k. Both qi and k are adjustable parameters in this model. In MD simulation, initial
positions of Drude particles can be achieved by energy minimization, with positions
of atoms being fixed. Then those Drude particles will be involved in the simulation
to dynamically get the corresponding dipole moments. Contributions to the total
electrostatic energy from these induced dipoles can be separated into three parts: the
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interaction with static fields (charges, dipoles, etc.), induced dipole-induced dipole
interaction, and polarization energy:

Uind ¼ Ustat þUll þUpol ð12:27Þ

Here Ustat and Ull can be calculated by Coulomb’s law, and the polarization
energy is equal to the spring potential, which is:

Upol ¼ 1
2

XN
i¼1

kid
2
i ð12:28Þ

Different from additive FFs, electrostatic interactions between bonded atoms are
included to obtain the correct molecular polarization response. In the Drude particle
model, electrostatic interactions can be treated similarly to charge-charge interac-
tions. However, adding Drude particles greatly increases the computational cost,
thus in fact only heavy atoms are attached to Drude particles.

Drude oscillator based on polarizable force field has also been developed
[84, 85], which includes a board classes of molecules such as proteins [86],
carbohydrates [87–89], and DNA [90, 91]. And the parameters of RNA is close to
completion [92]. Furthermore, Drude force fields of DPPC [17], cholesterol [93],
and sphingomyelin [93] have been established recently. In all the simulations using
Drude force field, the description of the membrane dipole potential has been
improved as a result of the inclusion of atomic polarizabilities.

Induced Dipole Model. When accounting for higher-order contributions
approximately via a modification of additive force field, the idea of explicit treat-
ment of first-order induction was introduced [94]. The induced dipole model is
implemented in FFs such as AMBER ff02 [95], AMOEBA (Atomic Multipole
Optimized Energetics for Biomolecular Applications) [96] etc. AMOEBA [96] was
developed by Ren and Ponder. The electrostatic energy in AMOEBA includes
contributions from both permanent and induced multipoles. Permanent electrostatic
interactions are computed with higher order moments where

Mi ¼ qi; dix; diy; diz;Qixx;Qixy;Qixz;Qiyx;Qiyy;Qiyz;Qizx;Qizy;Qizz
� �T ð12:29Þ

is a multipole composed of charge, qi, dipoles, dia, and quadrupoles, Qiab. The
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Since induced dipoles are introduced to represent polarization, the charge on each
atom can be directly derived from experimental values in gas phase or high-level
QM calculations. This is even more straightforward than the approach in additive
force fields, in which partial charges are assigned to atoms to represent the polar-
ization effects. However, this approach suffers from an important issue: polarization
catastrophe. Thole [97] developed a series of approaches to solve this problem by
mimicking smeared charge distributions between atoms of short distances using a set
offitting functions. In this way, the dipole field tensor, Tij, is modified so that it is not
approximated with rij − 3 with a small atom separation. Outlined by Thole [97], if
two dipoles are close to each other, the induced dipole calculated from the equation
will be unphysically amplified. Thus, damping methods are important when dealing
with dipole-dipole interactions with short distances.

At a very close distance, when the electron clouds overlap, the multipole
approximation becomes inadequate. In 2015, the penetration effects were intro-
duced into AMOEBA force field [98], and the method proposed by Piquemal et al.
[99] was revisited. The charge of an atom is divided into a core and an electron
cloud, and therefore the total electrostatic energy between two atoms can be cal-
culated as three components, core-core, core-electron, and electron-electron inter-
actions. The electrostatic energy can be written as

Eqq rð Þ ¼
Z1Z2 � Z1 Z2 � q2ð Þ 1� exp �a2rð Þð Þ

�Z2 Z1 � q1ð Þ 1� exp �a1rð Þð Þ
þ Z1 � q1ð Þ Z2 � q2ð Þ 1� exp �b1rð Þð Þ 1� exp �b2rð Þð Þ

2
4

3
5,r

ð12:31Þ

where c is the distance between two atoms, Z is the positive core charge, q is the net
charge of the atom, (Z − q) can be considered as the electron cloud, and the a and b
are two parameters controlling the magnitude of the damping of the electron cloud
when the atom is interacting with the core and with electrons from other atoms. The
a is intuitively set to the same as the number of valence electrons. When the
distance between two atoms increases, Eq. 12.9 will reduce to additive Coulomb
law. Thus, in the medium and long distances, the electrostatic energy is still cal-
culated via multipole expansion accurately, and the penetration diminishes rapidly
with distance, It is worth to remark that the penetration is only significant when
distance is shorter than the sum of atomic van der Waals radii. The results of this
method show the polarization response using perturbation theory rather than a
variational approach to achieve the SCF condition, and produce an improvement in
computational efficiency.

12.2.2.5 MARTINI Coarse-Grained (CG) Model

Although there are various coarse-grained (CG) approaches available, MARTINI
model, developed by the groups of Marrink and Tieleman [100], is actually one of
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the most successful and broadly utilized CG force fields. The MARTINI model was
initially developed to study the self-assembly and fusogenicity of small lipid
vesicles in 2004 and later extended to investigate the interactions between mem-
brane proteins and their lipid environments. Currently, the MARTINI force field
provides parameters for a variety of biomolecules and materials, including the
majority of lipid molecules, cholesterol, all native amino acids, carbohydrates,
nucleotides, fullerene, polymers, and surfactants.

As a CG model, MARTINI adopts a four-to-one coarse-grained mapping scheme
to reduce the resolution of the representation of a system. Four heavy atoms from
all-atom models are represented by a single CG bead to discard degrees of freedom
(DoF) of the system by assuming that the dynamic behavior of a given system is
less strongly associated with those DoF. The ring-like molecules (e.g. benzene,
cholesterol, and several of the aromatic amino acids) are mapped with higher
resolution (up to two-to-one). The Martini model averages atomic properties to
chemical entities and neglects individual atoms. A total of four main types of sites:
polar (P), non-polar (N), apolar (C), and charged (Q) are defined to account for the
interactions of a system. The parameterizations of non-bonded interactions of the
chemical building blocks are extensively calibrated against thermodynamic data
such as oil/water partitioning coefficients using a Lennard-Jones (LJ) 12-6 potential.
In addition to the LJ interaction, charged groups (type Q) bear a charge ±e and
interact via a Coulombic energy function. Coulombic interactions are screened
implicitly with a relative dielectric constant erel = 15 to account for the reduced set
of partial charges and resulting dipoles that occur in an atomistic force field.

Bonded interactions are described by a standard set of potential energy functions
that are common in classical force fields, including harmonic bond, angle potentials,
and multimodal dihedral potentials. Proper dihedrals are primarily used to impose
secondary structure on the peptide backbone. Improper dihedrals are mainly used to
prevent out-of-plane distortions of planar groups. LJ interactions between nearest
neighbors are excluded. The detailed parameterization process of MARTINI force
filed can be found in Ref. [100].

Building a membrane protein system of interest using the Martini force field can
be fulfilled by CHARMM-GUI Martini Make [101]. CHARMM-GUI [102] is a
web-based graphical user interface to generate various molecular simulation sys-
tems and input files for major MD engines (e.g. CHARMM, NAMD, GROMACS,
AMBER, and OpenMM programs) to facilitate and standardize the usage of
common and advanced simulation techniques. By taking advantages of the
frameworks in all-atom CHARMM-GUI modules, Wonpil Im and co workers [103]
recently have provided a convenient interface to build complex bilayers, micelles,
vesicles, and more, with proteins embedded, which supports the force field
including martini, martini with polarizable water, dry martini, and ElNeDyn (an
elastic network model for proteins).
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12.3 Applications of Computer Simulations

12.3.1 Coarse-Grained Molecular Dynamic Simulation
Case Study

12.3.1.1 Binding Sites Between Cholesterol in b2-Adrenergic Receptor

In the human genome, the integral membrane proteins represent a larger portion.
Among them are G-protein coupled proteins (GPCR), which own the seven
transmembrane domains and have over one thousand members, comprising the
largest membrane protein family [104]. GPCRs primarily participate in the trans-
duction of signals across the plasma membrane through their response to diverse
extracellular environment, such as light, peptides, small molecules, protons, etc.
Therefore, GPCRs are the major targets for the development of novel drug can-
didates in all clinical areas [105].

According to the sequence alignment, the GPCRs have been divided into five
classes [104, 106]. b2-adrenergicreceptors (b2AR) belong to the class A receptors,
which can be further divided into groups associated with ligand specificities, such
as the opsin, amine, peptide, cannabinoid, and olfactory receptors [107]. GPCRs
obviously take part in many physiological processes, which contain the neuro-
transmission, cellular metabolism, secretion, cellular differentiation, growth,
inflammatory and immune response [108]. The adrenergic receptor modifications
are associated with various diseases, such as asthma, hypertension, and heart failure
[109]. b2AR is one of the best-characterized GPCRs, and expressed in pulmonary
and cardiac myocyte tissue [110, 111]. b2AR can modulate the signal in the ery-
throcytes during the malarial infection [108, 112].

The cellar membrane can partly functionally module a lot of membrane proteins
[113–115], and the functional modulation is associated with the physical or
chemical interactions between the phospholipids, sphingolipids, and cholesterol etc.
[116]. Cholesterol is an essential component of eukaryotic membranes and plays a
critical role in membrane organization, dynamics, and functions. The equilibrium
state of the proteins is sensitive to the presence and amount of the cholesterol [116].
Increasing the amount of cholesterol in the membrane moves the equilibrium to the
inactive conformation of the proteins. Some works have found that cholesterol can
modulate the physiological function of GPCRs, and it is high associated with the
kinetic, energetic and mechanical stability of the b2AR [108]. Moreover, a study
has shown that cholesterol seems to be helpful in crystallizing b2AR [107]. In 2007,
Cherezov et al. published an X-ray crystallography model of human b2AR [107],
and the model showed that cholesterol bound to the surface formed by a-helices
H1, H2, H3, H4 and H8. Compared to rhodopsin, the ligand-binding pocket was
formed by structurally conserved and divergent helices, which was also found to be
present in most class A GPCRs. The observation of this complex structure formed
by b2AR and cholesterol suggested a possible interaction between them. In addtion,
Zocher et al. [116] found that cholesterol considerably increased the strength of
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interactions stabilizing structural segments of b2AR, and the interactions increased
the stability of all the structure segments of b2AR except for the structure core
segment and the binding of cholesterol. From the results, they speculated that the
structural properties of the GPCRs in the presence of cholesterol might cause
GPCRs to respond differently to environmental changes. Therefore, the amount of
cholesterols that bind to GPCRs is important in the research.

To show the dynamics, functions and interaction energies of the binding
cholesterol to b2AR, a series of microsecond (ls) level coarse-grained (CG)
molecular dynamics (MD) including 8 ls CG MD simulations on b2AR embedded
in DOPC, 1:1 DOPC/cholesterol, 3:1 DOPC/cholesterol, 6:1 DOPC/cholesterol
mixture membrane were conducted, and b2AR is modeled via the Martini models
combined with the elastic network [117], which conserve the tertiary and quater-
nary structures more faithfully without sacrificing realistic dynamics of a protein.
The results of the simulations validated the cholesterol binding site with the crystal
structure in b2AR and the interaction energy of the b2AR in different scale of
DOPC/cholesterol mixture membrane.

12.3.1.2 Methods

Simulation Systems. Four systems of b2AR monomer, which embedded in the four
different scales DOPC/cholesterol were constructed for the CG MD simulations.
The model of b2AR monomer was designed to reproduce the shape, surface polarity
and dynamics of the b2AR monomer as reported by the 3D4S crystal structure
without the binding of cholesterol [118]. In the crystal structure of b2AR, the
intracellular loop, which was located between the Helix 5 and Helix 6 and con-
nected them, was lost, and the loop deletion was left [118]. The ELNEDIN term
was used in the whole simulation progress, and the elastic network was used as the
structure scaffold to describe and maintain the overall shape of b2AR.
The ELMEDIN models are comparable to the atomistic protein models, and they
can build good results of structure and dynamic properties of proteins, including the
collective motions [117]. In the simulations, the ElNeDyn term is selected. The
topology options set the elastic bond force constant to 500 kJ mol−1 nm−2 (-ef 500)
and 200 kJ mol−1 nm−2 (-ef 200), and an upper bond length cut-off 0.9 nm.

The different scales of the mixed complexes of b2AR and DOPC/cholesterol
were performed CG MD simulations to validate the cholesterol binding site with the
crystal structure in b2AR and the interaction energy of the b2AR in different scales
of DOPC/cholesterol mixture membrane [119]. The system b2AR monomer in the
DOPC/cholesterol mixture membrane contained one b2AR monomer embedded in
DOPC lipid bilayer which DOPC/cholesterol scales are 1:0 DOPC, 1:1
DOPC/cholesterol, 3:1 DOPC/cholesterol, 6:1 DOPC/cholesterol. The b2AR
monomer embedded in DOPC/cholesterol mixture membrane was built by the
CHARMM-GUI, and the total amount of DOPC and cholesterol is 512. The
cholesterol molecules were randomly dispersed in the DOPC lipid bilayer. Then
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b2AR inserted into the mixture membrane using the GROMACS. The details
information of the above simulation systems are listed in Table 12.1.

CG MD Simulations. CG MD simulations were carried out with the
GROMACS 4.5.3. The martini_2.1 force field was employed for all CG MD
simulations, and the force field parameters of martini_2.2_lipids and mar-
tini_2.0_cholesterol were applied to the DOPC/cholesterol mixture bilayer [120].
During the simulations, all bonds were constrained using the LINCS algorithm, and
the integration time step was set to 20 fs. The particle mesh Ewald (PME) method
was employed to treat long-range electrostatic interactions, and a cut-off value of 12
Å was used for non-bonded interactions.

Prior to the MD runs, all systems were minimized to remove the conflicting
contacts. Then, the systems were heated to 300 K within 1 ns. Each system was
equilibrated for a further 1 ls with the constraint only imposed on the protein.
The NPT simulation was performed and periodic boundary condition.

Spatial Distribution of Cholesterol around b2AR. Spatial distribution function
(SDF) was used to reveal potential cholesterol-binding sites on the b2AR surface,
and the SDF of the cholesterol molecules around b2AR was calculated as the 3D
spatial distribution function of cholesterol model [121]. The SDF was calculated
using the last 0.35 ls MD trajectory of b2AR in different scales of
DOPC/cholesterol mixture membrane through the g spatial module in the Gromacs
package. In general, the SDF reflects the average 3D density distribution of
cholesterol CG models. Therefore, the peaks of SDF imply the locations where
cholesterol molecules reside with a higher probability as previous paper described.

12.3.1.3 Spatial Distribution of Cholesterol Molecules Around b2AR
in Different Scales of DOPC/Cholesterol Mixture Membrane

The binding sites of cholesterol around b2AR (PDB code 2RH1) [107] are shown in
Fig. 12.1. The SDF of cholesterol is displayed as isosurfaces around the surface of
2RH1. Three cholesterol molecules are binding to 2RH1: one binds to the surface of

Table 12.1 The detail information of the above simulation systems

Systems DOPC
number

Cholesterol
number

Elastic bond force
constant (kJ mol−1

nm−2)

Time
(ls)

b2AR_DOPC_cholestrol_11_200 169 226 200 1

b2AR_DOPC_cholestrol_11_500 169 226 500 1

b2AR_DOPC_cholestrol_31_200 264 95 200 1

b2AR_DOPC_cholestrol_31_500 264 95 500 1

b2AR_DOPC_cholestrol_61_200 306 53 200 1

b2AR_DOPC_cholestrol_61_500 306 53 500 1

b2AR_DOPC_200 349 0 200 1

b2AR_DOPC_500 349 0 500 1
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helix H1 and H8, and the other two bind to the surface which is constructed by helix
H1, H2, H3, H4.

The SDF also expresses in the average spatial distribution of b2AR in
DOPC/cholesterol membrane, which is based on the upper and lower planes. The
membrane is divided into extracellular part and intracellular part. The analysis
clearly shows the high cholesterol density site is in the surface of the helix of b2AR.

From Fig. 12.2, there are several higher cholesterol distributions in the surface
of b2AR in the 1:1 DOPC/cholesterol mixture membrane. In this process, the elastic

Fig. 12.1 Spatial distribution of cholesterol around the crystal structure of b2AR (PDB code
2RH1). a The crystal structure of b2AR. b2AR is shown in cartoon and colored in teal, and the
cholesterol molecules are shown in sticks and colored in green. b, c Two-dimension projections of
SDFs on the upper and lower membrane planes. The purple sites are the cholesterol binding sites
of b2AR (PDB code 2RH1)

Fig. 12.2 The spatial distribution of cholesterol around b2AR in the 1:1 DOPC/cholesterol
membrane, and the elastic bond force constant of b2AR is set to 200 kJ mol−1 nm−2. a The SDF of
cholesterol is shown in isosurface, and the average structure though the simulation is fitted to the
isosurface. b The surface plot of the average SDF of cholesterol beads. c The 2D projections of the
SDF around the helix of b2AR
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bond force constant of b2AR is set to 200 kJ mol−1 nm−2 (b2AR_DOPC_
cholestrol_11_200). And all cholesterol located near the helix of b2AR. In the
intracellular part, the first peak is located on the surface of H1 and H8, which is
consistent with the crystal structure of b2AR (Fig. 12.1c). Another peak exists near
the surface constructed of H3, H4 and H5. In the extracellular part, almost all the
peaks distribute in the surface of H4, H5 and H6.

From Fig. 12.3, there are more cholesterol distribution peaks in the surface of
b2AR. In this process, the elastic bond force constant of b2AR is set to
500 kJ mol−1 nm−2 (b2AR_DOPC_cholestrol_11_500). In the intracellular part,
the first peak is located on the surface of H1 and H8, which is consistent with the
crystal structure of b2AR and the results of upon simulation. The elastic bond force
is set to 200 kJ mol−1 nm−2 (Fig. 12.2c). The second peak exists near the surface
constructed of H2, H3 and H4. Almost press closes to H4. In the crystal structure of
2RH1, there is one cholesterol molecule hold in the similar position. Also in the
intracellular part, there are three small peaks. These three peaks are near the H3, H6
and H7. And in the extracellular part, most of the peaks distribute in the surface of
H1, H5, H6 and H7.

To the b2AR in the 3:1 and 6:1 DOPC/cholesterol mixture membrane, the results
are shown in Table 12.2.

A potential cholesterol-binding site detected by the CG MD is located in the
interface of H1 and H8, which is detected by all the simulations, and it is consistent
with the crystal structure 2RH1. The results demonstrate that MD simulations could

Fig. 12.3 The spatial distribution of cholesterol around b2AR in the 1:1 DOPC/cholesterol
membrane, and the elastic bond force constant of b2AR is set to 500 kJ mol−1 nm−2. a The SDF of
cholesterol is shown in isosurface, and the average structure though the simulation is fitted to the
isosurface. b The surface plot of the average SDF of cholesterol beads. c The 2D projections of the
SDF around the helix of b2AR
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be employed to reproduce the binding model of cholesterols to b2AR. The choles-
terol can mediate the dimeric structure, which has been reported in 2007. However,
skepticism still exists: whether it is a physiologically relevant form or just a crystal
packing artifact because the two cholesterol molecules that mediate the dimer are
located on the crystal packing interface. Another potential cholesterol-binding site in
the intracellular surface is also detected in most simulations except the systems of
b2AR_DOPC_cholestrol_11_200 and b2AR_DOPC_cholestrol_61_500, which
locates the interface of H2, H3, and H4.

The interaction energies of the eight helixes, which the elastic bond force
constant of b2AR is set to 200 kJ mol−1 nm−2, are shown in Table 12.2. It can be
seen that when the density of cholesterol increases, the interaction energies between
H3, H4 with other helixes become weaken. The results suggest that the cholesterol
increasing affect the conformation of H3 and H4 b2AR obviously.

12.3.2 All-Atom Molecular Dynamic Simulation Case Study

12.3.2.1 Calcium Facilitated Chloride Permeation in Bestrophin

Calcium-activated chloride channels (CaCCs) perform a variety of physiological
roles in regulating photo-transduction, olfactory transduction, vasculartone,
epithelial electrolyte secretion and neuronal and cardiac excitability [122]. Despite
their broad distribution and important functions [123], the molecular identify of
CaCCs remains cloudy. Significant progress has been made in recent years to
identify the family members of CaCCS. Three groups of proteins (TMEM16,
LRRC8 and bestrophins) have been regarded as CaCCs so far [124]. However, only
bestrophin was demonstrated to have a chloride conducting pore, while the for-
mation of anion channels by TMEM16 and LRRC8 was just indirectly evidenced.

Table 12.2 Interaction energies of the eight helixes in different conditions (KJ/mol)

b2AR_DOPC_
chol_11_200

b2AR_DOPC_
chol_31_200

b2AR_DOPC_
chol_61_200

H1-else 66.10 45.54 65.85

H2-else 113.83 151.49 153.23

H3-else 7.87 33.43 129.02

H4-else −40.89 −17.24 2.09

H5-else 67.41 5.88 172.75

H6-else 37.15 35.98 156.16

H7-else 78.72 44.55 92.39

H8-else 18.48 11.67 41.11
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Human Bestrophin 1 (hBest1) is highly expressed at the basolateral surface of
retinal pigment epithelial (RPE) cells to regulate retinal homeostasis [125].
Mutations in hBest1 cause multiple retinal degeneration disorders, typically the
autosomal dominant vitelliform macular dystrophy (Best disease) [126]. The
chloride channel activity of hBest1 is stimulated by the intracellular calcium with a
Kd of 150 nM [127]. Although there is evidence indicating that the activation is
directly regulated by the binding of Ca2+ at the cytosolic region of the protein, it is
still unclear how Ca2+ participates in gating the channel.

Recent available X-ray structures of chicken BEST1 (Best1cryst) [128] and the
bacterial homolog KpBest1 [129] open up a new avenue in understanding
the mechanisms of calcium facilitated chloride permeation and selectivity of the
bestrophin family. The chicken BEST1 shares 74% sequence identity with hBest1
and the protein assembles in a form of symmetrical homo-pentamer around a central
axis. A single *95 Å long, continuous ion pore located along the central axis of
the protein forms the anion permeation pathway with a narrow necked fined by the
conserved hydrophobic residues Ile76, Phe80 and Phe84 of each subunit. Mutations
in the neck region significantly influence the channel property. Especially, the I76E
mutation in hBEST1 flips the ion selectivity to Na+ and the mutations of F80E and
F84E impair the Cl− permeability [129]. Below the neck, the pore opens a large
inner cavity with a maximum radius of 10 Å and *45 Å long at the cytosolic
region, in which Ca2+ might be accommodated. At the bottom of the channel’s
cytosolic region, there is an aperture surrounded by Val205 (Ile 205 in hBes1).
Replacing Ile205 by Threonine in hBest1 significantly decreased the chloride
conductance [130], suggesting the important role of the aperture to contribute the
anion selectivity.

Another prominent feature of the X-ray structure of Best1cryst is that each
subunit has a strong Ca2+ binding cavity comprised by the acidic cluster (Glu300,
Asp301, Asp302, Asp303 and Asp304). The coordination of Ca2+ in Best1cryst is
similar to those observed in the EF hand domains [131] and the Ca2+ bowl’ of the
BK potassium channel [132]. The Ca2+ clasps formed by the acidic cluster resemble
a pentagonal geometry and locate at the midsection of the channel, near the
membrane–cytosol interface. Mutations around the Ca2+ clasp in hBEST1 impair
the interactions between the transmembrane domains and the cytosolic domains
[133], resulting in a dysfunctional channel.

Although approximately 200 distinct mutations in bestrophins have been iden-
tified to cause the retinal degenerative diseases [128] and most of the mutations lead
to a dysfunction of the chloride channel, the molecular mechanism of Ca2+

dependent chloride channel activity of bestrophin is still not fully understood. Here,
in order to gain a molecular insight of calcium facilitated chloride permeation along
the channel of Best1cryst, all-atom MD simulations are utilized to compare the
chloride permeation property of Best1cryst in the presence of Ca2+ and Na+,
respectively. The main purpose of this section is to illustrate how MD simulations
could be employed to investigate the ion transporting process at the atomic level.
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12.3.2.2 System Setup

The MD simulation systems were prepared using the recent available X-ray
structure of chicken BEST1 (PDBid:4RDQ) [128]. The assembling of Best1cryst
into the bilayer was employed using the CHARMM-GUI web server [134]. The
co-crystallized Fab fragments were deleted and the Best1cryst was merged into a
heterogeneous bilayer composed of 400 POPE/POPG lipids with a mixture ratio of
3:1 to mimic the experimental liposome condition [128]. The five Ca2+ ions
coordinated by the acidic cluster in the Ca2+ clasps were retained during the system
preparation. Then the systems were solvated with 41,959 TIP3P water molecules
and the charges of the systems were balanced to neutral using 0.1 M CaCl2 and
0.2 M NaCl, respectively. The systems containing *207032 atoms were placed
into an orthogonal box of 115 � 115 � 150 Å3. All MD simulations were per-
formed using Gromacs [135] 5.0.4 package with CHARMM 36 force field [136]
under NPT condition. The leap-frog integrator [137] was used with an integration
time-step of 2 fs. The calculation of electrostatic interactions was performed using
the Particle-Mesh Ewald algorithm [138] with a cut-off of 1.2 nm. The same cut-off
value was chosen for treating the van der Waals interactions. The semi-isotropic
pressure coupling was employed using the Parrinello-Rahmanbarostat [139] to
control the pressure at 1 bar with a coupling constant of 5 ps when production run
was performed. The Nose-Hoover thermostat [140] was employed to couple the
temperature of the systems around 303.15 K with a time constant of 1 ps.

After 50 ns MD simulations under NPT ensemble, the calculations of the PMFs
along the reaction coordinate of chloride permeation of Best1cryst were performed
using umbrella sampling technique. The initial conformations for the umbrella
sampling simulations were obtained from the last frames of two 50 ns independent
standard MD simulations with the ion concentrations of 0.1 M CaCl2 and 0.2 M
NaCl, respectively. The z distance between Cl− and the Best1cryst’s center of mass
(COM) has been divided into 180 uniformly spaced bins with a length of 0.5 Å,
which covers a distance of 90 Å. In the simulations of each window, the chloride
anion was subjected to a harmonic potential with a spring constant of
6000 kJ/mol/nm2, which is implemented using the PLUMED free energy calcula-
tion library [141]. A cylinder constraint was also applied if Cl− shifted away larger
than 8 Å from the COM of Best1cryst in the x–y plane. A 2 ns umbrella sampling
MD simulation of each bin was conducted and the last 1.8 ns trajectories were used
for the weighted histogram analysis. Then, the 1D potential of mean force
(PMF) for the chloride permeation was estimated using the WHAM package [142]
with a convergence tolerance of 10−6.

12.3.2.3 Free Energy Profiles of Chloride Permeation in the Presence
of Ca2+ and Na+

The potential of mean force (PMF) profiles of chloride permeation in the presence
of Ca2+and Na+ are compared to understand the mechanisms of Ca2+ facilitating
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chloride permeation in bestrophins. As shown in Fig. 12.4a, both of the PMF
profiles have two distinct free energy maxima, corresponding to the Cl− anion
permeating through the neck and the aperture. However, when Ca2+ is present, the
free energy barriers are considerably reduced compared to those in the presence of
Na+, especially for Cl− passing through the hydrophobic gate (z from 1.0 to
3.0 nm). Two peaks have been identified on the PMF profiles at the neck region,
which correspond to the locations of the Cl− anion at the pores defined by I76
(peak1) and F80 (peak2). The free energy barrier is lowered by 3 kcal/mol at peak1
(z = 2.5 nm) when Ca2+ is presence, whereas the free energy barrier is dramatically
reduced about 12 kcal/mol by Ca2+ when Cl− crosses the peak2 (z = 2.0 nm).

As Cl− permeates further into the inner cavity from peak2, the PMF profile
demonstrates a strong downhill character with the free energy difference is about
20 kcal/mol. This process corresponds to the Cl− anion transiting from a partially
dehydrated configuration to the fully hydrated state once entering the inner cavity.
During the permeation of Cl− in the inner cavity, the anion nearly faces no free
energy barriers until it approaches the aperture defined by V205. The free energy
barrier is about 5 kcal/mol when the Cl− passes through the aperture in the presence
of Ca2+, while it changes to *13 kcal/mol when Na+ is present.

Fig. 12.4 a Potential of mean force (PMF) profiles for Cl− permeating along the channel in the
presence of Ca2+ (red) and Na+ (green), respectively. b Ion pore along the Best1cryst
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12.3.2.4 The Energetic Barriers Raised by the Dehydration
of Chloride

In Fig. 12.5, the average water coordination numbers along the anion permeation
pathway are depicted to understand the causes of the large energetic barriers for Cl−

permeating. By comparing the water coordination profiles and the PMFs, it can be
seen that the free energy maxima are directly raised by the partially dehydrated state
of Cl− (Fig. 12.4). The lower the coordination number, the higher the energetic
compensation for Cl− permeation, indicating that the hydration states of chloride are
strongly correlated with the permeation energetic barriers. In bulk water, the
average water coordination number of chloride is 8 when CHARMM force field
[143] is used, and the absolute free energy of hydration of a chloride ion is
−77.2 kcal/mol [144]. As shown in Fig. 12.5, Cl− exhibits the lowest coordination
number around 3.2 when passing through the hydrophobic gate (z = 1.5–3 nm),
which explains the high free energy barrier at the neck region on the PMF profiles.
In addition, the water coordination profile of Na+ at the neck shows smaller
coordination numbers than that of Ca2+, also explaining the higher free energy
barrier when Na+ is present. Again, at the aperture, Cl− exhibits a coordination
number of 4 in the presence of Na+ while Cl− shows a larger average coordination
number by one when Ca2+ is present, leading to a free energy height
of *7 kcal/mol for Cl− permeating the aperture.

When Cl− enters the inner cavity, the Cl− ion is recovered to the fully hydrated
state with the average coordination numbers around 7.5, which is similar to the
anion-water interactions at the extracellular region (z = 3.5–5 nm). The occurrence
of sudden jumps on the water coordination profiles from z = –3 to 0 nm indicate the
interactions between Cl− and the cations in the inner cavity, which reduces the
number of water coordinating to Cl−.

Fig. 12.5 Average water coordination numbers of Cl− along the permeation pathway in the
presence of Ca2+ (red) and Na+ (green)
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12.3.2.5 Ca2+ Binding Sites Along the Permeation Pathway

After further analyzing the MD trajectories, it can be found that, in addition to bind
the Ca2+ clasp sites, Ca2+ can also tightly bind to the conserved acid residues (E74,
E98, E213 and D203) along the anion permeation channel, whereas the stable
binding of Na+ at those sites are not observed because of the weaker coulomb
interactions between the monocation and the carboxyl groups of glutamate and
aspartate. A snapshot shown in Fig. 12.6 demonstrates the interactions between
Ca2+ and these carboxyl groups of the acid residues along the channel. It is worth
noting that the interactions between Ca2+ and E74 of Best1cryst (Q74 in hBEST1),
just locating above the hydrophobic filter, may play an essential role in gating the
channel. Because of the narrowness of the region just above the neck, five Ca2+ ions
may not be accommodated simultaneously at this site to bind the pentamer’s five
carboxyl groups belonging to E74. Alternatively, the binding of Ca2+ at this site
adopts a triangular pattern. As shown in Fig. 12.6, only three Ca2+ ions would be
tightly trapped here; two Ca2+ ions were grasped by each of two carboxyl groups
and the rest Ca2+ was coordinated by the fifth carboxyl group. Such a binding
fashion at this narrow region perfectly resolves the collision problem and prevents
additional Ca2+ ions to bind. Moreover, two carboxyl groups grasping one Ca2+ ion,
not only tightens the binding, but enhances the local concentration of Cl− above the
neck as well. Therefore, the permeation of chloride through the neck is facilitated if
Ca2+ is present. On the contrary, the stable binding of Na+ to the carboxyl group of
E74 is not identified, which explains the higher free energy barrier when Cl− passes
through the peak1 when Na+ is present.

There are three more Ca2+ binding sites at the cytosolic region along the per-
meation channel. Two of them locate in the inner cavity (E98 and E213) and one

Fig. 12.6 Snapshot of Ca2+

binding to the conversed acid
residues (E74, E98, E213 and
D203) along the channel (left:
side view, right: top view).
Ca2+ ions are shown in wheat
sphere, the acid residues are
shown in van der Waals
spheres and the gate residues
(I76 and V205) are depicted
in CPK. The figure was
rendered using VMD [145]
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locates at the bottom of the protein (D203). Each E98 and E213 of the pentamer
traps one Ca2+ ion, leading to a high Ca2+ concentration in the cavity. This is the
reason why the inner cavity of BEST might play as a Ca2+ reservoir to help
accumulate and release Ca2+ from ER stores.

In addition, the binding of Ca2+ to D203 at the bottom of protein is not so tight.
According to the MD trajectories, the Ca2+ ion binding to D203 will be frequently
exchanged with the free Ca2+ in solution, indicating Ca2+ could be easily released at
this site. Moreover, umbrella sampling simulations show that as Cl− permeates from
the inner cavity through the aperture to the bulk solution, a free Ca2+ ion plays the
role of carrier. The residues E213 and D203 on the two sides of the aperture reduce
the transporting barrier of the ions, explaining the free energy discrepancy for Cl−

passing through the aperture between Ca2+ and Na+. This result is also in line with
the hypothesis that bestrophin might conduct chloride as counter ion for Ca2+

uptake into cytosolic Ca2+ stores.

12.3.2.6 The Binding of Ca2+ Altering the Electrostatic Environment
Along the Channel

In order to answer the question that why the free energy barrier decreases so
dramatically (about 12 kcal/mol) for Cl− passing through peak2 when Ca2+ is
present, the Adaptive Poisson-Boltzmann Solver (APBS) package [146] in VMD
[145] is employed to perform electrostatics calculations in the presence of Ca2+ and
Na+, respectively. In Fig. 12.7, 3D charge densities are compared in the presence of
Ca2+ and Na+, respectively. The result clearly shows the presence of Ca2+ radically
changes the electrostatic properties along the channel. In the presence of Na+, the
extracellular region exhibits a favorable environment for positively charged ions,
thus raising the free energy barrier for Cl− passing through the neck. On the
contrary, the binding of Ca2+ to E74 flips the electrostatic environment around the
outer entryway to favor negatively charged ions and enhance the local anion
concentration, and therefore faciliting the anion permeation. In the inner cavity, the
presence of Ca2+ and Na+ exhibits the same electrostatic properties. However, the
binding of Ca2+ to E98 and E213 in the inner cavity dilates the charge densities to
favor anions in the cavity (Fig. 12.7b), especially for the region just below the neck.
When Na+ is present, the charge densities are not seen below the neck. This is key
evidence to explain why the free energy barrier for Cl− passing through peak2 is
dramatically reduced in the presence of Ca2+.

At the bottom of the protein below the aperture, a small volume of positive
charge density could be still identified when Na+ is present, indicating the repulsion
of the anions here. This result is also consistent with the PMF profiles that Cl−

would experience a higher energetic barrier passing through the aperture.
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12.4 Protocol

In this section, we briefly introduce the procedure of using CHARMM-GUI
interface to build membrane protein systems for MD simulations.

CHARMM-GUI (http://www.charmm-gui.org) [102], is a web-based graphical
user interface to prepare complex bio-molecular systems for molecular dynamic
simulations. During the last decades, a range of capabilities has been consistently
extended since its original announced in 2006 and now it contains a number of
different modules designed to set up a broad range of simulations [147].

One of the most prominent features of CHARMM-GUI is that the interface
would provide input files for a majority MD simulation engines such as CHARMM,
NAMD, GROMACS, AMBER, LAMMPS, Desmond and OpenMM, and help
users to build a sophisticated membrane/protein system easily and interactively.
Here, as shown in Fig. 12.8, we illustrate the utilization of the Membrane Builder
model to generate a protein/membrane system in six subsequent steps.

12.4.1 PDB Reading

Reading a PDB file is generally considered the first hurdle to initialize a simulation
project. Since many PDB files may miss residues in loop region, especially for the
membrane proteins, or introduce mutations to facilitate crystallization, therefore,

Fig. 12.7 Three dimensional charge densities along the anion permeation channel in the presence
of Na+ (a) and Ca2+ (b). The positive charge densities are depicted in red using charge density
isovalue of +0.5 and the negative charge densities are depicted in blue using charge density
isovalue of −1.2
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before uploading the PDB file in step 1, it is highly recommended for the users to
convert the PDB file into sequence format (such as using pdb2fasta) and then
blasting [148] the sequence on NCBI to check the sequence completeness of the
structure. The missing loop region and mutations can be completed and recovered
using homology modeling package like MODELLER [149].

In addition, disulfide bonds, different protonation states of titratable residues,
other post-translational modifications (such as phosphorylation, glycosylation, and
lipid-tail linkers) may be easily handled in this step using PDB Reader and
Manipulator.

12.4.2 Orient Protein

Generally, the PDB file of a membrane protein does not have proper information on
relative disposition in a membrane bilayer. In Membrane Builder, users can place
the protein appropriately in a lipid bilayer by aligning its principal axis or a vector
between two specific C-alpha atoms with respect to the membrane normal. It is
assumed that the membrane normal is parallel to the Z-axis and the center is located
at Z = 0 Å. Users can either upload their own pre-oriented structure handled by
external package like orient in VMD [145], or specify PDB entry ID of a database
(PDB database [150] or OPM database [151]). Protein structures from OPM
database are pre-oriented, therefore, users do not need any modification of the
protein orientation.

12.4.3 Determine System Size

As of 2016, there has been 295 lipid types supported by Membrane Builder in the
context of CHARMM additive Force Field including phosphoinositides, cardi-
olipin, sphingolipids, bacterial lipids, sterols, and fatty acids [102].

STEP 1
•Reading protein structure

STEP 2
•Orient Protein

STEP 3
•System size determination

STEP 4
•Generate Components

STEP 
5,6

•Assembly and Equilibration

Fig. 12.8 A schematic
workflow of the six
subsequent steps
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After alignment in the previous step, the protein cross-sectional along the Z-axis
is calculated and the protein areas in the top and bottom lipid leaflets are used to
determine the system size. Users can specify the type and the number of lipid
molecules to build a homogeneous or heterogeneous system. If a user specifies the
number of lipid molecules in a bilayer, the system size in XY is determined by a
ratio of the XY dimension. It is recommended to have the same XY lengths, unless
users have specific reasons. Because a membrane is allowed to have different types
and amounts of lipid molecules for the lower and upper leaflets, the resulting lipid
bilayer probably has a different system size in XY for each leaflet. To avoid such
situations, proceeding to the next step is not allowed until the difference in area of
each leaflet is less than the smallest surface area among the lipid molecules used for
the lipid bilayer. Then, the size along the Z axis is determined by specifying the
thickness of bulk water from the protein extent along Z. In the case of some
membrane proteins or peptides that do not span the bilayer, the size along Z is
determined by the specified water thickness from Z = ±20 Å, approximately from
the lipid headgroup.

12.4.4 Build Components

In this step, Membrane Builder will generate individual components to fully solvate
the protein, including lipid bilayer, bulk water, and counter ions. Any complex
(homogeneous or heterogeneous) bilayer system can be generated by the so-called
“replacement method” that first packs the lipid-like pseudo atoms, and then replaces
them with lipid molecules one at a time by randomly selecting a lipid molecule
from a lipid structural library. Using the replacement method, it generates nicely
packed lipid molecules around a protein, although Membrane Builder provides an
insertion method for limited homogeneous bilayer system building.

If the ion concentration is specified, the numbers of ions are determined by the
ion-accessible volume and the total charges of the system are neutralized. The
initial configuration of ions is then determined through Monte Carlo simulations
using a primitive model, i.e., scaled Coulombic and van der Waals interactions.

12.4.5 Assembly

Each component generated in the previous step will be assembled here and this
procedure will take minutes to hours depending on the system size. One of the most
significant advantages of using the web environment is that, if a problem is found,
users can go back and re-generate the whole system again before quitting the
browser. Therefore, the visualization of the initially assembled structure is impor-
tant to verify if the system is reasonable.
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12.4.6 Equilibration

After assembly is accomplished, the equilibration must be performed to relax the
uncorrelated initial system before MD production simulations. Membrane Builder
provides six consecutive input files for widely used MD simulation engines such as
CHARMM, NAMD, GROMACS, AMBER and OpenMM. To assure gradual
equilibration of the initially assembled system, various restraints are applied to the
protein, water, ions, and lipid molecules during the equilibration: (1) harmonic
restraints to ions and heavy atoms of the protein, (2) repulsive planar restraints to
prevent water from entering into the membrane hydrophobic region, and (3) planar
restraints to hold the position of head groups of membranes along the Z-axis. These
restraint forces are slowly reduced as the equilibration progresses. To warrant the
successful equilibration, i.e., to avoid instability of dynamics integrations during
equilibration, the NVT dynamics (constant volume and temperature) is used for the
first and second steps with integration time step of 1 fs, and the NPAT (constant
pressure, area, and temperature) dynamics for the rest equilibrations.
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