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Chapter 2
PAHs and NPAHs in Airborne Particulate 
Matter: Initial Formation and Atmospheric 
Transformations

Edward Gou Nagato

Abstract  In this chapter, the formation of early benzene and naphthalene rings is 
first discussed in the context of soot formation. While the hydrogen abstraction-
acetylene addition (HACA) pathway is the most commonly accepted pathway, stud-
ies have shown that it is insufficient to account for the rapid formation of larger 
PAHs and soot, and so other mechanisms for PAH formation are discussed. Once 
the initial PAHs are formed, they can undergo further transformation, for example, 
forming nitrated (NPAHs) or oxygenated analogues. The formation of NPAHs can 
occur through three routes: formation through combustion processes (primary pro-
duction), through the transformation of PAHs in the atmosphere (secondary pro-
cesses) or through gas-particle heterogeneous transformations. Through these 
processes various isomers of nitrated PAH analogues, such as nitropyrene and nitro-
fluoranthene, can be formed. The specific isomers that are formed are characteristic 
of certain types of formation processes and therefore are useful in determining the 
source origins of NPAHs.

Keywords  Polycyclic aromatic hydrocarbon formation ⋅ Soot ⋅ Nitrated polycy-
clic aromatic hydrocarbons ⋅ Heterogeneous transformations ⋅ Particulate matter

2.1  �Polycyclic Aromatic Hydrocarbon Formation: 
From Small Aliphatic Chains to Nascent Soot

Polycyclic aromatic hydrocarbons (PAHs) are molecules that contain two or more 
fused aromatic rings and are formed primarily through the incomplete combustion 
of organic materials (Ravindra et al. 2008). They are present in the environment 
through both natural and anthropogenic sources, though the latter constitutes the 
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majority (Krauss et al. 2005). The mutagenic potential of PAHs is well known (Jung 
et al. 1991; Pashkin and Bakhitova 1979). Because PAHs are major constituents of 
soot, their formation from small aliphatic chains to soot aggregates is an active area 
of study.

PAH formation is dictated by a number of factors such as combustion tempera-
ture and pressure (Comandini et al. 2012; Yoon et al. 2008; Zhou et al. 2014) as well 
as fuel types, both aliphatic and aromatic fuels (Tregrossi et al. 1999; Hansen et al. 
2016). While the experimental conditions may vary, in composite, a wide body of 
research has provided insight into the general mechanisms of soot formation. 
Broadly, this formation occurs through the initial decomposition of fuels, the subse-
quent production of initial aromatics from small aliphatic molecules, the nucleation 
to form larger PAHs and further growth and coagulation into larger soot particles 
(Richter and Howard 2000). For the purposes of this chapter, PAH formation is 
briefly discussed as a preface to discussion on the further transformation of PAHs 
into their nitrogenated analogues.

Pyrolytic processes above 500°C produce a number of reactive intermediates and 
radicals such as ethylene and acetylene which become the building blocks for con-
structing the initial aromatic rings (Llamas et al. 2017; Ravindra et al. 2008; Shukla 
and Koshi 2012). In general, the formation of the initial benzene ring is thought to 
occur through either the self-reaction between 3-carbon C3H3 species, the reaction 
between a 4-carbon species (n-C4H5, n-C4H3) and 2-carbon species or the reaction of 
a cyclopentadienyl (C5H5) with CH3 (Frenklach 2002; Marinov et al. 1997, 1998; 
McEnally et al. 2006; Richter and Howard 2002; Shukla and Koshi 2012). While a 
number of precursor molecules can be involved, the type of fuel source decomposed 
will dictate which pathway is dominant (McEnally et al. 2006). For example, the 
reaction between two 3-carbon molecules in benzene formation is a dominant reac-
tion in acetylene and ethylene flames (Richter and Howard 2002) and premixed pro-
pane (Marinov et  al. 1997). Benzene, however, is not necessarily the first PAH 
formed. Naphthalene formation, through the self-reaction between C5H5 radicals, has 
been demonstrated and does not require the initial formation of benzene (Cavallotti 
and Polino 2013; Frenklach 2002; Marinov et al. 1997; Richter and Howard 2000).

After the formation of the initial ring(s), a number of mechanisms have been 
proposed for the further growth of PAHs, the most notable being the hydrogen 
abstraction-acetylene addition (HACA) pathway, which was generally thought to be 
the predominant route in PAH synthesis (Appel et al. 2000; Comandini et al. 2012; 
Frenklach 2002). HACA is a process where initial benzene rings and aliphatic 
hydrocarbon building blocks are converted to larger PAHs through an iterative pro-
cess of hydrogen abstraction and acetylene (C2H2) additions (Frenklach 2002; 
Richter and Howard 2000). More specifically, the hydrogen abstraction of a hydro-
carbon results in a radical that can react with C2H2 to form phenylacetylene which 
in turn forms the substrate for subsequent HACA steps to create the next ring 
(Comandini et  al. 2012). Through this iterative process, PAHs can be built from 
benzene to naphthalene into larger PAH molecules (Frenklach 2002). Ultimately it 
is this procedure in the soot formation process that is the rate-controlling step in the 
further growth of soot (Frenklach 2002).
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Though widely accepted as a mechanism for PAH growth, there is evidence that 
HACA is too slow and cannot be the sole factor involved (D’Anna and Violi 1998; 
Böhm et al. 1998; Richter and Howard 2002). Growth through methyl radical addi-
tions in a process similar to HACA has also been investigated (Hansen et al. 2016; 
Shukla et al. 2008; Yoon et al. 2008) as well as propargyl addition reactions (Raj 
et al. 2014; Slavinskaya and Frank 2009). An efficient method for the growth of 
PAHs is also seen through phenyl and benzene additions and can account for the 
rapid development of PAHs (Benish et al. 1996; Comandini et al. 2012; Constantinitis 
et al. 2015; Ono et al. 2015; Shukla et al. 2008) and is likely more efficient than 
HACA mechanisms. In aggregate, numerous studies are showing that there are a 
multitude of ways in which PAHs can grow from the initial aromatic ring(s) beyond 
HACA mechanisms and account for the rapid formation of soot particles.

From the creation of the first PAHs, reactions between PAHs and PAH radicals 
into larger PAHs (e.g. through dimerization and trimerization) form the basis for 
incipient soot which marks the transition into particulate matter (McKinnon and 
Howard 1992; Ono et al. 2015). The formation of initial soot particles is followed 
by their agglomeration to form larger soot particles and is followed by fractal spher-
ical growth (Frenklach 2002). While much investigation has been performed on the 
formation of these initial rings, the transition from gas to particulate matter remains 
a poorly understood process (Frenklach 2002).

2.2  �NPAHs and Their Formation from PAHs

While efforts to understand the mechanisms of PAH and soot formation are ongo-
ing, there is also a concerted effort to understand the formation processes and 
environmental distributions of PAH derivatives such as the nitrated PAHs (NPAHs) 
and oxygenated PAHs (OPAHs). Research on NPAHs began when it was found 
that the mutagenicity of air pollution and diesel emissions could not be solely 
accounted for by PAHs (Pitts et al. 1978). This would ultimately lead to the discov-
ery of the outsized contribution of NPAHs to air contaminant mutagenicity and has 
since been more closely investigated (Fu et al. 1985; Ishii et al. 2000; Pitts et al. 
1978; Tokiwa et al. 1985), despite existing at levels between one and three orders 
less than their parent PAHs (Albinet et al. 2007; Bamford and Baker 2003; Wang 
et al. 2011). The increasing polarity of these NPAHs makes them more reactive 
with biological tissue and accounts for their disproportionate mutagenicity (De 
Guidi et al. 2012). For example, the dinitropyrenes (DNPs) possess a mutagenicity 
among the highest known (Arce and Morel 2013; Nakagawa et al. 1983) and there-
fore constitute a major toxicological threat. This outsized toxicity has created the 
imperative to include NPAHs in analyses that go beyond the EPA 16 PAHs that are 
routinely studied (Andersson and Achten 2015). Beyond toxicity however, their 
environmental fate differs from their parent PAHs, as they differ in parameters 
such as melting point, various partitioning coefficients (i.e. kow), vapour pressure 
and solubility.

2  PAHs and NPAHs in Airborne Particulate Matter: Initial Formation…
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The formation of NPAHs can be generalized as occurring through one of three 
routes: through direct emissions, through secondary atmospheric transformations 
and through gas-particle heterogeneous transformations. These different processes 
can produce distinct NPAH isomers that are characteristic of their sources, though 
as will be discussed, these distinctions are not always clear.

2.3  �NPAH Formation Through Primary Combustion 
Processes

The primary production of NPAHs occurs through incomplete combustion pro-
cesses and has been studied specifically within the context of diesel engine combus-
tion (Bamford et al. 2003; Kameda et al. 2006; Karavalakis et al. 2012), though they 
can also form through gasoline engine combustion (Gibson 1983), coal combustion 
(Harris et al. 1984), biodiesel combustion (Llamas et al. 2017) as well as through 
cooking processes (Kinouchi et al. 1986). Primary transformation occurs as a result 
of the high temperatures and the electrophilic nucleation with NO2

+ (Fu et al. 2012) 
as seen in the case of 1-nitropyrene (1-NP) formation from the PAH pyrene 
(Fig. 2.1).

Nitration occurs at the position of the molecule with the highest electron density 
to form 1-NP, and further nitration can produce the dinitropyrenes (DNPs) such as 
1,3-DNP, 1,6-DNP and 1,8-DNP. As the NOx species involved in the creation of 
these NPAHs is a function of temperature, the NPAH yield and composition are 
highly temperature dependent (Hayakawa 2016).

While a particular focus of NPAH studies has been on 1-NP (Bezebeh et  al. 
2003; Kojima et al. 2010), there is indication that 2-nitrofluorene (2-NF) may also 
appear in greater abundance (Beije and Möller 1988) as seen in heavy-duty diesel 
engines (Draper 1986). Beyond 1-NP and 2-NF, 3-nitrofluoranthene (3-NFr), 
9-nitroanthracene (9-NA) and 6-nitrobenz[a]pyrene (6-NBaP) are also found in 
abundance in diesel exhaust and contribute to the exhaust mutagenicity (Bamford 

Fig. 2.1  The nitration of pyrene occurs at the site of the greatest electron density, producing a 
nitrated analogue at the first position
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et al. 2003; Dimashki et  al. 2000; Feilburg et  al. 2001; Paputa-Peck et  al. 1983; 
Salmeen et al. 1984; Schuetzle 1983). Furthermore, while certain NPAHs are used 
to characterize diesel emissions, the composition of diesel exhaust can change 
according to factors such as diesel particulate filters (Heeb et al. 2008) and biodiesel 
types (Karavalakis et al. 2010, 2011).

2.4  �NPAH Formation Through Secondary Atmospheric 
Processes

While NPAHs formed through combustion processes comprise a significant compo-
nent of atmospheric toxins, NPAHs can also be formed in the atmosphere, through 
gas-phase reactions. The atmospheric transformation of PAHs to NPAHs can occur 
via homogenous gas-phase reactions or secondary heterogeneous transformations 
of PAHs contained on particulate matter. The former is thought to constitute the 
majority of the atmospheric NPAHs (De Guidi et al. 2012; Reisen and Arey 2005) 
and involves nitration through reaction with NO2 but is initiated by either OH or 
NO3 radicals which form adducts that subsequently react with NO2. The OH radi-
cals are found in the troposphere (Vione et al. 2004) and form through reactions 
involving ozone:

	
O O O3 2320+ <( ) ® +hv l •

	

	
• •O H O OH+ ®2 2 	

Because this is a photochemical reaction and the •OH radical rapidly degrades, 
this reaction occurs during the day (Arey 1998). One reported value for their abun-
dance was modelled at 11.1 × 105 molecules/cm3 (Naik et al. 2013). By contrast, the 
•NO3 radical is formed primarily through a tropospheric reaction between O3 and 
NO2 (Geyer et al. 2001):

	 NO O NO O2 3 3 2+ ® +•

	

The •NO3 radical is prevalent during the night, as it otherwise undergoes rapid pho-
tolysis during the day and has undergone a significant increase since pre-industrial 
times (Khan et al. 2015). Ambient levels of the NO3 radical have been difficult to 
quantify but, for example, have been observed to have a production rate between 
4 × 105 cm3s−1 and 8 × 106 cm3s−1 at a site near Berlin, Germany (Geyer et al. 2001).

Whether via •OH or •NO3, both radicals attack the position of the molecule at the 
carbon position with the highest electron density (Zielinska and Samy 2006) to cre-
ate an intermediate adduct that reacts with NO2 to form a nitrated group at the ortho 
position, relative to the carbon initially attacked by the radical (Zielinska and Samy 
2006; Atkinson and Arey 1994). This is followed by the removal of water or nitric 
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acid, depending on whether the initial radical is •OH or •NO3, respectively (Sasaki 
et al. 1997). The general formation in the case of pyrene transformation is summa-
rized in Fig. 2.2.

Through these radical-assisted processes, the isomers of pyrene and fluoranthene 
(2-NP and 2-NFr) are the most commonly formed NPAHs and are not thought to 
form through combustion processes (Arey et al. 1986; Ciccioli et al. 1996; Kameda 
et al. 2006; Murahashi et al. 1999). However, the yields may differ from each other, 
with, for example, 2-NFr being produced in greater concentrations from •NO3 rather 
than •OH (Feilburg et al. 2001; Reisen and Arey 2005). While the formation of NP 
and NFr isomers in gas-phase reactions is studied extensively, other NPAHs such as 
nitrotriphenylenes (Kameda et al. 2006) and nitrobenzanthrones (Phousongphouang 
and Arey 2003) have also been examined and provide insight into the formation of 
otherwise lesser studied NPAHs.

2.5  �NPAH Isomer Ratios as Source Indicators

Because of their differing formation mechanisms, NPAH isomers found in a sample 
are used as markers to identify the NPAH source. As mentioned above, 2-NP and 
2-NFr are thought to form through the atmospheric transformations of parental 
PAHs and not through diesel combustion. By contrast 1-NP and 3-NFr are not 
thought to be formed through atmospheric reactions and are primarily combustion 
products, most notably found in diesel emissions (Kameda et al. 2006; Paputa-Peck 
et al. 1983). By using ratios of these specific isomers, it is possible to create values 
that can be used across different studies to identify the sources of NPAHs. For 
example, 2-NFr/1-NP ratios are commonly used in identifying whether atmospheric 
transformations or combustion products are the predominant source of NPAHs 
(Albinet et al. 2007; Bamford and Baker 2003; Lin et al. 2015; Marino et al. 2000; 
Wang et al. 2011). These ratios can be influenced by seasonality. For example, a 

Fig. 2.2  The formation of 2-nitropyrene can occur through two mechanisms that differ in the radi-
cal that initially attacks the site of the greatest electron density. NO2 will be added to the position 
ortho to this site
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study the Beijing atmosphere found that the lower 2-NFr/1-NP ratios in the winter 
could be attributed to increased coal and biomass combustion for heating purposes 
(Lin et al. 2015). The increased combustion that occurs in winter months and the 
influence this has on the distribution of NPAHs has been reported by many (Bandowe 
et al. 2014; Barrado et al. 2012; Sarti et al. 2017; Wada et al. 2001).

Furthermore, since •NO3 radicals react with pyrene to form 2-NFr and negligible 
amounts of 2-NP, and •OH radicals will form both 2-NFr and NP (Wei et al. 2012), 
2-NFr/2-NP ratios are commonly used to approximate whether daytime OH or 
night-time NO3 radical initiation is the more dominant driver of atmospheric NPAH 
creation (Albinet et al. 2007; Bamford and Baker 2003; Huang et al. 2014; Kameda 
et al. 2006; Marino et al. 2000; Reisen and Arey 2005; Wang et al. 2011). Values 
greater than 5 suggest a greater atmospheric secondary transformation, while values 
less than 5 suggest that primary emissions are dominant (Ciccioli et al. 1996; Wang 
et  al. 2011). One study examined 2-NFr/2-NP concentrations at locations in 
Antarctica, Asia, Europe and South America and confirmed that these NPAHs were 
globally ubiquitous and formed from gases in the troposphere (Ciccioli et al. 1996). 
The utility of ratios like the 2-NFR/1-NP and 2-NFr/2-NP highlights the importance 
of being able to distinguish NPAH isomers, despite the inherent analytical chal-
lenges this may pose.

2.6  �NPAH Partitioning onto Particulate Matter

Atmospheric PACs are associated primarily with particulate matter (PM), and 
numerous studies have found that the majority of PACs are found on finer and 
smaller PM2.5 (Bozek et al. 2016; Di Filippo et al. 2010; Kong et al. 2010; Hayakawa 
et al. 1995; Kawanaka et al. 2008; Ohura et al. 2004; Tang et al. 2009). This is par-
ticularly alarming as PM2.5 accounts for the majority of PM in the atmosphere 
(Lonati and Giugliano 2006) and is known to penetrate deeper into the respiratory 
system, creating not just a mechanical hazard but a greater toxicological threat 
(Bozek et al. 2016; Kawanaka et al. 2008). As a result of this toxicity, the PAH/
NPAH associations with PM have been researched globally (Albinet et al. 2007; 
Barrado et al. 2012; Bozek et al. 2016; Dimashki et al. 2000; Marino et al. 2000; 
Wang et al. 2011; Wei et al. 2012).

In general, PACs have low vapour pressures, especially as molecular weight 
increases (Yaffe et al. 2001; Barrado et al. 2012). NPAHs in particular are more 
polar and have vapour pressures in general about 2–3 orders of magnitude less than 
PAHs, thus making condensation onto particulate matter more likely (Ciccioli et al. 
1996; Heeb et al. 2008; Shen et al. 2012). An NPAH of a molecular weight equivalent 
to phenanthrene or less is more likely to exist in the gas phase, with 3–4 ring conge-
ners such as NFr and NP (nominal mass: 247 g/mol) more likely to partition onto 
PM (Cochran et al. 2016; Yaffe et al. 2001). The structure of the sorption surface 
may also play a role. For example, in a study of PAH sorption to soot, it was found 
that the strong affinity for PAHs to soot is likely the result of π-π bonding as well as 

2  PAHs and NPAHs in Airborne Particulate Matter: Initial Formation…
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the planar structure of PAHs allowing them to penetrate deeper into the pores 
(Jonker and Koelmans 2002) and making them less available for reaction. Thus, 
being sorbed onto PM can protect the PAC from further gas-phase transformations, 
prolonging their atmospheric lifetimes and allowing for greater geographic disper-
sal. Sorption has also been shown to be dependant on weather, with colder weather 
causing greater partitioning onto aerosols such as PM, as a result of reduced vapour 
pressure and poor mixing of air (Bandowe et  al. 2014; Ravindra et  al. 2008). It 
should be noted, however, that the formation of PAH derivatives is driven by season, 
with winter having greater reactions with nitrogen oxides and summers having more 
photochemical reactions (Barrado et al. 2012). There is also the fact that winters 
have more fuel combustion occurring for heating purposes (Sarti et al. 2017). As a 
result, studies have shown that there is a greater concentration of PACs adsorbed 
onto PM in winter than in summer (Bandowe et  al. 2014; Barrado et  al. 2012; 
Ravindra et al. 2008; Sarti et al. 2017; Wada et al. 2001).

2.7  �NPAHs and Particulate Matter: Heterogeneous 
Transformations

While it is believed that homogeneous gas-phase reactions, based on •OH and •NO3 
radical intermediates, are the predominant routes for NPAH formation, there is a 
growing interest in understanding how PAHs sorbed onto atmospheric PM may be 
transformed by atmospheric oxidizing agents. This is especially salient, given the 
greater longevity and mobility of these PM-sorbed compounds.

The reactions of condensed PAHs with a number of gases such as O3, OH, HNO3 
and NO3/N2O5/NO3 have been performed by many (Carrara et al. 2010; Gross and 
Bertram 2008; Jariyasopit et al. 2014; Kamens et al. 1990; Kwamena and Abbatt 
2008; Perraudin et al. 2007; Wang et al. 2015; Zhang et al. 2011, 2014a, b; Zhou 
et al. 2015; Zielinska et al. 1986; Zimmermann et al. 2013) using a variety of sorp-
tion substrates such as quartz fibre filters (Cochran et  al. 2016), natural aerosols 
(Ringuet et al. 2012) and mineral surfaces (Kameda et al. 2016), and the products of 
these heterogeneous reactions can differ markedly from gas-phase homogeneous 
reactions. The multitude of different gases and reaction substrates has produced a 
range of products. For this reason, the uptake of gases onto the particle surfaces has 
been performed to help understand the efficiency and likelihood of these transfor-
mations. Studies of this have been performed for gases such as O3, OH, HNO3, 
N2O5, NO2 and NO3 (Gross and Bertram 2008; Perraudin et al. 2007; Zhou et al. 
2015).

For example, while it was initially thought that NO3 had a minimal role in the 
heterogeneous transformations of PAHs and that N2O5 was the greater oxidizing 
agent (Pitts et al. 1985), more recently, there is evidence of a rapid uptake of NO3 on 
soot surfaces (Mak et al. 2007). Furthermore, relative to NO2 and O3, NO3 has been 
observed to have the highest reaction rate constants with particle-sorbed PAHs and 
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that these reactions with NO3 radicals are 4–5 orders faster than the gas-phase reac-
tions (Liu et al. 2012). Similarly, the reaction of particle-associated PAHs with NO3 
was about four orders larger than with N2O5 or NO2 despite existing in much lower 
concentrations (Gross and Bertram 2008).

In addition to the reacting gas, the actual substrate characteristics may also dic-
tate the extent to which heterogeneous formation may occur. For example, Zhou 
et al. (2013) demonstrated that the secondary organic aerosols that comprise a sig-
nificant part of PM2.5 coatings can shield underlying contaminants such as PAHs 
from gas-phase oxidizing agents, thus shielding them from reaction over long trans-
portation events. Another set of experiments showed that there was a difference in 
PAH reactivity with OH between graphite particles and combustion-derived sur-
faces, with the latter showing lower reactivity, possibly due to differences in site 
accessibility (Esteve et al. 2004, 2006).

Heterogeneous reactions can produce some of the NPAH isomers that character-
ize primary and secondary NPAH formation. For example, Zimmermann et  al. 
(2013) found that reactions of ambient PM with N2O5/NO3/NO2 produced 1-NP, 
which they concluded was based on N2O5 reaction and not an NO3 radical-assisted 
reaction. This would suggest an electrophilic nitration (Wang et al. 2015) and differs 
from the 2-NP isomer that would be expected from gas-phase reactions. Furthermore, 
1-NP has also been formed through other heterogeneous processes, for example, 
through the reaction of NO2 on mineral dust surfaces (Kameda et al. 2016) and sil-
ica particles (Miet et al. 2009) and OH reactions with aerosol particles (Ringuet 
et al. 2012). This contrasts with the belief that 1-NP is formed solely through com-
bustion processes (viz. diesel engine combustion). Furthermore, Miet et al. (2009) 
also found that 1-NP sorbed onto silica particles could undergo transformation to 
form 1,3-DNP, 1,6-DNP and 1,8-DNP which correspond to the DNPs formed 
through electrophilic nitration. The formation of 2-NP and 2-NFr through heteroge-
neous interactions has been demonstrated as well (Ringuet et al. 2012; Zhang et al. 
2014a, b; Zimmermann et al. 2013), showing that these isomers may not be specific 
to gas-phase transformations. For example, it was found that N2O5, with increasing 
humidity, could promote the formation of NO2

+, which could produce the NP and 
NFr isomers characteristic of electrophilic nitration (Zhang et  al., Zhang et  al. 
2014a, b). Studies of other NPAHs have also been performed, with, for example, 
studies on larger (five rings or greater) PAHs (Ishii et al. 2000; Jariyasopit et al. 
2014). These studies of heterogeneous reactions suggest that the mechanisms of 
NPAH formation are more complicated than the primary/secondary source dichot-
omy presented earlier. However, although some of these reactions may call into 
question the use of marker isomers to identify primary and secondary NPAH forma-
tion, it should be noted that the heterogeneous transformations are likely to play a 
relatively minor role in PAH removal/transformation and so are unlikely to under-
mine the NPAH ratios discussed earlier.

2  PAHs and NPAHs in Airborne Particulate Matter: Initial Formation…
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