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Abstract. In this paper we study monomino games. These are two
player games played on a rectangular board with R rows and C columns.
The game pieces are monominoes, which cover exactly one cell of the
board. One by one each player selects a column of the board, and places
a monomino in the lowest uncovered cell. This generates a payoff for the
player. The game ends if all cells are covered by monominoes. The goal
of each player is to place his monominoes in such a way that his total
payoff is maximized. We derive the equilibrium play and corresponding
payoffs for the players.
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1 Introduction

In this paper we introduce the two-player game of monomino. This is a parlor
game like dice games, card games and so on. Instead of determining the player
that makes the last move (like in chess, checkers, or the game of Nim), the players
are interested in optimizing their payoffs (like in dice games and card games).
This game is played on a rectangular board or grid, say it has size 3×3. The cells
on the bottom (first) row have a value of 1 unit each, on the middle (second)
row the values are 2, and on the top (third) row the cells have a value of 3 units
each. The players alternately play a monomino, which is a piece that covers a
single cell of the board.

This game has the following rules. The players select one by one a column
of the board, and place a monomino in the lowest uncovered cell. A monomino
in row i on the board generates a payoff of i units to the player. The game
ends if all cells are covered by monominoes. In contrast to games like chess and
checkers, the goal of each player is to place his monominoes in such a way that
it maximizes his total payoff.

In this paper we analyze non-cooperative monomino games for general rec-
tangular boards. Notice that the game looks a bit like the game of Tetris but it is
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played with monominoes. More general, it resembles a combinatorial game; both
have two players, complete information, and no chance involved. The main dif-
ference is that we are interested in optimizing the payoffs of the players, instead
of determining who makes the last move. The latter question is not interesting
in this game since the winner may be determined beforehand. For instance, if
the player who plays the last monomino wins, then the winner is determined as
follows. If the number of cells is odd, then the player who makes the first move
wins, and if the number of cells is even, then the player who makes the second
move wins.

In the literature on combinatorial games the focus is on how to win games
with dominoes or other pieces like pentominoes. [8] studies winning moves for the
game of pentominoes. [6] describes a two-player game played on a square board.
One by one the players mark a cell on the board. The first player to form a
domino loses; hence the game is named dominono. The author provides winning
strategies. Tilings with polyominoes are studied in [10]. Excellent surveys on
combinatorial games are [1,5]. In cooperative game theory, attention is also paid
to combinatorial games; see [2] for a survey.

The literature on non-cooperative game theory pays among others attention
to parlor games like dice games [3], matching pennies, rock-paper-scissors, and
two-finger Morra (see e.g. [9]). These are zero-sum games, that is, the gain of
one player is the loss of the other player. Also, nearly always these games have
no equilibrium in pure strategies.

In this paper we introduce monomino games and study them using non-
cooperative game theory. Our results describe the equilibrium play and payoffs
for the players. The monomino game is a constant sum game and thus has a Nash
equilibrium in pure strategies. An initial study on monomino games is reported
in the thesis [4].

The outline of this paper is as follows. In Sect. 2 we introduce monomino
games. In Sect. 3 the equilibrium play and payoffs are considered. Section 4
concludes.

2 Monomino Games

A monomino game is played by two players on a rectangular board with R rows
and C columns. We denote such a monomino game by M(R,C). Each of the
RC cells is square. The game is played with pieces of 1 × 1 cell; these pieces are
named monominoes.

The players are named player 1 and player 2. Player 1 starts. One by one
the players put a monomino on the board according to the following rules. A
monomino is placed in a cell of the board. If the piece is placed in column i of
the board, then this monomino covers the lowest uncovered cell. The game ends
if all cells are covered by monominoes; this happens after RC moves.

Each played monomino generates a value for its player. If a player places
a monomino in row j then this increases the payoff of this player by j units.
Each player wants to maximize his payoff. Hence, this game is a non-cooperative
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game. The Nash equilibrium [7] is a solution concept for non-cooperative games
that describes optimal play of the game. Namely, a pair of strategies (s1, s2) for
the players is a Nash equilibrium if s1 optimizes player 1’s payoff in case player
2 plays strategy s2, and conversely, s2 optimizes player 2’s payoff in case player
1 plays strategy s1. For a game in extensive form we consider subgame perfect
equilibria, a refinement of Nash equilibria. A subgame perfect equilibrium is
a pair of strategies that induces a Nash equilibrium in every subgame. These
notions are illustrated in the example below.

Example 1. Consider the game M(3, 2). This game is played on a board with
three rows and two columns. After six moves all six cells on the board are covered
and the game is over.

This game already has very many possible plays. To be able to represent the
game graphically, assume just for the remainder of this example that if a player
can choose among both cells in the same row, then the player selects the cell in
column 1.

Figure 1 shows a graphical representation of this game as a game in extensive
form, or tree game. At each node of this tree we mention the player that makes
a move as well as the game situation [x1, x2] with xi the number of covered cells
in column i. The actions are mentioned besides the edges, with Vi the action
that column i is selected. At the bottom nodes the payoffs (π1, π2), with payoff
πj to player j, are mentioned.

At the first node, player 1 makes the move. According to the extra assump-
tion in this example she has only one action, namely V1 (select column 1). In
the new game situation [1, 0] player 2 can choose between V1 and V2. And so
on. We find the optimal payoffs and actions by using backward induction. The
optimal actions are indicated by thick colored lines; red corresponds to player
1 and blue to player 2. There is a unique subgame perfect equilibrium, that is
presented in Table 1. Notice that any subgame corresponds to a game situation.
The equilibrium payoff is (π1, π2) = (5, 7). The equilibrium play is as follows.

Table 1. The subgame perfect equilibrium in Fig. 1.

Subgame [3, 2] [3, 1] [2, 2] [3, 0] [2, 1] [2, 0] [1, 1] [1, 0] [0, 0]

Player at move 2 1 1 2 2 1 1 2 1

Optimal action V2 V2 V1 V2 V1 V1 V1 V2 V1

Player 1 starts in game situation [0, 0] with action V1, then the new game
situation is [1, 0] and player 2 plays V2. Subsequently, player 1 plays V1, and so
on. See Table 1 or the thick lines in Fig. 1.

The bimatrix game that corresponds to this game in extensive form is pre-
sented below. The actions of player 1, represented by the rows of the bimatrix,
correspond to the nontrivial choices in the game situation [2, 0]. The actions of
player 2, mentioned in the columns of the bimatrix, are denoted by a|bc with a
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Fig. 1. The game M(2, 3) in extensive form with the extra restriction that if a player
can choose among both cells in the same row, then the player selects the cell in column 1.
(Color figure online)

the choice in situation [1, 0], b the choice in situation [2, 1] if the previous situ-
ation was [2, 0], and c the choice in situation [2, 1] if the previous situation was
[1, 1].

(V1|V1V1 V1|V1V2 V1|V2V1 V1|V2V2 V2|V1V1 V2|V1V2 V2|V2V1 V2|V2V2

V1 (6, 6) (6, 6) (6, 6) (6, 6) (5, 7)∗ (6, 6) (5, 7)∗ (6, 6)

V2 (4, 8) (4, 8) (5, 7) (5, 7) (5, 7) (6, 6) (5, 7) (6, 6)

)

The two Nash equilibria are (V1, V2|V1V1) and (V1, V2|V2V1); they are
indicated by stars in the bimatrix. The first one is the subgame perfect
equilibrium. �

In the example above we temporarily added the restriction that a player
should select a cell in column 1 when both cells are available in the same row.
Even with this assumption, the game tree is not small. In this paper we consider
games without this assumption, leading to even larger game trees.

Given a monomino game M(R,C), the total payoff to the players is fixed,
namely C(1 + 2 + . . . + R) = CR(R + 1)/2. Any payoff (π1, π2) satisfies
π1 + π2 = CR(R + 1)/2. Thus, monomino games are constant sum games. This
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implies in particular that there exists a Nash equilibrium in pure strategies [9].
Further, if there are multiple Nash equilibria, then the payoff to a player is the
same in all equilibria. This was illustrated in Example 1.

3 Game Play and Payoffs in Equilibrium

In this section we analyse the monomino games. We derive the optimal game
play and the payoffs in equilibrium.

The following notation is used. The cells of the grid are indicated by pairs
(i, j), where 1 ≤ i ≤ R is the row number and 1 ≤ j ≤ C the column number.
Let R = {0, 1, 2, . . . , R} be the set of the number of possible unoccupied cells
per column. We consider vectors p = (p1, p2, . . . , pC) ∈ RC and denote P =
∑C

j=1 pj . The vector p describes for any column j, 1 ≤ j ≤ C, that the cells 1
up to R−pj are occupied with monominoes and the top pj cells are free. In other
words, the vector p represents a position on the playing board when RC − P
monominoes have been played.

The following Theorem states the equilibrium, or optimal, actions for the
players. The equilibrium payoffs are mentioned in Corollary 3.

Theorem 2. In the monomino game M(R,C), the game play in equilibrium is
as follows.

(a) If R is even:
In each move, player 2 plays the same column as player 1.

(b) If R is odd and C is even:
Player 2 plays row 1 if player 1 does so, otherwise he plays the same column
as player 1.

(c) If both R and C are odd:
Player 1 plays row 1 in his first move. Thereafter he plays row 1 if player 2
does so, otherwise he plays the same column as player 2.

Proof. The theorem is proved by induction to the number of remaining moves if
started from a certain position p. That is, we focus on the payoffs for the players
for occupying the remaining free cells if started at position p (independent of
who placed the monominoes where in the starting position p).

First, consider case (a). We prove that this play is optimal with respect to
the remaining payoffs for each starting position p ∈ RC , where pj is even for all
1 ≤ j ≤ C. Hence it is also optimal for an empty grid in case R is even.

We use induction to n = P/2, the number of moves remaining for player 2
until all cells of the grid are occupied. The induction basis for n = 1 is trivial: in
the starting position only the two top cells of one column are free and so both
players must play this column.

Now let n ≥ 1 and suppose that the play is optimal for all starting positions
p satisfying pj even for all 1 ≤ j ≤ C and P/2 = n. Consider a starting position
q ∈ RC with qj even for all 1 ≤ j ≤ C and Q/2 = n + 1. Since an even number
of cells is occupied, it is player 1’s turn. Suppose player 1 plays column k, i.e.,
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cell (R − qk + 1, k) and player 2 plays column � �= k; i.e. cell (R − q� + 1, �).
Now player 1 can play cell (R − q� + 2, �) in his next move (because q� is even).
This results in a position that is equivalent to the situation where player 1 plays
column k in starting position p = (q1, . . . , q� − 2, . . . , qC).

Note that p satisfies the conditions of the induction hypothesis, so player 2
will now play the same column as player 1 until the end of the game in order
to maximize his remaining payoff (and will therefore play column k in his next
move).

Now we compare this with the situation where player 2 had played col-
umn k after player 1 played this column in position q. In this case the position
(q1, . . . , qk −2, . . . , qC) arises, which also satisfies the conditions in the induction
hypothesis. So player 2 would then continue with the optimal play, i.e., playing
the same column as player 1 until the end of the game.

Consequently, the final position of the pieces on the board at the end of the
game only differs in the cells (R−q�+1, �), which is now occupied by a monomino
of player 2 and (R − q� + 2, �), occupied by a monomino of player 1. Therefore
the remaining payoff for player 2’s moves from position q until the end of the
game, will be one unit less than the payoff he would have gotten if he had played
the same column as player 1 in position q, as the play prescribes. Hence, the
play is optimal for starting position q for player 2 regardless of what player 1
does. Now the proof follows by induction.

Second, consider case (b). Let p ∈ RC be a starting position on the grid for
which the number of nonempty columns is even and each of these columns has
an even number of free cells (also fully occupied columns are considered to have
an even number of free cells). Obviously, the position on an empty grid satisfies
this property: for an empty grid the number of nonempty columns equals zero.

Clearly, P is even for these positions. Again we use induction to n = P/2.
The induction basis for n = 1 is easily verified because in that case there are
essentially two possible starting positions: the two top cells of one column are
free and so both players must play this column, or R = 1, which is also trivial.

Now let n ≥ 1 and suppose that the play is optimal for all starting positions
p satisfying P/2 = n and the number of nonempty columns is even and each
of these columns has an even number of free cells. Consider a starting position
q ∈ RC with Q/2 = n + 1 satisfying this property. Note that the number
of occupied cells in q, RC − Q, is even. Hence, it is player 1’s turn. We will
distinguish three cases.

Case b1: Player 1 plays row 1, say cell (1, k), and player 2 does not, say he
plays the nonempty column j, i.e., cell (R − qj + 1, j). Then, in his next move,
player 1 can play cell (R − qj + 2, j) (because qj is even). This yields a position
that also arises from position p = (q1, . . . , qj − 2, . . . , qC) if player 1 plays cell
(1, k). Note that p satisfies the conditions in the induction hypothesis, so player
2 can optimize his remaining payoff in position p by using the play described
above (starting by playing row 1). Now we compare this with the situation where
player 2 had played row 1 after player 1 played this row in position q. Then the
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position that arises again satisfies the conditions in the induction hypothesis. So
player 2 would continue by playing the optimal play until the end of the game.

We find that the remaining payoff for player 2 in position q will be one
unit less than the payoff he would have gotten if he had played row 1, as the
play prescribes (the ownership of the cells (R − qj + 1, j) and (R − qj + 2, j) is
interchanged).

Case b2: Player 1 plays nonempty column j (cell (R − qj + 1, j)) and player
2 plays nonempty column k �= j (cell (R − qk + 1, k)). Now player 1 can
play cell (R − qk + 2, k) in his next move and we arrive in a position that is
equivalent to the situation where player 1 plays column j in starting position
p = (q1, . . . , qk − 2, . . . , qC). By the induction hypothesis, player 2 can optimize
his remaining payoff in this position by using the play described above (starting
by playing column j). Again we derive that player 2’s remaining payoff in posi-
tion q will be one unit less than if he had started by playing column j, as the play
prescribes.

Case b3: Player 1 plays nonempty column j (cell (R − qj + 1, j)) and player
2 plays row 1, say cell (1, k). Then, in his next move, player 1 can play col-
umn j again (cell (R − qj + 2, j)). If we now interchange the ownership of the
monominoes in cells (R − qj + 2, j) and (1, k), we arrive in a position that is
equivalent to the situation where player 1 plays cell (1, k) in starting position
p = (q1, . . . , qj − 2, . . . , qC) (here we use the fact that the remaining payoffs
in a starting position are independent of how this position has arisen). By the
induction hypothesis, player 2 can optimize his remaining payoff in position p
by using the play described above (starting by playing row 1). If we compare
this with the situation where player 2 had played column j in position q and
thereafter followed the (by the induction hypothesis optimal) play in position
(q1, . . . , qj −2, . . . , qC), we find that the remaining payoff for player 2 in position
q will be R − qj +1 units less than if he had started by playing column j, as the
play prescribes.

In all three cases the play turns out to be optimal for position q no matter
what player 1 does. Also here, the proof follows by induction.

Finally, consider case (c). Let p ∈ RC be a starting position on the grid for
which the number of nonempty columns is odd and each of these columns has
an even number of free cells (also fully occupied columns are considered to have
an even number of free cells). Clearly, such a position arises as soon as player
1 played his first move. The proof now follows the same lines as the proof of
part (b) with reversed roles for players 1 and 2, and an induction hypothesis
for positions with an odd number of nonempty columns, all containing an even
number of free cells. Finally, since player 1 must play row 1 in his first move, we
conclude that the play described in part (c) of the theorem is the equilibrium
play for grids with an odd number of rows and columns. �

Figure 2 shows the optimal game play and payoffs of the monomino games
M(6, 4), M(5, 4) and M(5, 5), which correspond to the cases (a), (b) and (c)
respectively in Theorem 2. Row 1 is the bottom row, and row R the top row.
The number in a cell indicates which player puts a monomino there. The optimal
payoffs (π1, π2) are (36, 48), (26, 34) and (43, 32) from left to right.
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Fig. 2. Optimal game play in monomino games M(6, 4), M(5, 4) and M(5, 5) from left
to right with optimal payoffs (36, 48), (26, 34) and (43, 32), respectively. The number
in a cell indicates which player puts a monomino there.

The equilibrium payoffs to the players are easy to derive following the game
play described in Theorem 2, and illustrated in Fig. 2. In case (a), player 2 forces
his monominoes to occupy all cells in the even rows of the grid and player 1’s
monominoes occupy the odd rows. In case (b) the monominoes of player 2 will
occupy half of the cells in row 1 and all cells in the other odd rows, whereas player
1’s monominoes will occupy the other cells in the first row and all cells in the
even rows. In case (c), player 1 forces his monominoes to occupy C+1

2 cells in row
1 and all cells in the other odd rows, and player 2’s monominoes will occupy the
other cells in the first row and all cells in the even rows. From this, the derivation
of the payoffs to the players is straightforward, using

∑R
k=1 k = 1

2R(R + 1).

Corollary 3. The optimal payoffs in the monomino game M(R,C) are as
follows.

(π1, π2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
CR2

4 , CR(R+2)
4

)
, if R is even,

(
C(R2+1)

4 , C(R2+2R−1)
4

)
, if R is odd and C even,

(
CR(R+2)−C+2

4 , C(R2+1)−2
4

)
, if R and C odd.

4 Conclusions

In this paper we introduced a new class of non-cooperative games: the monomino
games M(R,C). These are parlor games like dice games, card games and so
on. Instead of determining the player that makes the last move (like in chess,
checkers, or the game of Nim), the players are interested in optimizing their
individual payoffs (like in dice games and card games). These are constant sum
games, so Nash equilibria in pure strategies exist. We derived the equilibrium
game play and the corresponding payoffs for any size of the board of the game.

Note that the results for game play and corresponding payoffs in Theorem2
and Corollary 3 can easily be generalized to games with pieces or playing blocks
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of size k × 1, for any positive integer k, and playing boards of size kR×C where
the blocks must be played vertically. That is, any block is placed in a single
column.

For future research, we intend to study non-cooperative ‘domino’ games.
These games are also played on a rectangular board where players one by one
put pieces of size 1 × d on the board either in horizontal or vertical direction.
(For d = 2 the pieces are the well-known domino pieces.) Some initial analysis
of these games is done in [4]. There it turned out that these games are much
more complex than monomino games. One of the reasons is that in these domino
games some cells of the board may remain uncovered.

Finally, in this paper we consider monomino games with two players. It might
also be interesting to examine equilibrium game play in case more than two
players are involved.
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