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Abstract. The aim of this paper is to develop a new method for computing
least square interval-valued nucleoli of cooperative games with interval-valued
payoffs, which usually are called interval-valued cooperative games for short. In
this methodology, based on the square excess which can be intuitionally
interpreted as a measure of the dissatisfaction of the coalitions, we construct a
quadratic programming model for least square interval-valued prenucleolus of
any interval-valued cooperative game and obtain its analytical solution, which is
used to determine players’ interval-valued imputations via the designed algo-
rithms that ensure the nucleoli always satisfy the individual rationality of
players. Hereby the least square interval-valued nucleoli of interval-valued
cooperative games are determined in the sense of minimizing the difference of
the square excesses of the coalitions. Moreover, we discuss some useful and
important properties of the least square interval-valued nucleolus such as its
existence and uniqueness, efficiency, individual rationality, additivity, symme-
try, and anonymity.

Keywords: Game algorithm � Cooperative game � Interval computing �
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1 Introduction

Due to uncertainty and imprecision in real economic management situations, player
coalitions’ values usually have to be estimated. Recently, intervals seem to be suitable
for employing to deal with inherited imprecision or vagueness in coalitions’ values and
hereby there appears an important type of cooperative games with interval-valued data,
which often are called interval-valued cooperative games for short [1, 2]. A good
example may be the interval bankruptcy games with interval claims [3]. Specifically,
Branzei et al. [3] introduced interval-valued cooperative games which are used to
handle bankruptcy situations where the estate is known with certainty while claims
belong to known bounded intervals of real numbers and hereby defined two
Shapley-like values for solving the interval-valued cooperative games. Obviously,
interval-valued cooperative games are remarkably different from classical cooperative
games from the point of view of the data type of the player coalitions’ values.
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The coalitions’ values of interval-valued cooperative games are expressed with inter-
vals but that of classical cooperative games are expressed with real numbers [4, 5].

Lately, interval-valued cooperative games have attracted attention of researchers and
their solution concepts have applied to many fields such as business [6], operations
research [7], economy, modern finance, climate negotiations and policy, tourism
management [2], environmental management, and pollution control. To be more pre-
cise, Branzei et al. [3] firstly defined two Shapley-like values, which associate vectors of
intervals with interval-valued cooperative games of the interval bankruptcy problems
with interval claims, and studied the interrelations among using the arithmetic of
intervals [8]. To place the models of interval-valued cooperative games within the
cooperative game theory and to motivate continued interest in theory and application
development, Branzei et al. [1] gave a good survey that discussed how the models of
interval-valued cooperative games extended the cooperative game theory, and reviewed
their existing and potential applications in economic management and business situa-
tions with interval data. Alparslan Gök et al. [4] studied the properties of the interval-
valued Shapley value on the class of size monotonic interval-valued cooperative games
and gave an axiomatic characterization of the interval-valued Shapley value on a special
subclass of interval-valued cooperative games. Kimms and Drechsel [6] proposed a
general mathematical programming algorithm which can be used to find an element in
the interval-valued core. Hong and Li [9] constructed an auxiliary nonlinear program-
ming model and hereby proposed a corresponding effective bisection method for
computing elements of interval-valued cores of interval-valued n-person cooperative
games by introducing the satisfaction degree index (or fuzzy ranking index) of interval
comparison. Theoretically, Branzei et al. [10] defined the interval-valued cores of
interval-valued cooperative games through discussing the interval-valued square dom-
inance and interval-valued dominance imputations. Alparslan Gök et al. [11] introduced
some set-valued solution concepts of interval-valued cooperative games, which include
the interval-valued core, the interval-valued dominance core, and the interval-valued
stable sets. Alparslan Gök et al. [12] extended the classical two-person cooperative game
theory to two-person cooperative games with interval data and studied the interval-
valued core, balancedness, superadditivity, and some other properties.

However, it is easy to find that most of the aforementioned works used the Moore’s
interval operations [8], especially the Moore’s interval subtraction, which usually
enlarges uncertainty of the resulted interval. This case usually is not accordant with real
economic management situations. Therefore, the aim of this paper is to develop simple
and effective quadratic programming methods for solving interval-valued cooperative
games. More precisely, based on the differences of the square excesses of the player
coalitions, we construct two quadratic programming models and obtain their analytical
solutions, i.e., least square interval-valued prenucleoli and nucleoli, which are used to
determine players’ interval-valued imputations through using the designed algorithms
which ensure that they satisfy the individual rationality of players. Hereby, the least
square interval-valued prenucleoli and nucleoli of interval-valued cooperative games
are determined in the sense of minimizing the difference of the square excesses of the
player coalitions. The quadratic programming methods proposed in this paper are
remarkably different from the aforementioned methods. On the one hand, the devel-
oped methods can provide analytical formulae for determining the least square
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interval-valued prenucleoli and nucleoli of interval-valued cooperative games and
hereby obtain the interval-valued imputations of players. On the other hand, the
developed methods can effectively avoid the Moore’s interval subtraction [8].

The rest of this paper is arranged as follows. In the next section, we briefly review
the interval-valued cooperative games and their solution concepts and hereby define the
square excesses of players’ coalitions on interval-valued payoff vector to measure the
dissatisfaction of the coalitions. In Sect. 3, we construct two quadratic programming
models based on the square excesses of the player coalitions to compute the least
square interval-valued prenucleoli and nucleoli of interval-valued cooperative games.
The effective algorithm is designed to determine players’ interval-valued imputations
through considering the individual rationality of players. Furthermore, we discuss some
important and useful properties of the least square interval-valued prenucleoli and
nucleoli of interval-valued cooperative games. The quadratic programming models and
algorithms are illustrated with a numerical example about the optimal allocation of the
cooperative profits of joint production and the computational result is analyzed in
Sect. 4. The validity, applicability, and advantages of the methods proposed in this
paper are shown and some remarks on further research are discussed in the last section.

2 Notations of Intervals and Interval-Valued Cooperative
Games

2.1 Interval Notations and Arithmetic Operations

To facilitate introducing interval-valued cooperative games, we firstly review the
concepts of intervals and their distances as well as interval arithmetic operations.

Usually, �a ¼ ½aL; aR� ¼ fa a 2 R; aL � a� aRj g is used to express an interval,
where R is the set of real numbers, aL 2 R and aR 2 R are called the lower bound and
the upper bound of the interval �a, respectively. Let �R be the set of intervals on the set R.

Clearly, if aL ¼ aR, then the interval �a ¼ ½aL; aR� degenerates to a real number,
denoted by a, where a ¼ aL ¼ aR. Conversely, a real number a may be written as an
interval �a ¼ ½a; a�. Therefore, intervals are a generalization of real numbers. That is to
say, real numbers are a special case of intervals [2, 8].

If aL � 0, then �a ¼ ½aL; aR� is called a non-negative interval, denoted by �a� 0.
Likewise, if aR � 0, then �a is called a non-positive interval, denoted by �a� 0. If aL [ 0,
then �a is called a positive interval, denoted by �a[ 0. If aR\0, then �a is called a
negative interval, denoted by �a\0.

To facilitate the sequent discussion, we briefly review arithmetic operations of
intervals such as the equality, the addition, and the scalar multiplication [2, 8, 13].

Assume that �a ¼ ½aL; aR� and �b ¼ ½bL; bR� be two intervals on the set �R. Then, �a is
equal to �b if and only if aL ¼ bL and aR ¼ bR, denoted by �a ¼ �b.

�aþ �b ¼ ½aL þ bL; aR þ bR�: ð1Þ
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The scalar multiplication of a real number c 2 R and an interval �a is defined as
follows:

c�a ¼ ½caL; caR� ðc� 0Þ
½caR; caL� ðc\0Þ

�
ð2Þ

Clearly, the above arithmetic operations of intervals are a generalization of those of
real numbers.

In most management situations, we usually have to compare or rank intervals.
However, ranking intervals or interval comparison is a difficult and an important
problem. In a parallel way to comparison of the real numbers, Moore [8] firstly pro-
posed the order relation between intervals as follows:

�a� �b if and only if aL � bL and aR � bR; ð3Þ

which is simply called the Moore’s order relation between intervals.
To measure differences between intervals, we give the distance concept as follows.

Definition 1. Assume that �a and �b be two intervals on the set �R. If a mapping d :
�R� �R 7!R satisfies the three properties (1)–(3) as follows:

(1) Non-negativity: dð�a; �bÞ� 0;
(2) Symmetry: dð�a; �bÞ ¼ dð�b; �aÞ;
(3) Trigonometrical inequality relation: dð�a; �bÞ� dð�a;�cÞþ dð�c; �bÞ for any interval �c on

the set �R, then dð�a; �bÞ is called the distance between the intervals �a and �b.

It is easy to see from Definition 1 that the distance between intervals is a natural
generalization of that of the set of real numbers.

Obviously, there are various forms of distances between intervals which satisfy
Definition 1. For instance, to meet the need of modeling interval-valued cooperative
games in the subsequent sections, we define the distance between two intervals �a 2 �R
and �b 2 �R as follows:

Dð�a; �bÞ ¼ ðaL � bLÞ2 þðaR � bRÞ2: ð4Þ

It is easy to see that Eq. (4) is very similar to the distance between two points in the
two-dimension Euclidean space.

Theorem 1. Dð�a; �bÞ defined by Eq. (4) is the distance between the intervals �a 2 �R and
�b 2 �R.

Proof. We need to validate that Dð�a; �bÞ defined by Eq. (4) satisfies the three properties
(1)–(3) of Definition 1, respectively.

It is easy to see from Eq. (4) that Dð�a; �bÞ� 0 and Dð�a; �bÞ ¼ Dð�b; �aÞ for any
intervals �a and �b. Namely, Dð�a; �bÞ satisfies the properties (1) and (2) of Definition 1.

For any interval �c on the set �R, where �c ¼ ½cL; cR�, it is easily derived from Eq. (4)
that
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Dð�a; �bÞ ¼ðaL � bLÞ2 þðaR � bRÞ2

� ½ðaL � cLÞ2 þðcL � bLÞ2� þ ½ðaR � cRÞ2 þðcR � bRÞ2�
¼½ðaL � cLÞ2 þðaR � cRÞ2� þ ½ðcL � bLÞ2 þðcR � bRÞ2�
¼Dð�a;�cÞþDð�c; �bÞ;

i.e.,

Dð�a; �bÞ�Dð�a;�cÞþDð�c; �bÞ:

Therefore, Dð�a; �bÞ satisfies the property (3) of Definition 1. Thus, we have proven
that Dð�a; �bÞ defined by Eq. (4) is the distance between the intervals �a and �b.

It is noted that the square appears in Eq. (4). In fact, Eq. (4) is the square of the
distance between the intervals. In the sequent, the distance between two intervals is
referred to the square of the distance given by Eq. (4) unless otherwise specified.

2.2 Interval-Valued Cooperative Games and Notations

A n-person interval-valued cooperative game in characteristic function form is an
ordered-pair \N;�t[ , where N ¼ f1; 2; � � � ; ng is the set of n players, each subset
S�N is called a coalition of the player set N, and �t : 2N ! R is the interval-valued
characteristic function of players’ coalitions. 2N denotes the set of coalitions of the
player set N. Obviously, N is the grand coalition. For each coalition S�N, its size is
denoted by s, which represents the number of players in the coalition S. The interval
�tðSÞ ¼ ½tLðSÞ; tRðSÞ� represents the range of reward (or profit) that the coalition S can
achieve on its own if all the players in it act together, where the lower bound tLðSÞ of
the interval �tðSÞ is the minimal reward of the coalition S and the upper bound tRðSÞ of
the interval �tðSÞ is the maximal reward of the coalition S. The interpretation of
interval-valued cooperative games is that a coalition S�N can obtain for its members a
worth that is somewhere in the interval �tðSÞ. Stated as the above Sect. 2.1, we stipulate
�tð£Þ ¼ ½0; 0�, where £ is an empty set. Note that usually �tð£Þ can be simply written
as �tð£Þ ¼ 0 according to the notation of intervals in Sect. 2.1. For convenience,
�tðS[figÞ, �tðSnfigÞ, �tðfi; jgÞ, and �tðfigÞ are usually written as �tðS[ iÞ, �tðSniÞ, �tði; jÞ,
and �tðiÞ, respectively. In the sequent, a n-person interval-valued cooperative game
\N;�t[ is simply called the interval-valued cooperative game �t. The set of n-person
interval-valued cooperative games �t is denoted by �Gn.

3 Quadratic Programming Model for Least Square
Interval-Valued Prenucleoli of Interval-Valued
Cooperative Games

For any interval-valued cooperative game �t 2 �Gn, it is obvious that each player’s
payoff obtained from cooperation should be also an interval due to the fact that the
payoff (or characteristic value) of each coalition S�N is an interval. Thus, let �xi ¼
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½xLi; xRi� be the interval-valued payoff which is allocated to the player i 2 N when the
grand coalition N is reached. Denote �x ¼ ð�x1;�x2; � � � ;�xnÞT, which is the interval-valued
payoff vector of n players in the grand coalition N. For any coalition S�N, denote
�xðSÞ ¼ P

i2S
�xi, which represents the collective (or aggregated) interval-valued payoff of

all the players in the coalition S. According to Eq. (1), �xðSÞ ¼ ½xLðSÞ; xRðSÞ� can be
expressed as the following interval:

�xðSÞ ¼ ½
X
i2S

xLi;
X
i2S

xRi�:

In a similar way to the definitions of the efficiency and individual rationality of the
classical cooperative game [2, 14], if an interval-valued payoff vector �x satisfies both
the efficiency and individual rationality conditions as follows:

Xn
i¼1

�xi ¼ �tðNÞ ð5Þ

and

�xi ��tðiÞ ði ¼ 1; 2; � � � ; nÞ; ð6Þ

respectively, then �x is called an imputation of the interval-valued cooperative game
�t 2 �Gn. In other word, an interval-valued payoff vector �x is said to be efficient or a
preimputation if the efficiency condition �xðNÞ ¼ �tðNÞ is valid. Further, �x is said to be
an imputation if the individual rationality conditions �xi ��tðiÞ for all players i 2 N are
also satisfied. �IPrð�tÞ and �Ið�tÞ denote the sets of interval-valued preimputations and
imputations of the interval-valued cooperative game �t 2 �Gn, respectively.

Using Eqs. (1) and (3), Eqs. (5) and (6) can be rewritten as follows:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xRi ¼ tRðNÞ

8>>>><
>>>>:

ð7Þ

and

xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ;

�
ð8Þ

respectively.
For any interval-valued payoff vector �x and any coalition S�N, where S 6¼ £,

according to Eq. (4), denote

eðS;�xÞ ¼ ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2; ð9Þ
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which is just the square of the distance between the intervals �xðSÞ and �tðSÞ. Then, eðS;�xÞ
is called the square excess of the coalition S on the interval-valued payoff vector �x.

Usually, for any coalition S�N, we use eLðS;�xÞ to express tLðSÞ � xLðSÞ, i.e.,

eLðS;�xÞ ¼ tLðSÞ � xLðSÞ; ð10Þ

which is called the lower bound of the excess of the coalition S on the interval-valued
payoff vector �x. Likewise, we use eRðS;�xÞ to represent tRðSÞ � xRðSÞ, i.e.,

eRðS;�xÞ ¼ tRðSÞ � xRðSÞ; ð11Þ

which is called the upper bound of the excess of the coalition S on �x. Therefore, eðS;�xÞ
can be rewritten as follows:

eðS;�xÞ ¼ ðeLðS;�xÞÞ2 þðeRðS;�xÞÞ2:

It is noted that eðS;�xÞ can be interpreted as a measure of the dissatisfaction of the
coalition S if �x were suggested as a final interval-valued payoff vector for all the players
in the grand coalition. Obviously, eðS;�xÞ� 0. Further, the square excess eðN;�xÞ of the
grand coalition N on �x is equal to 0 if the interval-valued payoff vector �x satisfies the
efficiency. Hence, the greater eðS;�xÞ the more unfair the coalition S.

Least square interval-valued prenucleoli and nucleoli are an important type of
solutions for interval-valued cooperative games. In a paralleled way to the definitions
of the prenucleoli and nucleoli [15, 16] of classical cooperative games, we can define
the least square interval-valued prenucleoli and nucleoli of interval-valued cooperative
games based on the square excesses of coalitions on the interval-valued payoff vectors.

The least square interval-valued prenucleolus of an interval-valued cooperative
game would choose an interval-valued payoff vector to minimize the sum of the square
excesses from the preimputation set according to the lexicographical order. Whereas,
the least square interval-valued nucleolus would choose an interval-valued payoff
vector to minimize the sum of the square excesses from the imputation set. In both
cases, the key problem to obtain least square interval-valued prenucleoli and nucleoli of
interval-valued cooperative games is to minimize the maximal complaint with the
square excess of a coalition on an interval-valued payoff vector. This selection is
regarded as equitable and reasonable. To attain the minimum of

P
S�N

eðS;�xÞ and balance

the gain of each player i 2 N, we will choose the interval-valued payoff vector to
minimize the sum of the squares of the differences between the excesses of the
coalitions and their means (or average excesses). Namely, we try to find the
interval-valued payoff vector so that the resulting excesses are the closest to the means
under the least square criterion. Thus, combining with Eq. (7), solving a least square
interval-valued prenucleolus of any interval-valued cooperative game can be trans-
formed into solving the constructed quadratic programming model as follows:
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min
X

S�N;S 6¼£

½ðeLðS;�xÞ � eLmðS;�xÞÞ2 þðeRðS;�xÞ � eRmðS;�xÞÞ2�
( )

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ;

8>><
>>:

ð12Þ

where the summation is taken over all nonempty coalitions S�N, and eLmðS;�xÞ and
eRmðS;�xÞ are the means of the excesses of coalitions on �x, i.e.,

eLmðS;�xÞ ¼ 1
2n�1

X
S�N;S 6¼£

eLðS;�xÞ ð13Þ

and

eRmðS;�xÞ ¼ 1
2n�1

X
S�N;S6¼£

eRðS;�xÞ: ð14Þ

Analogously, combining with Eqs. (7) and (8), solving a least square interval-
valued nucleolus of any interval-valued cooperative game can be converted into
solving the constructed quadratic programming model as follows:

minf
X

S�N;S 6¼£

½ðeLðS;�xÞ � eLmðS;�xÞÞ2 þðeRðS;�xÞ � eRmðS;�xÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>>><
>>>>>>>:

ð15Þ

It is easily observed the following conclusion: for any interval-valued cooperative
game �t 2 �Gn, if an interval-valued payoff vector �x satisfies the efficiency, then the sum
of the lower (or upper) bounds of the excesses of all coalitions S�N on �x is the same
as that on any other interval-valued payoff vector which also satisfies the efficiency. In
fact, due to the assumption that �x is an interval-valued payoff vector which satisfies the
efficiency, then we have
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X
S�N;S6¼£

eLðS;�xÞ ¼
X

S�N;S6¼£

ðtLðSÞ � xLðSÞÞ

¼
X

S�N;S6¼£

tLðSÞ�
X

S�N;S 6¼£

xLðSÞ

¼
X

S�N;S6¼£

tLðSÞ� 1
2
½

X
S�N;S 6¼£

xLðSÞþ
X

S�N;S 6¼£

xLðNnSÞþ xLðNÞ�

¼
X

S�N;S6¼£

tLðSÞ� 1
2

X
S�N;S 6¼£

ðxLðSÞþ xLðNnSÞÞ � 1
2
xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ� 1
2
ð2n � 1ÞxLðNÞ � 1

2
xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ�2n�1xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞ;

i.e., X
S�N;S6¼£

eLðS;�xÞ ¼
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞ; ð16Þ

which easily implies that
P

S�N;S6¼£
eLðS;�xÞ is a constant for any interval-valued payoff

vector which satisfies the efficiency.
Likewise, we can easily obtainX

S�N;S6¼£

eRðS;�xÞ ¼
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞ: ð17Þ

Thus, Eqs. (16) and (17) show that the sums of the lower (or upper) bounds of the
excesses of all coalitions are identical for all interval-valued payoff vectors which
satisfy the efficiency.

Further, it is easy to see from Eqs. (16) and (17) that the means of the lower (or
upper) bounds of the excesses of all coalitions are identical for all interval-valued
payoff vectors which satisfy the efficiency.

Using Eqs. (10)–(14) and Eqs. (16) and (17), then Eq. (15) can be rewritten as
follows:

minf
X

S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ
X

S�N;S6¼£

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2g
ð18Þ
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s:t:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xRi ¼ tRðNÞ:

8>>>><
>>>>:

4 A Fast Method for Computing Least Square
Interval-Valued Prenucleoli of Interval-Valued
Cooperative Games

In this section, based on the square excess, we focus on developing an effective and a
fast quadratic programming method for solving interval-valued cooperative games as
stated in Sect. 2.2. It is easy to see from Eq. (18) that computing the least square
interval-valued prenucleolus of an interval-valued cooperative game becomes solving
the quadratic programming model.

Using the Lagrange multiplier method, the Lagrange function of Eq. (18) can be
constructed as follows:

Lð�x; k;lÞ ¼
X

S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ
X

S�N;S 6¼£

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2

þ kð
Xn
i¼1

xLi � tLðNÞÞþ lð
Xn
i¼1

xRi � tRðNÞÞ;

where k and l are Lagrange multipliers.
The partial derivatives of Lð�x; k; lÞ with respect to the variables xLj, xRj (j 2 S�N),

k, and l are obtained as follows:

@Lð�x; k; lÞ
@xLj

¼ �2
X
S:i2S

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ� þ k;

@Lð�x; k; lÞ
@k

¼
Xn
i¼1

xLi � tLðNÞ;

@Lð�x; k; lÞ
@xRj

¼ �2
X
S:i2S

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ� þ l;

and

@Lð�x; k; lÞ
@l

¼
Xn
i¼1

xRi � tRðNÞ;

respectively.
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Let the partial derivatives of Lð�x; k; lÞ with respect to the variables xLj, xRj
ðj 2 S�NÞ, k, and l be equal to 0, respectively. Consequently, we have

�2
X
S:i2S

½tLðSÞ � x	EL ðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞÞ� þ k	E ¼ 0; ð19Þ

Xn
i¼1

x	ELi ¼ tLðNÞ; ð20Þ

�2
X
S:i2S

½tRðSÞ � x	ER ðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ� þ l	E ¼ 0; ð21Þ

and

Xn
i¼1

x	ERi ¼ tRðNÞ; ð22Þ

respectively.
It is obvious thatX

S:i2S
x	EL ðSÞ ¼ 2n�1x	ELi þ

X
j2Nni

2n�2x	ELj ði; j 2 NÞ ð23Þ

It can be easily derived from Eqs. (19) and (23) that

�2
X
S:i2S

tLðSÞþ 2� 2n�1x	ELi þ 2
X
j2Nni

2n�2x	ELj þ
2

2n � 1

X
S�N;S6¼£

tLðSÞ � 2n

2n � 1
tLðNÞþ k	E ¼ 0

Combining with the equality:

x	ELi þ
X
j2Nni

x	ELj ¼ tLðNÞ ði; j 2 NÞ;

we can directly obtain

� 2
X
S:i2S

tLðSÞþ 2n�1x	ELi þð2n�1 � 2n

2n � 1
ÞtLðNÞþ 2

2n � 1

X
S�N;S6¼£

tLðSÞþ k	E ¼ 0; ð24Þ

which can be rewritten as follows:

x	ELi ¼
2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S 6¼£

tLðSÞ�k	E

2n�1

ð25Þ
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Thus, the key to solve x	ELi ði ¼ 1; 2; 3; � � � ; nÞ becomes obtaining k	E. It is easily
derived from Eq. (20) that

X
i2N

2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S6¼£

tLðSÞ�k	E

2n�1
¼ tLðNÞ;

i.e.,

2
X

S�N;S 6¼£

stLðSÞ � nð2n�1 � 2n

2n � 1
ÞtLðNÞ � 2n

2n � 1

X
S�N;S 6¼£

tLðSÞ � nk	E ¼ 2n�1tLðNÞ;

where s denotes the cardinality of the coalition S�N, i.e., s ¼ jSj. Hence, we can
easily obtain

k	E ¼
2

P
S�N;S 6¼£

stLðSÞ

n
� ð2n�1 � 2n

2n � 1
ÞtLðNÞ � 2

2n � 1

X
S�N;S6¼£

tLðSÞ � 2n�1

n
tLðNÞ;

ð26Þ

which is substituted into Eq. (25), we directly have

x	ELi ¼
2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S 6¼£

tLðSÞ

2n�1

�

2
P

S�N;S 6¼£

stLðSÞ

n � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S6¼£

tLðSÞ � 2n�1

n tLðNÞ

2n�1

¼
2
P
S:i2S

tLðSÞ �
2

P
S�N;S 6¼£

stLðSÞ

n þ 2n�1

n tLðNÞ
2n�1

¼ tLðNÞ
n

þ
2
P
S:i2S

tLðSÞ �
2

P
S�N;S 6¼£

stLðSÞ

n

2n�1

¼ tLðNÞ
n

þ 1
n2n�2 ðn

X
S:i2S

tLðSÞ �
X

S�N;S 6¼£

stLðSÞÞ

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

X
S:j2S

tLðSÞÞ

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ;
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i.e.,

x	ELi ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ ði 2 NÞ; ð27Þ

where aLiðtÞ ¼
P
S:i2S

tLðSÞ.
Likewise, using Eqs. (21) and (22), the upper bounds of the interval-valued optimal

solution �x	E of Eq. (18) can be obtained as follows:

x	ERi ¼
tRðNÞ
n

þ 1
n2n�2 ðnaRiðtÞ �

X
j2N

aRjðtÞÞ ði 2 NÞ; ð28Þ

where aRiðtÞ ¼
P
S:i2S

tRðSÞ ði 2 NÞ.
Then, we obtain the interval-valued optimal solution �x	E ¼ ð�x	E1 ;�x	E2 ; � � � ;�x	En ÞT of

Eq. (18), whose components’ lower and upper bounds consist of Eqs. (27) and (28),
respectively, where �x	Ei ¼ ½x	ELi ; x	ERi � ði 2 NÞ. Therefore, the least square interval-valued
prenucleolus of the interval-valued cooperative game �t is �x	E.

In what follows, we discuss some useful and important properties of the least
square interval-valued prenucleoli for interval-valued cooperative games.

Theorem 2. Assume that �t 2 �Gn is any interval-valued cooperative game. Then, there
always exists a unique least square interval-valued prenucleolus, which is determined
by Eqs. (27) and (28).

Proof. It is straightforward to prove Theorem 2 according to Eqs. (27) and (28).

Theorem 3. Assume that �t 2 �Gn is any interval-valued cooperative game. Then, its
least square interval-valued prenucleolus �x	E satisfies the efficiency, i.e.,Pn
i¼1

�x	Ei ¼ �tðNÞ.

Proof. According to Eq. (1), it is easily derived from Eqs. (27) and (28) that

Xn
i¼1

�x	Ei ¼ ½
Xn
i¼1

x	ELi ;
Xn
i¼1

x	ERi �

¼ ½
Xn
i¼1

tLðNÞ
n

þ 1
2n�2

Xn
i¼1

aLiðtÞ � 1
2n�2

X
j2N

aLjðtÞ;
Xn
i¼1

tRðNÞ
n

þ 1
2n�2

Xn
i¼1

aRiðtÞ � 1
2n�2

X
j2N

aRjðtÞ�

¼ ½tLðNÞ; tRðNÞ�;

i.e.,
Pn
i¼1

�x	Ei ¼ �tðNÞ. Thus, we have completed the proof of Theorem 3.

Theorem 4. Assume that �t 2 �Gn and �m 2 �Gn are any interval-valued cooperative
games. Then, �x	Eð�tþ�mÞ ¼ �x	Eð�tÞþ �x	Eð�mÞ.
Proof. It is easily derived from Eq. (27) that
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x	ELi ð�tþ�mÞ ¼ tLðNÞþ mLðNÞ
n

þ 1
n2n�2

½nðaLiðtÞþ aLiðmÞÞ �
X
j2N

ðaLjðtÞþ aLjðmÞÞ�

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞþ mLðNÞ
n

þ 1
n2n�2 ðnaLiðmÞ �

X
j2N

aLjðmÞÞ

¼x	ELi ð�tÞþ x	ELi ð�mÞ;

i.e., x	ELi ð�tþ�mÞ ¼ x	ELi ð�tÞþ x	ELi ð�mÞ.
Analogously, according to Eq. (28), we can easily prove that

x	ERi ð�tþ�mÞ ¼ x	ERi ð�tÞþ x	ERi ð�mÞ. Hence, according to Eq. (1), we have

�x	Ei ð�tþ�mÞ ¼ �x	Ei ð�tÞþ�x	Ei ð�mÞ ði ¼ 1; 2; � � � ; nÞ;

i.e., �x	Eð�tþ�mÞ ¼ �x	Eð�tÞþ �x	Eð�mÞ, which implies that Theorem 4 is valid.

Theorem 5. If players i 2 N and k 2 N ði 6¼ kÞ are symmetric in an interval-valued
cooperative game �t 2 �Gn, then �x	Ei ¼ �x	Ek .

Proof. For the players i 2 N and k 2 N ði 6¼ kÞ, it is easily derived from Eq. (27) that

x	ELi ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ ð29Þ

and

x	ELk ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLkðtÞ �

X
j2N

aLjðtÞÞ: ð30Þ

It is easily derived from the symmetric players’ assumption [2] that

aLiðtÞ ¼ aLkðtÞ ði 2 N; k 2 N; i 6¼ kÞ;

which easily follows from Eqs. (29) and (30) that x	ELi ¼ x	ELk .
In the same way, using Eq. (28), we can easily prove x	ERi ¼ x	ERk . Combining with

the aforementioned conclusion and Eq. (1), we can obtain

½x	ELi ; x	ERi � ¼ ½x	ELk ; x	ERk �;

i.e., �x	Ei ¼ �x	Ek . Accordingly, we have completed the proof of Theorem 5.

Theorem 6. Assume that �t 2 �Gn is any interval-valued cooperative game. For any
permutation r on the set N, then �x	ErðiÞð�trÞ ¼ �x	Ei ð�tÞ.
Proof. It can be easily proven according to Eqs. (27) and (28) (omitted).

Obviously, if all coalitions’ values �tðSÞ degenerate to real numbers, i.e., tðSÞ ¼
tLðSÞ ¼ tRðSÞ for any coalition S�N, then it easily follows from Eqs. (27) and (28)
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that x	Ei ¼ x	ELi ¼ x	ERi ði 2 NÞ, i.e., Eqs. (27) and (28) are identical. Namely, either
Eq. (27) or Eq. (28) is applicable to the classical cooperative games. Thus, the model
and method developed in this section may be regarded as an extension of that for the
classical cooperative games when uncertainty and imprecision are taken into account.

5 Algorithms for Least Square Interval-Valued Nucleoli
of Interval-Valued Cooperative Games

Equation (18) is used to compute the least square interval-valued prenucleolus of any
interval-valued cooperative game. However, the least square interval-valued prenu-
cleolus is usually not an imputation because it possibly fails to satisfy the individual
rationality. Hereby, we can construct the quadratic programming model of the least
square interval-valued nucleolus for the interval-valued cooperative game �t as follows:

minf P
S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n�1 ð

P
S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ P
S�N;S6¼£

½tRðSÞ � xRðSÞ � 1
2n�1 ð

P
S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2g
ð31Þ

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>><
>>>>>>:

For discussion concision and convenience, we firstly prove the following conclu-
sion: for any interval-valued cooperative game �t 2 �Gn, if we use any constants mL and
mR to replace �eLðS;�xÞ and �eRðS;�xÞ of the objective function in Eq. (12) (or Eq. (15)),
respectively, then Eq. (12) (or Eq. (15)) remains the identical optimal solution. In fact,
assume that �x is any interval-valued payoff vector which satisfies the efficiency, then
for any constants mL and mR, we have

P
S�N;S 6¼£

½ðeLðS;�xÞ � mLÞ2 þðeRðS;�xÞ � mRÞ2� ¼
P

S�N;S 6¼£
ðeLðS;�xÞ � mLÞ2 þ

P
S�N;S6¼£

ðeRðS;�xÞ � mRÞ2

¼ P
S�N;S 6¼£

eLðS;�xÞ2 þð2n � 1Þm2
L � 2mL

P
S�N;S 6¼£

eLðS;�xÞþ
P

S�N;S 6¼£
eRðS;�xÞ2

þð2n � 1Þm2
R � 2mR

P
S�N;S6¼£

eRðS;�xÞ:

ð32Þ

It is easily derived from Eqs. (16) and (17) that the objective function of Eq. (12)
(or Eq. (15)) replaced with Eq. (32) remains the same optimal solution as Eq. (12) (or
Eq. (15)) while only their optimal objective values have a difference of constants.

In particular, for mL ¼ mR ¼ 0, it is obvious that the optimal solution of Eq. (12) is
the same as that of the quadratic programming model as follows:

294 W.-L. Li



minf
X

S�N;S6¼£

½ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ;

8>><
>>:

ð33Þ

and the optimal solution of Eq. (15) is the same as that of the quadratic programming
model as follows:

minf
X

S�N;S6¼£

½ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>>><
>>>>>>>:

ð34Þ

Stated as earlier, computing the least square interval-valued nucleolus of any
interval-valued cooperative game can be equivalently converted into solving the
optimal solution of Eq. (34). Therefore, combining with the optimal solution of
Eq. (33), i.e., the least square interval-valued prenucleolus of any interval-valued
cooperative game, we mainly propose simple and effective algorithms for solving the
least square interval-valued nucleolus.

Without loss of generality, assume that we are considering any interval-valued
cooperative game �t with �tðiÞ ¼ ½0; 0� for all i 2 N. In the following, we summarize the
algorithms for solving the lower and upper bound of the least square interval-valued
nucleolus of the interval-valued cooperative game �t as follows.

We propose Algorithm 1 for determining nonnegativity of the lower bounds of the
least square interval-valued nucleolus of the interval-valued cooperative game �t as
follows:

Step 1: Set k ¼ 1. Let xkL ¼ x	EL , where x	EL ¼ ðx	EL1 ; x	EL2 ; � � � ; x	ELnÞT is the lower
bound vector of the least square interval-valued prenucleolus of the interval-valued
cooperative game �t, which is given by Eq. (27) (or generated by solving Eq. (33)).
Let Mk

L ¼ fj 2 NjxkLj\0g, which is the set of the players who have negative lower

bounds of the interval-valued payoff vector xkL.
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Step 2: Compute

xkþ 1
Lj ¼ xkLj þ xkLðMk

LÞ
n�mk

L
ðj 62 Mk

LÞ
0 ðj 2 Mk

LÞ;

(

where mk
L is the cardinality of the player set Mk

L, i.e., m
k
L ¼ jMk

Lj.
Step 3: Let Mkþ 1

L ¼ Mk
L [fj 2 Njxkþ 1

Lj \0g, which is the new set of the players

who have negative lower bounds of the interval-valued payoff vector xkþ 1
L .

Step 4: IfMkþ 1
L 
 Mk

L, then set k ¼ kþ 1 and return to Step 2; If Mkþ 1
L ¼ Mk

L, then
the solving process stops, hereby we can obtain the lower bounds of the least square
interval-valued nucleolus of the interval-valued cooperative game �t, depicted as in
Fig. 1.

Analogously, we can propose Algorithm 2 for determining nonnegativity of the
upper bounds of the least square interval-valued nucleolus of the interval-valued
cooperative game �t as follows:

Step 1: Set k ¼ 1. Let xkR ¼ x	ER , where x	ER ¼ ðx	ER1; x	ER2; � � � ; x	ERnÞT is the upper
bound vector of the least square interval-valued prenucleolus of the interval-valued
cooperative game �t, which is given by Eq. (28) (or generated by solving Eq. (33)).

Set 1k = , initialize k
Lx and k

LM

Compute 1k
Ljx +

Determine 1k
LM +

1k k
L LM M+ ⊃ ?YSet 1k k= +

Stop, hereby obtain the lower bounds of the 
least square interval-valued nucleolus

N

Fig. 1. Algorithm for determining nonnegativity of the lower bounds of the least square
interval-valued nucleolus
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Let Mk
R ¼ fj 2 NjxkRj\0g, which is the set of the players who have negative upper

bounds of the interval-valued payoff vector xkR.
Step 2: Compute

xkþ 1
Rj ¼ xkRj þ xkRðMk

RÞ
n�mk

R
ðj 62 Mk

RÞ
0 ðj 2 Mk

RÞ;

(

where mk
R is the cardinality of the player set Mk

R, i.e., m
k
R ¼ jMk

Rj.
Step 3: Let Mkþ 1

R ¼ Mk
R [fj 2 Njxkþ 1

Rj \0g, which is the new set of the players

who have negative upper bounds of the interval-valued payoff vector xkþ 1
R .

Step 4: IfMkþ 1
R 
 Mk

R, then set k ¼ kþ 1 and return to Step 2; IfMkþ 1
R ¼ Mk

R, then
the solving process stops, hereby we can obtain the upper bounds of the least square
interval-valued nucleolus of the interval-valued cooperative game �t, depicted as in
Fig. 2.

From the above discussion, we can propose Algorithm 3 for computing the least
square interval-valued nucleolus of any interval-valued cooperative game �t, depicted as
in Fig. 3.

Set 1k = , initialize k
Rx and k

RM

Compute 1k
Rjx +

Determine 1k
RM +

1k k
R RM M+ ⊃ ?YSet 1k k= +

Stop, hereby obtain the upper bounds of the 
least square interval-valued nucleolus

N

Fig. 2. Algorithm for determining nonnegativity of the upper bounds of the least square
interval-valued nucleolus
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In the following, we discuss some important and useful properties of the least
square interval-valued nucleolus of any interval-valued cooperative game.

Theorem 7. Assume that �t is any interval-valued cooperative game. Then, there exists
a unique least square interval-valued nucleolus, which satisfies the efficiency, indi-
vidual rationality, additivity, symmetry, and anonymity.

Proof. It is easy to prove Theorem 7 in a similar way to Theorems 2–6 and combining
with Algorithms 1 and 2 (omitted).

6 A Numerical Example of Joint Production Problems

The following is an example how interval-valued cooperative games are applied to
solve joint production problems.

Let us consider a joint production problem in which five decision makers actively
cooperate with one another to develop new products. The five decision makers are
named players 1, 2, 3, 4, and 5, respectively. Denoted the set of players by
N 0 ¼ f1; 2; 3; 4; 5g. Before the cooperation starts, it is necessary for the five players
(i.e., decision makers) to evaluate the revenue of the joint production project in order to
decide whether the coalitions can be formed. However, the cooperative profit is
dependent on many factors such as cost of human resources, product price, supply, and
demand. Usually, players may estimate ranges of their profits instead of precisely
forecasting their profits. Namely, the profit of a coalition S�N 0 of the players may be

N 

N 

Obtain the least square interval-valued nucleolus

Algorithm 1

Y 

Nonnegativity of 
the upper bounds? Algorithm 2

Y 

Nonnegativity of 
the lower bounds?

To compute the least square interval-valued 
prenucleolus by solving Eq. (33) 

Fig. 3. Algorithm 3 for computing the least square interval-valued nucleolus
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expressed with an interval �t0ðSÞ ¼ ½t0LðSÞ; t0RðSÞ�. In this case, the optimal allocation of
profits for the five decision makers may be regarded as an interval-valued cooperative
game �t0 in which the interval-valued characteristic function is equal to �t0ðSÞ for any
coalition S�N 0.

For example, let us consider a specific interval-valued cooperative game �t0 which is
defined as follows: �t0ð2; 3Þ ¼ �t0ð2; 4Þ ¼ �t0ð3; 4Þ ¼ �t0ð3; 5Þ ¼ �t0ð4; 5Þ ¼ ½100; 200�,
�t0ð1; 3; 4Þ ¼ �t0ð1; 3; 5Þ ¼ �t0ð1; 4; 5Þ ¼ �t0ð2; 3; 5Þ ¼ �t0ð2; 4; 5Þ ¼ ½100; 200�,
�t0ð2; 3; 4Þ ¼ ½120; 240�, �t0ð3; 4; 5Þ ¼ ½175; 300�, �t0ð1; 2; 3; 4Þ ¼ ½175; 350�,
�t0ð1; 2; 3; 5Þ ¼ ½100; 220�, �t0ð1; 2; 4; 5Þ ¼ ½100; 250�, �t0ð1; 3; 4; 5Þ ¼ ½200; 380�,
�t0ð2; 3; 4; 5Þ ¼ ½200; 400�, �t0ð1; 2; 3; 4; 5Þ ¼ ½200; 600�, and otherwise �t0ðSÞ ¼ 0:.

Using Eq. (27), we can obtain the lower bounds of the least square interval-valued
prenucleolus of the interval-valued cooperative game �t0 as follows:

x	EL1 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL1ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1075� 7485Þ

¼ �12:75;

x	EL2 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL2ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1295� 7485Þ

¼ 14:75;

x	EL3 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL3ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1770� 7485Þ

¼ 74:125;

x	EL4 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL4ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1770� 7485Þ

¼ 74:125;

and

x	EL5 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL5ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1575� 7485Þ

¼ 49:75;

respectively.
According to Algorithm 1, it is obvious that

x1L ¼ x	EL ¼ ðx	EL1 ; x	EL2 ; x	EL3 ; x	EL4 ; x	EL5ÞT ¼ ð�12:75; 14:75; 74:125; 74:125; 49:75ÞT:

Then, we give 0 to player 1 and divide �12:75 equally among players 2, 3, 4, and
5. Hereby, we obtain
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x2L ¼ ðx2L1; x2L2; x2L3; x2L4; x2L5ÞT ¼ ð0; 11:5625; 70:9375; 70:9375; 46:5625ÞT

Thus, we finally obtain the lower bounds of the least square interval-valued
nucleolus for the interval-valued cooperative game �t0, i.e.,

x	nL ¼ ð0; 11:5625; 70:9375; 70:9375; 46:5625ÞT:

Likewise, according to Eq. (28), we can obtain the upper bounds of the least square
interval-valued prenucleolus of the interval-valued cooperative game �t0 as follows:

x	ER ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT:

Then, using Algorithm 2, we can obtain

x1R ¼ x	ER ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT:

Owing to the fact that all x1Ri (i 2 N 0) are nonnegative, we directly have

x	nR ¼ x1R ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT;

which is the upper bounds of the least square interval-valued nucleolus for the
interval-valued cooperative game �t0.

Therefore, we can obtain the least square interval-valued nucleolus of the
interval-valued cooperative game �t0 as follows:

�x	n ¼ ð½0; 19:5�; ½11:5625; 77�; ½70:9375; 180:75�; ½70:9375; 184:5�; ½46:5625; 138:25�ÞT;

which may be interpreted as follows: player 1 can obtain at least 0 and at most 19.5,
i.e., the interval ½0; 19:5�, which is almost greater than the interval �t0ð1Þ ¼ ½0; 0�
obtained by itself alone. Analogously, player 2 can obtain at least 11.5625 and at most
77, i.e., the interval ½11:5625; 77�, which is obviously greater than the interval �t0ð2Þ ¼
½0; 0� obtained by itself alone. Player 3 can obtain at least 70.9375 and at most 180.75,
i.e., the interval ½70:9375; 180:75�, which is remarkably greater than the interval
�t0ð3Þ ¼ ½0; 0� obtained by itself alone. The similar explanation can be done for players
4 and 5. In other words, the optimal allocations of all the five players i (i 2 N 0) satisfy
the individual rationality of interval-valued payoff vectors according to Eq. (3), which
is the Moore’s order relation over intervals [8].

Obviously, we have

X5
i¼1

x	nLi ¼ 0þ 11:5625þ 70:9375þ 70:9375þ 46:5625 ¼ 200
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and

X5
i¼1

x	nRi ¼ 19:5þ 77þ 180:75þ 184:5þ 138:25 ¼ 600:

Hence,

X5
i¼1

x	ni ¼ �t0ðN 0Þ;

which implies that the least square interval-valued nucleolus �x	n satisfies the efficiency
of interval-valued payoff vectors as expected.

7 Conclusions

We propose the quadratic programming model and algorithms for solving the least
square interval-valued nucleoli of interval-valued cooperative games and effectively
avoid the magnification of uncertainty resulted from the Moore’s interval subtraction.
The developed model and algorithms are simple and effective from the viewpoint of
computational complexity. In addition, it is easy to see that the least square
interval-valued prenucleoli and nucleoli of interval-valued cooperative games are
generalizations of the least square prenucleoli and nucleoli for classical cooperative
games.

However, only interval uncertainty is taken into consideration in coalition’s values
in this paper. In fact, uncertainty of coalition’s values may be described by other types
of data such as fuzzy numbers [17] and intuitionistic fuzzy numbers [18, 19]. There-
fore, cooperative games with coalition values expressed by fuzzy numbers and intu-
itionistic fuzzy numbers will be hot topics in further research. What is more, the
axiomatic characterizations of these types of cooperative games will also become hot
issues of research.

References

1. Branzei, R., Branzei, O., Alparslan Gök, S.Z., Tijs, S.: Cooperative interval games: a survey.
CEJOR 18, 397–411 (2010)

2. Li, D.-F.: Models and Methods for Interval-Valued Cooperative Games in Economic
Management. Springer, Cham (2016). doi:10.1007/978-3-319-28998-4

3. Branzei, R., Dimitrov, D., Tijs, S.: Shapley-like values for interval bankruptcy games. Econ.
Bull. 3, 1–8 (2003)

4. Alparslan Gök, S.Z., Branzei, R., Tijs, S.: The interval Shapley value: an axiomatization.
CEJOR 18, 131–140 (2010)

5. Alparslan Gök, S.Z., Palanci, O., Olgun, M.O.: Cooperative interval games: mountain si-
tuations with interval data. J. Comput. Appl. Math. 259, 622–632 (2014)

Models and Algorithms for Least Square Interval-Valued Nucleoli 301

http://dx.doi.org/10.1007/978-3-319-28998-4


6. Kimms, A., Drechsel, J.: Cost sharing under uncertainty: an algorithmic approach to
cooperative interval-valued games. Bus. Res. 2, 206–213 (2009)

7. Mallozzi, L., Scalzo, V., Tijs, S.: Fuzzy interval cooperative games. Fuzzy Sets Syst. 165,
98–105 (2011)

8. Moore, R.: Methods and Applications of Interval Analysis. SIAM Studies in Applied
Mathematics, Philadelphia (1979)

9. Hong, F.-X., Li, D.-F.: Nonlinear programming method for interval-valued n-person
cooperative games. Oper. Res. Int. J. (2016). doi:10.1007/s12351-016-0233-1

10. Branzei, R., Alparslan Gök, S.Z., Branzei, O.: Cooperation games under interval uncertainty:
on the convexity of the interval undominated cores. CEJOR 19, 523–532 (2011)

11. Alparslan Gök, S.Z., Branzei, O., Branzei, R., Tijs, S.: Set-valued solution concepts using
interval-type payoffs for interval games. J. Math. Econ. 47, 621–626 (2011)

12. Alparslan Gök, S.Z., Miquel, S., Tijs, S.: Cooperation under interval uncertainty. Math.
Methods Oper. Res. 69, 99–109 (2009)

13. Li, D.-F.: Linear programming approach to solve interval-valued matrix games. Omega Int.
J. Manag. Sci. 39(6), 655–666 (2011)

14. Li, D.-F.: Fuzzy Multiobjective Many-Person Decision Makings and Games. National
Defense Industry Press, Beijing (2003). (in Chinese)

15. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17(6),
1163–1170 (1969)

16. Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: The least square prenucleolus and the least
square nucleolus: two values for TU games based on the excess vector. Int. J. Game Theor.
25(1), 113–134 (1996)

17. Li, D.-F., Hong, F.-X.: Solving constrained matrix games with payoffs of triangular fuzzy
numbers. Comput. Math Appl. 64, 432–446 (2012)

18. Verma, T., Kumar, A., Appadoo, S.S.: Modified difference-index based ranking bilinear
programming approach to solving bimatrix games with payoffs of trapezoidal intuitionistic
fuzzy numbers. J. Intell. Fuzzy Syst. 29, 1607–1618 (2015)

19. Li, D.-F.: Decision and Game Theory in Management with Intuitionistic Fuzzy Sets. SFSC,
vol. 308. Springer, Heidelberg (2014). doi:10.1007/978-3-642-40712-3

302 W.-L. Li

http://dx.doi.org/10.1007/s12351-016-0233-1
http://dx.doi.org/10.1007/978-3-642-40712-3

	Models and Algorithms for Least Square Interval-Valued Nucleoli of Cooperative Games with Interval-Valued Payoffs
	Abstract
	1 Introduction
	2 Notations of Intervals and Interval-Valued Cooperative Games
	2.1 Interval Notations and Arithmetic Operations
	2.2 Interval-Valued Cooperative Games and Notations

	3 Quadratic Programming Model for Least Square Interval-Valued Prenucleoli of Interval-Valued Cooperative Games
	4 A Fast Method for Computing Least Square Interval-Valued Prenucleoli of Interval-Valued Cooperative Games
	5 Algorithms for Least Square Interval-Valued Nucleoli of Interval-Valued Cooperative Games
	6 A Numerical Example of Joint Production Problems
	7 Conclusions
	References


