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Preface

Since the launch of the Materials Genome Initiative in 2011, there has been an
increasing interest in the application of statistical and machine-learning techniques
to materials science. However, while several high-profile papers have reported the
use of such techniques to real problems in materials science, the overall adoption of
such techniques by the materials science community remains very limited.
A possible cause for this problem is the absence of any textbooks on statistics or
machine learning which are specifically aimed at materials scientists.

The purpose of this book is to provide a self-contained tutorial on Bayesian
optimization for materials scientists. Bayesian optimization is a machine-learning
technique which can enormously accelerate many of the time-consuming tasks in
materials science, such as database screening and structure optimization calcula-
tions. In Chap. 1, we briefly explain how Bayesian optimization works and give
some recent examples of its applications in materials science. In Chap. 2, we
provide a self-contained introduction to the theory of Bayesian optimization. This
chapter does not assume any advanced mathematical background; however, it does
assume that the reader is comfortable with elementary calculus and linear algebra.
Upon working through this Chap. 2, the reader should have sufficient knowledge to
implement Bayesian optimization into their own research. To help ensure that this is
the case, code for performing Bayesian optimization on a simple system is provided
(downloadable from the Web) so that the reader see how the theory in the text is
implemented in computational setting. Finally, Chap. 3 discusses in detail the
application of Bayesian optimization to structure predictions for organic molecules
adsorbed to metal surfaces. While the material in this chapter mainly reflects my
own research interests, it should nonetheless illustrate how Bayesian optimization is
applied to real structure optimization problems.

I wish to thank Masayuki Nakamura and coworkers from Springer Tokyo for
helping with the publication of this volume, as well as series editor Prof. Motoko
Kotani (Tohoku University) for her tireless efforts to promote mathematics for
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materials science in Japan. I also thank Prof. Taiji Suzuki (Tokyo University), who
introduced me to Bayesian optimization, as well as the members of the Kakanhi
Shingakujyutsu project “Exploration of nanostructure-property relationships for
materials innovation,” who encouraged me to write this book.

Kyoto, Japan Daniel Packwood
August 2017
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Chapter 1
Overview of Bayesian Optimization
in Materials Science

Like any other field of research, materials science involves a lot of trial and error: in
the process of creating a new material or device, we will inevitably make several
prototypes which fail to perform as hoped. If we could reduce the number of such
prototypes, then the materials fabrication process might become faster and less
expensive." When President Obama launched the Materials Genome Initiative in
2011, he said the following.

The invention of silicon circuits and lithium-ion batteries made computers and iPods and
iPads possible — but it took years to get those technologies from the drawing board to the
marketplace. We can do it faster.

— President Barack Obama, June 2011 [1]

‘We can do it faster’ refers, in part, to the idea of reducing the number of ‘bad’
decisions by augmenting the materials fabrication process with clever data analysis.
Amongst the various methodologies from statistics and machine learning, Bayesian
optimisation shows particular promise for assisting the decision making process in
materials science settings. In this Chapter, we will briefly explain how Bayesian
optimisation works and discuss several examples of where Bayesian optimisation
has been applied in materials science. A technical introduction to Bayesian opti-
misation is presented in Chap. 2, and an application of Bayesian optimization in
surface science will be presented in Chap. 3.

1.1 Brief Overview of Bayesian Optimisation

To introduce Bayesian optimization, we consider the following situation. Consider
an alloy of composition M,N;_,, where M and N are specific metal atoms and x are
1—x their respective stoichiometric coefficients. x can take on any value between 0
and 1. Our goal is to find the value of x at which the some property of the alloy (say,
hardness) is maximized (Fig. 1.1). One approach might be to create a series of

'Of course, prototyping and trial-and-error are necessary for developing scientific understanding.

© The Author(s) 2017 1
D. Packwood, Bayesian Optimization for Materials Science,
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Fig. 1.1 Sketch of the hardness f (x) of alloys of composition M,N_,, where M and N represent
metal atoms and x represents a stoichiometric coefficient. We can apply Bayesian optimization to
find the stoichiometric coefficient x* at which the hardness is maximized

alloys in which x systematically increases from O to 1 and measure the hardness for
each one, however this might require a great deal of time and money. We would
therefore like to identify the optimal value of x by creating as few alloys as possible.

Let f (x) be the hardness of the alloy M,N,_,, and let x* be the value of x which
maximizes f (x). In Bayesian optimization, x* is identified according to the fol-
lowing scheme (Fig. 1.2).

Step 1. Randomly choose n stoichiometric coefficients xy, x,, ..., and x,,. Create the
corresponding alloys and measure their hardness f (xy), f (x2), ..., f (x,,). The data
generated in Step 1 is referred to as the sample data.

Step 2. For each possible value of x, assign a probability distribution to the value of
the hardness f (x). This distribution is called the prior probability distribution. Step
2 is performed independently of Step 1.

Step 3. Using the sample data collected in Step 1, we update the probability
distribution constructed in Step 2. This distribution is called the posterior proba-
bility distribution, and is calculated by applying Bayes’ Rule, a formula from
probability theory.

Step 4. Let x,, be the stoichiometry of the alloy which has the largest hardness
among all alloys in the sample data. With reference to the posterior probability
distribution, identify a value of x (outside of the sample data in Step 1) for which
the difference

f(x) = f (xom)

has a ‘high probability’ of being maximized (in some sense).
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Fig. 1.2 Sketch of the Bayesian optimization method for finding the optimal stoichiometric
coefficient x*, for alloys of composition M,N,_, Only a single iteration of the Bayesian
optimization procedure is shown. The prior and posterior distributions are sketched for only three
values of the stoichiometric coefficient (x,, x;, and x.). See main text for details

Step 5. Let x,,; be the value of x identified from Step 4. Create the alloy with
stoichiometric coefficient x,,,; and measure the hardness f (x,, ;1) of this new alloy.
Step 6. Add the new data x,,,; and f (x,,;) to the sample data in Step 1.

Steps 2—6 are then repeated until the convergence to the optimal stoichiometry x* is
achieved. Bayesian optimization can be also applied in the same way to identify the
stoichiometry which minimizes the hardness. It is possible to intuitively understand
how Bayesian optimization works without going into technical details. The prior
probability distribution in Step 2 measures our intuitive belief that an alloy with
stoichiometric coefficient x has the hardness value f (x). This prior distribution is
built according to our prior expertise on M, N;_, alloys. Step 3 then ‘corrects’ the
prior probability distribution by accounting for the information in the sample data.

The remarkable thing about Bayesian optimization is that it often able to identify
the optimal value x* within only small number of iterations of Steps 2—6. The origin
of this excellent performance is in the fact that Bayesian optimization makes use of
all information in the sample. In particular, the stoichiometric coefficients x, x, ...,
X, in the sample data may be widely scattered between 0 and 1, which means that
global information on the stoichiometric coefficient and hardness is being utilized.
The algorithm intelligently jumps between different values of x until the global
maximum x* is identified, and is not so prone to converging in local minima. On
the other hand, classical optimization algorithms scan the stoichiometric coefficients
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in such a way that the local derivative of hardness with respect to x approaches zero,
and will inevitably converge in the nearest minimum that they can find.

While Bayesian optimization can potentially speed-up the materials fabrication
process, it should not be treated as a black box. In fact, Bayesian optimization often
performs poorly when the prior distribution is chosen without due consideration of
the specific system at hand. On the other hand, Bayesian optimization is extremely
difficult to perform unless a relatively simple prior distribution is chosen. In order to
incorporate materials science expertize into Bayesian optimization, while main-
taining mathematical tractability, we usually choose a normal distribution with
mean u (x) and standard deviation ¢ (x) as the prior distribution. Here, p (x) is an
‘initial guess’ for the hardness an alloy with stoichiometric coefficient x, and
g (x) measures our uncertainty in this guess. For the case of a normal distribution
for the prior distribution, the posterior distribution can be straightforwardly com-
puted using the basic properties of Gaussian functions (see Chap. 2).

Note that Bayesian optimization using a normal distribution as the prior distri-
bution is very closely related to the statistical techniques called Gaussian regression
and Kriging. In fact, Gaussian regression is simply Steps 1-3 in the scheme
described above.

1.2 Examples of Bayesian Optimisation in Materials
Science

Here, we briefly summarise several studies which have applied Bayesian opti-
mization to problems in materials science. Examples of Bayesian optimization in
materials science have only appeared in the literature over the last couple of years,
and so the literature on this subject is currently small.

1.2.1 Prediction of Compounds with Low Thermal
Conductivity

The enormous gain in computational power over the last two decades has enabled
high-throughput screening of large materials databases [2]. In these studies, several
specific physical properties are calculated from first-principles (typically via density
functional theory) for every material in the database, and the materials predicted to
have the most desirable physical properties are then subject to experimental study.
However, because these databases typically contain tens of thousands of candidate
materials, high-throughput screening can only be performed with the physical
properties of interest can be calculated within a short time period.

Lattice thermal conductivity (LTC) is an example of an important physical
property which cannot be calculated to sufficient accuracy within such a short time
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period. Materials with low LTC are particularly desirable for a variety of appli-
cations. LTC results from anharmonic lattice dynamics and complex interactions
between phonons. Consequently, an expensive combination of electronic structure
theory and Boltzmann transport equation calculations are necessary to accurately
predict the LTC. In order to discover new materials with low LTC via computa-
tional methods, a more efficient method than high-throughput screening must be
employed.

In place of high-throughput screening, Seko et al. applied Bayesian optimization
to discover new materials with low LTC [3]. In order to benchmark the performance
of Bayesian optimization for these materials, the authors first considered a small
library of 101 candidate materials selected from a crystal database. Due to the small
size of this library, the LTC for each of the 101 materials could be calculated.
Following this, the authors applied Bayesian optimization to this library, and
showed that the material with the lowest LTC in this library could be identified
within as few as 11 iterations of the Bayesian optimization procedure. Having
benchmarked the performance of Bayesian optimization for these materials, the
authors then applied Bayesian optimization to a much larger library containing
54799 candidate materials, and succeeded to predict 221 additional materials with
very low LTC. Further filtering of these materials via additional first-principles
calculations identified two materials (K,CdPb and Cs,[PdCl,]l,) with particularly
suitable properties for device applications. The prediction of these materials would
not be possible without an efficient method such as Bayesian optimization for
scanning the enormous library of candidate materials.

1.2.2 Prediction of Compounds with Optimal Melting
Temperatures and Elastic Properties

Continuing with the theme of high-throughput screening described above, Seko
et al. applied Baysian optimization to predict materials with high melting temper-
atures [4]. From a library of 248 binary compounds of composition A,B,, where A
and B are non-transition metal elements, 12 compounds were selected as an initial
sample, and their melting temperatures were computed with DFT calculations.
Based on this initial sample, Bayesian optimization was then applied to predict the
compound with the highest melting temperature. The optimal compound from the
library was identified within tens of repetitions of the Bayesian optimization pro-
cedure. In comparison, random sampling from the library required over 100
repetitions until the optimal material could be discovered. This result once again
demonstrates the superior performance of Bayesian optimization in high-throughput
screening studies.

Balachandran et al. applied a method similar Bayesian optimization to predict
compounds with optimal elastic properties (i.e., very small and very large bulk,
shear, and Young’s moduli) [5]. They considered a library of 223 compounds of the
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form M,AX, where M is a d-block element, and A and X are p-block elements.
However, instead of creating a posterior distribution for the elastic properties of
interest (as in Step 3 of the Bayesian optimization procedure), used a so-called
support-vector regression estimator to fit the elastic properties in the sample data to
the elastic properties of the materials. Using initial samples containing 20 materials,
they could identify the material with the excellent elastic properties within tens of
iterations. While this study did not use Bayesian optimization directly, it is often
cited in the materials informatics literature and is similar in style to the work of
Seko et al. described above.

1.2.3 Prediction of Interface Structures

A major challenge in computational materials science is the determination of the
energy minimizing (ground state) atomic structure of complex materials. In the
typical computational approach to this problem, structure relaxations (in which
gradient-based energy minimizers are used to drive the atoms in the system into a
local energy minimum) are routinely employed. This energy is usually calculated
via DFT. However, the success of this approach depends upon the choice of initial
atomic coordinates for the system. If the initial atomic structure does not lie in the
region of the global energy minimum, then the structure relaxation will identify a
metastable (local energy minimizing) atomic structure, but not the ground state
structure. Unfortunately, in many materials the number of possible initial atomic
structures is enormous, and often it is not possible to check every case, especially
when the costs of each structure relaxation calculation may be quite high.

In addition to its use in virtual screening of material databases described in the
previous examples, Bayesian optimization can be applied to structure optimizations
as well. With Bayesian optimization, it is possible to quickly identify the ‘optimal
initial atomic structure’ for a structure optimization, where ‘optimal initial atomic
structure’ is the one which yields the ground state atomic structure following
structural relaxation via DFT calculations. This method was employed by Kiyohara
et al. in order to find energetically optimal grain boundary structures [6]. They
considered the grain boundary formed by a Cu(001) phase and a Cu(210) phase,
and generated 17,983 initial atomic structures by shifting the phases relative to each
other via rigid-body translations. Bayesian optimization was then used to search
through the initial atomic structures and identify the one which yields the minimum
energy upon structure relaxation. Starting with a sample of 20 initial atomic
structures and their energies upon structural relaxation, the authors could identify
the most stable interface structure within as few as 49 iterations of the Bayesian
optimization procedure (Fig. 1.3). This result is particularly remarkable considering
that only around 0.4% of all possible initial atomic structures where examined.
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Fig. 1.3 Energy-minimising grain boundary structure predicted via Bayesian optimization by
Kiyohara et al. [6]. The red spheres are Cu atoms, the dotted yellow line shows the position of the
grain boundary, and the white polyhedra show the repeating structural unit of the grain boundary.
Figure taken from [6]. Copyright 2017, The Japan Society of Applied Physics

1.2.4 Design of Interface Nanostructure

Another major challenge in materials science is to design materials with specific
physical properties. In a typical problem of this type, we are given a small number
of building blocks (atoms or parts of a molecule), and need to connect them
together in such a way that we produce a material with the desired physical
properties. Computational methods are very useful for studying these kinds of
problems, as it is usually easy to generate a library of candidate materials by
systematically connecting together the building blocks in silico. The material with
the target physical property can then be identified by virtual screening of this
library. However, as described above, virtual screening may not be viable approach
if this library is particularly large.

In a study by Ju et al., Bayesian optimization was used to design nanostructures
with high thermal conductances [7]. Specifically, they considered the interface
formed by a Si crystal and a Ge crystal, and aimed to identify the atomic
arrangement of Si and Ge atoms in the interface region which leads to the largest
interfacial thermal conductance (ITC) (Fig. 1.4). By application of the open source
Python library COMBO (=COMmon Bayesian Optimization) developed by Ueno
et al. [8], the authors could identify interfacial structures with excellent ITCs by
performing computations for around 438 candidate structures from a library of
around 12,870 candidate structures. This is another remarkable result, considering
that only around 3.4% of the entire library needed to be screened. A noteworthy
part of this study is that the authors went beyond merely demonstrating power of
Bayesian optimization for designing nanomaterials. In fact, from the interfacial
structures predicted from their study, the authors could deduce new physical
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Fig. 1.4 Atomic structure of a nanostructure with high interfacial thermal conductance, as
predicted via Bayesian optimization by Ju et al. [7]. The yellow spheres represent Si atoms, the

green spheres represent Ge atoms, and the black box indicates the interfacial region. Figure from
Ref. [7]

insights into thermal transport through the interfacial region, which in turn are
expected to assist the development of other heat transporting materials in the future.

1.3 Bayesian Optimization Requires Good Feature
Vectors

The above examples demonstrate that Bayesian optimization can indeed be an
effective method for optimizing materials or material structures with respect to a
specific property. However, how can one tell whether Bayesian optimization can be
applied to a particular situation of interest? To discuss this point, let us consider the
general situation in materials science, in which we have a large set of candidate
materials, denoted as A, B, ..., and Z, and we wish to identify the ‘optimal’ of these
materials via Bayesian optimization.

In any application of Bayesian optimization, it is essential that each material can
be described by a real-valued vector. These vectors are referred to as feature
vectors. Let

r(X) = (rn(X),n(X),...,mX)) (1.1)

be the feature vector for material X. The components r((X), r(X), ..., r,(X) are
called features or descriptors, and these encode some physical information about
material X. For example, if A, B, ..., and Z are n-component alloys, then r(X)
might measure the fraction of component k in the alloy X. If instead A, B, ..., Z
each represent a possible unit cell structure for a specific compound, then r(X)
might be the coordinate of atom k in the unit cell. Bayesian optimization can only
begin once we have encoded our candidate materials with an appropriate set of
feature vectors.
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Choosing appropriate feature vectors is the most important and often the most
challenging part of Bayesian optimization, and considerable research activity is
devoted to the development of feature vectors [9—11]. To understand the importance
of choosing good feature vectors, suppose that our set of candidate materials A, B,

.., and Z represent alloys, and we wish to identify the alloy with the highest
electrical conductivity. If we apply Bayesian optimization to this problem, then we
are making the implicit assumption that the conductivity is a function of the specific
features chosen, and not of any other features. In other words, we must assume that

cx = f(r(X), n(X),...,m(X)), (1.2)

where cy is the conductivity of candidate material X, f'is some (unknown) function,
and r(X) is the kth feature of the feature vector chosen to represent X. The
assumption in Eq. (1.2) will only be reliable if the features r(X), r2(X), ..., r,(X)
have some meaningful relationship with the conductivity of X. If we choose fea-
tures which are irrelevant to the conductivity of X, or if we fail to include some
features which are important to the conductivity, then the assumption in Eq. (1.2)
will become unreliable and Bayesian optimization will struggle to identify which
material has the highest electrical conductivity.

A tempting way to get around the problem of choosing good features it to create
very high dimensional feature vectors. In other words, we might try to create feature
vectors by simply combining every conceivable property and variable that can be
measured for the candidate materials. Unfortunately, Bayesian optimization using
high dimensional feature vectors often performs very poorly. Continuing with the
above example, suppose we choose to represent the alloys with feature vectors of
the form

I‘(X) = (rl(X)er(X)a o ~arn(X)vrn+l(X)arn+2(X)7 . ~>Vn+m(X))' (13)

Here, r(X), m(X), ..., r(X) represent the features which are important for
determining the electrical conductivity of alloy X, and r,,,1(X), 7,,4:2(X), ..., Fram(X)
represent the features which are not related to electrical conductivity. As we will see
in the following chapter, the distances between feature vectors for different can-
didate materials play a critical role during the calculation of the posterior distri-
bution. If we consider two candidate materials X and Y with very similar electrical
conductivities, then the (squared) distance between their feature vectors can be
written as

IKX) — rNP= 3" () 0P+ Y (X)) (14)
k=1 k=n+1

The presence of the second term (which arises from the unimportant features) on
the right-hand side of Eq. (1.4) increases the distance between r(X) and r(Y). Thus,
even if the first term (which arises from the important features) is very small, the
posterior distribution may incorrectly predict that X and Y have very different
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electrical conductivities. In turn, this will increase the number of iterations needed
for Bayesian optimization to identify the optimal material. This problem might be
not so severe in the case where the second term on the right-hand side of (1.4) does
not vary so much between pairs of materials, however this situation is obviously
ideal. In summary, in order to perform Bayesian optimization with sufficient effi-
ciency, one should first construct low-dimensional feature vectors by identification
of a minimum set of relevant features for the material property of interest.

The identification of a minimal set of features requires a deep understanding of
materials science and experience with the particular type of system under study.
This is a key point: Bayesian optimization is only a tool for aiding the materials
development process, and does not eliminate the importance of genuine expertize in
materials science.
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Chapter 2
Theory of Bayesian Optimization

In this chapter, we introduce the theory of Bayesian optimization procedure and
illustrate its application to a simple problem. A more involved application of
Bayesian optimization will be presented in Chap. 3.

2.1 Bayesian Interpretation of Probability

Consider rolling a die with & sides, labeled a;, a,, ..., and a;, respectively. Let P(a;)
be the ‘probability’ that a particular side a; appears after rolling the die. Before
attempting to calculate P(a;), it is necessary to clarify the meaning of the word
‘probability’. In other words, we must specify what the number P(q;) quantifies. In
statistics, the concept of ‘probability’ is formally interpreted in one of two ways. In
the frequentist interpretation of probability, P(a;) is the fraction of times that g;
appears in a very large number of die rolls. In the Bayesian interpretation of
probability, P(a)) is the extent to which we believe that the number a; will appear
prior to rolling the die.

For the case of a die with k sides, there is little difference between the frequentist
and Bayesian interpretation of probability. Given that the die is not biased in any
way, we would set P(a;) = 1/k in both the frequentist and Bayesian interpretations.
However, a major difference between the frequentist and Bayesian interpretation of
probability arises when we consider so-called learning-type problems, in which
new information on the system becomes available over time. For example, consider
a robot whose job is to sort oranges from lemons. Suppose that the robot is pre-
sented with a fruit, and that the robot has no useful information to help distinguish
between oranges and lemons. For example, the robot does not know that round fruit
are more likely to be oranges rather than lemons. In this case, the robot would set P
(0) = 1/2 and P(1) = 1/2, where P(o0) and P(1) are the probabilities that the fruit is an
orange or lemon, respectively. Now, suppose that new information is loaded into
the robot’s memory from an external source, namely

© The Author(s) 2017 11
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L(r]o) =8, (2.1)
and
L(r]l) = 1. (2.2)

These numbers are called likelihoods, and result from measurements on different
types of fruits by the external source. L(r|o) measures the ‘likelihood’ that an orange
is round, and L(r]l) measures the ‘likelihood’ that a lemon is round. The precise
physical meaning of ‘likelihood’ and it units are do not need to made so clear,
providing that the values of the likelihoods are always measured in a consistent
way. In order to utilize the information provided by the likelihoods, we employ a
formula called Bayes’ rule. Bayes’ rule can be written as

P(o]r) o L(r|o)P(0) (2.3)
P(1l|r) o< L(r|1)P(1), (2.4)

where P(o[r) and P(l|r) are the probability that a round fruit is an orange, and the
probability that a round fruit is a lemon, respectively. Substituting the numbers
given above, we find that P(or) o 8 x 0.5=4 and P(lr) < 1 x 0.5=0.5.
Eliminating the proportionality constants then gives P(o | r) = 4 /(4 + 0.5) = 0.89
and P(o|r) = 0.5/ (4 + 0.5) = 0.11. Thus, when presented with a round fruit, the
robot will determine that there is a probability of 0.89 that the fruit is an orange and
a 0.11 probability that the fruit is a lemon. With Bayes’ rule, the robot is therefore
able to improve its ability to classify fruit by incorporating information provided by
an external source. This kind of process is not natural within the frequentist
interpretation of probability, in which the probabilities P(0), P(r), P(o|r) and P(l|r)
remain fixed for all time, regardless of any new information which may appear.

Within the Bayesian interpretation of probability, P(o) and P(l) are referred to as
prior probabilities and P(olr) and P(l|r) are referred to as posterior probabilities.
Note that the likelihoods L(r|o) and L(x|l) in Egs. (2.1) and (2.2) can be regarded as a
function of the type of fruit. For this reason, L is referred to as a likelihood function.

As one might have guessed, Bayesian optimization makes use of the Bayesian
interpretation of probability and Bayes’ rule. We elaborate upon this point further in
the following section.

2.2 Equilibrium Bond Lengths Via Bayesian Optimization

Consider the problem of estimating the equilibrium bond length rq of a diatomic
molecule such as Br,. By ‘equilibrium bond length’, we mean that the interatomic
potential energy u(r) is minimized when r = ry. We suppose that the analytical form
of u(r) is unknown, i.e., that we cannot find 7, by directly differentiating a simple
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Interatomic
potential energy

0 ? E,

Fig. 2.1 Sketch of the sample space Q (see main text). Only four candidate functions are shown.
The function shown in blue corresponds to the true interatomic potential for the diatomic molecule.
The sample space contains all candidate functions that are real-valued and differentiable between O
and r... This includes functions which are physically unreasonable, such as the ones shown in green
and black

formula. While the analytical form of u(r) is unknown, it is a physical requirement that
u(r) be real-valued, continuous, and differentiable over the interval 0 < r < r,,
where, r..is the dissociation limit of the molecule. For simplicity, we assume that r.is a
well-defined and known constant. We define the sample space Q as the collection of
all real-valued functions which continuous and differentiable over the interval
0 < r < r.(Fig. 2.1). In the present context, £ can be thought of as a collection of
‘candidate functions’ for the interatomic potential, one of which corresponds to the
true interatomic potential, u. Q contains an infinite number of functions.

Estimation of the equilibrium bond length ry via Bayesian optimization runs
according to the following steps. (i) Generate a random sample of interatomic
separations and measure (or calculate, from first-principles) u for each case.
(i1) Independently of (i), assign a prior probability to the functions in Q. The prior
probability measures our intuitive feeling about which functions in Q correspond to
the true interatomic potential. (iii) Use the sample data and Bayes’ rule to calculate
the posterior probability for the functions in Q. (iv) Use the posterior distribution to
estimate ry. The estimated value of rq is denoted r*. (v) Measure (or calculate from
first-principles) u(r*), the interatomic potential at distance r*, and add r* and u(r*)
to the sample data. (vi) Repeat steps (ii)—(v) until the global minimum of the
interatomic potential is identified (i.e., when the minimum value of « in the sample
remains unchanged over several iterations).

Note that, strictly speaking, Bayesian optimization assumes that all functions in
the sample space are finite. This assumption is actually violated for the present
system, because it is a physical requirement that #(0) = o0 for the true interatomic
potential u. In the present analysis, we will get around this issue by simply sup-
posing that #(0) is finite.
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2.2.1 Prior Probability

In Bayesian optimization, we choose a multivariate Gaussian distribution for the
prior probability distribution. In other words, choose s interatomic separations r;, 7;,
ot (where 0 < 1, < ryforl=14,j, ..., or k). Let u(ry), u(r), ..., and u(ry) be the
values of the true interatomic potential at points r;, #;, ..., and r. The prior prob-
ability that the vector (u(r;), u(r)), ..., u(r)) is contained in an infinitesimal region of
space centered at point v = (v;, v;, ..., v;) is given by g(v;, vj,.., vi)dv;dv;---dvy, where

1 1 Tyr_
g(vi, vjs -y k) :WeXP<_§(V_”) K 1(v—u)> (2.5)

is referred to as the prior probability density. In Eq. (2.5), the s x 1 column matrix
p is called the mean vector, the s x s matrix K is called the covariance matrix, and
|A| denotes the determinant of matrix A. In Eq. (2.5), v is treated as an s x 1
column vector. If g(v;, v;,..., vy) is particularly large, then it means that we have a
strong intuitive feeling that u(r;) = v;, u(r;) =v;, ..., and u(ry) = v, for the true
interatomic potential energy function u.

Our intuitive beliefs about the interatomic potential u are encoded into the prior
distribution through the mean vector p and covariance matrix K. The choice of p
and (particularly) K has a large influence on the performance of Bayesian opti-
mization, and therefore they should be carefully considered before applying
Bayesian optimization to a physical problem.

If we write p = (W, W, ..., ly) for the mean vector, then ; can be regarded as our
intuitive guess for u(r;), the actual value of the interatomic potential at interatomic
separation r;. For example, we might choose the harmonic oscillator potential as an
initial guess for u, and write

1
pi =5 Clri — Ry, (2.6)

where the parameters C and R, are guessed by considering literature data for similar
diatomic molecules. There are no particular restrictions on the values of |;, however
they must be finite.

Let us write K = [Kjj],., for the covariance matrix. If V is chosen at random
from Q according to the prior distribution, then K;; measures the extent to which we
believe V(r;) should be correlated with V(r;). To quantify this correlation, let L be an
intuitive guess for the correlation length of the interatomic potential u(r). Roughly
speaking, L measures the length over which » must change in order for u(r) to
change significantly. Returning now to K;;, we would expect for Kj; to be large
when |r; — rj| < L, and moreover K;; should decrease rapidly as |r; — r;| increases
beyond L. This behavior can be acquired by choosing a squared exponential

function for K, i.e.,
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2
Kij = aexp <— 7|ri2_L2rj| > ; (2.7)

where « is another constant. If a single point V(r;) is randomly generated from € in
accordance with the prior distribution, then a is interpreted as the mean-square
deviation of V(r;) from ;. This interpretation follows from the fact that the diagonal
elements of K formally correspond to the variance of V(r;), when V is randomly
generated from the prior distribution.

The constants a and L are referred to as hyperparameters and have a critical
influence on the performance of Bayesian optimization. While a and L can be also
chosen based on our intuitive feelings about the system, in practice it is preferable
to choose them via a training procedure. We will describe this in Sect. 2.6 and in
the following chapter.

Note that Bayesian optimization is not restricted to the covariance matrix defined
in Eq. (2.7). Mathematically speaking, it is only necessary for the covariance matrix
to be positive semidefinite. Some alternative forms of the covariance matrix are
discussed in reference [1]. The advantage of Eq. (2.7) is that it physical interpre-
tation is relatively straightforward.

2.2.2 Likelihood Function and Posterior Distribution

In Bayesian optimization, the likelihood function is assumed to be the same
Gaussian density function as was used for the prior probability density in Eq. (2.5).
To explain what is meant here, let us start by re-writing Eq. (2.5) as

g(vz,v,;,...,vj,,,vi,vj,...,vk)
bl -G B S )~ )
(2n)" K|/ 2 [\ Vi [T Kikoy Kikin Vik Wik
(2.8)

In Eq. (2.8), Vyy = (Vy Vg, «oos V), Vi = (v, V), ..., »i), m is the length of the vector
Ve, s is the length of the vector v;y, K,., .., is the covariance matrix for points 7,

g, ..., and r,, K ;. as the covariance matrix for points r; 7;, ..., and 7y, and
Kcu' Kozj U Kack
Kpi Kg - Kp
Kac:"/,i:k = . . . (29)

Ki K; - Ku

/
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Note that K;y ., is the transpose of K,., ;.. The likelihood function used in
Bayesian optimization is defined as

L(vi,vj, .. .,vk|va,v/g, .. .,vy) = g(vi,vj, .. .,vk‘v“,vﬁ, .. .,vv). (2.10)

Here, g(v;, vj, ..., [V Vg, ..., V) is a so-called conditional density. It corre-
sponds to the prior probability density in Eq. (2.8) calculated a point (v;, v}, ..., Vi)
with the values of v,, v, ..., and v, held fixed. An analytic formula for the con-
ditional density can be written, however it turns out that this formula is not nec-
essary for our purposes (see Appendix 2.1).

Let us now suppose that we are provided with a sample of s points (r;, u(r;)), (r;,
u(7)), ..., (e, u(ry)), where for t = i, j, ..., and k, we have 0 < r, < r, and the value
of u(r,) is known exactly. In analogy to Egs. (2.3) and (2.4), the posterior proba-
bility that the vector (u(r,), u(rg), ..., u(r,)) is contained in an infinitesimal region of
space centered at point v = (v, vg, ..., v,) is given by Bayes’ rule, namely

Py vp, o vylui g, . w)dvadvg - - dv, (2.11)
x L(uhuj, e uk’va‘,\/p7 .. .,vy)g(va,v/;, . .,vy)dv“dvﬁ s dvy, .

where we have used the notation u; = u(r;). f(v,, v, ..., vy| U, U, ..., uy) is referred

to as the posterior probability density. Substituting Egs. (2.5) and (2.10) into
Eq. (2.11) and performing various manipulations, we obtain (see Appendix 2.1),

l * T * -1 *
f(vota VByeeoy V}’|ui’ Ujy - -y uk) o €Xp <_ E |:V061"/ - ua:”/:| (sz:“/.,a:",') |:V‘°ff”y' - uoc:"/:| ) ’

(2.12)
where
uij;y = Ryy — K““/-,iikKi?klﬁi:k(uiik — Wix), (2.13)
and
K o = Kooy — Ko it K 1 Kk - (2.14)

The right-hand side of Eq. (2.12) is actually the unnormalized multivariate
Gaussian distribution. If we are interested in the posterior density a single point v,,
then Eq. (2.12) simplifies to

2
1 Vo — I
f(V%|Mi,Mj,...,Mk) Wexp(%), (215)
oot oo
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where

[1; = Hy — K%,ileiizkl,i:k(ui:k - ”i:k)? (216)
K;ac = Kaoz - Ka,i:kKi_:kl,i:kKi:k‘w (217)

the row-vector K, ;. is defined as (K, ;, K, j, ..., K, 1), and K; , is the transpose of

K., ir In practice, we use Egs. (2.15-2.17) in all calculations of the posterior
distribution.

2.2.3 Example Calculation of the Posterior Distribution

Figure 2.2a—c plot the mean and variance of the posterior distribution from
Egs. (2.16) and (2.17) calculated from a sample of three interatomic displacements
for an isolated Br, molecule. The red line represents the posterior mean, the thin

black lines measure the posterior variance and correspond to the 95% confidence
limits of the posterior distribution, i.e.,

w4+ 1.96,/K:

o000

and the blue line shows the actual interatomic potential energy curve. The potential
energy at each point was calculated from first principles using density functional
theory (DFT). DFT calculations discussed here and elsewhere in this chapter were
performed with the VASP code [2], using a plane wave basis set, projector-

augmented wave (PAW) potentials, and the generalized gradient approximation
(GGA).

71 | AN \ P i
s 34 | s 24 | A5 s | Vi
= | R | T i | V//
| . Iy Y/
& N B o N LS 1 I VY
g 51 \\ / g3\ \ /, 251\ /)
NN/ S5 N\ S 34 /
1K a=05 o a=10 A a=05
. L=05 . L=05 - L=10
. TIC }.'4 !‘D ].'4 4.3 45 -}.0 3 ?‘5 3-0 !.'J ‘.ﬂ l.‘) ) ?‘D 25 J.ﬂ as l‘c l". j
Interatomic distance (A) Interatomic distance (A) Interatomic distance (A)

Fig. 2.2 Calculation of the posterior distribution for the interatomic potential energy for a Br,
molecule, using a sample of three interatomic distances and the corresponding energies and
various values of the hyperparameters a and L. The blue curve corresponds to the true interatomic
potential energy, the red curve correspond to the mean of the posterior distribution (Eq. 2.16), and
the black curves correspond to the 95% confidence limits of the posterior distribution. See

Sect. 2.3 for details. Note that the y axis actually plots the total energy of the Br, molecule, which
is equal to the interatomic potential energy plus a constant
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By looking at the sample points in Fig. 2.2a—c, it is clear that the posterior mean
interpolates the sample points exactly, and that the posterior variance is zero at the
sample points. This is a general behavior of Bayesian optimization, and shows that
the posterior distribution predicts the sample data exactly.

An important observation is that both the posterior mean and variance depend on
the values of the hyperparameters a and L in the covariance matrix in Eq. (2.7). In
general, the posterior variance grows and then shrinks back to zero as we move
between successive sample points. As the hyperparameter L increases and the
‘correlation length’ of the system grows, the posterior variance grows more slowly
between successive sample points and the posterior mean begins to resemble a linear
interpolation between successive sample points. In this sense, when the correlation
length in the system is assumed to be large, we become more confident that true
potential energy curve can be obtained by a linear interpolation between successive
points. In Fig. 2.2¢, in which the correlation length is large, it can be seen that the
true potential energy curve (blue) actually lies outside of the 95% confidence limits
of the Gaussian distribution, showing that Bayesian optimization predicts a very
small probability for the true interatomic potential when the correlation length L is
large. In general, we should choose the hyperparameters so that the true interatomic
potential lies within the 95% confidence limits of the Gaussian distribution. In this
situation, the posterior density will be large for functions closely resembling the true
interatomic potential, and the Bayesian optimization procedure will be able to
accurately estimate the location of the minimum of the true potential curve.

2.2.4 The Expected Improvement

Having generated the posterior distribution from the sample data, we now need to
predict the point which minimizes the interatomic potential energy. There are a
variety of ways of predicting the position of the optimum using the posterior
distribution. One of the most popular methods is involves the expected improve-
ment, which we consider here.

The expected improvement at point r, is defined as

El(r,) = Ef [max(umin — V(;"O(),O)]7 (2.18)

where E{A] is the expected value (average) of the random variable A with respect
to the posterior distribution in Eq. (2.18), and u,;, is the minimum interatomic
potential energy in the sample. V(r,) is the value of a function V evaluated at point
ry, where V has been randomly generated from the sample space according to the
posterior distribution. The interatomic distance which minimizes the interatomic
potential energy is then estimated as the value of r, which maximizes Eq. (2.18).
Thus, the expected improvement considers our current ‘best guess’ of the minimum
interatomic potential, u,;,, and then determines the point which, on average, will
improve upon that guess the most.
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In order to calculate the expected improvement, the following formula may be
used (see Appendix 2.2),

* Umin — M, Umin — [,
El(ry) = (tmin — p15) @[ 2=~ K| = L) (2.19)

oot
In Eq. (2.19), ®(x) and ¢(x) are the normal distribution function and normal density
function, respectively, evaluated at point x. Both functions can be can be easily
called in a statistical programming environment such as R [3].

2.2.5 Example Run of Bayesian Optimisation

In order to demonstrate the calculation of the expected improvement, and to show
the Bayesian optimization procedure in action, we return to the example of the Br,
molecule discussed at the end of the previous section. Figure 2.3a plots the pos-
terior mean (red line) and confidence limits (black lines) from a sample of two
interatomic distances, using hyperparameter values a = 0.5 and L = 0.5 and ener-
gies calculated via DFT. The green line represents the expected value calculated
from Eq. (2.18). The peak of the expected improvement lies at 2.25 A. The true
interatomic potential energy u(r) is then calculated for the interatomic distance
r =225 A via DFT, and this data is added to the sample. Figure 2.3b plots the
posterior mean, confidence limits, and expected improvement for the new sample.
This time, the expected improvement peaks at 2.27 A, and so the true interatomic
potential energy is calculated at this interatomic displacement, and this data is
added to the sample. After repeating this procedure only a few more times
(Fig. 2.3c, d), the expected improvement peaks at 2.30 A (Fig. 2.3e). This corre-
sponds to the exact optimum interatomic bond length for the Br, molecule (within
the accuracy of the present DFT method), showing that the calculation has con-
verged to the global optimum within relatively few iterations of the Bayesian
optimization procedure.

A close look Fig. 2.3a—e unveils a key feature of Bayesian optimization.
Comparing the expected improvement calculated at successive rounds of the
Bayesian optimization procedure, we see that the added sample points are widely
scattered and are not localized at any particular point. For example, at the end of the
first, second, and third rounds of Bayesian optimization (Fig. 2.3a—c), the expected
value peaks at 2.58, 2.27, and 1.76 A, respectively, and these values and the
corresponding interatomic potential energy are added to the sample data. This
shows that Bayesian optimization is a non-local search method, which is in contrast
with conventional optimizers which rely on a local gradient. The reason for the
non-locality of Bayesian optimization is that the posterior distribution in Eq. (2.15)
is computed by utilizing all information in the sample, which may be scattered
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Fig. 2.3 Bayesian optimization procedure for estimating the interatomic displacement which
minimizes the interatomic potential of a Br, molecule. Blue, red, black, and green curves
correspond to the true potential energy curve, the mean of the posterior distribution, the 95%
confidence limits of the posterior distribution, and the expected improvement, respectively.
Starting with a sample of two interatomic displacements and their energies (a), sample data is
successively added according to the maximum of the expected improvement. Note that the point
added D is not shown, as it appears beyond the scale of these plots. Hyperparameter values of
a =0.5 and L = 0.5 were used. See main text for details
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around the space. The non-locality of Bayesian optimization makes it less prone
(but not immune) to getting trapped in local minima.

Figure 2.3a—e also demonstrate the so-called exploitation versus exploration
trade-off concept [4]. The expected improvement tends to grow as the posterior
mean decreases and the posterior variance increases. The former effect encourages
investigation of ‘promising’ regions (‘exploitation’), on the basis of information
contained in the sample, whereas the latter effect encourages the exploration of
regions in which we have little sample information (‘exploration’). Exploitation is
evident in Fig. 2.3f and e, in which the general region of the potential minimum
becomes apparent and the search focuses on this region. Exploration is evident in
Fig. 2.3c, in which the relatively small interatomic distance of 1.76 A is suddenly
added to the sample, causing the Bayeisan optimization procedure to gather
information on the system at very small interatomic distance. The extent of
exploration versus exploitation is determined by the posterior mean and variance,
which in turn are strongly affected by the hyperparameters @ and L. This shows
once again the importance of the hyperparameters in determining the effectiveness
of the Bayesian optimization procedure.

The performance of Bayesian optimization is further shown in Fig. 2.4.
Figure 2.4a plots the minimum interatomic potential energy and optimal inter-
atomic distance for the Br, molecule as a function of the sample size used in the
calculation of the posterior distribution. The sample size corresponds to the number
of DFT calculations. Because the initial sample contained 2 points, the number of
iterations of Bayesian optimization is equal to the sample size —1. In Fig. 2.4b, the
minimum interatomic potential energy and optimal interatomic distance for the case
of random sampling from a grid of 83 interatomic displacements between 1.76 and
4.46 A. For the latter calculations, the minimum interatomic potential energies and
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Fig. 2.4 a Minimum interatomic potential energy (black points) and corresponding interatomic
distance (red points) predicted by the Bayesian optimization procedure in Fig. 2.3. The interatomic
distance at the true minimum of the potential energy curve is 2.30 A. b Minimum interatomic
potential energy and corresponding interatomic distance predicted from random sampling
interatomic displacements (see text for details). The data points in (b) have been averaged across
100 independent rounds of random sampling
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optimal interatomic distances have been averaged across 100 rounds of sampling.
While Bayesian optimization is able to find the optimal interatomic displacement
(2.30 A) within 5 iterations of the procedure, random sampling, on average, pre-
dicts a much larger value of around 2.42 A for the same sample size.

2.2.6 Training

The discussion and the end of the previous section demonstrates that the perfor-
mance of the Bayesian optimization procedure is heavily affected by the choice of
parameters a and L for the covariance matrix. In the context of Bayesian opti-
mization, training refers to a procedure for choosing the ‘best’ values of a and L for
the prior distribution. Here, ‘best’ refers to the values of a and L which result in the
quickest identification of the global optimum for a given sample of data. While the
‘best’ values of a and L can often be determined by physical intuition, it is common
(although not necessarily more reliable) to choose these values by a more statistical
approach. One of the most standard of these statistical approaches is referred to as
marginal likelihood maximization (MLM), which we introduce here.

Continuing with the problem of finding the equilibrium bond distance in a dia-
tomic molecule, suppose again that we have a sample of s interatomic bond distances
and the corresponding energies, (r;, u(r;)), (rj, u(@)), ..., (e, u(ry)). In the MLM
approach, we find the values of the hyperparameters a and L which maximize the
value of the prior distribution in Eq. (2.5) when calculated for the points in the sample
data. More precisely, we wish to obtain the values of the hyperparameters which
maximize g(u;, u;,..., ux), where g is the prior distribution in Eq. (2.5) and u; = u(r;),
u; = u(ry), ..., and u; = u(ry) are the sample data for the interaction potential.

For the special case of a constant prior mean p and a squared exponential
function (as in Eq. (2.7)) for the covariance function, we can use the following
equations to maximize the prior distribution, namely (see Appendix 2.3)

s 1 5 _
log g (u, uj, . . .,ux) = — Elog <; IR"*(u —p)" R~ (u — u)) +c, (2.20)
where c is a term which is independent of a and L, and
1 _
a=—(u—p)'R'(u—p) (2.21)

where R = [R;j];«, and

212

R; = exp (— ﬂ) . (2.22)
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First, the value of L which maximizes the right-hand size of Eq. (2.20) is
identified by numerically computing Eq. (2.20) across a grid of candidate values of
L. This value of L is then substituted directly into Eq. (2.21) to obtain the optimum
value of a.

For the special case of the Br, molecule studied here, the use of MLM approach
to obtain the hyperparameters does not improve the performance of Bayesian
optimization compared to the results discussed at the end of Sect. 2.5. However, the
MLM approach can be useful for situations in which more difficult systems are
studied and it is not possible to guess a value of a or a typical ‘correlation distance’
from intuition. In any case, because hyperparameters have a critical influence on the
performance of Bayesian optimization, we strongly advocate for the use of a
physically motivated procedure to estimate good values for a and L. Such a pro-
cedure is discussed in the following chapter.

2.3 Bayesian Optimization in the General Case

The above formalism can be immediately applied to systems beyond a simple
diatomic molecule. In the general case, we have n objects, xi, x», ..., X,,, Where
object x; has a property h(x;). We wish to identify the object whose property has the
minimum value. These objects may be different types of materials or different
configurations of molecules, and the properties may be material properties such as
thermal conductivity or molecular properties such as HOMO energy level.

In order to apply the formalism above to the general case, we simply replace the
interatomic distances r;, 7, ..., with the objects x;, x;, ..., and replace the interatomic
potential energies u(r;), u(r;), ..., with the properties A(x;), h(x)), .... The only major
change to the above formalism is in the covariance function in Eq. (2.6). In place of
Eq. (2.7), we must write

2
d(x,-,xj)
where d(x;, x;) measures the degree of similarity between objects x; and x;. The
specific definition of d(x; x;) is arbitrary, however for excellent performance of
Bayesian optimization it is essential that d(x;, x;) be chosen after giving very careful
consideration to the physics of the problem under study. Usually, d(x;, x;) is defined
as

d(xi,%) = [|9(x) — ()] (2.24)

where ¢(x;) and @(x;) are referred to as feature vectors (or descriptors) for the
objects x; and x;, respectively (see Eq. (1.4) for the definition of the || || notation).
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As discussed in the previous chapter, feature vectors are real-valued vectors which
encode the key physics of the system of interest. In the example of the diatomic
molecule, the feature vector for the distance r; was simply set to ¢(r;) = r;.
However, in most cases it is not so obvious which feature vectors one should use in
order to achieve good performance with Bayesian optimization, and a great deal of
physical intuition is needed to deduce such feature vectors. In any case, once such
feature vectors are available, Bayesian optimization proceeds exactly as described
in the sections above.

In this chapter, we have discussed Bayesian optimization in the context of
minimization. However, Bayesian optimization can also be used to solve problems
related to maximization as well. For the case where we wish to find the value of
r which maximizes the value of some function u, the expected improvement in
Eq. (2.18) must be re-written as

El(r,) = Ef [max(V(ra) — umax,())], (2.25)

where u,,,, is the largest value of u in the sample data. Moreover, Eq. (2.19) must
be replaced with

* *
K, — Umax ” My — Umax
< | + K:xa(/) o e

VK VK,

Equation (2.26) can be proven by following similar steps to those shown in
Appendix 2.2. Apart from the definition of the expected improvement, no changes
to the theoretical framework developed above are necessary for solving maxi-
mization problems via Bayesian optimization.

El(ry) = (1) — tmax )@ (2.26)

2.4 R Code for Bayesian Optimization

One of the great advantages of Bayesian optimization is that it is relatively easy to
implement in a computational environment. A program for calculating the expected
improvement using an initial sample of Br-Br interatomic distances and the cor-
responding potential energies is available online at http://www.packwood.icems.
kyoto-u.ac.jp/download/

This code is written in the R programming language, and can be executed within
the R command line interface [3]. The R command line interface can be downloaded
freely at https://www.r-project.org/, and numerous tutorials on R can be found
online.

Successive applications of this code can be used to find the optimal distance
between the Br atoms. Note that this code assumes that the energies have been
pre-calculated for all points on a tight grid of bond distances, and that the initial
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sample is drawn randomly from this pre-calculated data. Obviously there is no need
to perform Bayesian optimization in this case, as the equilibrium distance could be
identified by directly looking at the pre-calculated data. In realistic applications of
Bayesian optimization, the code will need to interface with first-principles calcu-

lation software or an experimental apparatus in order to obtain the sample data and
subsequent measurements.

Appendix 2.1

To prove Eq. (2.12) — (2.14), we first substitute Egs. (2.10) into (2.11) to obtain

f(va,v/;, .. .,vy’ui, uj,..., uk) x g(ui,uj, cen uk’va, Vg, .- .,vy)g(v“,v[;, .. .,vy)
(2.27)

Because the likelihood function and the prior density are Gaussian probability
densities, Eq. (2.27) simplifies to (by the basic properties of conditional densities
(5D
f(vx, VB vh,|u,-7 Uj, ..., uk) x g(w7 VBy v oy Vyy Uiy Uy oo oy uk), (2.28)
or, by using Eq. (2.8),
f(va, VB, e v7|u,~7 uj,. .., uk)
-1
1 [ (v) (um >] r {K Kw.,,‘i:k} KV> (uw ﬂ
xexp| —= - -
2 Vik [LEN% Ki:kﬁo(:y Ki:kﬁi:k Vik Wik
(2.29)

This expression can be simplified using an identity which applies to block matrices
(see, Ref. [6])

|:K:x:”/,c<:',r Ko(:",'.i:k } -

Kikey Kirix
(Kurs Kot KidKit) (Kers — Kot Kid Kt ) Koy ia il
- - (Ki:k,i:k - Ki:k.a:yK;A}v,x;-Ka:;xi:k)71Ki:k.az:;r ;71»,%:7 (Ki:k.i:k - Ki:k,oz:;rK;;:lm;yKu:;-,i:k) -
(2.30)

Substituting Eqs. (2.30) into (2.29) and performing some tedious but straight-
forward algebraic manipulations yields Eqgs. (2.12)—(2.14).
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Appendix 2.2

To prove Eq. (2.19), we write

El(ry) = Ef[min(umin — V(r4),0)]
e Y
— [ (a2 o JoKig,
Umin 1 2 ) Umin
= Umin / 76_(1_'““) /ZK”dZ— /
\/ 21K},

—00

—00

_(z—u;)z/ﬂ(j“dzl

Z
\/ 27K, ¢

A B

(2.31)

The term A on the right-hand side of Eq. (2.31) is equal to
A = i@ [ Fm0 ), (2.32)
V KO(G(

by the definition of the cumulative normal distribution. As for the term B in
Eq. (2.31), we write

Unmi

B— My + (Z — 'uoz) e*(Z*HZ)Z/zKLdZ.
\/ 27K,
—00
o i (2.33)
— D Unmin *:“ac + (Z .uag*) e*(zfy;)2/2K;de.
VK, Jo /21K,
c
By substituting the variable
h=""ta (2.34)

V2K,
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into the term C in Eq. (2.33) and performing the integration, we obtain

Umin

2K\ /2
C( > / he ™" dh
T

—00

w12
_—<%> o (i) /2K, (2.35)
T

u in_:u*
\/K_%(j)(f‘ll(%%)

where the definition of the standard normal probability density was used. We obtain
the result after combining Eqs. (2.31), (2.32), (2.33) and (2.35).

Appendix 2.3

To prove Eqgs. (2.20) and (2.21), we take the logarithm of the prior probability
density in Eq. (2.5) to obtain

1 _ 1 s
log g (ui,uj, . .., ux) = —E(u ) (@R)  (u—p) —Elog\aR| —Eloan

1
— — 3 (w0 (@R) " (u— ) ~ S log (alR|"") ~log 2z
S —
A B C

(2.36)

In the first line of Eq. (2.36), we used the definition of the matrix R in Eq. (2.22)
and the fact that aR = X. In the second line, we used the fact that [aR| = &'|R|,
which follows from the basic properties of determinants. Solving the equation dlog
g, uj, ..., up)/da = 0 gives

a=(n— R (), (2.37)

which is simply Eq. (2.21). To obtain an expression for L, fist note that the term
A reduces to

A=—s/2 (2.38)

upon substituting Eq. (2.37). Substituting Eq. (2.37) into the term marked B gives

B= —%log (% |R|l/$(u —n'R ' (u— p)) (2.39)



28 2 Theory of Bayesian Optimization

Substituting Egs. (2.38) and (2.39) into Eq. (2.34), and noting that the terms A and
C are independent of a and L, gives Eq. (2.22). Finally, by noting that maxi-
mization of the logarithm of the prior probability density is equivalent to maxi-
mizing the prior probability density itself, we arrive at the result.
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Chapter 3

Bayesian Optimization of Molecules
Adsorbed to Metal Surfaces

In the previous chapter, we saw how Bayesian optimization is implemented in
practice by considering a diatomic molecule. Of course, there is little point in
applying Bayesian optimization to such a simple system, as the full potential energy
curve can be quickly calculated using simple quantum chemistry. In this chapter,
we consider a more complex situation, consisting of organic molecules adsorbed to
a metal surface.

3.1 Density Functional Theory for Surface Science

Many treatments on computational materials science are quick to remark on the
great improvements in computational power made over the last decades. This
increases in computational power has allowed for first-principles calculations for
large systems to be performed in tandem with experiments, and such calculations
are now routinely reported in experimental materials science research papers. Of the
available first-principles methodologies, density functional theory (DFT) is argu-
ably the preferred method for much of computational materials science, and the
development of novel exchange-correlation functionals and dispersion corrections
have significantly broadened the applicability of DFT in materials science research
[1-3]. However, despite the increasingly widespread adoption of DFT in materials
science, there still remains an incredible number of systems that are extremely
difficult to study via DFT, due to the share number of atoms needed to model such
systems as well as their complicated potential energy landscapes.

In this chapter, we focus on the case of metal surfaces possessing organic
molecule adsorbates. While metal surfaces are regularly modified with organic
adsorbates in experimental research, DFT-based structure optimizations for organic
molecules on a surface require prohibitively long computational times. Such cal-
culations can be broken into two steps: (a) choice of adsorption sites and orienta-
tions for each molecule, and (b) structural relaxation of the system to find the
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Step (a) Assign adsorption Step (b) Structural
sites and orientations to relaxation of the system
each molecule via DFT

Stop upon convergence to a
minimum energy state

Fig. 3.1 Scheme for identifying the energetically optimal conformation of molecules adsorbed to
a surface via density functional theory (DFT) calculations. The black circles show the atoms of a
(111) surface, and the grey ovals represent adsorbed molecules, and the black points represent the
center-of-mass of the molecules. The black points identify the adsorption site of the molecule on
the surface

energy minimizing conformation of the molecule (Fig. 3.1). Steps (a) and (b) are
then repeated until convergence to a global minimum energy structure is obtained.
Step (b) may involve around 1000 atoms and demand weeks of computation if
performed via DFT. On the other hand, there are usually very many ways of placing
the molecules on the surface, meaning that there are very many ways of performing
Step (a). In other words, in order to find the global energy minimizing state of the
system, Step (b) may need to be repeated a very large number of times.
Consequently, months or years of computational time may be necessary until
convergence to a global minimum structure is obtained. The situation is particularly
hopeless when large numbers of molecules are considered, because the number of
ways of performing Step (a) increases exponentially with the number of molecules
under consideration.

In order to use DFT to compute the energy minimizing conformation and
arrangement of molecules on a metal surface, it is necessary to reduce the number
of times that Step (b) in the above scheme must be repeated. In other words, we
need a method which can choose the adsorption sites and orientations for the
molecules in Step (a) in such a way that very few repetitions the scheme in Fig. 3.1
are needed to find the energy minimum conformation of the system.
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3.2 Bayesian Optimization for Surface Science

Bayesian optimization is one candidate for reducing the computational load for
structure prediction for molecules adsorbed metal surfaces. Groups in Europe,
Japan, and possibly elsewhere are currently applying Bayesian optimizing for this
purpose, and while this field is in its infancy, early results are very promising.
Recently, Todorovic, Rinke, and co-workers reported on the use of Bayesian
optimization to find the energetically optimal position and orientation of single
molecules adsorbed metal surfaces [4]. The resulting code, which they call BOSS
(Bayesian Optimisation Structure Search), is shown to succeed within tens of
iterations of the Bayesian optimization procedure for a variety of adsorbate mole-
cules and surfaces. The performance reported by this group is particularly out-
standing when compared to uniform random sampling of positions and orientations
for the molecule adsorbates, which is expected to require hundreds of DFT cal-
culations until the energy minimizing conformation is found.

Recently, we applied Bayesian optimization to predict the energy-minimum
arrangement of two medium-sized organic molecules adsorbed to a metal surface,
and similarly found that Bayesian optimization could succeed within tens of DFT
calculations [5]. Specifically, we considered two dibromo-bianthracene molecules
(10,10'-dibromo-9,9’-bianthracene, or Br,BA) adsorbed to a copper (111) surface
(Fig. 3.2a). This molecule consists of two anthracene moieties connected together
by a single C-C bond. Readers familiar with Br,BA may associate it with graphene

A Br

Br

Fig. 3.2 a Chemical structure of the 10,10’-dibromo-9,9'-bianthracene (Br,BA) molecule.
b Scanning tunneling microscopy (STM) image a Cu(l11) surface following deposition of
Br,BA. The Br,BA molecules assemble into chain-like structures, one of which is identified by the
dotted white box. STM conditions: voltage 1.1 V, tunneling current 10 pA, imaging temperature
5.6 K, annealing temperature 400 °C. STM image acquired by Patrick Han (AIMR, Tohoku
University), using an STM created by Taro Hitosugi (Tokyo Institute of Technology) and
co-workers
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nanoribbon fabrication [6-9]. However, our interest in Br,BA is mainly that it
undergoes a simple self-assembly process when deposited on Cu(111), resulting in
the formation of (mainly) linear chains of Br,BA molecules (Fig. 3.2b). For the
case of two Br,BA molecules adsorbed to Cu(111), we should therefore find that
the global energy minimum of the system corresponds to the two molecules are
aligned in a chain-like fashion. In this remainder of this chapter, we will review this
study and explain in detail at how Bayesian optimization was implemented.

3.2.1 Preliminary Computational Study

Before jumping into the situation of two Br,BA molecules on Cu(111), we first
performed a preliminary computational study for a single Br,BA molecule on Cu
(111). As we show here, the purpose of such a preliminary computational study is
to find shortcuts for performing both steps (a) and (b) in Fig. 3.1.

Following the DFT methodology described in [10], a single Br,BA molecule was
placed in several positions and orientations on a perfect Cu(111) surface, and a local
structure relaxation for the molecule performed for each case. The displacement of
each atom in the molecule following structure relaxation was then averaged over all
cases, resulting in the ‘averaged’ adsorption conformation shown in Fig. 3.3. Strong
van der Waals interactions with the surface mean that one end of each anthracene
unit lies nearly parallel to the surface. The other end of the anthracene unit bends
away from the surface, which decreases steric repulsions between protons. The
strong van der Waals interactions result in very strong adsorption energies (in the

T IN » "0
"D 2995

Fig. 3.3 Conformation of a single Br,BA molecule adsorbed to a Cu(111) surface, as calculated
using a combination of DFT and an ‘averaging procedure reported’ in [10]. a Shows the
conformation of the molecule viewed with the Cu(111) surface in the place of the page, and
b Shows the conformation with the Cu(111) surface perpendicular to the page. Red-brown, white,
gray, and green atoms correspond to copper, hydrogen, carbon, and bromine atoms, respectively
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1500 Adsorption
energy (eV)

Fig. 3.4 a A single Br,BA molecule adsorbed to a Cu(111) in the ‘60°’ orientation (top). The
conformation of the molecule is identical to the conformation showed in Fig. 3.3. The orientation
of the molecule is determined according to the angle formed between the central C—C bond and the
vertical direction. The Cu(111) surface is drawn at the bottom of (a). A single unit cell and the
directions of the lattice places are indicated by the black box and colored dotted lines, respectively.
b Adsorption energy maps, calculated by scanning the molecule conformation in (a) above a unit
cell of the Cu(111) surface in various orientations. In these diagrams the energy at a specific point
corresponds to the adsorption energy when the center-of-mass of the molecule lies directly above
that point. The points are numbered for convenience, however this numbering has no specific
meaning. Images plotted with the AKIMA package [11, 12]

order of 2 eV), suggesting that interactions between Br,BA molecules on Cu(111)
(expected to be in the order of a few tenths of an electron volt) would have little
effect on the conformation of the adsorbed molecules.

To determine which adsorption sites and orientations should be sampled during
Step (a) of the cycle in Fig. 3.1, the averaged adsorption conformation from Fig. 3.3
was scanned across a single unit cell of Cu(111) in a variety of orientations, and the
adsorption energy of the molecule was calculated on-the-fly via DFT calculations
[10]. This resulted in the adsorption energy maps shown in Fig. 3.4, from which we
can identify the points in the dark red trenches being the preferred adsorption sites of
the molecule. These adsorption energy maps clearly show a preference for orien-
tations which point in the direction of the Cu(111) lattice planes. To implement Step
(a) of Fig. 3.1, it is therefore sufficient to consider only these low-energy adsorption
sites and orientations when deciding where to place the two molecules. Finally, to
check the effect of the intermolecular interaction on the conformation of
surface-adsorbed Br,BA molecules, a small number of structural relaxations were
performed using two adsorbed Br,BA molecules sitting close proximity to each
other. All calculations started from the averaged conformation showed in Fig. 3.3,
and very negligible distortion to this conformation was observed during the course of
the structural relaxation. This supports the assumption that the surface has the
dominant effect on the conformation of single Br,BA molecules adsorbed to Cu
(111), and also means that we can drop the structural optimization part of Step (b) in
Fig. 3.1 and perform a static energy calculation instead.
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Fig. 3.5 Illustration of the specific optimization problem considered here. a shows two Br,BA
molecules (marked molecule 1 and molecule 2) adsorbed to a Cu(111) surface. The direction of the
three lattice planes is marked. b Br,BA molecules in the 0°, 60°, and 120° orientations,
respectively. ¢ Possible adsorption sites for molecule 2, when the center-of-mass of molecule 1 is
fixed at the adsorption site marked by the down-pointing arrow in the 0° orientation. Rows of
adsorption sites that lie in the direction of the arrow marked by 0° (respectively 60°, 120°) permit
the molecule to adsorb in the 0° (respectively 60°, 120°) orientation. A single unit cell of the Cu
(111) surface is marked by the dotted grey box and is illustrated by the insert. Figure from
reference [5]. Copyright 2017, The Japan Society of Applied Physics

3.2.2 Statement of Optimization Problem

The specific optimization problem is shown in Fig. 3.5. One molecule (‘molecule 1°)
sits in the adsorption site marked by the down-pointing arrow, and the position of the
other molecule (‘molecule 2”) can be varied. Molecule 2 can only reside on the
adsorption sites shown in Fig. 3.5, and can only adopt one of the three orientations
shown there. We define a molecule arrangement as a choice of one adsorption site
and orientation. Let ¢ denote a single molecule arrangement. The stabilization
energy for molecule arrangement o is defined as

&(0) = uy +ux +vi2, (3.1)

where u, is the energy of interaction between molecule 1 and the surface, u, is the
energy of interaction between molecule 2 and the surface, and vy, is the energy of
interaction between molecule 1 and molecule 2. Note that #; and u, are equivalent
to the adsorption energy of molecules 1 and 2 on the surface, respectively. Our goal
is to find the molecule arrangement with the minimum stabilization energy, i.e., the
molecule arrangement ¢ which gives the most negative value of &(o), using
Bayesian optimization.

While each of the terms in Eq. (3.1) can be calculated via routine DFT, these
calculations can demand up to 30 h of computation on our hardware. It is therefore
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important to identify the optimum molecule arrangement by checking as few
molecule arrangements as possible. To compute Eq. (3.1) via DFT, we actually use
the following equation,

8(0) = E(O-) - Es(a) - Eml(o-) - Emz(o'), (32)

where E(0) is the total energy of the system (with both molecules on surface), Ey(o)
is the energy of the surface alone (with both molecules removed from surface), and
E,.1(0) and E, (o) are respectively the energies of molecule 1 and molecule 2
alone. Because molecules 1 and 2 have identical conformations, E,,1(¢0) = E,»(0).
While E,,1(0) and E,»(a) can be calculated within tens of minutes to reasonable
accuracy, the calculations of E(g) and E(c) typically involve between 400 and 800
atoms and require considerably longer computational times. The large variation in
the number of atoms is due to the fact that, in some molecule arrangements,
molecule 1 and 2 are quite widely separated on the surface, which requires larger
simulation boxes and hence larger numbers of atoms in the calculation.

3.2.3 Data Description

The data used in this study comprises of all possible molecule arrangement in which
the minimum interatomic distance between molecules 1 and 2 is between 1 and
4 A. Molecule arrangements in which the minimum interatomic distance is less
than 1 A are expected to be very unstable, as the van der Waals radii of the two
molecules will strongly overlap. On the other hand, we do not expect for the
molecules in the optimum molecule arrangement to be separated by more than 4 A,
because at these distances the atoms in molecule 2 are not expected to feel a strong
attractive force from the presence of molecule 1. This criterion resulted in 480
different molecule arrangements to consider (210 for the case where molecule 2 is
in the 0° orientation, 160 for the case where molecule 2 is in the 60° orientation,
and 110 for the case where molecule 2 is in the 120° orientation).

Even after reducing the number of molecule arrangements to 480 possibilities,
there remain many molecule arrangements which are obviously unstable (Fig. 3.6).
Whereas the optimal molecule arrangement is expected to have a stabilization
energy in the order of —0.1 eV, the unphysical molecule arrangements are expected
to have stabilization energies in the order of +10 to +100 eV. Because of the
overwhelming magnitude of the stabilization energies of the unphysical molecule
arrangements, the mean of the posterior distribution for the stabilization energies (as
calculated by Eq. 2.16) will take on predominantly positive values, and may not be
negative for metastable molecule arrangements. In turn, this will make detection of
the optimal molecule arrangement via Bayesian optimization extremely difficult. In
order to efficiently identify the optimal molecule arrangement via Bayesian opti-
mization, it is therefore preferable to remove these unphysical molecule arrange-
ments from the calculation of the posterior distribution.
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Fig. 3.6 Example of three ‘unphysical’ molecule arrangements (see text). In each case, the
molecules are too close together. This results is very large and positive stabilization energies [see
Eq. 3.2)]

Thankfully, the unphysical molecule arrangements can be easily identified by a
DFT-based screening procedure. Here, we neglect dispersion interactions and the
Cu atoms of the surface, and run DFT energy calculations for each of the 480
molecule arrangements. Then, molecule arrangements with stabilization energies
exceeding 0.15 eV are identified as being unphysical. The neglect of dispersion
interactions and the surface atoms is acceptable for this screening procedure,
because for the case of the unphysical molecule arrangements the stabilization
energy is dominated by short-range electrostatic repulsions between atoms of the
molecules. Following this screening procedure, which only requires a couple of
days of computational time on modern hardware, we identified 186 of the 480
molecule arrangements as being unphysical (thus, 294 molecule arrangements are
identified as ‘physical’). These molecule arrangements were neglected in the cal-
culation of the posterior distributions described in the following sections.

3.2.4 Choice of Feature Vectors

As emphasized in Chap. 1, the choice of feature vectors a critical influence on the
performance of Bayesian optimization. To the best of our knowledge there are no
reports of feature vectors which are specifically designed for interacting molecules.
However, plenty of effort has been made in designing feature vectors for single
molecules, particular for the purpose of predicting atomization energies [13, 14].

The Coulomb matrix is a popular feature vector for single molecules [13]. In the
present study, we constructed an interaction Coulomb matrix, which is defined as a
matrix ¢(0) = [c;(0)],x,. Here, n is the number of atoms per molecule, the rows
correspond to the atoms of molecule 1, the columns correspond to the atoms of
molecule 2, and
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(o) =1 " (3.3)

r; — 1|

where g; and g; are the atomic numbers of atoms 7 and j, respectively, and |r; — 1] is
the distance between atoms i and j. As a feature vector for molecule arrangement o,
we choose

¢(6) = (CL(J), C27(O'), B C,,_(O')), (34)

where ¢;(c) is the jth row of the interaction Coulomb matrix. The interaction
Coulomb matrix essentially describes the molecules as a cloud of point charges
interacting through Coulomb interactions, and does not directly describe the effects
of exchange interactions or electron correlation between molecules. Moreover, the
interaction Coulomb matrix does not describe the surface-molecule interaction.
However, despite not capturing these important features, Bayesian optimization
using the Coulomb matrix performs very well for the present problem (see Sects. 2.5
and 2.6). We will return to this point in Sect. 2.7.

3.2.5 Training of Hyperparameters

In the previous chapter, we introduced the marginal likelihood technique for
choosing the hyperparameters (¢ and L in Eq. 2.7). While the marginal likelihood
technique is certainly very helpful, there is no theoretical guarantee that it will pick
the most appropriate values of the hyperparameters for the specific problem under
study. In general, one should always start from physical considerations when
deciding upon the hyperparameter values.

In the present case, we decide upon the hyperparameter values by considering a
‘gas-phase’ system, in which the Cu atoms of the copper substrate are removed
from the DFT calculations. With the Cu atoms removed, the calculation of the
stabilization energy of a molecule arrangement (with a van der Waals exchange-
correlation functional [2]) is relatively quick (around 20-20 min), and the stabi-
lization energy of all 294 molecule arrangements can be computed within a few
days and stored as a database. Bayesian optimization is then performed on the
gas-phase molecule arrangements as described in Chap. 2, however instead of
performing a new DFT calculation at the end of each iteration, we simply retrieve
the appropriate stabilization energy from the database and add it to our sample data.
With this approach, we can easily perform Bayesian optimization for a variety of
values of the parameters ¢ and L, and identify a parameter regime in which the
optimal molecule arrangement tends to be identified relatively quickly. Moreover,
by checking against the minimal stabilization energy in the database, we can easily
confirm the convergence to the optimal molecule arrangement.
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Fig. 3.7 a Training of the Bayesian optimization procedure by excluding the Cu atoms from the
density functional theory (DFT) energy calculations. P is the probability that the global optimum
molecule arrangement has been identified after a given number of iterations of the Bayesian
optimization procedure. The green (respectively red, black) lines indicate calculations with a = 1
and b =107 (respectively b=7 x 10>, b=2 x 107°) in the covariance matrix, where
b = 1/(2L%). The blue line represents the case where uniform random sampling is used instead of
Bayesian optimization. P was estimated from 20 repetitions of the Bayesian optimization
procedure (2000 times for the uniform random sampling case). b Bayesian optimization applied to
the full system with Cu atoms included, using @ = 1 and b = 7 x 10 in the covariance matrix. &,
is the minimum stabilization energy in the sample data. Sample size (m) is equivalent to the
number of evaluations of Eq. (3.2) via DFT. The red and dark-red lines indicate two independent
runs of the procedure. The blue line is the lower-bound to ¢,, when uniform random sampling is
applied this system. ¢, d The molecule arrangements corresponding to the stabilization energy
marked up-pointing arrow and down-pointing arrows in (b), respectively. Figure taken from
reference [5]. Copyright 2017, The Japan Society of Physics

Figure 3.7a shows the probability of detecting the optimal gas-phase molecule
arrangement for a variety of values of parameters a and b = 1/(2L?), as a function of
the number of iterations of Bayesian optimization. In each case, initial samples of
10 molecule arrangements were used. Excellent performance for the choice a = 1
and b between 1 x 107> and 1 x 10™* was observed. For the choice of a = 1 and
b =7 x 107, the optimal molecule arrangement was identified within 15 iterations
of Bayesian optimization. This performance is particularly spectacular when
compared to the blue line in Fig. 3.7a, which shows the probability of identifying
the optimal molecule arrangement via simple random sampling of the molecule
arrangements.



3.2 Bayesian Optimization for Surface Science 39

The calculations above suggest using a = 1 and b between 1 x 107> and
1 x 107* for Bayesian optimization of the full system (with copper atoms inclu-
ded). By using these values of the hyperparameters, we are implicitly assuming that
the performance of Bayesian optimization is not strongly affected by the presence of
the surface. The validity of this assumption is unclear at present, and further studies
into this problem are necessary in order to improve the application of machine
learning methods to modified surfaces.

3.2.6 Predictive Performance

Figure 3.7b shows the results of Bayesian optimization the full system (with copper
atoms included), using the hyperparameter values of a =1 and b =7 x 107>
[where b = 1/(2L%)] and initial samples of 10 random molecule arrangements. In
Fig. 3.7b, ¢,, is the minimum stabilization energy in the sample. In two independent
trials of the Bayesian optimization procedure, ¢, reached a value of around
—4.94 eV within only 1 and 5 iterations of the Bayesian optimization procedure,
respectively. This rapid convergence may be a lucky result, because in both cases
the initial samples contained the same low-energy molecule arrangement
(Fig. 3.7c), and this low-energy molecule arrangement may be very important for
predicting the optimal molecule arrangement. While it is not possible to unam-
biguously confirm convergence of the stabilization energy, some additional rea-
soning suggests that the optimal molecule arrangement detected here (Fig. 3.7d) is
in fact the true optimal molecule arrangement for this system. Firstly, it is well
known that Br,BA molecules adsorbed to a Cu(111) surface align in a chain-like
fashion such as shown in Fig. 3.7d (also see Fig. 3.2b). It is therefore reasonable to
assume that the structure in Fig. 3.7d lies in the region of the global stabilization
energy minimum of the system. Secondly, additional DFT calculations for various
chain-like alignments show that the prediction in Fig. 3.7d does in fact correspond
to the true stabilization energy minimum of the system (Fig. 3.8).

While it is not possible to unambiguously compare the performance of Bayesian
optimization to simple random sampling for the case of the full system, we can
estimate a lower-bound to the minimal energy ¢, predicted by simple random
sampling. This lower-bound is represented by the blue line in Fig. 3.7b, and was
calculated by performing simple random sampling on the ‘gas-phase’ system
(discussed in the previous section) and adding —4 eV to the stabilization energies
(since the adsorption energy for a single Br,BA molecule at any of the sites shown
in Fig. 3.4 is around 2 eV). The blue line is a lower-bound to the stabilization
energy, because the presence of charge cushions around the molecules, which are
expected to contribute around +0.01 to +0.02 eV to the stabilization energies [10],
have been ignored. These charge cushions result from displacement of charge from
the surface upon adsorption of the molecules [15, 16]. Thus, our results demonstrate
that Bayesian optimization achieves a superior performance compared to simple
random sampling of molecule arrangements.
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Fig. 3.8 Stabilization energies computed as a function of intermolecular separation for two
Br,BA molecules aligned in the direction of their anthracene units. The molecules are adsorbed to
Cu(1111). Intermolecular separation is defined as the distance between the center of masses of the
molecules. Stabilization energy was computed according to Eq. (3.2) and DFT. The images
marked 1-5 on the right-hand side show the positions of the molecules at each intermolecular
separation. Image 3 corresponds to the optimum molecule arrangement identified with Bayesian
optimization [see Fig. 3.6d]. Figure from reference [5]. Copyright 2017, The Japan Society for
Applied Physics

3.2.7 Discussion

The results shown above demonstrate that Bayesian optimization may be of great
value for structure prediction problems in materials science. As stressed in Chap. 1
of this monograph, the success of Bayesian optimization is related to the fact that it
uses ‘global’ information from all of the molecule arrangements in the sample when
predicting the optimal molecule arrangement. To appreciate this point, compare the
molecule arrangement shown in Fig. 3.7c (which corresponds to a local minimum)
to the one shown in Fig. 3.7d (which corresponds to a global minimum). A classical
gradient-based optimizer would have enormous trouble moving from this local
minimum molecule arrangement to the global minimum, due to the presence of
large barriers in the potential energy landscape between these two molecule
arrangements. On the other hand, Bayesian optimization does not appear to be
affected from this kind of trouble; once the sample data contains sufficient infor-
mation to correlate the arrangement of molecules with the stabilization energy, it
can quickly identify the optimal molecule arrangement regardless of where it lies in
the potential energy landscape.

The calculations reported above assumed frozen internal degrees of freedom for
both the molecule and surface. While this assumption is very reasonable for the
specific system studied here (see the discussion in [5]), it is not necessary to employ
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it when applying Bayesian optimization. If relaxation of internal degrees of freedom
was allowed in the present case, then Bayesian optimization would simply predict
the adsorption site and orientation for molecule 2 which results in the lowest
stabilization energy after relaxation of internal degrees of freedom. Such a calcu-
lation would resemble the one described in Sect. 1.2.3, Chap. 1. In general, if one
intends to apply Bayesian optimization to a complex material, then the enumeration
of possible starting configurations (molecule arrangements in the current study)
should be carefully considered so that all minima in the potential energy landscape
have chance of being reached following relaxation of the system.

As mentioned earlier, the feature vector chosen here (the interaction Coulomb
matrix) essentially describes the molecule as a cloud of charges interacting via
Coulomb repulsions. While this feature vector does not directly describe the
surface-molecule interaction, or the exchange interactions that could take place
between molecules, it was nonetheless sufficient for the Bayesian optimization
procedure to quickly predict the optimal molecule arrangement from sample data.
In the present case, this efficiency probably results from two facts. Firstly, the
surface-molecule interaction energy varies little between the adsorption sites and
orientations shown in Fig. 3.5 (for each of the adsorption sites and orientations
shown in Fig. 3.5, the surface-molecule interaction is close to 2 eV for each case).
Ignoring the effects such as charge cushion repulsions mentioned above (which may
be significant in some systems), the effect of the surface is essentially to add a
constant term to the stabilization energy. Secondly, the energies associated with
exchange and correlation effects depend upon the distances between electrons in the
molecules, and this information may be indirectly accounted for via the denomi-
nators of the interaction Coulomb matrix elements (Eq. 3.3). Thus, even though the
interaction Coulomb matrix does not directly describe every effect that determines
the stabilization energy of the molecule arrangements, it appears to contain suffi-
cient information for Bayesian optimization to perform efficiently. A useful target
for future research would therefore be to create a systematic guideline for necessary
for a ‘good’ feature vector for a given type of system.

References

1. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys
Rev Lett. 1997;78:1396.

2. Hamada I. van der Waals density functional made accurate. Phys Rev B. 2014;89:121103.

3. Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state
electron density and free-atom reference data. Phys Rev Lett. 2009;102:073005.

4. Todorovic M, Gutmann MU, Corander J, Rinke P. arXiv:1708.09274.

5. Packwood DM, Hitosugi T. Rapid prediction of molecule arrangements on metal surfaces via
Bayesian optimization. Appl Phys Express. 2017;10:065502.

6. Cai J. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature.
2010;466:470.

7. Han P, et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and
enantioselectivity. ACS Nano. 2014;8:9181.



42

10.

11.

12.

13.

14.

15.

16.

3 Bayesian Optimization of Molecules Adsorbed to Metal Surfaces

. Han P, et al. Self-assembly strategy for fabricating connected graphene nanoribbons. ACS

Nano. 2015;9:12035.

. Ruffieux P, et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology.

Nature. 2016;531:489.

Packwood DM, Han P, Hitosugi T. Chemical and entropic control on the molecular
self-assembly process. Nat Commun. 2017;8:14463.

Akima H, Gabhardt A. Akima: interpolation of irregularly and regularly spaced data.
R package version 0.5-12. 2015. http://CRAN.R-project.org/package=akima.

R Core Team. R: a language and environment for statistical computing. R Foundation for
Statistical Computing. 2017. https://www.R-project.org/.

Rupp M, et al. Fast and accurate modeling of molecular atomization energies with machine
learning. Phys Rev Lett. 2012;108:058301.

Hansen K, et al. Assessment and validation of machine learning methods for predicting
molecular atomization energies. J Chem Theory Comput. 2013;9:3404.

Bagus PS, Germann K, Woll C. The interaction of C¢Hg and C¢H;, with noble metal surfaces:
electronic level alignment and the origin of the interface dipole. J Chem Phys.
2005;123:183109.

Witte G, et al. Vacuum level alignment at organic/metal junctions: “Cushion” effect and the
interface dipole. Appl Phys Lett. 2015;87:263502.


http://CRAN.R-project.org/package%3dakima
https://www.R-project.org/

	Preface
	Contents
	1 Overview of Bayesian Optimization in Materials Science
	1.1 Brief Overview of Bayesian Optimisation
	1.2 Examples of Bayesian Optimisation in Materials Science
	1.2.1 Prediction of Compounds with Low Thermal Conductivity
	1.2.2 Prediction of Compounds with Optimal Melting Temperatures and Elastic Properties
	1.2.3 Prediction of Interface Structures
	1.2.4 Design of Interface Nanostructure

	1.3 Bayesian Optimization Requires Good Feature Vectors
	References

	2 Theory of Bayesian Optimization
	2.1 Bayesian Interpretation of Probability
	2.2 Equilibrium Bond Lengths Via Bayesian Optimization
	2.2.1 Prior Probability
	2.2.2 Likelihood Function and Posterior Distribution
	2.2.3 Example Calculation of the Posterior Distribution
	2.2.4 The Expected Improvement
	2.2.5 Example Run of Bayesian Optimisation
	2.2.6 Training

	2.3 Bayesian Optimization in the General Case
	2.4 R Code for Bayesian Optimization
	Appendix 2.1
	Appendix 2.2
	Appendix 2.3
	References

	3 Bayesian Optimization of Molecules Adsorbed to Metal Surfaces
	3.1 Density Functional Theory for Surface Science
	3.2 Bayesian Optimization for Surface Science
	3.2.1 Preliminary Computational Study
	3.2.2 Statement of Optimization Problem
	3.2.3 Data Description
	3.2.4 Choice of Feature Vectors
	3.2.5 Training of Hyperparameters
	3.2.6 Predictive Performance
	3.2.7 Discussion

	References




