
Chapter 2
Theory of Bayesian Optimization

In this chapter, we introduce the theory of Bayesian optimization procedure and
illustrate its application to a simple problem. A more involved application of
Bayesian optimization will be presented in Chap. 3.

2.1 Bayesian Interpretation of Probability

Consider rolling a die with k sides, labeled a1, a2, …, and ak, respectively. Let P(aj)
be the ‘probability’ that a particular side aj appears after rolling the die. Before
attempting to calculate P(aj), it is necessary to clarify the meaning of the word
‘probability’. In other words, we must specify what the number P(aj) quantifies. In
statistics, the concept of ‘probability’ is formally interpreted in one of two ways. In
the frequentist interpretation of probability, P(aj) is the fraction of times that aj
appears in a very large number of die rolls. In the Bayesian interpretation of
probability, P(aj) is the extent to which we believe that the number aj will appear
prior to rolling the die.

For the case of a die with k sides, there is little difference between the frequentist
and Bayesian interpretation of probability. Given that the die is not biased in any
way, we would set P(aj) = 1/k in both the frequentist and Bayesian interpretations.
However, a major difference between the frequentist and Bayesian interpretation of
probability arises when we consider so-called learning-type problems, in which
new information on the system becomes available over time. For example, consider
a robot whose job is to sort oranges from lemons. Suppose that the robot is pre-
sented with a fruit, and that the robot has no useful information to help distinguish
between oranges and lemons. For example, the robot does not know that round fruit
are more likely to be oranges rather than lemons. In this case, the robot would set P
(o) = 1/2 and P(l) = 1/2, where P(o) and P(l) are the probabilities that the fruit is an
orange or lemon, respectively. Now, suppose that new information is loaded into
the robot’s memory from an external source, namely
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L r ojð Þ ¼ 8; ð2:1Þ

and

L r ljð Þ ¼ 1: ð2:2Þ

These numbers are called likelihoods, and result from measurements on different
types of fruits by the external source. L(r|o) measures the ‘likelihood’ that an orange
is round, and L(r|l) measures the ‘likelihood’ that a lemon is round. The precise
physical meaning of ‘likelihood’ and it units are do not need to made so clear,
providing that the values of the likelihoods are always measured in a consistent
way. In order to utilize the information provided by the likelihoods, we employ a
formula called Bayes’ rule. Bayes’ rule can be written as

P o rjð Þ / L r ojð ÞP oð Þ ð2:3Þ

P l rjð Þ / L r ljð ÞP lð Þ; ð2:4Þ

where P(o|r) and P(l|r) are the probability that a round fruit is an orange, and the
probability that a round fruit is a lemon, respectively. Substituting the numbers
given above, we find that P(o|r) / 8 � 0.5 = 4 and P(l|r) / 1 � 0.5 = 0.5.
Eliminating the proportionality constants then gives P(o | r) = 4 /(4 + 0.5) = 0.89
and P(o|r) = 0.5 / (4 + 0.5) = 0.11. Thus, when presented with a round fruit, the
robot will determine that there is a probability of 0.89 that the fruit is an orange and
a 0.11 probability that the fruit is a lemon. With Bayes’ rule, the robot is therefore
able to improve its ability to classify fruit by incorporating information provided by
an external source. This kind of process is not natural within the frequentist
interpretation of probability, in which the probabilities P(o), P(r), P(o|r) and P(l|r)
remain fixed for all time, regardless of any new information which may appear.

Within the Bayesian interpretation of probability, P(o) and P(l) are referred to as
prior probabilities and P(o|r) and P(l|r) are referred to as posterior probabilities.
Note that the likelihoods L(r|o) and L(r|l) in Eqs. (2.1) and (2.2) can be regarded as a
function of the type of fruit. For this reason, L is referred to as a likelihood function.

As one might have guessed, Bayesian optimization makes use of the Bayesian
interpretation of probability and Bayes’ rule. We elaborate upon this point further in
the following section.

2.2 Equilibrium Bond Lengths Via Bayesian Optimization

Consider the problem of estimating the equilibrium bond length r0 of a diatomic
molecule such as Br2. By ‘equilibrium bond length’, we mean that the interatomic
potential energy u(r) is minimized when r = r0. We suppose that the analytical form
of u(r) is unknown, i.e., that we cannot find r0 by directly differentiating a simple
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formula.While the analytical form of u(r) is unknown, it is a physical requirement that
u(r) be real-valued, continuous, and differentiable over the interval 0 � r � rc,
where, rc is the dissociation limit of themolecule. For simplicity, we assume that rc is a
well-defined and known constant. We define the sample space X as the collection of
all real-valued functions which continuous and differentiable over the interval
0 � r � rc (Fig. 2.1). In the present context, X can be thought of as a collection of
‘candidate functions’ for the interatomic potential, one of which corresponds to the
true interatomic potential, u. X contains an infinite number of functions.

Estimation of the equilibrium bond length r0 via Bayesian optimization runs
according to the following steps. (i) Generate a random sample of interatomic
separations and measure (or calculate, from first-principles) u for each case.
(ii) Independently of (i), assign a prior probability to the functions in X. The prior
probability measures our intuitive feeling about which functions in X correspond to
the true interatomic potential. (iii) Use the sample data and Bayes’ rule to calculate
the posterior probability for the functions in X. (iv) Use the posterior distribution to
estimate r0. The estimated value of r0 is denoted r*. (v) Measure (or calculate from
first-principles) u(r*), the interatomic potential at distance r*, and add r* and u(r*)
to the sample data. (vi) Repeat steps (ii)–(v) until the global minimum of the
interatomic potential is identified (i.e., when the minimum value of u in the sample
remains unchanged over several iterations).

Note that, strictly speaking, Bayesian optimization assumes that all functions in
the sample space are finite. This assumption is actually violated for the present
system, because it is a physical requirement that u(0) = ∞ for the true interatomic
potential u. In the present analysis, we will get around this issue by simply sup-
posing that u(0) is finite.

Fig. 2.1 Sketch of the sample space X (see main text). Only four candidate functions are shown.
The function shown in blue corresponds to the true interatomic potential for the diatomic molecule.
The sample space contains all candidate functions that are real-valued and differentiable between 0
and rc. This includes functions which are physically unreasonable, such as the ones shown in green
and black
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2.2.1 Prior Probability

In Bayesian optimization, we choose a multivariate Gaussian distribution for the
prior probability distribution. In other words, choose s interatomic separations ri, rj,
…, rk (where 0 � rl � rd for l = i, j, …, or k). Let u(ri), u(rj), …, and u(rk) be the
values of the true interatomic potential at points ri, rj, …, and rk. The prior prob-
ability that the vector (u(ri), u(rj),…, u(rk)) is contained in an infinitesimal region of
space centered at point v = (vi, vj, …, vj) is given by g(vi, vj,.., vk)dvidvj���dvk, where

g vi; vj; . . .; vk
� � ¼ 1

2pð Þs=2 Kj j1=2
exp � 1

2
v� lð ÞTK�1 v� lð Þ

� �
ð2:5Þ

is referred to as the prior probability density. In Eq. (2.5), the s � 1 column matrix
l is called the mean vector, the s � s matrix K is called the covariance matrix, and
|A| denotes the determinant of matrix A. In Eq. (2.5), v is treated as an s � 1
column vector. If g(vi, vj,…, vk) is particularly large, then it means that we have a
strong intuitive feeling that u(ri) = vi, u(rj) = vj, …, and u(rk) = vk for the true
interatomic potential energy function u.

Our intuitive beliefs about the interatomic potential u are encoded into the prior
distribution through the mean vector l and covariance matrix K. The choice of l
and (particularly) K has a large influence on the performance of Bayesian opti-
mization, and therefore they should be carefully considered before applying
Bayesian optimization to a physical problem.

If we write l = (li, lj,…, lk) for the mean vector, then li can be regarded as our
intuitive guess for u(ri), the actual value of the interatomic potential at interatomic
separation ri. For example, we might choose the harmonic oscillator potential as an
initial guess for u, and write

li ¼
1
2
C ri � R0ð Þ2; ð2:6Þ

where the parameters C and R0 are guessed by considering literature data for similar
diatomic molecules. There are no particular restrictions on the values of li, however
they must be finite.

Let us write K = [Kij]s�s for the covariance matrix. If V is chosen at random
from X according to the prior distribution, then Kij measures the extent to which we
believe V(ri) should be correlated with V(rj). To quantify this correlation, let L be an
intuitive guess for the correlation length of the interatomic potential u(r). Roughly
speaking, L measures the length over which r must change in order for u(r) to
change significantly. Returning now to Kij, we would expect for Kij to be large
when |ri – rj| < L, and moreover Kij should decrease rapidly as |ri – rj| increases
beyond L. This behavior can be acquired by choosing a squared exponential
function for Kij, i.e.,
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Kij ¼ a exp � ri � rj
�� ��2

2L2

 !
; ð2:7Þ

where a is another constant. If a single point V(ri) is randomly generated from X in
accordance with the prior distribution, then a is interpreted as the mean-square
deviation of V(ri) from li. This interpretation follows from the fact that the diagonal
elements of K formally correspond to the variance of V(ri), when V is randomly
generated from the prior distribution.

The constants a and L are referred to as hyperparameters and have a critical
influence on the performance of Bayesian optimization. While a and L can be also
chosen based on our intuitive feelings about the system, in practice it is preferable
to choose them via a training procedure. We will describe this in Sect. 2.6 and in
the following chapter.

Note that Bayesian optimization is not restricted to the covariance matrix defined
in Eq. (2.7). Mathematically speaking, it is only necessary for the covariance matrix
to be positive semidefinite. Some alternative forms of the covariance matrix are
discussed in reference [1]. The advantage of Eq. (2.7) is that it physical interpre-
tation is relatively straightforward.

2.2.2 Likelihood Function and Posterior Distribution

In Bayesian optimization, the likelihood function is assumed to be the same
Gaussian density function as was used for the prior probability density in Eq. (2.5).
To explain what is meant here, let us start by re-writing Eq. (2.5) as

g va; vb; . . .; vc; vi; vj; . . .; vk
� �
¼ 1

2pð Þmþ s
2 Kj j1=2

exp � 1
2

va:c
vi:k

� �
� la:c

li:k

� �� �T Ka:c;a:c Ka:c;i:k

Ki:k;a:c Ki:k;i:k

� ��1 va:c
vi:k

� �
� la:c

li:k

� �� � !

ð2:8Þ

In Eq. (2.8), va:c = (va, vb, …, vc), vi:k = (vi, vj, …, vk), m is the length of the vector
va:c, s is the length of the vector vi:k, Ka:c,a:c is the covariance matrix for points ra,
rb, …, and rc, Ki:k,i:k as the covariance matrix for points ri, rj, …, and rk, and

Ka:c;i:k ¼

Kai Kaj � � � Kak

Kbi Kbj � � � Kbk

..

. ..
. . .

. ..
.

Kci Kcj � � � Kck

2
6664

3
7775 ð2:9Þ
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Note that Ki:k,a:c is the transpose of Ka:c,i:k. The likelihood function used in
Bayesian optimization is defined as

L vi; vj; . . .; vk va; vb; . . .; vc
��� � ¼ g vi; vj; . . .; vk va; vb; . . .; vc

��� �
: ð2:10Þ

Here, g(vi, vj, …, vk |va, vb, …, vc) is a so-called conditional density. It corre-
sponds to the prior probability density in Eq. (2.8) calculated a point (vi, vj, …, vk)
with the values of va, vb, …, and vc held fixed. An analytic formula for the con-
ditional density can be written, however it turns out that this formula is not nec-
essary for our purposes (see Appendix 2.1).

Let us now suppose that we are provided with a sample of s points (ri, u(ri)), (rj,
u(rj)), …, (rk, u(rk)), where for t = i, j, …, and k, we have 0 < rt < rd and the value
of u(rt) is known exactly. In analogy to Eqs. (2.3) and (2.4), the posterior proba-
bility that the vector (u(ra), u(rb),…, u(rc)) is contained in an infinitesimal region of
space centered at point v = (va, vb, …, vc) is given by Bayes’ rule, namely

f va; vb; . . .; vc ui; uj; . . .; uk
��� �

dvadvb � � � dvc
/ L ui; uj; . . .; uk va; vb; . . .; vc

��� �
g va; vb; . . .; vc
� �

dvadvb � � � dvc;
ð2:11Þ

where we have used the notation ui = u(ri). f(va, vb, …, vc| ui, uj, …, uk) is referred
to as the posterior probability density. Substituting Eqs. (2.5) and (2.10) into
Eq. (2.11) and performing various manipulations, we obtain (see Appendix 2.1),

f va; vb; . . .; vc ui; uj; . . .; uk
��� � / exp � 1

2
va:c � l�a:c
h iT

K�
a:c;a:c

	 
�1
va:c � l�a:c
h i� �

;

ð2:12Þ

where

l�a:c ¼ la:c �Ka:c;i:kK�1
i:k;i:k ui:k � li:kð Þ; ð2:13Þ

and

K�
a:c;a:c ¼ Ka:c;a:c �Ka:c;i:kK�1

i:k;i:kKi:k;a:c: ð2:14Þ

The right-hand side of Eq. (2.12) is actually the unnormalized multivariate
Gaussian distribution. If we are interested in the posterior density a single point va,
then Eq. (2.12) simplifies to

f va ui; uj; . . .; uk
��� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2pK�
aa

p exp � va � l�a
� �2

2K�
aa

 !
; ð2:15Þ
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where

l�a ¼ la �Ka;i:kK�1
i:k;i:k ui:k � li:kð Þ; ð2:16Þ

K�
aa ¼ Kaa �Ka;i:kK

�1
i:k;i:kKi:k;a; ð2:17Þ

the row-vector Ka,i:k is defined as (Ka,i, Ka,j, …, Ka,k), and Ki:k,a is the transpose of
Ka,i:k. In practice, we use Eqs. (2.15–2.17) in all calculations of the posterior
distribution.

2.2.3 Example Calculation of the Posterior Distribution

Figure 2.2a–c plot the mean and variance of the posterior distribution from
Eqs. (2.16) and (2.17) calculated from a sample of three interatomic displacements
for an isolated Br2 molecule. The red line represents the posterior mean, the thin
black lines measure the posterior variance and correspond to the 95% confidence
limits of the posterior distribution, i.e.,

l�a � 1:96
ffiffiffiffiffiffiffiffiffi
K�

a;a

q
;

and the blue line shows the actual interatomic potential energy curve. The potential
energy at each point was calculated from first principles using density functional
theory (DFT). DFT calculations discussed here and elsewhere in this chapter were
performed with the VASP code [2], using a plane wave basis set, projector-
augmented wave (PAW) potentials, and the generalized gradient approximation
(GGA).

Fig. 2.2 Calculation of the posterior distribution for the interatomic potential energy for a Br2
molecule, using a sample of three interatomic distances and the corresponding energies and
various values of the hyperparameters a and L. The blue curve corresponds to the true interatomic
potential energy, the red curve correspond to the mean of the posterior distribution (Eq. 2.16), and
the black curves correspond to the 95% confidence limits of the posterior distribution. See
Sect. 2.3 for details. Note that the y axis actually plots the total energy of the Br2 molecule, which
is equal to the interatomic potential energy plus a constant
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By looking at the sample points in Fig. 2.2a–c, it is clear that the posterior mean
interpolates the sample points exactly, and that the posterior variance is zero at the
sample points. This is a general behavior of Bayesian optimization, and shows that
the posterior distribution predicts the sample data exactly.

An important observation is that both the posterior mean and variance depend on
the values of the hyperparameters a and L in the covariance matrix in Eq. (2.7). In
general, the posterior variance grows and then shrinks back to zero as we move
between successive sample points. As the hyperparameter L increases and the
‘correlation length’ of the system grows, the posterior variance grows more slowly
between successive sample points and the posterior mean begins to resemble a linear
interpolation between successive sample points. In this sense, when the correlation
length in the system is assumed to be large, we become more confident that true
potential energy curve can be obtained by a linear interpolation between successive
points. In Fig. 2.2c, in which the correlation length is large, it can be seen that the
true potential energy curve (blue) actually lies outside of the 95% confidence limits
of the Gaussian distribution, showing that Bayesian optimization predicts a very
small probability for the true interatomic potential when the correlation length L is
large. In general, we should choose the hyperparameters so that the true interatomic
potential lies within the 95% confidence limits of the Gaussian distribution. In this
situation, the posterior density will be large for functions closely resembling the true
interatomic potential, and the Bayesian optimization procedure will be able to
accurately estimate the location of the minimum of the true potential curve.

2.2.4 The Expected Improvement

Having generated the posterior distribution from the sample data, we now need to
predict the point which minimizes the interatomic potential energy. There are a
variety of ways of predicting the position of the optimum using the posterior
distribution. One of the most popular methods is involves the expected improve-
ment, which we consider here.

The expected improvement at point ra is defined as

EI rað Þ ¼ Ef max umin � V rað Þ; 0� �� 
; ð2:18Þ

where Ef[A] is the expected value (average) of the random variable A with respect
to the posterior distribution in Eq. (2.18), and umin is the minimum interatomic
potential energy in the sample. V(ra) is the value of a function V evaluated at point
ra, where V has been randomly generated from the sample space according to the
posterior distribution. The interatomic distance which minimizes the interatomic
potential energy is then estimated as the value of ra which maximizes Eq. (2.18).
Thus, the expected improvement considers our current ‘best guess’ of the minimum
interatomic potential, umin, and then determines the point which, on average, will
improve upon that guess the most.
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In order to calculate the expected improvement, the following formula may be
used (see Appendix 2.2),

EI rað Þ ¼ umin � l�a
� �

U
umin � l�affiffiffiffiffiffiffi

K�
aa

p
 !

þ ffiffiffiffiffiffiffi
K�
aa

p
u

umin � l�affiffiffiffiffiffiffi
K�
aa

p
 !

: ð2:19Þ

In Eq. (2.19), U(x) and u(x) are the normal distribution function and normal density
function, respectively, evaluated at point x. Both functions can be can be easily
called in a statistical programming environment such as R [3].

2.2.5 Example Run of Bayesian Optimisation

In order to demonstrate the calculation of the expected improvement, and to show
the Bayesian optimization procedure in action, we return to the example of the Br2
molecule discussed at the end of the previous section. Figure 2.3a plots the pos-
terior mean (red line) and confidence limits (black lines) from a sample of two
interatomic distances, using hyperparameter values a = 0.5 and L = 0.5 and ener-
gies calculated via DFT. The green line represents the expected value calculated
from Eq. (2.18). The peak of the expected improvement lies at 2.25 Å. The true
interatomic potential energy u(r) is then calculated for the interatomic distance
r = 2.25 Å via DFT, and this data is added to the sample. Figure 2.3b plots the
posterior mean, confidence limits, and expected improvement for the new sample.
This time, the expected improvement peaks at 2.27 Å, and so the true interatomic
potential energy is calculated at this interatomic displacement, and this data is
added to the sample. After repeating this procedure only a few more times
(Fig. 2.3c, d), the expected improvement peaks at 2.30 Å (Fig. 2.3e). This corre-
sponds to the exact optimum interatomic bond length for the Br2 molecule (within
the accuracy of the present DFT method), showing that the calculation has con-
verged to the global optimum within relatively few iterations of the Bayesian
optimization procedure.

A close look Fig. 2.3a–e unveils a key feature of Bayesian optimization.
Comparing the expected improvement calculated at successive rounds of the
Bayesian optimization procedure, we see that the added sample points are widely
scattered and are not localized at any particular point. For example, at the end of the
first, second, and third rounds of Bayesian optimization (Fig. 2.3a–c), the expected
value peaks at 2.58, 2.27, and 1.76 Å, respectively, and these values and the
corresponding interatomic potential energy are added to the sample data. This
shows that Bayesian optimization is a non-local search method, which is in contrast
with conventional optimizers which rely on a local gradient. The reason for the
non-locality of Bayesian optimization is that the posterior distribution in Eq. (2.15)
is computed by utilizing all information in the sample, which may be scattered
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Fig. 2.3 Bayesian optimization procedure for estimating the interatomic displacement which
minimizes the interatomic potential of a Br2 molecule. Blue, red, black, and green curves
correspond to the true potential energy curve, the mean of the posterior distribution, the 95%
confidence limits of the posterior distribution, and the expected improvement, respectively.
Starting with a sample of two interatomic displacements and their energies (a), sample data is
successively added according to the maximum of the expected improvement. Note that the point
added D is not shown, as it appears beyond the scale of these plots. Hyperparameter values of
a = 0.5 and L = 0.5 were used. See main text for details
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around the space. The non-locality of Bayesian optimization makes it less prone
(but not immune) to getting trapped in local minima.

Figure 2.3a–e also demonstrate the so-called exploitation versus exploration
trade-off concept [4]. The expected improvement tends to grow as the posterior
mean decreases and the posterior variance increases. The former effect encourages
investigation of ‘promising’ regions (‘exploitation’), on the basis of information
contained in the sample, whereas the latter effect encourages the exploration of
regions in which we have little sample information (‘exploration’). Exploitation is
evident in Fig. 2.3f and e, in which the general region of the potential minimum
becomes apparent and the search focuses on this region. Exploration is evident in
Fig. 2.3c, in which the relatively small interatomic distance of 1.76 Å is suddenly
added to the sample, causing the Bayeisan optimization procedure to gather
information on the system at very small interatomic distance. The extent of
exploration versus exploitation is determined by the posterior mean and variance,
which in turn are strongly affected by the hyperparameters a and L. This shows
once again the importance of the hyperparameters in determining the effectiveness
of the Bayesian optimization procedure.

The performance of Bayesian optimization is further shown in Fig. 2.4.
Figure 2.4a plots the minimum interatomic potential energy and optimal inter-
atomic distance for the Br2 molecule as a function of the sample size used in the
calculation of the posterior distribution. The sample size corresponds to the number
of DFT calculations. Because the initial sample contained 2 points, the number of
iterations of Bayesian optimization is equal to the sample size −1. In Fig. 2.4b, the
minimum interatomic potential energy and optimal interatomic distance for the case
of random sampling from a grid of 83 interatomic displacements between 1.76 and
4.46 Å. For the latter calculations, the minimum interatomic potential energies and

Fig. 2.4 a Minimum interatomic potential energy (black points) and corresponding interatomic
distance (red points) predicted by the Bayesian optimization procedure in Fig. 2.3. The interatomic
distance at the true minimum of the potential energy curve is 2.30 Å. b Minimum interatomic
potential energy and corresponding interatomic distance predicted from random sampling
interatomic displacements (see text for details). The data points in (b) have been averaged across
100 independent rounds of random sampling
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optimal interatomic distances have been averaged across 100 rounds of sampling.
While Bayesian optimization is able to find the optimal interatomic displacement
(2.30 Å) within 5 iterations of the procedure, random sampling, on average, pre-
dicts a much larger value of around 2.42 Å for the same sample size.

2.2.6 Training

The discussion and the end of the previous section demonstrates that the perfor-
mance of the Bayesian optimization procedure is heavily affected by the choice of
parameters a and L for the covariance matrix. In the context of Bayesian opti-
mization, training refers to a procedure for choosing the ‘best’ values of a and L for
the prior distribution. Here, ‘best’ refers to the values of a and L which result in the
quickest identification of the global optimum for a given sample of data. While the
‘best’ values of a and L can often be determined by physical intuition, it is common
(although not necessarily more reliable) to choose these values by a more statistical
approach. One of the most standard of these statistical approaches is referred to as
marginal likelihood maximization (MLM), which we introduce here.

Continuing with the problem of finding the equilibrium bond distance in a dia-
tomic molecule, suppose again that we have a sample of s interatomic bond distances
and the corresponding energies, (ri, u(ri)), (rj, u(rj)), …, (rk, u(rk)). In the MLM
approach, we find the values of the hyperparameters a and L which maximize the
value of the prior distribution in Eq. (2.5) when calculated for the points in the sample
data. More precisely, we wish to obtain the values of the hyperparameters which
maximize g(ui, uj,…, uk), where g is the prior distribution in Eq. (2.5) and ui = u(ri),
uj = u(rj), …, and uk = u(rk) are the sample data for the interaction potential.

For the special case of a constant prior mean l and a squared exponential
function (as in Eq. (2.7)) for the covariance function, we can use the following
equations to maximize the prior distribution, namely (see Appendix 2.3)

log g ui; uj; . . .; uk
� � ¼ � s

2
log

1
s
Rj j1=s u� lð ÞTR�1 u� lð Þ

� �
þ c; ð2:20Þ

where c is a term which is independent of a and L, and

a ¼ 1
s
u� lð ÞTR�1 u� lð Þ; ð2:21Þ

where R = [Rij]s�s and

Rij ¼ exp � ri � rj
� �2

2L2

 !
: ð2:22Þ
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First, the value of L which maximizes the right-hand size of Eq. (2.20) is
identified by numerically computing Eq. (2.20) across a grid of candidate values of
L. This value of L is then substituted directly into Eq. (2.21) to obtain the optimum
value of a.

For the special case of the Br2 molecule studied here, the use of MLM approach
to obtain the hyperparameters does not improve the performance of Bayesian
optimization compared to the results discussed at the end of Sect. 2.5. However, the
MLM approach can be useful for situations in which more difficult systems are
studied and it is not possible to guess a value of a or a typical ‘correlation distance’
from intuition. In any case, because hyperparameters have a critical influence on the
performance of Bayesian optimization, we strongly advocate for the use of a
physically motivated procedure to estimate good values for a and L. Such a pro-
cedure is discussed in the following chapter.

2.3 Bayesian Optimization in the General Case

The above formalism can be immediately applied to systems beyond a simple
diatomic molecule. In the general case, we have n objects, x1, x2, …, xn, where
object xk has a property h(xk). We wish to identify the object whose property has the
minimum value. These objects may be different types of materials or different
configurations of molecules, and the properties may be material properties such as
thermal conductivity or molecular properties such as HOMO energy level.

In order to apply the formalism above to the general case, we simply replace the
interatomic distances ri, rj,…, with the objects xi, xj,…, and replace the interatomic
potential energies u(ri), u(rj), …, with the properties h(xi), h(xj), …. The only major
change to the above formalism is in the covariance function in Eq. (2.6). In place of
Eq. (2.7), we must write

Kij ¼ a exp � d xi; xj
� �2
2L2

 !
; ð2:23Þ

where d(xi, xj) measures the degree of similarity between objects xi and xj. The
specific definition of d(xi, xj) is arbitrary, however for excellent performance of
Bayesian optimization it is essential that d(xi, xj) be chosen after giving very careful
consideration to the physics of the problem under study. Usually, d(xi, xj) is defined
as

d xi; xj
� � ¼ j/ xið Þ � / xj

� ��� ��j; ð2:24Þ

where /(xi) and /(xj) are referred to as feature vectors (or descriptors) for the
objects xi and xj, respectively (see Eq. (1.4) for the definition of the || || notation).
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As discussed in the previous chapter, feature vectors are real-valued vectors which
encode the key physics of the system of interest. In the example of the diatomic
molecule, the feature vector for the distance ri was simply set to /(ri) = ri.
However, in most cases it is not so obvious which feature vectors one should use in
order to achieve good performance with Bayesian optimization, and a great deal of
physical intuition is needed to deduce such feature vectors. In any case, once such
feature vectors are available, Bayesian optimization proceeds exactly as described
in the sections above.

In this chapter, we have discussed Bayesian optimization in the context of
minimization. However, Bayesian optimization can also be used to solve problems
related to maximization as well. For the case where we wish to find the value of
r which maximizes the value of some function u, the expected improvement in
Eq. (2.18) must be re-written as

EI rað Þ ¼ Ef max V rað Þ � umax; 0
� �� 

; ð2:25Þ

where umax is the largest value of u in the sample data. Moreover, Eq. (2.19) must
be replaced with

EI rað Þ ¼ l�a � umax
� �

U
l�a � umaxffiffiffiffiffiffiffi

K�
aa

p
 !

þ ffiffiffiffiffiffiffi
K�
aa

p
u

l�a � umaxffiffiffiffiffiffiffi
K�
aa

p
 !

ð2:26Þ

Equation (2.26) can be proven by following similar steps to those shown in
Appendix 2.2. Apart from the definition of the expected improvement, no changes
to the theoretical framework developed above are necessary for solving maxi-
mization problems via Bayesian optimization.

2.4 R Code for Bayesian Optimization

One of the great advantages of Bayesian optimization is that it is relatively easy to
implement in a computational environment. A program for calculating the expected
improvement using an initial sample of Br-Br interatomic distances and the cor-
responding potential energies is available online at http://www.packwood.icems.
kyoto-u.ac.jp/download/

This code is written in the R programming language, and can be executed within
the R command line interface [3]. The R command line interface can be downloaded
freely at https://www.r-project.org/, and numerous tutorials on R can be found
online.

Successive applications of this code can be used to find the optimal distance
between the Br atoms. Note that this code assumes that the energies have been
pre-calculated for all points on a tight grid of bond distances, and that the initial
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sample is drawn randomly from this pre-calculated data. Obviously there is no need
to perform Bayesian optimization in this case, as the equilibrium distance could be
identified by directly looking at the pre-calculated data. In realistic applications of
Bayesian optimization, the code will need to interface with first-principles calcu-
lation software or an experimental apparatus in order to obtain the sample data and
subsequent measurements.

Appendix 2.1

To prove Eq. (2.12) – (2.14), we first substitute Eqs. (2.10) into (2.11) to obtain

f va; vb; . . .; vc ui; uj; . . .; uk
��� � / g ui; uj; . . .; uk va; vb; . . .; vc

��� �
g va; vb; . . .; vc
� �

ð2:27Þ

Because the likelihood function and the prior density are Gaussian probability
densities, Eq. (2.27) simplifies to (by the basic properties of conditional densities
[5])

f va; vb; . . .; vc ui; uj; . . .; uk
��� � / g va; vb; . . .; vc; ui; uj; . . .; uk

� �
; ð2:28Þ

or, by using Eq. (2.8),

f va; vb; . . .; vc ui; uj; . . .; uk
��� �

/ exp � 1
2

va:c
vi:k

� �
� la:c

li:k

� �� �T Ka:c;a:c Ka:c;i:k

Ki:k;a:c Ki:k;i:k

� ��1 va:c
vi:k

� �
� la:c

li:k

� �� � !

ð2:29Þ

This expression can be simplified using an identity which applies to block matrices
(see, Ref. [6])

Ka:c;a:c Ka:c;i:k

Ki:k;a:c Ki:k;i:k

� ��1

¼
Ka:c;a:c �Ka:c;i:kK�1

i:k;i:kKi:k;a:c

	 
�1
Ka:c;a:c �Ka:c;i:kK�1

i:k;i:kKi:k;a:c

	 
�1
Ka:c;i:kK�1

i:k;i:k

� Ki:k;i:k �Ki:k;a:cK�1
a:c;a:cKa:c;i:k

	 
�1
Ki:k;a:cK�1

a:c;a:c Ki:k;i:k �Ki:k;a:cK�1
a:c;a:cKa:c;i:k

	 
�1

2
64

3
75

ð2:30Þ

Substituting Eqs. (2.30) into (2.29) and performing some tedious but straight-
forward algebraic manipulations yields Eqs. (2.12)–(2.14).

2.4 R Code for Bayesian Optimization 25



Appendix 2.2

To prove Eq. (2.19), we write

EI rað Þ ¼ Ef min umin � V rað Þ; 0ð Þ½ �

¼
Zumin

�1
umin � zð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

2pK�
aa

p e� z�l�að Þ2
�
2K�

aadz

¼ umin

Zumin

�1

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pK�

aa

p e� z�l�að Þ2
�
2K�

aadz

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

�
Zumin

�1

zffiffiffiffiffiffiffiffiffiffiffiffi
2pK�

aa

p e� z�l�að Þ2
�
2K�

aadz:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

ð2:31Þ

The term A on the right-hand side of Eq. (2.31) is equal to

A ¼ uminU
umin � l�affiffiffiffiffiffiffi

K�
aa

p
 !

; ð2:32Þ

by the definition of the cumulative normal distribution. As for the term B in
Eq. (2.31), we write

B ¼
Zumin

�1

l�a þ z� l�a
� �ffiffiffiffiffiffiffiffiffiffiffiffi
2pK�

aa

p e� z�l�að Þ2
�
2K�

aadz:

¼ l�aU
umin � l�affiffiffiffiffiffiffi

K�
aa

p
 !

þ
Zumin

�1

z� l�a
� �ffiffiffiffiffiffiffiffiffiffiffiffi
2pK�

aa

p e� z�l�að Þ2
�
2K�

aadz:

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

ð2:33Þ

By substituting the variable

h ¼ z� l�affiffiffiffiffiffiffiffiffiffi
2K�

aa

p ð2:34Þ
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into the term C in Eq. (2.33) and performing the integration, we obtain

C ¼ 2K�
aa

p

� �1=2 Zumin

�1
he�h2dh

¼ � K�
aa

2p

� �1=2

e� umax�l�að Þ2
�
2Kaa

¼ � ffiffiffiffiffiffiffi
K�
aa

p
/

umin � l�affiffiffiffiffiffiffi
K�
aa

p
 !

ð2:35Þ

where the definition of the standard normal probability density was used. We obtain
the result after combining Eqs. (2.31), (2.32), (2.33) and (2.35).

Appendix 2.3

To prove Eqs. (2.20) and (2.21), we take the logarithm of the prior probability
density in Eq. (2.5) to obtain

log g ui; uj; . . .; uk
� � ¼ � 1

2
u� lð ÞT aRð Þ�1 u� lð Þ � 1

2
log aRj j � s

2
log 2p

¼ � 1
2

u� lð ÞT aRð Þ�1 u� lð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

� s
2
log a Rj j1=s
	 


|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
B

� s
2
log 2p|fflfflfflffl{zfflfflfflffl}
C

:

ð2:36Þ

In the first line of Eq. (2.36), we used the definition of the matrix R in Eq. (2.22)
and the fact that aR = R. In the second line, we used the fact that |aR| = as|R|,
which follows from the basic properties of determinants. Solving the equation ∂log
g(ui, uj, …, uk)/∂a = 0 gives

a ¼ 1
s
u� lð ÞTR�1 u� lð Þ; ð2:37Þ

which is simply Eq. (2.21). To obtain an expression for L, fist note that the term
A reduces to

A ¼ �s=2 ð2:38Þ

upon substituting Eq. (2.37). Substituting Eq. (2.37) into the term marked B gives

B ¼ � s
2
log

1
s
Rj j1=s u� lð ÞTR�1 u� lð Þ

� �
: ð2:39Þ
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Substituting Eqs. (2.38) and (2.39) into Eq. (2.34), and noting that the terms A and
C are independent of a and L, gives Eq. (2.22). Finally, by noting that maxi-
mization of the logarithm of the prior probability density is equivalent to maxi-
mizing the prior probability density itself, we arrive at the result.
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