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Preface

Recently, non-cooperative and cooperative games — particularly cooperative games
with coalitional structures, fuzzy non-cooperative and cooperative games, dynamic
games, evolutionary games, mechanism design, bargaining games, and auctions — are
attracting significant coverage from researchers in many subjects or disciplines such as
game theory, operations research, mathematics, decision science, management science,
and control theory. Moreover, non-cooperative and cooperative games are successfully
applied to various fields such as economics, management, industrial organization,
operations and supply chain management, human resources, energy and resource
management, biology, and others. In this context, to strengthen the ongoing scientific
interaction between the two game theory societies of The Netherlands and China and to
promote academic research, exchange, and collaboration among researchers from The
Netherlands and China as well as other countries, Fuzhou University of China,
Northwestern Polytechnical University of China, University of Twente of The
Netherlands, and the Game Theory Subcommittee of Operations Research Society of
China hosted the Third Joint China–Dutch Workshop on Game Theory and Applica-
tions and the 7th China Meeting on Game Theory and Applications (GTA 2016), which
was held during November 20–23, 2016, at Fuzhou University, Fujian, China.

The GTA 2016 received 162 abstract submissions and there were about 180 par-
ticipants from The Netherlands, USA, UK, Japan, Canada, Russia, and China.

After GTA 2016 in Fuzhou, we prepared the proceedings of GTA 2016 for publi-
cation in Communications in Computer and Information Science (CCIS) by Springer.
Thus, we contacted the experts and scholars attending GTA 2016 and invited them to
extend their conference papers for consideration in this publication. Finally, we
received and accepted 25 full papers after two rounds of peer review. The 25 papers
cover non-cooperative and cooperative games as well as non-cooperative and
cooperative games under uncertainty and their applications.

The paper “Repeated Games and Price Wars,” written by Ronald Peeters, Hans
Peters, Erik Pot, and Dries Vermeulen, discusses collusive equilibria under private and
public information and collusive equilibria when market shares form a martingale. The
authors show that firms can collude using dynamic price adjustment strategies under
the two conditions of public observability and limited volatility of market shares.
Particularly, the authors show that collusion can no longer be sustained when the
condition of limited volatility of market shares is violated.

The paper “A Game Theory Approach for Deploying Medical Resources in the
Emergency Department,” by Cheng-Kuang Wu, Yi-Ming Chen, and Dachrahn Wu,
proposes a framework for emergency response services that incorporates two game
theory models designed to deploy response medical resources when raising three threat
advisory levels. The experimental results show that the developed model is feasible,
which may provide a method for improving efficiency in emergency department.



The paper “Non-cooperative Monomino Games,” authored by Judith Timmer, Harry
Aarts, Peter van Dorenvanck, and Jasper Klomp, investigates monomino games, which
are two-player games played on a rectangular board with R rows and C columns. The
game pieces are monominoes, which cover exactly one cell of the board. One by one
each player selects a column of the board, and places a monomino in the lowest
uncovered cell. This generates a payoff for the player. The game ends if all cells are
covered by monominoes. The goal of each player is to place his/her monominoes in
such a way that his/her total payoff is maximized. The aim of this paper is to derive the
equilibrium play and corresponding payoffs for the players.

The paper “Bargaining Model of Mutual Deterrence Among Three Players with
Incomplete Information,” by Yan Xiao and Deng-Feng Li, studies the tripartite bar-
gaining problem of mutual deterrence from the perspective of Rubinstein indefinite
bargaining and cooperative game theory. The authors mainly establish a tripartite
mutual deterrence bargaining model with unilateral and bilateral incomplete informa-
tion by introducing incomplete information and defining discount factors. Specifically,
the analytical formula is obtained to calculate the Nash equilibrium distribution for
each player under incomplete information. The developed model and method may
provide a new way for solving multiple mutual deterrence or conflict problems with
incomplete information.

The paper “Stakeholders’ Behavior Analysis and Enterprise Management Strategy
Selection in Chinese Ancient Village Tourism Development,” by Wei Fei, investigates
how to exploit and protect ancient villages in tourism development, since Chinese
ancient villages are an important type of non-renewable tourism resource. The author
firstly identifies the stakeholders (i.e., players) who have an interest and play important
roles in Chinese ancient village tourism development and protection. Then, the author
systematically analyzes the stakeholders’ relations, interaction, and importance in the
exploitation and protection of Chinese ancient village tourism. Finally, the author
elaborates on stakeholders’ behaviors and hereby proposes enterprise management
strategies for Chinese ancient village tourism.

The paper “Two Bargain Game Models of the Second-Hand Housing Commence,”
written by Rui Wang and Deng-Feng Li, discusses the problem of bargaining about
final prices of houses for sale on the second-hand house market. Two bargaining
models for indefinite and finite periods are established for sellers and buyers. For the
indefinite period, the authors derive the complete equilibrium solution of the bargaining
game model between the buyers and sellers. Hereby, the game equilibrium solution in
the second stage is obtained through imposing some constraints on time. The results
show that the game between sellers and buyers depends on the ratio of the discount
factor of each seller or buyer.

The paper “Some Relaxed Solutions of Minimax Inequalities for Discontinuous
Games,” by Xiaoling Qiu and Dingtao Peng, proves the existence of minimax
inequalities under some relaxed assumptions by using the KKMF principle or Fan–
Browder fixed point theorem and propose the pseu-solution of minimax inequalities.
As applications, the authors introduce pseu-Nash equilibriums for n-person
non-cooperative games and obtain some relaxed existence conclusions.
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The paper “Dynamic Games of Firm Social Media Disclosure,” written by Bing
Wang, Wei Zheng, and Yan Pan, discusses the game problem of firm social media
disclosure. The authors propose a three-stage dynamic game model to analyze the
process of social media information disclosure. In the first-stage model, firms disclose
social media because of low costs and high incomes so that they get more attention in
competition. By introducing investors in the second-stage model, firms disclose
exaggeratedly in order to get more benefits from investors in the complete
information-static game. In the third-stage model, by introducing the external regula-
tors, the authors propose a repeated game model with incomplete information, which
has an equilibrium when the repeated time is sufficient.

In the paper “On Stochastic Fishery Games with Endogenous Stage–Payoffs and
Transition Probabilities,” Reinoud Joosten and Llea Samuel engineer a stochastic
fishery game in which overfishing has a twofold effect: It gradually damages the fish
stock inducing lower catches in states high and low, and it gradually causes the system
to spend more time in the latter state with lower landings. To analyze the effects of this
“double whammy” technically, the authors examine how to determine the set of
jointly-convergent pure-strategy rewards supported by the equilibrium involving
threats, under the limiting average reward criterion.

The paper “N-Person Credibilistic Non-cooperative Game with Fuzzy Payoffs,”
written by Chunqiao Tan and Zhongwei Feng, presents n-person non-cooperative
games with fuzzy payoffs. Three credibilistic criteria are introduced to define behavior
preferences of players in different game situations based on credibility theory. Hereby
the authors propose three solution concepts of credibilistic equilibria and prove their
existence theorems. Furthermore, the authors propose three sufficient and necessary
conditions for computing credibilistic equilibrium strategies.

The paper “Pareto Optimal Strategies for Matrix Games with Payoffs of Intuition-
istic Fuzzy Sets,” written by Jiang-Xia Nan, Cheng-Lin Wei, and Deng-Feng Li,
focuses on developing an effective methodology for solving matrix games with payoffs
of intuitionistic fuzzy sets. The authors first propose a new ranking method of intu-
itionistic fuzzy sets and the concept of Pareto Nash equilibrium solutions of matrix
games with payoffs of intuitionistic fuzzy sets. Hence it is proven that Pareto Nash
equilibrium solutions of matrix games with payoffs of intuitionistic fuzzy sets are
equivalent to the Pareto optimal solutions of a pair of bi-objective programming
models, which can be easily solved by using existing multi-objective programming
methods.

The paper “Marginal Games and Characterizations of the Shapley Value in TU
Games,” written by Takumi Kongo and Yukihiko Funaki, discusses axiomatizations
and recursive representations of the Shapley value on the class of all cooperative games
with transferable utilities (i.e., TU games). Marginal games that are closely related to
dual games play central roles in this study. The axiomatizations are based on axioms
that are marginal game variations of the well-known balanced contributions property,
so that they are interpreted as fair treatment between two players in TU games as the
balanced contributions property is. Moreover, the authors propose a general recursive
representation that can be used to represent the Shapley value for n-person TU games
by those for r-person and (n–r)-person TU games with fixed r being smaller than n.
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The paper “Computing the Shapley Value of Threshold Cardinality Matching
Games,” written by Lei Zhao, Xin Chen, and Qizhi Fang, discusses the computational
and complexity issues on the Shapley value in a particular multi-agent domain, which
is called a threshold cardinality matching game. The authors show that the Shapley
value can be computed in polynomial time when graphs are restricted to some special
graphs, such as linear graphs and the graphs having clique or coclique module
decomposition. However, it is proven that computing the Shapley value is P-complete
when the threshold is a constant.

The paper “Matrix Analysis for the Shapley Value and Its Inverse Problem,” by Jun
Su and Genjiu Xu, deals with algebraic representation and matrix analysis techniques
for computing linear values of cooperative games. The authors propose a matrix
approach for characterizing linear values with certain essential properties. Some
properties are also described for the Shapley standard matrix, which is the represen-
tation matrix of the Shapley value. In addition, the authors examine the inverse problem
of the Shapley value in terms of the null space of the Shapley standard matrix.

In the paper “The General Nucleolus of n-Person Cooperative Games,” Qianqian
Kong, Hao Sun, and Genjiu Xu investigate how to compute and characterize the
general nucleolus of n-person cooperative games. To reflect the profit distribution more
intuitively on the space of n-person cooperative games, the authors first define the
concept of the general nucleolus whose objective function is limited to the players’
complaints. Hereby, the authors propose an algorithm for calculating the general
nucleolus under the case of linear complaint functions so that an accurate allocation can
be obtained to pay for all players. The authors also propose a system of axioms and the
Kohlberg criterion to axiomatically characterize the general nucleolus in terms of
balanced collections of coalitions. Furthermore, to normalize the different assignment
criteria, the authors prove the equivalence relationships among the general nucleolus,
the least square general nucleolus, and the p-kernel.

The paper “A Cooperative Game Approach to Author Ranking in Coauthorship
Networks,” authored by Guangmin Wang, Genjiu Xu, and Wenzhong Li, discusses the
problem of author ranking in coauthorship networks from the viewpoint of cooperative
games. Three weighted coauthorship networks are constructed from different per-
spectives and thereby three cooperative games are defined. The core and the Shapley
value are chosen as allocation rules for the defined cooperative games. Furthermore, the
weighted Shapley value and a new value are proposed as the allocation rules to take
into consideration the contribution level of the authors to their papers.

The paper “A Reduced Harsanyi Power Solution for Cooperative Games with a
Weight Vector,” written by Xianghui Li and Hao Sun, discusses the Harsanyi power
solution for cooperative games in which different players may be asymmetric and
contribute to different efforts, bargaining powers, or stability in the process of coop-
eration. The authors use a weight vector to reflect players’ asymmetry and hereby
define and characterize a reduced Harsanyi power solution for cooperative games with
a weight vector, which is relevant to a loss function of dividends. It is proven that the
reduced Harsanyi power solution has a linear relationship with the Harsanyi power
solution if the loss function takes particular forms.
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The college enrollment plan allocation plays an important role in implementing the
reform of higher education and adjusting the structure of qualified personnel in China.
In the paper “An Allocation Method of Provincial College Enrollment Plan Based on
the Bankruptcy Model,” Zhen Wei and Deng-Feng Li regard the provincial college
enrollment plan allocation as the bankruptcy problem. Hereby a bankruptcy model and
an operable bankruptcy rule are proposed to determine the college enrollment plan
allocation according to the eight university educational indexes. This study may pro-
vide references for Chinese provincial education administrative departments in the
college enrollment plan allocation process.

The paper “Edgeworth Equilibria of Economies and Cores in Multi-choice NTU
Games,” by Jiuqiang Liu, Xiaodong Liu, Yan Huang, and Wenbo Yang, extends the
payoff-dependent balanced core existence theorem to multi-choice cooperative games
with non-transferable utilities (i.e., NTU games), which implies a multi-choice
extension of Scarf’s core existence theorem. The study establishes the connection
between Edgeworth equilibria of economies and cores of multi-choice NTU games.

The paper “Two-Phase Nonlinear Programming Models and Method for
Interval-Valued Multiobjective Cooperative Games,” written by Fang-Xuan Hong and
Deng-Feng Li, defines the concepts of interval-valued cores of interval-valued multi-
objective n-person cooperative games and a satisfactory degree (or ranking indexes) of
comparing intervals with inclusion and/or overlap relations. Hereby the interval-valued
cores can be computed by developing a new two-phase method based on the auxiliary
nonlinear programming models. The proposed method can provide cooperative chan-
ces under the situations of interval inclusion and/or overlap relations in which the
traditional interval ranking method may not always assure.

In the paper “Models and Algorithms for Least Square Interval-Valued Nucleoli of
Cooperative Games with Interval-Valued Payoffs,” Wei-Long Li focuses on develop-
ing an effective method for computing least square interval-valued nucleoli of coop-
erative games with interval-valued payoffs, which are usually called interval-valued
cooperative games for short. Based on the square excess that can be intuitionally
interpreted as a measure of the dissatisfaction of the coalitions, the author constructs a
quadratic programming model for least square interval-valued prenucleolus of any
interval-valued cooperative game and obtains its analytical solution, which is used to
determine the players’ interval-valued imputations via the designed algorithms that
ensure the nucleoli always satisfy the individual rationality of players. Hereby the least
square interval-valued nucleoli of interval-valued cooperative games are determined in
the sense of minimizing the difference of the square excesses of the coalitions.
Moreover, the author discusses some useful and important properties of the least square
interval-valued nucleolus such as its existence and uniqueness, efficiency, individual
rationality, additivity, symmetry, and anonymity.

The paper “Interval-Valued Least Square Prenucleolus of Interval-Valued Cooper-
ative Games with Fuzzy Coalitions,” written by Yin-Fang Ye and Deng-Feng Li,
describes how to compute interval-valued least square prenucleoli of interval-valued
cooperative games with fuzzy coalitions. The authors first determine the fuzzy coali-
tions’ values by using Choquet integral and thereby obtain the interval-valued coop-
erative games with fuzzy coalitions in Choquet integral forms. Then, the authors
develop a simplified method to compute the interval-valued least square prenucleoli of
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a special subclass of interval-valued cooperative games with fuzzy coalitions in
Choquet integral forms. The developed method can always ensure that the lower and
upper bounds of the interval-valued least square prenucleolus are directly obtained via
utilizing the lower and upper bounds of the interval-valued coalitions’ payoffs under
some weaker coalition size monotonicity-like conditions.

The paper “Quadratic Programming Models and Method for Interval-Valued
Cooperative Games with Fuzzy Coalitions,” authored by Deng-Feng Li and Jia-Cai
Liu, focuses on developing a quadratic programming method for solving
interval-valued cooperative games with fuzzy coalitions. By using the Choquet inte-
gral, the interval-valued cooperative games with fuzzy coalitions are converted into the
interval-valued cooperative games in which two auxiliary quadratic programming
models are constructed to generate their optimal solutions on the basis of the least
square method and distance between intervals.

In the paper “Cooperative Games with the Intuitionistic Fuzzy Coalitions and
Intuitionistic Fuzzy Characteristic Functions,” Jiang-Xia Nan, Hong Bo, and
Cheng-Lin Wei present the definition of the Shapley function for intuitionistic fuzzy
cooperative games by extending that of the fuzzy cooperative games. Based on the
extended Hukuhara difference, the authors derive the specific expression of the Shapley
function for intuitionistic fuzzy cooperative games with multilinear extension form and
discuss the existence and uniqueness as well as other useful properties.

The paper “A Profit Allocation Model of Employee Coalitions Based on Triangular
Fuzzy Numbers in Tacit Knowledge Sharing,” written by Shu-Xia Li and Deng-Feng
Li, deals with a profit allocation of employee coalitions in tacit knowledge sharing. Due
to the existence of uncertain factors, the allocation of profits cannot be accurately
estimated and hereby triangular fuzzy numbers are used to express payoffs of coali-
tions. Taking into consideration the importance of coalitions, a quadratic programming
model is constructed to obtain a suitable solution as the profit allocation of employee
coalitions. Furthermore, some constraints are imposed on the proposed model so that its
optimal solution can always satisfy the efficiency, which implies the pre-imputation of
cooperative games with coalition payoffs represented by triangular fuzzy numbers.

We would like to thank the hard work of the academic Program Committee and the
Organizing Committee of GTA 2016 as well as all contributors and reviewers, who
really understand the meaning of cooperative games. At the same time, we very much
appreciate the National Natural Science Foundation of China (NSFC) and the Dutch
Organization for Scientific Research (NWO) for their support (No. 71681330662).
Particularly, one of the four editors, Prof. Deng-Feng Li, would like to thank his PhD
student, Ms. Yin-Fang Ye for her all effort, input, and excellent work for GTA 2016
and for editing the publication.

August 2017 Deng-Feng Li
Xiao-Guang Yang

Marc Uetz
Gen-Jiu Xu
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Abstract. This paper is an attempt to reconcile the – at first sight dif-
ferent – views on the determinants of collusion and price wars expressed
in Rotemberg and Saloner (1986), Green and Porter (1984), and Stigler
(1964). We first argue that the logic of Rotemberg and Saloner (1986)
presupposes two determinants for collusion, namely (1) market shares
are publicly observable, and (2) volatility of market shares due to exoge-
nous factors is limited. We make our arguments in a model in which firms
repeatedly play a Bertrand type price competition game, while market
shares are determined by a stochastic process, conditional on current
market shares and prices. Following Rotemberg and Saloner (1986), we
show under the two conditions of public observability and limited volatil-
ity of market shares that firms can collude using dynamic price adjust-
ment strategies. We show that when the first condition (public observ-
ability) is violated, we revert to the logic of Green and Porter (1984).
When the second condition (limited volatility of market shares) is vio-
lated, for example when consumer loyalty has decreased, we also observe
that collusion can no longer be sustained, in line with the arguments in
Stigler (1964).

1 Introduction

This paper is a contribution to the ongoing discussion on the stability of collusion
and the conditions under which pricing agreements among oligopolists can be
sustained in equilibrium.

It is well known in the industrial organization literature that fluctuations in
levels of both individual and market demand play an important role in the sta-
bility of collusion and the occurrence of price wars. An early contribution in this
context is Stigler (1964). In the model of Stigler (1964) firms face uncertainty
regarding their individual demand, and they cannot directly observe their oppo-
nents’ behavior. An unexpectedly large drop in a firm’s own individual demand
may therefore be attributed to an (unobserved) deviation from collusion by one
of the opponents, and a price war is seen as the reversion to competitive behav-
ior to punish such deviations. Stigler (1964) argued that, in a market with high
consumer loyalty, deviations from a collusive agreement are relatively easy to
detect. Therefore collusion is easier to sustain in markets with high consumer
loyalty than in markets with low consumer loyalty.
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 3–17, 2017.
https://doi.org/10.1007/978-981-10-6753-2_1
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The first equilibrium based paper showing how price wars can occur on the
equilibrium path is Green and Porter (1984). In their model, a firm can expe-
rience a period of unexpectedly bad performance both as a result of deviat-
ing behavior by one of the firms and as a result of (unobservable) low aggre-
gate demand. Since, because of unobservability, firms are unable to distinguish
between these two scenarios, they have to revert to retaliatory behavior in either
case in order to discourage deviating behavior. Price wars will thus occur with
certainty in periods of low individual demand, even when deviations did not
occur.

Another milestone in the discussion is the paper by Rotemberg and Saloner
(1986). In a model with volatile aggregate demand and fixed market shares they
show that partial collusion can be sustained in equilibrium using countercyclical
pricing strategies. The logic of their argument is that, during a boom, the temp-
tation for firms to deviate from the collusive agreement to attract consumers
starts to outweigh the decrease in profits resulting from the ensuing retaliatory
price war. To counterbalance this threat to collusion, in equilibrium, firms con-
sequently employ a gradual and coordinated downward adjustment of the price
levels in response to the increased level of demand in periods where the market
is booming. Since the decision to decrease prices during a boom is taken jointly
by all competitors as part of the collusive agreement such an orchestrated and
voluntary decrease in prices is in fact not a price war, but can better be viewed
as a form of dynamic collusion where prices are deliberately adjusted to the
circumstances, precisely with the intention to stabilize collusion. A full blown
price war in the sense of full reversion to marginal cost pricing does not occur on
the equilibrium path. This was concisely put by Ellison (1994): “Rotemberg and
Saloner (1986) is commonly associated with the statement that price wars are
more likely to occur during booms, and therefore viewed as somehow in opposi-
tion to the Green and Porter (1984) theory. The actual Rotemberg and Saloner
(1986) model, however, is really about countercyclical pricing – firms have per-
fect information and adjust prices smoothly in response to demand conditions.”

In this paper we present a model where firms interact repeatedly in a
Bertrand model for a market with a single homogeneous good. Firms simulta-
neously choose prices. Given the prices chosen by the firms, the market price is
established as the lowest price charged by the firms. Given the market price,
aggregate demand is then determined, and aggregate demand is distributed
among the firms that charge market prices. Thus, division of the market is
primarily decided by price, which implies homogeneity of the good. Only in
case several firms charge the market price, the division of market shares among
firms that charge market price is governed by other external factors, and mar-
ket shares may fluctuate over time. Such fluctuations of market shares capture
exogenous factors such as perhaps consumer loyalty (or better: lack thereof) or
location effects, but also simply random choice by indifferent customers may be
a source of demand uncertainty for firms. All that matters in our analysis is
that, typically, such factors are outside the control of the firms, but that they
are nevertheless known to affect collusive opportunities (Stigler, 1964; Green and
Porter, 1984).
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Within this model, both with private information on individual market shares
and with public information, we derive the conditions under which strategy
profiles in trigger strategies, where each firm chooses to collude unless a deviation
has been detected in the past (in which case firms revert to marginal cost pricing),
can be sustained as a perfect Bayesian Nash equilibrium.

In both the case of private and the case of public information we find that
collusive behavior in trigger strategies is harder to sustain when market shares
have high volatility over time, and periods with low individual demand are possi-
ble. Moreover, in the public information case, opportunities for partial collusion
enhance collusion. The logic driving these results is fairly intuitive. Collusive
behavior can be sustained in equilibrium by trigger strategies precisely when
expected profits for firms adhering to the collusive agreement are higher than
the single period gains from deviation. This condition is particularly stringent
for periods where individual demand is low, since in such periods the expected
profits when a firm follows the agreement are minimal, while the immediate gains
from deviation (undercutting) are high. In addition, when a firm also expects
its individual demand to be low in the future, which is more likely when current
individual demand is low, the punishment ensuing the breaking of the agreement
is relatively small. Hence, high volatility of individual market shares hampers
collusion. On the other hand, when partial collusion is possible, and market
shares are observable, a countercyclical pricing policy with partial collusion as
in Rotemberg and Saloner (1986) can be applied to sustain collusive behaviour
in equilibrium.

These results can be seen as an attempt to reconcile the views expressed in
Stigler (1964) and Green and Porter (1984) with the arguments in Rotemberg
and Saloner (1986). In our model with private information, increased volatility
of market shares prevents collusion. This is in line with the view of Green and
Porter (1984), who argue that collusion is most likely to break down in periods
of low demand, and the view of Stigler (1964), who argued that high consumer
loyalty, which is directly related to low volatility of market shares, is one of the
stabilizing factors for collusion.

On the other hand, in our model with public observability of market shares,
the basic logic of the arguments in Rotemberg and Saloner (1986) is still valid.
Firms easily collude when differences in individual demand remain relatively
small.1 However, in the presence of fluctuations of market shares collusion
becomes more difficult to sustain. The cartel is then stabilized in periods of high

1 Despite the differences between the R&S model and our model, the intuition is the
same in both models. The central issue concerns changes in potential gains from
deviation. In the model of R&S these changes are the result of changes in aggregate
demand under fixed market shares. In our model these changes are conversely the
result of changes in individual demand (market shares) under deterministic aggregate
demand. Nevertheless the effect is the same: both in the case of high aggregate
demand with fixed market shares and in the case of constant aggregate demand
with low market shares gains from deviation are increased.
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fluctuations in market shares by using a coordinated price adjustment scheme.
When market shares are out of balance, a policy of lower collusive price setting
discourages deviations by firms with lower market shares.

Thus, our argument here is that the driving force behind the results of Rotem-
berg and Saloner (1986) is not the presence of shocks on total demand per se,
but more in general the public observability of market shares in conjunction
with low volatility of these market shares. Public observability of market shares
is essential to the implementation of dynamic price strategies and hence partial
collusion, while low volatility of market shares guarantees that dynamic adjust-
ment of prices via a collusive agreement can sufficiently decrease gains from
deviation.

Note that both conditions, public observability and low volatility, are fulfilled
in Rotemberg and Saloner (1986). They assume that total demand is publicly
observed, and moreover that total demand is always equally divided over firms,
so that implicitly the division of market shares over firms is common knowl-
edge. Thus, firms are assumed to have full information on market shares. And
indeed, in an environment where firms can make binding agreements on mar-
ket shares, the full force of Rotemberg and Saloner (1986)’s arguments applies,
and collusion, at least partial collusion, can be sustained in equilibrium using
countercyclical pricing strategies.

However, we show that in addition to this basic observation, the logic of
Rotemberg and Saloner (1986) breaks down as soon as one of the two conditions
is violated. When in our model market shares are no longer publicly observable,
collusion via dynamic price schemes is no longer possible, and we effectively
revert to a model where the logic of Green and Porter (1984) applies. Hence, the
conclusions of Green and Porter (1984) versus Rotemberg and Saloner (1986) are
not contradictory, but rather complement each other, and can be observed under
different conditions within a single dynamic model of Bertrand competition.

Also, when market shares are still observable but the volatility of market
shares is sufficiently high, dynamic pricing schemes can no longer be sustained
in equilibrium. This is due to the fact that large changes in market shares can
no longer be compensated for by a countercyclical collusive price adjustment
scheme. The gains from deviation for firms with low individual demand simply
can no longer be counterbalanced in that case. Then, in line with the findings of
Stigler (1964), collusion breaks down.

In conclusion, the logic of Rotemberg and Saloner (1986) not only presup-
poses observability of market shares; also low volatility of individual demand,
for example via a sufficient amount of control over individual demand due to
forward contracting, is essential to their argument. So, mere observability is not
sufficient. When market shares cannot be enforced collectively and are subject
to large exogenous fluctuations that are outside the control of the firms, the
conclusions of Rotemberg and Saloner (1986) are mitigated by the volatility of
market shares, and collusion will be harder, or even impossible, to sustain.
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2 Basic Model

In this section we present the basic model we use in our analysis. In our model
firms interact repeatedly in a Bertrand-type pricing game. We first define the
one-shot game played between firms in each period of time. In each period firms
simultaneously and independently choose a pricing strategy. Based on the choice
of strategies of the firms each firm receives a payoff. This basic game is then
repeated over an infinite time horizon. Firms use time discounting to evaluate
the resulting payoff streams.

2.1 The One-Shot Game

The one shot game is a Bertrand model in which n firms compete on price in a
market for a homogeneous good. We present the game step by step. First, each
firm i chooses a price pi ≥ 0. The market price P ≥ 0 is then determined by

P = min{pi | i = 1, . . . , n}.

Given a profile p = (p1, . . . , pn) of prices, L = {i | pi = P} is the set of firms
that charge the market price. Given the resulting market price P , the market
demand is given by Q = A − P , with A > 0. Marginal costs of production are
assumed to be zero.

The second ingredient of the model is a vector of market shares. Market
shares only determine division of the total market Q among those firms that
charge the market price P . All other firms do not attract customers. Thus, we
do have a setting with homogeneous goods, price is the primary decisive factor
for demand, and only firms that charge the market price receive strictly positive
demand. How the total demand is divided over firms in L is decided by other
factors than price, which is modeled by a vector of market shares.

To be precise, market shares are modeled by a vector ϕ = (ϕ1, . . . , ϕn),
where ϕi > 0 represents the market share of firm i. Market shares divide the
total market Q among firms in L that charge the market price. The resulting
share of total demand of firm i ∈ L is κi = ϕi∑

j∈L ϕj
, so that

∑
i∈L κi = 1.

Given these two ingredients of the model, the resulting profit Πi(p) of firm i
is computed via

Πi(p) =
{

κi · P · (A − P ) if i ∈ L
0 otherwise

where κi = ϕi∑
j∈L ϕj

. Thus, when all firms choose to collude, each firm sets its

price pi equal to pm = A
2 , and firms divide monopoly profits Π =

(
A
2

)2
according

to their market shares. When at least one of the firms chooses to use marginal
cost pricing, and sets pi = 0, all profits are zero. The firm that uses this action
attracts the market, but does not make any profit, while the other firms do not
have any customers.

As is well known, the only symmetric Nash equilibrium in this Bertrand
model is where all firms choose pi = 0. The central question then is whether, in
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a repeated game setting, collusion of firms, where each firm sets pi = A
2 at each

time period, can be sustained, so that strictly positive payoffs can be achieved
in equilibrium.

2.2 The Repeated Game

Following, among others, Friedman (1971), we use the repeated game setup to
model repeated strategic interaction between firms. In the repeated game the
one shot game is repeated over an infinite time horizon. At the start of each
period t = 0, 1, 2, . . . the history ht is determined. Typically ht is a record of all
actions taken by firms in earlier periods, and the realized market shares of all
firms in earlier periods.

Next, the vector ϕt(ht) = (ϕ1t(ht), . . . , ϕnt(ht)) of market shares is deter-
mined. This vector is stochastic, and depends in general on both the actions
taken previously by the firms and on the realizations of market shares in earlier
periods.

Next, when ϕt(ht) is realized, each firm receives information report rit. Typi-
cally rit is a record of all actions taken by firms in earlier periods and the realized
market shares of all firms in earlier periods (ht), together with either a firm’s
own market share in the current period (ϕit(ht), private information), or all
realized market shares in the current period (ϕt(ht), public information).

A strategy for firm i in the repeated game is a function si that prescribes for
each information report rit the price si(rit) ∈ R+ chosen by firm i. We require
si(rit) to be specified for any conceivable report rit, not just for those that are
actually realized by previous price choices of the firms. This is standard practice
in game theoretic models and enables us to define the concept of (subgame
perfect) Nash equilibrium. In particular, a firm should not only specify what it
will do when all firms act according to agreement, but also how it will react to
conceivable deviations from the agreement (and by extension also to deviations
from deviations from the agreement, etc.).

The initial division of market shares is given by ϕ0 = (ϕ10, . . . , ϕn0). Further,
the associated information to the firms is denoted by r0 = (r10, . . . , rn0).

The density function fit+1(ϕit+1 | ϕt, p
t) denotes the density of the probabil-

ity distribution of ϕit+1 conditional on the event that at time t the market shares
of firms are divided according to ϕt = (ϕ1t, . . . , ϕnt), and firms charge prices in
the profile pt = (pt

1, . . . , p
t
n). Thus, market shares tomorrow only depend on cur-

rent market shares plus current prices chosen by the firms. We assume that past
market shares and past prices do not influence future market shares (via other
ways than their influence on current market shares of course).

We write s(rt) = (s1(r1t), . . . , sn(rnt)) for the profile of prices that is played
at time t given the report rt = (r1t, . . . , rnt). Given the profile s = (s1, . . . , sn)
of strategies, let EΠt+k

i (s | rit) denote the present value of the profit of firm i
at time t + k, given the strategy profile s and information rit to firm i at time
t. Firm i evaluates the stream

EΠt
i (s | rit), EΠt+1

i (s | rit), . . .



Repeated Games and Price Wars 9

of expected profits via the discounted criterion defined by

Πi(s | rit) =
∞∑

k=0

δk · EΠt+k
i (s | rit).

We solve the resulting repeated game using the solution concept of perfect
Bayesian equilibrium (see for example Fudenberg and Tirole, 1991, or Bonanno,
2013). Given a strategy profile s and a strategy s′

i for firm i, let (s, s′
i) denote

the strategy profile where all firms j �= i play according to the strategy sj , while
firm i plays according to strategy s′

i. Strategy profile s is a perfect Bayesian
Nash equilibrium when, at every information set rit,

Πi(s | rit) ≥ Πi((s, s′
i) | rit)

holds for every strategy s′
i of firm i.

3 Collusive Equilibria Under Private Information

In this section we assume private information. Thus, for every i and t, rit consists
of ϕit(ht) together with all realizations of all market shares and all prices chosen
by the firms in all previous rounds. We also assume that all realizations of market
shares ϕit are within an interval [ϕ,ϕ] with 0 ≤ ϕ < ϕ ≤ 1. We first analyze
under what conditions collusion can be sustained as a perfect Bayesian Nash
equilibrium via trigger strategies.

Trigger strategies. The trigger strategy Ti of firm i is defined by Ti(rit) = pm

if all firms chose collusive price pm in all previous rounds according to rit, and
Ti(rit) = 0 otherwise.
We write T = (Ti)i∈N for the profile of trigger strategies. Further, let E(ϕit+k |
ϕit) denote the expected value of the market share ϕit+k of firm i at time t + k
given that the current market share at time t is ϕit, under the assumption that
all firms choose the collusive price pm at each period2. We derive the following
necessary and sufficient condition for T to be a perfect Bayesian Nash equilib-
rium.

Theorem 1. The strategy profile T is a perfect Bayesian Nash equilibrium if
and only if

∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1

holds for any possible market share ϕit ∈ [ϕ,ϕ] at time t, for all firms i and at
every time t.

2 Note that, despite the fact that in our model the actions of the firms may influence
market share, here market shares are computed given that firms act collusively. In
effect then future market shares, given collusive behavior of firms, only depend on
current market shares.
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Proof. Due to the one deviation property (see e.g. Hendon et al., 1996), the
trigger strategy profile is a perfect Bayesian Nash equilibrium exactly when
for every firm i, at every time t, and at every information set rit the trigger
strategy renders at least the same expected profit as an instantaneous deviation.
Thus, consider firm i, at time t, having a market share ϕit. Given that in the
punishment phase firms make zero profit, the expected loss in this phase equals
the discounted sum of expected market shares times Π

δ · E(ϕit+1 | ϕit) · Π + δ2 · E(ϕit+2 | ϕit) · Π + . . . =
∞∑

k=1

δk · E(ϕit+k | ϕit) · Π.

The gain from optimal deviation is equal to (1−ϕit)·Π. So the collusive strategy
renders at least the same profit when

∞∑

k=1

δk · E(ϕit+k | ϕit) ≥ 1 − ϕit.

This concludes the proof. ��
As a consequence of this result we derive analogues in our context of the

results of Green and Porter (1984) and Stigler (1964). In the remainder of
this section we show that, when firms experience low market shares, collusion
becomes more difficult to sustain and reversion to non-collusive behavior is more
likely to occur. In particular we find that the smaller a firm’s market share can
get, the higher the discount factor needs to be to guarantee that the trigger
strategy profile is an equilibrium for all possible market share realizations. Also,
since consumer loyalty reduces the volatility of market shares over time, we find
in agreement with Stigler (1964) that collusion becomes easier to sustain when
consumer loyalty is high.

For the next corollary we need the following mild assumption.

For any k ≥ 1, E(ϕit+k | ϕit) is increasing in ϕit. (1)

The intuition supporting this assumption is clear. It states that, given the
assumption that firms act collusively, the expectation of a firm’s future market
share is an increasing function of today’s market share. In other words, when all
firms agree to collude, higher market shares today increase the expected value
of tomorrow’s market share.

Corollary 1 Assume (1). The strategy profile T is a perfect Bayesian Nash
equilibrium if and only if

∞∑

k=0

δk · E(ϕit+k | ϕit = ϕ) ≥ 1

holds for every firm i at every time t.
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Proof. By Theorem 1, T is a perfect Bayesian Nash equilibrium if and only if

∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1 (2)

holds for all firms i, at every time t, for any possible market share ϕit ∈ [ϕ,ϕ]
at time t. However, by (1), the left-hand side of (2) is increasing in ϕit. Hence,
(2) is satisfied for all ϕit ∈ [ϕ,ϕ] if and only if it is satisfied for ϕit = ϕ. ��

This is a direct analogue of the result of Green and Porter (1984) that the
possibility of low market shares hampers collusion in our context. This possibility
is reflected in a low value of ϕ. Then, by (1), the left-hand side of (2) is low.
Thus, it will become harder to satisfy the condition for T to be a perfect Bayesian
Nash equilibrium, and hence collusion is harder to sustain. It is also in agreement
with Stigler (1964), since high consumer loyalty reduces the volatility of market
shares. Hence high consumer loyalty increases ϕ, and collusion becomes easier
to sustain.

4 Collusive Equilibria Under Public Information

We now focus on the setting of Rotemberg and Saloner (1986). We show that
when firms have public information on realized market shares, the incentives to
deviate for a firm that has a low market share can be reduced by jointly choosing
a lower collusive price. Thus, public availability of information enables firms to
sustain (partial) collusion even in situations where full collusion would break
down. The price to pay for this enhancement of collusion is, as also argued in
Rotemberg and Saloner (1986), a lower collusive price, and hence lower profits.

We model the phenomenon of partial collusion via collusion at a reduced level
of profits in the one shot game. Since under public information the colluding
firms observe the vector ϕt = (ϕ1t, . . . , ϕnt) of market shares at the start of each
period t, the profit function in the one shot game can now be made contingent
on the specific realization of ϕt. Before the start of the game, the colluding firms
agree on a threshold level ϕ∗ and a collusive joint profit Π∗ < Π. The joint
profit Π∗ is achieved by letting all firms choose a collective predetermined price
level pi = p∗, where p∗ < pm.

The agreement is that, as long as all realized market shares ϕit are above
the threshold ϕ∗, firms collude at price level pm, generating monopoly profits
Π, while as soon as one or more firms have a realized market share below the
threshold, firms collude at price level p∗, generating joint profits Π∗ (partial
collusion). Note that firms need public information on market shares in order to
implement this form of collusion. Thus, strategies are now defined contingent on
the realization of the vector ϕt = (ϕ1t, . . . , ϕnt).
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Trigger strategies. The trigger strategy T ∗
i of firm i is defined by

T ∗
i (rit) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pm if according to rit all firms colluded in all previous rounds,
and ϕjt ≥ ϕ∗ for all j

p∗ if according to rit all firms colluded in all previous rounds,
and ϕjt < ϕ∗ for at least one j

0 otherwise.

We write T ∗ = (T ∗
i )i∈N for the profile of trigger strategies.3 Given rt, let qt+k(rt)

denote the probability that ϕjt+k ≥ ϕ∗ for all j.

Theorem 2. The strategy profile T ∗ is a perfect Bayesian Nash equilibrium if
and only if for every firm i and for every information set rt at every time t, the
condition

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
≥ (1 − ϕit)Π (3)

holds when ϕjt ≥ ϕ∗ for all j, and the condition
∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
≥ (1 − ϕit)Π∗ (4)

holds when ϕjt < ϕ∗ for some j.

Proof. The proof generally follows the same steps as the proofs of Theorem 1 and
Corollary 1. Consider a firm i at time t with market share ϕit. If firm i would
deviate from the collusive agreement, the expected loss from the punishment
period would be

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
.

The expected gain when ϕjt ≥ ϕ∗ for all j is (1 − ϕit)Π. So, in this case the
equilibrium condition becomes

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
≥ (1 − ϕit)Π.

When ϕjt < ϕ∗ for some j the expected gain is (1 − ϕit)Π∗. So, in this case the
equilibrium condition becomes

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
≥ (1 − ϕit)Π∗. ��

3 Although the definition of T ∗ looks similar to the definition of the profile of trigger
strategies T , due to the different information structures the set of histories on which
T ∗ is defined differs from the set of histories on which T is defined.
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The above Theorem shows that in the setting with public information we
can, similarly to Rotemberg and Saloner (1986), implement partial collusion
as a perfect Bayesian Nash equilibrium in trigger strategies. Also, as in R&S,
strategies are based on a collusive dynamic price adjustment strategy.

This form of partial collusion under public information allows for collusion in
more environments than the full collusion under private information studied in
the previous section. The argument, here as well as in R&S, is straightforward:
when we choose Π∗ = Π and ϕ∗ = ϕ the above conditions are exactly equivalent
to the condition in Theorem1.

Thus, when full observability of market shares is not possible, this type of
partial collusion cannot be implemented, and the results from Rotemberg and
Saloner (1986) reduce to the results in Green and Porter (1984). Hence, full
observability enhances collusion in our model. Partial collusion incorporates the
opportunities that full collusion offers, and extends to environments where full
collusion is no longer sustainable.

Consumer loyalty guarantees to firms a certain fixed minimum number of
consumers. Thus, when the threshold ϕ∗ is sufficiently low, an increase in con-
sumer loyalty tends to increase the probability qt+k(rt) that ϕjt+k ≥ ϕ∗ for all j
given the history rt. All other things being equal, this shows that an increase in
consumer loyalty makes it easier to satisfy the conditions in the above Theorem,
which is in line with the observations in Stigler (1964).

5 Collusive Equilibria When Market Shares Form
a Martingale

An interesting special case in which we can take the above analysis a step further,
and give explicit formulas for the breakdown of collusion under both private and
public information, is when the stochastic process that governs the market shares
forms a martingale.4

In order to derive the analogues of Stigler (1964) and Green and Porter (1984)
we need a bit more notation together with a mild assumption. Specifically, we
assume for the conditional density function fit+1(ϕit+1 | ϕit, p) that it is constant
when all firms charge the market price. Thus, the probability density function
does not depend on the (collective) choice of market price. This density function
then is denoted by fit+1(ϕit+1 | ϕit).

We assume that fit+1(ϕit+1 | ϕit) = 0 outside the interval [ϕ,ϕ] and that
fit+1(ϕit+1 | ϕit) > 0 on the interior of the interval [ϕ,ϕ].

Further, in accordance with the intuition that a higher market share today
increases one’s chances to have a higher market share in the future, we assume
for the collection of cumulative probability distributions

Fϕit
(ϕ) =

∫ ϕ

0

fit+1(ϕit+1 | ϕit) dϕit+1

4 For firm i, the stochastic process (ϕit)
∞
t=0 is a martingale when E(ϕit+k | ϕit) =

ϕit for every t and k. Formally, a martingale does not satisfy the condition that
fit+1(ϕit+1 | ϕit) > 0. However, Theorem 1 also holds for martingales.
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that ϕit ≤ ϕ̃it implies Fϕit
(ϕ) ≥ Fϕ̃it

(ϕ) for every ϕ. Put slightly differently,
when ϕit ≤ ϕ̃it, the probability distribution Fϕ̃it

of ϕit+1 given ϕ̃it stochasti-
cally dominates the probability distribution Fϕit

of ϕit+1 given ϕit. Under this
assumption, we first show that the assumption we imposed earlier is in fact valid
in this setting.

Lemma 1. For any k ≥ 1, E(ϕit+k | ϕit) is increasing in ϕit.

A sketch of its proof can be found in the Appendix. Thus, all results we
derived in previous sections apply to the current case. We will review our earlier
results, and specify the bounds that were only stated qualitatively in the earlier
propositions.

We start with the case of private information. In this setting, as a consequence
of Theorem 1, we find that the trigger strategy profile is a perfect Bayesian Nash
equilibrium precisely when the discount factor exceeds 1 minus the minimum
market share. Thus, when the minimum market share is relatively high, and
hence uncertainty is relatively low, it is easy for the firms to sustain collusion.

Corollary 2. Assume private information. When the stochastic variables ϕi

form a martingale, the trigger strategy profile T is a perfect Bayesian Nash
equilibrium if and only if δ ≥ 1 − ϕ.

Proof. When the stochastic variables ϕi form a martingale, we have E(ϕit+k |
ϕit = ϕ) = ϕ for all t and k.5 Thus, the equilibrium condition in Corollary 1
reduces to

∑∞
k=0 δk · ϕ ≥ 1, which can be rewritten to δ ≥ 1 − ϕ. ��

We now turn to the case of public information. It turns out there is an
appropriate choice of ϕ∗ such that, given δ, the adaptive trigger strategies T ∗

form an equilibrium whenever the profile of trigger strategies T is an equilibrium.

Corollary 3. Assume public information. Suppose that the stochastic variables
ϕi form a martingale. Let δ be given. Suppose further that

ϕ∗ ≥ (1 − δ)Π
δΠ∗ + (1 − δ)Π

. (5)

Then the trigger strategy profile T ∗ is a perfect Bayesian Nash equilibrium.

Proof. Rewriting of (5) yields

∞∑

k=1

δk · ϕ∗ · Π∗ ≥ (1 − ϕ∗)Π. (6)

Since the left-hand side of (6) is increasing in ϕ∗ and the right-hand side is
decreasing, we obtain

∞∑

k=1

δk · ϕit · Π∗ ≥ (1 − ϕit)Π

5 For a martingale it even holds that ϕit+1 = ϕ with probability one when ϕit = ϕ.
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for all ϕit ≥ ϕ∗. Thus, since the stochastic variables ϕi form a martingale, we
find that ∞∑

k=1

δk · E(ϕit+k | ϕit) · Π∗ ≥ (1 − ϕit)Π

for all ϕit ≥ ϕ∗. Hence, since Π∗ < Π, also

∞∑

k=1

δk · E(ϕit+k | ϕit) ·
(
qt+k(rt)Π + (1 − qt+k(rt))Π∗

)
≥ (1 − ϕit)Π

for all ϕit ≥ ϕ∗, which shows that (3) in Theorem 2 is satisfied. In order to obtain
(4), notice that the strategy profile T is a perfect Bayesian Nash equilibrium by
assumption. So, by Theorem1

∞∑

k=0

δk · E(ϕit+k | ϕit) ≥ 1

for all t and all market shares ϕit. Therefore also

∞∑

k=1

δk · E(ϕit+k | ϕit) · Π∗ ≥ (1 − ϕit)Π∗

for all t and all market shares ϕit. The second set of conditions now follows from
the observation that Π∗ < Π. ��

Finally note that the condition ϕ∗ ≥ (1−δ)Π
δΠ∗+(1−δ)Π can be satisfied for any

given δ < 1 by appropriate choices of ϕ∗ < 1 and Π∗ < Π.

6 Conclusion

We presented a model in which firms repeatedly engage in a Bertrand type
competition model. Depending on the strategies chosen, per period profits are
distributed among those firms that charge market price according to market
shares. Market shares are allowed to fluctuate over time.

Within this model with public information on market shares we derived the
conditions under which partial collusion can be implemented via trigger strate-
gies with a dynamic price adjustment policy. Implementability of partial collu-
sion in equilibrium is in line with the logic of Rotemberg and Saloner (1986).

Using this model we argue that both public observability of market shares
and low volatility of market shares are essential for the implementation of partial
collusion. Absence of public observability prevents firms from using dynamic
pricing strategies, and we revert to the logic of Green and Porter (1984). On
the other hand, in line with Stigler (1964), we see that in our basic model with
full observability, low consumer loyalty also prevents firms from using dynamic
pricing strategies. Such strategies can in principle still be executed, but under
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low consumer loyalty, and hence high volatility of market shares, this form of
partial collusion fails to satisfy the equilibrium conditions, and collusion breaks
down.

Thus, our model can be seen as reconciliation of the three classical models
of Stigler (1964), Rotemberg and Saloner (1986), and Green and Porter (1984).
We conclude that these models do not necessarily represent opposing views, but
rather complement each other, and each view has its own consistent logic that
indeed applies under different, mutually exclusive, conditions within our model.

Appendix

In this appendix we provide a sketch of the proof of Lemma1. It is well known
that stochastic dominance implies the following statement for monotone trans-
formations of ϕit+1.

Lemma 2. Let g(ϕit+1) ≥ 0 be (strictly) increasing in ϕit+1. Then

E(g | ϕit) =
∫

g(ϕit+1) · fit+1(ϕit+1 | ϕit) dϕit+1

is (strictly) increasing in ϕit.

Proof of Lemma 1. We write

E(ϕit+1 | ϕit) =
∫

ϕit+1 · fit+1(ϕit+1 | ϕit) dϕit+1.

By Lemma 2, E(ϕit+1 | ϕit) is a strictly increasing function of ϕit. Thus, iterating
the same argument, also

E(ϕit+2 | ϕit) = E(E(ϕit+2 | ϕit+1) | ϕit)

is a strictly increasing function of ϕit. In general we find that E(ϕit+k | ϕit) is
increasing in ϕit for any k ≤ 1. This completes the proof of Lemma 1. ��

In order to see that the equation

E(ϕit+2 | ϕit) = E(E(ϕit+2 | ϕit+1) | ϕit) (7)

in the proof of Lemma 1 indeed holds, it is instructive to derive it for a discrete
process. Let M1, M2 and M3 be three finite sets. Suppose we have transition
probabilities P (m2 | m1) and P (m3 | m2) for all m1 ∈ M1, m2 ∈ M2, and
m3 ∈ M3. Then

P (m3 | m1) =
∑

m2

P (m2 | m1) · P (m3 | m2).
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So,

E(m3 | m1) =
∑

m3

P (m3 | m1) · m3

=
∑

m3

∑

m2

P (m2 | m1) · P (m3 | m2) · m3

=
∑

m2

[
∑

m3

m3 · P (m3 | m2)

]

· P (m2 | m1)

=
∑

m2

E(m3 | m2) · P (m2 | m1)

= E (E(m3 | m2) | m1) .

Equation (7) is the continuous variant of the same result. The formula for the con-
tinuous case can be shown using the Theorem of Radon-Nikodym and Tonelli’s
Theorem. For further information we refer to Davidson (1994).
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Abstract. Emergency department need a decision support tool to advise the
critical medical resources (such as doctors, nurses, or beds) to urgent patients in
the different service time requirements. This study proposes a framework for
emergency response service that incorporates two game theory models designed
to deploy response medical resources when raising three threat advisory levels.
First, the interactions between a group of weekly patients and a response agent
of emergency department are modeled as a non-cooperative game, after which a
threat, vulnerability, and consequence value (i.e., TVC) of each type of patients
for emergency event is derived from Nash equilibrium of game. Second, four
TVC values of emergency events are utilized for computation of the Shapely
value for each type of patient. The deployment of emergency medical resources
is carried out based on their expected marginal contribution. Then, the model
scheduled daily physicians, nurses, and beds in emergency department. The
experimental results show that proposal model is feasible as a method to
improve efficiency in emergency department.

Keywords: Emergency response � Nash equilibrium � Shapley value �Medical
resources scheduling

1 Introduction

Emergency Department (ED) overcrowding gradually becomes a serious problem
which reduces quality of emergency care, increased costs of patients, and decreased
physician job satisfaction [6, 18]. However, the more emergency medical resources
(such as doctors, nurses, and beds) deploy, the more patients need to care and hence the
price to pay is higher. Mass deployments are probably to waste resources. On the
contrary, the fewer medical resources deployed, the easier patients to be delayed, and
the more difficult it is to respond. The robustness of a completely emergency decision
process depends upon a balance between the medical resources requirements of and the
urgent of patients. Therefore, there exists in ED a dilemma between overcrowding of
visiting patients and the capability of medical resources. The current systems lack
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specific measures for rational decision-making, as well as the capacity to apply
mathematical models to capture the interactions between patients and medical
resources. The ED administrator should have the tools to measure the strength of
overcrowding patients and the resistance capability of the response medical resources.
A rating system can be built to assist with decision making by considering the utilities
of the moves that the overcrowding patient and the medical resource can take [11].

Game theory tools provide analytical techniques that are already applied in many
other research areas, where multiple agents compete and interact with each other within
a specific system. In most multiple agent interactions, the overall outcome depends on
the choices made by all self-interested agents. The goal is to make choices that optimize
the outcome [2]. Game theory also focuses on these adversarial risk analyses may lead to
far more effective allocations of limited response resources than current multiplying
threat, vulnerability, and consequence (TVC) analyses. Risk analysis and game theory
are also support each other and deeply complementary so that they can improve risk
assessors to avoid producing potentially irrelevant or misleading TVC risks scores [1].

The proposed model is applied to deploy medical resources for emergency responses
in ED. Two game-theoretic models are constructed, representing the two stages needed
for economical deployment of the available resources. In the first step, the interactive
movements between a group of weekly patients and a response agent (i.e., administrator)
of emergency department are modeled and analyzed as a non-cooperative game, after
which the TVC value of each type of patients for emergency event is derived from Nash
equilibrium of game. This value quantified threat, vulnerability, and consequence of an
emergency for visiting patient. In the second step, the interactions of four types of
emergency event of patient in a whole administration region are likened to the playing of
a cooperative game. Four TVCs of patients for emergency events are utilized to compute
each type of emergency’s Shapley value. Then, the Shapley value assists in setting
priorities for medical resources allocation. Finally, the administrator deploys three types
of medical resources for the three shifts working scheduling per day to improve effi-
ciency and enhance patient care in emergency department.

2 Literature Review

The efficiency and cost of emergency systems depend on the performance of deploy-
ment and working scheduling of available medical resources. However, constructing
optimized work timetables for those resources are NP-hard problem [19, 20].
Luscombe and Kozan [12] proposed a resource allocation model which is heuristic
approach to find near-optimal solutions. Their ED model provided the patient appro-
priate bed and scheduled medical resources with a tabu search. Some simulation-based
models analysis the patient requirements and minimize the patient average length of
stay so as to produce the appropriate medical resources allocations, such as doctors,
nurses, and beds in ED [3, 8]. Although they utilized simulated data to search for the
optimal parameters to match the real data, but these optimal approaches could not
satisfy the sudden overcrowding patients, particularly when available medical resour-
ces are limited in ED. Gupta and Ranganathan [17] surveyed several optimization
approaches such as genetic algorithms (GA), the Bayesian search method (BS), as well
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as random search (RS) and greedy allocation (GS) methodologies. These algorithms
cannot be applied to the multi-crisis management problem because they do not provide
individual rationality, since some of the members of the population become dominant
as the algorithm progresses. However, using game theory, scenarios that optimize
multiple competing objectives can be modeled.

Jacobson et al. [7] indicated there is a trade-off between prioritizing urgency jobs
and prioritizing higher expected payoff for emergency patient in mass-casualty inci-
dents. An efficient emergency response need to assign the appropriate resources to the
urgency of a single patient or a group of patient’s requirements. Game theory can
model interactions between self-interested agents (e.g., job or resource) and analysis as
to which strategies can be designed that will maximize the benefits of an agent in a
multiple agent system. Many of the applications of game theory have been to analyze
the negotiation and coordination of multiple agents. Game theory can be a useful tool
for building future generations of mixed game theory and decision theory [16]. In a
non-cooperative game, each player (or self-interested agent) tries to utilize resources at
minimum cost and the coordination is not enforced externally but is self-enforcing. All
players optimize their decisions which maximize their payoffs in a non-cooperative
game. N.E. is a solution concept for a non-cooperative game which identifies a pre-
diction of the game outcome such that every player in the game is satisfied with respect
to every other player.

In a cooperative game, the self-interested agents implement their joint actions to
form a specification of the coalition. No players can separate from the coalition and
take a joint action that makes all of them better off [14]. The Shapley value is a solution
concept for cooperative games which computes the power index of an individual for
cost allocation [13]. The cooperative game provides a suitable model for the design and
analysis of response agent deployment, and it has been shown that the famous Shapley
value rule satisfies many nice fairness properties [21]. The Shapely value also identifies
a socially fair, good quality allocation for all agents in a multi-agent system (MAS).
Here, the individual fairness for each player is optimal and the average fairness of the
MAS is high. The social optimality property ensures that each player in the game
receives the best utility for himself and for the complete MAS. A power index in the
form of the Shapley value is applied to calculate the marginal contribution among
agents and achieve mutually agreeable division of cost for MAS deployment.

3 The Proposed Model

This paper employs two solution concepts of game theory to set up a threat level
framework for deploying three types of emergency medical resources (e.g., doctors,
nurses, and beds) in an ED for working scheduling and dispatch. Two games are
constructed, which represent the two stages needed for the economical deployment of
emergency medical resources. One is the TVC game, the other is the deployment
medical resource game.

A simplified workflow chart describing the principles of optimal medical resource
deployment is shown in Fig. 2. First step plays four non-cooperative games for medical,
surgical, pediatric, and independent emergency event. In each game, interactions
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between a group of weekly patients and a response agent (or administrator) of emer-
gency department (ED) are modelled as a two-person, zero-sum game, for each type of
emergency event. After considering some of the information needed to measure the
efficiency of emergency medical services, such as available resources (e.g., doctors,
nurses, and beds), resources requirements, emergency priorities (e.g., five levels of
triage categories), mean length of stay per patient (LOS) [4], and the number of patients.
This stage simultaneously calculates four payoff matrices which combines the payoffs of
each player’s strategies. Then, the four payoff matrices respectively obtain expected
payoff of a group of weekly patients and four TVCs of emergency events derived from
N.E (shown in Fig. 1).

In the second step, four TVCs of emergency events are applied to compute three
thresholds so as to confirm three threat levels (i.e., day shift, evening shift, and night
shift) in one day. A cooperative game model is applied to establish a rational emergency
medical resources allocation by using the Shapley values as the indices of power. Given
the three threat levels (i.e., day shift, evening shift, and night shift) the proposed model
produces the specific Shapley value vector. Finally, a daily shift schedule of three type
of medical resources (i.e., doctors, nurses, and beds) in ED is derived from the total
number of each type of medical resources multiple by the Shapley value vector.

Triage category:

5 Levels

A group of weekly patient Response Agent

Non-cooperative game play 

Patients
Request

Resources
Available

Priority LOS
Number of 

Patients

Calculate Payoffs for each Strategy Combination in the Payoff Matrices

Obtain Expected Payoff of a Group of Weekly Patients and

Calculate TVC of Medical Emergency v1 from N.E.

Doctors

Nurses

ED Beds

The First TVC Game of Medical Emergency

v1

v3

v2

v4

Computing

Shapley 

Value

Z yellow

Z orange
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Medical

Resources 
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Nurses, and,

Beds)

Scheduling

Table

Three threat 

levels:

Day shift:

∑ y(vi) ≥ m1

Evening shift:

∑ y(vi) ≥ m2

Night shift:

∑ y(vi) ≥ m3

Noncooperative game play
Calculate TVC of Pediatric Emergency v3 from N.E.

Cooperative game to deploy medical 

resources in emergency department

The Fourth TVC Game of Independent Emergency

The Third TVC Game of Pediatric Emergency

The Second TVC Game of Surgical Emergency

Noncooperative game play
Calculate TVC of Surgical Emergency v2 from N.E.

Noncooperative game play
Calculate TVC of Independent Emergency v4 from N.E.

Fig. 1. Optimal resources scheduling workflow of two game models for hospital emergency
department
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3.1 Model Assumptions

Certain assumptions must be made when treating various patients and emergency
medical resources response management scenario as a game theory framework. The
assumptions are listed below.

1. When patients arriving at the hospital emergency department, a triage nurse will
assess and categorized them into 5 levels of urgency — Category 1 (critical), 2
(emergency), 3 (urgent), 4 (standard) and 5 (non-urgent) [8]. According to their
categories, patients follow specific procedures and are directed to different treatment
areas. ED nurse gives patient directing initial medical care and services required.
And then doctors contact with the patient, diagnosis, and examination should be
followed by decisions, often required to be made as soon as possible in serious
cases. Four types of emergencies (i.e., medical, surgical, pediatric, and independent
emergency) may occur simultaneously in different patients in a time-overlapped
manner, and resources requests and emergency priorities will be received by the
response agent of ED (shown in Table 1).

2. This study assumes a group of weekly patients is player 1 and a response agent of
ED is player 2. Hence, two game players can utilize a static single step. The first
model is a normal form game for modelling the interactions between two players.
Player 2 has a different number of resources available, such as doctors, nurses, and
beds for four types of patients (shown in Table 2). These four types of patients
include medical, surgical, pediatric, and other independent emergencies, which are
provided a good standard of treatment and care by three types of medical resources.
In TVC game there is complete information regarding the number of patient visits
per week.

Table 1. Emergency priorities, types, and the daily resource requests

Triaged category Priority (1–5) Doctors Nurses Beds
Internist Surgeon Pediatricians Others

Level 1 5 13 2 3 1 19 19
Level 2 4 52 11 17 8 87 87
Level 3 3 32 7 10 7 55 55
Level 4 2 2 0 1 1 4 4
Level 5 1 1 0 0 0 1 1
Total 100 20 30 16 166 166

Table 2. Doctors, nurses and beds available for 4 types of patients

Type of patients Medical resources
Doctors Nurses Beds

Medical emergency 20 60 42
Surgical emergency 6 18 42
Pediatric emergency 4 12 42
Independent emergency 28 18 42
Total 58 108 168
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3. The weekly mean length of stay (LOS) [4] per triage category patient indicates the
time from each type of patient arrival to time of discharge from the ED, calculated
as a weekly average (shown in Table 3). Longer length of stay may reflect ineffi-
cient use of emergency resources, and length of stay is a key factor of patient
satisfaction.

3.2 TVC Game

Four TVC games are applied in the first step of the proposed model, which are
designed to obtain the TVC of the ith type of emergency event (e.g., medical, surgical,
pediatric, or other independent emergency), i = 1, 2, 3, 4. In each non-cooperative
game, this study assumes that a group of weekly patients is player 1 and a response
agent of ED is player 2. The two players’ behaviors are captured with a two-person
game theory model. Player 1 generates five levels of urgency patients. Player 2 is a
stewardship [9] who is responsible for providing excellent care for these patients within
the constraints of medical resources available. This study assumes a group of weekly
patients and a response agent of ED to be rational players, a set of noncooperative
players I = {I1, I2}, where I1 is a group of weekly patients and I2 is a response agent of
ED. The parameters for determining the threat, vulnerability, and consequence
(TVC) measures are defined in the following paragraphs.

A group of weekly patients is player 1. Five categories of urgency patients could
happen simultaneously as a result of the player 1’s actions. S1 denotes the set of
strategies available to player 1: S1 = {u1, u2, u3, u4, u5} = {category 1 (critical), 2
(emergency), 3 (urgent), 4 (standard) and 5 (non-urgent)}. ED medical resources are
available for categories of urgency patients. W denotes the set of resource requirements
for five categories of urgency patients in an ED. W = {w1, w2, …,wn}. The variable wj,k

denotes the number of resources required by a uj triaged category from resource dk.
Moreover, the priority for each category of urgency patient is related to the resource
requirements. Typically, in a priority-based system, a high priority patient needs more
resources, and a lower priority patient needs fewer resources. Each patient is assigned a
priority P on a scale of 1 to 5 indicating the severity of the urgency patients, which is
used as a weight in the payoff function to facilitate the calculation of gains. pj denotes
the priority of the jth patient pj = 1, 2, 3, 4, 5 where 1 is lowest and 5 is highest level
(shown in Table 1).

Response agent is player 2, which in turn have varied resources to prepare for five
triage category patients who will generate four types of emergency events. In this
game, player 2 is responsible for providing ED patients with three types of medical
resources (i.e., three strategies). S2 denotes the sets of player 2 strategies: S2 = {d1, d2,
d3} = {doctors, nurses, and beds}. O denotes the set of medical resources available in
ED. O = {o1, o2, o3}. ok denotes the number of resources available at resource dk; k 2 1,
2, 3. Length of emergency department stay (LOS) is a measure of medical care effi-
ciency, and it is often a mainly source of patient complaint and frequently the target of
interventions. ti,j denotes the weekly mean length of stay of jth triage category patients
in the ith type of emergency events in the ED. Response agent should offer more
medical resources to serve the patients when the number of patients in need increases
and the average LOS of patient takes long time.
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Two players will simultaneously make their strategic decisions. A 5 � 3 payoff
matrix for the each TVC game is created based on two players’ strategies and inter-
actions as seen in Table 4. The payoff to player 1 for choosing a particular strategy
when player 2 makes his selection can be represented as a gain by player 1 (+) or a loss
for player 2 (–). In this model, a summation of the losses of player 2 is depicted, and
player 1 tries to maximize this loss. Player 2 tries to minimize the losses. Player 1 gains
a profit from player 2’s effort of resource responses. Player 2 pays as a result of player
1’s multi-emergency events and various triage patients. This game assumes that each
player aims to achieve as high a payoff for him or her as possible.

The payoff for the jth strategy for player 1 when player 2 chooses the kth strategy to
the response can be formulated as

p1 ¼
X5

j¼1

X3

k¼1

wi;k

oall;k � wj;k

� �
ti;j � pj; i 2 1; 2; 3; 4 ð1Þ

where oall;k is the total number of medical resources available of type k in the whole ED
(such as total number of nurses who can care for the patient). The proposed model
assumes that the non-cooperative game is a zero-sum game; therefore, the payoff
function of player 2 is given by

Table 3. Weekly mean length of stay per triage category patient with four types of emergencies

(Minutes) Medical
emergency

Surgical
emergency

Pediatric
emergency

Independent emergency
(the others)Triage

categories

Level 1 185 188 165 105
Level 2 163 145 115 99
Level 3 162 123 105 89
Level 4 125 117 120 82
Level 5 104 99 115 75
Total 739 672 620 450

Table 4. Payoff matrix for the TVC game in ith type of emergency event (e.g., medical
emergency)

Player 1 (patients) Player 2 (response agent)
d1 (doctor) d2 (nurse) d3 (bed)

u1 (level 1) wi;1

oall;1�w1;1

� �
ti;1p1

wi;2

oall;2�w1;2

� �
ti;1p1

wi;3

oall;3�w1;3

� �
ti;1p1

u2 (level 2) wi;1

oall;1�w2;1

� �
ti;2p2

wi;2

oall;2�w2;2

� �
ti;2p2

wi;3

oall;3�w2;3

� �
ti;2p2

u3 (level 3) wi;1

oall;1�w3;1

� �
ti;3p3

wi;2

oall;2�w3;2

� �
ti;3p3

wi;3

oall;3�w3;3

� �
ti;3p3

u4 (level 4) wi;1

oall;1�w4;1

� �
ti;4p4

wi;2

oall;2�w4;2

� �
ti;4p4

wi;3

oall;3�w4;3

� �
ti;4p4

u5 (level 5) wi;1

oall;1�w5;1

� �
ti;5p5

wi;2

oall;2�w5;2

� �
ti;5p5

wi;3

oall;3�w5;3

� �
ti;5p5
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p2 ¼ �
X5

j¼1

X3

k¼1

wi;k

oall;k � wj;k

� �
ti;j � pj; i 2 1; 2; 3; 4 ð2Þ

Player 1 and 2’s expected payoff is computed when they use mixed strategies r and
q, respectively. If the game has no pure strategy Nash Equilibrium (N.E.), a mixed N.E.
pair (r*, q*) exist in the game, which also is an optimal strategy [5, 10]. The mixed N.E.
for the probability vector is r* = {r*(u1), r

*(u2), r
*(u3), r

*(u4), r
*(u5)} with actions {u1,

u2, u3, u4, u5} by player 1 and the vector q* = {q*(d1), q
*(d2), q

*(d3)} with actions {d1,
d2, d3} by player 2. The player 1’s expected payoff for a N.E. (pure or mixed strategy)
is defined as its TVC of the ith type of emergency event. This study defines the vi as a
TVC of the ith type of emergency event in a week, given by

vi ¼
X5

j¼1

X3

k¼1
r� uj
� �

q� dkð Þp1 u�j ; d
�
k

� �
; u�j ; d

�
k 2 N:E: ð3Þ

Therefore, vi is derived from the expected payoff of two players’ optimal strategies
which represents the TVC of the ith type of emergency event in the first game model.
The next proposed model applies the value vi to compute the Shapley value of each
type of emergency event within the cooperative game.

3.3 The Deployment Game

This study likens the interaction of four types of emergency events (e.g., medical,
surgical, pediatric, or other independent emergency) in a whole hospital ED admin-
istration to the playing of a cooperative game. A fair and efficient method is needed to
decide the number and priority of medical resources to be deployed when the emer-
gency threat level is raised. The Shapley value is a power index for cost allocation. The
cooperative game provides a suitable model for the design and analysis of resources
deployment, and it has been shown that the famous Shapley value rule satisfies many
fairness properties. Thus, in the proposed model, the Shapley value is applied to create
an optimal cost allocation for the deployment of ED resources for working scheduling.

This research defines y: V ! R+ as a one-to-one function by assigning a positive
real number to each element of v and y(0) = 0, V = {v1, v2, v3}. The four emergency
events for medical resources deployment is based on the concept of the threat level.
Three emergency threat levels in one day (e.g., day shift, evening shift, and night shift)
are L= {l1, l2, l3}, where 0 < m1 < m2 < m3 represents the corresponding threshold
values. Given the output vector of four TVCs of the emergency events, the threat level
L of the HSAS response region is equal to lf if the sum of the TVCs of emergencies is
greater than or equal to mf, f = 1, 2, or 3.

L ¼
l1 if

PN
i¼1 y við Þ�m1

l2 if
PN

i¼1 y við Þ�m2

l3 if
PN

i¼1 y við Þ�m3

8<
: ð4Þ

where m1 ¼ vMini þmin;m2 ¼ m1 þmin;m3 ¼ m2 þmin;min ¼ vMax�vMini
4

� �
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Four TVCs of emergency events can be grouped into three threat levels according
to the average value of the interval min of the threshold. This is divided by three threat
levels from the maximum TVC vMax to the minimum vMin value.

Four types of emergency events (e.g., medical, surgical, pediatric, or other inde-
pendent emergency) can be modeled as a 4-person game with X = {1, 2, 3, 4}, which
includes the set of players and each subset V � N and where vi 6¼ 0, 8i 2 V is called a
coalition. The coalition of X emergency event groups in the mth threshold of the threat
level and each subset of the X (coalition) represents the observed threat pattern for
different threat levels of L. The aggregate value of the coalition is defined as the sum of
the TVCs of the emergency events,y Cð Þ ¼ P

i2C y við Þ and is called a coalition function.
Each emergency event coincides with one or another given m thresholds of the threat
level. Therefore, the different priorities for four types of medical resources deployment
are derived from three threshold values. Based on the emergency threat for each type of
resource with respect to others and the effect of the threshold values on three threat
levels, the Shapley value represents the relative importance of each emergency. Now let
y Cð Þ ¼ P

i2C y við Þ; vi 2 V ;C � X be the value of the coalition C with cardinality c.
The Shapley value of the ith element of the emergency vector is defined by:

x ið Þ ¼
Xn

C�X
i2c

c� 1ð Þ! n� cð Þ!
n!

y Cð Þ � y C � if gð Þ½ � ð5Þ

) x ið Þ ¼
Xn

C0�X
i2c0

c� 1ð Þ! n� cð Þ!
n!

ð6Þ

Equation (5) can be simplified to Eq. (6) because the term y(C) – y(C – {i}) will
always have a value of 0 or 1, taking the value 1 whenever C0 is a winning coalition. If
C0 is not a winning coalition, the terms C – {i} and y(C) are 0 [15]. Hence, the Shapley
value is x(i), where C0 denotes the winning coalitions with

P
vi �mf ; i 2 C0. The

Shapley value of the ith type of emergency event output indicates the relative TVC for
the thresholds lf (i.e., threat levels). Therefore, a Shapley value represents the strength
of emergency event which ED resources should give patient medical care and services
required in one day.

We applied Shapley values of ith type of emergency event to compute the number
of kth type of resources allocation in the threat level lf. The numbers of resources of type
k allocated to the ith emergency event are defined by

ek ið Þ ¼ x ið Þ � oall;k ð7Þ

where oall;k is the total number of medical resources available of type k in the whole ED
(such as total number of nurses who can care for the patient). The allocated numbers of
the ith medical resources ek ið Þ are derived from the Shapley value of the ith emergency
event x(i) multiplied by oall;k the total number of resources available of type k. Finally,
the response agent of ED can deploy three types of medical resources to improve
efficiency and enhance patient care in emergency department.
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4 Simulation Experiments

This study hypothesizes that a response agent of ED possesses a different number of
resources available for four types of patients. Given the three threat levels (e.g., day
shift, evening shift, and night shift), response agent provides medical resources
scheduling and rostering per day in ED. The simulation employs Tables 1, 2 and 3,
which show information regarding the resource types and the availability, emergency
requests, emergency priorities, and length of stay (LOS) per triage category patient.

This experiment first modeled the noncooperative game and generated simulation
sets of TVC measures for the four emergency events in a week. The payoff matrix of
the zero-sum TVC game for each emergency event is modeled by Eqs. (1)–(2) and
Table 4. Then, four TVC values of emergency events are calculated by Eq. (3) (shown
in Fig. 2). Second, four TVCs of the emergency events are utilized to compute the
Shapley value of each emergency event (shown in Fig. 3). This study assumes three
threat levels for the emergency resources response: night shift, evening shift, and day
shift. We adopted the Matlab tool to compute the Shapley value of each emergency
event based on the three threat levels. Then, a simulation creates three minimum sets of
medical resources (i.e., doctors, nurses, and beds) for working shifts per day in ED by
Eqs. (4)–(6) (shown in Figs. 4, 5 and 6).

As can see in Figs. 4, 5 and 6, the medicine emergency need more ED resources
(e.g., internist, nurse, and beds) than surgical, pediatric, and independent emergency in
day and evening shift. The proposed working schedules or rostering suggest that ED
deploys most of physicians, nurses, and beds to care the patients of medicine emer-
gencies. This provides the administrator of ED with a way to prioritize medical
resources when allocating limited resources in case of multiple emergencies. It also
provides more quantitative values for the various situations than human decision
making can provide, and it more fairly deploys the three resources (i.e., doctors, nurses,
beds) for the three threat levels. In addition, the administrator can use this model to
quantitatively evaluate any emergency threat to response resources and easily discover
where response resources are most at risk within the three threat levels (i.e., day shift,
evening shift, and night shift). This function also can increase the response agent’s
vigilance and can secure the critical medical resources to “prevail” against urgency
patients.
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5 Conclusions

In the proposed framework, two game theoretic models are applied to develop the
optimal deployment of emergency medical resources and to provide three work shifts
scheduling per day in emergency department. The first model creates a game strategy
using the Nash equilibrium to find the TVC of each emergency event from a
non-cooperative game. The second model uses all TVC values of the emergency events
to compute the Shapley value for each emergency event given three emergencies levels
(i.e., day shift, evening shift, and night shift). The experiments help us to identify the
framework connecting the Nash equilibrium and Shapley values, which will enable
administrator to prioritize medical resource deployment for the three working shifts in
hospital emergency department.
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Abstract. In this paper we study monomino games. These are two
player games played on a rectangular board with R rows and C columns.
The game pieces are monominoes, which cover exactly one cell of the
board. One by one each player selects a column of the board, and places
a monomino in the lowest uncovered cell. This generates a payoff for the
player. The game ends if all cells are covered by monominoes. The goal
of each player is to place his monominoes in such a way that his total
payoff is maximized. We derive the equilibrium play and corresponding
payoffs for the players.

Keywords: Monomino games · Non-cooperative games · Nash equilib-
rium · Pure strategies

2010 AMS Subject classification: 91A10 · 91A05

1 Introduction

In this paper we introduce the two-player game of monomino. This is a parlor
game like dice games, card games and so on. Instead of determining the player
that makes the last move (like in chess, checkers, or the game of Nim), the players
are interested in optimizing their payoffs (like in dice games and card games).
This game is played on a rectangular board or grid, say it has size 3×3. The cells
on the bottom (first) row have a value of 1 unit each, on the middle (second)
row the values are 2, and on the top (third) row the cells have a value of 3 units
each. The players alternately play a monomino, which is a piece that covers a
single cell of the board.

This game has the following rules. The players select one by one a column
of the board, and place a monomino in the lowest uncovered cell. A monomino
in row i on the board generates a payoff of i units to the player. The game
ends if all cells are covered by monominoes. In contrast to games like chess and
checkers, the goal of each player is to place his monominoes in such a way that
it maximizes his total payoff.

In this paper we analyze non-cooperative monomino games for general rec-
tangular boards. Notice that the game looks a bit like the game of Tetris but it is
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played with monominoes. More general, it resembles a combinatorial game; both
have two players, complete information, and no chance involved. The main dif-
ference is that we are interested in optimizing the payoffs of the players, instead
of determining who makes the last move. The latter question is not interesting
in this game since the winner may be determined beforehand. For instance, if
the player who plays the last monomino wins, then the winner is determined as
follows. If the number of cells is odd, then the player who makes the first move
wins, and if the number of cells is even, then the player who makes the second
move wins.

In the literature on combinatorial games the focus is on how to win games
with dominoes or other pieces like pentominoes. [8] studies winning moves for the
game of pentominoes. [6] describes a two-player game played on a square board.
One by one the players mark a cell on the board. The first player to form a
domino loses; hence the game is named dominono. The author provides winning
strategies. Tilings with polyominoes are studied in [10]. Excellent surveys on
combinatorial games are [1,5]. In cooperative game theory, attention is also paid
to combinatorial games; see [2] for a survey.

The literature on non-cooperative game theory pays among others attention
to parlor games like dice games [3], matching pennies, rock-paper-scissors, and
two-finger Morra (see e.g. [9]). These are zero-sum games, that is, the gain of
one player is the loss of the other player. Also, nearly always these games have
no equilibrium in pure strategies.

In this paper we introduce monomino games and study them using non-
cooperative game theory. Our results describe the equilibrium play and payoffs
for the players. The monomino game is a constant sum game and thus has a Nash
equilibrium in pure strategies. An initial study on monomino games is reported
in the thesis [4].

The outline of this paper is as follows. In Sect. 2 we introduce monomino
games. In Sect. 3 the equilibrium play and payoffs are considered. Section 4
concludes.

2 Monomino Games

A monomino game is played by two players on a rectangular board with R rows
and C columns. We denote such a monomino game by M(R,C). Each of the
RC cells is square. The game is played with pieces of 1 × 1 cell; these pieces are
named monominoes.

The players are named player 1 and player 2. Player 1 starts. One by one
the players put a monomino on the board according to the following rules. A
monomino is placed in a cell of the board. If the piece is placed in column i of
the board, then this monomino covers the lowest uncovered cell. The game ends
if all cells are covered by monominoes; this happens after RC moves.

Each played monomino generates a value for its player. If a player places
a monomino in row j then this increases the payoff of this player by j units.
Each player wants to maximize his payoff. Hence, this game is a non-cooperative
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game. The Nash equilibrium [7] is a solution concept for non-cooperative games
that describes optimal play of the game. Namely, a pair of strategies (s1, s2) for
the players is a Nash equilibrium if s1 optimizes player 1’s payoff in case player
2 plays strategy s2, and conversely, s2 optimizes player 2’s payoff in case player
1 plays strategy s1. For a game in extensive form we consider subgame perfect
equilibria, a refinement of Nash equilibria. A subgame perfect equilibrium is
a pair of strategies that induces a Nash equilibrium in every subgame. These
notions are illustrated in the example below.

Example 1. Consider the game M(3, 2). This game is played on a board with
three rows and two columns. After six moves all six cells on the board are covered
and the game is over.

This game already has very many possible plays. To be able to represent the
game graphically, assume just for the remainder of this example that if a player
can choose among both cells in the same row, then the player selects the cell in
column 1.

Figure 1 shows a graphical representation of this game as a game in extensive
form, or tree game. At each node of this tree we mention the player that makes
a move as well as the game situation [x1, x2] with xi the number of covered cells
in column i. The actions are mentioned besides the edges, with Vi the action
that column i is selected. At the bottom nodes the payoffs (π1, π2), with payoff
πj to player j, are mentioned.

At the first node, player 1 makes the move. According to the extra assump-
tion in this example she has only one action, namely V1 (select column 1). In
the new game situation [1, 0] player 2 can choose between V1 and V2. And so
on. We find the optimal payoffs and actions by using backward induction. The
optimal actions are indicated by thick colored lines; red corresponds to player
1 and blue to player 2. There is a unique subgame perfect equilibrium, that is
presented in Table 1. Notice that any subgame corresponds to a game situation.
The equilibrium payoff is (π1, π2) = (5, 7). The equilibrium play is as follows.

Table 1. The subgame perfect equilibrium in Fig. 1.

Subgame [3, 2] [3, 1] [2, 2] [3, 0] [2, 1] [2, 0] [1, 1] [1, 0] [0, 0]

Player at move 2 1 1 2 2 1 1 2 1

Optimal action V2 V2 V1 V2 V1 V1 V1 V2 V1

Player 1 starts in game situation [0, 0] with action V1, then the new game
situation is [1, 0] and player 2 plays V2. Subsequently, player 1 plays V1, and so
on. See Table 1 or the thick lines in Fig. 1.

The bimatrix game that corresponds to this game in extensive form is pre-
sented below. The actions of player 1, represented by the rows of the bimatrix,
correspond to the nontrivial choices in the game situation [2, 0]. The actions of
player 2, mentioned in the columns of the bimatrix, are denoted by a|bc with a
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Fig. 1. The game M(2, 3) in extensive form with the extra restriction that if a player
can choose among both cells in the same row, then the player selects the cell in column 1.
(Color figure online)

the choice in situation [1, 0], b the choice in situation [2, 1] if the previous situ-
ation was [2, 0], and c the choice in situation [2, 1] if the previous situation was
[1, 1].

(V1|V1V1 V1|V1V2 V1|V2V1 V1|V2V2 V2|V1V1 V2|V1V2 V2|V2V1 V2|V2V2

V1 (6, 6) (6, 6) (6, 6) (6, 6) (5, 7)∗ (6, 6) (5, 7)∗ (6, 6)

V2 (4, 8) (4, 8) (5, 7) (5, 7) (5, 7) (6, 6) (5, 7) (6, 6)

)

The two Nash equilibria are (V1, V2|V1V1) and (V1, V2|V2V1); they are
indicated by stars in the bimatrix. The first one is the subgame perfect
equilibrium. �

In the example above we temporarily added the restriction that a player
should select a cell in column 1 when both cells are available in the same row.
Even with this assumption, the game tree is not small. In this paper we consider
games without this assumption, leading to even larger game trees.

Given a monomino game M(R,C), the total payoff to the players is fixed,
namely C(1 + 2 + . . . + R) = CR(R + 1)/2. Any payoff (π1, π2) satisfies
π1 + π2 = CR(R + 1)/2. Thus, monomino games are constant sum games. This
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implies in particular that there exists a Nash equilibrium in pure strategies [9].
Further, if there are multiple Nash equilibria, then the payoff to a player is the
same in all equilibria. This was illustrated in Example 1.

3 Game Play and Payoffs in Equilibrium

In this section we analyse the monomino games. We derive the optimal game
play and the payoffs in equilibrium.

The following notation is used. The cells of the grid are indicated by pairs
(i, j), where 1 ≤ i ≤ R is the row number and 1 ≤ j ≤ C the column number.
Let R = {0, 1, 2, . . . , R} be the set of the number of possible unoccupied cells
per column. We consider vectors p = (p1, p2, . . . , pC) ∈ RC and denote P =
∑C

j=1 pj . The vector p describes for any column j, 1 ≤ j ≤ C, that the cells 1
up to R−pj are occupied with monominoes and the top pj cells are free. In other
words, the vector p represents a position on the playing board when RC − P
monominoes have been played.

The following Theorem states the equilibrium, or optimal, actions for the
players. The equilibrium payoffs are mentioned in Corollary 3.

Theorem 2. In the monomino game M(R,C), the game play in equilibrium is
as follows.

(a) If R is even:
In each move, player 2 plays the same column as player 1.

(b) If R is odd and C is even:
Player 2 plays row 1 if player 1 does so, otherwise he plays the same column
as player 1.

(c) If both R and C are odd:
Player 1 plays row 1 in his first move. Thereafter he plays row 1 if player 2
does so, otherwise he plays the same column as player 2.

Proof. The theorem is proved by induction to the number of remaining moves if
started from a certain position p. That is, we focus on the payoffs for the players
for occupying the remaining free cells if started at position p (independent of
who placed the monominoes where in the starting position p).

First, consider case (a). We prove that this play is optimal with respect to
the remaining payoffs for each starting position p ∈ RC , where pj is even for all
1 ≤ j ≤ C. Hence it is also optimal for an empty grid in case R is even.

We use induction to n = P/2, the number of moves remaining for player 2
until all cells of the grid are occupied. The induction basis for n = 1 is trivial: in
the starting position only the two top cells of one column are free and so both
players must play this column.

Now let n ≥ 1 and suppose that the play is optimal for all starting positions
p satisfying pj even for all 1 ≤ j ≤ C and P/2 = n. Consider a starting position
q ∈ RC with qj even for all 1 ≤ j ≤ C and Q/2 = n + 1. Since an even number
of cells is occupied, it is player 1’s turn. Suppose player 1 plays column k, i.e.,
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cell (R − qk + 1, k) and player 2 plays column � �= k; i.e. cell (R − q� + 1, �).
Now player 1 can play cell (R − q� + 2, �) in his next move (because q� is even).
This results in a position that is equivalent to the situation where player 1 plays
column k in starting position p = (q1, . . . , q� − 2, . . . , qC).

Note that p satisfies the conditions of the induction hypothesis, so player 2
will now play the same column as player 1 until the end of the game in order
to maximize his remaining payoff (and will therefore play column k in his next
move).

Now we compare this with the situation where player 2 had played col-
umn k after player 1 played this column in position q. In this case the position
(q1, . . . , qk −2, . . . , qC) arises, which also satisfies the conditions in the induction
hypothesis. So player 2 would then continue with the optimal play, i.e., playing
the same column as player 1 until the end of the game.

Consequently, the final position of the pieces on the board at the end of the
game only differs in the cells (R−q�+1, �), which is now occupied by a monomino
of player 2 and (R − q� + 2, �), occupied by a monomino of player 1. Therefore
the remaining payoff for player 2’s moves from position q until the end of the
game, will be one unit less than the payoff he would have gotten if he had played
the same column as player 1 in position q, as the play prescribes. Hence, the
play is optimal for starting position q for player 2 regardless of what player 1
does. Now the proof follows by induction.

Second, consider case (b). Let p ∈ RC be a starting position on the grid for
which the number of nonempty columns is even and each of these columns has
an even number of free cells (also fully occupied columns are considered to have
an even number of free cells). Obviously, the position on an empty grid satisfies
this property: for an empty grid the number of nonempty columns equals zero.

Clearly, P is even for these positions. Again we use induction to n = P/2.
The induction basis for n = 1 is easily verified because in that case there are
essentially two possible starting positions: the two top cells of one column are
free and so both players must play this column, or R = 1, which is also trivial.

Now let n ≥ 1 and suppose that the play is optimal for all starting positions
p satisfying P/2 = n and the number of nonempty columns is even and each
of these columns has an even number of free cells. Consider a starting position
q ∈ RC with Q/2 = n + 1 satisfying this property. Note that the number
of occupied cells in q, RC − Q, is even. Hence, it is player 1’s turn. We will
distinguish three cases.

Case b1: Player 1 plays row 1, say cell (1, k), and player 2 does not, say he
plays the nonempty column j, i.e., cell (R − qj + 1, j). Then, in his next move,
player 1 can play cell (R − qj + 2, j) (because qj is even). This yields a position
that also arises from position p = (q1, . . . , qj − 2, . . . , qC) if player 1 plays cell
(1, k). Note that p satisfies the conditions in the induction hypothesis, so player
2 can optimize his remaining payoff in position p by using the play described
above (starting by playing row 1). Now we compare this with the situation where
player 2 had played row 1 after player 1 played this row in position q. Then the
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position that arises again satisfies the conditions in the induction hypothesis. So
player 2 would continue by playing the optimal play until the end of the game.

We find that the remaining payoff for player 2 in position q will be one
unit less than the payoff he would have gotten if he had played row 1, as the
play prescribes (the ownership of the cells (R − qj + 1, j) and (R − qj + 2, j) is
interchanged).

Case b2: Player 1 plays nonempty column j (cell (R − qj + 1, j)) and player
2 plays nonempty column k �= j (cell (R − qk + 1, k)). Now player 1 can
play cell (R − qk + 2, k) in his next move and we arrive in a position that is
equivalent to the situation where player 1 plays column j in starting position
p = (q1, . . . , qk − 2, . . . , qC). By the induction hypothesis, player 2 can optimize
his remaining payoff in this position by using the play described above (starting
by playing column j). Again we derive that player 2’s remaining payoff in posi-
tion q will be one unit less than if he had started by playing column j, as the play
prescribes.

Case b3: Player 1 plays nonempty column j (cell (R − qj + 1, j)) and player
2 plays row 1, say cell (1, k). Then, in his next move, player 1 can play col-
umn j again (cell (R − qj + 2, j)). If we now interchange the ownership of the
monominoes in cells (R − qj + 2, j) and (1, k), we arrive in a position that is
equivalent to the situation where player 1 plays cell (1, k) in starting position
p = (q1, . . . , qj − 2, . . . , qC) (here we use the fact that the remaining payoffs
in a starting position are independent of how this position has arisen). By the
induction hypothesis, player 2 can optimize his remaining payoff in position p
by using the play described above (starting by playing row 1). If we compare
this with the situation where player 2 had played column j in position q and
thereafter followed the (by the induction hypothesis optimal) play in position
(q1, . . . , qj −2, . . . , qC), we find that the remaining payoff for player 2 in position
q will be R − qj +1 units less than if he had started by playing column j, as the
play prescribes.

In all three cases the play turns out to be optimal for position q no matter
what player 1 does. Also here, the proof follows by induction.

Finally, consider case (c). Let p ∈ RC be a starting position on the grid for
which the number of nonempty columns is odd and each of these columns has
an even number of free cells (also fully occupied columns are considered to have
an even number of free cells). Clearly, such a position arises as soon as player
1 played his first move. The proof now follows the same lines as the proof of
part (b) with reversed roles for players 1 and 2, and an induction hypothesis
for positions with an odd number of nonempty columns, all containing an even
number of free cells. Finally, since player 1 must play row 1 in his first move, we
conclude that the play described in part (c) of the theorem is the equilibrium
play for grids with an odd number of rows and columns. �

Figure 2 shows the optimal game play and payoffs of the monomino games
M(6, 4), M(5, 4) and M(5, 5), which correspond to the cases (a), (b) and (c)
respectively in Theorem 2. Row 1 is the bottom row, and row R the top row.
The number in a cell indicates which player puts a monomino there. The optimal
payoffs (π1, π2) are (36, 48), (26, 34) and (43, 32) from left to right.
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Fig. 2. Optimal game play in monomino games M(6, 4), M(5, 4) and M(5, 5) from left
to right with optimal payoffs (36, 48), (26, 34) and (43, 32), respectively. The number
in a cell indicates which player puts a monomino there.

The equilibrium payoffs to the players are easy to derive following the game
play described in Theorem 2, and illustrated in Fig. 2. In case (a), player 2 forces
his monominoes to occupy all cells in the even rows of the grid and player 1’s
monominoes occupy the odd rows. In case (b) the monominoes of player 2 will
occupy half of the cells in row 1 and all cells in the other odd rows, whereas player
1’s monominoes will occupy the other cells in the first row and all cells in the
even rows. In case (c), player 1 forces his monominoes to occupy C+1

2 cells in row
1 and all cells in the other odd rows, and player 2’s monominoes will occupy the
other cells in the first row and all cells in the even rows. From this, the derivation
of the payoffs to the players is straightforward, using

∑R
k=1 k = 1

2R(R + 1).

Corollary 3. The optimal payoffs in the monomino game M(R,C) are as
follows.

(π1, π2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
CR2

4 , CR(R+2)
4

)
, if R is even,

(
C(R2+1)

4 , C(R2+2R−1)
4

)
, if R is odd and C even,

(
CR(R+2)−C+2

4 , C(R2+1)−2
4

)
, if R and C odd.

4 Conclusions

In this paper we introduced a new class of non-cooperative games: the monomino
games M(R,C). These are parlor games like dice games, card games and so
on. Instead of determining the player that makes the last move (like in chess,
checkers, or the game of Nim), the players are interested in optimizing their
individual payoffs (like in dice games and card games). These are constant sum
games, so Nash equilibria in pure strategies exist. We derived the equilibrium
game play and the corresponding payoffs for any size of the board of the game.

Note that the results for game play and corresponding payoffs in Theorem2
and Corollary 3 can easily be generalized to games with pieces or playing blocks
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of size k × 1, for any positive integer k, and playing boards of size kR×C where
the blocks must be played vertically. That is, any block is placed in a single
column.

For future research, we intend to study non-cooperative ‘domino’ games.
These games are also played on a rectangular board where players one by one
put pieces of size 1 × d on the board either in horizontal or vertical direction.
(For d = 2 the pieces are the well-known domino pieces.) Some initial analysis
of these games is done in [4]. There it turned out that these games are much
more complex than monomino games. One of the reasons is that in these domino
games some cells of the board may remain uncovered.

Finally, in this paper we consider monomino games with two players. It might
also be interesting to examine equilibrium game play in case more than two
players are involved.
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Abstract. The tripartite bargaining problem of mutual deterrence has been
investigated from the perspective of Rubinstein indefinite bargaining and
cooperative game theory. Considering the situation of incomplete information in
reality, this paper established a tripartite mutual deterrence bargaining model
with unilateral and bilateral incomplete information by introducing incomplete
information into the model and defining a discount factor. And particularly, the
formula is furnished for calculating the Nash equilibrium distribution of every
player under the incomplete information. Finally, an illustrative example is
presented to show that the established model is feasible and effective and can
provide a new way and method to analyze and solve multi mutual deterrence or
conflict problems with incomplete information.

Keywords: Deterrence � Bargaining � Incomplete information � Game theory

1 Introduction

Deterrence is an effective way to influence the other player’s decision-making, and
expect to influence his expected judgment for his own behavioral patterns. Mutual
deterrence is a situation of bilateral deterrence that is widespread in real international
politics. With the growing complexity of the international situation, the issue of tri-
partite deterrence is gradually increased. Therefore, the study of tripartite deterrence is
of great significance in solving these international conflicts.

In the mid-1960s, Schelling [1] viewed the issue of mutual deterrence as a bar-
gaining problem and defined the ability of mutual deterrence as an ability to harm each
other (or the enemy), when the two sides bargain model is relatively simple. From the
perspective of cooperative game, Nash [2] proposed the famous Nash bargaining
solution in 1950. But from the perspective of non-cooperative game, Rubinstein [3]
proposed a limited and indefinite bargaining model. And in the tripartite mutual
deterrence bargaining, each player need to consider the deterrence influence of the
other two player. Kalandrakis [4] discussed the tripartite bargaining model with
majority agreed rules and proposed a Markov refined Nash equilibrium. Calvó-
Armengol [5] established an asymmetric tripartite bargaining model. In recent years,
Fontenay et al. [15] proposed an analysis of the non-cooperative bilateral bargaining
model between network agents, proving that there is a balance which generates an
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alliance bargaining by the surplus arising from externality among agents. Bayati et al.
[16] argued that there is a market for a unilateral distribution or utility transferable
network and dynamic bargaining model and established a balanced result of a gener-
alized network pair Nash bargaining solution. Aghadadashli et al. [17] studied the
bargaining between alternative and complementary trade unions and companies.
Collard-Wexler et al. [18] extended the Rubinstein alternative bid bargaining model to
a number of upstream and downstream firms on the basis of non-cooperative bar-
gaining, proposed a model of maximizing their bilateral Nash product condition based
on agreement for all other negotiating conditions, and proved that there is a perfect
Bayesian equilibrium and the result is unique. An et al. [19] analyzed the strategic
behavior of the negotiators in the one-to-many and many-to-one negotiations when the
agent followed the alternate bid bargaining agreement, and explored how the uncer-
tainty reserve price and duration affect the equilibrium strategy. Abreu et al. [20] found
that the refined Nash equilibrium could still be reached when a player with complete
information delays to make the decision of his initial demand, and the predicted result
depends on the priori probability for patience type of the player with complete
information.

Xiang and Wang [6] carried on the analysis of the bargaining model of the mutual
deterrence between the two sides, but this model only applied to the situation of two
players, and did not involve the tripartite mutual deterrence bargaining problem
between three players. Gong et al. [7] studied the tripartite mutual deterrence bar-
gaining model under complete information, but did not introduce incomplete infor-
mation into the model, so the model was not general. Zhou and Wang [13] investigated
the bargaining between a strong supplier and a weak wholesaler in terms of optimal
production and optimal order quantity, and established bargaining model of whole-
salers and suppliers under complete and asymmetric information.

According to the Rubinstein model, an acceptable agreement can be reached
between the rational actors (or subjects) under complete information, so there is no
sense of mutual threat and revenge, and the conflict does not occur. Unlike the
above-mentioned model, this paper established a tripartite mutual deterrence model
based on Rubinstein classic bargaining model in the perspective of cooperative game.
And introduced incomplete information into the tripartite mutual deterrence bargaining
model to explore the three players’ deterrence credibility and conflict possibility under
unilateral and bilateral incomplete information conditions, so that the model is more
general. Finally, we compared the more general model of this paper with the original
complete information tripartite mutual deterrence bargaining model, and found that it
can reach a consistent distribution scheme when one player owned unilateral incom-
plete information, so the conflict would not appear. Meanwhile, in any alliance rela-
tionships, the share of the interest of the player with incomplete information was higher
than that of player with complete information, and the player with incomplete infor-
mation had the advantage of unilateral incomplete information. When two players
owned incomplete information in the tripartite mutual deterrence bargaining model,
each player can not propose a mutually acceptable solution in some cases, where the
conflict may occur.
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2 Incomplete Information Mutual Deterrence Bargaining
Model

2.1 Indefinitely Rubinstein Bargaining Model

Assume that two players distribute the interest of a unit by rotating bidding.
The first stage, the player 1 proposes an allocation program ðv1; 1� v1Þ. If the

player 2 accept the offer of the player 1, then the distribution plan is generated as
ðv1; 1� v1Þ; if the player 2 reject the proposal of the player 1, then enter the next stage.

In the second stage, the player 2 puts forward the distribution program ðv2; 1� v2Þ.
If the player 1 accept the proposal of the player 2, then the allocation of the program is
ðd1v2; d2ð1� v2ÞÞ, where di 2 ½0; 1�ði ¼ 1; 2Þ is the discount factor for player i. If the
result has not yet reached Nash equilibrium, then continue to bargain as above.

In the bargaining model of the rotation bidding, if the player can not determine the
time limit in advance, they can deal with it through the indefinite bargaining problem.
The Nash equilibrium given by the indefinite Rubinstein bargain model is bound to be
accepted by the other player.

In the first, third, fifth, seventh, … stage, the player 1 chooses the share of his
ossessed interest; the player 2 chooses the share of his possessive interest in the second,
fourth, sixth, eighth,… stage. As the game is indefinite, so there is no different between
the beginning sub-game in the first stage and the sub-game of the third stage.
Rubinstein [3] proposed the following conclusions on the indefinite bargaining model
in 1982.

Theorem 1.1 ([3]). In the indefinite rotation bid bargaining game, the only sub-game
refinement Nash equilibrium is v�1 ¼ 1�d2

1�d1d2
when the player 1 bids in the first, third,

fifth, seventh, … stage; the result of the player 2 bids in the second, fourth, sixth,

eighth, … stage is v�1 ¼ d1ð1�d2Þ
1�d1d2

. The Nash equilibrium interest share obtained by the
player 1 is v�1, v

�
2 is the share of Nash equilibrium interest earned by the player 2.

2.2 Complete Information Indefinitely Tripartite Bargaining Model
of Mutual Deterrence

Assume that all three players are rational people. The player 1 first bids, player 2 then
bids, and then player 3 bids, and then turn to the player 1 bids again, so making rotation
bidding until the Nash equilibrium solution is reached.

The deterrent relationship between the various players is shown in Fig. 1, the
discount factor of player iði ¼ 1; 2; 3Þ against player jðj ¼ 1; 2; 3Þ is dij if there is no
agreement in the game. The smaller the dij, the greater the loss of the player j in the
game when player i implement deterrence against player j, and vice versa.

2.3 Discount Factor of Deterrence

In the process of bargaining, each of the player in order to get higher interests often
spontaneously choose a temporary “alliance”, and then the players in the alliance start
the bargaining again to allocate the obtained share of the alliance. We use di;jk to
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express the discount factor of player i against the players in the jk alliance (player j and
k form an alliance), dij;k is the discount factor of the players in the ij alliance against
player k, and others are similar explanations. Deterrence is the ability to hurt other
players in the game, and the ability to accept deterrence is the ability to resist other
players’ deterrence. The discount factor is the coefficient of loss allocation share caused
by the deterrence of the other players. The greater the deterrent ability, the stronger the
damage to the other players, that is, the smaller the discount factors of other players are.
The ability to resist other players’ deterrence is stronger, that is, the greater the discount
factor is. The magnitude of the discount factor can represent the relative magnitude of
the mutual deterrent capability of two players, and each player has their deterrent
ability to deter others and their ability to resist other players’ deterrence, which is
determined by the attributes of the players. Assuming that the deterrent ability of the
player 1, 2 and 3 are represented by x1, x2 and x3, respectively; the ability to resist other
players’ deterrence are represented by x01, x

0
2 and x03, respectively. In practical problems,

the degree of deterrence of a player to the other player is not necessarily 100%, and the
degree of deterrence is influenced by the environment, psychology and many other
factors, so that we can use a deterrent coefficient on behalf of the degree for deterrence
of player i against player j. Similarly, ri;jk is the degree of deterrence for player i against
the jk alliance, and rjk;i is the degree of deterrence for the jk alliance against player i.
Obviously, the discount factor is between 0 and 1.

Definition 1. In the mutual deterrence bargaining model, the discount factor of the
player can be expressed as:

discount factor =
deterred capability

deterred capabilityþ deterrent capability� deterrent coefficient

Thus, through the quantification calculation of Definition 1, the deterrence in con-
flict can be transformed into the harm ability to each other, and then use the game

Fig. 1. Tripartite mutual deterrence relationship
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theory to establish the corresponding bargaining model. In this way, the discount factor
of player i against the player j can be expressed as following:

dij ¼
x0j

x0j þ rijxi
i ¼ 1; 2; 3; j ¼ 1; 2; 3 and i 6¼ jð Þ:

Further, the discount factor of player i against the players in the jk alliance is di;jk,
the discount factor of the players in the jk alliance against player i is di;jk, the discount
factors di;jk and di;jk are shown as following respectively:

di;jk ¼
x0j þ x0k

x0j þ x0k þ ri;jkxi
; djk;i ¼ x0i

x0i þ rjk;iðxj þ xkÞ :

Obviously, di;jk and djk;i are values on the interval [0, 1], when di;jk ¼ di;kj and
djk;i ¼ dkj;i. The discount factor of the alliance is less than that of the individual in the
alliance, and the discount factor is affected by coefficient for degree of deterrence.

Theorem 1.2 ([7]). In the above complete information of the indefinite rotation bid
tripartite bargaining model, if the player 2 and 3 choose an alliance, the resulting Nash
equilibrium allocation are shown as following respectively:

v�11 ¼
1� d1;23

1� d1;23d23;1
ð1Þ

v�12 ¼
ð1� d23Þðd1;23 � d1;23d23;1Þ
ð1� d23d32Þð1� d1;23d23;1Þ ð2Þ

v�13 ¼
ðd23 � d23d32Þðd1;23 � d1;23d23;1Þ

ð1� d23d32Þð1� d1;23d23;1Þ ð3Þ

Inference 1.1. In the above tripartite bargaining model, if the player 1 and 3 build up
an alliance, the resulting Nash equilibrium allocation are displayed as following
respectively:

v�21 ¼
ð1� d13;2Þð1� d13Þ

ð1� d2;13d13;2Þð1� d13d31Þ ð4Þ

v�22 ¼
d13;2 � d13;2d2;13
1� d2;13d13;2

ð5Þ

v�23 ¼
ð1� d13;2Þðd13 � d13d31Þ

ð1� d2;13d13;2Þð1� d13d31Þ ð6Þ

Inference 1.2. In the above tripartite bargaining model, if the player 1 and 2 are in
the alliance, the resulting Nash equilibrium allocation are listed as following
respectively:
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v�31 ¼
ð1� d12;3Þð1� d12Þ

ð1� d12;3d3;12Þð1� d12d21Þ ð7Þ

v�32 ¼
ðd12 � d12d21Þð1� d12;3Þ

ð1� d12;3d3;12Þð1� d12d21Þ ð8Þ

v�33 ¼
d12;3 � d12;3d3;12
1� d3;12d12;3

ð9Þ

3 Unilateral Incomplete Information Mutual Deterrence
Bargaining Method

If the player 2 and 3 choose to form a alliance, they can be seen as a bargaining game
between the player 1 and players 2 and 3 in 23 (or 32) alliance. Assuming that player 1
puts forward a program ðx; 1� xÞ, the game side 23 alliance can choose to accept and
refuse. If he accepts, which means the end of the game, the two sides benefit are x and
1�x, respectively; if the game side 23 alliance refuses, then the player 1 will implement
a retaliation, the two sides benefit are d1;23x and d23;1ð1� xÞ, respectively. Since then,
the game side 23 alliance proposes a new program ðy; 1� yÞ. If the player 1 accepts,
the game is over; if the player 1 refuses, then the game side 23 alliance will implement
a retaliation, then the player 1 puts forward the new distribution plan in the next
step. And so on, until the Nash equilibrium is reached.

Assuming that the player 1 has unilateral incomplete information, the discount
factors of the player 2 and 3 against the player 1 are d12 and d13, the discount factors d12
and d13 are private information, but the discount factors of the player 2 and 3 against the
player 1 (d21 and d31) and the discount factors between the player 2 and player 3 (d23 and
d32) are public knowledge. According to Harsanyi convert ideas, and the player 1 has a
high bargaining power of H type (prior probability is p) and a low bargaining power of L
type (prior probability is 1� p), other players can know the real type of player 1 from
the degree of damage by retaliation. H type player 1 has a strong ability to hurt, and the
discount factors against the player 2 and 3 are dL12 and dL13, respectively. L type player 1
has a weak ability to hurt, and the discount factors against the player 2 and 3 are dH12 and
dH13, respectively. The damage factor of the player 2 is that the risk factor of the player 3
is. Because the deterrence of H type player 1 is greater than that of L type player 1, so we
can get dL12 � d12 � dH12 and dL13 � d13 � dH13. d12 and d13 are on behalf of the discount
factors of player 1 against the player 2 and 3, respectively. The coefficient rij for degree
of deterrence is constant ði ¼ 1; 2; 3; j ¼ 1; 2; 3 and i 6¼ jÞ.

Assuming that both the player 1 proposes two programs such as ða1; 1� a1Þ and
ðb1; 1� b1Þ, which represent the only perfect Nash equilibrium solution for the
Rubinstein complete information bargaining of player 1 of L-type and H-type against
the players in the 23 alliance, respectively. We can see that the discount factor of
L-type player 1 against the players in the 23 alliance is dH1;23, the discount factor of
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H-type player 1 against the players in the 23 alliance is dL1;23ðdL1;23 � d1;23 � dH1;23Þ, the
discount factor of the players in the 23 alliance against player 1 is unchanged d23;1.
According to the Rubinstein indefinite bargaining model [3], we can get a1 ¼
ð1� dH1;23Þ= ð1� d23;1d

H
1;23Þ and b1 ¼ ð1� dL1;23Þ=ð1� d23;1d

H
1;23Þ by Theorem 1.1.

Obviously, the program ðb1; 1� b1Þ is a favorite program of player 1. Thus, when the
player 1 proposes a distribution plan ðb1; 1� b1Þ, the benefit for the players in the 23
alliance of choosing to accept is 1� b1, the benefit for the players in the 23 alliance of
choosing to refuse is dL1;23ð1� b1Þpþ dH1;23ð1� a1Þð1� pÞ. As a result of

p½dL1;23ð1� b1Þ � dH1;23ð1� a1Þ�\1� b1 � dH1;23ð1� a1Þ, we can get

dL1;23ð1� b1Þpþ dH1;23ð1� a1Þð1� pÞ\1� b1. the benefit for the players in the 23
alliance of choosing to accept is are bigger than that of the choice of rejection, so the
players in the 23 alliance will accept the distribution plan proposed by the player 1. In
this case, the game between the player 1 and the players in the 23 alliance can reach the
Nash equilibrium, so the conflict does not occur. At this point, according to (1)–(3) can
be calculated, the final Nash equilibrium allocation share of the player 1, 2 and 3 are
shown as following respectively:

v011 ¼ b1 ¼
1� dL1;23

1� d23;1d
L
1;23

ð10Þ

v012 ¼
ð1� d23ÞðdL1;23 � dL1;23d23;1Þ
ð1� d23d32ÞðdL1;23d23;1Þ

ð11Þ

v013 ¼
ðd23 � d23d32ÞðdL1;23 � dL1;23d23;1Þ

ð1� d23d32Þð1� dL1;23d23;1Þ
ð12Þ

For dL1;23 � d1;23 � dH1;23, the Nash equilibrium allocation share of the player 1, 2 and
3 can be obtained as v011 � v�11, v

0
12 � v�12, v

0
13 � v�13(Equal sign is established only when

the player 1, 2 and 3 have full information), respectively. Therefore, when player 2 and
3 choose the alliance, if the player 1 has unilateral incomplete information at this time,
the Nash equilibrium allocation share obtained by the player 1 will be increased against
that player 1 has the complete information. The Nash equilibrium allocation share of
both player 2 and 3 will be reduced. Then the player 1 has the increased incomes
because of the advantage of unilateral incomplete information. In this case there is a
unique the Nash equilibrium solution for tripartite bargain, so the negotiation is suc-
cessful and the conflict does not occur.

A similar analysis, When the player 1 has unilateral incomplete information, the
player 1 has a high bargaining power of H type and a low bargaining power of L type,
when player 1 and 3 choose the alliance, then the bargain of players in the 13 alliance
and player 2 can reach Nash balanced, so the conflict does not happen. According to
the Eqs. (4)–(6), the final Nash equilibrium allocation share of the player 1, 2 and 3 are
shown as following respectively:
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v�21 ¼
ð1� dL13;2Þð1� dL13Þ

ð1� d2;13d
L
13;2Þð1� dL13d31Þ

ð13Þ

v�22 ¼
dL13;2 � dL13;2d2;13

1� d2;13d
L
13;2

ð14Þ

v
0
23 ¼

ð1� dL13;2ÞðdL13 � dL13d31Þ
ð1� d2;13d

L
13;2Þð1� dL13d31Þ

ð15Þ

When the player 1 has unilateral incomplete information, when 1 and 2 choose the
alliance, we can use Heisani conversion, according to the Eqs. (7)–(9), the Nash
equilibrium allocation share of the player 1, 2 and 3 are shown as following
respectively:

v031 ¼
ð1� dL12;3Þð1� dL12Þ

ð1� dL12;3d3;12Þð1� dL12d21Þ
ð16Þ

v032 ¼
ðdL12 � dL12d21Þð1� dL12;3Þ

ð1� dL12;3d3;12Þð1� dL12d21Þ
ð17Þ

v033 ¼
dL12;3 � dL12;3d3;12

1� d3;12d
L
12;3

ð18Þ

In the case of complete information, the preferred cooperation object of the players
is related to the discount factor among the players. The players tend to cooperate with
the other players with the relative enhancement of deterrent ability, and the weak will
tend to cooperate with the stronger [7]. In this paper, when the player 1 has unilateral
incomplete information, we can know that the preferred cooperation object among the
players is related to the discount factor (dL12, d32, d21, d

L
13, d31 and d23) from the results

of (10)–(18), but it has nothing to do with dH12 and dH13. Moreover, compared to the
complete information, the Nash equilibrium allocation share of the player 1 is increased
in any form of alliance, but the Nash equilibrium allocation share of the player 2 and 3
is reduced, so the player 1 has incomplete information advantage. Therefore, in the
tripartite mutual deterrence bargaining model with unilateral incomplete information,
due to information asymmetry, the player of unilateral incomplete information will
plunder some interests of the player with unilateral complete information, so the player
of unilateral incomplete information has information advantages.

Similarly, when the player 2 or the player 3 has unilateral incomplete information,
since the status of the players has a symmetry, a similar analysis can be performed
using the above method, we not repeat them here.
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4 The Tripartite Mutual Deterrence Bargaining Method
of Bilateral Incomplete Information

Assuming that both the player 1 and 2 have incomplete information, the player 1 has a
high bargaining power of 1H type and a low bargaining power of 1L type, with the
prior probability is p and 1� p, respectively. The discount factor of the player 1 against
the player 2 and 3 is private information, the discount factor of the 1H type player 1
against the player 2 and 3 is dL12 and dL13 (dL12 � d12, d

L
13 � d13), respectively; the dis-

count factor of the 1L type player 1 against the player 2 and 3 is dH12 and dH13 (d
H
12 � d12,

dH13 � d13), respectively. The player 1 has a high bargaining power of 2H type and a low
bargaining power of 2L type, with the prior probability is q and 1� q, respectively.
The discount factor of the player 2 against the player 1 and 3 is private information, the
discount factor of the 2H type player 2 against the player 1 and 3 is dL21 and dL23
(dL21 � d21, d

L
23 � d23), respectively; the discount factor of the 2L type player 2 against

the player 1 and 3 is dH21 and dH23 (d
H
21 � d21, d

H
23 � d23), respectively. While the player 3

has complete information, and the discount factor of the player 3 against the player 1
and 2 is public knowledge, the discount factor of the player 3 against the player 1 and 2
is d31 and d32, respectively.

Assuming that the player 2 and 3 build up an alliance, the game can be seen as
mutual bargaining game of player 1 and players 2 in 23 alliance. The programs pro-
posed by the player 1 are four kinds of ða; 1� aÞ, ðb; 1� bÞ, ðg; 1� gÞ and ðf; 1� fÞ,
where a ¼ ð1� dL23;1Þ=ð1� dL1;23d

L
23;1Þ, b ¼ ð1� dL23;1Þ=ð1� dH1;23d

L
23;1Þ, g ¼

ð1� dH23;1Þ= ð1� dL1;23d
H
23;1Þ, f ¼ ð1� dH23;1Þ=ð1� dH1;23d

H
23;1Þ. If the player 1 proposes

each of the four options described above, the posterior probability of 1H type is pB1 , p
B
2 ,

pB3 and pB4 , respectively.

4.1 Strategy Analysis of Player 2 Is 2H Type

(1) If the player 1 puts forward the program ðb; 1� bÞ, the expectation benefit that
the player 2 and player 3 of 2H type in alliance accept the program is ð1� bÞ, and
the expectation benefit is dL23ð1� aÞpB2 þ dH23ð1� gÞð1� pB2 Þ when they reject it.
We make dL23ð1� aÞp2H þ dH23ð1� gÞð1� p2HÞ ¼ ð1� bÞ, then we can get
p2H ¼ ½dH23ð1� gÞ � ð1� bÞ�=½dH23ð1� gÞ � dL23ð1� aÞ�. So when pB2 � p2H , the
player 2 and 3 of 2H type in alliance will accept the program ðb; 1� bÞ, otherwise
they will reject it.

(2) If the player 1 puts forward the program ða; 1� aÞ, the expectation benefit that the
player 2 and player 3 of 2H type in alliance accept the program is ð1� aÞ, and the
expectation benefit is dL23ð1� aÞpB1 þ dH23ð1� gÞð1� pB1 Þ when they reject it.
Because of pB1 ½dL23ð1� aÞ � dH23ð1� gÞ�\ð1� aÞ � dH23ð1� gÞ, we can know
that dL23ð1� aÞpB1 þ dH23ð1� gÞð1� pB1 Þ\ð1� aÞ. So the expected benefit of
rejecting the program is less than the expected benefit of accepting it for the player
2 of 2H type, and he will accept the program ða; 1� aÞ.
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(3) If the player 1 proposes the program ðg; 1� gÞ, it is the preferred program of the
players in 23 alliance, so they would accept it.

(4) If the player 1 puts forward the program ðf; 1� fÞ, the expectation benefit that the
players of 2H type in 23 alliance accept the program is ð1� fÞ, and the expec-
tation benefit is dL23ð1� aÞpB4 þ dH23ð1� gÞð1� pB4 Þ when they reject it. Because
of p4H ¼ ½dH23ð1� gÞ � ð1� fÞ�=½dH23ð1� gÞ � dL23ð1� aÞ�, so when pB4 � p4H ,
the players of 2H type in 23 alliance will accept the program ðf; 1� fÞ, otherwise
they will reject it.

4.2 Strategy Analysis of Player 2 Is 2L Type

(1) If the player 1 puts forward the program ðb; 1� bÞ, the expectation benefit of the
players of 2L type in 23 alliance is ð1� bÞ when they accept it, the expectation
benefit of the players of 2L type in 23 alliance is dL23ð1� bÞpB2 þ dH23ð1� fÞð1�
pB2 Þ when they reject it. Because of pB2 ½dL23ð1� bÞ � dH23ð1� fÞ�\ð1� bÞ�
dH23ð1� fÞ, we can know that dL23ð1� bÞpB2 þ dH23ð1� fÞð1� pB2 Þ\ð1� bÞ. So
the expected benefit of rejecting the program is less than the expected benefit of
accepting it for the players of 2L type in 23 alliance, and they will accept the
program ðb; 1� bÞ.

(2) If the player 1 puts forward the program ða; 1� aÞ, the expectation benefit of the
players of 2L type in 23 alliance is ð1� aÞ when they accept it, the expectation
benefit of the players of 2L type in 23 alliance is dL23ð1� aÞpB1 þ dH23ð1� fÞð1�
pB1 Þ when they reject it. Because of pB1 ½dL23ð1� bÞ � dH23ð1� fÞ�\ð1� bÞ � dH23
ð1� fÞ, we can obtain the result of dL23ð1� aÞpB1 þ dH23ð1� fÞð1� pB1 Þ\ð1� aÞ.
So the expected benefit of rejecting the program is less than the expected benefit
of accepting it for the players of 2L type in 23 alliance, and they will accept the
program ða; 1� aÞ.

(3) If the player 1 proposes the program ðg; 1� gÞ, it is the preferred program of the
players in 23 alliance, so they would accept it.

(4) If the player 1 puts forward the program ðf; 1� fÞ, the expectation benefit that the
players of 2L type in 23 alliance accept the program is ð1� fÞ, and the expec-
tation benefit is dL23ð1� bÞpB4 þ dH23ð1� fÞð1� pB4 Þ when they reject it. Because
of pB4 ½dL23ð1� bÞ � dH23ð1� fÞ�\½ð1� bÞ � dH23ð1� fÞ�, we can get the result of
dL23ð1� bÞpB4 þ dH23ð1� fÞð1� pB4 Þ\ð1� fÞ. At this point, the expected benefit
of rejecting the program is less than the expected benefit of accepting it for the
players of 2L type in 23 alliance, and they will accept the program.

When the player 1 is 1H and 1L type, by a similar analysis of the above method, we
can see: (1) for the players 1 of 1H type, he proposes the program ðb; 1� bÞ when
pB2 � p2H , two types of the players of 23 alliance agree with it; when pB2\p2H and
q� qH , he would propose a program ða; 1� aÞ, two types of the players of 23 alliance
also agree with it; when pB2\p2H and q\qH , he proposes a program ðb; 1� bÞ, the
players of 2L Type in 23 alliance agree with it, while the players of 2H type in 23
alliance reject it, the conflict may occur. (2) for the players 1 of 1L type, when
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pB2 � p2H , he would propose a program ðb; 1� bÞ, both types of the players of 23
alliance accept it; when pB2\p2H and q� qH , he would propose a program ða; 1� aÞ,
both types of the players of 23 alliance accept it; when pB2\p2H and q� qL, he would
propose a program ðb; 1� bÞ, the players of 2L Type in 23 alliance agree with it, while
the players of 2H type in 23 alliance reject it, the conflict may occur; when pB2\p2H
and qL\q\qH , if the player 1 put forward the program ðg; 1� gÞ or ðf; 1� fÞ, and
there is no conflict; but if he proposes a program ðb; 1� bÞ, there may be a conflict.

5 Numerical Calculation Case

The retailer (buyer) 1 and the supplier 2, the supplier 3 constitute the supply chain, in
which the retailer 1, the supplier 2 and 3 allocate the total profit through the bargaining
game. In the cooperating process of buyer 1, supplier 2 and supplier 3, how to for-
mulate a scientific distribution plan to ensure that the residual income of the cooper-
ation can be reasonably allocated among the three players will directly determine the
stability and reliability of the cooperation. In other words, the rationality of the dis-
tribution of income is the protection for the deep cooperation of the three parties.

The multilateral negotiations of single buyer multi-vendor on supply chain profit
distribution, where buyers and suppliers may have different bargaining power, then the
negotiation process for retailers 1, suppliers 2 and suppliers 3 is the rotation bargaining.
This case mainly considers the bargaining model under the high logistics capabilities,
the three players pursue the long-term strategic cooperation. For the higher the cost of
replacing the cooperation object, the three players will bargain the co-operative surplus
when signing the contract to obtain greater profits, which can guarantee long-term
stable and win-win cooperation relations.

Table 1 gives the discount factor of the retailer 1, supplier 2 and supplier 3 in the
tripartite mutual deterrence bargaining model under the complete information, and also
gives the discount factor of retailer 1 with high bargaining power and low bargaining
power under the unilateral incomplete information. Then, according to the discount
factor in Table 1, by the Eqs. (10)–(18), we can calculate the Nash equilibrium allo-
cation share of all players in the different cooperation schemes under complete infor-
mation and the retailer 1 with unilateral incomplete information, then make
comparative analysis, as shown in Table 2.

From Table 2, in the complete information of tripartite deterrence bargaining, the
supplier 2 will choose to cooperate with the supplier 3. But if the retailer 1 has
unilateral incomplete information, the retailer 1 will choose to cooperate with the
supplier 3. The interest of the retailer 1 is increased while the interest of the supplier 2

Table 1. The discount factor

d12=d
L
12

d32 d21 d13=d
L
13

d31 d23

Complete information 0.8 0.88 0.75 0.3 0.9 0.35
Unilateral incomplete information 0.5 0.88 0.75 0.2 0.9 0.35
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and the supplier 3 is declined as can be seen from Table 2, which also reflects the
advantages of the player with incomplete information. When both retailer 1 and sup-
plier 2 have incomplete information, Nash equilibrium can be achieved in some cases,
and the Nash equilibrium allocation share is increased. But in other cases, the bar-
gaining can not reach the Nash equilibrium solution, the conflict may occur. According
to the above analysis, whether the conflict depends on the specific value of the
parameters, such as p, q and pB1 and so on.

6 Conclusion

In this paper, the bargaining model has been established for the tripartite deterrence
bargaining problem of incomplete information, and the factors such as deterrence
ability, accepted deterrent ability and deterrent degree are introduced into the discount
factor. The expression of the discount factor and influence of the discount factor on the
choice of alliance relations in the three bargaining model were given. On the basis of
the tripartite mutual deterrence bargaining for complete information, and the Nash
equilibrium allocation share model of three players in the unilateral and bilateral
incomplete information has been established for the condition of unilateral and bilateral
incomplete information, which makes the model more general. The only Nash equi-
librium solution of Rubinstein’s classic bargaining has been used to analyze the
credibility of deterrence and the possibility of conflict. Finally, we compared the more
general model of this paper with the tripartite mutual deterrence bargaining model
under the original complete information and found that the three players can tend to
choose the alliance way of their own maximizing interests and reach an agreed dis-
tribution plan when a game side has unilateral incomplete information, so the conflict
does not appear. The share of the interests of the game player with incomplete infor-
mation is higher than that of the game player with the full information in any kind of
alliance relationship, and the game player with incomplete information has the
advantage of unilateral incomplete information. However, when there are two players
of incomplete information in the tripartite mutual deterrence bargaining model, each
player can not propose a mutually acceptable solution in some cases, and the conflict
may occur.

Acknowledgement. This work was supported by the Key Project of Natural Science Founda-
tion of China (Grant Nos. 71231003).

Table 2. Comparison of Nash equilibrium assignment schemes

2 and 3 alliance 1 and 3 alliance 1 and 2 alliance

Complete information (0.4233, 0.5417,
0.0350)

(0.6107, 0.3632,
0.0262)

(0.4932, 0.4932,
0.0136)

Unilateral incomplete
information

(0.7222, 0.2609,
0.0169)

(0.8172, 0.1624,
0.0204)

(0.7922, 0.0198,
0.0097)
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Abstract. Chinese ancient villages are an important type of non-renewable
tourism resources. How to exploit and protect ancient villages in the tourism
development becomes an urgent problem to be solved. The aim of this paper is
to propose enterprise management strategies of Chinese ancient village tourism.
In this paper, firstly we identify the stakeholders (i.e., players) who have interest
relationships and play important roles in Chinese ancient village tourism
development and protection. Secondly, we systematically analyze the stake-
holders’ relations, interaction, and importance in the exploitation and protection
of Chinese ancient village tourism. Thirdly, we elaborately investigate stake-
holders’ behaviors and hereby propose enterprise management strategies of
Chinese ancient village tourism. Finally, our conclusions obtained in this paper
are validated and illustrated with Xidi, an ancient village located in Anhui
province of China, which was listed in the world heritage list by UNESCO in
2000.

Keywords: Management strategy � Behavior analysis � Ancient village tourism
development and protection � Stakeholder � Game theory

1 Introduction

In March 3–13, 2017, Feng Jicai, who is the CPPCC National Committee member,
Vice president of China Federation of Literary and Art Circles (CFLAC), and China
ancient village protection expert, made a proposal for the protection of Chinese ancient
villages at the Fifth Session meeting of the 12th CPPCC National Committee (Annual
Democratic National Convention). He suggested that the traditional villages (i.e.,
Chinese ancient villages) should not be allowed to develop tourism without permit.
Currently, many traditional village heritages have not been well sorted out, the villagers
have not have a stronger protection sense, and protection measures have not been
popularized yet. Consequently, once the tourism projects are firstly launched in these
villages, then not only the control power of the projects would fall into the investors,
the national protection policies and measures would not be fully implemented, but also
these traditional villages will be seriously damaged. The long-term modeled tourism
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development resulted in the traditional villages to be assimilated, homogenized, and
commercialized. The intrinsical cultures of these traditional villages have been dis-
membered, alienated, and distorted [1].

There is other news. Anhui Daily published an article entitled “Tourism encountered
Kan whose villagers complain more” at the Country page in November 1, 2016. The
article reported the story as follows. “Kan” means not only Chengkan village but also
that Chengkan village tourism encounters a difficult obstacle to be overcome. Chengkan
is an ancient village of the national 5A level scenic spot with a history of one thousand
eight hundred years. The ancient buildings and street spaces in Chengkan village are
basically in good condition. Earlier than March of 2001, a local person signed a 25-year
contract of tourism operation and management with the local government and set up a
private travel company, which has invested millions to build roads and renovate
buildings. It may be speculated that the private company received enormous grants from
the government and profits. However, there is a serious contradiction between the
villagers and the private travel company. The company is getting richer. But, the vil-
lagers are given a paltry bonus, which is gradually increased from 2.5 Yuan RMB per
person to 10, 20, and 50 Yuan RMB. Until recently, the villagers are given a bonus of
150 Yuan RMB per person annually. And then, since March of 2016, the villagers
whose relatives and friends come to visit them and/or the outsiders without tour spend in
their own houses have to pay the private travel company 30 Yuan RMB for the
admission ticket, where the whole admission ticket is 107 Yuan RMB. Correspondingly,
in order to get revenge on the travel company, the villagers took some excessive
measures to destroy the local tourism industry. For example, they piled livestock manure
up and scattered rubbish around to make the village stink everywhere. Even more, the
villagers closed their doors to forbidden visitors to visit the houses and disputed with
security guards and tourists. For more than 10 years, the villagers’ anger accumulated to
the extent to burst out. They gathered to request the local government to show the travel
contract. Consequently, the villagers found the local government and the travel com-
pany forged their signature and signed the contract without their approval [2, 3].

In China, there are series of news about the serious conflicts and disputes between
the villagers and tourism companies caused by ancient village tourism development
just like the Chengkan. The local governments and tourism companies ignored the
village collective interests [4], only when the contradiction is very sharp could they
give the villagers a little bonus. This phenomenon has aroused widespread concern in
academic [5]. It has extensively studied by many scholars from different angles and
disciplines. However, for the problem how to manage tourism under the premise of
protecting ancient villages, there has not convincing theoretical and qualitative research
results to guide Chinese ancient village development and protection in practice [6, 7].
The aim of this paper is to use the qualitative and quantitative methods to identify
stakeholders and study their relations and behavior and hereby propose the innovation
theory of income distribution of the stakeholders in Chinese ancient village tourism
development, which may further enrich and develop the theoretical point published in
2012 [8].
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2 Connotation of the Ancient Village Protection

The ancient village is a term used in this paper to uniformly represent similar various
terms or names appearing in different media for different periods [5]. The ancient
village protection is an important part of the world heritage protection.

2.1 Interpretations from the International Cultural Heritage Protection
Documents

Influenced by industrialization, urbanization, and modernism architecture trends in the
early twentieth century, the forms and spaces of human habitation (including urban and
countryside) have mutated, and the traditional cultural heritage has suffered a devas-
tating impact. The international community has realized this serious problem. Inter-
national experts, scholars, and researchers have established the relevant international
institutions and organizations to commence the protection movement and draw up a
series of international cultural heritage documents to define the system of heritage
protection and make protective advice [2].

In 1931, the first International Congress of Historical Monument Architects and
Technician Association (the predecessor of the International Council of Monuments
and Sites, ICOMOS) was held in Athens. This conference established an international
organization for international protection and consultation of rehabilitation, and firstly
reached an international consensus about the system of historical site protection and
rehabilitation, which is the document “Athens Charter for the Restoration of Historic
Monuments” (1931). After that, three major international institutions on heritage pro-
tection were successively established. Specifically, they are the United Nations Edu-
cational Scientific and Cultural Organization (UNESCO), ICOMOS, and International
Centre for Conservation and Rehabilitation of Cultural Relics (ICCROM). UNESCO is
the special institution of UN for protecting cultural heritage systematically. ICOMOS is
the only international non-governmental organization in the field of protection and
restoration of monuments. ICCROM is the intergovernmental international cooperation
organization for global cultural heritage protection. These three international organi-
zations are the authorities of international cultural heritage protection and successively
promulgated corresponding international conventions and charters, which are called
International Cultural Heritage Protection Document [2]. The theoretical basis of this
paper is the authoritative definitions recognized by international protection organiza-
tions and experts from existing international conventions and charters.

There are 16 international cultural heritage protection documents cited by this
article [2].

(1) The Athens Charter for the Restoration of Historic monuments, adopted at the
first International Congress of Historical Monument Architects and Technician
Association, held in Athens, 1931.

(2) The Recommendation Concerning the Safeguarding of the Beauty and Char-
acter of Landscapes and Sites, approved at the 12th General Conference of the
UNESCO, held in Paris, 1962.
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(3) The International Charter for the Conservation and Restoration of Monuments
and Sites (The Venice Charter), approved at the 2nd International Congress of
Historical Monument Architects and Technicians, held in Venice, 1964.

(4) The Recommendation Concerning the Preservation of the Cultural Property
Endangered by the Public or Private Engineering, approved at the 15th General
Conference of the UNESCO, held in Paris, 1968.

(5) The Recommendation Concerning the Protection of the Cultural and Natural
Heritage at the National Level, approved at the 17th General Conference of the
UNESCO, held in Paris, 1972.

(6) The Recommendation Concerning the Conservation and Contemporary role of
Historic Areas (The Nairobi Recommendation), approved at the 19th General
Conference of the UNESCO, held in Nairobi, 1976.

(7) The Constitution of the ICOMOS, adopted at the 5th General Conference of the
ICOMOS, held in Moscow, 1978.

(8) The Nara Document on Authenticity, adopted at the International Conference
jointly organized by the UNESCO, ICOMOS, ICCROM, and Japanese
Government Cultural Organization Department, held in Nara, 1994.

(9) The Burra Charter, adopted at the Australian National Council of the ICOMOS,
held in Australia, 1999.

(10) The Charter on the Built Vernacular Heritage, ratified by the 12th General
Conference of the ICOMOS, held in Mexico, 1999.

(11) The International Cultural Tourism Charter (Principles and Guidelines of
Management for Important Cultural Relics and Sites), ratified by the 12th

General Conference of the ICOMOS, held in Mexico, 1999.
(12) The Principles for the Conservation of Chinese Heritage Sites, ratified by China

National Council of the ICOMOS, held in Chengde, 2000.
(13) The Declaration on Global Cultural Diversity, adopted by the 31st General

Conference of the UNESCO, held in Paris, 2001.
(14) The Convention for the Safeguarding of the Intangible Cultural Heritage,

adopted by the 32nd General Conference of the UNESCO, held in Paris, 2003.
(15) The Principles for the Analysis, Conservation and Structural Restoration of

Architectural Heritage, ratified by the 14th General Conference of ICOMOS,
held in Victoria Falls, 2003.

(16) The Hoi An Protocols–Best Conservation Examples in Asia, ratified by the
Seminar of the UNESCO, held in Hoi An of Vietnam, 2005.

The above documents have systematically and detailed described the systems of
knowledge, management, and inheritance for the ancient village protection. This paper
will focus on the ancient village tourism. In the following sections, we discuss relevant
concepts and relations about ancient village heritage landscapes, local people, local
governments, protection experts, and tourism management.

2.2 Significance of Ancient Village Heritage Landscape Protection

Ancient villages are rural landscapes of typical natural environments which have site
landscapes and characteristics as well as historical, artificial, cultural, and artistic
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values, as stated in the Recommendation Concerning the Safeguarding of the Beauty
and Character of Landscapes and Sites (1962) [2].

The value of ancient villages lies not only in the ancient residential buildings, but
also in the rural environments where they can find a unique civilization, a meaningful
development or a historical event witness, as mentioned in the International Charter
for the Conservation and Restoration of Monuments and Sites (The Venice Charter)
(1964) [2].

The ancient villages being as historical regions also belong to traditional human
settlements. From point of view of anthropology, history, and sociology, they are an
irreplaceable part of the world heritage and play a role in its diversification. The
deterioration and change of historical region environments and architectural styles may
result in danger of the simplification of the world environment, as pointed out by the
Recommendation Concerning the Conservation and Contemporary Role of Historic
Areas (The Nairobi Recommendation) (1976) [2].

The architectural complex of ancient villages is all buildings and environments
connected by the countryside. They gather from each other because of their architectural
styles, types, and regional characteristics with the values of history, art, science, aes-
thetics and so on. These are described in the Constitution of the ICOMOS (1978) [2].

The aboriginal sites such as ancient villages, which have cultural importance,
establish a deep and inspired connection between society and landscapes, and between
past and real experience. This is stated as in the Burra Charter (1999) [2].

The local architectural heritage of ancient villages is a social product, which has
usage value and inflexible form. It is the primary point of focus in that era life and the
basic manifestation of society and cultures. It is a traditional and natural way for
aboriginal people to build their own houses to adapt the continuous process under the
social and natural constraints, changes and developments. It is identifiable, environ-
mental suitable, and regional. It is the basic manifestation of social culture and the basic
expression of the relationship between the community and its region. These are stated
as in the Charter on the Built Vernacular Heritage (1999) [2].

2.3 Dominant Position of Aboriginal People in Ancient Villages

The local (or aboriginal) people are the main part of the heritage landscapes.
Ancient villages, especially the sites with scenic features, should be owned by all

native communities. The owner of the sites shall not sign agreements with others
without permission according to the Recommendation Concerning the Safeguarding of
the Beauty and Character of Landscapes and Sites (1962) [2].

Historical areas (including ancient villages) and their environments are irreplace-
able parts of the world heritage. National governments and citizens have the obligation
to integrate them into modern life. Every historical region and its surrounding envi-
ronment should be regarded as a whole with each other, and their coordination depends
on the characteristics of its components. These components include human activities
(aboriginal activities), buildings, space structures and the surrounding environments.
Therefore, all effective components, no matter how insignificant, are of great signifi-
cance to the whole, as mentioned in the Recommendation Concerning the Conservation
and Contemporary Role of Historic Areas (The Nairobi Recommendation) (1976) [2].
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The Nara Document on Authenticity (1994) made the following statement [2]. All
cultures and societies are special forms and methods rooted in tangible and intangible
means, which constitute their heritages and should be respected. The responsibility and
management of cultural heritages should first be attributed to the cultural communities.

The vernacular architecture heritages (i.e., ancient village heritage landscapes)
occupy an important place in human emotion and embody the traditional harmony that
form the core of human life. The correct evaluation and successful protection of local
architectural heritages depend on the participation and support of the community (all
indigenous peoples), and the continuous use and maintenance. The government and the
competent authorities should ensure that all communities (villages) have got their
traditional living rights through all available legal, administrative, and economic means
to protect the traditional aboriginal life and pass it to the offspring. These are well
discussed in the Charter on the Built Vernacular Heritage (1999) [2].

All activities to protect cultural relics and historical sites (all activities of ancient
village aborigines) are aimed at preserving and extending historical information and
full values. This viewpoint is gradually acknowledged by the Principles for the Con-
servation of Chinese Heritage Sites (2000) [2].

The Declaration on Global Cultural Diversity (2001) believes that protecting the
diversity of cultural and ethnic groups in the world is one of the best safeguards of
international peace and security. Policies that advocate participation of all citizens are a
solid guarantee for enhancing social cohesion and the vitality of civil society and
maintaining peace [2].

Intangible cultural heritages and tangible cultural heritages depend on each other.
Intangible cultural heritages refer to the various practices, performances, and forms of
culture heritages which are considered by various groups or individuals, or related
tools, objects, handicrafts, and cultural sites of the cultural heritages. The intangible
cultural heritages which are handed down from generation to generation can give them
a sense of identity and history, as stated in the Principles for the Analysis, Conservation
and Structural Restoration of Architectural Heritage (2003). Obviously, the aboriginal
people in the cultural heritage sites are the inheritors of the intangible cultural heritages.
They are an important part of the cultural heritages [2].

Heritage sites such as ancient villages should continue to be managed by traditional
managers, who should be empowered and assisted to achieve the protection of
authenticity [2].

The responsibility for cultural heritages and management should be shouldered first
by the cultural community (the ancient village), and then by the local government. This
is discussed by the HoiAn Protocols–Best Conservation Examples in Asia (2005) [2].

2.4 Duties of Local Governments in Ancient Villages

All international cultural heritage protection documents require governments to leg-
islative protection. Without governments’ guidance and supervision, heritage protec-
tion cannot be achieved.

The conference of the ICOROM firstly pointed out that all countries should solve
the problem of heritage protection through national legislation. Archaeological sites
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will be strictly protected by surveillance according to the Athens Charter for the
Restoration of Historic monuments (1931).

The Recommendation Concerning the Safeguarding of the Beauty and Character of
Landscapes and Sites (1962) stipulates that the member states, by national laws or
otherwise, shall formulate measures to affect the standards and principles embodied in
this recommendation in the territory under their jurisdiction.

In the Recommendation Concerning the Preservation of the Cultural Property
Endangered by the Public or Private Engineering, the definition of the cultural
property is very broad, including all types of heritages (confirmed and unconfirmed). It
recommends that the measures to protect the cultural property should be used exten-
sively in all the territory of a member state rather than confined to certain monuments
or sites. The protection and rescue measures required by the member states include
legislation, finance, administrative measures, procedures for the protection and rescue
of cultural property, penalties, repairs, awards, and educational programs. These leg-
islations require that member states shall formulate or maintain national and local
legislative measures necessary for the protection or rescue of the cultural property
threatened by public or private projects, according to the aforementioned recommen-
dations and principles. And administrative measures include the following four aspects:
(1) Setting up the national coordination organizations composed by the representatives,
who are responsible for protecting the cultural property and public and private projects
and in charge of urban and rural planning as well as researching and educational
institutions to coordinate conflicts of interest and make recommendations; (2) Setting
up local government coordination agencies; (3) Providing enough experts and tech-
nicians from various disciplines in the administrative organizations for protecting the
cultural property; (4) Taking administrative measures.

In order to protect the local architectural heritages (the ancient village landscape
heritages), the local government and the competent authorities should ensure that all
communities (all aboriginals) can maintain traditional life rights through all available
legal, administrative, and economic means to protect the traditional aboriginal life and
pass the offspring, as stated in the Charter on the Built Vernacular Heritage (1999).

2.5 Authoritative Supervisory Roles of Protection Experts

All heritage protection campaigns are initiated by protection experts. In fact, all
international cultural heritage protection documents are drafted and approved by these
experts. Without the protection of experts through their guidance, the so-called pro-
tective measures may not work, even may be destructive. Experts who have certain
professional knowledge play an indispensable role in the process of heritage protection
and restoration and management.

The International Charter for the Conservation and Restoration of Monuments and
Sites (The Venice Charter) (1964) is a systematic charter devoted to the restoration of
monuments. It points out that the purpose of protection and restoration is to regard
historical sites as not only historical testimony but also artistic works. Also it believes
that protection and restoration must resort to all the science and technology, which are
beneficial to the study and protection of heritage sites. The restoration is a highly
professional work. Its purpose is to preserve and display the aesthetic and historical
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value of the monuments and to respect the original materials and authentic documents.
If there is speculation, it should immediately stop.

The Recommendation Concerning the Protection of the Cultural and Natural
Heritage at the National Level (1972) is the recommendation about the member states’
heritage protection and repair technology management. Heritage protection is an
extremely complex and professional job, which requires a wide interdisciplinary col-
laboration. To ensure that cultural heritage can be effectively preserved and displayed,
all countries should formulate coordination policies in accordance with their judicial
and legislative documents. All science, technology, culture, and other resources can be
used by heritage protection.

In the inevitability of changing and development of traditional architectures, the
cultural characteristics established by local communities should be preserved. In this
case, protection and restoration must be carried out by multi-disciplinary expertise
according to the Charter on the Built Vernacular Heritage (1999).

Due to the large number of architectural heritages in the entire heritage types and its
professionalism, the Principles for the Analysis, Conservation and Structural
Restoration of Architectural Heritage is the conservation and rehabilitation principle to
specifically guide the work of all architectural heritage protection specialists.

2.6 International Principles of Heritage Tourism Management

The diversity and living cultures of natural and cultural heritages (including ancient
villages) are the main tourism attractions. Excessive or poorly managed tourism
development may threaten the tangible essence, authenticity, and important charac-
teristics of the heritages.

Tourism should bring economic benefits to the village community and provide an
important way and impetus for community residents to pay attention to protecting the
cultural heritages and lifestyle created by their ancestors. According to the Interna-
tional Cultural Tourism Charter (Principles and Guidelines of Management for
Important Cultural Relics and Sites), we briefly summarize some important interna-
tional principles of heritage tourism management as follows.

(1) Dynamic management. The exchange between the resources and values of cul-
tural heritages and tourism is dynamic and fast changing. Tourism activities and
development should achieve positive results and minimize the adverse effects on
the heritage and aboriginal lifestyle.

(2) Valuable experiences to visitors. Heritage protection and tourism programs should
provide visitors with high-quality information to ensure most visitors aware
important features of the heritage and their protection, and allow visitors to enjoy
their heritage tours in the right way.

(3) Aboriginal community participation. Communities and indigenous peoples should
participate in heritage protection and tourism planning. Heritage tourism man-
agement should respect local rights and interests of tourism areas and the owners
of the sites and the indigenous people with the rights and obligations of the lands
and important sites. In tourism situations, they should participate in setting goals,
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policies, strategies and treaties for heritage resources, cultural activities, and
contemporary cultural expression.

(4) Benefits for the community and the aborigines. Tourism and protection activities
should benefit the community and aborigine people. Policy makers should pro-
mote equitable distribution of tourism profits in the countries or regions, improve
the level of socio-economic development, and devote to poverty reduction.
Through education, training, and the creation of full-time employment opportu-
nities, heritage protection management and tourism activities should provide a fair
economic, social, and cultural benefits to indigenous people at all levels of the
community. A large portion of the tourism revenues should be used for heritage
protection, renovation, and display. Travel plans should encourage training and
hiring community aborigines as guides and heritage interpreters to enhance the
ability and skills of local aborigines to exhibit and interpret cultural heritage
values so that the aborigines have a direct interest in the heritage preservation. The
management of heritage protection and tourism programs should provide policy
makers, planners, architects, researchers, designers, interpreters, maintainers, and
tour operators with educational and employment opportunities.

3 General Situations of Chinese Ancient Village Protection

China is an agricultural country with long history and traditional cultures. It has a huge
population and many nationalities. In modern times, it began to develop industries in
several important cities. In addition to the Second World War and the civil war, the
human heritages were not destroyed by extinction. Although there were some heritages
which have been viciously destroyed in 1960s, the level of industrialization was not
high, the economy was backward, and Chinese urbanization rate was very slow. Since
late 1970s, the reform and opening policy was implemented, China has attached great
importance to international exchanges and cooperation in various fields. The interna-
tional advanced concept is affecting the domestic all walks of life. Industrialization and
urbanization are accelerating. The real estate industry has been designated as a national
pillar industry, demolition and construction has gradually become the trend. Lots of
ancient towns, traditional architectures, and ancient villages quickly disappear. At the
same time, China is a country advocating politics and a top-down management model.
In 1950s, the concept of heritage protection was highly recommended in the world.
Under the influence of the international trend and the appeal of the domestic scholars,
Chinese government began to realize the need for protection in the early 1980s. But it
acts in the late 1980. The protection of ancient villages is later, basically after 2000.

In 2000, due to the fact that Xidi and Hongcun were listed as the world heritage list,
the Ministry of Urban and Rural Construction and the State Bureau of Cultural relics
jointly launched the project of “China Historical Famous Towns and Villages”. Since
2003, 276 villages have been listed as China Historical Famous Towns and Villages. In
2008, the regulation on China Historical Famous Towns and Villages was published,
but there has been no protection of technical specifications for planning. Because the
protection action cannot keep up, some heritage landscapes in the list have been badly
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damaged and almost lost the significance of protection. Some disordered development
of tourism projects become vulgar, and lost the authenticity of cultural heritages.

As mentioned in Introduction, Due to the personal academic prestige of Feng Jicai
and his participating heritage protection activities, the Ministry of Housing and
Urban-Rural Development, the State Administration of Cultural Heritage, the Ministry
of Culture, and the Ministry of Finance jointly launched the project of protecting
Chinese traditional villages. Since 2012, 2555 villages have been approved by Chinese
government. However, the evaluation criteria is almost the same as that of China
Historical Famous Towns and Villages. But, the quantity of the latter is far more than
the former. Some ancient villages are not only historical and cultural villages but also
traditional villages.

The Chinese Traditional Village Protection and Development Research Center, an
academic research institution affiliated to Tianjin University, aims at exploring, col-
lecting and sorting out some pictures and intangible cultural heritages of the traditional
villages. It does not have the technical guidance ability such as protection, mainte-
nance, and repair. The laws, relevant management regulation and technical manual
about the protection of traditional villages have not come out yet. The term ancient
village mentioned in this article includes historical famous towns and villages and
traditional village.

4 Chinese Ancient Villages and Tourism Development

Most Chinese ancient villages are located in the poor areas where the traffic is not
convenient. They almost have a long history and backward economic development,
basically dominated by human and livestock farming. The ancient traditional cultures
have not been completely impacted by modern civilization. Globalization and infor-
mation technology have made people to be interesting in cultural heritage tour, which
has a distinctive ethnic identity. For the ancient villages, tourism is the most convenient
way and the fastest way to get rich and develop the local economy [8, 9]. In the
sequent, we will discuss the status and rights of indigenous in Xidi, which was listed in
the world heritage list by UNESCO in 2000. The ancient village is located in the
eastern part of Huangshan city in Anhui Province of China. It is a typical tourism
pattern in china.

(1) The basic situation of Xidi

Xidi was built in the Northern Song Dynasty (AD 1049–1054). It has 960 years of
history. There are 16.4 ha, 370 households and 1060 people in 2008.

(2) The local governments of Xidi

The local governments at all levels have promulgated a number of relevant regu-
lations for the ancient village protection. In 1997, Anhui provincial government pro-
mulgated the regulations for the protection of ancient dwellings in southern Anhui. The
Yixian county government has promulgated the Ancient Folk Residence Protection
Regulation in 1998 and the Protection Regulation of World Cultural Heritage in 2001.
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The village government has promulgated the regulation of Xidi scenic spot manage-
ment and the Xidi village rules [3].

Under the situation that the village government strives to the autonomous devel-
opment right for the ancient village community, the county government and relevant
departments of tourism management cannot participate in Xidi tourism development.

(3) The protection experts of Xidi

The protection experts are only involved in the designing of village buildings and
environmental protection plans, which have been well implemented under the super-
vision of the local government. However, they do not participate in tourism develop-
ment and management.

(4) The tourism development of Xidi

In October 1986, the county government took the typical ancient buildings as
tourist attractions and the initial tourism development was carried out from it. In
September 1994, approved by the county government, the village government and local
people jointly established Xidi Travel Service Company. The main body of the com-
pany is the village government and all the local people. Tickets are the company’s
major profits. Income distribution is that the company management costs 1.5% and the
world heritage protection costs 20%. The rest of the income is allocated to the village
government and all the local people in proportion 1:1. And then, all local people
redistribute their income. 20% of the income is reserved for the community welfare,
and the remaining 80% of the income is allocated based on population and housing
area among the local people.

(5) The tourism benefits of Xidi’ local people

There are two sources of the tourism income for the local people. One is to obtain a
certain percentage of the tickets. The other is to participate in tourism related activities
such as catering, selling goods, and operating entertainment facilities, or use their
houses to participate in tourism activities to obtain incomes. From the proportion of the
ticket income, in addition to the reserve funds and the necessary management cost, the
income of the village government is higher than that of all local peoples.

Before the tourism development, Xidi was a poor ancient village. Whereas, after
the tourism development, the income of the local peoples has increased a lot, and their
living conditions have been improved.

(6) Validity evaluation of Xidi’ authenticity protection

As a tangible cultural heritage, Xidi’ basic architecture and spatial form are integral.
But, its intangible cultural heritage is seriously distorted. The majority of the local
people are engaged in tourism commodity management activities to sell local spe-
cialties to tourists. The ancient houses selling local products are covered with their own
products. Few people engaged in farming. And as a result of the construction of new
areas, many local people moved to the new areas so that the ancient village has lost its
residential functions. Traditional folk customs almost disappeared.
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Although there are some performances and folk customs, which are regularly
shown to tourists, the authenticity of the ancient local life scenes is almost replaced by
tourist activities.

(7) Cultural heritage research, exhibition and inheritance

There is no protection expert for collection, excavation and archaeological research.
There are no local heritage museums. We do not find there is any scientific and pro-
fessional guide commentary. Naturally, there is no special guide commentary for the
local people and there are no training institutions or schools for the heritage inheritance.

5 Tourism Resources and Tourism Enterprise Positioning

5.1 Localization of Tourism Resources

Tourism resources are the basis of tourism development. Usually, tourism resources
may be firstly discovered by tourists. Or the local government may create a unique local
image to attract visitors. Tourist behaviors are driven by tourists. For tourists, the
attractive environments are the tourism resources. Therefore, tourism resources are
attractive environments in which a set of elements are specifically associated with each
other. Ancient villages have been recognized by the world as very attractive and dis-
tinctive tourist resources. Their distinctive features are reflected in the historical con-
tinuity, nationality and uniqueness of local social life. Ancient villages are behavior
landscapes and social landscapes. If there are not local people in the ancient villages, the
ancient villages may become static site landscapes. The distinctive characters of tourist
destinations are determined not only by the obvious attractions but also by the unique
characteristics that cannot be touched but make the destination different. Undoubtedly,
the local residents are the most important tourism resources. The emigration of local
residents will change the nature tourism resources. The living security of the local
people is the only choice for the sustainable development of the tourism economy.

5.2 Tourism Enterprise Positioning

Stated as earlier, we are concern on what kind of organizational structures the ancient
village tourism enterprises should be in China.

In the above discussion, ancient villages managed by non-professional village
governments and local people jointly (e.g., Xidi), or just by an outside professional
travel company (e.g., Hongcun, which is other ancient village in Anhui province).
Tourism development may cause the destruction of authenticity in which all are driven
by profits. They are not protected by expert supervision without heritage protection
function. They are not sustainable tourism development. In China, in addition that the
local people’s residence lands are private, all other lands belong to the village collective,
which are managed by the local governments, and the incomes are also owned by the
local governments. The local peoples are vulnerable groups without any power, and
their cultural qualities are rather low. If there is no local government support and
guidance, most indigenous people will live in poor. Consequently, to earn a living,
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young adults choose to work outside while most of the elderly and left behind children
have to stay in ancient villages. Based on Chinese national conditions, the protection and
utilization of the ancient villages (i.e., tourism development) should be jointly organized
by an organization, which consists of the local governments, operators, aborigines, and
protection experts. The organization should take the protection of the ancient villages as
its mission and carry out the task of the protection plan in detail. Its organizational
relations and management operation should be an enterprise management system [8].
The production and life of the local peoples in ancient villages are an important part of
tourism resources. Their own lives are at work which may produce values and hereby
they should be paid. Thus, in the organizational structure of ancient village tourism
enterprises, we need to discuss what kind of roles the local people play in tourism
development and management. According to the international principles of heritage
tourism management, the following questions need to be identified and analyzed.

First of all, we need to analyze what the goal of ancient village tourism enterprises
is. Tourism activities and development should achieve positive results and minimize
the adverse effects on heritages and lifestyles of the local people [10, 11]. One of the
goals is to have the heritage protection function. That is to say, the aim of the tourism
development and management is to maximize the protection of ancient ruins, land-
scapes, and aboriginal lifestyles. In addition, through education, training, and the
creating full time employment opportunities, the tourism development should provide a
fair economic, social, and cultural benefit to all indigenous people at all levels of the
community. The second goal is to increase economic incomes, cultural quality and
social status for the local people.

Secondly, we need to analyze who the biggest beneficiary of the ancient village
tourism is. Tourism and protection activities should benefit the community. A large part
of the tourism revenues should be used for heritage conservation, renovation and
display. The biggest beneficiaries should be the local people except the ancient village
heritage landscapes.

Lastly, we need to analyze who are in the making decision levels of the ancient
village tourism enterprises. Stated as earlier, it should respect the local rights and
interests of tourist areas, the owner of monuments, and all local peoples who have the
rights and obligations of lands and important sites. Therefore, the local peoples are the
most immediate and important decision-makers and followed by the local governments.

Based on the above analysis, we may conclude that the local peoples, the owners
and heirs of the cultural heritages are the biggest beneficiary of tourism business profits
and the most direct and important decision makers. According to the economic concept
that the enterprise is the producer in the market economy, the goal of an enterprise is to
maximize profits for the owner of the enterprise. The biggest beneficiary of the profit is
the owner of the business, i.e., the shareholder of the enterprise. Thus, the position of
the local people in the tourism enterprise should be the owner, i.e., the trustee of the
tourism enterprise. As for the investor, it belongs to the lender, which is equivalent to
the bank. Corporate fiduciary and developers belong to the employment agent, which is
equivalent to the chairman of the board or the general manager. For example, let us
consider what the confused relations are when these new relationships are used to Xidi.
Obviously, although the Xidi’ village government and aborigines are both holders of
the tourism company. But, the local people receive less ticket revenues than the village
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government. Thus, the role and position of the holders of the local people are not much
remarkable. As a result, conflicts between the local people and the village government
are bound to occur due to such a serious irrational distribution of tourism interests.

6 Behavior Analysis of Stakeholders in Ancient Village
Development

As stated above, there are four stakeholders in ancient village tourism development and
management. In the sequent, we discuss relations of some stakeholders and analyze
their behaviors through game theory [12, 13].

6.1 Game Model Between Tourism Enterprise and the Local
Government and Behavior Analysis

Let us consider the game problem between a tourism enterprise and the local gov-
ernment. Assume that the tourism enterprise has two options (or strategies). One option
is to protect the ancient village, denoted by b1. The other option is to destroy the
ancient village, denoted by b2. Similarly, the local government has two
options/strategies. One option is to supervise the tourism development of the ancient
village, denoted by a1. The other option is to un-supervise the tourism development of
the ancient village, denoted by a2. In the tourism development of the ancient village, if
the tourism enterprise chooses the option b2, i.e., destroying the ancient village, then it
earns Rþ r; if the tourism enterprise chooses the option b1, i.e., protecting the ancient
village, then it earns R, where r[ 0 represents the increased invest of the tourism
enterprise due to the protection. The supervising cost is c. The government award is h
whereas the penalty is a. Then, we have the payoff bimatrix as follows:

Assume that the local government chooses a1 with a probability x and hereby
chooses a2 with the probability 1� x. Likewise, the tourism enterprise uses b1 with a
probability y. Thus, the tourism enterprise chooses b2 with the probability 1� y. When
y is given, then we can obtain the local government’s expected incomes if it chooses a1
and a2:

Eða1Þ ¼ ð�c� hÞyþða� cÞð1� yÞ

and

Eða2Þ ¼ 0yþ 0ð1� yÞ ¼ 0;
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respectively. Thus, we can obtain the income expectation of the local government as
follows:

EðxÞ ¼ xEða1Þþ ð1� xÞEða2Þ

In the same way, we can obtain the income expectation of the tourism enterprise as
follows:

EðyÞ ¼ yEðb1Þþ ð1� yÞEðb2Þ

To take into consideration behavior and strategy choice of the local government
and the tourism enterprise, we introduce the time factor and hereby construct the
system of duplicate differential dynamic equations as follows:

dx
dt

¼ xðEða1Þ � EðxÞÞ
dy
dt

¼ yðEðb1Þ � EðyÞÞ

8
><

>:

which specifically infers as follows:

dx
dt

¼ xð1� xÞ½�ðaþ hÞyþ a� c�
dy
dt ¼ yð1� yÞ½ðaþ hÞx� r�

8
><

>:

Let

dx
dt

¼ 0

dy
dt

¼ 0

8
><

>:

Then, we have four pure equilibrium points: (0, 0), (0, 1), (1, 0), (1, 1) and one
equilibrium point ðr=ðhþ aÞ; ða� cÞ=ðhþ aÞÞ in the sense of mixed strategies if
r=ðhþ aÞ 2 ð0; 1Þ and ða� cÞ=ðhþ aÞ 2 ð0; 1Þ. But, only two of the above five
equilibrium points are stable after specific analysis.

In fact, if a\c, i.e., the penalty of the tourism enterprise is smaller than the
supervising cost of the local government, then the pure equilibrium point (0, 0) is
asymptotic and stable. This may be interpreted as follows: no matter a long term or a
short term, the local government tends to choose to un-supervise the tourism devel-
opment of the ancient village and the tourism enterprise chooses to destroy the ancient
village. Therefore, to protect the ancient village, the local government should enlarge
the penalty or decrease the supervising cost.

Similarly, if a[ c and hþ a\r, i.e., the penalty is larger than the supervising cost
and the sum of the award and the penalty is smaller than the additional income, then the
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pure equilibrium (1, 0) is asymptotic and stable. Namely, from a viewpoint of a long
term, the local government may choose to supervise the tourism development of the
ancient village while the tourism enterprise may take a chance to destroy the ancient
village due to the fact that the sum of the penalty and the award is smaller than the
additional income resulted from destroying the ancient village. Therefore, the local
government enlarges the penalty or the award to urge or induce the tourism enterprise
to protect the ancient village.

6.2 Game Model Between Tourism Enterprise and the Local People
and Behavior Analysis

In this section, we consider the game problem between a tourism enterprise and the
local people. Still assume that the tourism enterprise has two options/strategies. One
option is to protect the ancient village, denoted by b1. The other option is to destroy the
ancient village, denoted by b2. Similarly, the local people have two options. One option
is to complain the tourism enterprise destroying the ancient village, denoted by r1. The
other option is to un-complain the tourism enterprise destroying the ancient village,
denoted by r2. In the tourism development of the ancient village, if the tourism
enterprise chooses the option b1, i.e., protecting the ancient village, then it earns R; if
the tourism enterprise chooses the option b2, i.e., destroying the ancient village, then it
earns Rþ r, where r[ 0 represents the increased cost or invest of the tourism enter-
prise due to the protection. The complaining cost is b and the obtained income is w=n
due to the improved environment of the ancient village, where w is the obtained total
income and n is the number of the local people. Here, assume that w=n\b. The penalty
is a if the complaint is confirmed. Then, we have the payoff bimatrix as follows:

Assume that the proportion of the number of the tourism enterprises choosing to
protect the ancient village is y while the proportion of the number of the tourism
enterprises choosing to destroy the ancient village is 1� y. Likewise, the proportion of
the number of the local people choosing to complain the tourism enterprise destroying
the ancient village is z whereas the proportion of the number of the local people
choosing to un-complain the tourism enterprise destroying the ancient village is 1� z,
where z 2 ½0; 1� and y 2 ½0; 1�.

Thus, we can the income expectation of the local people as follows:
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EðzÞ ¼zEðr1Þþ ð1� zÞEðr2Þ
¼w

n
z� w

n
zy� bz

Similarly, we can the income expectation of the tourism enterprise as follows:

EðyÞ ¼ yEðb1Þþ ð1� yÞEðb2Þ
¼ r � az� yrþ azyþR

By introducing the time factor, we can construct the system of duplicate differential
dynamic equations as follows:

dz
dt

¼ zð1� zÞð�w
n
y� bþ w

n
Þ

dy
dt ¼ yð1� yÞðaz� rÞ

8
><

>:

In a parallel way to Subsect. 6.1, let

dz
dt

¼ 0

dy
dt

¼ 0

8
><

>:

Then, we have four pure equilibrium points: (0, 0), (0, 1), (1, 0) and (1, 1). But,
only the pure equilibrium point (0, 0) is stable after specific analysis. This may be
interpreted as follows: the local people choose to un-complain the tourism enterprise
destroying the ancient village due to the fact that they need to spend all the complaining
cost whereas they cannot earn the total income resulted from the improved environ-
ment. The tourism enterprise chooses to destroy the ancient village due to the psy-
chology and behavior of the local people. Therefore, the local government should
decrease the complaining cost. On the other hand, the local people should be given
some economic compensation if their complaints are confirmed. At the same time, the
local government should enlarge the penalty for destroying the ancient village.

7 The Decision Making Analysis on the Stakeholders
of Ancient Village Tourism Companies

In conclusion, Chinese ancient village tourism enterprise organizations should include
five elements: protecting ancient villages, all local peoples, protection experts, local
governments at all level, investors or management companies. In the following, we
make some decision analysis to deal with the above qualitative issues.

The most rational stakeholder relationship is that the reasonable benefit of land-
scape protection can reflect the perfect protection functions. The reasonable benefit of
the local people can reflect the reasonable goals of the tourism enterprises/companies.
The local government revenues can reflect the management costs. The government
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incomes can reflect the improvement of public facilities. Travel and management
enterprise can only be paid for meeting their corporate goals. Protection experts belong
to non-profit groups/organizations. They participate in the whole process and confirm
that tourism enterprise management is consistent with the protection mission.

Through modeling and analysis, the reasonable and right solution to the tourism
stakeholders is that ancient village heritage landscapes can obtain sustainable protection,
maintenance, excavation, exhibition, research, training, and other funds. The local people
can obtain personal incomeswhich are in line with their own values. These incomesmake
the local people voluntarily and actively put actions to protective activities, which can
reflect their dominant roles. The local governments receive revenues which enable them
to make a difference to the public services. Tourism management enterprises can reflect
their professional values and social values when they gain reasonable incomes. The
number of benefits obtained by tourism enterprises can reflect their professional values.
Protection experts belong to social groups/organizations, which reflect their scientific and
impartial services to the society.

8 Conclusions

The ancient villages are un-renewable heritage resources, which are of extremely
important tourism values. Based on the ecotourism exploitation and management
practice and the international cultural heritage protection documents, we systematically
discuss some issues of ecotourism environment protection and breakage from a
viewpoint of stakeholders such as the local people, tourism enterprises, local govern-
ments, and protection experts. Particularly, we discuss the relations among the stake-
holders and their roles and hereby analyze their behaviors and strategy choices. These
conclusions may provide theory guide and reference for harmonizing relations among
the stakeholders in ecotourism exploitation and management of the ancient villages,
resolving conflicts between ecotourism exploitation and protection and accelerating the
sustainable development of ecological tourism economy.

The tourism development and management of the ancient villages are involved in
various factors, including both qualitative and quantitative. In near future, we will
investigate on how to evaluate tourism plans of the ancient villages and design the
income mechanism of stakeholders by using fuzzy multi-attribute decision making and
game theory [14, 15].
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Abstract. The aim of this paper is to discuss a bargaining problem between
sellers and buyers in the case of the final price of the house for sale in the
second-hand house market. Two bargaining models are established for the
sellers and buyers in indefinite period and finite period. For the indefinite period,
the complete equilibrium solution of the bargaining game between the buyers
and sellers is obtained. Hereby, imposing some constraints on the time, the game
equilibrium solution on the second stage is obtained. At the same time, a
multiple game model is constructed and the commence point is discussed. The
result shows that the game between sellers and buyers depends on the ratio of
each one’s discount factor. The time and commitment between sellers and
buyers increase the sellers’ cost, hence the final price can only be implemented
within a certain range, which is related with the proposal cost of sellers, the
number of games, and the punishment cost in each round.

Keywords: The second-hand housing commence � Equilibrium � Bargaining �
Game model

1 Introduction

With the high-speed development of China’s urbanization process after more than ten
years, urban construction land supply is increasingly scarce, land acquisition cycle is
becoming longer and the cost of construction is increasing. As a result, second-hand
housing supply gradually exceed the new one over the past few years in many big
cities, and become the main source of urban housing supply. Under the circumstances,
the price in second-hand housing market becomes the focus of attention, and the
formation process of the transaction price is not only influenced by building its own
characteristics, but also affected by both parties decision-making process.

With the further adjustments in the real estate market, sales of second-hand house
will become a “major driving force” in the real estate market. That second-hand
housing transaction is smooth or not is not only directly affect the operation of the real
estate market, and also has close ties with the idea of sticking to a certain place to live
and work in peace and contentment. How can they gain maximum benefits between a
huge number of sellers and the buyers in the game in such an active market? What
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factors will the bargaining between the two sides be affected by? What kind of impact
will it produce for the business of real estate brokerage agency (agency) to bargain
during the game process between both the buyer and seller? What message does this
give the government departments in the supervision of second-hand house market? For
it has not carried out to research in the trading process and its related influencing factors
at home, This paper select the bargaining game behavior of second-hand housing
transaction between both sides as the research object from the perspective of game
theory. By setting up perfect information games models which are time limitation and
no time limitation, assuming the utility functions of both the buyer and seller in the
second-hand house market is common knowledge for both sides and the provisions of
the conditions before negotiations are regarded as exogenous variables of the game,
relevant research results will be figured out in this process.

The structure of this thesis is as follows: Section 2 introduces the relevant research
on second-hand house market conducted by domestic and international scholar;
Section 3 builds timeless and limited game model of bargaining during the second-hand
housing transaction. And sub game perfect Nash Equilibrium of both the buyer and
seller are gained based on the timeless and limited game model. There was something in
the elimination of time of the game based on this. Then equilibriums of game of both
sides are worked out in the second stage based on limited game model. In the meantime,
several game models are built and game process is discussed at a particular point;
Section 4 analyzes and demonstrates using the example; Section 5 is to make conclu-
sion of the paper.

2 Literature Review

In recent decades, the domestic and foreign scholars conducted research in many
aspects. As for the research of the sellers’ behavior in second-hand housing, for
example, Stein [1] first proposed that “constraint of property rights” is used to research
the seller’s behavior. Bokhari and Geltner [7] first applied theory of loss aversion to
commercial real estate pricing, they think the theory of loss aversion significantly
influence the behavior of the seller. Hua and Seow [8] examined sellers’ price strategy
where the reference point depend on the preferences and market is homogeneous,
found that the recent transaction price has two distinct signal effects for potential
buyers’ willingness to pay, and the seller’s asking price tends to increase with the
increment of the buyer’s visit. As for the psychological aspects of expected final price
of both sides in the second - hand housing transaction, Black and Diaz [2] simulated the
bargaining process through a series of experiments, which show that the artificially
fabricated “quotation” is not only affected the buyer “opening offer”, but also affect the
final transaction price. They concluded that the quotation of seller or agent can be used
as an instrument to induce the buyer decision making errors; Clauretie and Thistle [6]
used 2828 Las Vegas real trading sample to test the influence of the search cost and
anchoring effect on the housing transaction price. In the area of affecting factors of final
transaction price in second-hand house market, the opportunity cost model proposed by
Krasner [3] state that the seller’s psychological price rise amplitude of the price that
seller can accept also lower than the buyer’s when the housing market change from
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recession to recovery. Based on the two-stage regression model, Fisher et al. [4, 5] use
probity model, Millers model as well as introducing hedonic price model to calculate
buyers and sellers’ psychological price index, and real estate research center at the
Massachusetts institute of technology has put the method mentioned above into
practice.

Compared with foreign detailed research on real estate transaction process, bargain
model used by domestic scholars mostly concentrate on the game analysis of the
trading subject, Such as Yang and Sun [9] who used game analysis based on the
government, developers, consumers tripartite game analysis, which clarify clearly the
relationship between policy factors and China’s real estate market developing path;
Huai and Liu [10] analyze non-cooperative bargaining process between the real estate
developers and local governments with the application of Rubinstein turn model and
Selten non-cooperative game method under the condition of local perfect information;
What’s more, Wang and Gong [12] built the second-hand housing investors and
developers in the real estate market sales bargaining model of profit distribution, dis-
cusses the price formation mechanism and benefit distribution mechanism under the
interest distribution model. It turned out that the feasibility of these interests distri-
bution is relevant to both real estate product differentiation rate of substitution and
repeated game strategy of the discount rate. Lai and Chen [13] found that a government
takes control of the land price determines the nature of the regional real estate oligopoly
dynamic game equilibrium and equilibrium path under the condition of production
technique level and management level for property developers by developing bounded
rational real estate dynamic Cournot oligopoly model. Taking China’s main body
second - hand housing transaction as the research object, Zhao [11] established game
model based on the condition of asymmetric information between real estate inter-
mediary and buyers, and puts forward related suggestions to eliminate asymmetric
information.

3 Indefinite Period Bargaining Model

3.1 Problem Assumption

To simplify the analysis,this article assumes that there are two participates who are a
buyer A and a seller B in the game, and they are numbered respectively 1 and 2. Both of
the decision-makers are risk neutral. Both sides of the utility function is their common
knowledge without thinking the mediation and other third party for the influence of the
utility. In this case, the game between two sides exist the risk of rupture. So in the Nash
bargaining solution, the risk of rupture of negotiations can be marked as no agreement
point d1; d2ð Þ. When the negotiation broke down, d1 represents housing values of the
seller A, and d2 represents monetary value of the buyer B, which represents the lowest
housing value the seller A, the highest bidder of the buyer B.

Assuming that before the deal, seller A has the original utility for �x1, and buyer B
has the original utility for �x2. Add up the original utility and they total x0. After the
deal, seller A will gain the original utility for x1, and buyer B will gain the original
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utility for x2. The total amount of remaining transactions is x0 because of successful
trading between them.

During the real process of Second-hand house transaction, a party will first provides
them with a quotation, and the other party from its own utility maximization, decides
whether to accept this price or not. If agreed, the two parties will clinch a deal,
otherwise both parties will move to the next bargaining game. Assuming the seller will
bid the price in accordance with the following process, the behavior of bid is conducted
in discontinuous point, i.e. tD ðt ¼ 0; 1; 2; 3; . . .;NÞ.

There is no time and times limit to agreement bargaining for both sides. In the
meantime, assuming that at the time of an odd number of times a quotation will be
provided by the buyer, the two parties will clinch a deal if the seller accepts this price.
Otherwise a price will be offered by the seller, and there will be a deal if the buyer
accepts this price. That works like this: bid order of buyer and seller eventually has no
effect on game equilibrium solution. Based on the above analysis, when the t is an even
number, seller A makes an offers. When the t is an odd number, buyer B makes an
offer.

In the case of no time limit, If the buyer refused to offer in order to delay the time at
the time tD, probability of breakdown in the negotiation is q. And the probability is
1� q as the game continues at the time ðtþ 1ÞD.

If the two parties clinch a deal at the time tD, the seller Awill getmonetary value x1 and
the buyer B will own a house worth x2. The utility function of the two parties is set to
Ui : 0; x½ � ! R which is a strong increasing concave function. And it conforms to the
von Neumann -MorganStan utility function. That isUiðxiÞ ¼ uiðxiÞeð�riDÞ, and assuming
that di ¼ eð�riDÞ; di2ð0; 1Þ, di is the discount factor of participant i.

If the disagreement between the two sides leads to a breakdown in the negotiation,
the utility received by participant i is diðda ¼ �pa; db ¼ �pb; da þ db ¼ p0Þ in which
Uið0Þ\di\UiðpÞ. At this point, both the buyer and seller can earn as most value as the
original value owned by individuals, and they even earn negative value to some extent.
For breaking down in the negotiation means both sides benefit no value from the
former bargaining, both sides need to continue to look for a new transaction object.

If both parties have been unable to reach a unity, then the utility at the point there is
a stalemate for the agreement is:

qdi
X1
k¼0

ð1� qÞkdki )
qdi

1� ð1� qÞdi

Assumption: bi ¼ qdi
1�ð1�qÞdi ; di2ð0; 1Þ; because of 0� q

1�ð1�qÞdi � 1, then bi2½0; di�
ði¼ 1; 2Þ. There must be a number xdi 2 ½0; di� which is satisfied to constraints
Uiðxdi Þ ¼ bi, x

d
i ¼ U�1

i ðbiÞ. After several rounds of bargaining, the negotiations came
to a deadlock or even break down, for both the buyer and seller are not satisfied with
the terms quoted by themselves. At this time, value gained by both sides is more driven
by discount factor. In the meantime, this will further reduce obtained value of both
sides compared with breaking down in the negotiation directly.
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3.2 Perfect Equilibrium Solution of Subgame

Due to decision-makers are risk neutral, then UiðxiÞ ¼ xi and the perfect equilibrium
solution of both parties is x�1, x

�
2. When it comes to the risk of breakdown in the

negotiation and the effect of discounting, the only Perfect equilibrium solution of
subgame meets the following conditions. When the seller always offer a price x�1, when
and only when x2 � x�2, seller A always receives x�2; When the buyer B always offer a
price x�2, when and only when x�1 � x1, the buyer always receives x�1. That is:

Uiðx� x�i Þ ¼ qdi þð1� qÞdiUiðx�i Þ ð1Þ

di ¼ eð�riDÞ, Among them ri [ 0 is the discount rate of participant i, it meets the
following conditions:

x�1 � xd1; x�2 � xd2 ; x� x�1 � xd1; x� x�2 � xd1

According to simultaneous Eq. (1), following results can be obtained:

x�1 ¼
1� d2ð1� qÞ½ �ðx� qd1Þ

1� ð1� qÞ2d1d2
ð2Þ

x�2 ¼
1� d1ð1� qÞ½ �ðx� qd2Þ

1� ð1� qÞ2d1d2
ð3Þ

x�1
x�2

¼ ð1� qÞd2 � 1
ð1� qÞd1 � 1

: ð4Þ

Theorem 1. x�1
x�2
is positively correlated to d2

d1
through the above results. And the greater

the discount factor o the ratio of the buyer and the seller is, the greater surplus value the
seller will achieve. Perfect equilibrium solution depends on the ratio of the discount
factors. The greater the discount rate (seller to buyer) is, the smaller the proportion of
utility will be. Also it infinitely closes to the point of long stalemate. When D ! 0, it is
assumed that the limit of q

D exists, set lim
D!0

q
D ¼ k, and k[ 0. When D is quite small,

di ¼ e�riD which can be approximately expressed as:

di ¼ 1� riD: ð5Þ

bi ¼
qdi

1� ð1� qÞdi ð6Þ

Take algebraic expression (5) into algebraic expression (6), then lim
D!0

bi ¼ kdi
ri þ k. It

means the stalemate point in the game of both sides is ðI1; I2Þ ¼ ð kd1
r1 þ k ;

kd2
r2 þ kÞ when the

game between the buyer and the seller remains deadlocked for a long time.
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Due to , to get the only Perfect equilibrium
solution of subgame is to solve the maximization problem of ðx1 � I1Þðx2 � I2Þ. That is:

Maxðx1 � I1Þðx2 � I2Þ ð7Þ

According to simultaneous Eq. (7), the only perfect equilibrium solution of
subgame will be work out

R1 ¼ I1 þ r2 þ k
2kþ r1 þ r2

ðx� I1 � I2Þ; ð8Þ

R2 ¼ I2 þ r2 þ k
2kþ r1 þ r2

ðx� I1 � I2Þ: ð9Þ

Theorem 2. I1 ¼ kd1
r1 þ k shows that if r1 increases, I1 strictly decreases but there is no

effect on I2. It will make the buyer fight for more utility through bargaining. It is
observed that discount factor has significant impact on the value of both sides. When
the discount rates of both sides is determined, once the seller benefits more than the
buyer and the buyer is reluctant to give up the deal, the buyer has the tendency to let the
negotiation reach an impasse.

Theorem 3. Due to k ¼ lim
D!0

q
D, as k increases, it is going to gets larger the probability

of break down in the negotiation, or the time interval of breakdown in the negotiation
decreases. If r1 ¼ r2 ¼ r; d1 ¼ d2 ¼ d, Both Conform to the principle of compromise,
and both the utilities are x

2. If r1 ¼ r2 ¼ r; d1 6¼ d2, then utility allocation of the perfect
equilibrium solution of subgame is x

2 þð 1
r=kþ 1Þ d1�d2

2

� �
;

When d1 [ d2, the utility of the seller A strictly decreases as r=k decreases. When
d1\d2, the utility of the seller A strictly increases as r=k increases. Therefore, the
seller A would prefer r=k smaller In the case of d1 [ d2. Because k ¼ lim

D!0

q
D, with r

unchanged, q will increase as k increases and D ! 0, which leads to a higher possi-
bility of breakdown in the negotiation. But for seller A, who wants a collapse of
negotiation in order to have the opportunity to bargain with the buyer with purchasing
desire or conclude a transaction with smaller compensation. When the discount rate is
the same for both sides, comparing the value obtained at breakdown point will have
great influence on the game result and value distribution of both sides. Both sides hope
that they can gain value no fewer than the other side through bargaining. Otherwise it
increases likelihood of breakdown in the negotiation. Negotiations between the two
sides will break down because the cost is consumed during period of the bargaining
without getting favorable expected returns.

All the analysis justifies an obvious view that both the buyer and seller set prices of
unsold homes based on the value they earned, and discount factor is an important factor
to be considered. The notable one is as follows: both the buyer and seller will not keep
going the bargaining forever though there is no time limitation. When value earned by

Two Bargain Game Models of the Second-Hand Housing Commence 77



one party is significantly higher than the other party, talks between the buyer and seller
will break down because the party who gets less value will stop bidding. The efficiency
of second - hand housing transaction is low in this state, and it does not have the nature
of operation in practice. But, the situation of bargaining indefinitely is set to study what
kind of factors will influence the final results of bargaining in second-hand housing
transaction when the process is not disturbed by time. All this provided the reliable
theory base for the following research.

4 Finite Period Bargaining Model

Based on the research results of the infinite period bargaining model, The main factors

affecting the complete equilibrium solution are the discount factor d1
d2

� �
of the seller and

the buyer and their attitude to risk. The buyer’s optimal strategy is to increase the
number of games and delay the transaction time.

In the reality of the second-hand housing market, no buyers and sellers can have an
infinite period of the game and waiting. After a certain number of bargaining, through
the maximization of the effectiveness of their own measure, they determine whether to
collaborate. So the bargaining patience and the number of times are limited. Based on
the reality, this paper will improve the original model, adding the relevant parameters,
to make it more in line with the reality. In this paper, it is assumed that the interval time
between the seller and the buyer is D, and the total game time is less than kDðk� 1Þ.
The seller of each proposed cost including time, experience, communication etc. is c0.
No proposed by the other party within the time required by the party under this
misconduct may be wrong with closing conditions for the transaction object, until the
next transaction object appears. The resulting loss C0 is, in this paper, the penalty cost.
In order to simplify the proof and without loss of generality, we assume that the cost of
punishment C0 in the last time did not offer immediate requirements, and in each stage
iDof the game in accordance with the possibility of sharing, namely the cost penalty
rejected in time for plan is j

k C
0 ð0\j� kÞ. The follows often happen.

In the second-hand housing transactions: because of the seller’s responsibilities
including emergency in cash, settling abroad, or marketing, they eager to trade as soon
as possible and the buyer think various aspects of the property are very satisfactory. If
the buyers agreed, price of the transaction may be the high. This is an unwilling result
for buyers; if not, the buyers may miss the favorite real estate, but continuous search
may not lead to a satisfactory result. In the case of high price transactions, the buyer
wants the seller to give some compensation in other ways, such as tax relief, free
parking, free transfer etc. In view of the above situation, we assume that when buying
in a high price, the cost of capital occupied is cB, which will be regarded as a com-
ponent of the buyer discount factor db.

With the advance of the game time, the cost of capital is jDc2 ð1� j� kÞ. To a
certain extent, the seller also has the cost of capital occupation, but because it is fast and
the seller in the price does not give a lot of concessions, so its cost is ignored.
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4.1 Game Process Description

When buyers and sellers have a clear intention to deal with the sale of real estate in
order to facilitate the final transaction, for the first time, the seller try to make appro-
priate compensation for the buyer including: high compensation scheme and low
compensation scheme. Assuming before the compensation, the utility share that the
seller could obtain in trading is q1. The original utility share that the buyer can obtain
is q2. We also assume that the total transaction bargaining formed the remaining share
of Q remained unchanged.

In the high compensation scheme, the scheme proposed the following contents:
after compensation, the buyer gets q02H (covered spaces of the house), while the seller
shall obtain the share of monetary value q01H ; setting the sale of real estate sale when the
unit price is p, the current real estate market unit price is p. After the compensation, the
price is p0.

Under a high compensation plan, seller A and buyer B will get the following
utilities.

If B agree, A: q01Hp
0 � q1p� c0; B: q01Hp

0 � q2pt;
If B disagrees, A: �c0 � q1 � 1

k C
0; B: �q2 � 1

k C
0 � Dc2;

Under a low compensation package, seller A and buyer B will get the following
utilities.

If B agrees, A: q01Lp
0 � q1p� c0; B: q02Lp

0 � q2pt;
If B disagrees, A: �c0 � q1 � 1

k C
0; B: �q2 � 1

k C
0 � Dc2;

Due to q02H [ q02L, the result of the game is displayed in Fig. 1.

Fig. 1. Dynamic game theory of finite period trading under complete information
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4.2 Equilibrium Solution of Game in the Second Round

(a) When q02Lp
0 � q2pt [ � q2 � 1

k C
0 � Dc2

At this point, the strategy of buyer B is (agree, agree). That is to say the most
valuable action is to agree in the second stage no matter the compensation given to
buyer B by seller A is high or low in the first stage. The optimal choice for seller A in
the first stage is to provide buyer B with low compensation, because the action of buyer
B in the second stage can be predicted by seller A in the first stage. Perfect equilibrium
solved by backward induction is {low compensation (disagree, disagree)}. That means
seller A provides buyer B with low compensation in the first stage and buyer B will
vote “for” in the second stage.

(b) When q02Lp
0 � q2pt\� q2 � 1

k C
0 � Dc2

The strategy of buyer B is (disagree, disagree). That is to say the most valuable
action is to disagree in the second stage no matter the compensation given to buyer B
by seller A is high or low in the first stage. The optimal choice for seller A in the first
stage is to provide buyer B with low compensation, because the action of buyer B in the
second stage can be predicted by seller A in the first stage. Perfect equilibrium solved
by backward induction is {low compensation, (disagree, disagree)}, and the game will
move to the next turn.

(c) When q02Hp
0 � q2pt [ � q2 � 1

k C
0 � Dc2 [ q02Lp

0 � q2pt

In this case, the decision made by buyer B will be (agree, disagree) in the second
stage, then there will be two Nash equilibrium outcomes (high compensation, agree)
and (low compensation, disagree). The cost for seller A to the next round is c0 þ 2

k q1C
0,

because of the difference between high compensation and low compensation provided
for buyer B by seller A. Compensation for the difference is q01L � q01H

� �
p0 � pð Þ.

When q01L � q01H
� �

p0 � pð Þ[ c0 þ 2
k q1C

0, seller A will provide high compensation
plan for buyer B.

When q01L � q01H
� �

p0 � pð Þ\c0 þ 2
k q1C

0, seller A will provide low compensation
plan for buyer B.

4.3 Repeated Game Model Establishment

The possible Nash equilibriums in the first game are (Low compensation, agree) and
(Low compensation, disagree). In the case of being refuse, game will be repeated for
many times. Assuming that the same low compensation plan is put forward by seller A
every time, buyer B will classifies the plan and votes on it, and the process of the game
is displayed in Fig. 2.

If buyer B agrees with the bidding project offered by seller A in the second round of
the game, the utility functions for both parties are these:

Seller A: U1 ¼ q01Lp
0 � q1p� 2c0;

Buyer B: U2 ¼ q02Lp
0 � q2pt � Dc2.
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If buyer B agrees with the bidding project offered by seller A, the utility functions
for both parties are these:

Seller A: U1 ¼ �2c0; Buyer B: U2 ¼ �2Dc2.
If buyer B and seller A agree with the bidding project offered by each other in the

jð1� j� kÞ round of the game, the utility functions for both parties are these:
Seller A: U1 ¼ q01Lp

0 � q1p� ic0;
Buyer B: U2 ¼ q02Lp

0 � q2pt � iDc2.
Assuming that when jð1� j� kÞ the effect of the buyer is zero, that is, U2 ¼

q02Lp
0 � q2pt � iDc2 ¼ 0 then j ¼ q02Lp

0�q2pt
Dc2

, it shows that as the seller A of rational man
will exercise the freedom before round game, after the turn can make its utility is
negative, the exercise of the refusal it do more harm than good. At the same time, when
the cost of the buyer is larger, the less number of the participation.

Assuming that the buyer B for utility is not zero in the round jð1� j� kÞ, that is,
U2 ¼ q02Lp

0 � q2pt � iDc2 6¼ 0, without the interference of external factors, the j round
of j of the game of condition is not the optimal choice of the buyer, the optimal action is
his vote to the next, i.e. the j� 1 round and the buyer B of the optimal selection is a
common knowledge of the buyer and the seller. The subgame perfect Nash equilibrium
solution of game process, therefore, is the first round of {low compensation (agree,
agree)}.

The analyses above show that the value earned by the seller A is associated with k.
When k ! 1, the seller A will gain all the remaining value in the negotiation. The
conclusion is the same as that of timelessly repeated game. There is often such a case
where the seller has a high quality housing (such as school district housing) with scarce
resources or supporting facilities in the second-hand housing transaction, and the
number of buyers who take a fancy to the housing and come to bargain is quite large.
Under the circumstance, the seller plays a dominant role in the negotiation and the
seller will insist on continuous negotiation until gaining its’ desired price. The con-
clusion of this study proves this kind of realistic situation.

Besides, If the data of buyer B can’t guaranteed to meet the conditions q0bLp
0 �

qbpt � DcB � q0bMp
0 � qbpt � ðk � 1ÞDcB in the k � 1 round, voting for agree will be

the optimal strategy for buyer B in the first round. Then the subgame Nash Equilibrium
is {low compensation, (agree, disagree)}. If seller A predicts the buyer B’s decision,
there is no need for seller A to improve the compensation plan in the next round of
game. Under the circumstance, the optimal strategy of both sides is as follows: seller A
put forward the low compensation in the first round and buyer B agreed to the plan

Fig. 2. The finite period dynamic game under the low compensation
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immediately. Generally, the buyer only needs to consider the price in the second-hand
housing transaction, on the other words the aim of the buyer is to gain expected price
set by himself.

However, things are quite different for the buyer. It is usually a group decision
making of a family because buying and selling of existing properties is a major
decision for a family. Many factors should be taken into account comprehensively. And
housing has such natures such as complexity, removability which makes it extremely
easy to have a weak negotiating position for the buyer. Therefore, the buyer can not
necessarily obtain an ideal trading scheme after several rounds of bargaining. The
conclusion of this study also proves this kind of realistic situation in second-hand
housing transaction. And plenty of situations where both sides clinch a deal using the
initial plan in the second-hand housing transaction are numerically explained after a
period of bargaining.

4.4 The Discussion of the Game Process in the Time of kD

At the point, utility functions of the buyer and the seller:
The seller: U1 ¼ q01Lp

0 � q1p� kc0 � q1C0:
The buyer: U2 ¼ q02Lp

0 � q2pt � kDc2 � q2C0

Because of consideration of C0, the result of U1 ¼ q01Lp
0 � q1p� kc0 � q1C0 may

be zero.

(a) Assuming that U1 ¼ q01Lp
0 � q1p� kc0 � q1C0 ¼ 0, then k0 ¼ q1pþ q1C0�q01Lp

0

c0
, to

ensure that value gained by seller A is positive, then qapþðk�1Þc0
p0 ;

q0aLp
0�ðk�2ÞDcB

p0

h i
,

the utility will guarantee, q0aLp
0�ðk�2ÞDcB

p0 � qapþðk�1Þc0
p0 the number of the game

cannot be more than, any rational clinch a deal with the buyer the seller must
ensure that at the moment. In order to avoid the point their utility to zero, then the
seller will improve when the quotation scheme (compromise), in this scenario can
be allocated between the seller and the buyer utility for the scope of generally has,
at the moment, clinch a deal the buyer and the seller, at this time for their utility:
UðAÞ ¼ q0aMp

0 � qap� ðk � 1Þc0 UðBÞ ¼ q0bMp
0 � qbpt � ðk � 1ÞDcB

(b) Assuming U1 ¼ q01Lp
0 � q1p� kc0 � q1C0 � 0, then q01M � q1pþðk�1Þc0

p0 , and,

q02Lp
0 � q2pt � Dc2 � q02Mp

0 � q2pt � ðk � 1ÞDc2, q01M þ q02M ¼ Q, q01L þ q02L ¼ Q,

then q0aM � q0aLp
0�ðk�2ÞDcB

p0 . Accordingly, scope of q01M proposed in the compromise by

the seller is q1pþðk�1Þc0
p0 ;

q0aLp
0�ðk�2ÞDc2

p0

h i
, which secretly means

q01Lp
0�ðk�2ÞDc2

p0 � q1pþðk�1Þc0
p0 , it was analyzed to obtain this:

q01Lp
0 � q1p�ðk � 2ÞDc2 þðk � 1Þc0 ¼ ðc0 þDc2Þk � 2Dc2 � c0: ð10Þ

Theorem 4. The seller of the revenues from the bargaining is about function, at the
time, the seller have all remaining of negotiations, the results and the results of the
repeated game indefinitely.
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Theorem 5. For the buyer, if can’t guarantee a q0bLp
0 � qbpt � DcB � q0bMp

0 � qbpt �
ðk � 1ÞDcB t the moment, then he’s optimal strategy is in the first round vote agree, at
this point the sub-game Nash equilibrium is {low compensation (agree, agree)} If the
seller knows the choice of the buyer, he is impossible to have the possible improve-
ments. Therefore, if buyers and sellers are rational, the seller should put forward the
minimum compensation plan, and the buyer agrees with the plan in the first round.

Theorem 6. About qapþðk�1Þc0
p0 ;

q0aLp
0�ðk�2ÞDcB

p0

h i
for the seller, the lower limit value and

function, with the increase of, the seller’s concessions range is smaller, the require-
ments in the greater the share of compromise; With the relevant instructions clinch a
deal finally the price is higher, seller A can concessions space is, the greater the total
utility in bargaining surplus for the smaller. The bigger space for seller A to concede
the less fight for total remaining utility caused by bargaining will have. The analyses
above show that the seller in order to save the effort and time cost,will settle for second
best to choose compromise in order to complete the transaction as soon as possible
during the second-hand housing actual transaction so that the seller can save the effort
and time cost. With the increase of the times of bargaining, the seller will not make
more concessions unless the price of for-sale houses is quite high. Therefore, the
situation where the seller discussed in Sect. 4.3 is in a strong position in the negotiation
is part of the phenomenon of trading during second-hand housing transaction.

5 A Real Example of the Bargaining Game Model

In some part of our country second-hand house market has two types of players which
include seller A and buyer B. Seller A and buyer B determine the final sale price of
unsold homes through bargaining. Both sides are risk-neutral, whose utility function is
based on their common knowledge without thinking the influence of third parties such
as an intermediary. Table 1 shows the specific parameters related to game of bargaining
during second-hand housing transactions in this paper. The game models of bargaining
during second-hand housing transactions are built respectively based on indefinite
period and finite period. Then indefinite sub game perfect equilibrium of both sides
could be figured out using Eq. (1)–(9). Based on this, finite game equilibrium of both
sides could be figured out in the second stage by putting the brakes on the time of
game. Repeated game models are developed and the game process of transaction at a
specific point is discussed as listed in Tables 2 and 3.

Table 1. List of basic parameters (Unit: ten thousand yuan)

�xi x0i q qi ri p pt p0 c0 C0

Seller 100 135 0.35 135 0.35 1.15 1.25 1.11 0.05 0.1
Buyer 120 115 0.65 120 0.17
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The result shows that the game between sellers and buyers depends on the ratio of
each one’s discount factor. The time and commitment between sellers and buyers
increase the sellers’ cost, hence the final price can only be implemented within a certain
range, which is related with the proposal cost of sellers, the number of games, and the
punishment cost in each round.

6 Concluding Remarks

In this article a model is developed to discuss problem of bargaining game about
second-hand house within indefinite duration or a time limit. The premise of the
research in this paper is both the seller and buyer as participants who are risk neutral.
And utility functions of both parties are based on their common knowledge without
thinking the influence of a third party, such as brokers or other counterparties. The
model reveals that the result of bargaining game is related to discount factors of both
parties. The difference between utility functions of both parties will leave the division
of residual made by both parties in an inconsistent state when there is a risk of
breakdown in the negotiation. If the seller with strong communication skills negotiates
in the initial stage, the smaller the relative discount factor is in the meanwhile, the less
risk aversion the buyer wants. Then the seller gains more trade surplus.

On the other hand, if game of the buyer and seller goes on indefinitely and discount
factor of the buyer is bigger than seller,that the negotiation is delayed indefinitely or
breaks down is the optimal strategy for seller. In this way, the seller can gain all trade
surplus values. The trading platform which the buyer and seller trade is reluctant to see
the result of the game, because real-estate brokerage firms can’t finish the business any
more. If it happens, firms couldn’t cover their costs for payment, even worse, the
previous efforts will change into a sunk cost. There for some restricted conditions to
game process must be made in order to change the result of the game. There is no doubt
that these external factors have impacts on the whole results of the game.

Table 2. Game of bargaining during second-hand housing transactions analysis (Indefinite
period and finite period) (Unit: ten thousand yuan)

Indefinite period Finite period
PES PES Payoffs The first round The second

round
The jth round j¼4

Seller 128 70.41 [−1.61, 2.84] −1.60 −0.10 −1.70
Buyer 40.21 72.50 [−0.83, 18.48] −0.93 −0.20 −1.63

Table 3. Value gained by both sides during second-hand housing transactions at the point of kD
(Unit: ten thousand yuan)

The time of kD The penalty cost C0

k¼3 U1 6¼ 0 U1 � 0
Seller −1.78 −1.18 [−0.14, 1.49]
Buyer −1.25 3.75
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Therefore, some restrictions for the game process needs to be set in order to change
the outcome of the game, and this will affect and change the final game result. In this
paper, the vision of the past research in the field is to apply into two categories main
trading body of second-hand house market: the buyer and seller. The paper detailed
depicts the real trading game process of two kinds of market players. The research of
paper is not only provides practical reference value for third-sector organizations such
as second-hand housing transaction brokerage agencies and government regulators, but
also offer certain reference and implications for research on the second-hand house
market players.
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Abstract. In this paper, we first prove the existence results of min-
imax inequality under some relaxed assumptions by virtue of KKMF
principle or Fan-Browder fixed point theorem and propose the pseu-
solution of minimax inequality. Mild continuity named pseudocontinuity
and mild convexity are introduced for the existence results and generalize
the present results in the literature. Some other cases of minimax inequal-
ity with pseudocontinuity are given in various ways. As applications, we
introduce some pseu-Nash equilibrium for n-person noncooperative game
and obtain some relaxed existence theorems.

Keywords: Minimax inequality · KKMF lemma · Pseudocontinuity ·
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1 Introduction

Ky Fan [4] introduced an important inequality named the minimax inequality
or Ky Fan inequality which plays a very important role in many fields such as
variational inequalities, game theory, mathematical economics, control theory
and fixed point theory, etc. The solutions of minimax inequality are also called
Ky Fan’s points first by Tan, Yu and Yuan in 1995, to see [9]. Because of its wide
applications, the existence and stability of Ky Fan’s points have been generalized
in various ways. A great deal of fruitful results have been achieved on how to
improve and apply the important inequality such as [7–9,11,12] and references
therein. Peng [8] proved the existence result of weak Ky Fan’s point for the
functions with no continuity on a non-compact set and Park [7] showed various
forms of the minimax inequality by virtue of the KKM principle for a convex
space. In [11], Yu obtained the existence of Ky Fan’s points for reflexive Banach
spaces and its applications to Nash equilibrium points of noncooperative games.
From the point of view of the stability, Yu and Xiang [12] proposed the essential
components of Ky Fan’s points and proved that, there exist at least one essential
components of the set of Nash equilibrium points for n-persons noncooperative
game.
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 86–97, 2017.
https://doi.org/10.1007/978-981-10-6753-2_7
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In this paper, we introduce the pseudocontinuity and diagonal-quasi-
convexity for the existence of Ky Fan’s points, and propose the pseu-solutions
of minimax inequality. Also we show the new other cases of minimax inequality
and generalized minimax inequality to establish some pseu-solution existence
results. As applications, we introduce some pseu-Nash equilibrium for n-person
noncooperative game and obtain some relaxed existence theorems.

2 Preliminaries

Now let us begin with some definitions and lemmas which we will use.

Definition 2.1 [5]. Let Y be a Hausdorff topological space and let f be a func-
tion defined on Y . The function f is said to be lower semicontinuous at y0 ∈ Y
if and only if

f(y0) ≤ lim
y′→y0

inff(y′);

The function f is said to be upper semicontinuous at y0 ∈ Y if and only if

lim
y′→y0

supf(y′) ≤ f(y0).

Definition 2.2 [6]. Let Y be a Hausdorff topological space and f : Y → R be a
function.

(i) f is said to be upper pseudocontinuous at y0 ∈ Y if for all y ∈ Y such that
f(y0) < f(y), we have

lim sup
y→y0

f(y) < f(y);

f is said to be upper pseudocontinuous on Y if it is upper pseudocontinuous
at each y of Y ;

(ii) f is said to be lower pseudocontinuous at y0 ∈ Y if for all y ∈ Y such that
f(y) < f(y0), we have

f(y) < lim inf
y→y0

f(y);

f is said to be lower pseudocontinuous on Y if it is lower pseudocontinuous
at each y of Y ;

(iii) f is said to be pseudocontinuous at y ∈ Y if f is both upper pseudocontin-
uous and lower pseudocontinuous at y; f is said to be pseudocontinuous on
Y if f is pseudocontinuous at each y of Y .

Remark 2.1. If f is upper pseudocontinuous on Y , then −f is lower pseudo-
continuous on Y .

Remark 2.2. Each upper (resp. lower) semicontinuous function is also upper
(resp. lower) pseudocontinuous. But the converse is not true. For example: Let
Y = [0, 2], fi : Y → R, i = 1, 2 be defined as follows:

f1(y) =
{

1 − y, 0 ≤ y < 1,
−1, 1 ≤ y ≤ 2.

; f2(y) =
{

y, 0 ≤ y < 1,
2, 1 ≤ y ≤ 2.
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We can easily check that f1 is upper pseudocontinuous but not upper semicon-
tinuous at y = 1 and that f2 is not lower semicontinuous but lower pseudocon-
tinuous at y = 1.

Lemma 2.1 [6]. Let Y be a Hausdorff topological space and f : Y → R be lower
pseudocontinuous, then ∀b ∈ f(Y ), the set {y ∈ Y : f(y) ≤ b} is closed.

Definition 2.3 [5]. Let X be a nonempty convex subset of Hausdorff topological
space E, f : X → R be a function. ∀x1, x2 ∈ X,∀λ ∈ (0, 1),

(i) f is said to be convex function on X if there holds

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2);

(ii) f is said to be concave function on X if −f is convex function on X. That
means

f(λx1 + (1 − λ)x2) ≥ λf(x1) + (1 − λ)f(x2);

(iii) f is said to be quasi-convex function on X if there holds

f(λx1 + (1 − λ)x2) ≤ max{f(x1), f(x2)};

(iv) f is said to be quasi-concave function on X if −f is quasi-convex function
on X. That means

f(λx1 + (1 − λ)x2) ≥ min{f(x1), f(x2)}.

Lemma 2.2 [5]. Let X be a nonempty convex subset of Hausdorff topological
space E and f : X → R be a function, the following hold

(i) f is a quasi-concave function on X if and only if ∀r ∈ R, {x ∈ X : f(x) > r}
is convex;

(ii) f is a quasi-convex function on X if and only if ∀r ∈ R, {x ∈ X : f(x) < r}
is convex.

Definition 2.4 [13]. Let X be a nonempty convex subset of a Hausdorff topo-
logical space E and ϕ : X × X → R be a function.

(i) For any x ∈ X, y �→ ϕ(x, y) is said to be diagonal-quasi-concave on X if for
any finite subset {y1, · · · , yn} ⊂ X and any y0 ∈ Co{y1, · · · , yn}, we have

ϕ(y0, y0) ≥ min
1≤i≤n

{ϕ(y0, yi)}.

(ii) For any x ∈ X, y �→ ϕ(x, y) is said to be diagonal-quasi-convex on X if
−ϕ(x, y) is diagonal-quasi-concave in the second variable.

Remark 2.3. (i) If y �→ ϕ(x, y) is quasi-concave on X for every given x, then
y �→ ϕ(x, y) is diagonally quasi-concave on X. But the converse does not hold.
See ([13]) for a counterexample.

(ii) Since the sum of two quasi-concave functions does not remain quasi-
concave in general speaking, the same holds for the property of the diagonally
quasi-concave functions.

The following well-known KKMF Lemma is an important generalization of
KKM theorem to the infinite dimensional space by Ky Fan.
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Lemma 2.3 (KKMF Lemma) [3]. Let X be a nonempty convex subset of
Hausdorff topological vector space E, let F : X ⇒ X be a set-valued mapping.
For each x ∈ X,F (x) is closed, and there exists some x0 ∈ X such that F (x0) is
compact. If Co{x1, x2, · · · , xn} ⊂ ⋃n

i=1 F (xi), where Co{x1, x2, · · · , xn} is the
convex hull of {x1, x2, · · · , xn}, then

⋂
x∈X F (x) 	= ∅.

The following fixed theorem is Fan-Browder fixed point theorem.

Lemma 2.4 (Fan-Browder fixed point theorem) [2]. Let X be a nonempty
convex and compact subset of a Hausdorff topological vector space E. Suppose a
set-valued mapping F : X ⇒ X has the following properties:

(i) for each x ∈ X,F (x) is nonempty and convex;
(ii) for each y ∈ X, the inverse valued F−1(y) = {x ∈ X : y ∈ F (x)} is open in X.

Then F has at least one fixed point.

3 Some Relaxed Solutions of Minimax Inequality

In this section, we first consider the existence of Ky Fan’s points for minimax
inequality with pseudocontinuous functions on a compact set.

Theorem 3.1. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function φ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ φ(x, y) is lower pseudocontinuous on X;
(ii) for each x ∈ X, y �→ φ(x, y) is diagonal-quasi-concave on X;
(iii) for each x ∈ X,φ(x, x) = 0.

Then there exists x∗ ∈ X such that φ(x∗, y) ≤ 0 for any y ∈ X.

Proof. ∀y ∈ X, We define the set-value function F : X ⇒ X as follows

F (y) = {x ∈ X : φ(x, y) ≤ 0}.

By (iii), we obtain y ∈ F (y), so F (y) 	= ∅ and φ(y, y) = 0 ∈ φ(X, y). According to
Lemma 2.1, F (y) must be a closed set. Since X is compact set, F (y) is compact.

Next we will prove that F is a KKM mapping, i.e., for any finite subset
{y1, y2, · · · , yn} of X, we have

Co{y1, y2, · · · , yn} ⊂
n⋃

i=1

F (yi).

Assume by contradiction that there exists y0 ∈ Co{y1, y2, · · · , yn} ⊂ X and

y0 =
n∑

i=1

αiyi with αi ≥ 0, i = 1, 2, · · · , n,
n∑

i=1

αi = 1 but y0 /∈ ⋃n
i=1 F (yi). Then

for any i = 1, · · · , n, y0 /∈ F (yi), that is φ(y0, yi) > 0. By (ii), we obtain
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φ(y0, y0) ≥ min
1≤i≤n

φ(y0, yi) > 0,

which is a contradiction with the condition (iii). Then F must be a KKM
mapping.

Applying now KKMF Lemma, we have ∩y∈XF (y) 	= ∅. Take x∗ ∈ ∩y∈XF (y),
then x∗ ∈ F (y) for all y ∈ X. Thus we have φ(x∗, y) ≤ 0 for any y ∈ X. �

Remark 3.1. We can also derive Theorem 3.1 by Fan-Browder fixed point the-
orem. We argue by contradiction. For ∀y ∈ X,F (y) = {x ∈ X : φ(x, y) > 0} 	= ∅,
by (ii) F (y) is convex. For ∀x ∈ X,F−1(x) = {y ∈ X : x ∈ F (y)} = {y ∈ X :
φ(x, y) > 0}, by Lemma 2.1, F−1(x) is open in X. Applying Fan-Browder fixed
point Theorem, there exists y∗ ∈ X such that y∗ ∈ F (y∗), i.e., φ(y∗, y∗) > 0.
That is a contradiction with the condition (iii).

Remark 3.2. Note that the solution set S = {x ∈ X : φ(x, y) ≤ 0,∀y ∈ X}.
It is easy to see that S is compact. In fact, S = ∩y∈X{x ∈ X : φ(x, y) ≤ 0} =
∩y∈XF (y). Since F (y) is compact for each y ∈ X, S is also compact.

Remark 3.3. We say x∗ is a pseu-solution of the function φ if x∗ is a solution
of minimax inequality and φ satisfies the condition (i) of Theorem 3.1

From Remarks 2.2 and 2.3 (i), we can obtain the following the corollaries.

Corollary 3.1. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function φ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ φ(x, y) is lower semicontinuous on X;
(ii) for each x ∈ X, y �→ φ(x, y) is diagonal-quasi-concave on X;
(iii) for each x ∈ X,φ(x, x) = 0.

Then there exists x∗ ∈ X such that φ(x∗, y) ≤ 0 for any y ∈ X.

Corollary 3.2. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function φ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ φ(x, y) is lower pseudocontinuous on X;
(ii) for each x ∈ X, y �→ φ(x, y) is quasi-concave on X;
(iii) for each x ∈ X,φ(x, x) = 0.

Then there exists at least a pseu-solution x∗, that is φ(x∗, y) ≤ 0 for any y ∈ X.

Corollary 3.3. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function φ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ φ(x, y) is lower semicontinuous on X;
(ii) for each x ∈ X, y �→ φ(x, y) is quasi-concave on X;
(iii) for each x ∈ X,φ(x, x) ≤ 0.
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Then there exists x∗ ∈ X such that φ(x∗, y) ≤ 0 for any y ∈ X.
Let X be a nonempty convex and compact subset of Hausdorff topological

space E. The function ψ : X × X → R, if there exists x∗ ∈ X such that
ψ(x∗, y) ≥ 0 for all y ∈ X, x∗ is called the solution of equilibrium problem
introduced in [1].

From the above, we get the sufficient conditions for the solution of equilibrium
problem which is parallel to Theorem 3.1.

Theorem 3.2. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function ψ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ ψ(x, y) is upper pseudocontinuous;
(ii) for each x ∈ X, y �→ ψ(x, y) is diagonal-quasi-convex;
(iii) for each x ∈ X,ψ(x, x) = 0.

Then there exists x∗ ∈ X such that ψ(x∗, y) ≥ 0 for any y ∈ X.

Proof. ∀x ∈ X,∀y ∈ X, Set φ(x, y) = −ψ(x, y). It is easy to check that

(i) for each y ∈ X,x �→ φ(x, y) is lower pseudocontinuous on X;
(ii) for each x ∈ X, y �→ φ(x, y) is diagonal-quasi-concave on X;
(iii) for each x ∈ X,φ(x, x) = 0.

By Theorem 3.1, there exist x∗ ∈ X such that φ(x∗, y) ≤ 0 for any y ∈ X. That
implies ψ(x∗, y) ≥ 0 for any y ∈ X. �

Similarly, we have the following Corollaries.

Corollary 3.4. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function ψ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ ψ(x, y) is upper semicontinuous on X;
(ii) for each x ∈ X, y �→ ψ(x, y) is diagonal-quasi-convex on X;
(iii) for each x ∈ X,ψ(x, x) = 0.

Then there exists x∗ ∈ X such that ψ(x∗, y) ≤ 0 for any y ∈ X.

Corollary 3.5. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function ψ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ ψ(x, y) is upper pseudocontinuous on X;
(ii) for each x ∈ X, y �→ ψ(x, y) is quasi-convex on X;
(iii) for each x ∈ X,ψ(x, x) = 0.

Then there exists x∗ ∈ X such that ψ(x∗, y) ≤ 0 for any y ∈ X.

Corollary 3.6. Let X be a nonempty convex and compact subset of Hausdorff
topological space E. The function ψ : X × X → R is satisfying:

(i) for each y ∈ X,x �→ ψ(x, y) is upper semicontinuous on X;
(ii) for each x ∈ X, y �→ ψ(x, y) is quasi-convex on X;
(iii) for each x ∈ X,ψ(x, x) ≤ 0.

Then there exists x∗ ∈ X such that ψ(x∗, y) ≤ 0 for any y ∈ X.
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4 The Other Cases with Pseudocontinuity

In the above section, we discussed the existence results of Ky Fan’s points of min-
imax inequality in the case of nonempty convex compact set. In this section, we
will transfer our interests to the existence results of Ky Fan’s points of minimax
inequality with pseudocontinuity in a noncompact or nonconvex set.

Theorem 4.1. Let X =
∞⋃

n=1
Cn, where Cn is a sequence nonempty convex

compact subset of Hausdorff linear topological space E, n = 1, 2, · · · , and
C1 ⊂ C2 ⊂ · · · . The function f : X × X → R satisfies the following condi-
tions:

(i) for each y ∈ X,x �→ f(x, y) is lower pseudocontinuous on X;
(ii) for each x ∈ X, y �→ f(x, y) is diagonal-quasi-concave on X;
(iii) for each x ∈ X, f(x, x) = 0;
(iv) for any sequence {xn} ⊂ X with xn ∈ Cn, n = 1, 2, 3, · · · , and for any

n,∃xm /∈ Cn, there exists a positive integer n0 and a point yn0 ∈ Cn0 such
that f(xn0 , y) > 0.

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for any y ∈ X.

Proof. ∀n = 1, 2, · · · , Since Cn is nonempty convex and compact in X, by
Theorem 3.1, there exists xn ∈ Cn such that f(xn, y) ≤ 0 for any y ∈ Cn.

For the sequence {xn}∞
n=1 in X, we will show that there exists a positive inte-

ger N1 such that {xn}∞
n=1 ⊂ CN1 . Otherwise, for each n, there exists xm /∈ Cn.

By (iv) there exists a positive integer n0 and yn0 ∈ Cn0 such that f(xn0 , yn0) > 0,
which contradicts that f(xn0 , y) ≤ 0 for all y ∈ Cn0 .

For any y ∈ X, since X =
∞⋃

n=1
Cn, there exists a positive integer N2 such

that y ∈ CN2 . When nk ≥ N2, there holds f(xnk
, y) ≤ 0. By (i), Lemma 2.1 and

{xnk
} → x∗, It follows f(x∗, y) ≤ 0. The proof is thus complete. �

Remark 4.1. Theorem 4.1 shows existence of a solution of minimax inequality

with pseudocontinuity while the set X is not compact but X =
∞⋃

n=1
Cn with

compact Cn for ∀n = 1, 2, · · · .

Theorem 4.2. Let X be a nonempty convex closed subset of Hausdorff linear
topological space E. Suppose the function f : X × X → R satisfies the following
conditions:

(i) for each y ∈ X,x �→ f(x, y) is lower pseudocontinuous on X;

(ii) for each x ∈ X, y �→ f(x, y) is diagonal-quasi-concave on X;

(iii) for each x ∈ X, f(x, x) = 0;
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(iv) there exists a nonempty compact set K ⊂ X and y0 ∈ X such that f(x, y0) >
0 for any x ∈ X \ K.

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for any y ∈ X.

Proof. For any y ∈ X, Set F (y) = {x ∈ X : f(x, y) ≤ 0}, by (i) (iii) and Lemma
2.1, F (y) is closed. For any finite subset {y1, · · · , yn} of X, we will prove that

Co{y1, · · · , yn} ⊂
n⋃

i=1

F (yi).

Assume by contradiction that there exists y0 ∈ Co{y1, y2, · · · , yn} and y0 =
n∑

i=1

αiyi with αi ≥ 0, i = 1, · · · , n,
n∑

i=1

αi = 1 but y0 /∈ ⋃n
i=1 F (yi). Then for

i = 1, · · · , n, y0 /∈ F (yi), i.e., f(y0, yi) > 0. By (ii), we obtain

f(y0, y0) ≥ min
1≤i≤n

f(y0, yi) > 0,

which is a contradiction with (iii).
By (iv), we know F (y0) ∩ (X \ K) = ∅. Thus F (y0) ⊂ K and F (y0) is

compact since K is compact. By KKMF Lemma, we obtain ∩y∈XF (y) 	= ∅. We
take x∗ ∈ ∩y∈XF (y), then

f(x∗, y) ≤ 0 for any y ∈ X.

The proof is thus finished. �

Theorem 4.3. Let X be a nonempty convex compact subset of Hausdorff linear
topological space E. The two function f, g : X × X → R satisfy the following
conditions:

(i) for each y ∈ X,∀x ∈ X, f(x, y) ≤ g(x, y);
(ii) for each y ∈ X,x �→ f(x, y) is lower pseudocontinuous on X;
(iii) for each x ∈ X, y �→ g(x, y) is quasi-concave on X;
(iv) for each x ∈ X, f(x, x) = g(x, x) = 0;

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for any y ∈ X.

Proof. ∀y ∈ X, Set F (y) = {x ∈ X : f(x, y) ≤ 0}, by (ii) (iv) and Lemma 2.1,
F (y) is closed and compact.

∀{y1, · · · , yn} ⊂ X, we will prove that

Co{y1, · · · , yn} ⊂
n⋃

i=1

F (yi).

We argue by contradiction that there exists y0 ∈ Co{y1, y2, · · · , yn} ⊂ X but

y0 /∈ ⋃n
i=1 F (yi). y0 =

n∑
i=1

λiyi, with λi ≥ 0, i = 1, · · · , n,
n∑

i=1

λi = 1. Then for
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i = 1, · · · , n, y0 /∈ F (yi), f(y0, yi) > 0. Since g(
n∑

i=1

λiyi, yi) ≥ f(
n∑

i=1

λiyi, yi) > 0

and the condition of (iii), it follows

g(y0, y0) ≥ min
1≤i≤n

g(y0, yi) > 0,

which is a contradiction with (iv).
Thus, by KKMF Lemma, we know

⋂
y∈X

F (y) 	= ∅. We take x∗ ∈ ⋂
y∈X

F (y).

That implies
f(x∗, y) ≤ 0 for any y ∈ X.

The proof is finished. �

Remark 4.2. Theorems 4.1, 4.2 and 4.3 generalize Theorem 3.3.2, Theorem
3.3.3, Theorem 3.3.5 of [10], where f(x, y) is lower semicontinuous in the first
variable and f(y, y) ≤ 0 for any y ∈ X.

Theorem 4.4. Let X be a nonempty convex compact subset of Hausdorff linear
topological space E. Suppose the function f : X × X �→ R satisfies the following
conditions:

(i) for each y ∈ X,x �→ f(x, y) is lower pseudocontinuous on X;

(ii) for any {y1, · · · , yn} ⊂ X,Co{y1, · · · , yn} ⊂
n⋃

i=1

{x ∈ X : f(x, y) ≤ 0},;

(iii) for each x ∈ X, f(x, x) = 0.

Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for any y ∈ X.

Proof. For any y ∈ X, set F (y) = {x ∈ X : f(x, y) ≤ 0}, by (i) and Lemma
2.1, F (y) is closed and compact. By (ii) (iii), ∀{y1, · · · , yn} ⊂ X, there holds

Co{y1, · · · , yn} ⊂
n⋃

i=1

F (yi).

Thus, by KKMF Lemma, we know
⋂

y∈X

F (y) 	= ∅. We take x∗ ∈ ⋂
y∈X

F (y).

That implies
f(x∗, y) ≤ 0 for any y ∈ X.

The proof is completed. �

Theorem 4.5. Let X be a nonempty unbounded closed convex subset of a reflex-
ive Banach space B. If f : X × X → R satisfies the following conditions:

(i) for each y ∈ X,x �→ f(x, y) is pseudocontinuous on X;
(ii) for each x ∈ X, y �→ f(x, y) is diagonal-quasi-concave on X;
(iii) for each x ∈ X, f(x, x) = 0;
(iv) for any sequence {xm}∞

m=1 with ‖xm‖ → ∞, there exists a positive integer
m0 and a point ym0 ∈ X such that ‖ym0‖ ≤ ‖xm0‖ and φ(xm0 , ym0) > 0.
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Then there exists x∗ ∈ X such that f(x∗, y) ≤ 0 for any y ∈ X.

Proof. For each m = 1, 2, · · · , set Cm = {x ∈ X : ‖x‖ ≤ m}. We may assume
that Cm 	= ∅. Cm is a bounded closed convex subset in X since X is closed convex
subset of a reflexive Banach space B. By Theorem 3.1, there exists xm ∈ Cm

such that f(xm, y) ≤ 0 for all y ∈ Cm.
If the sequence {xm}∞

m=1 is unbounded in X, we can suppose that ‖xm‖ → ∞
(otherwise subsequence). By (iv), there exists a positive integer m0 and ym0 ∈ X
such that ‖ym0‖ ≤ ‖xm0 and f(xm0 , ym0) > 0 which is a contradiction with
‖y‖ ≤ ‖xm0‖ ≤ m0, y ∈ Cm0 , f(xm0 , y) ≤ 0. Thus {xm}∞

m=1 is bounded in X
and there is a positive integer M such that ‖xm‖ ≤ M . Since CM is bounded
and we may assume xm → x∗ ∈ CM ⊂ X.

For any y ∈ X, There is a positive integer K such that y ∈ Ck and Ck ⊂
CM , y ∈ CM , f(xm, y) ≤ 0 when m ≥ k. Set F (y) = {x ∈ X : f(x, y) ≤ 0}, by
(i) and Lemma 2.1, then F (y) is closed. Since xm → x∗, then x∗ ∈ F (y), which
implies f(x∗, y) ≤ 0. The proof is thus completed. �

5 Some Relaxed Nash Equilibrium

As we all know, minimax inequality plays a very important role in game theory.
According to theorems above, we can obtain some existence results of Nash
equilibrium for n-persons non-cooperative game.

Let N = {1, 2, · · · , n} be the set of players. For each i ∈ N, let Xi be the
strategy set for player i, X =

∏n
i=1 Xi, fi : X → R be a payoff function of

player i. Every x ∈ X is denoted by x = (xi, xî), where xi ∈ Xi and xî ∈ ∏
j 	=i

Xj .

This normal form game is denoted by Γ = {Xi, fi}i∈N . A strategy profile x∗ =
(x∗

1, · · · , x∗
n) ∈ X is called a Nash equilibrium of Γ if for each i ∈ N,

fi(yi, x∗
î
) < fi(x∗

i , x
∗
î
),∀yi ∈ Xi,

and x∗ is a pseu-Nash equilibrium of Γ if x∗ is a pseu-solution to the minimax
inequality corresponding to the function φΓ, where

φΓ(x, y) =
n∑

i=1

(fi(yi, xî) − fi(xi, xî)), ∀(x, y) ∈ X × X.

Theorem 5.1. Let Γ = {Xi, fi}i∈N be a game, for any i = 1, · · · , n, let Xi

be a nonempty convex and compact subset of Hausdorff topological space Ei,
fi : X → R satisfy the following properties:

(i) for any y = (y1, · · · , yn) ∈ X,x �→ ∑n
i=1[fi(yi, xî) − fi(xi, xî)] is lower

pseudocontinuous on X.
(ii) for any x = (x1, · · · , xn) ∈ X, y �→ ∑n

i=1[fi(yi, xî) − fi(xi, xî)] is diagonal-
quasi-concave on X.

Then there exists at least a pseu-Nash equilibrium of Γ.
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Proof. For any x = (x1, · · · , xn) ∈ X,∀y = (y1, · · · , yn) ∈ X, denote by

φ(x, y) =
n∑

i=1

[fi(yi, xî) − fi(xi, xî)].

It is easy to see that φ(y, y) = 0 for any y ∈ X. By the conditions (i) (ii)
and Theorem 3.1, there exists x∗ ∈ X such that φ(x∗, y) ≤ 0 for any y ∈ X.
∀i ∈ N,∀yi ∈ Xi, Set y = (yi, x∗

î
) and y ∈ X.

Then
φ(x∗, y) = fi(yi, x∗

î
) − fi(x∗

i , x
∗
î
) ≤ 0

That is
fi(yi, x∗

î
) ≤ fi(x∗

i , x
∗
î
) ∀yi ∈ Xi.

Therefore x∗ is a pseu-Nash equilibrium of Γ. �

Corollary 5.1. Let Γ = {Xi, fi}i∈N be a game, for any i = 1, · · · , n, let Xi

be a nonempty convex and compact subset of Hausdorff topological space Ei,
fi : X → R satisfy the following properties:

(i) for any y = (y1, · · · , yn) ∈ X,x �→ ∑n
i=1[fi(yi, xî) − fi(xi, xî)] is lower

pseudocontinuous on X;
(ii) for any x = (x1, · · · , xn) ∈ X, y �→ ∑n

i=1[fi(yi, xî) − fi(xi, xî)] is quasi-
concave on X.

Then there exists at least a pseu-Nash equilibrium.

Theorem 5.2. For each i ∈ N, let Xi be a nonempty closed convex subset of a
reflexive Banach space B. f i : X → R satisfies the following conditions:

(i) for any y = (y1, · · · , yn) ∈ X,x �→
n∑

i=1

[f i
j(yi, xî)−f i

j(xi, xî)] is lower pseudo-

continuous;

(ii) for any x = (x1, · · · , xn) ∈ X, y �→
n∑

i=1

[f i
j(yi, xî) − f i

j(xi, xî)] is diagonal-

quasi-concave;

(iii) for any sequence {xm = (xm
1 , · · · , xm

n )} with ‖xm‖ =
n∑

i=1

‖xm
i ‖i → ∞,

where ‖xm
i ‖i means the norm of xm

i in Xi, there exists some i ∈ N, a
positive integer m0 and y ∈ X such that ‖yi‖ ≤ ‖xm

i ‖i and f i(yi, xm0

î
) −

f i(xm0
i , xm0

î
) > 0.

Then there exists a pseu-Nash equilibrium of n-persons noncooperative game.

Proof. For any x = (x1, · · · , xn) ∈ X, y = (y1, · · · , yn) ∈ X, denote by

φ(x, y) =
n∑

i=1

[f i(yi, xî) − f i(xi, xî)].
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It is easy to check
(i) ∀y ∈ X,x �→ φ(x, y) is lower pseudocontinuous on X;
(ii) ∀x ∈ X, y �→ φ(x, y) is diagonal-quasi-concave on X;
(iii) ∀x ∈ X,φ(x, x) = 0;

By (iv), for any sequence {xm = (xm
1 , · · · , xm

n )} with ‖xm‖ =
n∑

i=1

‖xm
i ‖i →

∞, there exist some i0 ∈ N, a positive integer m0 and ym0 ∈ X0 such that
‖yi0‖ ≤ ‖xm0

i ‖i0 and f i(yi, xm0

î0
) − f i(xm0

i0
, xm0

î0
) > 0. Set y = (yi, xm0

î0
), then

y ∈ X, ‖y‖ ≤ ‖xm0‖, but

φ(xm0 , y) = f i0(yi0 , x
m0

î0
) − f i(xm0

i0
, xm0

î0
) > 0.

Thus, by Theorem 4.5, there exists x∗ ∈ X such that φ(x∗, y) ≤ 0 for any
y ∈ X.
That means x∗ ∈ X is a pseu-Nash equilibrium of n-persons noncooperative
game. �
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Abstract. Firm social media disclosure is a complex game. This paper pro-
poses three stages dynamic games model to analysis the process of social media
information disclose. In the first stage model, firms disclose on social media
because of low cost and high income, and this can make firms obtain more
attention in competition. We introduced investors in the second stage model.
Firms disclose exaggeratedly in order to get more benefits from investors in the
complete information static game. And investors would not believe social media
disclosures and not invest. When reputation model of KMRW is introduced in
this stage, the model becomes repeated game with incomplete information. If the
game is repeated enough times, the cooperative equilibrium can be achieved.
But investors always act in the short run and the model of KMRW does not
work. So, the external regulators are introduced in the third stage model. If the
benefits which firms get from exaggerated disclosure can be given to the
investors through punishment mechanism firms finally disclose truly on social
media.

Keywords: Disclosure � Social media � Dynamic games

1 Introduction

With China government’s national big data strategy, internet becomes the key industry
of economic growth. According to the statistics released by China Internet Network
Information Centre, until December 2015, China had a population of cyber citizen for
688 million, instant messenger user for 624 million and the usage rate was 90.7%. And
the online news audience number was 562 million, and the usage rate was 82%.
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Micro-blog, We-Chat and other social media are very popular. They modify daily life
and working style and dramatically change the way people receive and use message.

Social media also alters the approach of firm disclosure. Firms use social media to
spread their news, products and corporate cultures. In the United States, the acceptance
rate of social media disclosure is about 70% (Zhang 2015). Firms take advantages of
social media to enhance disclosures’ frequency, timeliness, coverage radio and to
reduce information cost and information asymmetry (Blankespoor et al. 2014). Firms
start using Micro-blog and We-Chat in China. Shenzhen Stock Exchange launches “Hu
Dong Yi” mobile app of firm user and common user.

However, what determines social media disclosure? How the information dis-
closed? And what is the impact of relevant parties on the social media disclosure?
These problems need to be solved. This paper studies the game situation of interest
related parties which disclose their information on social media. We investigate the
choice of firm disclosure and analyze the game with the investors and external
supervise under perfect condition. The contributions of this paper are as following:
first, we use progressive three phase method to analyze multi-party game of firm
disclosure and enrich the studies on game theory. Second, we argue that firms will
consider their own costs and benefits to determine social media disclosure. Third, the
KMRW reputation model is used to analyze the dynamic repeated game between firms
and investors. And we argue that dynamic repeated game will make firms disclose real
information on social media. However, the short-term nature of investors may lead to
reputation model invalid. Fourth, we argue that in the strong regulatory environment
firm self-interested behavior of exaggerated disclosure can be curbed. Firms will dis-
close true information and investors will trust social media disclosure. So under strong
supervise social media disclosure can reach Pareto Optimality. Next section analyzes
firm social media disclosure by game models.

2 Related Research

Scholars study the motivations (Healy and Palepu 2001), levels (Hooghiemstra et al.
2015), quality (Ecker et al. 2006), impact factors (Welker 1995), market effects (Bushee
et al. 2010) offirms disclosure. They believe managers voluntarily disclose for their own
interests (Lang and Lundholm 2000). The levels and quality of disclosures depend on
the internal and external factors (Muiño and Núñez-Nickel 2016). Most of them believe
that disclosures can affect the market and can reduce information asymmetry (Heinle
and Verrecchia 2016). Some scholars analyze the decision equilibrium of disclosures
from the perspective of game theory. They mainly consider the game equilibrium
between the investors and the managements (Verrecchia 1983). And some use
game-theory to study the coopetition of insurance agents and insurance firms (Mahito
2012). Most of the existing analyses are based on disclosure from traditional ways. And
the game-theory studies are always from the players of the traditional firm disclosure.
Fewer people analyze game-theory from the aspect of social media channels.

Social media has been widespread used. Some Scholars believe that people use
Twitter to interact, make announcements, provide information, express opinions and
share experience (Blankespoor et al. 2014). Some investigate the situation of city police
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department to release information through Twitter (Heverin and Zach 2010). In the
securities market, Scholars have studied XBRL technology. Their research focuses on
security issues and their impact on information transparency (Boritz and No 2005;
Hodge et al. 2004). Scholars studied the market impact of firms’ use of Twitter
(Blankespoor et al. 2014). They find social media disclosures can enhance market
liquidity and reduce information asymmetry. But voluntary disclosures are difficult to
assurance (Koonce et al. 2016). Managers may disclose for their own interests.
Sometimes managers exaggerate disclosing and even deceive investors. So, there are a
lot of researches on social media, but the analysis from the perspective of game theory
is still less.

Thus, there are many researches on firm disclosure and game theory of disclosure.
The balance of disclosure lies in the cost and benefits. Scholars also analyze the social
media disclosure. But there are still less game theory researches on social media
disclosure. We introduce investors, firm managers and regulators in the game model.
We analyze the game equilibrium from the perspective of the interests of all parties in
social media disclosure. This research has strong practical and theoretical significance.

3 The First Stage Game Model of Social Media Disclosure

We assume that managers face the choice of disclosing on social media or not. If they
use traditional channels they have poor timeliness and narrow coverage of information
disclosure. The firm gets smaller interests (R1). If managers want to disclose on social
media, the gains are greater (R2). The social media channels need costs CS, but the
costs are much smaller than gains. The first stage game model is shown in Fig. 1.

As shown in Fig. 1, the circle represents the choice of the managers. If they do not
disclose on social media, the earning is R1. If they disclose on social media, the gain is
R2 − CS, because R2 is much larger than R1, and CS is so small that can be neglected.
Therefore we can believe that the optimal choice of managers is to use social media
(b strategy) to disclose in order to obtain the maximum benefits.

Firms’ decision of social media disclosure also depends on the choice of competi-
tors. We assume that disclosures are true and investors are rational. They can accurately
identify firms’ disclosures and make right response. Disclosures on social media can get
more attention from investors. We assume there are two firms (marked firm1 and firm2)
with a competitive relationship (The competition is not only for investors but also in

Fig. 1. The first stage game model of social media disclosure
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product markets). If the firm discloses on social media while the competitor does not
disclose, then the firm can get larger income 4 and competitor only can get 1. If both
sides do not disclose on social media they all can get only 2. If they both disclose on
social media they both get 3 (Although social media disclosure needs maintenance cost,
but it is very low). The payoff matrix of both static games is shown in Table 1. Nash
equilibrium for both parties is to disclose on social media and both get 3.

So, no matter from the perspective of their own game analysis or from game
analysis of considering the competitors firms would disclose on social media in order to
obtain more investor attention and trust, and then get more income.

However, social media is not official channel in China. Most of firm disclosures on
social media are non-financial or non-significant information. If investors are not
mature or the social media coverage is less, investors do not reflect the information
rightly. Then the firm would get little gain and lead to (R2 − CS) < R1. The gain
deducting cost (R2 − CS) is less than the benefits of traditional disclosure (R1). Then
firms have no incentive to disclose on social media.

4 The Second Stage Game Model of Social Media Disclosure

4.1 The Second Stage Static Game

We introduce investors into the model. Managers can be honest (c) or exaggerated (d)
on social media disclosure. The second stage game model is shown in Fig. 2.

Table 1. Social media disclosure payment matrix

Firm1 Firm2
Disclose Not disclose

Disclose 3,3 4,1
Not disclose 1,4 2,2

Fig. 2. The second stage game model of social media disclosure
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If traditional disclosure, managers obtain income R1, and the investors get return
r0. If true disclosure on social media, firms get the gain R2 − CS, investors get the gain
r0 + r1. The managers and the investors all get better because of social media dis-
closure. But if the managers disclose exaggeratedly, they obtain income R2 − CS +
R3. The gain R3 comes from investors. So the gain of investors is r0 + r1 − R3. If R3
greatly exceeds the sum of r0 and r1, social media disclosure is harmful to investors.
This eventually leads investors not to trust social media disclosure.

4.2 The Second Stage Complete Information Game

If investors can choose to invest or not to invest, the game of second stage becomes
more complex and realistic. Assuming that firms face two choices: true or exaggerated
disclosures. And investors face two choices: collecting information and investing or not
collecting information through social media and not investing.

The choices and payments are shown in Table 2. Supposing firms disclose and
investors collect information on social media. Firms and investors both get 5. But if
firms truly disclose and investors do not collect through social media, firms get lost of
−2 because of the high cost of real disclosure. And investors get −2 because they do
not invest so produce regret costs.

If firms disclose exaggeratedly and investors collect information through social
media, firms can get a bigger payment of 8. The revenue is 3 more than the actual
disclosure. This comes from investors’ losses. Investors get −3 because they gather
exaggerated information and have been cheated. If investors do not collect information
through social media and do not invest then the exaggerated disclosure could not play a
role and investors get 0. And firms get lower cost of −1 because they do not need to
disclose diligently like truly disclosing.

In this payment matrix, the dominant strategy of firms is exaggerated disclosure.
Investors have no dominant strategy and they will choose a mixed strategy. If firms
disclose exaggeratedly investors do not collect information on social media and not
invest. If firms disclose truly the best choice of investors is to collect information on
social media and invest. When firms and investors carry one-shot game, the game
becomes complete information static game, both sides know each other’s choices and
payments, the result of the game is that firms disclose exaggeratedly and investors
know the dominant choice of firms they do not collect on social media and not invest.
Ultimately, firms do not disclose on social media and social media disclosures have not
beneficial effect on information disclosure.

Table 2. Social media disclosure payoff matrix for companies and investors

Firms Investors
Collect information through social
media and invest

Not collect information through social
media and not invest

True (5, 5) (−2, −2)
Exaggerated (8, −3) (−1, 0)

102 B. Wang et al.



4.3 The Second Stage Incomplete Information Repeated Game

If the information is incomplete, investors do not know whether firms are true or
exaggerated and they only know the probability. And we assume that the game is
repeated. So we can introduce KMRW reputation model. This model is established by
Kreps, Milgrom, Roberts and Wilson in 1982, and it is an incomplete information
repeated game model. They believe that one party’s information about the other party’s
payoff function and policy space are incomplete. This incomplete information has an
important influence on the equilibrium result of the game. As long as the game is
repeated enough cooperative behavior will appear in a limited number of games.

Firms disclose exaggeratedly in a single game if they are rational (F). They disclose
truly if they are irrational (T). The probabilities of rational and irrational disclosure are
(1 − p) and p. And investors are rational they will choose the tit for tat strategy. That is,
if firms disclose truly, investors believe the social media and invest, if firms disclose
exaggeratedly, investors do not believe social media and not invest.

The order of the game is as follows:

(1) The natural Select the type of firms: The firms know their type but investors only
know the probabilities of rational and irrational disclosure.

(2) Firms and investors carry the first game and after observing the results of the first
game, they begin second game. And after observing the results of the second
game, they begin the third game and so on.

(3) The game payoff of the firms and the investor is the discounted sum of all the
games (Assume the discount factor is 1).

When the game is repeated twice (t = 2), as with the complete information game, in
the last stage (t = 2), rational firms disclose exaggeratedly (F), investors do not invest
(N). In the first stage, assume that irrational firms choose T. The choice (X2) of the
second stage depends on the investor’s choice(X1) of the first stage. If investors collect
information through social media and invest (Y), firms choose T and else choose F (As
show in Table 3).

If investors invest in the first stage (X1 = Y) and the expected return of investors is:

½p� 5þ 1� pð Þ � �3ð Þ þ� ½p� �2ð Þþ 1� pð Þ � 0� ¼ 6p� 3

Among them, the first item on the left is the expected income of the first stage, the
second item on the left is the expected income of the second stage.

Table 3. The game repeated two times

Players t = 1 t = 2

Irrational company T X2
Rational company F F
Investor X1 N
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If investors do not invest in the first stage (X1 = N) and the expected return of
investors is:

½p� �2ð Þþ 1� pð Þ � 0� þ 0 ¼ �2p

If 6p − 3 > −2p, i.e., p > 3/8, investors choose X1 = Y. In other words, when the
probability of firm belongs to irrational (true disclosure) is not less than 3/8, investors
would choose to invest.

If the game is repeated three times (T = 3), suppose p > 3/8. Firms and investors in
the first stage would disclose truly and invest. The equilibrium path of the second stage
and the third stage are the same as Table 3. The total path is shown in Table 4.

In the first stage, when both sides of the game know they will play three times, F is
not the firm’s optimal strategy because this exposes the type of firm is rational although
the choice F in the first stage will give the firm gain of 8 (if investors choose Y). And
investors will choose N in the second stage. Then the biggest benefit of a rational firm
in the second stage is −1. But if firms choose Y and do not expose themselves they may
get 5 in the first stage and get 8 in the second stage.

Supposing investors choose Y in the first stage. If the firm chooses T the posterior
probability of investors will stay invariant. In the second and the third stage investors
select Y and N. The expected earning of rational firm is: 5 + 8 − 1 = 12.

If rational firm chooses F in the first stage, it exposes itself. Investors will choose N
in the second and third stages. The expected earning of rational firm is: 8 − 1 − 1 = 6.

Because 12 > 6, so the best choice of rational firm in the first stage is T.
There are three strategies of investors: (Y, Y, N), (N, N, N), (N, Y, N). Assuming

that rational firms choose T in the first stage (second and third stage select F) and
investor’s choice is (Y, Y, N). The expected return of investor is:

5þ ½p� 5þ 1� pð Þ �3ð Þ�þ ½p �2ð Þþ 1� pð Þ � 0� ¼ 6pþ 2

If investors choose (N, N, N), the expected return is:

�2� 0� 0 ¼ �2

So if 6p + 2 > −2 (p > −2/3), then (Y, Y, N) is better than (N, N, N).
If investors choose (N, Y, N), the expected return is:

Table 4. The game repeated three times

Players t = 1 t = 2 t = 3

Irrational company T T T
Rational company T F F
Investor Y Y N
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�2� 3þ p �2ð Þþ 1� pð Þ � 0½ � ¼ �5� 2p

And If 6p + 2 > −5 − 2p, i.e. p > −7/8, then (Y, Y, N) is better than (N, Y, N).
So, as long as the probability of firm’s irrational is greater than 3/8 and the strategy

combination of Table 4 is a refined Bias equilibrium. Rational firms choose T in the
first stage, and then select F in the second and third stages. Investors choose Y in the
first and second stages, and choose N in the third stage. As long as T > 3 and investors
choose Y, then the cooperation situation which firms choose T will appear. The non
cooperative stages are 2, which are not related to the number of T.

Of course, if p < 3/8, cooperative equilibrium may not appear. Although the
strategy of investors’ willingness and firm’s disclosure are private information, as long
as the probability of irrational is more than zero (p > 0) and the number of repeated
game enough, the cooperative equilibrium will eventually appear. That is, as long as
there are enough games between firms and investors, no matter how low their irrational
probability is firms will eventually disclose truly on social media. And Investors will
also gather information and invest. Finally they can achieve cooperative equilibrium.

So, if the game is repeated firms in order not to expose their type early and obtain a
higher income in the long run they will disclose truly in the previous stage. Investors
will trust and invest. Ultimately they can reach a cooperative equilibrium and social
media disclosure is effective.

But there are many individual investors in China. They always make short-term
investments. So the investors which firms facing are not always the same. Managers
may assume that investors are different in different stages. Firms would disclose
exaggeratedly on social media to maximize their gains. From the overall and long-term
perspective, investors will not believe social media disclosure after being cheated many
times. And ultimately this leads social media disclosure invalid.

5 The Third Stage Game Model of Social Media Disclosure

5.1 Add Regulators in the Game

Under the premise of no other parties interfere, firms disclose on social media based on
their own interests, and their nature of pursuit interests leads to exaggerated way to
deceive investors and get the gain of investors. To make social media disclosure more
feasible for all parties, it is necessary to introduce regulation. Regulators have two
choices: punish (e) or not punish (η). The third stage game model is shown in Fig. 3.

If supervision is loose, the regulators would regardless of the exaggerated behavior
on social media. Then the managers get R2 − CS + R3 and investors only get r0 +
r1 − R3. Social media disclosure does not benefit the investors. If regulators strict
managers and severely punish those exaggerated behavior and give the gain of pun-
ishment to the investors the revenue of managers is R2 − CS + R3 − R4 and the
investors get r0 + r1 − R3 + R4. Generally speaking, R4 is more than R3 which
makes the managers do not want to exaggerate. Because the return is R2 − CS when
they disclose truly on social media, which is more than the return of being punished.
When the probability of punishment is high managers dare not to disclose
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exaggeratedly. And the result of the game is in the state of c which is true disclosure.
The state has become the best choice. Social media disclosure can expand the interests
of managers and investors. This obtains the Pareto optimal and improves the market
efficiency.

However, if R4 is less than R3 the condition is different. The illegal cost of firms’
exaggerated disclosure is too low or the penalty amount is too small. When investors
want to take legal action, their cost of collecting evidence is too large or the amount of
compensation is too small. This leads managers continue to disclose exaggeratedly and
investors do not believe social media disclosure. Social media could not play a role in
improving the market efficiency of information disclosure.

5.2 Game Analysis of Regulators and Firm Social Media Disclosure

The analysis above does not consider the gains and losses of regulators. If considering
the restriction of the regulators we get social media disclosure game between regulators
and firms (Table 5). Assuming that the earnings of firms’ exaggerated disclosure are a
(a > 0). And true disclosure need to pay a greater cost, the earnings are −a. If exag-
gerated disclosure has been found the penalty is D (D > 0) and litigation losses are R.
Regulator’s regulatory costs are c (c > 0). If firms disclose truly and regulators do not
regulate, regulatory costs c have been saved. It is similar to opportunity costs. If firms
disclose exaggeratedly regulators have supervised and found no problems. Firms gain
and regulators cost. When firms disclose exaggeratedly and regulators do not regulate
they would be reported. Regulators lose L which contains X and Y. X is the image loss
in the public and Y is the punishment of their neglect of duty. Thus the payment which
regulators do not supervise is −L(X, Y), and L is an increasing function of X and Y
(L > 0). If there is no report regulators have no cost and loss. There will be no sense of
cost savings. That is to say there is no opportunity cost.

When firms disclose exaggeratedly and have been found by regulators they would
be fined and compensation, the paid is –D − R. Regulators obtain the fine and pay the

Fig. 3. The third stage game model of social media disclosure
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regulatory cost. Their gain is D − c. If regulators have regulated but did not find
exaggerated disclosure firms get gain “a” and regulators paid regulatory cost. When
firms disclose exaggeratedly and regulators do not regulate, firms earning is a. And if
regulators do not regulate and have been reported the payment is −L(X, Y) and if have
not been reported the payment is 0. When firms disclose truly the payment is –a
whether the regulators monitored or not. If regulators regulate the regulatory cost is –c.
If regulators do not regulate they save regulatory costs and the payment is c.

We assume that the game is a static game with incomplete information and the
probability of exaggerated and true disclosure are p and 1 − p. The probability of
regulation and non regulation are q and 1 − q. The probability of finding and not
finding the problem are r and 1 − r when regulation. The probability of being and not
being reported are w and 1 − w when regulators do not regulate.

The expected return of the regulator is:

P1 ¼ q � r � p � D� cð Þþ 1� pð Þ � �cð Þ½ � þ 1� rð Þ � p � �cð Þþ 1� pð Þ � �cð Þ½ �f g
þ 1� qð Þ � w � p � �Lð Þ½ � þ 1� pð Þ � c þ 1� wð Þ�� ½p � 0þ 1� pð Þ � c�f g

ð1Þ

The partial derivatives of the formula (1) for q, and then let it equals to zero. We
can get the first order condition of regulator’s maximizing expected return:

@P1=@q ¼ 0;

Then the equilibrium condition of the regulator is:

p� ¼ 2c= r Dþ wLþ cð Þ ð2Þ

Because 0 � p � 1, that is: 0 � c � rD + wL
Thus, When the probability of exaggerated disclosure on social media is p < 2c/(r

D + w L + c) and the optimal strategy for regulators is “non regulation”. When the
probability is p > 2c/ (r D + w L + c) and the optimal strategy for regulators is
“regulation”. When the probability is p = 2c/ (r D + w L + c) and the optimal strategy
of regulators is to carry out “regulation” and “non regulation” randomly.

Table 5. Payment matrix regulatory authorities and listed companies

Firms Regulatory authorities

Regulate Not regulate
Found Not found Reported Not reported

Exaggerated (–D–R, D–c) (a, –c) (a, –L(X,Y)) (a, 0)
True (–a, –c) (–a, –c) (–a, c) (–a, c)
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The expected return of firm is:

P2 ¼ p � q � r � �D� Rð Þþ 1� rð Þ � a½ � þ 1� qð Þ � w � aþ 1� wð Þ � a½ �f g
þ 1� pð Þ q � r � �að Þþ 1� rð Þ � �að Þ½ � þ 1� qð Þ � w � �að Þþ 1� wð Þ � �að Þ½ �f g ð3Þ

The partial derivatives of the formula (3) for p, and then let it equals to zero. We
can get the first order condition of firm’s maximizing expected return:

@P2=@p ¼ 0;

Then the equilibrium condition of firm is:

q� ¼ 2a= r DþRþ að Þ½ � ð4Þ

Because: 0 � q� 1 and R, D, a, r are greater than zero.
That is:

0� 2a= r DþRþ að Þ½ � � 1; 0� a� r Dþ r Rð Þ= 2� rð Þ

When the probability of regulators’ regulating in social media is
q\2a= r DþRþ að Þ½ � the optimal strategy of firm is “exaggerated disclosure”. When
the probability is q[ 2a= r DþRþ að Þ½ � and the optimal strategy of firm is “real dis-
closure”. When the probability is q ¼ 2a= r DþRþ að Þ½ � and the optimal strategy of
firm is to carry out “exaggerated disclosure” and “real disclosure” randomly.

Simultaneous Eqs. (2) and (4) we can calculate the mixed Nash equilibrium of the
game:

S� ¼ S1�; S2�ð Þ ¼ 2c= r DþwLþ cð Þ; 2a= r DþRþ að Þ½ �f g ð5Þ

The equilibrium shows: When the probability of regulation is q� ¼
2a=½r DþRþ að Þ and the probability of firms exaggerated disclosure is p� ¼
2c= r DþwLþ cð Þ the expected utilities of both sides are maximization. Of course, this
also shows that there are 2a=ðr DþRþ að ÞÞ ratio of firms exaggerated disclosure. And
if regulators carry out random regulation there are 2c= r DþwLþ cð Þ ratio of firms real
disclosure on social media.

At the same time, from the Eq. (2) we can get the following conclusions. The
equilibrium probability of firms’ exaggerated disclosure is p* which is inversely pro-
portional to D, r, w and L. This shows that if increasing the punishment of exaggerated
disclosure, the level of supervision, the punishment and the loss of regulators’ image, the
probability of regulators being reported we can reduce the probability of exaggerated
disclosure. The grassroots and interactive of social media would greatly enhance the
probability of regulator’s being reported and this reduce the probability of exaggerated
disclosure. And p* is proportional to c. This means the higher the supervision cost, the
greater the probability of firm’s exaggerated disclosure on social media.
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Thus, reducing regulatory costs c, increasing the cost of firm’s exaggerated dis-
closure D and enhancing the regulatory costs of dereliction of duty are conducive to
reduce the probability of exaggerated disclosure. We can improve the efficiency of
supervision to reduce the cost of supervision. And we also can prohibit disclosure on
social media to reduce the cost of supervision, but this is an extreme measure which
like give up eating for fear of choking.

From the Eq. (4) we can get the following conclusions. The equilibrium probability
of regulation is q* which is inversely proportional to D, R and “r”. This shows that if
increasing the punishment of exaggerated disclosure D and the amount of compensa-
tion the probability of supervision will reduce. Improve the level of supervision and the
probability of finding the problem “r”, we can reduce the probability of supervision. q*
is proportional to a. This means the greater the gain of exaggerated disclosure the
greater the probability of supervision. It can be seen that the reduction of firm’s
exaggerated disclosure and firm’s operating cost can reduce the probability of super-
vision. And they can reduce the workload of regulators.

6 Conclusions and Implications

6.1 Research Conclusion

Social media makes the cost lower, the speed faster and the range broader of infor-
mation disclosure. In the first stage game model the players of the game are only firms.
Considering their own interests and the industry competition firms take the advantage
of social media to obtain higher market attention and gain.

We add investors in the second stage game model. Under the premise of one-off
game, managers disclose exaggeratedly and can get more returns. Investors do not
believe social media disclosure after being cheated. This eventually leads social media
disclosure become lemon market. If firms consider long-term interests the games are
repeated games of continuous disclosure and acceptance of information. After intro-
ducing the reputation model we find that if firms maximize the income of the first game
at the beginning, and after investors have damaged, they would no longer believe social
media disclosure. And this would make firms’ total revenue become lower. But if firms
do not expose their types at the beginning and choose true disclosure, investors would
believe social media disclosure and buy the stock. So in the long run, firms make
greater profits.

Therefore, the dynamic repeated game with the consideration of firms’ reputation
and investor’s response can achieve the equilibrium of the game. Firms disclose truly
on social media and investors believe and invest. But if investors appear short-term
behavior and firms will not consider their reputation and they will disclose exagger-
atedly at the first time which results the investors suffering loss. Eventually the entire
social media disclosure becomes lemon market and investors do not believe it and
firms’ disclosure could not reach the desired effect.
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Thus, due to the possibility of short-term behavior of investors and firms the
introduction of regulation in the model is necessary. In the third stage game model we
think that as long as the regulation can let the interests occupied by the firms return to
the investors no matter what form of regulation is. If exaggerated firms lose more to
compensate investors, social media disclosure is feasible and can achieve the Pareto
optimal and make firms and investors all benefit.

We further consider the cost and return of regulators. We find that the regulators’
supervision depends on the firms’ probability of exaggerated disclosure on social
media. If the probability of exaggerated disclosure is high the regulators increase
supervision. Exaggerated disclosure depends on the regulations. If the regulation is
greater the probability of exaggerated disclosure is small. In addition, improving the
efficiency of regulators, reducing the cost of regulation, strengthening regulatory
penalties will also urge firms to disclose truly. So, in a strong regulatory environment
firms use social media to disclose information will promote them to disclose true
information, which will benefit both firms and investors.

6.2 Inspirations and Suggestions

Social media improves the efficiency of disclosure, but this needs firms, investors and
regulators work together. The inspirations and suggestions are as follows:

Firstly, firms should actively embrace social media. Social media allows firms get
rid of the shackles of traditional media and face investors directly. This is a revolution
of information disclosure. Social media has the characteristics of low cost, timely,
interactive and extensive coverage. So, firms should actively embrace social media and
get the attention and trust of investors which can reduce the cost of capital and improve
the market value of firms.

Secondly, we should improve the quality of investors. Because of the low entry
barriers all kinds of information (bad and good) mixed together on social media.
Investors should have the ability to identify information and are careful to the infor-
mation disclosed by firms on social media. Investors should select the firms which
disclose truly so that there is no market for exaggerated disclosure on social media.

Thirdly, we must vigorously develop social media disclosure and strengthen the
supervision. Social media disclosure is a new channel. Managers disclose all kinds of
information through social media which have significant impact on stock market. The
characteristics of social media can make information disclosure more effective.
Therefore, we should encourage the healthy development of it. The contents of social
media disclosure are in huge volume including voluntary and compulsory information.
The regulators could not have the powerful energy to supervise all aspects. So this
requires the perfection of the legal system. Only playing the initiative of investors and
exerting the authority of law we can truly kill the violation of laws and regulations of
the disclosure. And this can promote the healthy and steady development of social
media disclosure and can improve the efficiency of the securities market.

The parties to the game of social media disclosure may be more complex. We have
done a detailed analysis of the situation, but we could not take all the parties and all
kinds of circumstances into consideration. These needs to be further improved and
revised in the future work.
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Abstract. We engineered a stochastic fishery game in which overfishing
has a twofold effect: it gradually damages the fish stock inducing lower
catches in states High and Low, and it gradually causes the system to
spend more time in the latter state with lower landings.

To analyze the effects of this ‘double whammy’ technically, we demon-
strate how to determine the set of jointly-convergent pure-strategy
rewards supported by equilibria involving threats, under the limiting
average reward criterion.

Keywords: Stochastic games · Limiting average rewards · Endogenous
transition probabilities · Endogenous stage payoffs

1 Introduction

We introduce a new Small Fish War1 featuring endogenous stage-payoffs and
endogenous transition probabilities, thus combining two earlier distinct research
lines, e.g., [31,32,34,36]. Our present analysis benefits from auxiliary research
on improving efficiency of algorithms enabling an analysis of such stochastic
games [37].

In a(ny) Small Fish War, several (here two) agents possess the fishing rights
on a body of water. The agents have several (here two) options, to fish with
or without restraint. Fishing with restraint by the agents is (assumed to be)
sustainable in the long run, as the resource is (assumed to be) able to recover;
unrestrained fishing yields higher immediate catches to the agent(s) overfishing
than restrained fishing, but harms the resource.

The game is played at discrete points in time called stages and at each stage
the resource is in one of two states, High or Low. The system is subject to random
transitions between these states induced by phenomena with well established
distributions, e.g., weather, influencing the stocks. In High, the fish are more
abundant and catches are larger than in Low.

The damage to the resource by overexploitation becomes apparent in the sizes
of the landings, as these (may) decrease (significantly). Furthermore, overfishing

1 A word play on [41] who show that strategic interaction in a fishery may induce a
‘tragedy of the commons’ [21].

c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 115–133, 2017.
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may affect the stochastic dynamics of the resource system resulting in a higher
proportion of time being spent in Low.

The first manifestation of damage by overfishing has been studied in [31,32,34].
The common denominator of results was in line with results from similar models
of the tragedy of the commons: sufficiently patient agents avoid depletion of the
resource in equilibrium by diligently managing it. Even stronger, Pareto efficient
equilibrium outcomes rely on maintaining rather high fish stocks for high propor-
tions of time.

However, this ‘good news’ result depends on conditions not necessarily met by
real-world systems, and further research relaxed several of these. Joosten [32,33]
examined the influence of lack and asymmetry of patience, of information on own
time-preferences and those of the opponent(s), on the state and the dynamics
of the system, and on equilibrium behavior and the distribution of long-term
incomes.

Joosten [34] added rarity value, a complex price-scarcity mechanism sug-
gested by biologists [9], to a Small Fish War. Under strong rarity value Pareto-
efficient equilibrium behavior of patient agents induces a ‘tragedy of the herd’
accompanied by a ‘manna for the shepherd.’ Increases in prices under increased
scarcity of the resource overcompensate the effects of overfishing on the sizes
of the landings as well as of the increased search costs involved. A real-world
example of such a phenomenon may be the blue-fin tuna, which saw prices in
the Far East soar over decades.2

The second sign of damage to the resource has been studied in [36] to analyze
hysteresis (e.g., [8,9,18]), i.e., recovery programs do not show effects in replenish-
ing stocks decimated by overfishing for long periods of time. Mature cod spawn
a considerably higher number of eggs than younger ones, cf., e.g., [40]. Estima-
tions suggest linear fecundity-weight relations [2,48], or even exponential ones
[52]. Modern catching methods target mature cod, cohorts most productive in
providing offspring. To regain full reproductive capacity, younger cohorts must
reach ages well beyond adulthood.

We engineered a stochastic game3 in which overfishing has a detrimental
effect on the underlying payoff structure and on the associated transition proba-
bilities between states. To start with the latter, Nature moves the play from one
state to the other dependent on the current action choices of the agents, but also
on their past catching behavior. We designed endogenously changing stochastic

2 On 01-31-2017, fresh blue fin tuna from Japan registered prices on the Tsukiji whole-
sale market 8–10 times those for fresh herring, 6–8 times the price for salmon and
roughly 16–20 times the price for pollock. Yellowfin, bigeye and southern bluefin tuna
did between a quarter and half of the price of the top bluefin tuna (http://www.
st.nmfs.noaa.gov/st1/market news/japan-wholesale.txt. on 02-08-2017). On special
New Year auctions prices of more than $1 M have been recorded for a 222 kg blue fin
tuna in 2013. Public outcry caused prices to drop after then, but in 2017, a 210 kg
fish fetched between $600,000 and $866,000 (internet does not agree on prices).

3 ‘Engineered’ as in [3]. Stochastic games were introduced in [54], see also [1] for links
to difference and differential games to which much work on fisheries belongs, cf., e.g.,
[23,42] for overviews.

http://www.st.nmfs.noaa.gov/st1/market_news/japan-wholesale.txt.
http://www.st.nmfs.noaa.gov/st1/market_news/japan-wholesale.txt.
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variation.4 The probability of moving to High decreases in time in each state and
for each action combination if the agents show prolonged lack of restraint, i.e.,
overfish frequently. We designed an endogenously changing payoff structure as
well, i.e., if the agents overfish more frequently, then the stage, i.e., immediate,
payoffs decrease over time.

The agents are assumed to wish to maximize their long term average catches
and we formalized this by using the limiting average reward criterion to evaluate
the infinite stream of stage payoffs. We adopt a Folk Theorem type analysis and
validate relevant procedures. First, we show how to establish the rewards for any
pair of jointly-convergent pure strategies. Then, we determine the set of jointly-
convergent pure-strategy rewards. Next, we establish for each player the threat
point reward, i.e., the highest amount this player can guarantee himself if his
opponent tries to minimize his rewards. Finally, we obtain a large set of rewards
which can be supported by equilibria using threats, namely all jointly-convergent
pure-strategy rewards giving each player at least his threat point reward.

Mahohoma [43] independently studied a model which is a special case of
ours. This work differs from ours in that a more inductive approach is used
by generating long sequences of play resulting from various types of strategies
conditioned on several levels of memory sizes to record the history of play. For
these sequences, the average rewards are determined and compared to threat
point rewards from strategies exhibiting the exact same type having exactly
the same levels of memory size. However, Mahohoma [43] remains silent on the
theme of equilibria.

As one important objective of Game Engineering is to draw lessons from
analyzing the games designed, we analyze one example of this new type of Small
Fish War to obtain insights relevant to the management of such a renewable
resource system. Our findings reveal that ecological and economic goals may be
served simultaneously. Here, full restraint by the agents yields Pareto-optimal
rewards, i.e., total rewards are maximized globally, giving 5.15 times the total
never-restraint rewards. Meanwhile, the lowest equilibrium fish stock is about
53% of the maximum (i.e., full restraint) fish stock whereas permanent over-
fishing (never restraint) reduces the resource to about 35% of the same.5 So, a
plausible ecological maximalistic goal coincides perfectly with a plausible eco-
nomic maximalistic one.

Next, we introduce our model with endogenous stage payoffs and endoge-
nous transition probabilities. In Sect. 3, we focus on strategies and restrictions
desirable or resulting from the model. Section 4 treats rewards in a very general
sense, and equilibrium rewards more specifically. Also some attention is paid to
the complexity of computing threat point rewards. Section 5 concludes.

2 Endogenizing Payoffs and Transitions

A Small Fish War is played by row player A and column player B at discrete
moments in time called stages. Each player has two actions and at each stage
4 So, the Markov property of standard stochastic games ([54]) is lost.
5 We refer to Examples 2 and 3 for a motivation of these numbers.
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t ∈ N the players independently and simultaneously choose an action. Action
1 for either player denotes the action for which some restriction exists allowing
the resource to recover, e.g., catching with wide-mazed nets or catching a low
quantity. Action 2 denotes the action with little restraint. Logic dictates that in
every state, fishing with restraint always yields lower immediate catches to an
agent than fishing without.

We assume catches to vary due to random shocks, which we model by means
of a stochastic game with two states at every stage of the play. As we have both
the stage payoffs and transition probabilities being determined endogenously,
i.e., by past play, let us first capture this formally. The past play until stage
t, t > 1, is captured by the following two matrices

QHt =
[

qt
1 qt

2

qt
3 qt

4

]
and QLt =

[
qt
5 qt

6

qt
7 qt

8

]
.

Here, e.g., qt
1 is the relative frequency with which action pair top-left in High has

occurred until stage t, and qt
7 is the relative frequency of action pair bottom-left

in Low having occurred during past play. So, we must have qt = (qt
1, ..., q

t
8) ∈

Δ7 = {x ∈ R
8|xi ≥ 0 for all i = 1, ..., 8 and

∑8
j=1 xj = 1}.

A formal way of writing down these eight relative frequencies recording past
play is the following where j = 1, 2, t > 1 :

qt
j ≡ #{(jA,H

u ,jB,H
u )| jA,H

u =1, jB,H
u =j, 1≤u<t}

t−1 ,

qt
j+2 ≡ #{(jA,H

u ,jB,H
u )| jA,H

u =2, jB,H
u =j, 1≤u<t}

t−1 ,

qt
j+4 ≡ #{(jA,L

u ,jB,L
u )| jA,H

u =1, jB,H
u =j, 1≤u<t}

t−1 ,

qt
j+6 ≡ #{(jA,L

u ,jB,L
u )| jA,H

u =2, jB,H
u =j, 1≤u<t}

t−1 .

Here, jA,X
u (jB,X

u ) denotes the action taken by player A (B) while being in state
X = H,L at stage u. So, for instance qt

4 is the relative frequency of action pair
(2, 2) in state H being chosen until stage t. We refer to such a vector qt as the
relative frequency vector.

Let the interaction at stage t of the play be represented by the following two
matrices:

Ht =
[

θ1 (qt) , p1 (qt) θ2 (qt) , p2 (qt)
θ3 (qt) , p3 (qt) θ4 (qt) , p4 (qt)

]
,

Lt =
[

θ5 (qt) , p5 (qt) θ6 (qt) , p6 (qt)
θ7 (qt) , p7 (qt) θ8 (qt) , p8 (qt)

]
.

Here Ht (Lt) indicates state High (Low) at stage t of the play. Each entry of the
two matrices contains an ordered pair denoting the pair of immediate payoffs to
the players θi (qt) =

(
θA

i (qt) , θB
i (qt)

)
if the corresponding action pair is chosen

and the probability pi (qt) that the system moves to High at stage t + 1. All
functions pi : Δ7 → [0, 1], θi : Δ7 → R+ ∪ {0} are assumed continuous.

To make sense in the framework studied, we have to impose several restric-
tions on the numbers and functions above. The first one relates to the catches



On Stochastic Fishery Games with Endogenous Stage-Payoffs 119

in Low being universally lower than in High for comparable action combinations
of the agents

θi

(
qt

) ≥ θi+4

(
qt

)
for i = 1, 2, 3, 4 and all qt ∈ Δ7.

With respect to restraint yielding lower landings than fishing without restraint,
logic dictates that we must have for all qt ∈ Δ7

θA
1

(
qt

) ≤ θA
3

(
qt

)
, θA

2

(
qt

) ≤ θA
4

(
qt

)
, θA

5

(
qt

) ≤ θA
7

(
qt

)
, θA

6

(
qt

) ≤ θA
8

(
qt

)
,

θB
1

(
qt

) ≤ θB
2

(
qt

)
, θB

3

(
qt

) ≤ θB
4

(
qt

)
, θB

5

(
qt

) ≤ θB
6

(
qt

)
, θB

7

(
qt

) ≤ θB
8

(
qt

)
.

If overfishing is to yield decreasing catches over time, the functions θA
i , θB

i , i = 1,
..., 8 should be non-increasing in q2, q3, q4, q6, q7, q8 which means that if these
functions are continuously differentiable that

∂θA
i

∂qj
,
∂θB

i

∂qj
≤ 0 for all i = 1, ..., 8, j = 2, 3, 4, 6, 7, 8.

Finally, overfishing decreases the transition probabilities to High, hence the func-
tions pi i = 1, ..., 8 should be decreasing over time in q2, q3, q4, q6, q7, q8 as well.
If these functions are continuously differentiable

∂pi

∂qj
≤ 0 for all i = 1, ..., 8, j = 2, 3, 4, 6, 7, 8.

We now give a numeric example.

Example 1. We assume that in both states Action 1, i.e., catching with
restraint, is dominated by the alternative. Let the following be given

Ht =
[

λ(qt) · (16, 16), p1 (qt) λ(qt) · (14, 28), p2 (qt)
λ(qt) · (28, 14), p3 (qt) λ(qt) · (24, 24), p4 (qt)

]
,

Lt =
[

λ(qt) · (4, 4), p1 (qt) λ(qt) · (
7
2 , 7

)
, p2 (qt)

λ(qt) · (
7, 7

2

)
, p3 (qt) λ(qt) · (6, 6), p4 (qt)

]
,

where normalization factor λ : Δ7 → [0, 1] is given by

λ(qt) = 1 − qt
2 + qt

3

4
− qt

4

3
− qt

6 + qt
7

2
− 2qt

8

3
,

and the functions governing the transition probabilities pi : Δ7 → [0, 1], i =
1, ..., 8, are given by

p1(qt) = 0.8 − 0.35 (qt
2 + qt

3 + qt
6 + qt

7) − 0.7(qt
4 + qt

8)
p2(qt) = p3(qt) = 0.7 − 0.3 (qt

2 + qt
3 + qt

6 + qt
7) − 0.6(qt

4 + qt
8)

p4(qt) = 0.6 − 0.25 (qt
2 + qt

3 + qt
6 + qt

7) − 0.5(qt
4 + qt

8)
p5(qt) = 0.5 − 0.2 (qt

2 + qt
3 + qt

6 + qt
7) − 0.4(qt

4 + qt
8)

p6(qt) = p7(qt) = 0.4 − 0.15 (qt
2 + qt

3 + qt
6 + qt

7) − 0.3(qt
4 + qt

8)
p8(qt) = 0.15 − 0.05 (qt

2 + qt
3 + qt

6 + qt
7) − 0.1(qt

4 + qt
8).
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So, if at given stage t, with history qt, the play happens to be in High, and the
players choose action pair Top-Right, then their immediate payoffs are

θ2
(
qt

)
=

(
θA
2

(
qt

)
, θB

2

(
qt

))
= λ(qt) · (14, 28)

=
[
1 − qt

2 + qt
3

4
− qt

4

3
− qt

6 + qt
7

2
− 2qt

8

3

]
· (14, 28)

and with probability

p2(qt) = 0.7 − 0.3
(
qt
2 + qt

3 + qt
6 + qt

7

) − 0.6(qt
4 + qt

8)

the system will stay in High, and with the complementarity probability the play
will occur in Low at the next stage.

Note that for every fixed qt the catches in Low are a mere quarter of those
in High, for every comparable action pair, this proportion does not change.

The number

λ(qt) = 1 − qt
2 + qt

3

4
− qt

4

3
− qt

6 + qt
7

2
− 2qt

8

3
,

may be interpreted as a normalization of the current level of the fish stock to the
unit interval. If qt

1 + qt
5 = 1, both agents have never overexploited the resource,

then λ(qt) = 1, which implies that the fish stock is at its maximum. If both
agents always overfish in both states then it can be shown that the fish stock
will reach λmin = 20

57 = 0.350 88.
Similarly, two-sided full restraint is sustainable and in this case, a good period

(the system was in High) is followed by another one with probability 8
10 ; Low

is followed by Low with probability at most 1
2 . So, there is some switching

between states, but High occurs nearly 70% of the time and landings may be
disappointing in less than 30% of the time.

Overfishing alters these probabilities, as for moderate rates of overfishing, it
appears that High is predominantly followed by High as pt

1, p
t
2, p

t
3, p

t
4 > 1

2 , and
Low by Low as 1−pt

5, 1−pt
6, 1−pt

7, 1−pt
8 > 1

2 . If overexploitation is more severe,
the system being in High switches to Low with an increasing probability, and
when in Low, stays in that state with a higher probability. Hence, the system
spends less and less time in state High. �

3 Strategies and Restrictions

Since a strategy is a game plan for the entire infinite time horizon, allowing it to
depend on any condition makes a comprehensive analysis of infinitely repeated
games quite impossible. Most restrictions in the literature put requirements
on what aspects the strategies are conditional upon. For instance, a history-
dependent strategy prescribes a possibly mixed action to be played at each stage
conditional on the current stage and state, as well as on the full history until
then, i.e., all states visited and all action combinations realized before. Less gen-
eral strategies are for instance, action independent ones which condition on all
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states visited before, but not on the action combinations chosen [25]. Markov
strategies condition on the current state and the current stage, and stationary
strategies only condition on the current state (cf., e.g., [15]). Let X k denote the
set of history-dependent strategies of player k = 1, 2.

A strategy is pure, if at each stage a pure action is chosen, i.e., an action
is chosen with probability 1. The set of pure strategies for player k is Pk, and
P ≡ PA × PB .

The strategy pair (π, σ) ∈ X A × X B is jointly convergent if and only if
q ∈ Δ7 exists such that for all ε > 0, i ∈ {1, 2, ..., 8}:

lim supt→∞ Prπ,σ [|qt
i − qi| ≥ ε] = 0. (1)

Prπ,σ denotes the probability under strategy-pair (π, σ). J C denotes the set of
jointly-convergent strategy pairs. Under such a pair of strategies, the relative
frequency of each action pair in both states as play goes to infinity converges to
a fixed number with probability 1 in the terminology of Billingsley [6, p. 274].
The set of jointly-convergent pure-strategy rewards PJ C is then the set
of pairs of rewards obtained by using a pair of jointly-convergent pure strategies.

For a pair of jointly-convergent pure strategies, let pi ≡ limt→∞ pi (qt) =
pi(q) for i = 1, ..., 8. These notions are well defined as the relevant functions are
continuous (cf., e.g., [6]). The following equation implicitly holds:

4∑
i=1

qi (1 − pi) =
8∑

i=5

qipi. (2)

Equation (2) is a conservation of flow equation dictated by the logic of Markov
chains: play takes place on both states infinitely often, therefore, due to the law
of large numbers the actual instances of leaving High (Low) must be proportional
to the long run probability of leaving that state and the latter must be equal to
the probability of returning.

4 On Rewards and Equilibrium Rewards

The players receive an infinite stream of stage payoffs, they are assumed to
wish to maximize their average rewards. For a given pair of strategies (π, σ) ,
Rk

t (π, σ) is the expected payoff to player k at stage t under strategy com-
bination (π, σ), then player k’s average reward, k = A,B, is γk (π, σ) =
lim infT→∞ 1

T

∑T
t=1 Rk

t (π, σ) , and γ (π, σ) ≡ (
γA (π, σ) , γB (π, σ)

)
. Moreover,

for vector q ∈ Δ7, the q-averaged payoffs (x, y)q are given by

(x, y)q =
∑8

i=1 qiθi(q).

In the analysis of repeated games, another helpful measure to reduce com-
plexity is to focus on rewards instead of strategies. It is more rule than exception
that the same reward combination can be achieved by several distinct strategy
combinations. Here, we focus on rewards to be obtained by jointly-convergent
pure strategies.



122 R. Joosten and L. Samuel

4.1 Jointly Convergent Pure Strategy Rewards

The next result connects notions introduced in the previous sections.

Proposition 1. Let strategy-pair (π, σ) ∈ J C and let q ∈ Δ7 for which (1) is
satisfied, then the average payoffs are given by γ (π, σ) = (x, y)q.

Proof: Let (π, σ) ∈ J C and E{θπ,σ
u } ≡ (

R1
u (π, σ) , R2

u (π, σ)
)
, then

γ (π, σ) = lim
T→∞

1
T

T∑
t=1

E{θπ,σ
t (qt)} = lim

T→∞
E

{
1
T

T∑
t=1

θπ,σ
t (qt)

}
.

The second equation is standard. Consider an infinite sequence of realizations of
play under (π, σ) (

θπ,σ
1 (q1), θπ,σ

2 (q2), θπ,σ
3 (q3), ...

)
.

Let θi(qt) = θπ,σ
t (qt), i.e., the realization θπ,σ

t (qt) under (π, σ) at stage t was
payoff entry θi(qt), where i = 1, ..., 2. Let θi(q) = limt→∞ θi(qt), and this notion
is meaningful due to [6, p. 274].

Then, focus without loss of generality only on those instances t1, t2, t3, ... in
which θπ,σ

tj (qtj ) = θ1(qtj ) �= 0, j = 1, 2, 3, ... and consider

(
...,

θ1(qt1)
θ1(q)

, ...,
θ1(qt2)
θ1(q)

, ...,
θ1(qt3)
θ1(q)

, ...

)

then for fixed very large j :
(

...,
θ1(qtj+1)

θ1(q)
, ...,

θ1(qtj+2)
θ1(q)

, ...,
θ1(qtj+3)

θ1(q)
, ...

)
→ (..., 1, ..., 1, ..., 1, ...) .

So, this implies that
∑T

k=1
θ1(q

tj+k )
θ1(q)

simply records how often entry 1 occurs after

stage tj , and as T becomes very large it must hold that
∑T

k=1
θ1(q

tj+k )
θ1(q)

→ Tq1,
hence

lim
T→∞

1
T

T∑
k=1

θ1(qtj+k)
θ1(q)

= q1.

Therefore, as limT→∞ 1
T+j

∑j
t=1

θ1(q
t)

θ1(q)
= 0,

lim
T→∞

1
T

T∑
t=1

θi(qt)
θi(q)

= lim
T→∞

1
T + j

j∑
t=1

θ1(qt)
θ1(q)

+ lim
T→∞

1
T + j

T∑
t=1

θ1(qtj+k)
θ1(q)

= lim
T→∞

1
T

T∑
t=1

θ1(qj+t)
θ1(q)

= qi.
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Hence,

lim
T→∞

1
T

T∑
t=1

θπ,σ
t (qt) = lim

T→∞

∑
i:θ1(q) �=0

θi(q)

(
1
T

T∑
t=1

θi(qt)
θi(q)

)

=
8∑

i=1

θi(q)

(
lim

T→∞
1
T

T∑
t=1

θi(qt)
θi(q)

)
=

8∑
i=1

θi(q)qi.

So, we may conclude that γ (π, σ) = (x, y)q. �

The following example visualizes the set of jointly-convergent rewards.

Example 2. We proceed with the numbers given in Example 1 in order to illus-
trate the above. We have computed a large number of pairs of rewards to be
obtained by pairs of jointly convergent strategies with Matlab (code available
from the authors) and have made a visualization of this set in Fig. 1. The Pareto-
efficient boundary of this set consists of the rewards represented at the most right
hand upper elements of this set.

The bigger dots in Fig. 1 indicate the levels of six stage payoffs of the safely
exploited resource, i.e., λ = 1. Observe that the set of jointly convergent strategy
rewards does not intersect with the convex hull of the four points associated with
state High. On the other hand the convex hull of the four points connected to
Low in a safely exploited resource is covered by the set of jointly convergent
strategy rewards.

The upper right hand extreme point of the shape representing the set of
jointly convergent strategy rewards corresponds to the situation in which the
agents never overfish, i.e., q1 + q5 = 1. The analysis of the Markov chain implied
yields λ(q) = 1, q1 = 5

7 and q5 = 2
7 . So, the safely exploited system spends

about 71% of the time in High and the complementary percentage in Low. The
corresponding rewards are therefore given by

1
(

5
7

(16, 16) +
2
7

(4, 4),
5
7

(16, 16) +
2
7

(4, 4)
)

=
(

88
7

,
88
7

)
≈ (12.571, 12.571) .

The lower left hand extreme point of the shape corresponds to the situation in
which both agents always overfish, i.e., q4 + q8 = 1. The analysis of the Markov
chain implied yields λ(q) = 20

57 , q1 = 5
95 and q5 = 90

95 . So, the overexploited system
spends less than 6% of the time in High and more than the complementary
percentage in Low. The corresponding rewards are therefore given by

20
57

(
5
95

(24, 24) +
90
95

(6, 6),
5
95

(24, 24) +
90
95

(6, 6)
)

=
(

880
361

,
880
361

)
≈ (2.437 7, 2.437 7) .
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The safely exploited fish stock is more than 85% (=1/ 20
57 − 1) higher than the

maximally overexploited one, and the system spends more than 13. 571 (=5
7/ 5

95 )
times the amount of time in High than in the overexploited system.

The maximal total rewards from jointly-convergent pure strategies yield 5.15
(= 12.571

2.437 7 ) times the never-restraint total rewards. Permanent overfishing reduces
the resource to about 35% (=20

57 ) of the full restraint stock. �

4.2 Equilibrium Rewards

We work towards establishing pairs of rewards from equilibria involving threats.
Our approach is similar to a well-established one in the repeated games literature
(cf., e.g., [16,22]), linked to the Folk Theorem (see e.g., [60]) and applied to
stochastic games as well (cf., e.g., [35,53,57]).

We call v =
(
vA, vB

)
the threat point, where vA = minσ∈XB maxπ∈XA

γA(π, σ), and vB = minπ∈XA maxσ∈XB γB(π, σ). So, vA is the highest amount A
can get if B tries to minimize A’s average payoffs. Under a pair of individually
rational (feasible) rewards each player receives at least the threat-point reward.
We can now present the following formal result.

Theorem 2. Let E be the set of all individually-rational jointly-convergent
pure-strategy rewards. Then, each pair of rewards in E can be supported by an
equilibrium.

Fig. 1. The dense area depicts rewards feasible by jointly convergent strategies. The
six dots concur with entries of the matrices associated with an unexploited resource.
Pareto-efficient rewards are located at the upper, right hand boundary of this set.
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Proof: Let πp (σp) be a punishment-strategy of A (B), i.e., a strategy hold-
ing his opponent to at most vB (vA) . Let (x, y) ∈ E, then a pure-strategy
combination (π, σ) ∈ J C exists such that γ (π, σ) = (x, y) ≥ (

vA, vB
)
. Let

π∗
t ≡

{
πt if jk = σ∗

k for all k < t,
πp

t otherwise.

σ∗
t ≡

{
σt if ik = π∗

k for all k < t,
σp

t otherwise.

Here, it (jt) denotes the action taken by player A (B) at stage t of the play.
Clearly, γ (π∗, σ∗) = γ (π, σ) = (x, y) . Suppose player A were to play π′ such
that π′

k �= π∗
k for some k, then player B would play according to σp from then on.

Since, γA (π′, σp) ≤ vA ≤ x, it follows immediately that player A can not improve
against σ∗. A similar statement holds in case player B deviates unilaterally.
Hence, (π∗, σ∗) is an equilibrium. �

Such a pair of strategies (π∗, σ∗) in the proof above is commonly referred
to as an equilibrium involving threats. Joosten et al. [35] prove by construction
that rewards in the convex hull of E correspond to equilibria.

Folk Theorem type results are standard in the analysis of repeated and sto-
chastic games, e.g., [22,57,60]. They hinge on the possibility of punishing uni-
lateral deviations, as in e.g., [19]. So, we need history-dependent strategies. To
prevent misconception: there is no contradiction between an equilibrium being
jointly-convergent and subgame-perfect: if the equilibrium path in the terminol-
ogy of [22] induces convergence with probability 1, the off-equilibrium part may be
of arbitrary sophistication. Neither is there a contradiction between strategy pairs
being both jointly-convergent and history-dependent, or for that matter coopera-
tive, e.g., [39,58,59], or incentive strategies, or combinations, e.g., [11–14].

4.3 On Computing Threat Points

We illustrate Theorem 2 and the notions introduced. Moreover, we use the exam-
ples to show the scope of the problem of computing threat points. Hordijk
et al. [28] show that a pure stationary strategy suffices as a best reply against a
fixed stationary strategy. Any pair of stationary strategies here is clearly jointly-
convergent. The next example shows that linear programs may not suffice.

Example 3. Assume that player B uses a strategy consisting of playing his
second, i.e., right hand, action in state High and his first, i.e., left hand action in
state Low at all stages of the play. Then, consider the following (nonlinear)
program for Player A to minimize player B ’s rewards
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minq2,q4,q5,q7 λ(q)[28q2 + 24q4 + 4q5 + 3.5q7]
s.t. 1 = q2 + q4 + q5 + q7
λ(q) = 1 − q2+2q7

4 − q4
3

0 = (1 − p2)q2 + (1 − p4)q4 − p7q7 − p5q5
p2 = 0.7 − 0.3 (q2 + q7) − 0.6q4
p4 = 0.6 − 0.25 (q2 + q7) − 0.5q4
p5 = 0.5 − 0.2 (q2 + q7) − 0.4q4
p7 = 0.4 − 0.15 (q2 + q7) − 0.3q4
0 ≤ q2, q4, q6, q8.

Clearly, putting as much weight on q4 and q7 as possible minimizes the part
between brackets in the objective function, while decreasing the part before the
brackets and decreasing the four probabilities most, is a good intuition to look
for a candidate solving the minimization problem. In fact in the Appendix we
show that this indeed yields a minimum. The associated reward to player B is
4.4588, so B has a strategy guaranteeing him at least this amount. This implies
vB ≥ 4.4588.

Suppose player A uses his second action at all stages of the play to punish
his opponent. Consider the (nonlinear) program

maxq3,q4,q7,q8 λ(q) [14q3 + 24q4 + 3.5q7 + 6q8]
s.t. 1 = q3 + q4 + q7 + q8
λ(q) = 1 − q3+2q7

4 − q4+2q8
3

0 = (1 − p3)q3 + (1 − p4)q4 − p7q7 − p8q8
p3 = 0.7 − 0.3 (q3 + q7) − 0.6(q4 + q8)
p4 = 0.6 − 0.25 (q3 + q7) − 0.5(q4 + q8)
p7 = 0.4 − 0.15 (q3 + q7) − 0.3(q4 + q8)
p8 = 0.15 − 0.05 (q3 + q7) − 0.1(q4 + q8)
0 ≤ q3, q4, q7, q8.

In the Appendix we argue that B can get at most 4.4588, so A has a strategy
keeping B at this amount. This implies vB ≤ 4.4588. This together with the
previous finding implies vB = 4.4588.

Figure 2 visualizes all Nash equilibrium rewards, and they are located to the
North-East of the threat point. Observe that the threat point minimizes the total
rewards to the players within the set of equilibrium rewards. In the Appendix
we found that the solution x = y = 0 implies that

q =
−1.05 +

√
1.052 − 4 · 0.1 · (−0.25)

2 · 0.1
= 0.232 93

λ(q) =
2
12

q +
1
2

=
1
6

· 0.232 93 +
1
2

= 0.538 82.

Hence, the fish stock associated to the lowest total equilibrium rewards, is about
53% of the maximum fish stock obtained by full restraint. �
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Fig. 2. Jointly-convergent pure-strategy rewards to the North-East of v =
(4.4855, 4.4855) can be obtained by Nash equilibria involving threats.

Example 3 and our endeavors in the appendix illustrate that finding threat
points may be cumbersome. Moreover, for games with more states than two,
the present approach gives a hunch where to look for the solution to the min-
imization and the maximization problems, can be followed as well, but clearly
a visualization will not be possible. Hence, not helpful in reaching conclusions.
What remains then, is the determination of the partial derivatives and this may
add another cumbersome step to the search.

The general problem is equivalent to finding the value of a zero-sum sto-
chastic game which can be done by taking the limit point for stationary dis-
counted optimal strategies, cf., [4,5]. By [47], we have the right solution, but only
ε-optimal strategies are known to exist. The Big Match [17], solved in [7], shows
that neither ε-optimal stationary strategies, nor ε-optimal Markov strategies
need to exist. However, for the game of Example 3 both states always communi-
cate, i.e., the system may move from one state to the other at any stage, for all
strategy pairs. So, every pair of stationary strategies generates a Markov chain
with a unique ergodic set (being simply the two states). That implies that the
game is unichain and stationary optimal strategies exist, cf., e.g., [27,56].

5 Conclusions

We added an innovation to the framework of Small Fish Wars (e.g., [31,32,34])
by combining variants quite close to the original approach with the one intro-
duced in [36]. In the latter contribution, transition probabilities between the
various states in a stochastic game change as a result of the actions taken by the
agents. So, this new approach presented here entails that we allow endogenous
stage payoffs as in the original setup as well as endogenous transition probabil-
ities as in [36]. There is a slight but notable difference of the present approach
with [36]. Here, states will not become absorbing temporarily.
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The combined model had not been tackled partly due to computational prob-
lems in generating visualizations of jointly-convergent pure-strategy rewards in
[36], deemed necessary for an analysis. The algorithm developed there proved a
tremendous improvement of earlier ones for older models, but turned out to be
extremely slow precisely in the complex setting studied for which it had been
developed. Recent research in improving algorithms, [37], took care of this bot-
tleneck and the present state of our computing prowess is such that we can use
it to facilitate the analysis in the present set up.

Our approach generalizes standard stochastic games,6 too. We propose meth-
ods of analysis originally introduced in [35] inspired by Folk Theorems for sto-
chastic games e.g., [29,30,53,57] and developed further in for instance [31,32,34].
Crucial is the notion of jointly-convergent strategies to justify the steps in cre-
ating analogies to the Folk Theorem.7

Our analysis of a special example shows that a ‘tragedy of the commons’ may
be averted by sufficiently patient8 rational agents maximizing their utilities non-
cooperatively. All equilibrium rewards yield more than the amounts associated to
the permanent ruthless exploitation of the resource. Pareto optimal equilibrium
rewards correspond to strategy pairs involving a considerable amount of restraint
on the part of the agents, and are up to more than 5 times higher than no-
restraint rewards. Case-by-case analysis is however required, hence no general
claims are implied.

To present a tractable model and to economize on notations, we imposed
symmetry and used the three ‘twos’: two states, two players and two actions.
Two distinct states allow to model the kind of transitions we had in mind; two
agents are minimally required to model strategic interaction; two stage-game
actions leave something to choose. The three twos can be interpreted as a lower
bound to have interesting dynamic strategic interaction.

The three twos also serve as an upper bound as the main purpose of our
paper is to introduce an innovation in modeling. Notational challenges may then
distract from the main message. Just take three threes instead of three twos.
Then in each state 27 action combinations will be relevant, each inducing both
a stage payoff vector to the three players and a transition probability vector to
the three states. So, one needs to formulate 162 vector functions9 instead of the

6 Although our games fall into the class of stochastic games with infinitely many states,
we prefer our presentation because we were able to obtain results due to it. We have
no idea about which results from the analysis of stochastic games with infinitely
many states help to obtain results, too.

7 We want our models to resemble repeated games for reasons of ease of communica-
tion for instance with politicians. Many have learned about the repeated prisoners’
dilemma in education, so offering our model in a simple fashion may offer windows
of opportunity for communication.

8 Agents are not individuals, but rather countries, regions, or cooperatives. Individual
fisherman’s preferences seem too myopic (cf., e.g., [26]). It is well known that other
factors influence the outcome of a tragedy of the commons, too (cf., e.g., [38,49,50,
55]).

9 The general three Ns case would require 2 ·NN+1 vector functions of dimension N .
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modest 16 for the case with the three twos. Furthermore, by keeping the model
and its analysis relatively simple, we invite comparisons with contributions in
the social dilemma literature, cf., e.g., [24,38,44]. Our resource game is to be
associated primarily with a social trap, see e.g., [10,20,51] of which the ‘tragedy
of the commons’ cf., e.g., [21,45,46], is a notorious example.

In order to capture additional real-life phenomena such as seasonalities or
other types of correlations, a larger number of states may be required. Fur-
thermore, more levels or dimensions of restraining measures may be necessary.
Adding states, (asymmetric) players or actions changes nothing to our approach
conceptually in obtaining large sets of rewards. Obviously, analysis of models
with more than three players rules out visualization.

A Appendix

Validation of the claim in Example 3. A quick and dirty preliminary analysis
yielded a first candidate, namely the strategy pair where Player B always plays
his second action in High and the first action in Low ; Player A always plays his
second action. So, A is the player punishing his opponent, and all calculations
will induce a threat point reward for B and symmetry then implies that the
same reward is the threat point reward for A, as well.

We start with the minimization program. We reduce the four dimensional
system to a two dimensional one as follows. We set q2 = qx, q4 = q(1 − x), q5 =
(1 − q)y, q7 = (1 − q)(1 − y) where 0 ≤ x, y, q ≤ 1. The interpretation is that
to minimize his opponents rewards even further, A may be allowed to shift an
arbitrary weight from the original q4 = 1 to q2, hence after the shift we have
q2 = qx, q4 = q(1 − x). Similarly, A may shift weight from q7 = 1 to q5, such
that after the shift we have q5 = (1 − q)y, q7 = (1 − q)(1 − y).

So, the variables to minimize over are x and y, q will result from the analysis
of the balance Eq. (1) for given x, y using this transformation of the four original
variables. The transformed transition probabilities are

p2 = 0.3y + 0.4 − 0.3q (1 − x + y)
p4 = 0.25y + 0.35 − 0.25q (1 − x + y)
p5 = 0.2y + 0.3 − 0.2q (1 + x − y)
p7 = 0.15y + 0.25 − 0.15q (1 − x + y)

The transformed balance equation for this setting is

0 = q2
(−0.05x2 − 0.3xy − 0.05x + 0.35y2 + 0.05y + 0.1

)
+

q
(
0.3xy − 0.2x − 0.3y2 + 0.15y + 1.05

)
+

(−0.05y2 − 0.2y − 0.25
)
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Fig. 3. The upper manifold represents all rewards to B possible if B plays the fixed
strategy: Right (2) in High, left (1) in Low. The horizontal hyperplane indicates level
v4,7 = 4.4588. This justifies the conclusion that B’s rewards are minimized at x = y = 0,
i.e., Player A should play bottom (2) in both states forever. Partial derivatives are
positive on [0, 1] × [0, 1].

Fig. 4. The lower manifold represents all rewards to B on the interval [0, 1]× [0, 1], if
Player A plays a fixed strategy of bottom (2) in both states. The horizontal hyperplane
indicates level v4,7. Clearly the highest rewards are to be found at x = y = 0 which
means that B should use his right action (2) in High and his left action (1) in Low. It
is also easy to see that the partial derivatives are negative on the same interval.

Hence, the minimization problem reduces and simplifies to the following.

minx,y λ(q)[20.5q + 0.5y + 4.0qx − 0.5qy + 3.5]
λ(q) = 1

12q (2 + x − 6y) + 1
2y + 1

2

q = −B+
√

B2−4AC
2A

A =
(−0.05x2 − 0.3xy − 0.05x + 0.35y2 + 0.05y + 0.1

)
B =

(
0.3xy − 0.2x − 0.3y2 + 0.15y + 1.05

)
C =

(−0.05y2 − 0.2y − 0.25
)

0 ≤ x, y, q ≤ 1.
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The other root of the balance equation is real too, but yields nonsense.
There are alternative options to proceed now, but we show a plot of all

rewards to B as a function of x, y ∈ [0, 1] × [0, 1] under the conditions of the
minimization problem. Figure 3 shows immediately that the rewards of B are
minimized for x = y = 0.

Proceeding in the same fashion for the maximization problem, we generate
Fig. 4 showing that maximizes B’s rewards for x = y = 0.
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Abstract. In real game situations, the players are often lack of the information
about their opponents’ or even their own payoffs. The existing literature on
non-cooperative games with uncertain payoffs just focused on two-person
zero-sum games or bimatrix games. In this paper, we consider a n-person
non-cooperative game with fuzzy payoffs. First, based on credibility theory,
three credibilistic criteria are introduced to define the behavior preferences of
players in different game situations. Then, three solution concepts of credibilistic
equilibria and their existence theorems are proposed. Finally, three sufficient and
necessary conditions are presented for finding the credibilistic equilibrium
strategies to illustrate the usefulness of the theory developed in this paper.

Keywords: n-person credibilistic game � Credibility theory � Fuzzy payoff �
Credibility measure

1 Introduction

As a collection of mathematical models that is used to model and analyze interaction
among a group of rational players, game theory was formulated as an independent
theory by von Neumann and Morgenstern (1944). Non-cooperative game theory was
proposed by Nash (1950, 1951) and developed by Kuhn (1950, 1953), Harsanyi
(1966), Aumann (1974) and so on based on the assumption that the payoffs of each
player are crisp variables over his strategy space, which has been applied extensively in
many fields. In a real game, however, this assumption restricts its applications to real
problems. For instance, it is hard to exactly estimate players’ payoffs. To deal with such
situations, Bayesian game and fuzzy game are introduced.

The Bayesian game model was proposed by Harsanyi (1967), where private
information is considered as players’ behavior types characterized by a random variable
with some probability distribution. Blau (1974), Cassidy et al. (1972) and Charnes et al.
(1968) investigated a two-person zero-sum game with random payoffs, and Berg
(2000), Ein-Dor and Kanter (2001) and Roberts (2006) considered a bimatrix game
with random payoffs, respectively. However, many situations of interest have not
enough historical records for probabilistic reasoning, that is, the payoffs in a game
cannot be modeled by random variables. Fuzzy set theory that is proposed by Zadeh
(1965) offers an approach to such situations (Roy 2010). Campos (1989), Maeda
(2003), Mula et al. (2015), Roy (2010), Roy and Mula (2016), Bhaumik et al. (2017)
studied a two-person zero-sum matrix game with fuzzy payoffs, respectively. Maeda
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(2000), Roy and Mula (2013) and Das and Roy (2010, 2013) discussed a bimatrix
game with fuzzy payoffs. A multi-objective matrix game with fuzzy payoffs is studied
by Nishizaki and Sakawa (2001). Vijay et al. (2005) and Cevikel and Ahlatçıoğlu
(2010) studied two-person zero-sum matrix games based on fuzzy goals and fuzzy
payoffs. Li (2011), Nan et al. (2014) and Chandra and Aggarwal (2015) provided a
solution to solve matrix games based on the payoff of interval values, triangular
intuitionistic fuzzy numbers and triangular fuzzy numbers, respectively. Furthermore,
Gao and his co-workers developed a spectrum of credibilistic games within the
framework of credibility theory, including credibilistic strategic game (Gao and Liu
2005; Gao 2007; Gao et al. 2009; Liang et al. 2010; Roy et al. 2011; Gao and Yang
2013), credibilistic coalitional game (Shen and Gao 2010) and credibilistic extensive
game (Gao and Yu 2013).

The existing literature on non-cooperative games with fuzzy payoffs just focused on
two-person zero-sum games or bimatrix games. In real games, however, the
multi-person non-cooperative games with fuzzy payoffs are in line with many decision
situations. Thus, how to solve the n-person non-cooperative games with fuzzy payoffs
is a valuable research problem, which is just the topic of this paper.

In this paper, we focus on the n-person credibilistic non-cooperative games. Firstly,
three credibilistic criteria from credibility theory, which are the expected value crite-
rion, the optimistic value criterion and the credibility criterion, are used to characterize
the behaviors of the players in the different decision environment. Furthermore, the
concepts of three credibilistic equilibria are defined and their existence theorems are
presented. Finally, the sufficient and necessary conditions of the three credibilistic
equilibria are developed.

The rest of this paper is arranged as follows: In Sect. 2, the classical n-person
non-cooperative game and some basic results of credibility theory are briefly reviewed.
In Sect. 3, we define the concepts of expected equilibrium, ai-optimistic equilibrium
and credibility equilibrium and prove their existence theorems. In Sect. 4, the sufficient
and necessary conditions of the three credibilistic equilibria are given. In Sect. 5, a
numerical example is given. We show the conclusion in Sect. 6.

2 Preliminaries

2.1 Classical n-Person Non-cooperative Games

Consider a game G ¼ hN,(Si)i2N ; ðvi)i2Ni with a finite player set N = {1,2,…,n} and,
each player i2N, with a finite pure strategy set Si including mi pure strategies and a
payoff function vi(si; s�i) depending on the pure strategy combination (si, s−i) played,
where s-i: = (s1,…, si−1, si+1,…, sn) indicates a pure strategy combination for all players
except player i. Let S: = S1 � S2 � …�Sn be the set of pure strategy combinations for
all players, and S-i : = S1 � …�Si-1 � Si+1 �… � Sn be the set of pure strategy
combinations which players other than i could choose. The set of probability measures
over Si is denoted by Ki. An element ri2Ki is defined as a mixed strategy for player i 2
N, where ri is a function ri : Si ! ½0; 1�. Therefore, if player i2N chooses ri, then
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she/he chooses pure strategy si with the probability riðsiÞ. A mixed strategy combi-
nation is denoted by ðri; r�iÞ, where r�i indicates a mixed strategy combination for all
players except player i. Let K :¼ K1 � K2 � � � � � Kn be the set of mixed strategy
combinations for all players and K�i :¼ K1 � � � � � Ki�1 � Kiþ 1 � � � � � Kn be the set
of mixed strategy combinations which players other than i could choose. A mixed
strategy game is denoted by G1 ¼ hN; ðKiÞi2N ; ðviÞi2Ni.

The expected payoff ui that player i obtains for some mixed strategy combination
ðri; r�iÞ is given by

uiðri; r�iÞ ¼
X

si2Si;s�i2S�i

r1ðs1Þ � � � riðsiÞ � � � rnðsnÞviðsi; s�iÞ ð1Þ

Definition 2.1. A mixed strategy combination r� ¼ ðr�i ; r��iÞ is called a Nash equi-
librium in the game G1, if it satisfies

uiðr�Þ � uiðri;r��iÞ; 8 i 2 N; ri 2 Ki; ð2Þ

where r��i ¼ ðr�1; . . .; r�i�1; r
�
iþ 1; . . .; r

�
nÞ 2 K�i.

Lemma 2.1 (Nash 1950). There exists at least one mixed strategy Nash Equilibrium in
a finite n-person non-cooperative game.

2.2 Credibility Theory

As a branch of mathematics, Credibility theory is often used to model the behavior of
fuzzy phenomena. Since proposed by Liu (2004), credibility theory has been used
extensively in many fields, such as portfolio selection (Chen et al. 2012; Liu et al.
2012) and transportation planning (Li et al. 2013; Yang et al. 2012).

Definition 2.1 (Liu 2007). Let H be a nonempty set and N Hð Þ be the power set of H, a
set function Cr{�} is called a credibility measure if it satisfies the following four
axioms.

Axiom 1. (Normality) CrfHg ¼ 1.

Axiom 2. (Monotonicity) CrfAg�CrfBg, where A 	 B.

Axiom 3. (Self-Duality) CrfAgþCrfAcg ¼ 1 for any A 2 N Hð Þ.
Axiom4. (Maximality)Crf[ iAig¼supiCrfAig for any {Ai}with supiCrfAig\ 0:5.

Definition 2.2 (Liu 2007). Let H be a nonempty set, N Hð Þ be the power set of H and
Cr be a credibility measure, then the triplet H;N Hð Þ;Crð Þ is called a credibility space.

Definition 2.3 (Liu 2007). A fuzzy variable ~v is a measurable function from a credi-
bility space H;N Hð Þ;Crð Þ to the set of real numbers.

Lemma 2.1 (Liu 2007). Let ~v be a fuzzy variable with membership function l, then
for any set B of real numbers, we have
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Crf~v 2 Bg ¼ 1
2
ðsup
x2B

lðxÞþ 1� sup
x 62Bc

lðxÞÞ ð3Þ

Definition 2.4 (Liu 2007). The fuzzy variables~v1;~v2; . . .;~vm are said to be independent if

Cr f\
m

i¼1
ð~vi 2 BiÞg ¼ min

1� i�m
Crf~vi 2 Big ð4Þ

for any sets B1;B2; . . .;Bm of R.

Definition 2.5 (Liu and Liu 2002). Let ~v be a fuzzy variable, then the expected value
of ~v is defined by

E½~v� ¼
Z þ1

0
Crf~v � rgdr �

Z 0

�1
Crf~v � rgdr ð5Þ

provided that at least one of the two integrals is finite.

Lemma 2.3 (Liu and Liu 2003). Let ~v and ~g be independent fuzzy variables with finite
expected values, then for any numbers a and b, we have

E½a~vþ b~g� ¼ aE½~v� þ bE½~g� ð6Þ

Definition 2.6 (Liu and Liu 2003). Let ~v be a fuzzy variable and a 2 ð0; 1� be a
confidence level, then, for a real number r,

~vsupðaÞ ¼ supfrjCrf~v � rg � ag ð7Þ

is called the a-optimistic value to ~v.
This means that the fuzzy variable ~v will reach upwards of the a-optimistic value

~vsupðaÞ with credibilitya. In other words, the a-optimistic value ~vsupðaÞ is the supremum
value that ~v achieves with credibilitya.

Lemma 2.4 (Liu and Liu 2003). Let ~v and ~g be independent fuzzy variables, then for
any a 2 ð0; 1� and any nonnegative numbers a and b, we have

ða~vþ b~gÞsup að Þ ¼ a~vsupðaÞþ b~gsupðaÞ ð8Þ

Lemma 2.5 (Liu and Liu 2007). Let ~v be a fuzzy variable, then for any a 2 ð0; 1�, we
have

if a � 0; then ða~vÞsup að Þ ¼ a~vsupðaÞ ð9Þ

In order to rank fuzzy variables, three credibilistic approaches are often used.
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Definition 2.7 (Liu 2002). Let ~v and ~g be independent fuzzy variables, then we have

(1) Expected value criterion: ~v\ ~g if and only if E½~v�\E½~g�;
(2) Optimistic value criterion: ~v\~g if and only if ~vsupðaÞ\~gsupðaÞ for some prede-

termined confidence level a 2 ð0; 1�;
(3) Credibility Criterion: ~v\~g if and only if Cr ~v� rf g\Cr ~g� rf g for some pre-

determined level r.

The expected value criterion is used to deal with the situation where a player wants
to optimize the expected value of her/his payoff. The optimistic value criterion is
applied to coping with the situation in which a player strives to optimize the optimistic
value of her/his payoff at given a confidence level a. While the credibility criterion
applies to the situation that a player would set a payoff level and wants to maximize the
chance of his achieving the given payoff level.

3 n-Person Credibilistic Non-cooperative Game

Since the decision environment is often characterized by a great many possible
strategies, intricate relations between strategic choices and their influences to players’
payoffs, it is impossible that a player makes accurate or probabilistic estimation of
her/his own payoffs. For such situations, we consider a n-person game with fuzzy
payoffs. Specifically, for each player i 2 N, the payoff ~viðsi; s�iÞ is modeled as a fuzzy
variable for all ðsi; s�iÞ 2 S, then for any mixed strategy combination ðri; r�iÞ,
expected payoff of player i 2 N is also fuzzy variable and given by

~uiðri; r�iÞ ¼
X

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞ~viðsi; s�iÞ:

This game is denoted by G2 ¼ hN; ðKiÞi2N ; ð~viÞi2Ni.

3.1 Three Credibilistic Equilibrium Strategies

Firstly, assuming that player i for i 2 N wants to optimize the expected value of her
expected fuzzy payoff. Then, the best responses of player i 2 N to her/his opponents’
strategy combination r��i 2 K�i are the optimal solutions of the fuzzy expected value
model

max
ri2Ki

E½~uiðri; r��iÞ� ð10Þ

Definition 3.1. A mixed strategy combination r� ¼ ðr�i ; r��iÞ is called an expected
Nash equilibrium in the game G2, if it satisfies the following inequality

u�i ¼ E½~uiðr�i ; r��iÞ� �E½~uiðri; r��iÞ�; 8ri 2 Ki;

where r��i ¼ ðr�1; . . .; r�i�1; r
�
iþ 1; . . .; r

�
nÞ 2 K�i and u�i is the optimistic value of

player i’s expected payoff ~uiðr�i ; r��iÞ.
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Secondly, if player i, for i 2 N, is risk averse, by optimistic value criterion, he
wants to optimize the optimistic value of her expected fuzzy payoff at confidence level
ai so that he can avoid potential considerable losses. This game is denoted by
G3 ¼ hN; ðKiÞi2N ; ð~viÞi2N ; ðaiÞi2Ni. Then the best responses of player i 2 N to her/his
opponents’ strategy combination r��i 2 K�i are the optimal solutions of the fuzzy
chance-constrained programming model:

max
ri2Ki

max
u0i

Crf~uiðri; r��iÞ� u0ig� ai ð11Þ

where ~uiðri; r��iÞ ¼
P

si2Si;s�i2S�i

r�1 � � � r�i�1rir
�
iþ 1 � � � r�n~viðsi; s�iÞ and u0i is a real number.

A n-person credibilistic game is denoted by G3 ¼ hN; ðKiÞi2N ; ð~viÞi2N ; ðaiÞi2Ni,
where ai is the confidence level of player i.

Definition 3.2. A mixed strategy combination r� ¼ ðr�i ; r��iÞ is called a ai-optimistic
Nash equilibrium in the game G3, if it satisfies

u0�i ¼ maxfu0ijCrf~uiðr�i ; r��iÞ� u0ig� aig�maxfu0ijCrf~uiðri; r��iÞ� u0ig� aig for 8i
2 N; ri 2 Ki;

where r��i ¼ ðr�1; . . .; r�i�1; r
�
iþ 1; . . .; r

�
nÞ 2 K�i and u

0�
i is the optimistic value of

player i’s expected payoff ~uiðr�i ; r��iÞ at the confidence level ai.
Thirdly, in many situations, a player may be concerned with an event, such as

objective function’s being greater than prospective value, and want to maximize the
chance of the event. That is, player i has specified a predetermined payoff level ui and
wants to maximize the credibility measure of the event ~ui ri; r�ið Þ� ui; 8 ri; r�ið Þ 2 K.
Then the best responses of player i 2 N to her/his opponents’ strategy combination
r��i 2 K�i are the optimal solutions of the fuzzy chance- constrained programmingmodel

max
xi2Ki

Crf~uiðri; r��iÞ� u00i g ð12Þ

Then, in this case, a n-person credibilistic game is denoted by G4 ¼
hN; ðKiÞi2N ; ð~viÞi2N ; ðu00i Þi2Ni, where u00i is the predetermined payoff levels of player i.

Definition 3.3. A mixed strategy combination r� ¼ ðr�i ; r��iÞ is called a most credi-
bility Nash equilibrium in the game G4, if it satisfies the following inequality

a�i ¼ Crf~uiðr�i ; r��iÞ� u00i g�Crf~uiðri; r��iÞ� u00i g; 8ri 2 Ki:

3.2 Existence Theorem of Three Credibilistic Equilibria

Theorem 3.1. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables in the game G2. Then there exists at least one expected Nash equilibrium
strategy.

n-Person Credibilistic Non-cooperative Game with Fuzzy Payoffs 139



Theorem 3.2. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables in the game G3. Then there exists at least one ai-optimistic Nash equilibrium
strategy.

Theorem 3.3. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables in the game G4. Then there exists at least one most credibility Nash equi-
librium strategy.

Proof: Since the proofs of Theorems 3.1 and 3.3 are similar to that of Theorem 3.2, for
simplicity, we show the proof of Theorem 3.2.
For any mixed strategy combination ðri; r�iÞ 2 K in the game G3, it follows from
Definition 2.6 that

maxfu0ijCrff~uiðri; r�iÞ� u0ig� aig ¼ ð~uiðri; r�iÞÞsupðaiÞ: ð13Þ

Since ~uiðri; r�iÞ ¼
P

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞ~viðsi; s�iÞ; we have that

ð~uiðri; r�iÞÞsupðaiÞ ¼ ð
X

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞ~viðsi; s�iÞÞsupðaiÞ:

It follows from Lemma 2.4 that

ð~uiðri; r�iÞÞsupðaiÞ ¼ ð
X

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞ~viðsi; s�iÞÞsupðaiÞ

¼
X

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞð~viðsi; s�iÞÞsupðaiÞ ð14Þ

It follows from Eq. (9) that

maxfu0ijCrff~uiðri; r�iÞ� u0ig� aig ¼ ð~uiðri; r�iÞÞsupðaiÞ ¼
X

si2Si;s�i2S�i

r1ðs1Þr2ðs2Þ � � � rnðsnÞð~viðsi; s�iÞÞsupðaiÞ ð15Þ

A game is denoted by G0
3 ¼ hN; ðKiÞi2N ; ðð~viðsi; s�iÞÞsupðaiÞÞi2Ni, where

(si, s−i) ∊ S.
It follows from Definition 3.1 and Eq. (11) that the existence of a ai-optimistic

Nash equilibrium in the game G3 is equivalent to the existence of a Nash equilibrium in
the game G0

3.
It follows from Lemma 2.1 that there exists at least one mixed strategy Nash

equilibrium in the game G0
3. Thus, there exists at least one ai-optimistic Nash equi-

librium in the game G3.
These complete the proof of Theorem 3.2. □
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4 Sufficient and Necessary Condition of Three Nash
Equilibria

Three sufficient and necessary conditions are presented to find credibilistic equilibrium
strategies in the n-person credibilistic non-cooperative game, respectively.

Theorem 4.1. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables, Then a strategy profile ðr�i ; r��iÞ 2 K is an expected Nash equilibrium in the
game G2 if and only if the point ðr�1; r�2; . . .; r�n; u�1; u�2; . . .; u�nÞ is an optimal solution to
the following non-linear programming model

maxr1;...;rn;u1;...;un
Xn

i¼1

ð
X

si2Si;s�i2S�i

r1r2 � � � rnE½~viðsi; s�iÞ�Þ �
Xn

i¼1

ui

s:t:

P

s�12S�1

r2 � � � rnE½~v1ðs11; s�1Þ� � u1

..

.

P

s�12S�1

r2 � � � rnE½~v1ðsm1
1 ; s�1Þ� � u1

..

.

P

s�i2S�i

r1 � � � ri�1riþ 1 � � � rnE½~viðs1i ; s�iÞ�� ui

..

.

P

s�i2S�i

r1 � � � ri�1riþ 1 � � � rnE½~viðsmi
i ; s�iÞ� � ui

..

.

P

s�n2S�n

r1r2 � � � rn�1E½~vnðs1n; s�nÞ�� un

..

.

P

s�n2S�n

r1r2 � � � rn�1E½~vnðsmn
n ; s�nÞ� � un

8i 2 N; ri 2 Ki; ui 2 R

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð16Þ

where s ji is the pure strategy that player i 2 N chooses jth j 2 f1; 2; . . .;mig pure
strategy from the pure strategy set Si.

Theorem 4.2. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables. Then a strategy profile ðr�i ; r��iÞ 2 K is an ai-optimistic Nash equilibrium in
the game G3 if and only if the point ðr�1; r�2; . . .; r�n; u

0�
1 ; u

0�
2 ; . . .; u

0�
n Þ is an optimal

solution to the following non-linear programming model
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maxr1;...;rn;u01;...;u0n
Xn

i¼1

ð
X

si2Si;s�i2S�i

r1r2 � � � rnð~viðsi; s�iÞÞaisupÞ �
Xn

i¼1

u0i

s:t:

P

s�12S�1

r2 � � � rnð~v1ðs11; s�1ÞÞa1sup � u01

..

.

P

s�12S�1

r2 � � � rnð~v1ðsm1
1 ; s�1ÞÞa1sup � u01

..

.

P

s�i2S�i

r1 � � � ri�1riþ 1 � � � rnð~viðs1i ; s�iÞÞaisup � u0i

..

.

P

s�i2S�i

r1 � � � ri�1riþ 1 � � � rnð~viðsmi
i ; s�iÞÞaisup � u0i

..

.

P

s�n2S�n

r1r2 � � � rn�1ð~vnðs1n; s�nÞÞansup � u0n

..

.

P

s�n2S�n

r1r2 � � � rn�1ð~vnðsmn
n ; s�nÞÞansup � u0n

8i 2 N; ri 2 Ki; u0i 2 R

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

where s ji is the pure strategy that player i 2 N chooses jth j 2 f1; 2; . . .;mig pure
strategy from the pure strategy set Si.

Theorem 4.3. Let payoffs ~v1ðs1; s�1Þ;~v2ðs2; s�2Þ; . . .;~vnðsn; s�nÞ be independent fuzzy
variables. Then a strategy profile ðr�i ; r��iÞ 2 K is a most credibility Nash equilibrium
in the game G4 if and only if the point ðr�1; r�2; . . .; r�n; a�1; a�2; . . .; a�nÞ is an optimal
solution to the following non-linear programming model

maxr1;...;rn;a1;...;an
Xn

i¼1

Crf
X

si2Si;s�i2S�i

r1r2 � � � rn~viðsi; s�iÞ� u00i g �
Xn

i¼1

ai

s:t:

Crf P

s12S1;s�12S�1

r1r2 � � � rn~v1ðs1; s�1Þ� u001g� a1

..

.

Crf P

si2Si;s�i2S�i

r1r2 � � � rn~viðsi; s�iÞ� u00i g� ai

..

.

Crf P

sn2Sn;s�n2S�n

r2 � � � rn�1~vnðsn; s�nÞ� u00ng� an

8ri 2 Ki; r�i 2 K�i; ai; u00i 2 R; i 2 N

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð18Þ
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Proof: Since the proofs of the three theorems are similar, for simplicity, Theorem 4.2
is only proved.

First, assuming that ðr�1; r�2; . . .; r�n; u0�1 ; u0�2 ; . . .; u0�n Þ is an optimal solution to the
following non-linear programming model (17), then we have

P

s�12S�1

r�2 � � � r�nð~v1ðs11; s�1ÞÞa1sup � u0�1

..

.

P

s�12S�1

r�2 � � � r�nð~v1ðsm1
1 ; s�1ÞÞa1sup � u0�1

..

.

P

s�i2S�i

r�1 � � � r�i�1r
�
iþ 1 � � � r�nð~viðs1i ; s�iÞÞaisup � u0�i

..

.

P

s�i2S�i

r�1 � � � r�i�1r
�
iþ 1 � � � rnr�nð~viðsmi

i ; s�iÞÞaisup � u0�i

..

.

P

s�n2S�n

r�1r
�
1 � � � r�n�1ð~vnðs1n; s�nÞÞansup � u0�n

..

.

P

s�n2S�n

r�1r
�
1 � � � r�n�1ð~vnðsmn

n ; s�nÞÞansup � u0�n

Thus, we have

u0iðri; r��iÞ ¼
X

si2Si;s�i2S�i

r�1 � � �r�i�1rir
�
iþ 1 � � � r�nð~viðsi; s�iÞÞaisup �

X

si2Si;s�i2S�i

r�1 � � � r�i�1r
�
i r

�
iþ 1 � � � r�nð~viðsi; s�iÞÞaisup ¼ u0�i

which implies ðr�i ; r��iÞ 2 K; 8 i 2 N is an ai-optimistic Nash equilibrium, and u0�i is
the ai-optimistic value of player i 2 N in the game G3. The sufficient condition is
proved.

Second, assuming that ðr�i ; r��iÞ 2 K; 8 i 2 N is an ai-optimistic Nash equilibrium,
then we have

u0iðri;r��iÞ ¼
X

si2Si;s�i2S�i

r�1 � � �r�i�1rir
�
iþ 1 � � � r�nð~viðsi; s�iÞÞaisup �

X

si2Si;s�i2S�i

r�1 � � �r�i�1r
�
i r

�
iþ 1 � � �r�nð~viðsi; s�iÞÞaisup ¼ u0�i ;

that is
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P

s�12S�1

r�2 � � � r�nð~v1ðs11; s�1ÞÞa1sup � u0�1

..

.

P

s�12S�1

r�2 � � � r�nð~v1ðsm1
1 ; s�1ÞÞa1sup � u0�1

..

.

P

s�i2S�i

r�1 � � � r�i�1r
�
iþ 1 � � � r�nð~viðs1i ; s�iÞÞaisup � u0�i

..

.

P

s�i2S�i

r�1 � � � r�i�1r
�
iþ 1 � � � rnr�nð~viðsmi

i ; s�iÞÞaisup � u0�i

..

.

P

s�n2S�n

r�1r
�
1 � � � r�n�1ð~vnðs1n; s�nÞÞansup � u0�n

..

.

P

s�n2S�n

r�1r
�
1 � � � r�n�1ð~vnðsmn

n ; s�nÞÞansup � u0�n

which means that ðu0�1 ; u0�2 ; . . .; u0�n Þ is a feasible solution of the non-linear programming
model (17). In fact, obviously,

Xn

i¼1

ð
X

si2Si;s�i2S�i

r1 � � � rnð~viðsi; s�iÞÞaisupÞ �
Xn

i¼1

u0i � 0:

It follows from

Xn

i¼1

ð
X

si2Si;s�i2S�i

r�1 � � � r�nð~viðsi; s�iÞÞaisupÞ �
Xn

i¼1

u0�i ¼ 0

that ðu0�1 ; u0�2 ; . . .; u0�n Þ is an optimal solution to the following non-linear programming
model (17). The necessary condition is proved. □

5 Numerical Example

Assume that there are three players in some market, which are denoted by players 1, 2,
respectively. The payoffs of them are characterized as triangular fuzzy numbers and are
shown in Table 1.

Table 1. 2-player game with triangular fuzzy payoffs

1
2s

2
2s

1
1s

(90,100,110), (80,105,110) (110,160,170), (110,150,190)

2
1s

(130,140, 190), (120,140,200) (60,110,120), (80,90,140)

1
3s
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First, assume players adopt the expected value criterion, then the payoff matrix are
shown as follows:

1
2s

2
2s

1
1s

100, 100 150, 150

2
1s

150, 150 100, 100

1
3s

According to Theorem 4.1, the solution to the model (16) is (0.5, 0.5, 0.5, 0.5, 125,
125). It means that (0.5, 0.5, 0.5, 0.5) is an expected Nash equilibrium. It leads to an
expected payoff 125.

Second, if the two players are risk averse, then the optimistic value criterion is
adopted, assume that the confidence levels of players 1 and 2 are 0.85 and 0.7,
respectively. It leads to

1
2s

2
2s

1
1s

93, 95 125, 134

2
1s

133, 132 75, 86

1
3s

According to Theorem 4.2, by solving the model (17), the solution (0.5412, 0.4588,
0.5556, 0.4444, 107.2, 112.0) is obtained, which means that (0.5412, 0.4588, 0.5556,
0.4444) is a (0.85, 0.7)-optimistic Nash equilibrium. The optimal strategy of player 1 is
(0.5412, 0.4588) that leads to a payoff 107.2 with uncertain measure 85%, and the
optimal strategy of player 2 is (0.5556, 0.4444) that yields a payoff level 112.0 with
uncertain measure 70%.

�Third, if 110 and 107 is the pursuing payoffs of players 1 and 2, respectively.
According to Theorem 4.3, we can obtain the optimal solution to the model (18), i.e.,
(0.5600, 0.4400, 0.5556, 0.4444, 0.8, 0.9). It implies that player 1’s strategy (0.5600,
0.4400) leads to a payoff 110 with uncertain measure 80% and that player 1’s strategy
(0.5556, 0.4444) leads to a payoff 107 with uncertain measure 90%.

6 Conclusion

In this paper, we consider a n-person credibilistic non-cooperative game with fuzzy
payoffs. According to different credibilistic criteria from credibility theorem, the con-
cepts of three credibilistic equilibria are given to deal with different behavior types of
players and their existence theorems are shown. Finally, the sufficient and necessary
conditions of the three credibilistic equilibria are presented for finding the credibilistic
equilibrium strategies.

This n-person credibilistic non-cooperative game is presented. Topics for further
studies include that we can extend the proposed game model to the situation with
asymmetric information.
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Abstract. The aim of this paper is to develop an effective methodology for
solving matrix games with payoffs of intuitionistic fuzzy sets (IFSs). In this
methodology, a new ranking order relation of IFSs is proposed and the concept
of Pareto Nash equilibrium solutions of matrix games with IFS payoffs is firstly
defined. It is proven that the solutions of matrix games with IFS payoffs are
equivalent to those of a pair of bi-objective programming models. The models
and method proposed in this paper are illustrated with a numerical example and
compared with other methods to show the validity, applicability and superiority.

Keywords: Intuitionistic fuzzy set � Game theory � Multiobjective
programming � Pareto nash equilibrium strategy

1 Introduction

There exist some competitive or antagonistic situations in many parts of real life such
as economics, business, management and e-commerce. Game theory gives a mathe-
matical tool for dealing with such conflicting events and has achieved a success. In the
real world, due to the lack of adequate information and/or imprecision of the available
information on the environment, players are not able to estimate exactly payoffs of
outcomes in the games. In order to develop an effective methodology, fuzzy, interval
and stochastic approaches are frequently used to describe the imprecise and uncertain
factors appearing in real game problems. Hence, the fuzzy games, interval-valued
games and the stochastic games have been studied. Lots of papers and books (Bector
et al. 2004; Collins and Hu 2008; Li 2011; Larbani 2009; Nishizaki and Sakawa 2001;
Nayak and Pal 2009; Vijay et al. 2005, 2007) have been published on these topics in
which several types of games have been investigated. In some sense, it seems to be
more natural for players to describe their negative feelings than positive attitudes. But
simultaneously there may be hesitation degrees for players’ judgment. However, the
fuzzy, interval and stochastic approaches are no means to represent the negative
feelings and the hesitation degrees of players. The intuitionistic fuzzy set (IFS) seems
to be very useful for modeling situations like this. Atanassov (1986, 1999) introduced

© Springer Nature Singapore Pte Ltd. 2017
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the concept of an IFS, which is characterized by two functions expressing the mem-
bership degree and the non-membership degree, respectively. The hesitation degree is
equal to 1 minus the membership degree and the non-membership degree. The three
elements of IFSs can express simultaneously the satisfaction degrees, the
non-satisfaction degrees and the hesitation degrees of players for the payoff values in
the games. As far as we know, there exists little investigation on games using the IFSs.
Atanassov (1999) firstly defined and described a game problem using the IFSs. Nayak
and Pal (2007, 2010) studied the bi-matrix games with intuitionistic fuzzy goals and
intuitionistic fuzzy payoffs, respectively. Aggarwal et al. (2012) studied the matrix
games with IFS goals. Li (2010) proposed matrix games with payoffs represented by
Atanassov’s interval-valued IFSs which are an extension of IFSs. Li and Liu (2014)
studied a parameterized non-linear programming approach to solve matrix games with
payoffs of I-fuzzy numbers. Li and Yang (2013) given a bilinear programming
approach to solve bi-matrix games with payoffs of trapezoidal intuitionistic fuzzy
numbers. Rahaman et al. (2015) studied bi-matrix games with pay-offs of triangular
intuitionistic fuzzy numbers. Nan et al. (2010) studied matrix games with payoffs of
triangular intuitionistic fuzzy numbers which are a special case of IFSs. Li and Nan
(2009) studied the matrix games with IFS payoffs and transformed solving matrix
games with IFS payoffs into solving the nonlinear programming models in terms of the
inclusion relation of IFSs and their operations. However, from the viewpoint of logic
and the concept of matrix games with IFS payoffs, Player I’s gain-floor and Player II’s
loss-ceiling of matrix games with IFS payoffs should be IFSs, while they can not be
explicitly obtained by Li and Nan’s model (2009) even though these are very much
desirable. Obviously, this case is not rational and effective. On the other hand, in Li and
Nan’s method (2009) the bi-objective nonlinear programming models are solved by
using the weighted average method to aggregate constraints and objective functions,
which may loss some information. Thus, this paper focuses on developing an effective
method to determine the Pareto Nash equilibrium strategies and the IFS-type values for
Player I’s gain-floor and Player II’s loss-ceiling of matrix games with IFS payoffs.

A new ranking order relation of IFSs is proposed and the concept of Pareto Nash
equilibrium strategies of matrix games with IFS payoffs is firstly defined. It has been
proven that the Pareto Nash equilibrium strategies, Player I’s gain-floor and Player II’s
loss-ceiling of matrix games with IFS payoffs are equivalent to solving a pair of
bi-objective linear programming models.

The rest of this paper is organized as follows. In Sect. 2, the concept of the IFSs
and their operations are briefly reviewed. In addition, a new ranking order relation of
IFSs is proposed. In Sect. 3, matrix games with IFS payoffs are formulated and the
concept of solutions of matrix games with IFS payoffs is defined. Pareto Nash equi-
librium strategies for two players, Player I’s gain-floor and Player II’s loss-ceiling of
matrix games with IFS payoffs are obtained by solving a pair of bi-objective pro-
gramming models. In Sect. 4, the method proposed in this paper is illustrated with a
numerical example and compared with other methods to show the validity, applica-
bility and superiority. Conclusion is made in Sect. 5.
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2 Definitions and Notations

2.1 IFSs and Operations

The concept of an IFS was firstly introduced by Atanassov (1986, 1999).

Definition 1 (Atanassov 1986, 1999). Let X ¼ fx1; x2; � � � ; xng be a finite universal set.
An IFS ~A in X may be mathematically expressed as ~A ¼ f\xl; l~AðxlÞ; t~AðxlÞ[
jxl 2 Xg, where l~A : X 7! ½0; 1� and m~A : X 7! ½0; 1� are the membership degree and the
non-membership degree of an element xl 2 X to the set ~A�X; respectively, such that
they satisfy the following condition: 0� l~AðxlÞþ t~AðxlÞ� 1 for every xl 2 X.

Let p~AðxlÞ ¼ 1� l~AðxlÞ � t~AðxlÞ, which is called the intuitionistic index (or hesi-
tancy degree) of an element xl to the set ~A. It is the degree of indeterminacy mem-
bership of the element xl to the set ~A. Obviously, 0� p~AðxlÞ� 1.

If an IFS ~C in X is a singleton set, i.e., ~C ¼ f\xk; l~CðxkÞ; t~CðxkÞ[ g, then it is
usually denoted by ~C ¼ \l~CðxkÞ; t~CðxkÞ[ for short.

Definition 2 (Atanassov 1986, 1999). Let ~A and ~B be two IFSs in the set X, and k[ 0
be a real number. Designate:

(1) ~Aþ ~B ¼ f\xl; l~AðxlÞþ l~BðxlÞ � l~AðxlÞl~BðxlÞ; t~AðxlÞt~BðxlÞ[ jxl 2 Xg;
(2) ~A~B ¼ f\xl; l~AðxlÞl~BðxlÞ; t~AðxlÞþ t~BðxlÞ � t~AðxlÞt~BðxlÞ[ jxl 2 Xg;
(3) k~A ¼ f\xl; 1� ð1� l~AðxlÞÞk; ðt~AðxlÞÞk [ jxl 2 Xg:
(4) A�B if and only if for any xl 2 X; lAðxlÞ� lBðxlÞ and tAðxlÞ � tBðxlÞ:

When the IFSs are used to model game problems, the comparison or ranking order
of IFSs is important. In fact, the IFS ~C ¼ \l~CðxlÞ; t~CðxlÞ[ is mathematically
equivalent to the interval-valued fuzzy set, denoted by ½l~CðxlÞ; l~CðxlÞþ p~CðxlÞ� or
½l~CðxlÞ; 1� t~CðxlÞ�. In order to facilitate the sequent discussions, inspired by the
ranking order relation of intervals, we propose a new ranking method of IFSs, which is
equivalent to the inclusion relation of IFSs, i.e., Eq. (4) in Definition 2.

Definition 3. Let ~A ¼ \l~AðxlÞ; t~AðxlÞ[ and ~B ¼ \l~BðxlÞ; t~BðxlÞ[ be two IFSs in
the set X. Then, the IFS order relation “� IF” is defined as ~A � IF ~B if and only if
l~AðxlÞ� l~BðxlÞ and 1� t~AðxlÞ� 1� t~BðxlÞ.

The symbol “� IF” is an intuitionistic fuzzy version of the order relation “� ” in
the real line and has the linguistic interpretation “essentially smaller than or equal to”.

3 The Models and Method for Matrix Games with IFS
Payoffs

Let us consider any matrix games with IFS payoffs. Assume that S1 ¼ fa1; a2; � � � ; amg
and S2 ¼ fb1; b2; � � � ; bng are sets of pure strategies for Players I and II, respectively.
Denote I ¼ f1; 2; � � � ;mg and J ¼ f1; 2; � � � ; ng. The vectors x ¼ ðx1; x2; � � � ; xmÞT and
y ¼ ðy1; y2; � � � ; ynÞT are mixed strategies for Players I and II, respectively, where
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xi i 2 Ið Þ and yj j 2 Jð Þ are probabilities which Players I and II choose their pure
strategies ai 2 S1 i 2 Ið Þ and bj 2 S2 j 2 Jð Þ, respectively. Sets of mixed strategies for

Players I and II are denoted by X and Y , respectively, i.e., X ¼ fxjP
m

i¼1
xi ¼

1; xi � 0 ði 2 IÞg and Y ¼ fyjP
n

j¼1
yj ¼ 1; yj � 0 ðj 2 JÞg. If Player I chooses pure

strategy ai 2 S1 i 2 Ið Þ and Player II chooses pure strategy bj 2 S2 j 2 Jð Þ, then at the
outcome ðai; bjÞ Player I gains a payoff aij expressed with an IFS aij ¼ \lij; tij [
(i 2 I; j 2 J), while Player II loses the payoff aij, i.e., the IFS \lij; tij [ . Thus, a
payoff matrix for Player I is concisely expressed in the matrix format as follows:

In the following, the matrix games ~A with IFS payoffs are usually called the IFS
matrix games ~A for short. Often they are used interchangeably.

If Player I chooses a mixed strategy x 2 X and Player II chooses a mixed strategy
y 2 Y , then an expected payoff for Player I is obtained as follows:

~Eðx; yÞ ¼ xT~Ay ð1Þ

According to Definition 2, the expected payoff ~Eðx; yÞ in Eq. (1) is an IFS and can
be calculated as follows:

xT~Ay ¼ ðx1; x2; � � � ; xmÞ

\l11; t11 [ \l12; t12 [ � � � \l1n; t1n [
\l21; t21 [ \l22; t22 [ � � � \l2n; t2n [

..

. ..
. ..

. ..
.

\lm1; tm1 [ \lm2; tm2 [ � � � \lmn; tmn [

0

B
B
B
B
@

1

C
C
C
C
A

y1
y2

..

.

yn

0

B
B
B
B
@

1

C
C
C
C
A

¼ \1�
Yn

j¼1

Ym

i¼1

ð1� lijÞxiyj ;
Yn

j¼1

Ym

i¼1

txiyjij [

ð2Þ

It is customary to assume that Player I is a maximizing player and Player II is a
minimizing player. That is to say, Player II is interesting in finding a mixed strategy
y 2 Y so as to minimize ~Eðx; yÞ, denoted by

tðxÞ ¼ min
y2Y

fxT~Ayg
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Hence, Player I should choose a mixed strategy x 2 X that maximizes the minimum
expected gain, i.e.,

t� ¼ max
x2X

min
y2Y

fxT~Ayg ð3Þ

Such t� is called Player I’s gain-floor.
Similarly, Player I is interesting in finding a mixed strategy x 2 X so as to maxi-

mize ~Eðx; yÞ, denoted by

xðyÞ ¼ max
x2X

fxT~Ayg

Hence, Player II should choose a mixed strategy y 2 Y that minimizes the maxi-
mum expected loss, i.e.,

x� ¼ min
y2Y

max
x2X

fxT~Ayg ð4Þ

Such x� is called Player II’s loss-ceiling.
It has been proved that Player I’s gain-floor t� and the Player II’s loss-ceiling x�

are IFSs and such that t� � IF x� (Li and Nan 2009).
According to maximin and minimax principles for Players I and II, the Nash

equilibrium strategy for the IFS matrix games ~A is defined as follows:

Definition 4. A pair ðx�; y�Þ 2 X 	 Y is a Nash equilibrium strategy for the IFS matrix
games ~A if

(1) xT~Ay� � IF x�T~Ay� for x 2 X;
(2) x�T~Ay� � IF x�T~Ay for y 2 Y :

The expected payoff ~Eðx; yÞ is an IFS with the membership degree and the
non-membership degree which usually are conflict. Thus usually there do not exist
above Nash equilibrium strategy defined in Definition 4 for the IFS matrix games ~A.
Then, the concepts of solutions of the IFS matrix games ~A may be given in a similar
way to that of the Pareto optimal solutions as follows.

Definition 5. A pair ðx�; y�Þ 2 X 	 Y is a Pareto Nash equilibrium strategy for the
IFS matrix games ~A if

(1) There exists no x 2 X such that x�T~Ay� � IF xT~Ay�;
(2) There exists no y 2 Y such that x�T~Ay � IF x�T~Ay�:

Based on the ranking method of IFSs defined in Definition 3, the Theorem 1 is
obtained as follows.

Theorem 1. For the IFS matrix games ~A, ðx�; y�Þ 2 X 	 Y is a Pareto Nash equilib-
rium strategy for the IFS matrix games ~A if and only if
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(1) There exists no x 2 X such that x�Tly� � xTly� and x�T(e� t)y� � xT(e� t)y�;
(2) There exists no y 2 Y such that x�Tly� x�Tly� and x�T(e� t)y � x�T(e� t)y�;

where l ¼ ðl~AijÞm	n e = (1)m	n and t ¼ ðt~AijÞm	n.

Proof: Let ðx�; y�Þ be a Nash equilibrium strategy for the IFS matrix games ~A. First,
we assume that there exists a strategy �x 2 X such that

x�Tly� � �xTly� and x�T(e� t)y� � �xT(e� t)y�;

i.e.,

Xm

i¼1

Xn

j¼1

x�i lijy
�
j �

Xm

i¼1

Xn

j¼1

�xilijy
�
j and

Xm

i¼1

Xn

j¼1

x�i ð1� tijÞy�j �
Xm

i¼1

Xn

j¼1

�xið1� tijÞy�j ;

which are equivalent to the inequalities as follows:

Xm

i¼1

Xn

j¼1

x�i ð1� lijÞy�j �
Xm

i¼1

Xn

j¼1

�xið1� lijÞy�j ð5Þ

and

Xm

i¼1

Xn

j¼1

x�i tijy
�
j �

Xm

i¼1

Xn

j¼1

�xitijy
�
j ð6Þ

respectively.
As ln x is a monotonically increasing function, x�i � 0; y�j � 0; 1� lij � 0 and

1 � tij � 0. Then it is easily seen that Eqs. (5) and (6) are equivalent to

Xm

i¼1

Xn

j¼1

x�i lnð1� lijÞy�j �
Xm

i¼1

Xn

j¼1

�xi lnð1� lijÞy�j ð7Þ

and

Xm

i¼1

Xn

j¼1

x�i ln tijy
�
j �

Xm

i¼1

Xn

j¼1

�xi ln tijy�j ð8Þ

respectively.
Equations (7) and (8) imply that

Yn

j¼1

Ym

i¼1

ð1� lijÞx
�
i y

�
j �

Yn

j¼1

Ym

i¼1

ð1� lijÞ�xiy
�
j ð9Þ
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and

Yn

j¼1

Ym

i¼1

t
x�i y

�
j

ij �
Yn

j¼1

Ym

i¼1

t
�xiy�j
ij ð10Þ

respectively. Hence, we obtain

1�
Yn

j¼1

Ym

i¼1

ð1� lijÞx
�
i y

�
j � 1�

Yn

j¼1

Ym

i¼1

ð1� lijÞ�xiy
�
j ð11Þ

and

1�
Yn

j¼1

Ym

i¼1

t
x�i y

�
j

ij � 1�
Yn

j¼1

Ym

i¼1

t
�xiy�j
ij ð12Þ

respectively.
It is derived from Definition 3 and Eqs. (2), (11) and (12) that

x�T~Ay� � IF �x
T~Ay� ð13Þ

Combining with Eq. (13) and according to Definition 5, ðx�; y�Þ is not a Nash
equilibrium strategy for the IFS matrix games ~A. Hence, there exists a contradiction
with the assumption.

Analogously, we can prove that there exists no y 2 Y such that x�Tly� x�Tly� and
x�T(e� t)y� x�T(e� t)y�.

Theorem 2. The strategy x� is a Pareto Nash equilibrium strategy and \l�,t� [ is
the Player I’s gain-floor for the IFS matrix games ~A if and only if (x�; l�; t�Þ is an
efficient solution of the bi-objective programming model as follows:

maxfl; 1� tg

s:t:

Pm

i¼1
lijxi � l ðj ¼ 1; 2; � � � ; nÞ

Pm

i¼1
ð1� tijÞxi � 1� t ðj ¼ 1; 2; � � � ; nÞ

0� lþ t� 1
Pm

i¼1
xi ¼ 1

l� 0; t� 0; xi � 0 ði ¼ 1; 2; � � � ;mÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ð14Þ
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Proof: Let x� be a Pareto Nash equilibrium strategy for Player I. Then, there is no
x 2 X such that

x�Tly� � xTly� and x�T(e� t)y� � xT(e� t)y�

namely,

min
y2Y

fx�Tlyg� min
y2Y

fxTlyg and min
y2Y

fx�T(e� t)yg� min
y2Y

fxT(e� t)yg ð15Þ

which can be rewritten as follows:

min
y2Y

fx�Tly; x�T(e� t)yg� min
y2Y

fxTly; xT(e� t)yg: ð16Þ

It makes sense to consider only the extreme points of set Y in Eq. (22). Then, we
have

min
j2J

fx�Tle1,x�T(e� t)e1g� min
j2J

fxTle1,xT(e� t)e1g; ð17Þ

where e1 ¼ ð1; � � � ; 1Þ.
Note that Eq. (23) states that x� is an efficient solution of the model as follows:

max
x2X

fmin
j2J

fxTle1g;min
j2J

fxT(e� t)e1gg: ð18Þ

Let l ¼ min
j2J

fxTle1g and 1� t ¼ min
j2J

fxT(e� t)e1g. Then, Eq. (18) can be

expressed as Eq. (14).
Analogous to Theorem 2, we have the following theorem for Player II.

Theorem 3. The strategy y� is a Pareto Nash equilibrium strategy and \r�,q� [ is
the Player II’s loss-ceiling for the IFS matrix games ~A if and only if (y�; r�; q�Þ is an
efficient solution of the bi-objective programming model as follows:

minfr; 1� qg

s:t:

Pn

j¼1
lijyj � r ði ¼ 1; 2; � � � ;mÞ

Pn

j¼1
ð1� tijÞyj � 1� q ði ¼ 1; 2; � � � ;mÞ

0� rþ q� 1
Pn

j¼1
yj ¼ 1

r� 0; q� 0; yj � 0 ðj ¼ 1; 2; � � � ; nÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ð19Þ
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Proof: Let y� be a Pareto Nash equilibrium strategy for Player II. Then, there is no
y 2 Y such that

x�Try� x�Try� and x�T(e� q)y� x�T(e� q)y�;

namely,

max
x2X

fxTryg� max
x2X

fxTry�g and max
x2X

fxT(e� q)yg� max
x2X

fxT(e� q)y�g; ð20Þ

which can be rewritten as follows:

max
x2X

fxTry; xT(e� q)yg� max
x2X

fxTry�; xT(e� q)y�g: ð21Þ

It makes sense to consider only the extreme points of set X in Eq. (27). Then, we
have

max
i2I

feT2ry,eT2 ðe� q)yg� max
i2I

feT2ry,eT2 ðe� q)y�g; ð22Þ

where e2 ¼ ð1; � � � ; 1Þ.
Note that Eq. (22) states that y� is an efficient solution of the model as follows:

min
y2Y

fmax
i2I

feT2ryg;max
i2I

feT2 ðe� qÞygg: ð23Þ

Let r ¼ max
i2I

feT2ryg and 1� q ¼ max
i2I

feT2 (e� qÞyg. Then, Eq. (23) can be

expressed as Eq. (19).

4 A Numerical Example and Comparative Analysis

4.1 A Numerical Example

A numerical example is adopted from Li and Nan (2009) in order to conduct com-
parison between Li and Nan’s method (2009) and the method proposed in this paper.
The computational results are analyzed and compared to show the validity, applica-
bility and superiority of the method proposed in this paper.

Let us consider the specific IFS matrix games ~A, where the IFS payoff matrix is
given as follows (Li and Nan 2009):

ð24Þ
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According to Eq. (14), the bi-objective programming model is constructed as
follows:

maxfl; 1� tg

s:t:

0:95x1 þ 0:25x2 þ 0:5x3 � l
0:7x1 þ 0:95x2 þ 0:05x3 � l
0:5x1 þ 0:7x2 þ 0:95x3 � l
0:95x1 þ 0:3x2 þ 0:6x3 � 1� t
0:75x1 þ 0:95x2 þ 0:05x3 � 1� t
0:6x1 þ 0:75x2 þ 0:95x3 � 1� t
x1 þ x2 þ x3 ¼ 1
lþ t� 1
xi; l; t� 0 ði ¼ 1; 2; 3Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð25Þ

where x1; x2; x3; l and t are decision variables. Using the software package ADBASE
(Steuer 1995), the efficient solution ðx�; l�; t�Þ of Eq. (25) can be obtained, where
x� ¼ ð0:543; 0:3; 0:157Þ, l� ¼ 0:649 and t� ¼ 0:286. Thus, x� ¼ ð0:5; 0:304; 0:196Þ is
a Pareto Nash equilibrium strategy of Player I and Player I’s gain-floor is given by the
IFS \l�; t� [ ¼ \0:649; 0:286[ for the IFS matrix games ~A.

Similarly, according to Eq. (19), the bi-objective programming model is con-
structed as follows:

minfr; 1� qg

s:t:

0:95y1 þ 0:7y2 þ 0:5y3 � r
0:25y1 þ 0:95y2 þ 0:7y3 � r
0:5y1 þ 0:05y2 þ 0:95y3 � r
0:95y1 þ 0:75y2 þ 0:6y3 � 1� q
0:3y1 þ 0:95y2 þ 0:75y3 � 1� q
0:6y1 þ 0:05y2 þ 0:95y3 � 1� q
y1 þ y2 þ y3 ¼ 1
rþ q� 1
yi � 0;r� 0; q� 0 ði ¼ 1; 2; 3Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð26Þ

where y1; y2; y3; r and q are decision variables. Using the software package ADBASE
(Steuer 1995), the efficient solution ðy�; r�; q�Þ of Eq. (26) can be obtained, where
y� ¼ ð0:234; 0:218; 0:548Þ, r� ¼ 0:646 and q� ¼ 0:314. Thus, y� ¼
ð0:234; 0:203; 0:563Þ is a Pareto Nash equilibrium strategy of Player II and Player II’s
loss-ceiling is given by the IFS \r�;q� [ ¼ \0:646; 0:314[ for the IFS matrix
games ~A.

4.2 Comparative Analysis of the Results Obtained by Li and Nan’s
Method and the Proposed Method

Li and Nan (2009) studied the matrix games with IFS payoffs. According to the
definition of solutions for the IFS matrix games ~A, the inclusion relation and the
operations of IFSs, Player I’s gain-floor �h ¼ \�l;�t[ and corresponding optimal
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strategy �x for the IFS matrix games ~A can be generated by solving the bi-objective
non-linear programming model constructed as follows:

maxflg; minftg

s:t:

1� Qm

i¼1
ð1� lijÞxi � l ðj ¼ 1; 2; � � � ; nÞ

Qm

i¼1
txiij � t ðj ¼ 1; 2; � � � ; nÞ

0� lþ t� 1
Pm

i¼1
xi ¼ 1

l� 0; t� 0; xi � 0 ði ¼ 1; 2; � � � ;mÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ð27Þ

where l; t and xi ði ¼ 1; 2; � � � ;mÞ are decision variables. By using a variable substi-
tution technique and the weighted average method to aggregate constraints and
objective functions, the bi-objective nonlinear programming model (i.e., Eq. (27)) is
transformed as follows:

minfpg

s:t:

Qm

i¼1
½ð1� lijÞk t1�k

ij �xi � p ðj ¼ 1; 2; � � � ; nÞ
Pm

i¼1
xi ¼ 1

xi � 0 ði ¼ 1; 2; � � � ;mÞ

8
>>>><

>>>>:

ð28Þ

where k 2 ½0; 1�.
Similarly, Player II’s loss-ceiling �x ¼ \�r; �q[ and corresponding optimal

strategy �y for the IFS matrix games ~A can be generated by solving the bi-objective
programming model constructed as follows:

minfrg; maxfqg

s:t:

1� Qn

j¼1
ð1� lijÞyj � r ði ¼ 1; 2; � � � ;mÞ

Qn

j¼1
tyjij � q ði ¼ 1; 2; � � � ;mÞ

0� rþ q� 1
Pn

j¼1
yj ¼ 1

r� 0; q� 0; yj � 0 ðj ¼ 1; 2; � � � ; nÞ

8
>>>>>>>>>><

>>>>>>>>>>:

ð29Þ
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In the same analysis to that of Player I, the bi-objective nonlinear programming
model (i.e., Eq. (29)) is transformed as follows:

maxfqg

s:t:

Qn

j¼1
½ð1� lijÞkt1�k

ij �yj � q ði ¼ 1; 2; � � � ;mÞ
Pn

j¼1
yj ¼ 1

yj � 0 ðj ¼ 1; 2; � � � ; nÞ

8
>>>><

>>>>:

ð30Þ

For the IFS matrix games ~A, according to Eqs. (24) and (28), the nonlinear pro-
gramming model is constructed as follows:

minfpg

s:t:

0:05x1ð0:75k0:71�kÞx2ð0:5k0:41�kÞx3 � p
ð0:3k0:251�kÞx10:05x20:95x3 � p
ð0:5k0:41�kÞx1ð0:3k0:251�kÞx20:05x3 � p
x1 þ x2 þ x3 ¼ 1
xi � 0 ði ¼ 1; 2; 3Þ

8
>>>><

>>>>:

ð31Þ

Similarly, according to Eqs. (24) and (30), the nonlinear programming model is
constructed as follows:

maxfqg

s:t:

0:05y1ð0:3k0:251�kÞy2ð0:5k0:41�kÞy3 � q
ð0:75k0:71�kÞy10:05y2ð0:3k0:251�kÞy3 � q
ð0:5k0:41�kÞy10:95y20:05y3 � q
y1 þ y2 þ y3 ¼ 1
yj � 0 ðj ¼ 1; 2; 3Þ

8
>>>><

>>>>:

ð32Þ

For some given values k 2 ð0; 1Þ, using the nonlinear programming methods,
optimal solutions of Eqs. (31) and (32) are obtained as in Table 1, respectively.

From Table 1, for given k 2 ð0; 1Þ, Player I’s optimal strategy �x and Player II’s
optimal strategy �y are obtained, respectively, whereas Player I’s gain-floor and Player
II’s loss-ceiling of the IFS matrix games ~A can not be obtained. Furthermore, the

Table 1. Optimal solutions of Eqs. (31) and (32)

k �x �p �y �q �xT�A�y

0.1 (0.414,0.335,0.251)T 0.206 (0.261,0.294,0.445)T 0.206 <0.773, 0.203>
0.3 (0.411,0.333,0.256)T 0.210 (0.265,0.295,0.440)T 0.210 <0.759, 0.217>
0.5 (0.408,0.332,0.260)T 0.215 (0.268,0.296,0.436)T 0.215 <0.773, 0.204>
0.8 (0.403,0.331,0.266)T 0.222 (0.275,0.297,0.428)T 0.222 <0.773, 0.204>
0.9 (0.402,0.330,0.268)T 0.225 (0.275,0.297,0.428)T 0.225 <0.773, 0.204>
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expected payoff value obtained Li and Nan’s method (2009) is the value <0.773,
0.204>, which is approximate to the expected payoff value <0.7603, 0.2103> obtained
the proposed method in this paper.

Comparing Li and Nan’s method (2009) and the method proposed in this paper, it is
not difficult to draw the following conclusions.

(1) The proposed method not only provides the Nash equilibrium strategies but also
the IFS-type values for Player I’s gain-floor and Player II’s loss-ceiling of the IFS
matrix games ~A, which cannot be obtained by Li and Nan’s method (2009). The
latter method only obtains the optimal strategies for two players, respectively. The
method proposed in this paper obtains the IFS-type Player I’s gain-floor
\l�; t� [ ¼ \0:649; 0:286[ and Player II’s loss-ceiling \r�; q� [ ¼
\0:646; 0:314[ as well as the Pareto Nash equilibrium strategies for Player I
and Player II.

(2) The amount of computation and the complexity of solving process of the pro-
posed method are less than that using Li and Nan’s method (2009). Player I’s
gain-floor, Player II’s loss-ceiling and corresponding Pareto Nash equilibrium
strategies can be obtained through solving the bi-objective linear programming
models with the membership degrees and the non-membership degrees of the
IFS-type payoffs in the payoff matrix, respectively. However, in Li and Nan’s
method (2009) the optimal strategies for two players are obtained by the
bi-objective non-linear programming models, which are not easily solved.

(3) The method proposed in this paper does not involve in any subjective factor.
However, in Li and Nan’s method (2009), the obtained solutions closely depend
on the parameter k 2 ½0; 1� and more or less involve in subjective factors such as
attitude and preference. Thus, the computational results obtained by the method
proposed in this paper is more rational, reliable and convincing than that obtained
by Li and Nan’s method (2009).

5 Conclusion

This paper develops a simple and an effective method for solving IFS matrix games.
A new ranking order relation of IFSs is proposed and the concept of Pareto Nash
equilibrium strategies of matrix games with IFS payoffs is firstly defined. The Pareto
Nash equilibrium strategies and the IFS-type values for Player I’s gain-floor and Player
II’s loss-ceiling of matrix games with IFS payoffs are obtained through solving the
derived a pair of bi-objective linear programming models.

It is easily seen from the aforementioned discussion and comparison that our study
is significantly different from Li and Nan’s work (2009). Moreover, the method pro-
posed in this paper has some remarkably advantages over Li and Nan’s method (2009)
from the aspects of the scale, solving process, validity and computation amount of the
derived auxiliary programming models.

It is not difficult to see that the idea of this paper may be applicable to other games
with payoff of IFSs such as two-person nonzero-sum games (i.e., bi-matrix games) and
n-person non-cooperative games, which will be investigated in the near future.
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Abstract. Axiomatizations and recursive representations of the Shapley
value on the class of all cooperative games with transferable utilities are
given. Marginal games, which are closely related to dual games, play cen-
tral roles in our results. Our axiomatizations are based on axioms that
are marginal game variations of the well-known balanced contributions
property, so that they are interpreted as fair treatment between two play-
ers in games as the balanced contributions property is. Our general recur-
sive representation enables us to represent the Shapley value for n-person
games by those for r-person and (n − r)-person games with fixed r < n.
The particular case of r = 1 has a clear contrasting interpretation to the
existing recursive formula.

Keywords: Shapley value · Marginal game · Dual game · Balanced
contribution · Recursive representation

1 Introduction

Duality plays important roles in cooperative games with transferable utili-
ties (henceforth, TU games). Particularly, duality between games (i.e., duality
between characteristic functions in games) has been extensively studied in the
literature on TU games. Let N be a set of players and v a characteristic func-
tion on N . Given a TU game (N, v), its dual game is a game in which every
coalition T ⊆ N obtains the worth that is lost when the coalition leave from
the grand coalition in the original game, that is, v(N) − v(N \ T ). Dual games
are, for example, studied by [18] in voting games. In addition, [8] studies a dual
game representation of bankruptcy games. [1] show that dual airport games are
line-graph peer group games. [3] clarify that there is a duality relation between
auction games and the ring games. [6] investigates the Shapley value of weighted
cost games and their duals. [4] axiomatize classes of values by focusing on duality
between so-called the CIS value and the ENSC value. Recently, based on duality
between games, [13] define duality between solutions, axioms, and axiomatiza-
tions, and investigate duality between axiomatizations of solutions of TU games.
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 165–173, 2017.
https://doi.org/10.1007/978-981-10-6753-2_12
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Marginal games also play substantial role in TU games. Given a TU game
(N, v) and a coalition S ⊆ N , the marginal game with respect to S is a game
on the complement coalition of the coalition, that is, N \ S. In the game, any
coalition T ⊆ N \ S wins the cooperation of S by paying the worth of S in
the original games, that is, T obtains v(S ∪ T ) − v(S). The marginal games are
used for construction an appropriate algorithm for generating the constrained
egalitarian solution for convex game in [9]. Also, they characterize convex games
and total clan games (see [2]). Marginal games are obtained by dual games.
More precisely, a marginal game with respect to S is obtained by the following
procedure: (i) consider a dual game of the game, (ii) consider a restriction of
the dual game on N \ S, and (iii) again consider a dual game of the restricted
game. Consequently, marginal games can be seen as a kind of dual games. In
addition, this mechanism gives that properties of dual games can be translated
to marginal games.

The Shapley value ([15]), is one of the central solution of TU games, and it
has been subjected to extensive research. Among many researches on the Shapley
value, a characterization by [12] using the balanced contributions property and
efficiency not only sheds lights on reasonableness of the Shapley value but also
gives us new viewpoints of it. By these axioms, the Shapley value is represented
in a recursive manner with respect to numbers of players in games. In other
words, the Shapley value of an n-person game is represented by the Shapley
values of (n − 1)-person games (subgames) which are restrictions of the original
n-person game (see [10,11], [16]).

In this paper, we give new characterizations of the Shapley value, by focusing
on marginal games. Our new characterizations are classified into two categories:
axiomatizations and recursive representations.

For axiomatizations, we consider two variations of the balanced contributions
property of [12] by using marginal games instead of subgames. The balanced con-
tributions property of [12] requires that fair treatment of two players with respect
to departure of each of the players from games. Our two variations are obtained
by using (extended) marginal games instead of subgames, and thus, they can be
interpreted as fair requirement between two players, as the original Myerson’s
balanced contributions property is. Although each of our new balanced contri-
butions properties is different to the original balanced contributions property of
[12], it characterizes the Shapley value in conjunction with efficiency (and the
dummy player out property of [17]) in a similar manner as the original one.

For recursive representations, we revert the interpretation of the Shapley
value as an expectation of each player’s marginal contributions among all pos-
sible orders on the set of all players. This interpretation and marginal games fit
together well, and we obtain a general recursive representation of the Shapley
value for n-person games by that for r-person and (n − r)-person games with
fixed r < n. The particular case of our general recursive representation when
r = 1 is in contrast to an existing recursive formula of the Shapley value of
[10,11], [16].
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The paper is organized as follows. Basic notation and definitions are presented
in Sect. 2. Marginal games and extended marginal games are defined and their
properties are discussed in Sect. 3. Axiomatic characterizations of the Shapley
value are given in Sect. 4. Recursive formulas of the Shapley value are provided in
Sect. 5. A remark on non-cooperative foundation of the Shapley value is included
in Sect. 6.

2 Preliminaries

A TU game is a pair (N, v) where N ⊆ IN is a finite set of players and v : 2N → IR
with v(∅) = 0 is a characteristic function. Let G be a set of all TU games. Let
|N | = n where | · | represents the cardinality of a set. A subset S of N is called
a coalition. For any S ⊆ N , v(S) represents the worth of the coalition. For
simplicity, each singleton is represented as i instead of {i} when there exists
no fear of confusion. For any two games (N, v), (N,w) ∈ G, a game (N, v + w)
is defined as (v + w)(S) = v(S) + w(S) for any S ⊆ N . For any S ⊆ N , the
subgame of (N, v) on S is a pair (S, v|S) where v|S(T ) = v(T ) for any T ⊆ S.
We write the subgame on S as (S, v), for simplicity. Given a game (N, v) ∈ G,
its dual game (N, v∗) is the game that assigns to each coalition S ⊆ N the worth
that is lost by the grand coalition N if S leaves N , that is, for each S ⊆ N ,
v∗(S) = v(N) − v(N \ S). Given a game (N, v) ∈ G, a player i ∈ N is dummy in
(N, v) if for any S ⊆ N with S � i, it holds that v(S) = v(S \ i) + v(i), and a
player i ∈ N is null in (N, v) if i is dummy and if v(i) = 0.

A value ϕ is a mapping from G to IRN . A value ϕ

– is additive (ADD) ifϕ(N, v+w) = ϕ(N, v)+ϕ(N,w) for any (N, v), (N,w) ∈ G,
– is self-dual (SD) if ϕ(N, v) = ϕ(N, v∗) for any (N, v) ∈ G,
– satisfies the dummy player out property (DPO, [17]) if ϕj(N, v) = ϕj(N \ i, v)

for any dummy player i in (N, v), any j �= i, and any (N, v) ∈ G,
– satisfies the null player property (NP) if ϕi(N, v) = 0 for any null player i in

(N, v) and any (N, v) ∈ G,
– satisfies the null player out property (NPO, [7]) if ϕj(N, v) = ϕj(N \ i, v) for

any null player i in (N, v), any j �= i, and any (N, v) ∈ G,
– satisfies the balanced contributions property (BC, [12]) if ϕi(N, v) − ϕi

(N \ j, v) = ϕj(N, v) − ϕj(N \ i, v) for any i, j ∈ N with i �= j, and any
(N, v) ∈ G, and

– is efficient (EFF) if
∑

i∈N ϕi(N, v) = v(N) for any (N, v) ∈ G.

One of the well-known values in TU games is the Shapley value ([15]). Let
π be an order on N and Π be the set of all orders on N . Given (N, v) ∈ G, the
Shapley value φ(N, v) is defined as follows: For each i ∈ N ,

φi(N, v) =
1
n!

∑

π∈Π

(
v({j|π(j) ≤ π(i)}) − v({j|π(j) < π(i)})

)
.

The term v({j|π(j) ≤ π(i)})−v({j|π(j) < π(i)}) is called i’s marginal contribu-
tion in order π. Player i’s Shapley value can be interpreted as the expected value
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of i’s marginal contributions with respect to the discrete uniform distribution
on the set of all possible orders of all players. It is well-known that the Shapley
value satisfies all of the above seven properties.

3 Marginal Games and Extended Marginal Games

Given a game (N, v) ∈ G and a coalition S ⊆ N , the S-marginal game (N \S, vS)
is the game that assigns to each coalition T ⊆ N \ S the worth of S ∪ T minus
the worth of S, that is, for each T ⊆ N \ S, vS(T ) = v(S ∪ T ) − v(S). In the
S-marginal game, any subset of N \S can win the cooperation of S by paying the
value v(S) to S. Between the dual games and the marginal games, the following
holds.

Proposition 1. For any (N, v) ∈ G and any S ⊆ N , it holds vS = (v∗|N\S)∗.

Proof. For any S ⊆ N and any T ⊆ N \ S, (v∗|N\S)∗(T ) = v∗(N \ S) − v∗

((N \ S) \ T ) = v(N) − v(S) − v(N) + v(S ∪ T ) = vS(T ). 
�
By comparing dual games and marginal games, the set of players are different.
By extending marginal games on the same set of players as the original games
and dual games, we introduce an alternative approach.

Given a game (N, v) ∈ G and a coalition S ⊆ N , the extended S-marginal
game (N, v̄S) is the game that assigns to each coalition T ⊆ N the worth of T ∪S
minus the worth of S\T , that is, for each T ⊆ N , v̄S(T ) = v(S∪T )−v(S\T ). By
this definition, for any T ⊆ N \ S, v̄S |N\S(T ) = v(S ∪ T ) − v(S) = vS(T ), that
is, the difference between the extended S-marginal game and the S-marginal
game is whether or not the players of coalition S are included in the player set.
In addition, let T ⊆ N \ S and let R ⊆ S. Then by definition, v̄S(T ∪ R) =
v(S ∪ T ) − v(S \ R), v̄S(T ) = v(S ∪ T ) − v(S), and v̄S(R) = v(S) − v(S \ R).
Thus, v̄S(T ∪ R) = v̄S(T ) + v̄S(R). This means that any i ∈ N is a dummy
player in (N, v̄i), and further, this additive feature of extended marginal games
essentially reduces the computational complexity of the Shapley value in the
following way.

Proposition 2. Given (N, v) ∈ G, for any S ⊆ N and any i ∈ N , φi(N, v̄S) =
φi(S, v) if i ∈ S, and φi(N, v̄S) = φi(N \ S, vS) if i �∈ S.

Proof. Given (N, v) ∈ G and S ⊆ N , let wS(T ) = v(S) − v(S \ T ), and uS(T ) =
v(S ∪ T ) − v(S), for any T ⊆ N . Then, wS + uS = v̄S . By ADD of the Shapley
value, φ(N, v̄S) = φ(N,wS) + φ(N,uS). By definition, any i �∈ S is a null player
in (N,wS) and any player i ∈ S is a null player in (N,uS), respectively. By NP
and NPO of the Shapley value, φi(N, v̄S) = φi(S,wS) if i ∈ S, and φi(N, v̄S) =
φi(N \ S, uS) if i �∈ S.

By definition, (wS |S)∗(T ) = wS(S) − wS(S \ T ) = v(S) − v(S \ S) − v(S) +
v(S\(S\T )) = v(T ) for any T ⊆ S, and uS(T ) = vS(T ) for any T ⊆ N \S. Thus,
for any i ∈ S, SD of the Shapley value implies that φi(S,wS) = φi(S, (wS)∗) =
φi(S, v), and for any i ∈ N \ S, φi(N \ S, uS) = φi(N \ S, vS). 
�
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4 Marginal Games and Axiomatic Characterizations
of the Shapley Value

[13] introduce duality between axioms, and review axiomatizations of the Shapley
value in [10] and [5]. Similarly, by focusing on marginal games, we consider
axiomatizations of the Shapley value for that in [12] that axiomatized the Shapley
value by BC and EFF. The following is a marginal game variation of BC.

Balanced M(marginal)-contributions property (BMC): For each (N, v)
∈ G and any i, j ∈ N with i �= j,

ϕi(N, v) − ϕi(N \ j, vj) = ϕj(N, v) − ϕj(N \ i, vi).

BC and BMC are different. To see this, let us consider two values ϕ1 and ϕ2

such that ϕ1
i (N, v) =

∑
S�i,S⊆N v(S), and ϕ2

i (N, v) = ϕ1
i (N, v∗) = 2n−1v(N) −

∑
S ��i,S⊆N v(S), for any i ∈ N and any (N, v) ∈ G. Note that ϕ2 is a dual of

ϕ1 because it applies the same value to dual games (see [13]). ϕ1 satisfies BC,
however, not BMC. Meanwhile, ϕ2 satisfies BMC, however, not BC. Therefore,
BC and BMC are independent with each other. However, the two properties are
the same under SD.

Proposition 3. Under SD, BC and BMC are equivalent.

Proof. Given (N, v) ∈ G, by applying BC to its dual game (N, v∗), we obtain
ϕi(N, v∗) − ϕi(N \ j, v∗) = ϕj(N, v∗) − ϕj(N \ i, v∗). By Proposition 1, SD of
ϕ implies that ϕi(N, v∗) = ϕi(N, v), ϕi(N \ j, v∗) = ϕi(N \ j, vj), ϕj(N, v∗) =
ϕj(N, v) and ϕj(N \ i, v∗) = ϕj(N \ i, vi). 
�

Despite the difference, BMC characterizes the Shapley value in conjunction
with EFF as BC does.

Theorem 1. The Shapley value is the unique value which satisfies BMC and
EFF.

Proof. SD of the Shapley value and Proposition 3 together imply that the Shap-
ley value satisfies BMC.

For uniqueness, we use induction with respect to the number of players.
Let ϕ be a value on G that satisfies BMC and EFF. In the case of |N | = 1,
ϕi(N, v) = v(i) = φi(N, v) for i ∈ N . Let |N | = n ≥ 2 and suppose that ϕ = φ
in case of there are less than n players. Consider the case of n players. Fix i ∈ N ;
by BMC and the supposition above, for any j ∈ N \ i, ϕi(N, v) − ϕj(N, v) =
ϕi(N \ j, vj) − ϕj(N \ i, vi) = φi(N \ j, vj) − φj(N \ i, vi) = φi(N, v) − φj(N, v).
Summing up the above equalities over j ∈ N\i (and making simple calculations),
we obtain ϕi(N, v) = φi(N, v). For any j �= i, ϕj(N, v) = φj(N, v) is shown in
the same manner. Hence, ϕ = φ in the case of n players. 
�
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For the independence of axioms, ϕ3(N, v) = (0, 0, . . . , 0), for any (N, v) ∈
G satisfies BMC but not EFF, and ϕ4(N, v) = (v(N)

|N | , v(N)
|N | , . . . , v(N)

|N | ), for any
(N, v) ∈ G satisfies EFF but not BMC.

The following corresponding axiom using the extended marginal games
instead of the marginal games is equivalent to BMC under DPO, and hence,
it also characterizes the Shapley value in conjunction with EFF and DPO.

Balanced EM(extended-marginal)-contributions property (BEMC):
For each (N, v) ∈ G and any i, j ∈ N with i �= j,

ϕi(N, v) − ϕi(N, v̄j) = ϕj(N, v) − ϕj(N, v̄i).

Proposition 4. Under DPO, BMC and BEMC are equivalent.

Proof. Since j is a dummy player in (N, v̄j), DPO implies that ϕi(N, v̄j) =
ϕi(N \ j, vj) for any i �= j. 
�

Theorem 1 and Proposition 4 together imply the following,

Corollary 1. The Shapley value is the unique value which satisfies BEMC, EFF
and DPO.

For the independence of axioms, a value ϕ5 defined by for any (N, v) ∈ G and
any i ∈ N , ϕ5

i (N, v) = v(N) if i = minj∈N j, and ϕ5
i (N, v) = 0 if i �= minj∈N j,

satisfies BEMC and EFF but not DPO. A value ϕ3 satisfies BEMC and DPO
but not EFF. Let D(N, v) ⊆ N is a set of all dummy players in (N, v) ∈ G.
A value ϕ6 defined by for any (N, v) ∈ G and any i ∈ N , ϕ6

i (N, v) = v(i) if
i ∈ D(N, v), and v(N\D(N,v))

|N\D(N,v)| if i �∈ D(N, v), satisfies EFF and DPO but not
BEMC.

5 Marginal Games and Recursive Formulas
of the Shapley Value

[10,11], [16] show that the Shapley value for n-person games is represented by
using the Shapley value for (n − 1)-person games in the following manner.

φi(N, v) =
1
n

(v(N) − v(N \ i)) +
1
n

∑

j �=i

φi(N \ j, v). (1)

Along with the expected value interpretation of the Shapley value, the above
recursive formula can be interpreted as follows. The first term 1

n (v(N)−v(N \i))
is the expected value of i’s marginal contribution conditional on i appears last
among all players, and the second term 1

n

∑
j �=i φi(N \ j, v) is that conditional

on other player j appears last.
By using the marginal games, we give a new recursive representation of the

Shapley value.
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Proposition 5. Take any integer r such that 1 ≤ r ≤ n. Consider any R ⊆ N
with |R| = r. Then for each (N, v) ∈ G and each i ∈ N ,

φi(N, v) =
r!(n − r)!

n!

∑

R⊆N,|R|=r,R�i

φi(R, v) +
r!(n − r)!

n!

∑

R⊆N,|R|=r,R ��i

φi(N \ R, vR).

(2)

Proof. Let ΠR = {π ∈ Π|π(j) ≤ r for each j ∈ R}. Then for any R �= R′ which
satisfy |R| = |R′| = r, we have ΠR ∩ ΠR′

= ∅ and
⋃

R⊆N,|R|=r ΠR = Π. Thus,

φi(N, v) =
1

n!

∑

R⊆N,|R|=r

∑

π∈ΠR

(v({j|π(j) ≤ π(i)}) − v({j|π(j) < π(i)}))

=
1

n!

∑

R⊆N,|R|=r,R�i

∑

π∈ΠR

(v|R({j|π(j) ≤ π(i)}) − v|R({j|π(j) < π(i)}))

+
1

n!

∑

R⊆N,|R|=r,R ��i

∑

π∈ΠR

(vR({j|r < π(j) ≤ π(i)}) − vR({j|r < π(j) < π(i)}))

=
1

n!

∑

R⊆N,|R|=r,R�i

r!(n − r)!φi(R, v) +
1

n!

∑

R⊆N,|R|=r,R ��i

r!(n − r)!φi(N \ R, vR)

=
r!(n − r)!

n!

∑

R⊆N,|R|=r,R�i

φi(R, v) +
r!(n − r)!

n!

∑

R⊆N,|R|=r,R ��i

φi(N \ R, vR).


�
The particular case of the above Proposition 5 when r = 1 has a contrasting

interpretation to Eq. (1). If r = 1, Eq. (2) is simplified to the following.

φi(N, v) =
1
n

v(i) +
1
n

∑

j �=i

φi(N \ j, vj). (3)

In Eq. (3), the first term 1
nv(i) is the expected value of i’s marginal contri-

bution conditional on i appears first among all players, and the second term
1
n

∑
j �=i φi(N \ j, vj) is that conditional on other player j appears first. In this

sense, Eq. (3) can be contrast to the existing recursive formula of Eq. (1). Fur-
ther, by using the extended marginal games instead of the marginal games, the
following is obtained as a corollary of Propositions 2 and 5.

Corollary 2. Take any integer r such that 1 ≤ r ≤ n. Consider any R ⊆ N
with |R| = r. For each (N, v) ∈ G and each i ∈ N ,

φi(N, v) =
r!(n − r)!

n!

∑

R⊆N,|R|=r

φi(N, v̄R).

6 Final Remark

Based on a recursive formula of the Shapley value in Eq. (1), [14] construct a set
of non-cooperative games in which subgame perfect equilibrium payoffs coincide
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with the Shapley value (if games are zero-monotonic). In their games, (i) players
bid with each other to choose a proposer, (ii) the chosen proposer offers payoffs
to all of the others, and (iii) each of the offered players chooses either accept the
offer or not. Unanimous acceptance of the offer determines the payoffs and the
game is over. Otherwise, players other than the proposer go to the same game
defined on subgames on them.

Our characterization of the Shapley value based on marginal games also
applicable to this non-cooperative foundation of the Shapley value. That is, the
Shapley value is obtained by subgame perfect equilibrium payoffs of the set of
non-cooperative games obtained by replacing subgames with marginal games
with respect to the singleton of the proposer in the case of rejection at (iii). The
proof goes along the same line as that of [14], and hence, we just mention the
fact as a remark.
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Abstract. The Shapley value is one of the most important solutions on
the scheme of distributing the profits among agents in cooperative games.
In this paper, we discuss the computational and complexity issues on the
Shapley value in a particular multi-agent domain, a threshold cardinality
matching game (TCMG). We show that the Shapley value can be cal-
culated in polynomial time when graphs are restricted to some special
graphs, such as linear graphs and the graphs having clique or coclique
modules decomposition. For general graphs, we prove that calculating
the Shapley value is #P-complete when the threshold is a constant.

Keywords: Shapley value · Threshold matching game · #P-complete ·
Efficient algorithm

1 Introduction

Cooperative games provide a framework for profit or cost distribution in multi-
agent systems, such as network flow game [10], weighted voting games [6]. In
cooperative game, the Shapley value is an important distribution scheme aim-
ing to capture the notion of fairness of the distribution, based on the intuition
that the payment that each agent receives should be proportional to his contri-
bution [16]. Algorithmic issues on computing the Shapley value have been the
topic of detailed studies, varieties of complexity results are presented. In Deng
and Papadimitriou’s work [6], it was shown that computing the Shapley value
can be done in polynomial time in weighted subgraph games, while it is #P-
complete in weighted majority games. Matsui and Matsui [12,13] showed that
in weighted voting games, although computing the Shapley value is NP-hard, it
can be done by a pseudo-polynomial time algorithm.

Matching game is one of the most important cooperative game models estab-
lished on optimal matching problems, that has attracted much attention from
researchers [7]. Shapley and Shubik [17] introduced assignment games, a special
case of matching games defined on bipartite graph, to formulate the interac-
tion between buyers and sellers in exchange markets. The solutions of matching
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games related to stability, such as the core, least-core and the nucleolus, have
been extensively discussed in [1,4,7,9,11,17,18]. Shapley et al. [17] and Deng et
al. [7] showed that the core was characterized efficiently by the dual theorem of
linear programming. In [4,11,18] it was shown that computing the nucleolus for
both assignment games and matching games in the “unweighted case” can be
done in polynomial time. Aziz et al. [1] and Fang et al. [9] introduced a natural
variation of matching games, called threshold matching games, and investigated
the algorithmic aspect on the solutions, the least-core and the nucleolus.

However, less attention has been paid to the Shapley value in matching
games. Recently, Aziz and Keijzer [2] studied the algorithmic problems on the
Shapley value in cardinality matching games. Although the Shapley value is hard
to compute (#P-complete), it can be computed efficiently when restricted on two
special graphs (paths and graphs with a constant number of clique or coclique
modueles). Bousquet [5] extended Aziz and Keijzer’s results by showing that the
Shapley value of trees can be computed in polynomial time.

We note that the computational difficulty on game solutions may be quite
different in matching games and its threshold versions. In this paper, we investi-
gate the computational complexity of computing the Shapley value for threshold
cardinality matching games (TCMGs). We give positive answers on computing
the Shapley value when graphs restricted to some classes of graphs: linear graphs,
graph consists of clique or coclique modules and complete k-partite graphs. While
in general case, computation of the Shapley value is shown to be #P-complete.

The organization of the paper is as follows. In Sect. 2, we introduce the defin-
ition of threshold cardinality matching games (TCMGs) and the Shapley value.
In Sect. 3, we discuss the algorithms on the computation of the Shapley value of
TCMG defined on some special graphs. Section 4 is dedicated to the intractabil-
ity of the Shapley value in general case. Further discussion is given in Sect. 5.

2 Preliminary and Definition

2.1 Cooperative Game and Shapley Value

A cooperative game Γ = (N, ν) (transferable utility) consists of a set of players
N = {1, 2, ..., n} and a characteristic function ν : 2N→ R. For each S ⊆ N
(named a coalition), ν(S) is called the value of S, representing the benefits
achieved by the players in S collectively; ν(N) is the total benefits that the whole
group N achieves. One of the central problems in cooperative game is to seek a
fair or stable distribution of the total benefits ν(N) between the players in N .
A distribution of the total benefits ν(N) is given by a vector x = (x1, x2, ..., xn)
with

∑n
i=1 xi = ν(N), where each component xi is the payoff for player i. For

convenience, throughout the paper we denote x(S) =
∑

i∈S xi, ∀S ⊆ N . Different
criteria of fairness and stability on distributions give rise to different solution
concepts. The Shapley value [16], which we focus on in this work, is an important
solution concept.

Let Γ = (N, ν) (|N | = n) be a cooperative game. For coalition S ⊆ N
and player i �∈ S, the value ν(S ∪ {i}) − ν(S) is referred to as the marginal
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contribution of i w.r.t. S. The Shapley value is intended to reflect the average
marginal contribution of each player over all coalitions S the player may join.
Formally, the Shapley value ϕ(Γ ) = (ϕ1, ϕ2, ..., ϕn) is defined as follows:

ϕi(Γ ) =
1
n!

∑

S⊆N\{i}
|S|!(n − |S| − 1)! [ν(S ∪ {i}) − ν(S)] ∀i ∈ N.

The importance of the Shapley value lies in the fact that it is the unique
solution satisfying the following properties [20]:

1. Efficiency:
∑

i∈N ϕi(Γ ) = ν(N);
2. Null player: If ν(S ∪ {i}) − ν(S) = 0 for all S ⊆ N \ {i} (player i is called

a null player), then ϕi(Γ ) = 0;
3. Symmetry: If ν(S ∪ {i}) − ν(S) = ν(S ∪ {j}) − ν(S) for all S ⊆ N \ {i, j}

(players i and j are called symmetric), then ϕi(Γ ) = ϕj(Γ );
4. Additivity: For any two games Γ 1 = (N, ν) and Γ 2 = (N,w) and their

combined game Γ 1 + Γ 2 = (N, ν + w), ϕi(Γ 1 + Γ 2) = ϕi(Γ 1) + ϕi(Γ 2).

2.2 Threshold Cardinality Matching Game (TCMG)

Now we introduce the definition of threshold cardinality matching games. For
more detailed introduction, please refer to [1,8,11]. All the graphs we consider
in this paper are simple undirected graphs.

Let G = (V,E) be a graph, V be the vertex set, E be the edge set. A matching
M of G is an edge subset in which no edges have a common endpoint, and the
size (cardinality) of M is denoted by |M |. A matching is maximum if its size is
maximum over all the matchings in G, and the size of a maximum matching of
G is denoted by γ∗(G).

Given a graph G = (V,E) and a threshold value T ∈ Z+, the corresponding
threshold cardinality matching game (TCMG), denoted by Γ (G) = (V, μ;T ), is
defined as:

– The player set is the vertex set V ;

– ∀S ⊆ V , μ(S) =
{

1 if γ∗(G[S]) ≥ T
0 otherwise. ,

where, G[S] is the subgraph of G induced by S.

Note that, TCMG is a threshold version of (cardinality) matching game. In a
matching game on graph G = (V,E), the value of each coalition S ⊆ V is defined
as γ∗(G[S]). Some basic ideas in Aziz and Keijzer’s work [2] on matching games
are used for reference in our work.

2.3 Observations on the Shapley Value of TCMG

In this subsection, we give some general observations about the Shapley value
of TCMG.
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Let Γ (G) = (V, μ;T ) be the TCMG defined on graph G = (V,E). Given
player i ∈ V and coalition S ⊆ N \ {i}, if μ(S ∪ {i}) − μ(S) = 1, then the player
i is called pivotal for coalition S. That is, if player i is pivotal for coalition S,
then γ∗(G[S]) = T − 1 and γ∗(G[S ∪ {i}]) = T , respectively.

Denote by Pi the set of coalitions for which player i is pivotal. Then the
Shapley value ϕi of TCMG Γ (G) can be rewritten via the size of Pi:

ϕi(Γ ) =
n−1∑

s=1

s!(n − s − 1)!
n!

∣
∣{S ∈ Pi : |S| = s}∣

∣.

Lemma 1. Let G = (V,E) be a graph with |V | = n and i ∈ V . In the corre-
sponding TCMG Γ (G), for each s = 1, 2, ..., n − 1, if the number of subsets in
{S ∈ Pi : |S| = s} can be determined in time f(n), then the Shapley value of i
in Γ (G) can be computed in time nf(n).

3 Efficient Algorithms in Special Cases

Based on the properties of Efficiency and Symmetry, the Shapley value can be
obtained easily for TCMGs on symmetric graphs, such as, the complete graph
Kn, complete bipartite graph Kn×n and cycles. In the following, we shall discuss
the algorithms on the Shapley value for TCMGs defined on two special kinds of
graphs: linear graphs and graphs consisting of clique or coclique modules.

3.1 Linear Graphs

A linear graph (or a path) is a graph containing two end-vertices of degree 1 and
the remaining vertices of degree 2. Throughout this subsection, a linear graph is
denoted as GL = (V,E), where

– the vertex set is V = {1, 2, ..., n}, 1 and n are end-vertices (the degree is 1);
– the edge set is E = {(j, j + 1) : j = 1, 2, ..., n − 1}.

To compute the Shapley value, we first give the following result on linear graphs.
For each s = 1, 2, ..., n − 1 and 0 ≤ k ≤ 
n

2 �, denote Hs[k] the set of subsets
S ⊆ V such that |S| = s and γ∗(G[S]) = k.

Lemma 2. Given a linear graph GL = (V,E) with |V | = n, the size of the set
Hs[k] can be computed in polynomial time (∀s = 1, 2, ..., n−1 and 0 ≤ k ≤ 
n

2 �).
Proof. We prove the result by induction on the parameter k.

When k = 0. It is clear that the set S ∈ Hs0 is an independent set of size s.
Therefore, the size of Hs0 equals the number of ways to choose s non-adjacent
vertices from n vertices on the line, that is,

∣
∣Hs[0]

∣
∣ = Cs

n−s+1.
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Where
Ck

n =
n!

k!(n − k)!
.

When k = 1. There is only one matching edge in G[S]. We distinguish two
cases.

Case 1. G[S] has only a couple of connected vertices, and the other vertices
are independent. See Fig. 1(a). Analogous to the analysis for k = 0, we have

∣
∣Hs[1]

∣
∣ = C1

s−1 · Cs−1
n−s+1.

Case 2. G[S] has three connected vertices, the other vertices are independent.
See Fig. 1(b). We also have

∣
∣Hs[1]

∣
∣ = C1

s−2 · Cs−2
n−s+1.

Hence, the result is true when k = 1.

Fig. 1. The sets with two connected vertices(a) and three connected vertices(b)

We assume that the result is true for k = p ≥ 1, that is,
∣
∣Hs[p]

∣
∣ can be

computed in polynomial time.
Then we prove the result for k = p + 1. For this purpose, we use induction

for the number of vertices |V | in GL.
For |V | = 2(p+1), GL has a unique maximum matching of size p+1. Hence,

the size of Hs[p + 1] is 1 for s = 2(p + 1), and 0 for other values of s.
For |V | = 2(p + 1) + 1, γ∗(GL) = p + 1. It is easy to verify that the size of

Hs[p + 1] is p + 2 for s = 2(p + 1) + 1, 1 for 2(p + 1), and 0 for other values of s.
Assume that size of Hs[p + 1] can be determined in polynomial time for

|V | = n. Consider a linear graph GL = (V,E) with |V | = n + 1. Denote

V = {0, 1, 2, ..., n} and E = {(j, j + 1) : j = 0, 1, ..., n − 1}.

We divide the set Hs[p + 1] into two subsets:

Hs
+0[p + 1] = {S ∈ Hs[p + 1] : 0 ∈ S}

Hs
−0[p + 1] = {S ∈ Hs[p + 1] : 0 �∈ S}.

(i) The size of Hs
−0[p+1] equals the size of Hs[p+1] in graph GL\{0} (containing

n vertices), which can be counted in polynomial time followed by induction
assumption.

(ii) For Hs
+0[p + 1], ∀t = 0, 1, ..., n, we denote

Hs
+0[p + 1](t) = {S ∈ Hs

+0[p + 1] : {0, 1, 2, ..., t} ⊆ S and t + 1 �∈ S}.
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When t = 0, S does not contain vertex 1. Hence, we just need to count the
number of the subset S in graph G′

L = GL\{0, 1}, such that the γ∗(G′
L[S]) = p+1

and |S| = s − 1. That is, the size of Hs
+0[p + 1](0) equals the size of Hs−1[p + 1]

in graph G′
L = GL \ {0, 1}, where G′

L has only n − 1 vertices. By induction
assumption, the size of Hs

+0[p + 1](0) can be determined in polynomial time.
When t = 1, S contains vertices 0,1 and does not contain vertex 2. Obviously,

the size of Hs
+0[p+1](1) equals the size of Hs−2[p] in graph G”L = GL \{0, 1, 2},

where G”L contains only n − 2 vertices. Also by induction assumption, the size
of Hs

+0[p + 1](1) can also be determined in polynomial time.
With similar analysis, we claim that the size of Hs

+0[p + 1](t) can be deter-
mined in polynomial time for t = 2, 3, ..., n. Since

|Hs
+0[p + 1]| =

min{s−1,2(p+1)}∑

t=0

|Hs
+0[p + 1](t)|,

it is followed directly that
∣
∣Hs[p + 1]

∣
∣ can be determined in polynomial time.

The proof is done. �
Lemma 3. If graph G = (V,E) has K connected components (K is a fixed
number independent of |V |) and each component is a linear graph, then the size
of the set Hs[k] can be determined in polynomial time.

In the TCMG defined on GL = (V,E) with V = {1, 2, ..., n}, for each player
i and a coalition S for which i is pivotal, we give some notations for convenience
of discussion. For i ∈ V and 1 ≤ s ≤ n − 1, denote:

Ps
i = {S ⊆ V \ {i} : i is pivotal for S, |S| = s}.

And
Ps
i,R = {S ⊆ V \ {i − 1, i} : i + 1 ∈ S, S ∈ Ps

i };
Ps
i,L = {S ⊆ V \ {i, i + 1} : i − 1 ∈ S, S ∈ Ps

i };
Ps
i,C = {S ⊆ V \ {i} : i + 1, i − 1 ∈ S, S ∈ Ps

i }.

It is easy to see that Ps
i,R, Ps

i,L and Ps
i,C are disjoint, and

|Ps
i | = |Ps

i,R| + |Ps
i,L| + |Ps

i,C |.

Theorem 1. The Shapley value of the TCMG defined on linear graph GL =
(V,E) (|V | = n) can be computed in polynomial time for any threshold T ≤ 
n

2 �.
Proof. Since the Shapley value ϕi (i = 1, 2, ..., n) in TCMG Γ (GL) can be rewrit-
ten as

ϕi =
n−1∑

s=1

s!(n − s − 1)!
n!

∣
∣
∣Ps

i

∣
∣
∣,

we need only to show that the size of Ps
i (that is, the sizes of Ps

i,R, Ps
i,L and

Ps
i,C) can be determined in polynomial time.
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(1) When T = 1. It is clear that a coalition S ∈ Ps
i,R is exactly an independent

set with size s − 1 in GL not containing the vertices i − 1, i, i + 1 and
i + 2. That is, S must be the union of two independent sets: one is in
G[{1, 2, ..., i − 2}] of size s1 and the other is in G[{i + 3, i + 4, ..., n}] of size
s2, where s1 + s2 = s − 1. Hence, following from Lemma 3, the size of Ps

i,R

can be determined in polynomial time. Similarly, the size of |Ps
i,L| and |Ps

i,C |
can also be computed efficiently.

(2) We prove the result for T = k ≥ 2. We first discuss the size of Ps
i,R. Denote

by Ps
i,R(t) the set of coalitions S ∈ Ps

i,R, such that i+1, i+2, ..., i+ t+1 ∈ S
and i + t + 2 �∈ S. It is easy to see that the size of Ps

i,R(t) is 0, if t is odd.

When t = 0, the size of Ps
i,R(0) equals the size of Hs−1[k] in G′ = G[V \ {i−

1, i, i+ 1, i+ 2}] (recall the notation Hs−1[k] in Lemma 2), yielding that the size
of Ps

i,R(0) can be determined in polynomial time by Lemma 2. Similar analysis
can be given for t is even. Also since

|Ps
i,R| =

min{s−1,2(k−1)}∑

t=0

|Ps
i,R(t)|,

Ps
i,R can be counted in polynomial time.

The size of Ps
i,L and Ps

i,C can be obtained in a similar way, meaning that the
size of Ps

i can be determined in polynomial time.
The proof is done. �

3.2 Graphs with a Constant Number of Clique or Coclique Modules

Given a graph G = (V,E), a subset S ⊆ V is a module if all the vertices in S have
the same neighbors in N \S. A subset S ⊆ V is a clique (resp. coclique) module
means that S is a clique (resp. coclique) and a module, i.e., all vertices in the
module S are pairwise connected (resp. disconnected). Obviously, the partition
of vertex set V into singletons is a trivial modular decomposition. In [1], Aziz and
Keijzer showed that for graph G, a minimum cardinality module decomposition
into cocliques or cliques can be found in polynomial time.

In a cooperative game, a set of players S is said to be of the same player
type if all players in S are pairwise symmetric. Ueda et al. [19] showed that
for a cooperative game Γ = (N, ν) in which ν(S) (S ⊆ N) can be computed
in polynomial time, and there is a fixed size k partition of the players into the
same player type, then the Shapley value can be computed in polynomial time
(in n) via dynamic programming. For a TCMG defined on graph G, which can
be decomposed into k coclique modules or clique modules, all the players in the
same coclique module or clique module of G are of the same player type. Based
on these analysis, we have the following theorem.

Theorem 2. Let G = (V,E)(|V | = n) be a graph in which there exists a modular
decomposition into k cocliques or k cliques, where k is independent of n. Then
the Shapley value of the TCMG defined on G can be computed in polynomial
time for any threshold T ≤ 
n

2 �.
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Corollary 1. Let G = (V,E) be a complete k-partite graph (k is independent
of n). Then the Shapley value of the TCMG defined on G can be computed in
polynomial time.

4 Computational Complexity in General Case

In this section, we discuss the computational complexity of the problem of com-
puting the Shapley value for TCMGs in general case.

For this purpose, we introduce a well known #P-complete problem, the Car-
dinality Vertex Cover problem [14]:

– Input: A graph G = (V,E), integer k.
– Output: The size (cardinality) of the set {S ⊆ V : S is a vertex cover for G

and |S| = k}.

Given a graph G = (V,E), we know that a vertex subset S ⊆ V is a vertex
cover if and only if V \S is an independent set in G. Then, we define the problem
of Cardinality Independent Set. Denote by αk(G) the number of independent sets
S ⊆ V with |S| = k. For k = 0, we define α0(G) = 0. And for k = 1, α0(G) = |V |.
The Cardinality Independent Set problem will be:

– Input: A graph G = (V,E), integer k.
– Output: The size (cardinality) of the set {S ⊆ V : S is an independent set of

G and |S| = k}.

Lemma 4 [14]. The problem of Cardinality Independent Set is #P-complete.

In the next theorem, we discuss the computational complexity of computing
the Shapley value in the special case of TCMG where the threshold is T = 1.

Theorem 3. Given a graph G = (V,E) (|V | = n), computing the Shapley value
of the TCMG defined on graph G for threshold T = 1 is #P-complete.

Proof. We prove the intractability of computing the Shapley value by making
use of a polynomial-time Turing reduction from the problem of Cardinality Inde-
pendent Set.

We first construct a series of n + 1 new graphs based on G.
For i = 1, 2, ..., n, n + 1, we construct graph Gi as follows (In Fig. 2):

(1) Add a star graph Ti with center vertex y and the other vertices x1, x2, ..., xi;
(2) The graph Gi is composed of two components: the original graph G and the

star graph Ti.

For i = 1, 2, ..., n, n + 1, we denote the TCMG defined on graph Gi by Γi.
Then we focus on the Shapley value of player y in each Γi:

ϕy(Γi) =
n+i∑

s=1

s!(n + i − s)!
(n + i + 1)!

(μ(S ∪ {y}) − μ(S)),
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where S ∈ V ∪ {x1, x2, ..., xi} is the subset of players in Γi (i.e., the subset of
vertices in Gi with size of |S| = s). To simplify the proof, we consider the “raw
Shapley value”:

κy(Γi) =
n+i∑

s=1

s!(n + i − s)!(μ(S ∪ {y}) − μ(S)),

which has the same computational complexity with the Shapley value.

Fig. 2. Gi

Obviously, if μ(S ∪ {y}) − μ(S) = 1, then there will be at least one vertex of
x1, x2, ..., xi in S. By carefully calculating, we have

κy(Γi) =
n+i∑

s=1

s!(n + i − s)![C1
i αs−1(G) + C2

i αs−2(G) + ... + Ci
iαs−i(G)]

=
n+1∑

s=1

[
C1

i s!(n + i − s)! + C2
i (s + 1)!(n + i − s − 1)!

+... + Ci
i (s + i − 1)!(n − s + 1)!

]
αs−1(G).

(4.1)

Denote the coefficient of αs−1(G) in the formula (4.1) by bis for s =
1, 2, ..., n + 1, that is,

bis = C1
i s!(n + i − s)! + C2

i (s + 1)!(n + i − s − 1)!
+... + Ci

i (s + i − 1)!(n − s + 1)!.

Then κy(Γi) can be written as:

κy(Γi) =
n+1∑

s=1

bisαs−1(G). (4.2)

Denote the coefficient of αs−1(G) in the (4.2) by bis for s = 1, 2, ..., n + 1, and
denote by Θ =

(
bis

)
(n+1)×(n+1)

the matrix. Putting all the formulas (4.2) for
i = 1, 2, ..., n + 1 together, we have

⎛

⎜
⎜
⎜
⎝

κy(Γ1)
κy(Γ2)

...
κy(Γn+1)

⎞

⎟
⎟
⎟
⎠

= Θ ·

⎛

⎜
⎜
⎜
⎝

α0(G)
α1(G)

...
αn(G)

⎞

⎟
⎟
⎟
⎠

. (4.3)
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We then prove that αs(G) can be computed by solving ky(Γi) in polynomial
time.

Lemma 5. The determinant of matrix A defined by Aij = (i + j)! is equal to
Πn

i=0i!
2 �= 0.

A is a matrix that is related to Pascal triangle [3], and we will show Θ also
is related to Pascal triangle and is nonsingular.

Note that Cm
n = Cm

n−1 + Cm−1
n−1 . We can rewrite the formulation of κy(Γi) in

(4.1), for i ≥ 2:

κy(Γi) =
n+1∑

s=1

[
(C0

i−1 + C1
i−1)s!(n + i − s)!

+(C1
i−1 + C2

i−1)(s + 1)!(n + i − s − 1)!
+... + (Ci−1

i−1 + Ci
i−1)(s + i − 1)!(n − s + 1)!

]
αs−1(G)

=
n+1∑

s=1
s!(n + i − s)!αs−1(G) + (n + i + 1)κy(Γi−1)

=
n=1∑

s=1

[
s!(n + i − s)! + (n + i + 1)bi−1s

]
αs−1(G).

(4.4)

The last “equation” in (4.4) holds based on the formulation of κy(Γi−1) (4.2).
From Eq. (4.4), the matrix Θ in (4.3) can be transformed into

Θ′ =

⎛

⎜
⎜
⎜
⎝

1!n! . . . (n + 1)!0!
1!(n + 1)! + (n + 2)b11 . . . (n + 1)!1! + (n + 2)b1n+1

...
. . .

...
1!(2n)! + (2n + 1)bn1 . . . (n + 1)!n! + (2n + 1)bn2n+1

⎞

⎟
⎟
⎟
⎠

(4.5)

Based on the relationship of the coefficient of αs−1(G) in (4.2) and (4.4):

bis = s!(n + i − s)! + (n + i + 1)bi−1s,

we use the matrix elementary operations on the matrix Θ′ to transform it into
the following form:

Θ′′ =

⎛

⎜
⎜
⎜
⎝

1!n! 2!(n − 1)! . . . (n + 1)!0!
1!(n + 1)! 2!n! . . . (n + 1)!1!

...
...

. . .
...

1!(2n)! 2!(2n − 1)! . . . (n + 1)!n!

⎞

⎟
⎟
⎟
⎠

(4.6)

From Lemma 5, we conclude that the matrice Θ, Θ′ and Θ′′ are all nonsingu-
lar, it follows from (4.3) that we can solve αs(G) by solving ky(Γi) in polynomial
time, and vice versa. �

Note that, the case of threshold T = 1 is a special case for TCMGs, so we
have the general complexity result.
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Theorem 4. Computing the Shapley value of a TCMG is #P-complete.

Based on Deng and Papadimitriou’s work [6], Aziz and Brandt [1] also con-
clude that Computing the Shapley value of threshold matching games is #P-
complete. But in their proof, the threshold was set to be related to the size of
the graph, rather than a fixed number. Therefore, Theorem4 generalizes Aziz
and Brandt’s result.

5 Conclusion and Further Discussion

In this paper, we focus on the computation of the Shapley value for TCMGs.
We show that the Shapley value can be computed in polynomial time on spe-
cial graphs: linear graphs and graphs consist of clique or coclique modules. For
general graphs, we prove that computing the Shapley value is #P-complete.
However, there are still quite a few problems for further discussion.

Firstly, given a graph G with k connected components G1, G2, ..., Gk, how to
obtain the Shapley value on G through the Shapley values of each components.
The difficulty is that the TCMG defined G can not be viewed as the sum of the
TCMGs defined on G1, G2, ..., Gk, that is, the property of Additivity does not
holds. For example, for both linear graphs and cycles, the Shapley value can be
computed efficiently, but till now we have no evidence to show the same result
for non-connected graphs with vertex degree at most two.

Secondly, Bousquet [5] recently proved that the Shapley value on trees can
be computed in polynomial time. We conjecture that the ideas in [5] can be
used to compute the Shapley value for TCMGs. Another algorithmic problem
is that when the computation of the Shapley value is hard, how to design the
approximation algorithms.

Thirdly, as a similar solution concept as the Shapley value, the Banzhaf index
of TCMG has not been discussed. Like the Shapley value, the Banzhaf index
measures agents marginal contributions over all coalitions. Given a characteristic
function game Γ = (N, v) with |N | = n, the Banzhaf index of a player i ∈ N is

βi(G) =
1

2n−1

∑

S⊆N\{i}

[
v(S ∪ {i} − v(S)

]
.

In our opinion, the efficiency on computation of the Shapley value would yield
the same result on the Banzhaf index. However, the computational complexity
on the computation of the Banzhaf index for TCMGs in general case is still
open.
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Abstract. In the framework of cooperative game theory, any linear
value of games is a linear operator on game space, implying that algebraic
representations and matrix analysis are possibly justifiable techniques for
studying linear values. For any linear value, the payoff vector of any game
is represented algebraically by the product of a column-coalitional rep-
resentation matrix and the worth vector. The analysis of the structure
of these representation matrices covers the study of the class of linear
values. We achieve a matrix approach for characterizing linear values
with some essential properties. Also, some properties are described for
the Shapley standard matrix, which is the representation matrix of the
Shapley value. Furthermore, the inverse problem of the Shapley value is
studied in terms of the null space of the Shapley standard matrix.

Keywords: Matrix analysis · The Shapley value · The Shapley standard
matrix · Inverse problem

1 Introduction

In economic situations, players may cooperate to obtain more profits with assum-
ing that they are rational. It is a common and important issue to distribute the
surplus of cooperation among the players. Cooperative game theory provides
general mathematical techniques for analyzing such cooperation and distribution
issues. The solution part of cooperative game theory deals with the allocation
problem of how to divide the overall earnings (worth) among the players in the
game. As is well-known, every cooperative transferable utility game (TU-game)
can be identified with a column vector, where the components of such a vec-
tor represent the worths of nonempty coalitions. The set of all TU-games with
a certain player set spans a vector space when the operations of addition and
multiplication are involved in the set. Stimulated from the fact, linear values
on the game space were well-studied and became the most important class of
solution concepts in cooperative game theory, of which the Shapley value is the
most important representative.
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 186–200, 2017.
https://doi.org/10.1007/978-981-10-6753-2_14
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From the review of linearity in cooperative game theory, the algebraic rep-
resentation and the matrix analysis to cooperative game theory come forward
as natural and powerful. Some initial ideas related to the algebraic approach
appeared in the literature (see Weber [11], Dragan [2]). Kleinberg and Weiss
[8] constructed a direct-sum decomposition of the null space of the Shapley
value into invariant subspaces by using the representation theory of symmetric
groups, and derived a characterization of a very general type of values, of which
the Shapley value is one particular example. The matrix approach was applied
to study associated game consistency for the Shapley value by Xu et al. [12,13]
and Hamiache [7].

However, the algebraic representation and the matrix analysis have not been
used systematically. It is still a neglected technique in cooperative game theory.
For any linear value, the payoff vector of any game is represented algebraically
by the product of a column-coalitional representation matrix and the worth
vector. This paper mainly provides new and intuitive proofs of some known
results for characterizing linear values within the matrix approach to coopera-
tive games. Mostly, the approach yields insight into structure of representation
matrix, named the Shapley standard matrix, of the Shapley value. Furthermore,
the inverse problem of the Shapley value is also studied in terms of the null space
of the Shapley standard matrix.

The paper is organized as follows. Section 2 introduces the matrix represen-
tation for linear values, and provides new and intuitive proofs of some results
for characterizing linear values by applying the matrix approach to cooperative
games. Section 3 studies mainly the properties of the Shapley standard matrix
as well as the Shapley value. In Sect. 4 we develop a matrix approach to analyze
the inverse problem of the Shapley value. Section 5 concludes the paper.

2 Matrix Approach to Linear Values

A cooperative game with transferable utility (TU) is a pair 〈N, v〉, where N is a
nonempty, finite set and v : 2N → R is a characteristic function, defined on the
power set of N , satisfying v(∅) = 0. An element of N (notation: i ∈ N) and a
subset S of N (notation: S ⊆ N or S ∈ 2N with S �= ∅) are called a player and
coalition respectively, and the associated real number v(S) is called the worth of
coalition S. The size of coalition S is denoted by s. We denote by GN the set of
all these TU-games with player set N and by Ω = 2N \∅ the set of all coalitions.

Concerning the solution theory for cooperative TU-games, a value is a map-
ping Φ : GN → R

n that associates a vector Φ(v) ∈ R
n with every game

〈N, v〉 ∈ GN , where the real number Φi(v) represents the payoff to player i
in the game. The well-known Shapley value Sh(v) is defined by Shapley [10] as
follows.

Shi(v) :=
∑

S⊆N,S�i

(s − 1)!(n − s)!
n!

[
v(S) − v(S \ {i})

]
, for all i ∈ N.

It is characterized [10] as the unique value satisfying linearity, efficiency,
symmetry, and the dummy player property. A value Φ on the universal game
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space GN is said to be linear, if Φ(α · v + β · w) = α · Φ(v) + β · Φ(w) for
all games 〈N, v〉, 〈N,w〉, and all α, β ∈ R; efficient, if

∑
i∈N Φi(v) = v(N)

for all games 〈N, v〉; symmetric, if Φπ(i)(πv) = Φi(v) for all games 〈N, v〉, all
i ∈ N , and every permutation π on N . Here the game 〈N,πv〉 is given by
(πv)(S) = v(π−1(S)) for all S ∈ Ω. Φ satisfies dummy (respectively, null) player
property, if Φi(v) = v({i}) for any game 〈N, v〉 and any dummy (null) player
i ∈ N . A player i is a dummy player (respectively, null player) in 〈N, v〉 if
v(S ∪{i})− v(S) = v({i}) (respectively, = 0) for all S ⊆ N \{i}. Obviously, any
linear value is also a linear operator on GN .

The lexicographic order is introduced for the set Ω of coalitions as follows.1

For two coalitions S = {i1, i2, · · · , is} and T = {j1, j2, · · · , jt} with i1 < i2 <
· · · < is and j1 < j2 < · · · < jt, S precedes T in this order, if and only if the sizes
of these two coalitions verify either s < t, or s = t and for some k, 1 ≤ k < s, it
holds that il = jl, for all 1 ≤ l ≤ k − 1 and ik < jk.

In this paper, a game 〈N, v〉 is always presented as the column vector v
of worths v(S) of all lexicographically ordered coalitions S ∈ Ω, i.e., v =
(v(S))S∈Ω . For example, a 3-person game 〈N, v〉 will be presented as

v =
(
v({1}), v({2}), v({3}), v({1, 2}), v({1, 3}), v({2, 3}), v({1, 2, 3})

)T
.

If no confusion arises, we write v instead of v. In a sense, the set GN of all
n-person games with player set N is isomorphic to the vector space R

2n−1, for
always v(∅) = 0.

Stimulated by the fact that the game space GN spans a vector space, linear
values on GN are well-studied and become the most important class of solution
concepts in cooperative game theory. The algebraic representation and matrix
approach come forward as a natural and powerful technique to study linear
values. Xu et al. [12] introduced a new type of matrix, named coalitional matrix,
in order to apply algebraic representation and matrix analysis to cooperative
game theory.

Definition 1 (Xu et al. [12]). A matrix M is called row (respectively, column)-
coalitional if its rows (respectively, columns) are indexed by all lexicographi-
cally ordered coalitions S ∈ Ω. M is called square-coalitional if it is both row-
coalitional and column-coalitional.

In this section, we represent algebraically linear values in terminology of
coalitional matrices. Next we apply matrix analysis to investigate characteriza-
tions of the class of linear values. First of all, by linear algebra we know that
any linear value on game space can be represented uniquely by a corresponding
column-coalitional matrix.

1 To line up the coalitions, any order is suitable for the set Ω.
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Theorem 1 (Weber [11]). For any value Φ on GN , it is linear if and only if
there exists a unique column-coalitional matrix MΦ = [MΦ]i∈N,S∈Ω such that
Φ(v) = MΦ · v, for all games 〈N, v〉.

For the determination of the matrix MΦ, recall that any game 〈N, v〉 can be
represented as v =

∑
S∈Ω

v(S) · eS , where eS denotes the worth vector of unity

game 〈N, eS〉, S ∈ Ω, defined by

eS(T ) =
{

1, if S = T ; By the linearity of Φ,we have
0, otherwise.

Φ(v) =
∑

S∈Ω

v(S) · Φ(eS) = MΦ · v,

where the entries of the column-coalitional matrix MΦ are given by [MΦ]i,S =
Φi(eS), for all i ∈ N,S ∈ Ω.2

Therefore, for any linear value, the payoff vector of any game is represented
algebraically by the product of a column-coalitional matrix and the worth vec-
tor. We call this associated matrix the representation matrix of the linear value.
In order to study the linear value, we may analyze the structure of this repre-
sentation matrix. We start with linear values which possess some other essential
properties. Denote by 1N ∈ R

N the n-dimensional column vector with all entries
equal to one.

Proposition 2. Let Φ be a linear value on GN . Then Φ is efficient if and only if
each column sum of the representation matrix MΦ equals 0 except for the unitary
sum of the last column indexed by N , i.e.,

1
′
N · MΦ = (0, 0, · · · , 0, 1).

Proof. Let Φ be a linear value on GN and MΦ be its representation matrix. For
any game 〈N, v〉 and any player i ∈ N , by Theorem 1, it follows that

∑

i∈N

Φi(v) =
∑

i∈N

∑

S∈Ω

[MΦ]i,Sv(S) =
∑

S∈Ω

∑

i∈N

[MΦ]i,Sv(S)

=
∑

S∈Ω
S �=N

v(S)
∑

i∈N

[MΦ]i,S + v(N)
∑

i∈N

[MΦ]i,N .

2 Actually, any basis can be chosen here to determine the matrix of MΦ. The advantage
of the chosen basis of unity games is the fact the argumentation in the proofs of the
reported results can be in line with the standard approach in cooperative game
theory.
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Note that the game 〈N, v〉 is arbitrary and so, the worths v(S), S ∈ Ω, can
be chosen arbitrarily. Thus, Φ is efficient, i.e.,

∑
i∈N

Φi(v) = v(N) for all games

〈N, v〉, if and only if
∑

i∈N

[MΦ]i,S = 0, for all S ∈ Ω,S �= N, and
∑

i∈N

[MΦ]i,N = 1.

That is, 1
′
N · MΦ = (0, 0, · · · , 0, 1). ��

Proposition 3. Let Φ be a linear value on GN . Then Φ possesses the null player
property if and only if the representation matrix MΦ satisfies the condition

[MΦ]i,S = −[MΦ]i,S\{i}, for all i ∈ N, and all S ∈ Ω,S  i, S �= {i}.

Proof. Let Φ be a linear value on GN and MΦ be its representation matrix.
“⇐”: Suppose that MΦ satisfies

[MΦ]i,S = −[MΦ]i,S\{i}, for all i ∈ N, and all S ∈ Ω,S  i, S �= {i}.

For any game 〈N, v〉, by Theorem 1, we have

Φi(v) =
∑

S∈Ω

[MΦ]i,Sv(S) =
∑

S�i

[MΦ]i,Sv(S) +
∑

S ��i
S �=∅

[MΦ]i,Sv(S)

=
∑

S�i
S �={i}

[MΦ]i,Sv(S) + [MΦ]i,{i}v({i}) +
∑

S�i
S �={i}

[MΦ]i,S\{i}v(S \ {i})

=
∑

S�i
S �={i}

[MΦ]i,S
[
v(S) − v(S \ {i})

]
+ [MΦ]i,{i}v({i}).

For any null player i in the game 〈N, v〉, it holds that v({i}) = 0 as well as
v(S) = v(S \ {i}) for all S ∈ Ω, S  i, S �= {i}. Hence, Φi(v) = 0, and so, Φ
satisfies the null player property.

“⇒”: For any i ∈ N , any S ∈ Ω,S  i, S �= {i}, consider the game 〈N, vSi
〉

given by

vSi
(S) = vSi

(S \ {i}) = 1, and for any other coalition T ∈ Ω, vSi
(T ) = 0.

By Theorem 1, we obtain that

Φi(vSi
) =

∑

R∈Ω

[MΦ]i,RvSi
(R) = [MΦ]i,S + [MΦ]i,S\{i}.

Obviously, i is a null player in the game 〈N, vSi
〉. By the null player property,

Φi(vSi
) = 0. Therefore, [MΦ]i,S = −[MΦ]i,S\{i}. ��
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Consider aweight systemm = (mi,S)S∈Ω
i∈S such that

∑
S�i

mi,S = 1, for all i ∈ N.

Weber introduced in [11] a value Φ on GN as follows:

Φi(v) =
∑

S�i

mi,S

[
v(S) − v(S \ {i})

]
, for all games 〈N, v〉, and all i ∈ N.

It is called a Weber value by Derks [1]. And Weber’s characterization [11] of
the class of Weber values is derived directly from Proposition 3.

Corollary 4 (Weber [11]). A value Φ on GN possesses linearity and the
dummy player property if and only if it is a Weber value.

Proof by the matrix approach. It is easy to check that every Weber value
satisfies linearity and the dummy player property.

Let Φ be a linear value on GN possessing the dummy player property and
MΦ be its representation matrix. Since the dummy player property for the value
Φ implies the null player property, by Proposition 3, for all i ∈ N , we have
[MΦ]i,S = −[MΦ]i,S\{i} for all S ∈ Ω, S  i, S �= {i}. So, for any game 〈N, v〉,
since v(∅) = 0, we conclude that

Φi(v) =
∑

S∈Ω

[MΦ]i,Sv(S) =
∑

S�i

[MΦ]i,Sv(S) +
∑

S ��i
S �=∅

[MΦ]i,Sv(S)

=
∑

S�i
S �={i}

[MΦ]i,Sv(S) + [MΦ]i,{i}v({i}) +
∑

S�i
S �={i}

[MΦ]i,S\{i}v(S \ {i})

=
∑

S�i

[MΦ]i,S
[
v(S) − v(S \ {i})

]

Let 〈N, v〉 be a game with the dummy player i. Then v(S) − v(S \ {i}) =
v({i}), for all S ∈ Ω,S  i. By the dummy player property, it holds that
Φi(v) = v({i}). So

∑
S�i

[MΦ]i,S = 1. Therefore, Φ is the Weber value with the

weights mi,S = [MΦ]i,S , for all S ∈ Ω, S  i. ��
Proposition 5. Let Φ be a linear value on GN . Then Φ is symmetric if and
only if the representation matrix MΦ satisfies, for all players i, j ∈ N , and all
coalitions S, T ∈ Ω with equal sizes s = t,

[MΦ]i,S = [MΦ]j,T , when i ∈ S, j ∈ T or i /∈ S, j /∈ T. (1)

Proof. Let Φ be a linear value on GN and MΦ be its representation matrix.
“⇐”: Let π ∈ ΠN be a permutation on N . Then for any i ∈ N and any

T ∈ Ω, π(i) ∈ π(T ) if and only if i ∈ T , as well as π(i) �∈ π(T ) if and only if
i �∈ T . So by (1), we have

[MΦ]π(i),π(T ) = [MΦ]i,T .
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Therefore, for all i ∈ N ,

Φπ(i)(πv) =
∑

S∈Ω

[MΦ]π(i),S(πv)(S)

=
∑

S�π(i)

[MΦ]π(i),S(πv)(S) +
∑

S ��π(i)
S �=∅

[MΦ]π(i),S(πv)(S)

=
∑

π−1(S)�i

[MΦ]π(i),Sv(π−1(S)) +
∑

π−1(S)��i

π−1(S)�=∅

[MΦ]π(i),Sv(π−1(S))

=
∑

T�i

[MΦ]π(i),π(T )v(T ) +
∑

T ��i
T �=∅

[MΦ]π(i),π(T )v(T )

=
∑

T�i

[MΦ]i,T v(T ) +
∑

T ��i
T �=∅

[MΦ]i,T v(T ) = Φi(v).

The symmetry property of Φ holds.
“⇒”: From the fact that the columns [MΦ]S of MΦ are the values Φ(eS) for

all S ∈ Ω, symmetry simply implies that Φi(eS) = Φj(eT ) for each S, T with
s = t, and i ∈ S, j ∈ T or i �∈ S, j �∈ T . That is [MΦ]i,S = [MΦ]j,T . ��

From this, for a linear, symmetric value Φ, of which the representation matrix
is MΦ, each entry [MΦ]i,S of MΦ is only related to the size s of the coalition S
and the membership or nonmembership between the player i and the coalition
S. Therefore, we denote the entry [MΦ]i,S as mΦ

s for i ∈ S, otherwise as mΦ
s− ,

for all S ∈ Ω.

Corollary 6. Any linear and symmetric value Φ on GN can be expressed as

Φi(v) =
∑

S�i

mΦ
s v(S) +

∑

S ��i
S �=∅

mΦ
s−v(S), for all games 〈N, v〉, and all i ∈ N.

Furthermore, we have the following theorem.

Theorem 7. Let Φ be a linear, symmetric value on GN . Then Φ is efficient if
and only if the representation matrix MΦ satisfies

mΦ
s− = − s

n − s
mΦ

s , for all 1 ≤ s < n, and mΦ
n =

1
n

. (2)

Proof. Let Φ be a linear, symmetric value on GN with the representation matrix
MΦ. By Corollary 6, for any game 〈N, v〉, we have

∑

i∈N

Φi(v) =
∑

i∈N

∑

S∈Ω

[MΦ]i,Sv(S) =
∑

S∈Ω

( ∑

i∈N

[MΦ]i,S
)
v(S)

=
∑

S∈Ω

[ ∑

i∈S

mΦ
s +

∑

i/∈S

mΦ
s−

]
v(S) =

∑

S∈Ω

[
smΦ

s + (n − s)mΦ
s−

]
v(S).
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Together with efficiency, we have
∑

S∈Ω

[
smΦ

s +(n−s)mΦ
s−

]
v(S) = v(N). Note

that the game 〈N, v〉 is arbitrary and so, the worths v(S), S ∈ Ω, can be chosen
arbitrarily. Thus, smΦ

s + (n − s)mΦ
s− = 0, for all S ∈ Ω, S �= N , and nmΦ

n = 1
for S = N . That is,

mΦ
s− = − s

n − s
mΦ

s , for all 1 ≤ s < n, and mΦ
n =

1
n

.

��
By this theorem and Corollary 6, we can get the formula given by Ruiz et al. [9]
for the class of linear, symmetric and efficient values.

Corollary 8 (Ruiz et al. [9]). A value Φ on GN possesses linearity, symmetry
and efficiency if and only if there exists mΦ

s , s = 1, 2, · · · , n − 1, such that for
any game 〈N, v〉,

Φ(v) = MΦ · v, where [MΦ]i,S =

⎧
⎨

⎩

1
n , if S = N ;
mΦ

s , if i ∈ S, S �= N ;
− s

n−smΦ
s , if i �∈ S,

i.e.,

Φi(v) =
v(N)

n
+

∑

S�N

S�i

mΦ
s v(S) −

∑

S ��i
S �=∅

s

n − s
mΦ

s v(S), for all i ∈ N.

3 The Shapley Standard Matrix

In this section, we characterize the representation matrix of the Shapley value
named Shapley standard matrix, by using the classic axioms: linearity, efficiency,
symmetry and the null player property. Moreover, some other properties of the
Shapley standard matrix are described.

Theorem 9. Let MΦ =
[
MΦ

]
i∈N,S∈Ω

be the representation matrix of a linear
value Φ on GN possessing symmetry, efficiency and the dummy player property
(i.e., the Shapley value). Then

[MΦ]i,S =

{
(s−1)!(n−s)!

n! , if i ∈ S;
− s!(n−s−1)!

n! , if i /∈ S.
(3)

Proof. Let Φ be a linear value on GN possessing symmetry, efficiency, the dummy
player property and MΦ be its representation matrix. For any player i ∈ N , we
consider a game 〈N, v〉 as follows. For all S ∈ Ω,S � i, the worths v(S) and
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v({i}) are chosen arbitrarily, then let v(S ∪ {i}) = v(S) + v({i}), to ensure that
i is a dummy player in 〈N, v〉. By Corollary 6, we have

Φi(v) =
∑

S�i

mΦ
s v(S) +

∑

S ��i
S �=∅

mΦ
s−v(S)

=
∑

S ��i
S �=∅

mΦ
s+1v(S ∪ {i}) + mΦ

1 v({i}) +
∑

S ��i
S �=∅

mΦ
s−v(S)

=
∑

S ��i
S �=∅

mΦ
s+1v(S) +

∑

S ��i
S �=∅

mΦ
s+1v({i}) + mΦ

1 v({i}) +
∑

S ��i
S �=∅

mΦ
s−v(S)

=
∑

S ��i
S �=∅

[
mΦ

s+1 + mΦ
s−

]
v(S) +

∑

S ��i
S �=∅

mΦ
s+1v({i}) + mΦ

1 v({i}).

By the dummy player property, Φi(v) = v({i}). Note that the worths v(S),
S ∈ Ω,S � i can be arbitrary values. Particularly, consider the unanimity games
〈N,uS〉, for all S ∈ Ω,S � i. We conclude that

mΦ
s+1 + mΦ

s− = 0, for all s = 1, 2, · · · , n − 1.

By (2) in Theorem 7, we have mΦ
n = 1

n as well as

mΦ
s+1 = −mΦ

s− =
s

n − s
mΦ

s , for all s = 1, 2, · · · , n − 1. (4)

We obtain mΦ
s+1,m

Φ
s− for all s = n − 1, n − 2, · · · , 1 recursively as follows.

{
mΦ

s = (s−1)!(n−s)!
n! ,

mΦ
s− = − s!(n−s−1)!

n! ;
i.e., [MΦ]i,S =

{
(s−1)!(n−s)!

n! , if i ∈ S;
− s!(n−s−1)!

n! , if i /∈ S.

What is more,

Φi(v) =
∑

S ��i
S �=∅

mΦ
s+1v({i}) + mΦ

1 v({i}) = v({i})
n−1∑

s=1

(
n−1

s

)
mΦ

s+1 +
1
n

v({i})

= v({i})
n−1∑

s=1

1
n

+
1
n

v({i}) = v({i}).

��
We denote by MSh the representation matrix of the Shapley value on GN ,

and we call it the Shapley standard matrix (Xu et al. [12]). We restate the Shapley
value in terminology of the Shapley standard matrix as follows.

Definition 2. Given any game 〈N, v〉, the Shapley value Sh(v) is represented
by the Shapley standard matrix MSh as:

Sh(v) = MSh · v,

where the Shapley standard matrix MSh =
[
MSh

]
i∈N,S∈Ω

is given by (3).
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Now we study some properties of the Shapley value in terms of the Shapley
standard matrix.

Proposition 10. Let
[
MSh

]
T

be the column of MSh indexed by coalition T ∈
Ω. Then it holds that

[
MSh

]
S

= −[
MSh

]
N\S

, for all S ∈ Ω \ {N}.

Proof. For any coalition S ∈ Ω,S �= N , it is sufficient to show that
[
MSh

]
i,S

+
[
MSh

]
i,N\S

= 0, for all i ∈ N.

Without loss of generality, we suppose that i ∈ S. By the definition of the
Shapley standard matrix MSh, we conclude that

[
MSh

]
i,S

+
[
MSh

]
i,N\S

=
(s − 1)!(n − s)!

n!
− (n − s)!(s − 1)!

n!
= 0.

��
The above anti-complementarity property of the Shapley standard matrix

implies an alternative formula for the Shapley value, due to Driessen [5].

Corollary 11 (Driessen[5]). The Shapley value is of the following form:

Shi(v) =
∑

S�i

(s − 1)!(n − s)!
n!

[
v(S) − v(N \ S)

]
, for any 〈N, v〉 and i ∈ N.

Proof by the matrix approach. For any game 〈N, v〉, since v(∅) = 0, for all
i ∈ N , by Proposition 10, we have

Shi(v) =
∑

S∈Ω

[MSh]i,Sv(S) =
∑

S�i

[MSh]i,Sv(S) +
∑

S ��i
S �=∅

[MSh]i,Sv(S)

=
∑

S�i

[MSh]i,Sv(S) +
∑

T �i
T �=N

[MSh]i,N\T v(N \ T )

=
∑

S�i

[MSh]i,Sv(S) −
∑

T�i

[MSh]i,T v(N \ T )

=
∑

S�i

{
[MSh]i,Sv(S) − [MSh]i,Sv(N \ S)

}

=
∑

S�i

[MSh]i,S
[
v(S) − v(N \ S)

]

=
∑

S�i

(s − 1)!(n − s)!
n!

[
v(S) − v(N \ S)

]
.

��
For a given game 〈N, v〉, its dual game 〈N, v∗〉 is defined as v∗(S) := v(N) −

v(N \ S), for all S ⊆ N . The dual game is a linear operator on GN . By the dual
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matrix Q, the dual game is represented as v∗ = Q · v, where Q =
[
Q

]
S,T∈Ω

is
square-coalitional given by

[
Q

]
S,T

=

⎧
⎨

⎩

−1, if T = N \ S and S �= N ;
1, if T = N ;
0, otherwise.

(5)

The self-duality of the Shapley value can be translated into matrix interpre-
tation as follows.

Proposition 12. The Shapley standard matrix MSh satisfies MShQ = MSh.
That is to say, the Shapley value satisfies the self-duality property in that the
Shapley values of the initial game and its dual game are equal.

Proof by the matrix approach. It is sufficient to check the column equalities[
MShQ

]
T

=
[
MSh

]
T

for all coalitions T ∈ Ω. Due to the algebraic representa-
tion of a column of a matrix product, it holds that

[
MShQ

]
T

=
∑

S∈Ω

[Q]S,T [MSh]S

By (5) and Proposition 10, we obtain the following. If T �= N , then
[
MShQ

]
T

= [Q]N\T,T [MSh]N\T = −[MSh]N\T = [MSh]T .

If T = N , then
[
MShQ

]
N

=
∑

S∈Ω

[
Q

]
S,N

[
MSh

]
S

=
∑

S∈Ω

[
MSh

]
S

=
[
MSh

]
N

.

That is to say, for a game 〈N, v〉 and its dual game 〈N, v∗〉, we have

Sh(v∗) = MSh · v∗ = MSh · Q · v = MSh · v = Sh(v).

In terms of the similarity of matrices, by combining the dual operator Q and
the linear mapping Mλ with respect to Hamiache’s associated game on the game
space, the Shapley value for TU-games is also axiomatized by Xu et al. [13] as
the unique value verifying dual similar associated consistency, continuity, and
the inessential game property.

4 The Inverse Problem

For a value Φ on GN , the following problem is often considered. How to find
the set of games 〈N, v〉 such that Φ(v) = b for any given vector b ∈ R

N? We
call it the inverse problem of the value Φ. The null space NΦ of Φ is defined
as the subspace of these games v ∈ R

2n−1 such that Φ(v) = 0. And two games
〈N, v〉, 〈N,w〉 are called equivalent if Φ(v) = Φ(w). Clearly, the inverse problem
of a linear value Φ is to solve the null space NΦ. To demonstrate the equivalence
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of two games v, w ∈ R
2n−1, we need to show that the difference game v − w is

in the null space NΦ of the linear value Φ. On the other hand, every game can
be decomposed in a unique manner as the sum of its value game (a game with
the same value) and an game of NΦ. We thus see that, quite apart from what
one might think, inessential games, as one type of value games, play a significant
role in the characterization of the Shapley value.

Using the representation theory of symmetric groups, Kleinberg and Weiss
[8] constructed a direct-sum decomposition of the null space of the Shapley
value into invariant subspaces. Then they used the same theory to derive a
characterization of a very general type of value, of which the Shapley value
is one particular example. The inverse problem of the Shapley value was also
studied by Dragan [2]. He presented a potential basis for the null space and an
explicit representation of all games with an apriori given Shapley value. The
same potential approach was used to analyze the null space of the Banzhaf value
(Dragan [3]), as well the family of semivalues (Dragan [4]).

In terms of the Shapley standard matrix MSh, we have the matrix represen-
tation Sh(v) = MSh · v for all v ∈ R

2n−1. Therefore, the null space NSh of the
Shapley value agrees with the null space of the matrix MSh, i.e.,

NSh = Null(MSh) = {x ∈ R
2n−1 | MShx = 0}.

First of all, we show that the Shapley standard matrix is full row rank.

Proposition 13. The rank of the Shapley standard matrix MSh with respect to
the game space GN satisfies rank(MSh) = n.

Proof. Obviously, rank(MSh) ≤ n because of n rows. Let us consider the
columns of MSh indexed by single player coalitions and the grand coalition:

MSh =

⎛

⎜⎜⎜⎜⎝

1
n − 1

n(n−1) · · · − 1
n(n−1) · · · 1

n

− 1
n(n−1)

1
n · · · − 1

n(n−1) · · · 1
n

...
...

. . .
... · · · ...

− 1
n(n−1) − 1

n(n−1) · · · 1
n · · · 1

n

⎞

⎟⎟⎟⎟⎠

Adding the multiplication of last column by 1
n−1 to all of columns indexed

by single player coalitions, we get
⎛

⎜⎜⎜⎝

1
n−1 0 · · · 0 · · · 1

n

0 1
n−1 · · · 0 · · · 1

n
...

...
. . .

... · · · ...
0 0 · · · 1

n−1 · · · 1
n

⎞

⎟⎟⎟⎠ .

There are n linear independent columns, rank(MSh) ≥ n. Therefore,
rank(MSh) = n. ��

Without proof, we emphasize that for every permutation π ∈ ΠN , the set of
columns [MSh]π({1}), [MSh]π({1,2}), · · · , [MSh]π(N) of MSh are maximal linearly
independent.
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For a matrix A, the dimension of its null space is denoted by dimNull(A).
The well-known Rank Theorem in algebra theory is as follows.

Theorem 14 (The Rank Theorem). If A is an n × m matrix, then

rank(A) + dimNull(A) = m.

Hamiache [6] defined the associated game 〈N, vSh
λ 〉 for any game 〈N, v〉 and

λ ∈ R as

vSh
λ (S) := v(S) + λ

∑

j∈N\S

[
v(S ∪ {j}) − v(S) − v({j})

]
, for all S ⊆ N.

The associated game is a linear operator on the game space. Hamiache [7] and
Xu et al. [12] employed the matrix representation for this operator as

vSh
λ = Mλ · v,

and developed a matrix approach for Hamiache’s axiomatization [6] of the Shap-
ley value by means of associated consistency, continuity, and the inessential game
property.

The axiom of associated consistency implies that the Shapley value behaves
invariant under the adaptation of a game into its associated game. In terminology
of the matrix representation, it turns out that the Shapley standard matrix MSh

is invariant under multiplication with the associated transformation matrix Mλ,
i.e.,

MShMλ = MSh. (6)

Inspired by the associated consistency, the inverse problem of the Shapley value
is studied in terms of the associated transformation matrix Mλ.

Theorem 15. The null space of MSh is the column space of Mλ − I, i.e.,

Null(MSh) = Col(Mλ − I).

Proof. By the associated consistency of the Shapley value, we have MShMλ =
MSh, or equivalently, MSh(Mλ − I) = 0. Hence,

Col(Mλ − I) ⊆ Null(MSh).

It is sufficient to show that these two spaces have the same dimension. By Theo-
rem 2.4 in [12], we have 1 is an eigenvalue of Mλ and rank(Mλ − I) = 2n −1−n.
Therefore, the dimension of the column space Col(Mλ − I) is

dimCol(Mλ − I) = rank(Mλ − I) = 2n − 1 − n.

By the Rank Theorem and Proposition 13,

dimNull(MSh) = 2n − 1 − rank(MSh) = 2n − 1 − n.

Therefore, Null(MSh) = Col(Mλ − I). ��
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Remark 1. Since Mλ = PDλP−1 (see Lemma 2.6 in [12]), it follows that

Mλ − I = P (Dλ − I)P−1,

and the columns in the diagonal matrix Dλ − I corresponding to the eigenvalue
1 of Mλ, which are indexed by all single player coalitions, is a zero-vector. The
other columns span the column space Col(Mλ−I), equivalently, they form a basis
for the null space NSh.

5 Conclusion

In this paper, the algebraic representation and the matrix approach are applied
to study linear operators on the game space, more precisely, the property of
linear values. In terms of the basic notion of a coalitional matrix, linear val-
ues are represented algebraically by the products of corresponding coalitional
matrix and worth vector. We preform a matrix analysis in the setting of coop-
erative game theory, to study axiomatizations of linear values, by investigating
appropriate properties of these representation matrices. Particularly, the Shap-
ley value is the most important representative. This paper is an initialization
for using systematically the algebraic representation and the matrix approach
in the research field of cooperative game theory. There are still many more open
problems, such as how to apply the matrix approach to derive new axioms of
proposed linear values, or to define new linear values for TU-games? To gener-
alize the matrix approach to game-theoretic models with coalitional structures
is another challenging issue in cooperative game theory.
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Abstract. In this paper, we define the concept of the general nucleolus
whose objective function is limited to the player complaint, to reflect the
profit distribution more intuitively on the space of n-person cooperative
games. An algorithm for calculating the general nucleolus under the case
of linear complaint functions is given so that we can get an accurate
allocation to pay for all players. A system of axioms are proposed to
characterize the general nucleolus axiomatically and the Kohlberg Cri-
terion is also given to characterize it in terms of balanced collections of
coalitions. Finally, we prove the equivalence relationship of the general
nucleolus, the least square general nucleolus and the p-kernel to normal-
ize the different assignment criteria.

Keywords: Player complaint · General nucleolus · Kohlberg Criterion ·
Least square · p-kernel

1 Introduction

In cooperative game theory, Schmeidler (1969) uses the lexicographic order to
compare the coalition excess vector, from which he gets the solution concept
of the nucleolus over the imputation set. Further, Kohlberg (1971) proposes
the Kohlberg Criterion that the nucleolus of n-person games is characterized
in terms of balanced collections of coalitions and then a generalization of the
Kohlberg Criterion is raised to extend the sets of payoff vectors for various
coalition structures by Owen (1977). However, the idea of the definition of the
nucleolus is not applied only to TU games under some applications, Maschler
et al. (1992) propose the general nucleolus, which is a generalization of the
nucleolus to an arbitrary pair (Π,F ), where Π is a topological space and F is a
finite vector whose components are real and continuous functions defined on Π.

Moreover, Davis and Maschler (1965) introduce the solution concept of kernel
based also on the idea of excess and maximal surplus. Later, a suitable reforma-
tion of the surplus concept is introduced by Ruiz et al. (1996), with which they
define the average kernel. And instead of minimizing the maximum complaint
function vector according to the lexicographical order, they (Ruiz et al. 1996)
select the payoff vector which minimizes the variance of the resulting excess of
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 201–214, 2017.
https://doi.org/10.1007/978-981-10-6753-2_15
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the coalitions, which is named with the least square nucleolus over the impu-
tation set by means of an assessment of its relative fairness. Furthermore, they
obtain that the least square nucleolus is the unique point of the average kernel
and Molina and Tejada (2000) prove that the least square nucleolus and the lex-
icographical solution (Sakawa and Nishizaki 1994) choose the same imputation
for any game with nonempty imputation set.

As the solutions mentioned above are all based on the coalition excess e (S, x)
only regarded as the dissatisfaction or complaint of any coalition S ⊆ N , it can
not reflex complaints of the players themselves intuitively. Moreover, Sakawa and
Nishizaki (1994) firstly propose the player excess to evaluate everyone’s payoff by
summing up all of the excesses of coalitions to which he belongs. Further, Vanam
and Hemachandra (2013) define the excess sum wherein a player views entire
coalitions excess and per-capita excess-sum of a player as sum of normalized
excesses of coalitions involving this player to view them as two measures of
player’s dissatisfaction or complaint towards a payoff vector. Sun et al. (2015)
present another criterion to measure the payment of each player by summing up
all of the differences between the marginal contribution of a coalition to which
he belongs and the corresponding payment. Thus, we can define the general
nucleolus whose complaint function can be applied to the case of a class of
player complaints.

In fact, we restrict the objective function F to be the player complaint of a
more general form over the imputation set and define the concept of the gen-
eral nucleolus on the space of n-person cooperative games. Similarly, the least
square value and p-kernel are defined to be as two different methods to distribute
the overall earnings. The conclusion that three allocation schemes are the same
assignment criteria, is proved. In order to obtain the allocation of the general
nucleolus under the case of the linear complaint functions accurately, we explore
an algorithm to calculate it. We also give a series of axioms to characterize the
general nucleolus besides with the Kohlberg Criterion.

The paper is organized as follows: In Sect. 2, we get some preliminary knowl-
edge served for the later contexts. Section 3 introduces an algorithm of the gen-
eral nucleolus. Section 4 proposes a system of axioms to characterize the general
nucleolus. A similar result of the Kohlberg Criterion is proved in Sect. 4. Section 5
concludes with a brief summary.

2 Preliminaries

A cooperative game with transferable utility (TU) game is a pair (N, v), where
N = {1, 2, · · · , n} is a finite player set and v : 2N → R is a real-valued function
satisfying v(∅) = 0 with 2N representing the subset of N named with coalitions.
For each coalition S ⊆ N , v (S) stands for the worth that coalition S achieves
with its members cooperative altogether and |S| denotes the cardinality of S.
Noting that n = |N | for symbolic convenience. If there is no ambiguity, we iden-
tify the game (N, v) with its characteristic function v. The set of all cooperative
games over N is denoted by GN .
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The solution part of cooperative game theory is to deal with the allocation
problem of how to divide the overall earnings the amount of v(N) among the
players in the TU game and it may be thought of as a vector whose coordinates
are indexed by the players. There is associated a single allocation called the value
of the TU game. A payoff vector x ∈ Rn is feasible for a game v if x (N) ≤ v (N),
where x (S) =

∑

i∈S

xi for any S ⊆ N . For convenience, we simply write x (i)

instead of x ({i}) for each i ∈ N . A payoff vector x is called efficient or a
preimputation if x (N) = v (N), and an imputation if, besides, it holds that
xi ≥ v (i) for any i ∈ N . I∗ (N, v) and I (N, v) denote the preimputation and
imputation set respectively.

A well-established one-point solution concept is the nucleolus, proposed by
Schmeidler (1969). Let v ∈ GN , the excess of the coalition S ∈ 2n with respect
to the payoff vector x is defined as

e (S, x) = v (S) − x (S) .

Thus the excess e (S, x) can be regarded as the loss or complaint for coalition
S facing the final payoff vector x. Moreover, we denote θ (x) ∈ R2n with the
vector whose components are the excesses e (S, x) arranged in non-increasing
order. The nucleolus for any (N, v) ∈ GN denoted by n (N, v), is defined by

N (N, v) = {x ∈ I (N, v) |θ (x)≤Lθ (y) for all y ∈ I (N, v)} .

Also, Schmeidler (1969) proves that the nucleolus of a game with a nonempty
imputation set is a unique point.

However, the idea of lexicographically minimizing (maximizing) a vector of
objective functions need not be applied only to TU games. Indeed, it is applied
in several other conflict situations. Thus Maschler et al. (1992) introduce the
general nucleolus, which is a generalization of the nucleolus to an arbitrary pair
(Π,F ) ∈ Ω, where Π is a topological space and F = {Fj}j∈M is a finite set of
real continuous function whose domain is Π. They identify the general nucleolus
with

GN (Π,F ) = {x ∈ Π |θ ◦ F (x) ≤Lθ ◦ F (y) , for all y ∈ Π } ,

where θ : RM → Rm is the coordinate ordering map (θ ◦ F (x) is an m-vector,
with the same components as in F (x), but ordered in non-increasing order) and
≤L is the lexicographic order on Rm (m = |M |). And they got that the general
nucleolus GN (Π,F ) 	= ∅ if Π is a nonempty compact set and includes at least
a point.

3 The Calculation of the General Nucleolus

Given a cooperative game (N, v) and the objective function F is restricted to
the player complaint vector, then we can get the concept of the general nucleolus
of n-person cooperative games.
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Definition 1. The general nucleolus for any v ∈ GN is defined to be

GN (N, v) = {x ∈ I (N, v) |θ ◦ F (x) ≤Lθ ◦ F (y) for all y ∈ I (N, v)} ,

where θ : Rn → Rn is the coordinate ordering map, F = {Fi}i∈N is a finite set
of real continuous functions with the variable Fi seen as the complaint for player
i or the player i’s excess function and θ ◦ F (x) being an n-tuple vector whose
components are ordered in nonincreasing order and ≤L is the lexicographic order.

It is reasonable to think that the more the player i gets, the less complaint
player i has when facing the final payoff vector x. Assume that player j ∈ N\i has
nothing to do with the payoff of player i. Inspired by the proposed player excesses
(Sakawa and Nishizaki 1994; Sun et al. 2015, 2017; Vanam and Hemachandra
2013; Kong et al. 2017), we consider the case that the complaint function Fi is
affine in allocation xi in our paper, i.e., Fi (x) = ai − bxi, i ∈ N with ai being a
constant of player i and b > 0. We firstly explore an algorithm to calculate the
accurate allocation of the general nucleolus under the case of the linear complaint
functions. Thus, we need to prove the general prenucleolus consist of a unique
point before the algorithm.

Lemma 1. The general nucleolus of n-person cooperative games GN (N, v) is
nonempty if the imputation set is nonempty and consists of at most one point.

Proof. The non-emptiness of GN (N, v) is easy to be obtained, next we only
need to prove its uniqueness. Supposed that x, y ∈ GN (N, v) and x 	= y, we
have that

θ ◦ F (x) = θ ◦ F (y) ≤Lθ ◦ F (z) for any z ∈ I (N, v) .

Especially, let z = λx+(1 − λ) y for any 0 < λ < 1, it yields that θ ◦F (x) =
θ ◦F (y)≤Lθ ◦F (λx + (1 − λ) y). Without loss of generality, consider 1, 2, · · · , n
to be an order satisfying that

θ ◦ F (λx + (1 − λ) y) = (F1 (λx + (1 − λ) y) , · · · , Fn (λx + (1 − λ) y))
= λ (F1 (x) , · · · , Fn (x)) + (1 − λ) (F1 (y) , · · · , Fn (y))
≤Lλθ ◦ F (x) + (1 − λ) θ ◦ F (y) = θ ◦ F (x) = θ ◦ F (y) .

Thus, we get that θ ◦ F (x) = θ ◦ F (y) = θ ◦ F (λx + (1 − λ) y).
Hence, x and y have all player complaints equal, which means that x = y. 
�
Now, we can state the algorithm to calculate the general nucleolus under the

case of the linear complaint functions for any n-person cooperative games based
on the general prenucleolus (Kong et al. 2017) of n-person cooperative games.

Algorithm. Construct a sequence of pairs
(
xi,Di

)
(i = 1, 2, · · · ), where xi is a

payoff vector and Di a subset of N , inductively defined by

Step 1. xi
1 = v(N)

n +
nai−

∑

j∈N

aj

nb (i = 1, 2, · · · ) and D1 = {i ∈ N |xi < v (i)} ;
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Step 2. xi
l+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v(N)

n−
l∑

i=1
|Di|

+

(

n−
l∑

i=1
|Di|

)

ai−
∑

j∈N\(D1∪···∪Dl)
aj

(

n−
l∑

i=1
|Di|

)

b

, i /∈ D1 ∪ · · · ∪ Dl

v (i) , i ∈ D1 ∪ · · · ∪ Dl

and

Dl+1 = {i ∈ N\ (D1 ∪ · · · ∪ Dl) |xi < v (i)}(with D0 = ∅);

Step 3. The sequence stops when Dl+1 = ∅ and you will get the general nucleolus
xl+1. Otherwise, let l = l + 1 and go to Step 2.

From the process of the algorithm, the solution of each step is to give v (i)
for the player i whose payment is smaller than the amount v (i) by going alone
and average the summation of the remaining players’ complaints so as to pay
for the rest of players. It should be noted that when D1 = ∅, the closing payoff
vector is x1 and x1 is obtained by Fi = Fj for any i, j ∈ N and i 	= j. That
is to say that x1 is the optimal solution by taking the same complaint for all
of players. This process must end at most n steps and the closing payoff vector
xl+1(0 ≤ l ≤ n − 1) is the general nucleolus.

Theorem 1. The closing payoff vector xl+1(0 ≤ l ≤ n − 1) is the general
nucleolus.

Proof. Assume that the algorithm stops at l steps, it is obvious that the closing
payoff vector is xl+1 with

xi
l+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(N)

n−
l∑

i=1
|Di|

+

(

n−
l∑

i=1
|Di|

)

ai−
∑

j∈N\(D1∪···∪Dl)
aj

(

n−
l∑

i=1
|Di|

)

b

, i /∈ D1 ∪ · · · ∪ Dl

v (i) , i ∈ D1 ∪ · · · ∪ Dl

and M l+1 = ∅. As xl+1 is obvious to be an imputation, we only prove that
xl+1 is the optimal solution in the lexicographic order. From the process of the
algorithm, we naturally have that

Fi

(
xl+1

)
=

⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈N

Fi(xl+1)− ∑

i∈D1∪···∪Dl

(ai−bv(i))

n−
l∑

i=1
|Di|

, i /∈ D1 ∪ · · · ∪ Dl

ai − bv (i) , i ∈ D1 ∪ · · · ∪ Dl

and Fi

(
xl+1

) ≥ 1
n

n∑

i=1

Fi (x) ≥ Fj

(
xl+1

)
for any i ∈ N\ (D1 ∪ · · · ∪ Dl) and

j ∈ D1 ∪ · · · ∪ Dl. Then there are two cases,

(1) if Fi

(
xl+1

)
= Fj

(
xl+1

)
for any i ∈ N\ (D1 ∪ · · · ∪ Dl), j ∈ D1 ∪ · · · ∪ Dl,

then xl+1 is the general prenucleolus, which is of course the optimal solution
in the lexicographic order.
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(2) if Fi

(
xl+1

)
> Fj

(
xl+1

)
for any i ∈ N\ (D1 ∪ · · · ∪ Dl), j ∈ D1 ∪ · · · ∪ Dl,

then for any y ∈ I (N, v),

Fj

(
xl+1

)
= aj − bv (j) ≥ aj − byj = Fj (y) , j ∈ D1 ∪ · · · ∪ Dl.

Thus, ∑

i∈N\(D1∪···∪Dl)

Fi

(
xl+1

) ≤
∑

i∈N\(D1∪···∪Dl)

Fi (y).

Therefore, there must exist an integer 1 ≤ h ≤ n such that
(
θ ◦ F

(
xl+1

))
g

=
(θ ◦ F (y))g for 1 ≤ g < h, whereas

(
θ ◦ F

(
xl+1

))
h

= (θ ◦ F (y))h, that is, xl+1

is the optimal solution in the lexicographic order. 
�
Next, we will take two examples to illustrate the algorithm of which one of

the objective functions is the special case proposed by Sakawa and Nishizaki
Sakawa and Nishizaki (1994) and the other by Sun et al. (2015).

Example 1. Consider a game v ∈ GN with N = {1, 2, 3, 4} defined by and the
objective function is that Fi (x) =

∑

S⊆N
i∈S

e (S, x) for all i ∈ N (Table 1).

Table 1. Worths of the given 4-person game

S {1} {2} {3} {4} {1,2} {1,3} {1,4} {2,3}
v(S) 59 80 60 54 150 108 86 132

S {2,4} {3,4} {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,3,4}
v(S) 110 88 210 182 145 170 255

According the the mentioned algorithm, we firstly get the payoff vector x1,

x1 = (66.125, 89.625, 59.375, 39.875) .

Next give 60 to the player 3 and 54 to player 4 and then divide the summation
of the remaining complaints of player 1 and 2 equally, so that we obtain

x2 = (58.75, 82.25, 60, 54) .

Now we give 59 to player 1 and the rest to player 2, we finally get the general
nucleolus in this way,

x3 = (59, 82, 60, 54) = GN (N, v) .

Example 2. Let v ∈ GN with N = {1, 2, 3, 4} defined to be and Fi (x) =∑

S⊆N
i∈S

(v (S) − v (S\i) − xi) for all i ∈ N (Table 2).
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Similarly, we firstly get the payoff vector x1,

x1 = (6, 4, 6, 4) .

And then let the payoffs of player 1 and 3 both be 8 and equally distribute
the remaining complaints to play 2 and 4, thus we get the general nucleolus

GN (N, v) = (8, 2, 8, 2) .

Table 2. Worths of the given 4-person game

S {1} {3} {1,2} {3,4} {1,2,3,4} otherwise

v(S) 8 8 8 8 20 0

4 The Properties of the General Nucleolus of N-Person
Cooperative Games

As is stated in above section, the general nucleolus is a single-valued solution
concept. In this part, we will characterize it based on the mentioned algorithm
for the general nucleolus. Firstly, we introduce a system of axioms.

For any (N, v) ∈ GN , we firstly give several properties that a solution
ϕ : GN → Rn might have.

(i) Efficiency: For any game (N, v) ∈ GN ,
∑

i∈N

ϕi(N, v) = v(N).

(ii) Individual rationality: For any game (N, v) ∈ GN , ϕi(N, v) ≥ v(i) for any
i ∈ N .

(iii) Inessential game property: For any inessential game (N, v), the value ver-
ifies ϕi (N, v) = v (i) for all i ∈ N .

(iv) Continuity: For every convergent sequence of games {(N, vk)}∞
k=0 the limit

of which is game (N, ṽ), we have lim
k→∞

ϕ(N, vk) = ϕ(N, ṽ).

(v) Player complaint property: Let Y = (v (1) , v (2) , · · · , v (n)) ∈ Rn and

H =
{

i ∈ N

∣
∣
∣
∣Fi (Y ) < 1

n

∑

i∈N

Fi (x), for any x ∈ I (N, v)
}

, then for any

i ∈ H, ϕi (N, v) = v (i) and for any j, k ∈ N\H, Fj (ϕ) = Fk (ϕ).
(vi) Anonymity: Let v be a game and σ : N → N be a permutation of player

set N . Then if σv (S) = v (σ (S)), we have ϕσ(i) (N,σv) = ϕi (N, v) for all
i ∈ N .

(vii) Covariance: ϕ is covariance if v is a game, λ is a positive number and a ∈
Rn, then ϕ (λv + ā) = λϕ (v) + a, where ā is the additive game generated
by v.

Proposition 1. The general nucleolus under the case of the linear complaint
functions verifies the above properties with a nonempty imputation set.



208 Q. Kong et al.

The readers can easily check that the mentioned propertied can be deduced
by the definition of the general nucleolus whenever Fi (x) = ai−bxi for all i ∈ N .

Theorem 2. The general nucleolus under the case of the linear complaint func-
tions is the unique value verifying the Efficiency and Player complaint property.

Proof. Suppose that there exist y1, y2 ∈ Rn verifying the two properties, then
it should be y1 = y2.

Indeed, for any i ∈ H,
y1

i = v (i) = y2
i

and for any k, j ∈ N\H,

Fj

(
y1

)
= Fk

(
y1

)
, Fj

(
y2

)
= Fk

(
y2

)
.

Then we can get that Fj

(
y1

)
= Fj

(
y2

)
, otherwise, without loss of generality,

let Fj

(
y1

)
= aj − byj

1 > aj − byj
2 = Fj

(
y2

)
. Thus, we get that y1

j < y2
j ,

j ∈ N\H.
Therefore,

y1 (N) =
∑

i∈H

y1
i +

∑

i∈N\H

y1
i <

∑

i∈H

y2
i +

∑

i∈N\H

y2
i = y2 (N),

which is contradicted with the efficiency.
Eventually, we get that y1

i = y2
i for any i ∈ N . 
�

Remark 1. Logical independence of axioms in Theorem 2 is shown by the fol-
lowing alternative values.

(1) The value ϕ1 ∈ Rn defined as

ϕ1
i =

{
v (i) , if xi

1 < v (i)
xi

1, otherwise ,

satisfies the Player complaint property except Efficiency.
(2) Let ϕ2 ∈ Rn be defined to be

ϕ2
i (N, v) =

v (N)
n

for any i ∈ N,

which is obviously verifies the Efficiency but not the Player complaint
property.

It is obviously obtained that the Player complaint property is a great reflec-
tion of the algorithm. And the reason why the axiomatization doesn’t include
the individual rationality is that the individual rationality can be deduced by
the Player complaint property.
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4.1 The Least Square General Nucleolus Is the General Nucleolus

When the summation of all players’ complaint functions is a constant, some
players’ complaints will be increased, which is caused by the decrease of partial
players’ complaints. By minimizing the variance of the resulting complaints of
players different from that given by the lexicographic order, we define the least
square general nucleolus on the space of n-person cooperative games. Formally,
we consider the following Problem 1 for any game v ∈ GN ,

Problem 1.

min
∑

i∈N

(
Fi (x) − F̄ (x)

)2

s.t. x (N) = v (N) and xi ≥ v (i) for all i ∈ N,

where F̄ (x) is the average player complaint at x, given by

F̄ (x) =
1
n

∑

i∈N

Fi (x).

Definition 2. The least square general nucleolus of n-person cooperative games
is the solution of Problem 1 for a game v ∈ GN with respect with the payoff
vector x.

Remark 2.(1) The average player complaint at x under the case of the linear
complaint functions is the same for any x ∈ I (N, v) since

F̄ (x) =
1
n

∑

i∈N

Fi (x) =
1
n

∑

i∈N

(ai − bxi) =
1
n

(
∑

i∈N

ai − bv (N)

)

,

where the last equation is due to efficiency. Thus, we can substitute F̄ (x)
for F̄ even for any constant k as the optimal solution of Problem 1 remains
unchanged.

(2) Moreover, for any k ∈ R,
∑

i∈N

(Fi (x) − k)2 =
∑

i∈N

Fi
2 (x) + k2 − 2k

∑

i∈N

Fi (x),

the last summation is the same for all efficient payoff vector under the case of
the linear complaint functions so that the resulting objective function differs
from that of Problem 1 on a constant on their feasible sets. In particular,
for k = 0 we conclude that the optimal solution of Problem 1 is that of the
following Problem 2.
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Problem 2.

min
∑

i∈N

Fi
2 (x)

s.t. x (N) = v (N) and xi ≥ v (i) for all i ∈ N.

So far, we have raised two methods to divide the overall earnings, i.e. the
thoughts of lexicographic order and the least square criterion, to make play-
ers be satisfied with the resulting payoff vector as much as possible. However,
what makes us interested in is to normalize the different assignment criteria,
which is of great practical significance. Now we will prove that the least square
general nucleolus is the general nucleolus under the case of the linear complaint
functions. Then the following Lemma is required.

Lemma 2. For any game v ∈ GN , then an imputation x is the least square
general nucleolus of v under the case of the linear complaint functions iff for all
j ∈ N ,

xj > v (j) ⇒ Fj (x) = max {Fi (x) |i ∈ N } .

Proof. As the objective function is strictly convex and the imputation set is
compact, there exists a unique solution of Problem 2. Further, it is easy to prove
that the Karush-Kuhn-Tucker conditions are necessary and sufficient conditions
for the following Problem 3, whose optimal solution is equivalent to that of
Problem 2,

Problem 3.
min f (x)
s.t. h (x) ≤ 0, i = 1, 2, · · · , n,

g (x) = 0,
x ∈ RN ,

where f (x) =
∑

i∈N

Fi
2 (x), h (x) = v (i) − xi and g (x) = x (N) − v (N). Then

x ∈ RN is the optimal solution of the Problem 3 iff there exists scalars v ∈ R,
ui ≥ 0, i = 1, 2, · · · , n, such that

∇f (x) +
n∑

i=1

ui∇hi (x) + v∇g (x) = 0

uihi (x) = 0, i = 1, 2, · · · , n,

which is equivalent to that

−2bFi (x) − ui + v = 0, i = 1, 2, · · · , n,
uj = 0 with xj > v (j) for every j ∈ N.

Thus, it yields that for ui ≥ 0, i = 1, 2, · · · , n

Fi (x) =
v − ui

2b
≤ v

2b
= Fj (x) , j = 1, 2, · · · , n.


�
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Theorem 3. For any game v ∈ GN with nonempty imputation set, the least
square general nucleolus of v is the general nucleolus under the case of the linear
complaint functions.

Proof. Let x = GN (N, v) and y be the least square general nucleolus, it is obvi-
ous that θ◦F (x) ≤Lθ◦F (y) by the definition of the general nucleolus. Moreover,
let us consider the sets N1 = {j ∈ N |yj = v (j)} , N2 = {j ∈ N |yj > v (j)}.
Then we get that

(1) Fj (x) ≤ Fj (y) with yj = v (j) ≤ xj for all j ∈ N1.
(2) Fj (x) ≤ (θ ◦ F (x))1 ≤ (θ ◦ F (y))1 for all j ∈ N2. By Lemma 2, it directly

yields that (θ ◦ F (y))1 = Fj (y). That is to say, Fj (x) ≤ Fj (y) for all
j ∈ N2.

Thus, Fj (x) ≤ Fj (y) for all j ∈ N . Then we get that Fj (x) = Fj (y) for all
j ∈ N with

∑

j∈N

Fj (x) =
∑

j∈N

Fj (y).

Eventually, x = y for Fj (x) = aj − bxj , j ∈ N . 
�

4.2 The General Nucleolus Is the Unique Point of p-kernel

The concept of the kernel introduced in Davis and Maschler (1965), is based
on the idea of excess and maximum surplus Sv

ij (x), which can be regarded as
a measure of the power of player i to threaten player j with respect to the
imputation x. Then the kernel is defined as the set of all imputations for which
no player outweights another player. We now propose a parallel solution concept
but based on the player excess. Thus, the p-kernel is described as follows.

Definition 3. The p-kernel pk (N, v) of a game v is the set of all imputations
x ∈ I (N, v) satisfying for all i, j ∈ N, i 	= j,

(Fi (x) − Fj (x)) (xj − v (j)) ≤ 0, or
(Fj (x) − Fi (x)) (xi − v (i)) ≤ 0.

By the definition, it is interpreted as the player j get the amount v (j) by
going alone when the player j poses a threat to i, in other words, the complaint
of player i is larger than j. And vice versa.

As it is well-known, the nucleolus is always in the kernel (Schmeidler 1969).
A similar but stronger result can be established about the p-kernel.

Proposition 2. For any v ∈ GN , the least square general nucleolus under the
case of the linear complaint functions is the unique point of the p-kernel.

Proof. By Lemma 2, a direct conclusion that an imputation x is the least square
general nucleolus if and only if Fj (x) < Fi (x) ⇒ xj = v (j) for all i, j ∈ N, i 	= j,
is obtained. Moreover, the p-kernel can be equivalently defined as

pk (N, v) = {x ∈ I (N, v) |Fj (x) < Fi (x) ⇒ xj = v (j) , i, j ∈ N, i 	= j } .

Thus, the result is established.
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Theorem 4. The general nucleolus under the case of the linear complaint func-
tions is the unique point of the p-kernel for any v ∈ GN .

The conclusion is directly obtained by Theorem 3.

5 The Kohlberg Criterion

Kohlberg (1971) proposes that the nucleolus of n-person games is characterized
in terms of balanced collections of coalitions. A similar result can be derived for
the general nucleolus of n-person cooperative games over the imputation set in
terms of balanced sets.

For any game v and any payoff vector x, let

a1 = max{Fi (x) |i ∈ N }, B1 = {i ∈ N |Fi (x) = a1 } ;

a2 = max{Fi (x) |i ∈ N\B1 }, B2 = {i ∈ N |Fi (x) = a2 } ;

· · ·

ap = max{Fi (x) |i ∈ N\B1\ · · · \Bp−1 }, Bp = {i ∈ N |Fi (x) = ap } ,

where Bp+1 = ∅, which means that T = {B1, B2, · · · , Bp} is a partition of
N , that is, B1 ∪ B2 ∪ · · · ∪ Bp = N and B1 ∩ B2 ∩ · · · ∩ Bp = ∅. Finally,
B0 = {i ∈ N |xi ≥ v (i)}. It is obvious that a1 < a2 < · · · < ap. Consider
Cj = B1 ∪ B2 ∪ · · · ∪ Bj , j = 1, 2, · · · , n.

Proposition 3. For any game v, the following two statements are equivalent.

(1) An imputation x is the general nucleolus under the case of the linear com-
plaint functions.

(2) For all j = 1, 2, · · · , p and any y ∈ Rn,

yi ≥ 0, i ∈ Cj ∪ B0 and y (N) = 0

imply that yi = 0 for all i ∈ Cj.

Proof. Assumed that
∑

i∈Cj

yi 	= 0, there exists i ∈ Cj satisfying yi > 0 since

yi ≥ 0, i ∈ Cj ∪ B0. It is obvious that z = x + ty ∈ I (N, v) (t > 0) when t is
small enough. Then for all i ∈ Cj and k /∈ Cj , there exists l ≤ j,m > j satisfying

Fi (x + ty) = al > am = Fj (x + ty) with i ∈ Bl, k ∈ Bm

and
Fi (x + ty) = ai − b (xi + tyi) < ai − bxi = Fi (x) ,

the inequality is because of b > 0, t > 0, yi > 0. Thus it is contradicted with
x = GN (N, v).
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On the other hand, let x ∈ I (N, v) , z = GN (N, v) with x 	= z and y = z−x
satisfying y (N) = 0, it directly follows that Fi (x) = a1 ≥ Fi (z) for all i ∈ B1

since θ ◦ F (z) ≤Lθ ◦ F (x). By the condition (2), we get that

Fi (x) − Fi (z) = ai − bxi − (ai − bzi) = byi = 0, for all i ∈ B1.

Thus, it implies that Fi (x) = Fi (z) and obviously xi = zi, i ∈ B1. Similarly, we
have that Fi (x) = a2 ≥ Fi (z) for all i ∈ B2 and i /∈ B1 and Fi (x)−Fi (z) = ai−
bxi − (ai − bzi) = byi = 0, for all i ∈ B1 ∪ B2. Then, xi = zi, i ∈ B2 is obtained
since Fi (x) = Fi (z) , i ∈ B2 and so on. We finally gain that xi = zi, i ∈ Bp,
that is, xi = zi, i ∈ N . Thus, x = z = GN (N, v).

Now Kohlberg Criterion is proved to characterized by the general nucleolus
in terms of balanced collections of coalitions.

Proposition 4 (Kohlberg). For any game v and any imputation x, then x is
the general nucleolus if and only if T is a balanced collection.

Proof. It is obvious that T is a balanced collection as T is a partition of the
grand coalition N .

While T is a balanced collection, we have that
∑

i∈Bk

λ (Bk)eBk = eN . If y is

a payoff vector verifying (2) in Proposition 3, it yields that
∑

i∈Bk

λ (Bk)eBk · y =

y (N) = 0. Thus, we have that y (Bk) = 0 which is equivalent to yi = 0, i ∈ Bk

under the condition of (2) in Proposition 3. Therefore, Proposition 3 implies that
x is the general nucleolus.

6 Conclusions

In this paper, we have generalize three concepts of the general nucleolus, the least
square general nucleolus and p-kernel for n-person cooperative games over the
imputation set. And the allocation to divide the overall earnings is equivalent.
An algorithm is proposed to calculate an accurately general nucleolus. A few of
axioms are given to characterize the general nucleolus besides with the Kohlberg
Criterion.
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Abstract. In this paper, we propose a cooperative game approach to the
issue of author ranking in coauthorship networks. We first construct three
weighted coauthorship networks from different perspectives and define
three cooperative games according to the corresponding coauthorship
networks. Then we use the core and the Shapley value as allocation rules
for the games. Finally, considering the contribution level of the authors
to their papers, we give the weighted Shapley value and a new value
as the allocation rules. These allocation rules can be used to rank the
authors in coauthorship networks.

Keywords: Cooperative game · Coauthorship network · Author rank-
ing · Core · Shapley value · Weighted shapley value

1 Introduction

Nowadays, scientific collaboration is a universal phenomenon in the scientific
field. Research paper is the main form of the author’s research achievement.
Coauthorship of a paper can be thought of as documenting a collaboration
between two or more authors, and these collaborations form a “coauthorship
network”.

Coauthorship networks which basically formed by papers and authors were
widely studied in recent years. Constructing and analysing the suitable coau-
thorship networks as to some research field can help us to know the research
ability or influence of every author or research group. The potential researchers,
hot research topics and new research directions also can be spotted by analysing
the coauthorship networks. Solving these problems is very important for gov-
ernment’s scientific research management. For example, how to allocate their
research funds to the researchers and how to set up scientific research projects.

The research of coauthorship networks in the literature is mainly focused
on complex network (Newman [8–10], Acedo [1], Xie [14], Ding [4] etc.). As far
as I know, there is no research that applies the pure cooperative game theory
to the study of coauthorship network. The cooperative game theory is just a
tool for them to construct or build the networks in some papers. For example,
Narayanam et al. [7] defines the cooperative game to capture the information
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 215–228, 2017.
https://doi.org/10.1007/978-981-10-6753-2_16
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diffusion process in the social network, and use Shapley value of the nodes to
discover the influential nodes, coauthorship network is a typical example in their
paper. Coauthorship network actually is a kind of hypergraph, there are virous
studies that refer to hypergraph cooperative game. The Myerson value (Nouwe-
land et al. [11]) and the position value (Borm et al. [2], Casajus [3], Shan [12])
are two main research topics in hypergraph cooperative game.

In this paper, we apply cooperative game to rank the authors in the coau-
thorship network. We use the allocation rules of the games that induced from
the coauthorship networks to evaluate the authors’ scientific research ability and
rank them. We first construct three weighted coauthorship networks according
to the amount of authors’ papers, the citation number and the rank factor of
the papers. And we also give three cooperative games though the weighted coau-
thorship networks. Then we study the core and the Shapley value of the games.
Finally, from respective of author’s contribution level we define the weight sys-
tem and study the weighted Shapley value, and we also give a new value which
is similar to the position value. These allocation rules are needed for our author
ranking.

Formal definitions are provided in Sect. 2. In Sect. 3 we construct three coau-
thorship networks and define three related cooperative games. The core and the
Shapley value for the games are given in Sect. 4. Considering the contribution
level of the authors to the related papers, we also give other two value in Sect. 4.
Section 5 is the conclusions and remarks.

2 Preliminaries

2.1 Coauthorship Network

Coauthorship network is a complex network that represents the scientific col-
laboration relationships of the researchers, it’s basically formed by authors and
their related papers. The studies of such networks turns out to reveal many
interesting features of academic communities.

Formally, the nodes N = {1, 2, · · · , n} in the coauthorship network (N,L)
are the authors, and two authors are connected by a undirected line l ∈ L if they
have coauthored one or more papers (Newman [8]).

There exists another type or definition of the coauthorship network (Estrada
and Rodrŕguez-Velázquez [5]). The authors still represented by the nodes N in
the coauthorship network (N,H), every author is connected by the hyperlinks.
The hyperlink in the coauthorship network means there exists at least one paper
that collaborated by the related authors, and H represents the set of all the
hyperlinks. In fact, this kind of coauthorship network is a hypergraph. In this
paper, we use the second type of the coauthorship network, we also assume
that every author in the coauthorship network at least have one paper, and one
author connected by only one hyperlink is permitted.
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2.2 Cooperative Game

A cooperative TU game is a pair (N, v) where N = {1, 2, · · · , n} is a player set
and v : 2n → R with v(∅) = 0 is a characteristic function. The subsets of N is
called coalitions and v(T ), T ⊆ N is called the worth of the coalition T . We
denote the t for the cardinality of the coalition T .

A game (N, v) is additive game if v(S) =
∑

i∈S v({i}) for all S ⊆ N . A game
is convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). A convex game (N, v) always
has a nonempty core solution, for a game (N, v) the core is

C(v) = {x ∈ I(v)|x(S) ≥ v(S)},

where imputation set

I(v) = {x ∈ R
n|x(N) = v(N) and xi ≥ v({i}) for all i ∈ N}.

A value is an operator ϕ that assigns payoff vectors to all games, ϕ ∈ R
N .

A conference structure for cooperative TU game (N, v) is a hypergraph
(N,H) where H is a system of non-singleton subsets of N , H ⊆ HN = {h ⊆
N ||h| > 1}. The elements h in H is called hyperlink or conference. We allow the
hyperlinks in the hypergraph can connect single player in this paper. The set
of hyperlinks that contain player i is denoted by Hi = {h ∈ H|i ∈ h}. A game
with hypergraph communication situation i.e. conference structure is a triple
(N, v,H). We denote C(N,H) the set of connect components split by H.

The Shapley value for a TU game (N, v) is defined as follow

Shi(N, v) =
∑

i∈S;S⊆N

(s − 1)!(n − s)!
n!

[v(S) − v(S\{i})],

where n and s are the cardinalities of N and S respectively.
The Myerson value μ for a game with conference structure (N, v,H) is defined

as follow

μ(N, v,H) = Sh(N, vH), vH(k) =
∑

S∈C(k,H|k)
v(S), K ⊆ N,

where H|K = {h ∈ H|h ⊆ K} denote the restriction of H to K ⊆ N . The
position value π is defined by

πi(N, v,H) =
∑

h∈Hi

1
|h|Shh(H, vN ),

where vN (F ) =
∑

S∈C(N,F ) v(S), F ⊆ H denotes the hyperlink/link game.
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3 The Weighted Coauthorship Networks and Related
Cooperative Games

In this section, we define the weighted coauthorship networks and related coop-
erative games.

Using the hyperlink to connect the authors who have coauthored papers, then
we can get a basic coauthorship network (N,H) for the specific research field.
H is the collection of all the hyperlinks. The hyperlinks in the coauthorship
network represent there exists papers that written by the related authors. In
this paper, we think every author in the coauthorship network at least have one
paper, and every single author also can have his or her own papers. So, there
is no any author who has no related hyperlinks and there exists hyperlinks that
connect only one author in our coauthorship networks.

Obviously, this simple coauthorship network (N,H) just describes the rela-
tionship of the authors’s scientific collaboration, and it’s not enough for us to
construct the corresponding cooperative game models. When we want to con-
nect the coauthorship network with the cooperative game we should acquire the
characteristic function from the coauthorship network. Essentially, we should
know how to measure the worth of every coalition.

The scientific research ability or academic influence of some author often
embodied in the number of papers he has written, the total citation number of
his papers and the real quality of his papers. So, we can integrate these fac-
tors into coauthorship network as the weights of the hyperlinks and acquire
the related cooperative games. We will construct three kinds of weighted coau-
thorship networks and define the related cooperative games in the rest of this
section.

3.1 The Number of the Papers

The number of the papers is a basic standard to show the scientific research
ability of the authors. If we give every hyperlink h a positive weight α(h) that
represents how many papers have been written by the authors h, then we have
a weighted hypergraph or weighted network (N,Hα). The related cooperative
game can be easily defined.

So, we can define a cooperative game with hypergraph communication struc-
ture (N, v,Hα). The player set N in the cooperative game are the authors in
the coauthorship networks. Then the characteristic function is as follows,

v(S) = vH
α (S) =

∑

h∈C(S)

α(h) for all S ∈ N, (1)

where S represents the coalition and C(S) is the collection of hyperlinks
whose vertices are completely contained in coalition S, h is the hyperlink that
contains in C(S), α(h) is a positive integer that represents the number of the
papers that coauthored by the authors h. Then vH

α (S) is the total amount of the
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papers that written by authors in S. And we call the (N, vH
α ) the point game of

(N, v,Hα). It’s easy to verify that the game (N, vH
α ) is a convex game and we

omit it.

3.2 The Citation of the Papers

The above simple model just considers the amount of the papers that written by
the authors, and this is not enough to evaluate the worth of the coalitions. So
we should take the quality of the papers into account. The number of citations
not only can identify the research quality but also can reveal the development
potential of scientific research directions. For example, we can collect the citation
data of papers in recent years, higher citation in some research direction means
the higher development potential.

So, if we give a positive integer β(h) which represents the total citation of
the papers written by authors h to every hyperlink h in the basic coauthorship
network (N,H), then we can get a weighted hypergraph or weighted network
(N,Hβ) respect to the citation of the papers. We also have (N, v,Hβ) with
characteristic function given by

v(S) = vH
β (S) =

∑

h∈C(S)

β(h) for all S ∈ N, (2)

where β(h) represents the total number of citation of the papers coauthored
by the authors h. Then vH

β (S) is the total citation number of the papers written
by authors in coalition S. The point game (N, vH

β ) of (N, v,Hβ) is also a convex
game.

3.3 The Ranking Factor of the Papers

In scientific research field, there are many ways to evaluate the papers. In China,
Chinese Academy of Sciences JCR partition table and Journal Ranking of Thom-
son Reuters JCR are two widely accepted ways to rank the scientific research
papers. Both ranking ways divide all the papers into four levels. We can give
every level a positive coefficient according to one of these two evaluating ways.
Here we call this coefficient the ranking factor. Every papers belongs to one of
these levels and has a ranking factor. Naturally, we think the higher ranking
correspond to bigger ranking factor. Then we can use the total ranking factor of
the papers respect to some authors to evaluate the worth of them.

First, we construct a weighted coauthorship network (N,Hγ) where every
hyperlink connect the authors who have some coauthored papers. There is a
positive number γ(h) for every hyperlink h represents the total ranking factor of
the papers that coauthored by the related authors h. Then, we also can define the
related cooperative game. The player set N still the authors in the coauthorship
network. As mentioned before, we can use the total ranking factor of the papers
written by coalition S represents the worth of it. So, we have the following
characteristic function of cooperative game(N, v,Hγ)
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v(S) = vH
γ (S) =

∑

h∈C(S)

γ(h) for all S ∈ N, (3)

where γ(h) = w1t1(h) + w2t2(h) + w3t3(h) + w4t4(h), and wi (i = 1, 2, 3, 4)
are the ranking factors respect to the four levels, ti(h) (i = 1, 2, 3, 4) are the
number of the ith level papers which coauthored by h. Then vH

γ (S) represents
the total ranking factor of the coalition S. And we also call (N, vH

γ ) is the point
game of the (N, v,Hγ).

Now, we have following theorem showing that the game (N, vH
γ ) is a convex

game.

Theorem 1. The game (N, vH
γ ) induced from weighted coauthorship network

(N,Hγ) is a convex game.

Proof. From the definition of the game (N, vH
γ ), we know that vH

γ (S) is a convex
combination of the ti(h) (i = 1, 2, 3, 4) and h is the hyperlink in coalition S. So,
given any two sub-coalitions S and T in N , if S ∩ T = ∅, then vH

γ (S ∪ T ) =
vH

γ (S) + vH
γ (T ), if S ∩ T 
= ∅, then vH

γ (S ∪ T ) + vH
γ (S ∩ T ) ≥ vH

γ (S) + vH
γ (T )

because there may exists a hyperlink whose vertices belongs to S\T and T\S.
So, we have vH

γ (S ∪ T ) + vH
γ (S ∩ T ) ≥ vH

γ (S) + vH
γ (T ) for any sub-coalitions S

and T in N , and it means that the game (N, vH
γ ) is convex game. ��

For simplicity, we mainly consider game (N, vH
γ ) in the rest of this paper.

Now, we give an simple example to show the third weighted coauthorship
network (N,Hγ) and related cooperative game (N, vH

γ ).

Example 1. Suppose there are 5 authors in a coauthorship network (N,H),
and their scientific collaboration relationship is showing as Fig. 1, where N =
{A,B,C,D,E}, H = {a, b, c, d, e, f}.

Fig. 1. The coauthorship network (N,H).

We assume that w = {1, 0.75, 0.5, 0.25} is the ranking factor vector and
t1(a) = t1(b) = t1(d) = t4(f) = 1, t3(b) = t1(c) = t2(e) = t2(d) = 2, ti(h) = 0
otherwise. Then we can calculate the vector
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Fig. 2. The weighted coauthorship network (N,Hγ).

γ = {γ(a), γ(b), γ(c), γ(d), γ(e)γ(f)} = {1, 1.5, 2, 2.5, 1.5, 0.25}.

So we have the weighted coauthorship network (N, vγ) showing in Fig. 2. Accord-
ing to (N, vγ) we can acquire the game (N, vH

γ ), for example we can get
vH

γ ({A,C}) = vH
γ ({A,C,E}) = 1, vH

γ ({A,C,D}) = 1.25, and vH
γ (N) = 8.75.

4 Author Ranking with the Induced Cooperative Games

In the former section, we obtained three different weighted coauthorship net-
works from different perspectives, and induced three cooperative games respect
to these networks. Now, we try to rank the authors with the help of the feasible
allocation schemes. We use these allocation schemes to divide the total number,
citation, weight of papers written by all the authors to every author in the coau-
thorship network. Then we use the allocation results to evaluate the scientific
research ability of every single author and rank them.

4.1 The Core and the Shapley Value for the Games

The core and the Shapley value have very important positions in the cooperative
game theory.

Core. The core is a set value that every element in the core give every coalition
at least it own worth, no coalition will not satisfy the allocation. So, the allocation
in the core has stable property. For our induced game (N, vH

γ ) and any coalition
S ⊆ N , the core C(N, vH

γ ) is

C(N, vH
γ ) = {x ∈ I(N, vH

γ )|x(S) ≥ vH
γ (S) for all S ⊆ N} (4)

where I(N, vH
γ ) = {x ∈ R

n|x(N) = vH
γ (N) and xi ≥ vH

γ ({i}) for all i ∈ N} is
the imputation set of game (N, vH

γ ).
In cooperative game theory, the convex game has a nonempty core. We have

already shown that games (N, vH
α ), (N, vH

β ) and (N, vH
γ ) are convex games so
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they have nonempty cores. Although the core solutions have stable property and
the games (N, vH

α ), (N, vH
β ) and (N, vH

γ ) have nonempty cores, the core is not a
single value and we don’t know which allocation is the most suitable one.

The Shapley Value. The Shapley value is a widely used single value in cooper-
ative game theory, and it’s a expectation of all the players’ marginal contribution.
For the game (N, vH

γ ) and a player i ∈ N , the Shapley value Shi(N, vH
γ ) of i is

Shi(N, vH
γ ) =

∑

i∈S;S⊆N

(s − 1)!(n − s)!
n!

[vH
γ (S) − vH

γ (S\{i})]. (5)

This value satisfies many good allocation properties, such as efficiency, sym-
metry, dummy player property and additivity. These four properties also con-
struct a characterization of the Shapley value.

We have already construct three weighted coauthorship networks and induced
three cooperative games (N, vH

α ), (N, vH
β ) and (N, vH

γ ), so we can calculate every
players’ Shapley value and use them to evaluate every player’s scientific research
ability. From the allocation results, we can calculate every author’s weight in the
coauthorship network. Then, we use these weights to rank the authors easily.
Here, we give an example to show how to use the Shapley value to rank the
authors.

Example 2. Consider the coauthorship network (N,Hγ) and game (N, vH
γ ) in

Example 1. We can get their Shapley value ShA(N, vH
γ ) = 7

6 , ShB(N, vH
γ ) = 17

12 ,
ShC(N, vH

γ ) = 33
12 , ShD(N, vH

γ ) = 11
6 , ShE(N, vH

γ ) = 19
12 .

Assuming that there is a weight 1 for the whole coauthorship network, and
we can acquire every author’s weight WA ≈ 0.133, WB ≈ 0.162, WC ≈ 0.314,
WD ≈ 0.210, WE ≈ 0.181 by their Shapley value. Then the rank of them can be
easily find.

4.2 Contribution Level Based Allocation Rules

In the former subsection, the core and the Shapley value have been used for
evaluate the author’s scientific research ability. However these allocation rules
are not enough to solve the allocation problem here. As we know that every
coauthored paper has first author, second author etc., these authors have dif-
ferent contribution to the coauthored paper. When we consider the allocation
rule we shouldn’t ignore this issue otherwise we will overestimate some author’s
contribution or scientific research ability. Consider the following simple example.

Example 3. Author A and author B coauthored a paper q∗, the contribution of
themselves to the paper must be different so there are first author and second
author among them. When we use the Shapley value shown in the former sub-
section as their allocation, they will get the same because the Shapley value views
this situation as being symmetric. The pure Shapley value overestimates the sec-
ond author and reduces the first author’s payoff. Obviously, the pure Shapley
value is not a fair allocation in this situation.
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The Weighted Shapley Value. In above example, suppose there exists a
weight λ = (λ(A), λ(B)) ∈ R

2
++ such that λ(A) + λ(B) = 1 to describe their

contribution level to the coauthored paper. Then, a generalized version of the
Shapley value–the weighted Shapley value using this kind of weight λ would be
a better allocation for author A and author B.

The weighted Shapley value attempts to give a fair way of dividing up the
worth of the grand coalition by assigning to each player a weighted average
marginal contribution he makes to all possible coalitions, with weights vector and
the size of the coalition. Actually, we can construct a weight system λ ∈ R

n
++ for

games that we have defined according to every papers’ author order, the author
order of the paper just reflect the contribution level. We can use this weight
system as the weight of the weighted Shapley value.

So, how to capture the contribution level of every author respect to their
papers? Ming et al. [6] use following weight to characterize every author’s con-
tribution level. They think every paper has weight 1, the first author and other
authors have different weights to the coauthored paper, but the total weight of
the authors respect to one coauthored paper must be 1.

Table 1. Every author’s contribution level to the coauthored papers.

Author number First Second Third Forth Fifth Sixth

1 1

2 0.6 0.4

3 0.6 0.25 0.15

4 0.6 0.2 0.1 0.1

5 0.6 0.1 0.1 0.1 0.1

6 0.6 0.1 0.1 0.1 0.05 0.05

From this table, we know that any author i have weight κ(i, q) respect to
paper q ∈ Qi according to which author he or she is, where Qi represents the
collection of the papers that related to the author i and Q represents the total
number of the papers that have been written by all the authors. Following simple
example show how to find the weights of the author to the related papers.

Example 4. Considering the author A and author B in example 3, supposing
that A is the first author to the paper q∗. Then we have κ(A, q∗) = 0.6 and
κ(B, q∗) = 0.4 according to the table.

We should calculate every author’s weight λi respect to the grand coalition
according to these weights. A natural idea is that summing up all of author i’s
weights as his or her weight λ∗

i respect to grand coalition N , i.e.

λ∗
i =

∑

q∈Qi

κ(i, q). (6)
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However, the sum of all the authors’ weights is |Q| not 1 , where |Q| is the
cardinality of the Q. Thus, it needs a normalization process, i.e.

λi =
1

|Q|λ
∗
i =

1
|Q|

∑

q∈Qi

κ(i, q). (7)

It’s easy to verify that λ ∈ R
n
++ and

∑
i∈N λi = 1. Now, we have the weight

system λ calculated from author’s contribution level to the related paper.
Next, we give the definition of the weighted Shapley value that have been

introduced by Shapley [13]. Consider a cooperative game (N, v), let Σ(N) be
the set of all permutations on N . For any permutation σ ∈ Σ(N), let σi = {j ∈
N |σ(j) < σ(i)} is the set of the players preceding i in the permutation σ. Given
σ = (i1, · · · , in) ∈ Σ(N) and ω ∈ R

n
++, Pω(σ) =

∏n
k=1(ωik/

∑k
t=1 ωit).

Definition 1. For any game (N, v) and any player i ∈ N . Given ω ∈ R
n
++ such

that
∑

i∈N ωi = 1, the weighted Shapley value with weights ω, Shω is defined by

Shω
i (N, v) =

∑

σ∈Σ(N)

Pω(σ)[v(σi ∪ {i}) − v(σi)] (8)

From the definition, we know that the weighted Shapley value assigns to each
player a weighted average of the marginal contributions he or she makes to all
possible coalitions. We have got the weight system λ, so we can use the weighted
Shapley value Shλ

i (N, vH
γ ) of game (N, vH

γ ) to evaluate the author’s scientific
research ability. And we can use the allocation results to rank the authors.

Example 5. Consider there are three authors N = {A,B,C}, They coauthored
one paper qABC whose ranking factor is 0.75 and A is the first author and B
is the second author. A and B coauthored one paper qAB, the ranking factors
is 1 and first author is B. A and C have one coauthored paper whose ranking
factor is 0.5 and C is the first author. So we have weighted coauthorship network
(N,H, γ) respect to ranking factor shown in Fig. 3.

Fig. 3. The coauthorship network (N,Hγ) about A, B, C.
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Corresponding cooperative game (N, vH
γ ) is vH

γ ({A,B}) = 1, vH
γ ({A,C}) =

0.5, vH
γ (N) = 2.25, vH

γ (S) = 0 otherwise. And we can get λ = ( 7
15 , 17

60 , 1
4 ).

Finally, we have Shλ
A(N, vH

γ ) = 1.299, Shλ
B(N, vH

γ ) = 0.589, Shλ
C(N, vH

γ ) =
0.362. In order to rank the authors, we also can get every author’s weight to
the whole coauthorship network WA ≈ 0.577, WB ≈ 0.262, WC ≈ 0.161 by the
weighted Shapley value.

The Position Value with Contribution Level. From table 1, we know how
to measure every authors’ contribution level to the related papers, so if we can
give an allocation rule that allocates the grand coalition’s worth vH

α (N), vH
β (N),

vH
γ (N) to every hyperlink, then we can allocate every hyperlink’s payoff to the

related authors proportionally according to the contribution levels to the hyper-
links.

This idea is a bit similar to the position value. The position value for games
with conference structure first allocates every hyperlink the Shapley value respect
to hyperlink game, and then divides these hyperlinks’ payoff to their related
players equally. The total payoff of the players in the game is the sum of the
payoffs that they acquire from the hyperlinks he or she belongs to.

So, we can adopt this idea to our allocation problem. First, we should obtain
hyperlink games from (N, v,Hα), (N, v,Hβ), (N, v,Hγ).

Definition 2. For game (N, v,Hγ) consider hyperlink game (H, vN
γ ) where

vN
γ (F ) =

∑

S⊂A(N,F )

vH
γ (S)

=
∑

S⊂A(N,F )

∑

h∈C(S)

γ(h)

=
∑

h∈F

γ(h), for all F ⊆ H. (9)

where A(N,F ) represents the set of authors or players that constitute the hyper-
links in F ⊆ H. It’s easy to prove that vN

γ (H) = vH
γ (N).

Then we can use the Shapley value as the allocation for game (H, vH
γ ) and

divide all the hyperlinks’ payoff to their related authors according to the contri-
bution levels as to hyperlinks. So we have following allocation rule:

Pi(N, vH
γ ) =

∑

h∈Hi

κ(i, h)Shh(H, vN
γ ). (10)

Hi is the collection of the hyperlinks that related to author i and κ(i, h)
represents the contribution level of author i correspond to hyperlink h. We use
i’s average contribution level to his or her related papers which have same authors
as connected by hyperlink h as his or her contribution level κ(i, h) to h. Formally,
κ(i, h) is defined as follow
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Definition 3. For any author i, his contribution level to hyperlink h ∈ Hi is

κ(i, h) =
1

|Qh|
∑

q∈Qh

κ(i, q),

where Qh represents the papers that written by authors h.

This allocation rule first allocates the worth of grand coalition to every hyper-
link by the Shapley value of hyperlink game (H, vN

γ ). Then, every hyperlink
divides their payoff to their related authors proportionally by authors’ contri-
bution level κ, and this is the different with position value whose allocation in
second step is equally divided.

However, one can easily verify that the induced hyperlink game (H, vH
γ ) is

an additive game. From the Shapley value of additive game we have

Pi(N, vH
γ ) =

∑

h∈Hi

κ(i, h)Shh(H, vN
γ )

=
∑

h∈Hi

κ(i, h)vN
γ (h)

=
∑

h∈Hi

κ(i, h)γ(h). (11)

Actually, this allocation rule is a proportion rule as to authors’ participation
or contribution level although we adopt the idea of position value.

Example 6. Consider the situation in example 5. First, we can get the con-
tribution levels κ(A, hAB) = κ(A, hAC) = 0.4, κ(A, hABC) = κ(B, hAB) =
κ(C, hAC) = 0.6, κ(B, hABC) = 0.25, κ(C, hABC) = 0.15. So we have the
position value with contribution levels PA(N, vH

γ ) = 1.05, PB(N, vH
γ ) = 0.7875,

PC(N, vH
γ ) = 0.1125. We also can get every author’s weight to the whole coau-

thorship network easily and we omit it.

5 Conclusion

In this paper, we use cooperative game to rank the authors in coauthorship net-
works. At first, we construct three weighted coauthorship networks from different
aspects. We consider the amount of authors’ papers, the citation number and
the weight of the papers. And we also give three cooperative games though the
weighted coauthorship networks. Then we study the core and the Shapley value
of the games. Finally, from respective of author’s contribution level we define
the weight system and study the weighted Shapley value, and we also give a new
value which is similar to the position value. These allocation results can be used
for ranking the authors in the coauthorship network.

As mentioned before, cooperative game theory is an old and still hot research
field and coauthorship network is a interesting topic that has been studying by
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complex network theory. This is the first paper that applies pure cooperative
game theory to the coauthorship network. Although we have constructed three
kinds of coauthorship networks, defined the related games and given the alloca-
tion rules to rank the authors, our models in this paper still a little simple. So,
one can construct more complex models in the future work.

The coauthorship networks are the complex network and there are many
authors in them. We use core, Shapley value and weighted Shapley value as the
allocation rules from the angle of cooperative game but we ignore the compu-
tation complexity. Actually, it’s a big problem for application when there exists
thousands of authors in the network.
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Abstract. The Harsanyi power solution for cooperative games allocates
dividends generated by coalitions proportionally to each player’s power
index. Normally, cooperative games tacitly treat all players symmetric.
However, the fact is that different players may be asymmetric and con-
tribute to different efforts, bargaining powers, or stability in the process
of cooperation. A weight vector is used to reflect players’ asymmetry. In
view of these weights are possible to be less than 1, that is, not all players
are absolutely important, a loss of dividends of coalitions can happen.
We define and characterize a reduced Harsanyi power solution for coop-
erative games with a weight vector, which is relevant to a loss function
of dividends. Moreover, when the loss function takes particular forms,
the reduced Harsanyi power solution has a linear relationship with the
Harsanyi power solution.

Keywords: Harsanyi dividend · Loss function · Reduced Harsanyi
power solution

1 Introduction

A cooperative game over a finite set of players is a function assigning to any
coalition a profit achieved by cooperation. The main research for cooperative
games is to discuss how to allocate these profits among all players. The Shapley
value is a famous solution concept, in which the dividend of every coalition is
divided equally. One axiom that axiomatizes Shapley value is symmetry. The
underlying assumption of this axiom is that all players are symmetric. However,
there are many realistic situations where the assumption seems unrealistic. For
example, in a cooperative game with two players, player one may need more
efforts than player two in order to accomplish a project. Player one may be
comparatively more pleased to promote the cooperation. Also, the two players
may possess different bargaining powers.

Shapley [5] introduced the weighted Shapley value. Each player is attached
to a positive weight and shares the dividend of coalitions proportional to its
weight. In the Shapley value, all the weights are equal. Aubin [1] considered the
asymmetry about the participation levels of players and introduced the fuzzy
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 229–239, 2017.
https://doi.org/10.1007/978-981-10-6753-2_17
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cooperative game. The Shapley value for fuzzy cooperative games have been
studied by Butnariu [2], Tsurumi et al. [7], Meng and Zhang [3]. The study of
core for fuzzy games see [6,9].

Vasil’ev [8] proposed the Harsanyi solution for cooperative games. The
Harsanyi solution divides the Harsanyi dividends over players in the correspond-
ing coalition according to power indexes of players. However, for cooperative
games with a weight vector, the gap between weights and 1 can lead to a part of
loss of Harsanyi dividends. As a matter of fact, one player occupies absolutely
important status only when the weight of this player is 1. Based on the back-
ground, in this paper, we propose the concept of loss function, and characterize a
newly defined reduced Harsanyi power solution. If the loss function takes partic-
ular forms, the corresponding reduced Harsanyi power solution for cooperative
games with a weight vector is a linear combination of Harsanyi power solution
of several subgames with respect to the weight vector.

This paper is organized as follows. In Sect. 2, we get some preliminary knowl-
edge served for the latter contexts. In Sect. 3, we propose a loss function and
define a solution concept of reduced Harsanyi power solution for cooperative
games with a weight vector. Also, the axiomatization of this new solution is
given. In Sect. 4, we list several particular kinds of loss functions and illustrate
the relationship between the corresponding reduced Harsanyi power solutions
and the crisp Harsanyi power solutions. Finally, some conclusions are given in
Sect. 5.

2 Preliminaries

2.1 Cooperative Games

A cooperative game can be described by a pair (N, v) where N = {1, 2, . . . . , n}
denotes the set of players and v : 2N → R with v(∅) = 0 the corresponding
characteristic function. |S| denotes the number of members in coalition S. S ⊆ N
is called a coalition and v(S) the worth of S. (T, v) for any T ⊆ N is called a
subgame of (N, v) ∈ GN . If there is no ambiguity, we identify the game (N, v)
with its characteristic function v. The set of all cooperative games over N is
denoted by GN .

The solution concept in a cooperative game defines how to allocate the profit
v(N) of grand coalition N among the players. Therefore, a solution is a vector
x ∈ R

n and satisfies that
∑

i∈N

xi = v(N). As the important solution concepts for

cooperative games, the Shapley value of a game v is defined for all player i ∈ N as

Shi(v) =
∑

S⊆N ;i∈S

(|N | − |S|)!(|S| − 1)!
|N |! · [v(S) − v(S\{i})]

Denote the Shapley value of subgame (T, v) by Sh(v)(T ). For each T ⊆ N , the
unanimity game uT is defined to be
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uT (S)=

{
1; if S ⊆ T,

0; otherwise.
It is well known that the unanimity games uT , ∅ �=T ⊆N

construct a basis forGN , and then any game v ∈ GN be canwritten as the following
form, i.e.,

v =
∑

∅�=T⊆N

Δv(T )uT ,

where the coefficients Δv(T ) are the Harsanyi dividends generated by players in
coalition T . Note that

Shi(v) =
∑

i∈T⊆N

Δv(T )
1

|T | ,

which implies that the Shapley value views all players symmetric and the divi-
dend of every coalition is equally allocated among the players in this coalition.
However, under the most situations, the bargaining power of each player is not
the same. Shapley [5] assigned a positive weight to each player as a measure of
its individual ability and introduced the weighted Shapley value. In the weighted
Shapley value, the dividend is shared proportional to each player’s weight. Given
a positive weight vector w = (w1, w2, . . . , wn), wi ∈ (0, 1] for any i ∈ N , the
weighted Shapley value with weights w, Shw is defined as

Shw
i (v) =

∑

i∈T⊆N

Δv(T )
wi∑

j∈T

wj

for any v ∈ GN , i ∈ N . Afterwards, Vasil’ev [8] propose the Harsanyi solution.
A sharing system over N is p =

(
(pS)S⊆N

)
, where pS is an |S| dimensional

vector and
∑

i∈S

pS
i = 1. The Harsanyi payoff for a cooperative game v ∈ GN with

a sharing system p is Hp
i (v) =

∑

∅�=T⊆N

Δv(T )pT
i for any i ∈ N . Given a power

measure, which is a function σ that assigns to any S ⊆ N a power vector σ(S)
and σi(S) reflects the positive power of player i in S. Denote pS

i = σi(S)∑

i∈S

σi(S) , the

corresponding Harsanyi power solution Hσ is defined to be

Hσ
i (v) =

∑

∅�=T⊆N

Δv(T )
σi(T )

∑

i∈T

σi(T )

for any i ∈ N .

2.2 Fuzzy Cooperative Games

There are some situations where players do not fully participate in a coalition,
but take action according to the level of participation. Aubin [1] studied the
problem at first by the proposal of fuzzy coalition.
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Let N be a finite set of players. We call U = (U1, U2, . . . , Un), Ui ∈ [0, 1]
for each i ∈ N , a fuzzy coalition. Here Ui denotes the participation level of
player i in the coalition U . The set of all fuzzy coalitions is denoted by FN . We
define the carrier of fuzzy coalition U by U cr = {i ∈ N |Ui �= 0} and denote
Q(U) = {Ui|Ui > 0, i ∈ N}. For s, t ∈ FN , we use the notation t ≤ s iff ti ≤ si

for each i ∈ N . Each fuzzy coalition eS with eS
i = 1 if i ∈ S and otherwise

eS
i = 0 corresponds to the situation where the players within S fully cooperate.

We write ei instead of e{i}.
A fuzzy cooperative game is a function vf : FN → R

n
+ such that vf (e∅) = 0.

vf (eS) = v(S) for each S ⊆ N . The set of fuzzy cooperative games is denoted
by FGN .

In the following context, we fix U ∈ FN , with |Q(U)| = m. We write the
non-zero elements in Q(U) in a increasing order h1 < h2 < · · · < hm and h0 = 0.
In 1980, Butnariu [2] firstly introduced a limited subclass of fuzzy cooperative
games as follows.

Definition 1. A fuzzy cooperative game vf is said to be with proportional form
if and only if

vf (U) =
m∑

k=1

hk · v([U ]hk)

for each U ∈ FN , here [U ]hk is the set of players in fuzzy coalition U with
the same participation level hk, i.e. [U ]hk = {i ∈ N |Ui = hk} for each k ∈
{1, 2, . . . ,m}.

Denote the set of fuzzy cooperative games with proportional forms by FGp
N .

Butnariu gave the explicit form of Shapley value with fuzzy coalition U over
FGp

N

φpro(vf )(U) =
m∑

k=1

hk · φ(v)([U ]hk).

Following Butnariu’s approach, in 2001 Tsurumi et al. [7] proposed a new
class of fuzzy cooperative games.

Definition 2. A fuzzy cooperative game vf is said to be with Choquet integral
form if and only if

vf (U) =
m∑

k=1

[hk − hk−1] · v([U ]hk
)

for each U ∈ FN , where [U ]hk
is the set of players in fuzzy coalition U with

participation level not smaller than hk, i.e. [U ]hk
= {i ∈ N |Ui ≥ hk} for each

k ∈ {1, 2, . . . ,m}.

Denote the set of fuzzy cooperative games with Choquet integral forms by
FGc

N . Tsurumi et al. also gave the expression of Shapley value with fuzzy
coalition U over FGN

c

φch(vf )(U) =
m∑

k=1

[hk − hk−1] · φ(v)([U ]hk
).
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Owen [4] introduced the fuzzy cooperative games with multilinear extension
form.

Definition 3. A fuzzy cooperative game vf is said to be with multilinear exten-
sion form if and only if

vf (U) =
∑

T⊆Ucr

∏

i∈T

Ui

∏

i∈Ucr\T

(1 − Ui) · v(T )

for any U ∈ FN .

Denote the set of fuzzy cooperative games with multilinear extension forms by
FGm

N . The Shapley value with fuzzy coalition U over FGN
m can be written as

φmul(vf )(U) =
∑

T⊆N

∏

i∈T

Ui

∏

i∈N\T

(1 − Ui)Sh(v)(T ).

3 Reduced Harsanyi Power Solution

The previous proposed Harsanyi solution implies that the dividend Δv(S) of any
coalition S can be reached. It seems unrealistic to give this ideal assumption that
all players are equally important and contribute their entire efforts to promote
the cooperation. It is more natural to suppose that each player makes different
contributions in the generation of Harsanyi dividends, from the effort levels,
reliability to bargaining powers. Based on this consideration, in this section we
use a weight vector to represent different contributions of players and propose a
new solution.

Definition 4. A reduced Harsanyi power solution for any cooperative game
v ∈ GN with a weight vector w and power measure σ is defined to be

H
(w,σ)
i (v) =

∑

i∈T⊆N

Δv(T )hT (w)
σw

i (T )
∑

i∈T

σw
i (T )

,

here hT (w) ∈ [0, 1] is a loss function of Δv(T ) with respect to w, indicating the
loss of dividend Δv(T ) caused by the weights less than 1, which is why we say
this solution “reduced”. We suppose that hT (w) and σw

i (T ) only rely on the
weights of players in T .

Remark 1. Because some players in coalition T only elaborate a part of efforts
and do not possess enough bargaining powers, or have a certain possibility to
split off this coalition, a loss of Harsanyi dividends will happen in view of different
coalition formation possibilities.

In an ideal, hT (w) = 1 for any T ⊆ N , i.e., any coalition T ⊆ N can form
and achieve the dividend Δv(T ), the reduced Harsanyi dividend solution is called
the crisp Harsanyi power solution, denoted by Hcr(w,σ)(v). The crisp Harsanyi
power solution is exactly the weighted Shapley value [5] Shw if σw

i (S) = wi for
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any S ⊆ N . Therefore, the weighted Shapley value is a specific case of reduced
Harsanyi power solution.

In the following, several axioms for a solution ψ over v ∈ GN with the weight
vector w and power measure σ are presented. We say a cooperative game v ∈ GN

with the weight vector w and power measure σ is player-anonymous if v(S) = 0
for any S ⊆ N and v(N) �= 0.

Axiom 1. Power measure property If v ∈ GN with w and σw is player-
anonymous, there exists a constant α such that

∑

i∈N

ψ
(w,σ)
i (N, v) = ασw

i (N).

This axiom shows that for a player-anonymous cooperative game with a
weight vector and a power measure, each player i ∈ N obtains a constant times
of its power σw

i (N) in grand coalition N .

Axiom 2. Additivity For all u, v ∈ GN , ψ(w,σ)(u+v) = ψ(w,σ)(u)+ψ(w,σ)(v)

Axiom 3. Loss function efficiency If v ∈ GN with w and and σw is player-
anonymous,

∑

i∈N

ψ
(w,σ)
i (v) = v(N)hN (w).

Loss function efficiency says that for a player-anonymous game, the payoff of
all players is equal to the reduced v(N) after losing part of Harsanyi dividend
of grand coalition N .

Axiom 4. Inessential player property Let T be a non-empty coalition. If
v = cuT , ψ

(w,σ)
i (N, v) = ψ

(wT ,σ)
i (T,w) for all i ∈ T and 0 otherwise.

Inessential player property states that when v is a unanimity game on a non-
empty coalition T , the final payoffs of players in T do not depend on the players
outside T .

Lemma 3.1. The reduced Harsanyi power solution for any cooperative game
v ∈ GN with a weight vector w and power measure σ satisfies Axioms 1–4

Proof. From Definition 4, we know that H
(w,σ)
i (v) =

∑

i∈T⊆N

Δv(T )hT (w)

σw
i (T )∑

i∈T

σw
i (T ) . When v = uT , T is a non-empty coalition,

H
(w,σ)
i (uT ) =

⎧
⎨

⎩

hT (w) σw
i (T )∑

i∈T

σw
i (T ) ; if i ∈ T,

0; otherwise.

Now we begin to successively verify that the reduced Harsanyi power solution
satisfies these four axioms.
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Axiom 1. If v ∈ GN with w and σ is player-anonymous,

H
(w,σ)
i (v) = Δv(N)hN (w)

σw
i (N)

∑

i∈N

σw
i (N)

.

Take α = Δv(N)hN (w)∑

i∈N

σw
i (N) , we obtain that H

(w,σ)
i (v) = ασw

i (N)

Axiom 2. Because (u + v)(S) = u(S) + v(S) for any u, v ∈ GN , S ⊆ N , it is
obvious that

Δu+v(S) = Δu(S) + Δv(S)

for all S ⊆ N . Thus,

H
(w,σ)
i (u + v) =

∑

i∈T⊆N

Δ(u+v)(T )hT (w)
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

i∈T⊆N

Δu(T )hT (w)
σw

i (T )
∑

i∈T

σw
i (T )

+
∑

i∈T⊆N

Δv(T )hT (w)
σw

i (T )
∑

i∈T

σw
i (T )

= H
(w,σ)
i (u) + H

(w,σ)
i (v).

Axiom 3. Because

H
(w,σ)
i (v) = Δv(N)hN (w)

σw
i (N)

∑

i∈N

σw
i (N)

if v ∈ GN with w and σ is player-anonymous, we get that
∑

i∈N

H
(w,σ)
i (v) =

Δv(N)hN (w) = v(N)hN (w).

Axiom 4. When v = uT , ∅ �= T ⊆ N , obviously H
(w,σ)
i (N,uT ) = 0 for any

i /∈ T and H
(w,σ)
i (N,uT ) = hT (w) σw

i (T )∑

i∈T

σw
i (T ) , H

(wT ,σ)
i (T, uT ) = hT (wT ) σ

wT
i (T )

∑

i∈T

σ
wT
i (T )

for all i ∈ T . For the reason that hT (wT ) = hT (w) and σw
i (T ) = σwT

i (T ), we
have H

(w,σ)
i (N,uT ) = H

(wT ,σ)
i (T, uT ) for any i ∈ T . 	


Lemma 3.2. If any solution satisfies Axioms 1–4, it is the reduced Harsanyi
power solution.

Proof. Let ψ be a solution satisfying all four axioms. In view of when v = uT ,
any subgame (T, v) of game v ∈ GN is player-anonymous about a weight vec-
tor wT and power measure σ, we get that ψ

(wT ,σ)
i (uT ) = ασwT

i (T ) = ασw
i (T )

for any i ∈ T according to the power measure property. We also have that
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∑

i∈T

ψ
(wT ,σ)
i (uT ) = uT (T )hT (w) = hT (w) from the loss function efficiency. There-

fore, ψ
(wT ,σ)

i (uT ) = hT (w) σw
i (T )∑

i∈T

σw
i (T ) for any i ∈ T . It follows from the inessen-

tial player property that ψ
(w,σ)
i (N,uT ) = ψ

(wT ,σwT )
i (T, uT ) = hT (w) σw

i (T )∑

i∈T

σw
i (T )

if i ∈ T and otherwise ψ
(w,σ)
i (N,uT ) = 0. Using the additivity, we obtain that

ψ
(w,σ)
i (N, v) =

∑

i∈T

ψ
(w,σ)
i (N,uT ) =

∑

i∈T

hT (w) σw
i (T )∑

i∈T

σw
i (T ) = H

(w,σ)
i (N, v) for all

i ∈ N .
We complete this proof. 	


Theorem 3.3. Reduced Harsanyi power solution is a unique solution for any
cooperative game with a weight vector and power measure satisfying Axioms
1–4.

Proof. This result can be easily obtained by Lemmas 3.1 and 3.2.

4 Three Particular Loss Functions

In the previous context, we have referred that the weights of players can lead
to a loss of Harsanyi dividends to some extent. The weights can have many
explanations, such as the player’s effort level, reliability and so on. The loss
function captures different information if weights have different meanings and
thus has different forms. In this section, we focus on the study of deterministic
and concrete loss functions. Firstly, we list several particular expressions of loss
functions hS(w) for any S ⊆ N .

1. Minimal weight loss function: hS
m(w) = min{wi|i ∈ S}.

2. Equal weight loss function: hS
e (w) =

{
wi; if wi = wj for all i, j ∈ S,

0; otherwise.
3. Product weight loss function: hS

p (w) =
∏

i∈S

wi.

Suppose wi is the effort level player i contributes in a cooperation. Less wi

reflects that player i makes less effort. The minimal weight loss function takes
the minimal weight of players in coalition S as an evaluation of strength of S.
If a coalition is less strong, i.e., players in it have lower participation levels, the
players in it is not so pleased to form this coalition and naturally S can not
achieve the ideal Harsanyi dividend Δv(S). When all players in S work together
to form this coalition and spend their entire effort on the project, the whole
Δv(S) can be obtained, i.e., hS

m(w) = 1.
Because weights of all players are not the same, under the rational consid-

erations, players with higher abilities are not willing to cooperate with players
with lower abilities. That is, not all coalitions can form and only those players
who have the same weights are possible to gather together. The equal weight
loss function considers this fact and takes the same weight of players in a formed
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coalition as a measurement of its strength. In a stronger coalition, players have
stronger abilities. Moreover, not enough strong ability wi ≤ 1 (i ∈ S) will cer-
tainly influence the obtainment of Δv(S). Specifically, if wi = 1 for all i ∈ S,
hS

e (w) = 1.
When wi is treated as its reliability to support the formation of coalitions

including i, the product of all wi (i ∈ S) can be regarded as the cohesion level
of coalition S. A coalition with a higher cohesion is relatively more stable and
thus players in it do not want to break away from this coalition. Product weight
loss function embodies the stability of coalitions in the generation of Harsanyi
dividends. A more stable coalition achieves larger part of its Harsanyi dividend.
When wi = 1 for all i ∈ S, hS

e (w) = 1.

Proposition 4.1. Denote Q(w) = {wi|i ∈ N} = {s1, s2, . . . , sq}, s1 < s2 <
· · · sq and s0 = 0. The following statements hold:

(1) When hS(w) = hS
m(w), H

(w,σ)
i (v) =

q∑

k=1

(sk−sk−1)H
cr(w,σ)
i (v)([w]sk

), where

[w]sk
= {i|wi ≥ sk}, H

(w,σ)
i (v)([w]sk

) is the reduced Harsanyi power solu-
tion of subgame ([w]sk

, v);

(2) When hS(w) = hS
e (w), H

(w,σ)
i (v) =

q∑

k=1

skH
cr(w,σ)
i (v)([w]sk), where [w]sk =

{i|wi = sk}, H
(w,σ)
i (v)([w]sk) is the reduced Harsanyi power solution of sub-

game ([w]sk , v);

(3) When hS(w) = hS
p (w), H

(w,σ)
i (v) =

∑

T⊆N

∏

i∈T

wj

∏

i∈N\T

(1 − wi)

H
cr(w,σ)
i (v)(T ).

Proof.(1) When hS(w) = hS
m(w), we get that

q∑

k=1

(sk − sk−1)H
cr(w,σ)
i (v)([w]sk

)

=
q∑

k=1

(sk − sk−1)
∑

i∈S⊆[w]sk

Δv(S)
σw

i (S)
∑

i∈S

σw
i (S)

=
∑

i∈S⊆N

Δv(S) · min{wi|i ∈ S} σw
i (S)

∑

i∈S

σw
i (S)

= H
(w,σ)
i (v).
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(2) When hS(w) = hS
e (w), we have

q∑

k=1

skH
cr(w,σ)
i (v)([w]sk)

=
q∑

k=1

sk ·
∑

i∈S⊆[w]sk

Δv(S) · σw
i (S)

∑

i∈S

σw
i (S)

=
∑

i∈S⊆N

Δv(S) · hS
e (w)

σw
i (S)

∑

i∈S

σw
i (S)

=H
(w,σ)
i (v).

(3) When hS(w) = hS
p (w), note that

H
(w,σ)
i (v) =

∑

i∈S⊆N

∏

j∈S

wjH
cr(w,σ)
i (v)(S)

=
∑

i∈S⊆N

∏

j∈S

wj

∑

i∈T⊆S

Δv(T )
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

i∈S⊆N

∑

T⊇S

∏

i∈T

wj

∏

i∈N\T

(1 − wi)Δv(T )
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

i∈S⊆N

∑

T⊇S

Δv(S)
∏

i∈T

wj

∏

i∈N\T

(1 − wi)
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

T⊆N

∑

i∈S⊆T

Δv(S)
∏

i∈T

wj

∏

i∈N\T

(1 − wi)
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

T⊆N

∏

i∈T

wj

∏

i∈N\T

(1 − wi)
∑

i∈S⊆T

Δv(S)
σw

i (T )
∑

i∈T

σw
i (T )

=
∑

T⊆N

∏

i∈T

wj

∏

i∈N\T

(1 − wi)H
cr(w,σ)
i (v)(T ).

This proposition is verified true. 	

Proposition 4.2. Let wi be the participation level of player i, when σw

i (S) = 1

for any i ∈ S and w = U , then H(w,σ)(v) =

⎧
⎨

⎩

Shch(vf )(U); if hS(w) = hS
m(w),

Shpro(vf )(U); if hS(w) = hS
e (w),

Shmul(vf )(U); if hS(w) = hS
p (w).

This proposition says that the reduced Harsanyi solution is also an extension of
Shapley value for fuzzy cooperative games and we omit the proof.
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5 Conclusion

Under most situations in our life, each player involved in a cooperation is not
equally important. For example, one of players may contribute more effort or
have a stronger bargaining ability. Thus, to assume that players are symmetric
seems unrealistic in the cooperative game theory.

In this paper, we assign to each player a positive weight and extend the
Harsanyi solution for cooperative games to reduced Harsanyi power solution. It
is worthwhile that in view of weights can influence the possibilities of coalitions
formation, here we introduce the concept of loss function, which reflects the
loss of Harsanyi dividends generated by coalitions. The reduced Harsanyi power
solution is relevant to the loss function. We also give an axiomatization of this
new solution. Furthermore, we present some particular forms of loss functions
and give the corresponding specific solutions.

In our solution, Harsanyi dividend of any coalition is only distributed among
players in this coalition. In the further study, we will continue to discuss such
class of solutions where a player can share the dividends of coalitions not includ-
ing it.
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An Allocation Method of Provincial College
Enrollment Plan Based on Bankruptcy Model
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Abstract. The college enrollment plan allocation plays an important role in
implementing the reform of higher education and adjusting the structure of
qualified personnel in society. In this paper, the provincial college enrollment
plan allocation is regarded as the bankruptcy problem. By transforming the eight
university educational indexes into membership degrees, which are taken into
account in the allocation process. A bankruptcy model and an operable bank-
ruptcy rule are proposed. This study provides references for the provincial
education administrative departments in college enrollment plan allocation
process.

Keywords: Enrollment plan allocation � Membership degrees � Bankruptcy
problem � Cooperative game

1 Introduction

With the deepening of the higher education reform in China, it is necessary for us to
accelerate innovations and improve the quality of the higher education in order to
promote the scientific development of education programs and improve the level of
educational modernization. The enrollment plan has become the baton that conducts
the higher education orchestra, which is an important reflection of educational equality,
playing a significant role in the education reform and regional talent structure
adjustment.

The key question is how to allocate the quotas of new students reasonably in the
process of enrollment plan-making. Under the premise of provincial enrollment total
scale approved by the education ministry, the provincial education administrations are
responsible for the coordination and distribution of the quotas of college enrollment
plan in their regions. However, the complexity of the factors leads to the difficulty of
the college enrollment scale allocation. The reasons are as follows: (1) The numbers of
students have declined, which requires higher requirements to reasonable enrollment
plan allocation. (2) The enrollment plan allocation affects directly the sizes of uni-
versities and the long-term development, so colleges pursuit blindly the quotas of
enrollment plan, which interfere with the progress of enrollment plan allocation.

© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 240–252, 2017.
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(3) Because of the complexity of policy factors and educational indexes, it makes
allocation inefficient and affects normal operation of college enrollment.

Some scholars have carried out relevant researches to solve these problems,
by establishing mathematical models to distribute the numbers of enrollment plan.
Zheng et al. [1] study the provincial enrollment plan allocation model from the per-
spective of colleges and universities, using the method combining the grey theory and
the fuzzy set theory. Dong [2] constructs the index system of the regional allocation in
the enrollment plan of local universities and uses AHP to simulate the allocation of the
enrollment plan of local colleges. Jing et al. [3] set up the bankruptcy model to
distribute enrollment plan in colleges and universities by the APL rule. However, the
above researches are carried out only from the perspective of the state or universities
instead of resolving the difficulties in the actual operation process from the perspective
of the provincial education administrations.

In this paper, we describe the process of enrollment plan distribution from the
perspective of the provincial education administrations based on the enrollment total
scale approved by the Education Ministry and claims from the local colleges. We will
analyze this process and calculate the membership degree to evaluate the college index
system by using the minimum membership degree deviation method of fuzzy
multi-objective decision making. Then we use the above conclusion to set up the
bankruptcy model, which includes membership degree, a factor taken into account in
the allocation of the enrollment plan. The example is analyzed to show the rationality
and validity of the developed distribution approach.

2 Comprehensive Evaluation of the University Educational
Indexes of Enrollment Plan

2.1 Description of the University Educational Indexes

The provincial education administrative departments distribute local university enroll-
ment plan by considering some factors such as the need of the economic and so-
cial development, the university development, and the base conditions of universities,
the enrollment and claim of universities. By investigating in the provincial education
administrative departments, we describe eight university educational indexes, taken into
account in the allocation process, which are shown in Fig. 1.

1. The basic educational conditions indexes. The Education Ministry issued the
No. 2 document of the Basic Educational Conditions Index of University in 2004,
which points out that the five basic educational condition indexes are the basis to
measure the sizes and qualities of universities and re-evaluate the annual recruit-
ment of students scale, including the student-teacher ratio, the percent-
age of teachers obtained master degrees in the full-time teachers, the average size of
teaching and administration buildings per student, the average numbers of books in
the library per student, the average cost of equipment for teaching and scientific
researches per student. These five basic education conditions indexes above are
represented by b1, b2, b3, b4, b5, respectively.
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2. The social badly-needed subject index. To guarantee the stable development of
regional economy, we must focus on regional talents structure and support the
development of shortage subject to meet the demand of the regional key projects
and talents’ need in remote areas under harsh conditions, based on the diversity and
rationality of the subject development in universities. According to the demand of
province regional economic development, there are the badly-needed subjects in the
kinds of universities, including engineering, agriculture, forestry and medical uni-
versities. b6 represents the social shortage subject indicator.

3. The enrollment plan completion rate. Enrollment plan reflects that the chances of
obtaining higher education resources for citizens, while unfinished enrollment plan
causes the waste of education resources. University enrollment plan completion rate
embodies the full use of education resources, also indirectly reflects the social
recognition and satisfaction of colleges and universities. The enrollment plan
completion rate is defined as b7.

4. The educational assessment indicators. University education evaluation monitors
the national macro management and the teaching work in colleges and universities,
used in the evaluation of college teaching work and the level of meeting personnel
training requirements. The evaluation results reflect the teaching quality, the
teaching efficiency and the reform of the national education. Therefore, the eval-
uation results, as the educational index, are taken into account in the allocation of
the enrollment plan. The educational assessment indicator is denoted by b8.

2.2 Comprehensive Evaluation Based on the Minimum Membership
Degree Deviation Method

The Minimum membership degree deviation method is a kind of fuzzy multi-objective
decision-making methods. The main ideas of this method include two points [4].

University educational indexes

Basic educational conditions indexes
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Fig. 1. The system of university educational indexes
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1. Determining the membership function. Because of the different dimension of the
objectives, if the objectives are used to make decision, the results of decision-making
will be unreasonable. The objectives are transformed into the non-dimensional
numbers by the membership function, which are used to measure the object mem-
bership degrees. According to the actual situation, the membership functions are
considered to fall into four types: Efficiency, Cost, Fixed-value and Interval.

2. Determining the gathering function. The Minimum membership degree deviation
method is used to evaluate deviation degree between the object and the ideal value.
If the objectives value is closer to the ideal value, it is more superior. Generally, the
weighted Minkowski distance function is considered as gathering function. Then
the multi-objective problem is transformed into single-objective evaluation prob-
lem, applying the membership degree obtained above to evaluate the schemes.

We denote the set of universities to participate in the provincial enrollment plan
distribution by N ¼ 1; 2; . . .; nf g. bij i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .; 8ð Þ is the education
index j of the university i. mj ¼ ½aj; bj� is the interval. fijðbijÞ 2 ½0; 1� represents the
membership function as follows.

(a) Cost membership function.

fij bij
� � ¼

1; bij 2 0; aj
� �

bj�bij
bj�aj

; bij 2 aj; bj
� �

0; bij 2 bj; þ1� �
8><
>: ð1Þ

(b) Efficiency membership function

fij bij
� � ¼

0; bij 2 0; aj
� �

bij�aj
bj�aj

; bij 2 aj; bj
� �

1; bij 2 bj; þ1� �
8><
>: ð2Þ

According to the No. 2 document of the Education Ministry in 2004, the qualified
criterion and the unqualified criterion in the different college classes are shown in
Tables 1 and 2, respectively. The restricted universities are identified according to their
cost type of education indexes, which are higher than the unqualified criterion, or lower
than the unqualified criterion in terms of efficiency index. The qualified universities are
identified according to their cost type of education indexes, which are lower than the
qualified criterion, or higher than the qualified criterion in terms of efficiency indexes.
Therefore, the qualified criterion equals to upper bound bj, and the unqualified criterion
equals to lower bound aj.

Ideal solution of each evaluation index is denoted by g ¼ g1; g2; . . .; g8ð Þ. When the
membership degree of all the objective is maximum, that is, when gi ¼ 1 represents the
ideal solution. The weighted Minkowski distance function is used to evaluate the
distance between the membership degree and the ideal value. The optimal membership
li can be defined as
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li ¼
X8
j¼1

wjðgj � fijÞ
� �q( )1

q

ð3Þ

wj is the weight of objectives, which is obtained through the investigation of the
actual allocation process in the provincial education administrative departments. This
paper respectively selects q ¼ 1, named the weighted hamming distance method and
q ¼ 2, named the weighted Euclidean distance method, to calculate the membership
degree li. In the following paper, we will set up the bankruptcy model to distribute
local university enrollment plan combining the membership degree.

3 Bankruptcy Model of Provincial College Enrollment Plan
Allocation

A bankruptcy problem aims at looking for a fair and rational distribution rule in the
case of insufficient resources. For instance, when a firm went bankrupt, some debts will
be left behind. However, the estate available is not sufficient to meet all the claims from
the other firms or agents. More generally, the bankruptcy problem may be the situation
as follows: a scare resource is distributed in the certain rule the by a set of agents.

Table 1. Qualifed criterion of eight education indexes

College classes Qualified criterion of eight
education indexes
b1 b2 b3 b4 b5 b6 b7 b8

class 1 18 30 14 100 5000 1 1 1
class 2 18 30 16 80 5000 1 1 1
class 3 16 30 16 80 5000 1 1 1
class 4 18 30 9 100 3000 1 1 1
class 5 11 30 22 70 4000 1 1 1
class 6 11 30 18 80 4000 1 1 1

Table 2. Unqualified criterion of eight education indexes

College classes Unqualified criterion of eight
education indexes
b1 b2 b3 b4 b5 b6 b7 b8

Class 1 22 10 8 50 3000 0 0 0
Class 2 22 10 9 40 3000 0 0 0
Class 3 22 10 9 40 3000 0 0 0
Class 4 23 10 5 50 2000 0 0 0
Class 5 17 10 13 35 2000 0 0 0
Class 6 17 10 11 40 2000 0 0 0
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O’Neil [5] proposes a corresponding cooperative bankruptcy game method for every
bankruptcy problem. Aumann and Maschler [6] discuss the bankruptcy problems from
the Talmud by the game theory and prove that the allocation rule of bankruptcy
problems in Talmud is the nucleolus of the corresponding bankruptcy games [7, 8].

The classical bankruptcy problem [9–11] is a triplet N; c;Eð Þ, satisfying the fol-
lowing conditions:

E�
Xn
i¼1

ci ð4Þ

where N ¼ 1; 2; . . .; nf g is the set of agents involved in the situation, c ¼
c1; c2; . . .; cnð Þ 2 R

n
þ represents the claims of agents, while the estate is denoted by

E 2 Rþ , divided among all the claimants.
Given Bankruptcy problem, a solution is vector x ¼ x1; x2; . . .xnð Þ, assigned to

claimants in the certain rule, can be defined as

0� xi � ciði2NÞ and
Xn
i¼1

xi ¼ E: ð5Þ

The above function shows that the estate has to be divided completely among the
claimants, and each claimant has to obtain a nonnegative quantity not greater than their
claim.

From the perspective of the provincial education administrative department, the
distribution of enrollment plan can be regarded as a classic bankruptcy problem. The
Provincial education administrative departments request local colleges and universities
to report enrollment plan scale according to the actual running situation of the uni-
versities. However, the pursuing of the long-term development and their interests,
colleges and universities applies for more quotas than the ones that would be absorbed
by the universities, which leads to the situation that the total demands is greater than the
scale of provincial enrollment plan every year, even more than 20% of the total scale
some times. The education administrative departments must allocate reasonably the
university enrollment plan by evaluating the quality of teaching level and policy fac-
tors. Moreover, they have to make sure that the enrollment plan obtained by every
university is not only a non-negative integer but also not greater than its claim. In this
situation, N ¼ 1; 2; . . .; nf g represents the local university participate in enrollment
allocation, E is the total scale of enrollment approved by the education ministry. The
demand of enrollment for university is denoted by c. x is the solution in the certain rule,
namely enrollment plan assigned to the university. The optimal membership li reflects
the scale and level of colleges and universities.

According to the No. 2 document of the Education Ministry in 2004, universities
are restricted to recruit students if one of the five basic education condition indicators of

the university reach the unqualified criterion (that is
P5
j¼1

sgn fij ¼ 4); the university is

suspended to admit students, which means enrollment plan will not be assigned to this
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university this year under the condition that two, or more than two, of the five basic
education condition indicators of this university reach the unqualified criterion (that isP5
j¼1

sgn fij � 3). The paper proposes the divided rule of bankruptcy problem in this

situation based on obtained membership degree in Sect. 2. In this article, we discuss the
situation that

P
k2NnS3

lk do not equal to zero. Because the
P

k2NnS3
lk do not equal to zero

in the enrollment allocation process. If
P

k2NnS3
lk equal to zero, it means that all of eight

education indexs for each colleges reach the qualified criterions. In fact, the qualified
criterions from the Education Ministry are difficult to be reached for colleges. The
qualified criterions maybe be reached for several key colleges, which is less than the
fifth provincial colleges in China.

1. The algorithm of non-integer solutions �xi. We denote Parameters as follows: S4 is
the set of restricted-enrollment universities, S3 represents the set of the
pause-enrollment universities. ki 2 Nþ is denoted by the number of graduates of

university i.
P5
j¼1

sgn fij is defined as the number of the basic educational condition

indexes failing to reach the unqualified criterion in the university i.
(a) Primary distribution of universities, the solutions x0i is as follows:

x0i ¼

ci � liP
k2NnS3

lk

X
k2NnS3

ck � E

0
@

1
Aþ

ð1� liÞP
o2Nn S3 [ S4ð Þ

ð1� loÞ
X
t2S4

max ct � ltP
k2NnS3

lk

X
k2NnS3

ck � E

0
@

1
A� kt; 0

8><
>:

9>=
>;;

P5
j¼1

sgnfij ¼ 5

min ci � liP
k2NnS3

lk

P
k2NnS3

ck � E

 !
; ki

8<
:

9=
;;

P5
j¼1

sgnfij ¼ 4

0;
P5
j¼1

sgnfij � 3

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð6Þ

(b) x0i shall be transformed in order to meet the requirements, as follows:

x0i ¼
0; x0i\0
x0i; 0� x0i � ci
ci; x0i [ ci

8<
: ð7Þ

(c) Note that if x0i\0, negative residual x0i come into being; if x0i [ ci, positive
residual x0i � ci appear. Suppose Q is the sum of residuals, S1 represents the set
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of universities, satisfying with 0\x0i\ci and
P5
j¼1

sgn fij ¼ 5. The integer solu-

tions �xi can be obtained in the following way:

�xi ¼

x0i þ liP
k2S1

lk
Q; i 2 S1 and Q\0

x0i þ ð1�liÞP
k2S1

ð1�lkÞ
Q; i 2 S1 and Q[ 0

x0i; i 62 S1 or Q ¼ 0

8>>>><
>>>>:

ð8Þ

Steps (b) and (c) are repeated until (0��xi � ci and Q ¼ 0) or
(�xi ¼ cið�xi 2 NnðS3 [ S4ÞÞ and Q[ 0). If the total scale of enrollment may not run
out (that is Q[ 0), the provincial education administrative will reduce the scale of
enrollment. Residual quotas will be used for other types of enrollment.
The main ideas of allocation above are as follows:
(i) The enrollment-suspended universities are assigned to 0.
(ii) Except the enrollment-suspended universities, other universities are divided

by the method above, namely

ci � liP
k2NnS3

lk

X
k2NnS3

ck � E

0
@

1
A

(iii) The enrollment-restricted universities obtain the smaller value as the
enrollment plan, in the comparison of the enrollment plan allocation in step
(b) with the number of graduates.

If ci � liP
k2NnS3

lk

P
k2NnS3

ck � E

 !
[ ki, the positive residual appeared is deno-

ted by

ci � liP
k2NnS3

lk

X
k2NnS3

ck � E

0
@

1
A� ki

(iv) Except the two kinds of universities mentioned above, others obtain the sum
that the value of the primary allocation in step (b) adds to the compensation
value together. Compensation value is obtained according to the proportion
of the membership degree to allocate the sum of positive residual.

(v) If the condition does not satisfy with 0��xi � ci, x0i shall be transformed into
(7).

(vi) The sum of residuals in step (c) is assigned to the universities that satisfy with

0\x0i\ci and
P5
j¼1

sgn fij ¼ 5.
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(vii) Steps (b) and (c) are repeated until (0� x0i � ci and Q ¼ 0) or
(x0i ¼ ciðx0i 2 NnðS3 [ S4ÞÞ and Q[ 0).

2. Algorithm of the final integer solution xk . The enrollment plan has to be the integer,
while the non-integer solution �xi may have decimal part. Therefore, it is necessary
to transform non-integer solutions into the final integer solution.

Suppose intð�xiÞ represents the largest integer that does not exceed �xi, namely the
integer part of �xi. The decimal part is denoted by �xi � intð�xiÞ, then @i can be defined as

@i ¼ �xi � intð�xiÞ
intð�xiÞ ð9Þ

Where @i reflect the degrees that decimal part influences on the integer
part. According to the descending order of @i, intð�xiÞ is ordered in turn. If @i ¼ @j, then the
universities are ordered according to the objective evaluation indexes. The objective
evaluation index can be regarded as the ranking of the university, which is different from
each other. The universities are ordered finally, namely
ordð�x1Þ[ ordð�x2Þ[ . . .[ ordð�xkÞ[ . . .[ ordð�xnÞ.

Suppose m ¼ E �Pn
i¼1

intð�xiÞ, hk is such that

hk ¼ 1; k�m
0; m\k� n

�
ð10Þ

Then, the universities obtain the following enrollment plan.

xk ¼ intð�xkÞþ hk ð11Þ

4 Analysis of the Example

There are 18 provincial public colleges in a province in 2016. The scale of enrollment
plan is 72240 approved by the education ministry. The claims and the eight educational
indexes for these colleges are shown in Table 3.

We use the proposed approach to distribute enrollment plan, under the process as
follows:

1. Determine the membership function. The membership function of b1 is selected as
the cost membership function in (1), b2, b3, b4 and b5 are selected as the efficiency
membership function in (2). For b6 and b8, 1 is used for yes and 0 is used for no.
The indexes will be calculated according to the membership function selected.

2. Under the condition when q ¼ 1 or q ¼ 2, the membership degree will be calcu-
lated in (3) respectively.

3. Calculate the non-integer solutions xi in (6), (7), (8).
4. The non-integer solutions are transformed into the final integer solutions in (10),

(11).

248 Z. Wei and D.-F. Li



The distribution results by using the proposed method in this paper are shown in
Table 4 and Fig. 2. The comparison show that the results reached by the proposed
method of this study is in line with the actual enrollment plan allocation issued by the
provincial education administrative department, which embodies the feasibility and
operability of this model. Little deviation appeared in Fig. 2 is caused by the subjective
factors, or actual allocation policy and the interests from all players.

The proposed method has the following advantages. Firstly, we use the member-
ship degree to evaluate the level of actual operation condition of universities based on
the education indexes and establish the mathematical model of the enrollment plan
distribution (membership degree included), which makes the enrollment plan distri-
bution work of the provincial education administrative department more scientific,
reasonable and normative. Secondly, the allocation process is modeled to avoid sub-
jective factors in the actual allocation process. In addition, this model assists the work
of provincial education administrative departments in avoiding tedious distribution
work and repeated work in the process of the actual distribution, reducing the workload
in the distribution process, which enhances efficiency of the distribution of enrollment
plan. Finally, we bring these important indexes into the evaluation system, which could
encourage colleges and universities to obtain more enrollment quotas by improving
hardware conditions and educational quality.

Table 3. Claims, eight educational indexes for the public colleges in a province

Colleges College

classes

ki ci Eight education indexes and their weights

b1 b2 b3 b4 b5 b6 b7 b8

w1 ¼ 0:06 w2 ¼ 0:06 w3 ¼ 0:06 w4 ¼ 0:06 w5 ¼ 0:06 w6 ¼ 0:2 w7 ¼ 0:3 w8 ¼ 0:2

1 Class 2 5379 5920 17 86 17 87 25569 Yes 1 Yes

2 Class 1 4853 5850 19 84 15 116 14827 No 0.995 Yes

3 Class 2 5193 5700 16 86 23 90 20944 Yes 0.978 Yes

4 Class 3 2257 2830 14 82 15 69 14647 Yes 1 Yes

5 Class 3 2002 2030 10 71 16 81 16705 Yes 1 Yes

6 Class 1 5984 6500 17 78 16 94 15883 No 1 Yes

7 Class 1 4912 5050 17 82 12 107 7464 No 1 Yes

8 Class 2 5639 5820 18 78 14 86 10771 Yes 1 Yes

9 Class 4 1955 3900 18 80 21 95 3901 No 1 Yes

10 Class 4 96 1300 19 71 17 144 11982 No 1 Yes

11 Class 2 3480 4565 17 77 16 81 9848 Yes 0.991 Yes

12 Class 1 2810 3985 19 71 11 63 9211 No 1 Yes

13 Class 1 3524 4420 20 69 12 78 8213 No 1 Yes

14 Class 2 4138 5300 19 82 11 67 16532 Yes 1 Yes

15 Class 1 2319 3000 21 73 13 72 8875 No 1 Yes

16 Class 1 2861 3700 19 71 12 91 6773 No 0.995 Yes

17 Class 1 2909 4550 19 74 17 85 7214 No 0.988 Yes

18 Class 1 946 2080 15 74 26 101 10442 No 0.996 Yes
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Table 4. Results of using the proposed method vs. Results of the actual allocation

Colleges Claim Actual
allocation
results

Membership
degree li

Results by
using the
proposed the
method xi

q ¼ 1 q ¼ 2 q ¼ 1 q ¼ 2

1 5920 5880 0 0 5920 5920
2 5850 5850 0.217 0.201 5511 5481
3 5700 5530 0.007 0.007 5689 5687
4 2830 2830 0.025 0.019 2791 2795
5 2030 2030 0 0 2030 2030
6 6500 6150 0.207 0.2 6177 6133
7 5050 4680 0.22 0.201 4706 4681
8 5820 5750 0.017 0.017 5793 5789
9 3900 3560 0.206 0.2 3579 3533
10 1300 1250 0.212 0.2 970 933
11 4565 4260 0.003 0.003 4560 4560
12 3985 3590 0.289 0.208 3534 3603
13 4420 4100 0.276 0.205 3989 4044
14 5300 5030 0.077 0.049 5180 5210
15 3000 2750 0.289 0.208 2549 2618
16 3700 3300 0.247 0.202 3315 3329
17 4550 3890 0.237 0.201 4180 4181
18 2080 1810 0.201 0.2 1767 1713

Fig. 2. Results of using the proposed method vs. Results of the actual allocation

250 Z. Wei and D.-F. Li



5 Conclusion

In this paper, we study the provincial college enrollment plan allocation from the
perspective of the provincial education administrative department and find that the
actual distribution work is tedious, and some subjective factors may exist to influence
the fairness of enrollment plan allocation. Therefore, we describe the eight educational
indexes that are taken into account in the process of the actual distribution work by
investigating in the provincial education administrative departments. Then the mini-
mum membership degree deviation method is used to evaluate the education condition
indexes. The membership degree is obtained by the minimum membership degree
deviation method, which actually embodies the hardware conditions and educational
quality of the colleges.

Moreover, the provincial enrollment plan assignment problem is regarded as a type
of bankruptcy problems. Because the total quotas of enrollment plan which the colleges
apply for are greater than the scale of provincial enrollment plan approved by the
Education Ministry. In this bankruptcy problem, the quotas applied for by colleges can
be regarded as the claims, which the scale of provincial enrollment plan approved by
the Education Ministry is the estate. Then we propose the enrollment plan allocation
method combined with the membership degree is obtained by the mathematical model
and. Finally, an example is analyzed to shows that this proposed method is provided
with superiority and feasibility in the process of the enrollment plan distribution.

In the future, we will study the cooperative game nature of the proposed distri-
bution method based on the corresponding cooperative bankruptcy game and extend
our approach to apply to another similar situation.

Acknowledgements. This research was supported by the Key Program of National Natural
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Abstract. In this paper, we derive an extension of the payoff-dependent
balanced core existence theorem by Bonnisseau and Iehlé [Games Econ.
Behav. 61 (2007) 1–26] to multi-choice NTU games which implies a multi-
choice extension of Scarf’s core existence theorem.
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1 Introduction

In 1881, Edgeworth proved that, in the case of two agents and two commodities,
the core of an exchange economy shrinks to the set of Walrasian (competitive)
equilibrium allocations. He then claimed that his result applies for an arbitrary
number of commodities and agents. Many years later, Debreu and Scarf [6]
proved Edgeworth’s conjecture by showing that when the economy is replicated,
the intersection of the cores of the sequence of the replications coincides with
the set of Walrasian equilibrium allocations. Recently, Liu and Liu [13] extended
Debreu-Scarf Theorem to coalition production economies.

In 1987, Aliprantis et al. [1] defined Edgeworth equilibrium as any feasible
allocation such that the r-fold repetition of it belongs to the core of r-fold replica
of the economy for every r ≥ 1 and proved the existence of Edgeworth equilib-
rium for pure exchange economies with infinite-dimensional commodity spaces
for ordered case. Later, Florenzano [8] proved the existence of Edgeworth equilib-
rium for exchange economies without ordered preferences. Clearly, the classical
result by Debreu and Scarf [6] shows that Edgeworth equilibrium is equivalent
to competitive equilibrium for pure exchange economies.
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 255–264, 2017.
https://doi.org/10.1007/978-981-10-6753-2_19



256 J. Liu et al.

Edgeworth equilibria of coalition production economies are closely related to
cores in multi-choice NTU games. For more on multi-choice games, please see
[5,9–11] and [14]. In this paper, we derive an extension of the payoff-dependent
balanced core existence theorem by Bonnisseau and Iehlé [4] to multi-choice NTU
games which implies a multi-choice extension of Scarf’s core existence theorem.

2 Preliminaries

Let N = {1, 2, . . . , n} be the set of all players. Any non-empty subset of N is
called a (crisp) coalition. Throughout this paper, we denote the collection of all
coalitions (non-empty subsets) of N by N and for any a, b ∈ R

n, a ≤ b means
ai ≤ bi for each 1 ≤ i ≤ n, and a � b means each coordinate ai > bi for
1 ≤ i ≤ n. For each S ∈ N , denote eS to be the vector in R

n with eSi = 1 if
i ∈ S and eSi = 0 if i �∈ S. We use ei for e{i} for each i ∈ N .

The concept of multi-choice games first introduced by Hsiao and Raghavan [9]
(and [10]). Suppose each player i ∈ N has mi + 1 (mi ≥ 1) activity levels
from Mi = {0, 1, . . . ,mi} and let M = (

∏
i∈N Mi) \ {0}. For each μ ∈ M , let

A(μ) = {i ∈ N |μi > 0}. The following concept of a multi-choice NTU game
and subsequent concepts are natural extensions to the corresponding concepts
for NTU games (see [16,18]).

Definition 2.1. A multi-choice NTU game in coalition form is (M,V ), where
V is a mapping that maps each μ ∈ M to a subset V (μ) of Rn and satisfies the
following conditions:

(1) For each μ ∈ M , V (μ) is nonempty, closed, comprehensive (i.e., if x, y ∈ R
n

are such that y ∈ V (μ) and x ≤ y, then x ∈ V (μ)), bounded from above by
D > 0 (in the sense that if x ∈ V (μ), then xi ≤ D for all i ∈ A(μ));

(2) For each μ ∈ M , V (μ) is cylindrical in the sense that if x ∈ V (μ) and y ∈ R
n

such that yi = xi for each i ∈ A(μ), then y ∈ V (μ);
(3) For every i, there is a bi > 0 such that V (mie

i) = {x ∈ R
n|xi ≤ bi}.

Denote m = (mi)i∈N . Note that in a multi-choice NTU game (M,V ), m
plays the same role as the grand coalition N in an NTU game. Clearly, an NTU
game V is a special multi-choice NTU game (M,V ) with mi = 1 for all i ∈ N .

A payoff vector to a multi-choice game (M,V ) is a vector (xij)1≤i≤n,0≤j≤mi
,

where xij denotes the increase in payoff for player i corresponding to a change
of activity from level j − 1 to level j and xi0 = 0 for all i ∈ N . Note that for
a multi-choice NTU game (M,V ) defined by Definition 2.1, a payoff vector x in
each V (μ) means x = (xi)i∈N with xi =

∑
0≤j≤mi

xij . Also note that a multi-
choice TU game (M,v) with the characteristic function v is a special multi-choice
NTU game (M,V ) such that for each μ ∈ M ,

V (μ) = {x ∈ R
n|

∑

i∈A(µ)

xi ≤ v(μ)}. (2.1)

Given a multi-choice game (M,V ), a payoff vector x ∈ V (m), and a member
μ ∈ M , we say that μ has an objection against x if there exists some y ∈ V (μ)
such that yi > xi for all i ∈ A(μ).



Edgeworth Equilibria of Economies and Cores in Multi-choice NTU Games 257

Definition 2.2. The core of a multi-choice game (M,V ), denoted by C(M,V ),
consists of all payoff vectors in V (m) that have no objections against them,
that is,

C(M,V ) = V (m) \ [∪µ∈M int(V (μ))]. (2.2)

Let ΔN be the standard simplex:

ΔN = {x ∈ R
n|xi ≥ 0 for each i ∈ N and

n∑

i=1

xi = 1}.

For each ∅ �= S ⊆ N , denote

ΔS = {x ∈ ΔN |xi = 0 for each i �∈ S} = {x ∈ ΔN |
∑

i∈S

xi = 1}

and for each S ∈ N , define mS ∈ ΔN by

mS =
eS

|S| .

Denote Δ to be the Cartesian product of ΔA(µ) over all μ ∈ M , i.e.,

Δ = (ΔA(µ))µ∈M = {(πµ)µ∈M |πµ ∈ ΔA(µ) for each μ ∈ M}.

Definition 2.3. A collection B ⊆ M is balanced if there exist positive numbers
λµ for μ ∈ B such that ∑

µ∈B
λµeA(µ) = eN . (2.3)

The numbers λµ are called balancing coefficients.
Clearly, (2.3) is equivalent to the following:

∑

µ∈B
λ′
µmA(µ) = mN , (2.4)

where each λ′
µ = |A(µ)|

n λµ.
The next concept is an extension of the concept of π-balanced collection by

Billera [2].

Definition 2.4. Given π ∈ Δ with πm � 0, a collection B ⊆ M is π-balanced
if there exist positive numbers λµ for μ ∈ B such that

∑

µ∈B
λµπµ = πm. (2.5)

It is clear from (2.4) and (2.5) that a balanced collection B is π-balanced for
the special π ∈ Δ with πµ = mA(µ) for each μ ∈ M .
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Definition 2.5.

(1) A multi-choice NTU game (M,V ) is balanced if ∩µ∈BV (μ) ⊆ V (m) for every
balanced collection B ⊆ M .

(2) Given π ∈ Δ with πm � 0, a multi-choice NTU game (M,V ) is π-balanced
if ∩µ∈BV (μ) ⊆ V (m) for every π-balanced collection B ⊆ M .

Clearly, a balanced multi-choice NTU game (M,V ) is π-balanced for the
special π ∈ Δ with πµ = mA(µ) for each μ ∈ M .

Since NTU games are special multi-choice NTU games with mi = 1 for all
i ∈ N , the above concepts yield the corresponding concepts for NTU games
when mi = 1 for all i ∈ N . The following are well-known existence theorems for
cores in NTU games.

Theorem 2.6 (Scarf, 1967). Any balanced NTU game V has a non-empty core.

Theorem 2.7 (Billera, 1970). Any π-balanced NTU game V has a non-empty
core.

Theorem 2.8 (Bondareva, 1963 and Shapley, 1967). A TU game V has a non-
empty core if and only if it is balanced.

We will derive extensions of these theorems to multi-choice games in Sect. 4.
But, we first provide a close connection between Edgeworth equilibria of coalition
production economies and cores of multi-choice NTU games in the next section
to show the needs for studying multi-choice NTU games.

3 Connection Between Edgeworth Equilibria
of Economies and Cores of Multi-choice NTU Games

In this section, we will give a close connection between Edgeworth equilibria of
economies and cores of multi-choice NTU games. First, let us recall the concept
of a coalition production economy given in [12] and some necessary preliminaries
from [13].

A coalition production economy E = (RL, (Xi, ui, wi)i∈N , (Y S)S∈N ) with n
agents is a collection of the commodity space R

L, where L is the set of com-
modities, agents’ characteristics (Xi, ui, wi)i∈N , and coalitions’ production sets
(Y S)S∈N . The triple (Xi, ui, wi) is agent i’s characteristics as a consumer:
Xi ⊆ R

L is his consumption set, ui : Xi → R is his utility function, and
wi ∈ R

L is his endowment vector. The set Y S ⊆ R
L is the production set of

the firm (coalition) S for which every agent i ∈ S works and Y S consists of all
production plans that can be achieved through a joint action by the members of
S. We use Y = Y N for the total production possibility set of the economy.

An exchange economy is a coalition production economy with Y S = {0} for
every S ∈ N .

When dealing with replica of an economy E , one usually needs some special
conditions on the production possibility sets (Y S)S∈N . The key assumption is
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that when y ∈ Y S , cy ∈ Y S for any nonnegative constant c. Here are some
common assumptions:

(P.1) Y S = {0} for all S ∈ N (exchange economies, see [6]);
(P.2) Y is a convex cone with vertex at the origin and Y S = Y for all S ∈ N

(see [6]);
(P.3) Y S is a convex cone containing 0 for each S ∈ N (see [13]).

Clearly, (P.3) contains (P.1) and (P.2). The following assumptions on con-
sumption sets, utility functions, and the sets of attainable allocations are stan-
dard:

(A.1) For every agent i ∈ N , Xi ⊆ R
L is non-empty, closed, and convex,

(A.2) For each i ∈ N , ui : Xi → R is continuous and quasi-concave;
(A.3) for each S ∈ N , Y S ⊆ R

L is non-empty and closed, and the set FE(S)
of feasible

(attainable) S-allocations is nonempty and compact, where

FE(S) = {(xi)i∈S |xi ∈ Xi for each i ∈ S and
∑

i∈S

(xi − wi) ∈ Y S}. (3.1)

The set of all attainable allocations of the economy E is

F (E) = FE(N) = {(xi)i∈N |xi ∈ Xi for each i ∈ N and
∑

i∈N

(xi−wi) ∈ Y N = Y }

which is non-empty and compact.
In an effort to connect the two concepts of core and competitive equilibrium

in exchange economies (more generally, coalition production economies satisfying
(P.2)), Debreu and Scarf [6] considered r-fold replica of an economy. For each
positive integer r, the r-fold replica of the economy E , denoted by Er, is defined
to be the economy composed of r subeconomies identical to E with a set of
consumers

Nr = {(i, q)|i = 1, . . . , n and q = 1, . . . , r}.

The first index of consumer (i, q) refers to the type of the individual and the
second index distinguishes different individuals of the same type. It is assumed
that all consumers of type i are identical in terms of their consumption sets,
endowments, and utility functions. Let S be a non-empty subset of Nr. An
allocation (x(i,q))(i,q)∈S is S-attainable in the economy Er if

∑

(i,q)∈S

(x(i,q) − w(i,q)) ∈ Y S′
(3.2)

where S′ = {i ∈ N |(i, q) ∈ S}, x(i,q) ∈ Xi and w(i,q) = wi for every q. Thus,
(3.2) can be written as

∑

i∈S′

∑

q∈S(i)

x(i,q) −
∑

i∈S′
|S(i)|wi ∈ Y S′

. (3.3)
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where S(i) = {q ∈ {1, 2, . . . , r}|(i, q) ∈ S} and |S(i)| denotes the number of
elements in S(i).

Let E be a coalition production economy. From an r-fold replica Er of E , we
form a multi-choice NTU game (Mr, V ) as follows: Let Mr

i = {0, 1, . . . , r} each
i ∈ N and let Mr = (

∏
i∈N Mr

i ) \ {0}. For each μ ∈ Mr, define V (μ) =
{v ∈ R

n| there exists (xi)i∈N ∈ FE(A(μ)) such that
∑

i∈A(µ) μi(xi − wi)
∈ Y A(µ) and

vi ≤ ui(xi) for every i ∈ A(μ)}, (3.4)

where A(μ) = {i ∈ N |μi > 0}. Note that for mr = (r, r, . . . , r), A(mr) = N for
all r ≥ 1. Under assumption (P.3), we have V (mr) = V (eN ) for all r ≥ 1. By
(2.2), C((Mr2 , V )) ⊆ C((Mr1 , V )) whenever r1 < r2. It follows that

lim
r→∞ C((Mr, V )) = ∩r≥1C((Mr, V )). (3.5)

Recall that for an economy E , an allocation x = (x1, . . . , xn) is blocked by
a coalition S if there is an S-attainable partial allocation (xi)i∈S such that
ui(xi) > ui(xi) for each i ∈ S. The core C(E) of an economy E is the set
of all attainable allocations which can not be blocked by any coalition. The
following concept of Edgeworth equilibrium is given in [1] (see also [8]), where the
r-fold repetition of an allocation x = (x1, . . . , xn) is r ◦ x = (x(i,q))(i,q)∈Nr

with
x(i,q) = xi for all q ≤ r and for every i ∈ N .

Definition 3.1. An Edgeworth equilibrium of an economy E is an attainable
allocation x ∈ F (E) such that for any positive integer r, the r-fold repetition
r ◦ x of x belongs to the core of the r-fold replica Er of the economy E . We will
denote by CE(E) the set of all Edgeworth equilibria of E .

Debreu and Scarf [6] proved that in an exchange economy or a coalition
production economy satifying (A.1)–(A.3) and (P.2), when the set of economic
agents is replicated, the set of core allocations of the replica economy shrinks
to the set of competitive equilibria. This result has been extended to coalition
production economies satisfying (A.1)–(A.3) and (P.3) by Liu and Liu [13]. The
following theorem shows that the core of the multi-choice NTU game (Mr, V )
arising from the r-fold replica economy Er shrinks to a subset of the set of
Edgeworth equilibria of E by (3.5).

Theorem 3.2. Let E be a coalition production economies satisfying (A.1)–(A.3)
and (P.3). Then v ∈ ∩r≥1C((Mr, V )) implies that x is an Edgeworth equilibrium,
that is, x ∈ CE(E), where x = (xi)i∈N ∈ X is an attainable allocation satisfying
vi = ui(xi) for every i ∈ N .

Proof. Let v = (vi)i∈N ∈ C((Mr, V )) for all r ≥ 1. We show that the r-fold
repetition of x is in C(Er) for all r ≥ 1, where x = (xi)i∈N ∈ X is an attainable
allocation satisfying vi = ui(xi) for every i ∈ N . By (3.4), v ∈ V (mr), where
mr = (r, r, . . . , r), implies that there exists x = (xi)i∈N ∈ X such that

∑

i∈N

r(xi − wi) ∈ Y N = Y and vi ≤ ui(xi) for every i ∈ N. (3.6)
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By (2.2) and (3.4), v ∈ C((Mr, V )) implies that vi = ui(xi) for every i ∈ N .
We claim that for any r ≥ 1, r ◦ x = (x(i,q))(i,q)∈Nr

∈ C(Er), where x(i,q) = xi

for all q ≤ r and every i ∈ N . Suppose that (x(i,q))(i,q)∈Nr
�∈ C(Er). Then

there exists S ⊆ Nr such that (x(i,q))(i,q)∈Nr
is blocked by S through a partial

S-attainable vector (x(i,q))(i,q)∈S . Let S′ = {i ∈ N |(i, q) ∈ S} and S(i) = {q ∈
{1, 2, . . . , r}|(i, q) ∈ S} for each i ∈ N . Then for each i ∈ S′ and all q ∈ S(i),
x(i,q) ∈ Xi and

ui(x(i,q)) > ui(x(i,q)) = ui(xi). (3.7)

Let μ ∈ Mr be defined by μi = |S(i)| for each i ∈ N . Then A(μ) = S′. By (3.2)
and (3.3), (x(i,q))(i,q)∈S is S-attainable implies

∑

i∈S′
μi[

1
μi

∑

q∈S(i)

x(i,q)] −
∑

i∈S′
μiw

i ∈ Y S′
. (3.8)

For each i ∈ S′, since x(i,q) ∈ Xi for each 1 ≤ q ≤ r and Xi is convex by (A.1),

xi
µ =

1
μi

∑

q∈S(i)

x(i,q) =
1

|S(i)|
∑

q∈S(i)

x(i,q) ∈ Xi.

It follows from (3.8) that
∑

i∈A(µ)

μi(xi
µ − wi) ∈ Y A(µ). (3.9)

For each i ∈ S′ = A(μ), since ui(x(i,q)) > ui(xi) for every q ∈ S(i) by (3.7) and
ui is quasi-concave by (A.2),

ui(xi) < minq∈S(i){ui(x(i,q))} ≤ ui(
1

|S(i)|
∑

q∈S(i)

x(i,q)) = ui(xi
µ).

It follows from (3.6) that vi ≤ ui(xi) < ui(xi
µ) for each i ∈ A(μ). By (3.4) and

(3.9), we conclude that v ∈ int(V (μ)), contradicting v ∈ C((Mr, V )) by (2.2).
Therefore, we have r ◦ x = (x(i,q))(i,q)∈Nr

∈ C(Er) and the theorem follows. �

4 Existence of Cores in Multi-choice NTU Games

Throughout this section, we use ∂D to denote the boundary of a subset D of
R

n and co{X} for the convex hull of the set X. Give an NTU game V , set
W = ∪S∈N V (S) and S(x) = {S ∈ N|x ∈ ∂V (S)}. The following concept is
Definition 2.2 from Bonnisseau and Iehlé [4].

Definition 4.1. Let V be an NTU game.

(i) A transfer rate rule is a collection of set-valued mappings ((ϕS)S∈N , ψ)
such that: for each S ∈ N , ϕS : ∂V (S) → ΔS is an upper semi-continuous
correspondence with non-empty compact and convex values; ψ : ∂V (N) →
ΔN is an upper semi-continuous correspondence with non-empty compact
and convex values.
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(ii) The game V is payoff-dependent balanced if there exists a transfer rate rule
((ϕS)S∈N , ψ) such that, for each x ∈ ∂W ,

if co{ϕS(x)|S ∈ S(x)} ∩ ψ(PN (x)) �= ∅, then x ∈ V (N),

where PN is a projection of R
n to ∂V (N) defined by PN (x) = proj(x) −

λN (proj(x))eN which is continuous.

Bonnisseau and Iehlé [4] proved the following payoff-dependent core exis-
tence theorem.

Theorem 4.2 (Bonnisseau and Iehlé, 2007). If an NTU game V is payoff-
dependent balanced with respect to some transfer rate rule ((ϕS)S∈N , ψ), then
there exists a core payoff vector x satisfying:

co{ϕS(x)|S ∈ S(x)} ∩ ψ(x) �= ∅.

Next, we extend the concept of payoff-dependent balancedness to multi-choice
NTU games. For a multi-choice NTU game(M,V ), let W ′ = ∪µ∈MV (μ) and
S ′(x) = {μ ∈ M |x ∈ ∂V (μ)}. Recall that M = (

∏
i∈N Mi) \ {0}, m = (mi)i∈N ,

and A(μ) = {i ∈ N |μi > 0} for each μ ∈ M .

Definition 4.3. Let (M,V ) be a multi-choice NTU game.

(i) A transfer rate rule is a collection of set-valued mappings ((ϕµ)µ∈M , ψ) such
that: for each μ ∈ M , ϕµ : ∂V (μ) → ΔA(µ) is an upper semi-continuous cor-
respondence with non-empty compact and convex values; ψ : ∂V (m) → ΔN is
an upper semi-continuous correspondence with non-empty compact and convex
values.

(ii) The multi-choice game (M,V ) is payoff-dependent balanced if there exists
a transfer rate rule ((ϕµ)µ∈M , ψ) such that, for each x ∈ ∂W ′,

if co{ϕµ(x)|μ ∈ S ′(x)} ∩ ψ(PN (x)) �= ∅, then x ∈ V (m),

where PN is a projection of R
n to ∂V (m) defined by PN (x) = proj(x) −

λN (proj(x))eN .

Theorem 4.2 can be extended to multi-choice NTU games as follows.

Theorem 4.4. If a multi-choice NTU game (M,V ) is payoff-dependent bal-
anced with respect to some transfer rate rule ((ϕµ)µ∈M , ψ), then there exists a
core payoff vector x satisfying:

co{ϕµ(x)|μ ∈ S ′(x)} ∩ ψ(x) �= ∅,

where S ′(x) = {μ ∈ M |x ∈ ∂V (μ)}.
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Proof. Let (M,V ) be a multi-choice NTU game which is payoff-dependent bal-
anced with respect to some transfer rate rule ((ϕµ)µ∈M , ψ). For each S ∈ N ,
set V ∗(S) = ∪A(µ)=SV (μ). Then each V ∗(S) is closed as it is a union of
finite number of closed sets and V ∗ is an NTU game. For each S ∈ N , define
ϕ∗
S = co{ϕµ|A(μ) = S}. Then ϕ∗

S is an upper semi-continuous correspondence
with non-empty compact and convex values for each S ∈ N . Define ψ∗ = ψ.
Then V ∗ is payoff-dependent balanced with respect to the transfer rate rule
((ϕ∗)S∈N , ψ∗). Now, Theorem 4.4 follows from Theorem 4.2 easily. �

By (2.4), the following extension of Scarf’s Theorem (Theorem 2.6) follows from
Theorem 4.4 by setting ϕµ(x) = {mA(µ)} for each μ ∈ M and ψ = ϕm = {mN}.

Theorem 4.5. Any balanced multi-choice NTU game (M,V ) has a non-empty
core.

By (2.5), the next extension of Billera’s Theorem (Theorem 2.7) follows from
Theorem 4.4 by setting ϕµ(x) = {πµ} for each μ ∈ M and ψ = ϕm = {πm}.

Theorem 4.6. Any π-balanced multi-choice NTU game (M,V ) has a non-
empty core.

Next, we show that for multi-choice TU games, the converses of Theorems
4.5 and 4.6 hold. The following theorem is an extension of Bondareva - Shapley
Theorem (Theorem 2.8) to multi-choice games.

Theorem 4.7. A multi-choice TU game (M,V ) has a non-empty core if and
only if it is balanced.

Proof. The sufficiency follows from Theorem 4.5. We now prove the necessity.
Assume that (M,V ) is a multi-choice TU game (M,V ) with a nonempty core
C(M,V ). Let x∗ ∈ C(M,V ) = V (m) \ [∪µ∈M int(V (μ))] (see (2.2)). Then x∗ ∈
∂V (m) and x∗ �∈ V (μ) for all μ ∈ M . By (2.1), we have that

∑n
i=1 x∗

i = v(m)
and x∗ · eA(µ) =

∑
i∈A(µ) xi ≥ v(μ) for every μ ∈ M .

We now show that V is balanced. Let B ⊆ M be any balanced collection.
Then, by (2.3), we have

∑
µ∈B λµeA(µ) = eN with some positive numbers λµ

for μ ∈ B. We need to show that ∩µ∈BV (μ) ⊆ V (m). Let x ∈ ∩µ∈BV (μ). Then
x ∈ V (μ) for each μ ∈ B which implies that x · eA(µ) =

∑
i∈A(µ) xi ≤ v(μ) by

(2.1). It follows that

n∑

i=1

xi = x · eN = x ·
∑

µ∈B
λµeA(µ)

=
∑

µ∈B
λµ(x · eA(µ)) ≤

∑

µ∈B
λµv(μ) ≤

∑

µ∈B
λµ(x∗ · eA(µ))

= x∗ ·
∑

µ∈B
λµeA(µ) = x∗ · eN =

n∑

i=1

x∗
i = v(m),

which implies that x ∈ V (m) by (2.1). Thus (M,V ) is balanced. �
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Recall that a balanced multi-choice NTU game (M,V ) is π-balanced for the
special π ∈ Δ with πA(µ) = mA(µ) for each μ ∈ M . The next characterization
follows from Theorems 4.6 and 4.7 immediately.

Theorem 4.8. A multi-choice TU game (M,V ) has a non-empty core if and
only if it is π-balanced.
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Abstract. In this paper, we define the concepts of interval-valued cores of
interval-valued multiobjective n-person cooperative games and satisfactory
degree (or ranking indexes) of comparing intervals with the features of inclusion
and/or overlap relations. Hereby, the interval-valued cores can be computed by
developing a new two-phase method based on the auxiliary nonlinear pro-
gramming models. The proposed method can provide cooperative chances under
the situations of inclusion and/or overlap relations between intervals in which
the traditional interval ranking method may not always assure. The feasibility
and applicability of the models and method proposed in this paper are illustrated
with a numerical example.

Keywords: Cooperative games � Core � Interval ranking � Mathematical
programming � Satisfactory degree

1 Introduction

More and more researchers have become interested in the multiple objectives decision
making considered in the real application problems, which are described as the type of
multiobjective n-person cooperative games problem. In this games, the worth of each
coalition is measured by multiple criteria, and therefore it is given as a set in a
multidimensional real space [1–3].

In real situations, because of incompleteness and uncertainty of decision infor-
mation and the complexity of players’ behavior, payoffs (or values) of players’
coalitions in n-person cooperative games may be imprecise and vague. In some cases,
we only can estimate the lower and upper bounds of payoffs, and the payoffs vary with
these ranges, which can be described as intervals [4–7]. Interval computing and ranking
method are a complex problem, which is different from that of real numbers and has
attracted lots of attention [5, 6, 8–12]. Thanks to Moore [10], interval computing has
been a well-established field and has been successfully applied to some areas. Branzei
et al. [13] studied the cooperative games under interval uncertainty and the convexity
of the interval-valued undominated cores. Alparslan-Gök et al. [14] investigates
interval-type solution concepts of interval-valued cooperative games such as the
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interval-valued core, interval-valued dominance core and stable sets. Wang and Zhang
[15, 16] further discuss some properties of fuzzy interval cooperative games and
propose the sufficient conditions for the non-emptiness of the interval core. But, all
these researches are based on the traditional ranking methods of intervals such as
Moore method and LR method. These traditional ranking methods are relatively strict
since they only consider the strictly relationships including intersection and being
greater while they do not consider inclusion and/or overlap relations between intervals.
Additionally, players may accept the inclusion and/or relations between intervals of
coalitions’ values at some satisfactory degrees in the practical cooperative games.

Hence, the aim of this paper is to study how to solve such a type of interval-valued
multiobjective n-person cooperative games with the maximum satisfactory degree of
interval inclusion and/or overlap relations between intervals of coalitions’ values.

The rest of this paper is organized as follows. Section 2 briefly reviews some
notations and definitions such as arithmetic operations over intervals and satisfactory
degrees of comparing intervals. In Sect. 3, we formulate the interval-valued core and
solution method for interval-valued multiobjective n-person cooperative games with
satisfactory degrees of comparing intervals. A new two-phase approach with the
auxiliary nonlinear programming models are derived to obtain the interval-valued cores
and corresponding maximum satisfactory degrees that the players in coalitions accept
the interval-type inclusion and/or overlap relations. In Sect. 4, implementation of the
model and method proposed in this paper is conducted with a numerical example.
Conclusion is made in Sect. 5.

2 Arithmetic Operations over Intervals and Concept
of Satisfactory Degrees of Comparing Intervals

2.1 Arithmetic Operations over Intervals

Let < be the set of real numbers. An interval may be expressed as
â ¼ ½a; �a� ¼ faja� a� �a; a 2 <; �a 2 <g, where a and �a are called the lower and upper
bounds of the interval â, respectively. If a ¼ �a, then â ¼ a; �a½ � is reduced to a real
number a, where a ¼ a ¼ �a.

Alternatively, an interval â may be expressed in mean-width or center-radius form
as â ¼ \mðâÞ;wðâÞ[ , where m âð Þ ¼ aþ �að Þ=2 and wðâÞ ¼ ð�a� aÞ=2 are the
mid-point and half-width of the interval â, respectively. The set of intervals in the real
number set < is denoted by I <ð Þ.

For any intervals â ¼ a; �a½ � and b̂ ¼ b; �b½ �, we stipulate their operations as follows:
(1) âþ b̂ ¼ a; �a½ � þ b; �b½ � ¼ aþ b; �aþ �b½ �;

(2) câ ¼ c½a; �a� ¼ ca; c�a½ � if c� 0

c�a; ca½ � if c\0;

(
.

Using the aforementioned mean-width or center-radius form, we can rewrite the
former three operations of the above intervals’ operations as follows:
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10ð Þ âþ b̂ ¼ \m âð Þ;w âð Þ[ þ\m b̂
� �

;w b̂
� �

[

¼ \m âð Þþm b̂
� �

;w âð Þþw b̂
� �

[
;

20ð Þ
câ ¼ c\mðâÞ;wðâÞ[ ¼ \cmðâÞ; jcjwðâÞ[

¼
\cmðâÞ; cwðâÞ[ if c� 0

\cmðâÞ;�cwðâÞ[ if c\0:

(

2.2 Concept of Satisfactory Degrees of Comparing Intervals
and Properties

The ranking order of intervals is a difficult problem, which has been discussed by some
researchers. And now most of the researches about interval-valued games are based on
the opinions of Moore and Ishihuchi, especially the LR method about ranking order of
intervals. Moore [10] held that â� b̂ if �a� b. However, Ishihuchi [9] considered that
â� b̂ if a� b and �a� �b in the LR method. All these traditional ranking methods are
relatively strict in that they only considered the strictly relationships including inter-
section and being greater rather than the inclusion and overlap relations between
intervals. In fact, in terms of the fuzzy set, the statement “the interval â is not greater
than the interval b̂” may be regarded as a fuzzy relation between â and b̂, which is
denoted by â� I b̂. Thus, inspired by Li [5], we define a fuzzy partial order relation for
intervals, taking full account of the inclusion relation between intervals, which is
current and with proven mathematical rigor.

Definition 1. Let â ¼ ½a; �a� and b̂ ¼ ½b; �b� be two intervals. The premise “â� I b̂” is
regarded as a fuzzy set, whose membership function is defined as follows:

uðâ� I b̂Þ ¼
1 if �a\b
1� if a\b� �a\�b
�b��a

2ðwðb̂Þ�wðâÞÞ if b� a� �a� �b and wðb̂Þ[wðâÞ
0:5 if wðâÞ ¼ wðb̂Þ and a ¼ b;

8>><
>>: ð1Þ

where “1�” is a fuzzy number being less than 1, which linguistically indicates the fact
that the interval â is weakly not greater than the interval b̂.

The symbol “� I” is an interval-valued version of the order relation “� ” in the real
number set < and has the linguistic interpretation “essentially not greater than”. The
symbols “� I” and “¼I” are similarly explained.

Obviously, the satisfactory index uðâ� I b̂Þ is 0�uðâ� I b̂Þ� 1. Thus, uðâ� I b̂Þ
may be interpreted as the satisfactory degree of the premise (or order relation) â� I b̂.
If uðâ� I b̂Þ ¼ 0, then the premise â� I b̂ is not accepted. If 0\uðâ� I b̂Þ\1, then
players accept the premise â� I b̂ with different satisfactory degrees between 0 and 1.
If uðâ� I b̂Þ ¼ 1, then players are absolutely satisfied with the premise â� I b̂.
Namely, the players believe that the premise â� I b̂ is true.
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According to Definition 1, we can find that while both the intervals entirely overlap,
the satisfactory degree of the premise (or order relation) â� I b̂ is equal to 0.5.
Moreover, while both the intervals degenerate to the identical real number, the satis-
factory degree is also equal to 0.5. And it is not difficult to find that the satisfactory
degree is 1 where �a\b. When the intervals is inclusion relation and wðb̂Þ[wðâÞ, we
can also easily obtain that the satisfactory degree is between 0 and 1 according to the
above formula. With the condition wðb̂Þ[wðâÞ, both the intervals are not reduced to
the real numbers at the same time, and even wðâÞ is equal to 0 or approaches to 0, the
satisfactory degree is also between 0 and 1.

Analogously, we can define the following premise â� I b̂ which indicates the
statement “the interval â is not less than the interval b̂”.

Definition 2. Let â ¼ a; �a½ � and b̂ ¼ ½b; �b� be two intervals. The premise “â� I b̂” is
regarded as a fuzzy set, whose membership function is defined as
uðâ� I b̂Þ ¼ 1� uðâ� I b̂Þ, i.e.,

uðâ� I b̂Þ ¼
0 if �a\b
0þ if a\b� �a\�b
a�b

2ðwðb̂Þ�wðâÞÞ if b� a� �a� �b and wðb̂Þ[wðâÞ
0:5 if wðâÞ ¼ wðb̂Þ and a ¼ b;

8>>><
>>>:

ð2Þ

where “0þ ” is a fuzzy number being greater than 0, which linguistically indicates the
fact that the interval â is weakly not less than the interval b̂.

Thus, the equality relation “¼I” can be defined that â ¼I b̂ is equivalent to both
a ¼ b and �a ¼ �b. Linguistically, “â ¼I b̂” may be interpreted as “the interval â is equal
to the interval b̂” in the sense of Definitions 1 and 2. Moreover, â[ I b̂ if and only if
â� I b̂ and â 6¼I b̂. â\I b̂ if and only if â� I b̂ and â 6¼I b̂.

In the sequent, the above fuzzy ranking index u is often called the satisfactory
degree (or index). It is easy to prove that the satisfactory degree u is continuous except
a single special case, i.e., a ¼ b and wðâÞ ¼ wðb̂Þ. Moreover, for any intervals â and b̂,
we can easily prove that the following properties are valid:

(1) 0�uðâ � I b̂Þ� 1;
(2) uðâ� I âÞ ¼ 0:5;
(3) uðâ� I b̂Þþuðb̂� I âÞ ¼ 1;
(4) For any interval ĉ, if uðâ� I b̂Þ� 0:5 and uðb̂� I ĉÞ� 0:5, then uðâ� I ĉÞ� 0:5;

or if uðâ� I b̂Þ� 0:5 and uðb̂� I ĉÞ� 0:5, then uðâ� I ĉÞ� 0:5.

Thus, “� I” and “� I” have well established fuzzy partial orders for intervals.
Definitions 1 and 2 may provide quantitative methods to determine the exact degree of
satisfactory for ranking two intervals. In the sequent, the satisfactory degree u is used
to define satisfactory crisp equivalent forms of interval-valued inequality relations.
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3 Interval-Valued Cores and Solution Method
for Interval-Valued Multiobjective n-Person Cooperative
Games

3.1 The Concept of Interval-Valued Multiobjective n-Person Cooperative
Games

An interval-valued multiobjective n-person cooperative games in coalitional form is an
ordered pair \N; t̂[ , where N¼ 1; 2; . . .; nf g is the set of players, and t̂ : 2n !
ðIð<ÞÞm is the characteristic function vector which assigns to each coalition S 2 2n a
closed interval t̂ðSÞ 2 ðIð<ÞÞm, with given t̂ £ð Þ ¼ 0; 0½ �. For each S 2 2n, the worth
set (or worth interval) t̂kðSÞ of the coalition S for the objective Ok (k ¼ 1; 2; � � � ;m) in
the interval-valued multiobjective n-person cooperative games is a closed interval,
which will be denoted by ½tkðSÞ;�tkðSÞ�, where tkðSÞ and �tkðSÞ are the lower and upper
bounds of t̂kðSÞ, respectively.

The family of all interval-valued multiobjective n-person cooperative games with
the player set N is denoted by IGn. Note that if all the worth intervals are degenerate
intervals, i.e., tkðSÞ ¼ �tkðSÞ, then the interval-valued multiobjective n-person cooper-
ative games \N; t̂[ is reduced to the classical multiobjective n-person cooperative
games \N; t[ , where t̂kðSÞ ¼ tkðSÞ. This means that traditional multiobjective
n-person cooperative games can be embedded in the class of interval-valued multi-
objective n-person cooperative games in a natural way. Alparslan-Gök et al. [14]
confirmed that if all the worth intervals of an interval-valued n-person cooperative
games \N; t̂[ are degenerate intervals then strong balancedness is reduced to bal-
ancedness and strong unbalancedness is reduced to unbalancedness for the classical
n-person cooperative games \N; t[ , respectively.

3.2 Interval-Valued Cores for Interval-Valued Multiobjective n-Person
Cooperative Games

For further use, we denote by IGn the set of all n-dimensional vectors whose com-
ponents are elements in Ið<Þ. Let x̂ik be the interval-valued payoff of the objective Ok

for player i, and x̂k ¼ x̂1k; x̂2k; . . .; x̂nkð Þ be an n-person interval-valued payoff vector of
the objective Ok. Then, according to Moore [10], we have

P
i2S

x̂ik ¼½P
i2S

xik;
P
i2S

�xik� 2
Ið<Þ for each S 2 2nn£. Next, we define an interval-valued solution concept for
interval-valued multiobjective n-person cooperative games t̂ 2 IGn. Instead of
t̂kðfigÞ,t̂kðfi; jgÞ, etc., we often write t̂kðiÞ,t̂kði; jÞ, etc. Then an interval-valued
imputation set Iðt̂Þ of the interval-valued multiobjective n-person cooperative games t̂,
is defined as follows:

I t̂ð Þ ¼ x̂1; x̂2; . . .; x̂mð Þf 2 I <ð Þð Þnm
X
i2N

x̂ik ¼I t̂k Nð Þ
����� ; x̂ik � I t̂kðiÞ; for all i 2 N and k

¼ 1; 2; . . .;mg
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Noting that
P
i2N

x̂ik ¼I t̂kðNÞ is equivalent with
P
i2N

�xik ¼I �tkðNÞ andP
i2N

xik ¼I tkðNÞ, which are described as efficiency condition and shows that the sum of

all the players’ imputations should be equal to the value of the grand coalition N for the
objective Ok . x̂ik � I t̂kðiÞ is described as individual rationality, which shows that each
player’s imputation should not be smaller than the payoff of the player alone for the
objective Ok .

Generally, the interval-valued imputation set Iðt̂Þ is always non empty. More
specifically, if an interval-valued multiobjective n-person cooperative games t̂ is
inessential, i.e., t̂kðNÞ ¼I

P
i2N

t̂kðiÞ, then the interval-valued imputation set Iðt̂Þ is no

empty and singleton, i.e., Iðt̂Þ ¼ fðt̂kð1Þ; t̂kð2Þ; � � � ; t̂kðnÞÞg. Conversely, if an
interval-valued multiobjective n-person cooperative games is essential, i.e.,
t̂kðNÞ[ I

P
i2N

t̂kðiÞ, then players benefit from cooperation and the interval-valued

imputation set Iðt̂Þ is always non empty which usually has infinite elements. Therefore,
our interest focuses on essential interval-valued multiobjective n-person cooperative
games.

Moreover, we can easily prove that interval-valued imputation sets of
interval-valued multiobjective n-person cooperative games are convex. In fact, for any
x̂0 2 Iðt̂Þ, x̂00 2 Iðt̂Þ and k 2 ½0; 1�, we can easily check that

X
i2N

½kx̂0
ik þð1� kÞx̂00

ik� ¼ k
X
i2N

x̂
0
ik þð1� kÞ

X
i2N

x̂
00
ik ¼I kt̂kðNÞþ ð1� kÞt̂kðNÞ

¼I t̂kðNÞ

and
kx̂

0
ik þð1� kÞx̂00

ik � Ikt̂kðiÞþ ð1� kÞt̂kðiÞ ¼I t̂kðiÞ.
In other words, kx̂0 þ ð1� kÞx̂00 satisfies the efficiency and individual rationality.

Namely, kx̂0 þ ð1� kÞx̂00 2 Iðt̂Þ. Therefore, the interval-valued imputation set Iðt̂Þ is
convex.

Definition 3. The interval-valued core Cðt̂Þ of an interval-valued multiobjective
n-person cooperative games t̂, is defined as follows:

Cðt̂Þ ¼ x̂1; x̂2; . . .; x̂mð Þf 2 ðIð<ÞÞmn
X
i2N

x̂ik ¼I t̂kðNÞ
����� ;

X
i2S

x̂ik � I t̂kðSÞ; for all S

� N; k ¼ 1; 2; � � � ;mg

Here,
P
i2N

x̂ik ¼I t̂kðNÞ is the efficiency condition and
P

i2S;S 6¼N
x̂ik � I t̂kðSÞ is the

stability condition of the interval-valued payoff vectors. Clearly, due to fig�N, then
x̂ik � I t̂kðiÞ. Therefore, we can deduct that Cðt̂Þ�Iðt̂Þ for each t̂ 2 IGn.
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Alparslan-Gök et al. [14] consider that some basic properties of the interval-valued
core are extensions of the corresponding properties of the core of traditional cooper-
ative games. Specifically, the interval-valued core Cðt̂Þ is convex and relatively
invariant with respect to strategic equivalence. Also, they claim that the interval-valued
core Cðt̂Þ is non empty if the interval-valued multiobjective n-person cooperative
games t̂ is balanced.

Theoretically, according to the Definition 3, Cðt̂Þ may be computed by solving the
system of interval-valued inequalities as follows:

P
i2S;S 6¼N

x̂ik � I t̂kðSÞ; ði¼ 1; 2;. . .; n; k ¼ 1; 2; . . .;m; S � NÞP
i2N

x̂ik ¼I t̂kðNÞ; ði¼ 1; 2;. . .; n; k ¼ 1; 2; . . .;mÞ
�xik � xik; ði¼ 1; 2;. . .; n; k ¼ 1; 2; . . .;mÞ

8>><
>>: ð3Þ

However, due to the fact that Eq. (3) involves interval comparison or ranking order
of intervals and the preference of different objectives, it is very difficult to solve
Eq. (3), which will be focused on the next section.

3.3 Solution Method for Interval-Valued Multiobjective n-Person
Cooperative Games with Satisfactory Degrees of Comparing
Intervals

By using the concept of satisfactory degree u given above, we can establish the
following satisfactory crisp equivalent forms of interval-valued inequality constraints,
which will be used to construct auxiliary nonlinear programming models of
interval-valued multiobjective n-person cooperative games.

Let a 2 ½0; 1� denote the satisfactory degree of the interval-valued inequality con-
straint which may be satisfied. For the situation �a� �b, a� b and wðb̂Þ[wðâÞ, from
Definition 1, a satisfactory crisp equivalent form of an interval-valued inequality
constraint â� I b̂ is defined as follows:

�a� �b
a� b
uðâ� I b̂Þ� a;

8<
: ð4Þ

which can be further written as the following system of inequalities:

�a� �b
a� b
ð�b� �aÞ=½2ðwðb̂Þ � wðâÞÞ� � a:

8<
: ð5Þ

It is easy to see from Eq. (5) that wðb̂Þ[wðâÞ due to �a� �b and a 2 ½0; 1�.
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Similarly, for the situation �a� �b, a� b and wðb̂Þ[wðâÞ from Definition 2, a
satisfactory crisp equivalent form of an interval-valued inequality constraint â� I b̂ is
defined as follows:

a� b
�a� �b
uðâ� I b̂Þ� a;

8<
: ð6Þ

which can be further written as the following system of inequalities:

a� b
�a� �b
ða� bÞ=½2ðwðb̂Þ � wðâÞÞ� � a:

8<
: ð7Þ

It is easy to see from Eq. (7) that wðb̂Þ[wðâÞ due to a� b and a 2 ½0; 1�.
Analogously, for other situations �a\b, a\b� �a\�b or wðâÞ ¼ wðb̂Þ and a ¼ b,

we can respectively obtain the satisfactory crisp equivalent forms of interval-valued
inequality constraint â� I b̂ according to Definition 1 (omitted).

In the sequent, we focus on using Eq. (6) (or Eq. (7)) to establish the auxiliary
nonlinear programming model for Eq. (3).

For any coalitions S � N, let aSk ¼ uðP
i2S

x̂ik � I t̂kðSÞÞ denote the satisfactory

degree of the interval-valued inequality
P
i2S

x̂ik � I t̂kðSÞ which may be satisfied.

For the situation
P
i2S

xik � tkðSÞ and
P
i2S

�xik ��tkðSÞ (S � N), according to Eq. (6) and

the above discussion on the “¼I”, we propose a two-phase approach for solving the
interval-valued core of the interval-valued multiobjective n-person cooperative games.

In the first phase, the satisfactory crisp equivalent mathematical programming
model for Eq. (3) can be constructed as follows:

maxf max
1� k�m

min
S�N

faSkgg

s:t:

P
i2S

xik � tkðSÞ ðS � N; k ¼ 1; 2; � � � ;mÞP
i2S

�xik ��tkðSÞ ðS � N; k ¼ 1; 2; � � � ;mÞ
aSk ¼ uðP

i2S
x̂ik � I t̂kðSÞÞ ðS � N; k ¼ 1; 2; � � � ;mÞP

i2N
x̂ik ¼I t̂kðNÞ ðk ¼ 1; 2; � � � ;mÞ

�xik � xik ði¼ 1; 2; � � � ; n; k ¼ 1; 2; � � � ;mÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð8Þ
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Let b ¼ max
1� k�m

min
S�N

faSkg. Then, 0� b� 1. Thereby, according to Definition 2,

Eq. (8) can be rewritten as the following mathematical programming model:

maxfbg

s:t:

P
i2S

xik � tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞP
i2S

�xik ��tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞ
ð1� bÞP

i2S
xik þ b

P
i2S

�xik �ð1� bÞtkðSÞþ b�tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞP
i2N

�xik ¼ �tkðNÞ ðk ¼ 1; 2; . . .;mÞP
i2N

xik ¼ tkðNÞ ðk ¼ 1; 2; . . .;mÞ
�xik � xik; ði¼ 1; 2;. . .; n; k ¼ 1; 2; . . .;mÞ
0� b� 1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð9Þ

where b, �xik and xik (i ¼ 1; 2; � � � ; n; k ¼ 1; 2; � � � ;m) are decision variables to be
determined.

Solving Eq. (9) by the bisection method and algorithms in the following section,
we can obtain its solution of this nonlinear programming model, denoted by b	; x̂	ð Þ.

In the second phase, we construct the following mathematical programming model:

maxf
Xm
k¼1

X
S�N

xkaSkg

s:t:

P
i2S

xik � tkðSÞ ðS � N; k ¼ 1; 2; � � � ;mÞP
i2S

�xik ��tkðSÞ ðS � N; k ¼ 1; 2; � � � ;mÞ
aSk¼ðP

i2S
xik � tkðSÞÞ=½2ðwðt̂kðSÞ � wðP

i2S
x̂ikÞÞ� ðS � N; k ¼ 1; 2; � � � ;mÞ

aSk � b	 ðS � N; k ¼ 1; 2; � � � ;mÞP
i2N

�xik ¼ �tkðNÞ ðk ¼ 1; 2; � � � ;mÞP
i2N

xik ¼ tkðNÞ ðk ¼ 1; 2; � � � ;mÞ
�xik � xik ði¼ 1; 2; � � � ; n; k ¼ 1; 2; � � � ;mÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð10Þ

where xk is the weight of the objective Ok, which satisfies the normalized conditions:

xk � 0 (k ¼ 1; 2; � � � ;m) and Pm
k¼1

xk ¼ 1; aSk 2 ½0; 1�, �xik and xik (S � N,i ¼ 1; 2; � � � ;
n,k ¼ 1; 2; � � � ;m) are decision variables need to be determined. And Eq. (10) may be
rewritten as the following nonlinear programming model:
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maxf
Xm
k¼1

X
S�N;S6¼N

xkaSkg

s:t:

P
i2S

xik � tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞP
i2S

�xik ��tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞ
ð1� aSkÞ

P
i2S

xik þ aSk
P
i2S

�xik¼ð1� aSkÞtkðSÞþ aSk�tkðSÞ ðS � N; k ¼ 1; 2; . . .;mÞP
i2N

�xik ¼ �tkðNÞ ðk ¼ 1; 2; . . .;mÞP
i2N

xik ¼ tkðNÞ ðk ¼ 1; 2; . . .;mÞ
aSk � b	 ðS � N; k ¼ 1; 2; . . .;mÞ
�xik � xik; ði¼ 1; 2;. . .; n; k ¼ 1; 2; . . .;mÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð11Þ

where aSk 2 ½0; 1�, �xik and xik (i ¼ 1; 2; � � � ; n; k ¼ 1; 2; � � � ;m) are decision variables
need to be determined.

Solving Eq. (11) with the given weight of objectives, we can obtain its solution,
denoted by a	Sk; x̂

		� �
. Thus, x̂		 is an element of the interval-valued core of the

interval-valued multiobjective n-person cooperative games with the maximum satis-
factory degree a	Sk.

Obviously, if a	Sk ¼ 1, then we can obtain the element of the interval-valued core in
which the satisfactory degree is equal to 1 for the coalition S and the objective Ok

Analogously, for the situations wðP
i2S

x̂ikÞ ¼ wðt̂kðSÞÞ and
P
i2S

xik ¼ tkðSÞ,P
i2S

xik\tkðSÞ�
P
i2S

�xik\�tk Sð Þ,P
i2S

�xik\tkðSÞ(S � N; k ¼ 1; 2; . . .;m), according to

Definition 2 and the above discussion on the “¼I”, the satisfactory crisp equivalent
form of Eq. (3) can be discussed.

3.4 Algorithms for Solving Interval-Valued n-Person Cooperative Games
with Satisfactory Degrees

By using the bisection method [17], we can obtain the global optimal solution of
Eq. (9), denoted by b	; x̂	ð Þ in the first phase.

Obviously, if b	 ¼ 1, then we can obtain the global optimal solution of Eq. (9) in
which the satisfactory degree is equal to 1.

The bisection procedures and algorithms which can be used to estimate the global
optimal solution of Eq. (9) at a given precision e 2 ð0; 1� (hereby the number of the
iteration is the positive integer m0, which is not smaller than � ln e= ln 2) are sum-
marized as follows:
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Step 1: Let t ¼ 0, and take �bt ¼ 1 and this nonlinear programming problem (i.e.,
Eq. (9)) can be transformed to the linear programming. Solving Eq. (9) with �bt ¼ 1 by
using the LINGO tool (or the simplex method of linear programming), if we can obtain
its feasible solution x̂	t , then b	 ¼ �bt ¼ 1 is the optimal value of the objective function
of Eq. (9). The algorithm stops. On the contrary, if there is not any feasible solution, go
to Step 2.

Step 2: Take b
t
¼ 0 and solve Eq. (9) by using the LINGO tool (or the simplex

method of linear programming), if there is not any feasible solution, which means that
this linear programming problem (hereby Eq. (9)) has no solutions, then the algorithm
stops. On the contrary, if we can obtain its feasible solution x̂	t , then we can determine
that the optimal value of the objective function of Eq. (9) is between 0 and 1 (i.e.,
b	 2 ð0; 1Þ), go to Step 3.

Step 3: According to the bisection method, and let mðb̂tÞ be the mean of the lower
bound b

t
and the upper bound �bt of the interval b̂t ¼ ½b

t
; �bt�. Namely,

mðb̂tÞ ¼ ðb
t
þ �btÞ=2 ¼ ð0þ 1Þ=2 ¼ 0:5, then we solve Eq. (9) by using the LINGO

tool (or the simplex method of linear programming). If there is not any feasible
solution, then the optimal value of the objective function of Eq. (9) falls into the range
which is between the lower bound b

t
and the mean mðb̂tÞ of the interval b̂t (i.e.,

b	 2 ðb
t
;mðb̂tÞÞ ¼ ð0; 0:5Þ), thereby the interval b̂t is narrowed. Let �btþ 1 ¼ mðb̂tÞ ¼

0:5 and b
tþ 1

¼ b
t
¼ 0, then go to Step 4. On the contrary, if we can obtain the feasible

solution x̂	t , then the optimal value of the objective function of Eq. (9) falls into the

range which is between the mean mðb̂tÞ and the upper bound �bt of the interval b̂t (i.e.,
b	 2 ðmðb̂tÞ; �btÞ ¼ ð0:5; 1Þ), thereby the interval b̂t is narrowed also. Let b

tþ 1
¼

mðb̂tÞ ¼ 0:5 and �btþ 1 ¼ �bt ¼ 1, then go to Step 4.

Step 4: Let t :¼ tþ 1, and repeat Step 3 in the new smaller interval b̂t ¼ ½b
t
; �bt�

until the m0-th iteration. Then, go to Step 5.
Step 5: The length of the narrowed interval b̂m0

¼ ½b
m0
; �bm0

� of the m0-th iteration is

not greater than the given precision e. Let b	 ¼ ðb
m0

þ �bm0
Þ=2, which is the mean of the

lower and upper bounds of the interval b̂m0
. Namely, b	 is the optimal value of the

objective function of Eq. (9) at a given precision e.

4 A Numerical Example

Suppose that there are three business companies in the electronic product supply chain
aiming to cooperation to develop a new type of electronic production. Each company
has different superior resources and can’t produce alone. All companies not only care for
their short-term profits in the process of profit distribution, but also many other elements,
such as the degree of technology spillover, production efficiency, product industrial-
ization time, development risk and so on. For simplicity sake, we only consider two
objectives including the short-term profits and degree of technology spillover in this
paper. Due to a lack of information or imprecision of the available information, the
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managers of these three companies usually are not able to exactly forecast the payoffs of
the companies’ product cooperative innovation. Usually, business companies only can
predict the optimistic and the pessimistic payoffs of cooperation. Hence, intervals are
suitable to represent the payoffs from three companies’ perspectives. This problem may
be regarded as an interval-valued bi-objective 3-person cooperative games. Namely,
these three business companies may be regarded as players 1, 2 and 3, respectively. Let
\f1; 2; 3g; t̂[ be denoted by this interval-valued bi-objective 3-person cooperative
games with the characteristics function vector-valued just as followed:

t̂ð1; 2Þ ¼ ð½22; 30�; ½40; 60�ÞT

t̂ð1; 3Þ ¼ ð½24; 28�; ½20; 30�ÞT

t̂ð2; 3Þ ¼ ð½20; 32�; ½16; 44�ÞT

t̂ð1; 2; 3Þ ¼ ð½40; 44�; ½61; 66�ÞT

t̂ð1Þ ¼ t̂ð2Þ ¼ t̂ð3Þ ¼ ð0; 0ÞT

8>>>>>>><
>>>>>>>:

where the components t̂1ð1; 2Þ ¼ ½22; 30� and t̂2ð1; 2Þ ¼ ½40; 60� of t̂ð1; 2Þ ¼
ð½22; 30�; ½40; 60�ÞT denote characteristics function value for coalition 1; 2f g to obtain
the short-term profit and degree of technology spillover objectives, respectively. Other
vector-valued can be similarly understood.

4.1 Computational Results Obtained by the Proposed Method

According to Eq. (9), the nonlinear programming model in the first phase can be
constructed and solved by the above bisection method, then we can narrow the range of
b constantly and infer that b 2 ð0:875; 0:8750625Þ. Therefore, the global optimal
solution ðb	; x̂	Þ at a given precision in the first phase can be estimated, where
b	 ¼ 0:875, x̂	1 ¼ ð½9:5; 13:5�; ½19; 24�ÞT, x̂	2 ¼ ð½16; 16�; ½36; 36�ÞT and
x̂	3 ¼ ð½14:5; 14:5�; ½6; 6�ÞT.

According to Eq. (11) in the second phase, the nonlinear programming model can
be constructed. Suppose that these three business companies agree that the short-term
profit is more important than the degree of technology spillover in the process of profit
distribution, and let x1 ¼ 0:8 and x2 ¼ 0:2. We can obtain the optimal solution
ða	Sk; x̂		Þ, where a	f1;2g1 ¼ 0:875, a	f1;3g1 ¼ 0:875, a	f2;3g1 ¼ 0:875, a	f1;2g2 ¼ 1,

a	f1;3g2 ¼ 1, a	f2;3g2 ¼ 0:929, x̂		1 ¼ ð½12:290; 13:101�; ½19; 24�ÞT, x̂		2 ¼
ð½13:210; 16:399�; ½36; 36�ÞT and x̂		3 ¼ ð½14:5; 14:5�; ½6; 6�ÞT.

Thus, we obtain an element x̂		 of the interval-valued core Cðt̂Þ of the
interval-valued bi-objective 3-person cooperative games with the maximum satisfac-
tory degree a	S1 of the short-term profit objective and a	S2 of the degree of technology
spillover objective. In other words, if the satisfactory degree of

P
i2S;S 6¼N

x̂ik � I t̂kðSÞ for
these three business companies is not greater than a	Sk, the interval-valued core of the
interval-valued bi-objective 3-person cooperative games exists, and hereby these three
companies may choose cooperative innovation.
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Furthermore, using the nonlinear programming model (i.e., Eq. (11)), we also can
obtain the interval-valued core of this interval-valued bi-objective 3-person cooperative
games with players’ different weight preference, where xk 2 ½0; 1�; Pxk ¼ 1;
k ¼ 1; 2, depicted as in Table 1.

Here, we observe that if these three business companies are absolutely concerned
about the short-term profit in the process of profit distribution, then they will choose
x1 ¼ 1, x2 ¼ 0 and get the final solution, where x̂		1 ¼ ð½12:290; 13:101�; ½17; 22�ÞT,
x̂		2 ¼ ð½13:210; 16:399�; ½36:625; 36:625�ÞT and x̂		3 ¼ ð½14:5; 14:5�; ½7:375; 7:375�ÞT.
Similarly if these three business companies are absolutely concerned about the degree
of technology spillover in the process of profit distribution, then they will choose
x1 ¼ 0, x2 ¼ 1 and get the final distribution solution. Further, x1 ¼ 0:5 and x2 ¼ 0:5
represent the neutral or indifference scenario of these three business companies.

Analogously, for the situations wðP
i2S

x̂ikÞ ¼ wðt̂kðSÞÞ and
P
i2S

xik ¼ tkðSÞ,P
i2S

xik\tkðSÞ�
P
i2S

�xik\�tkðSÞ,
P
i2S

�xik\tkðSÞ S � N; k ¼ 1; 2; . . .;mð Þ, we find there is

no feasible solution of these situations and hereby these three companies may have not
any cooperative desire.

These results are consistent with the reality, where companies not only consider the
short-term profit, but also care for other factors with different weight preferences in the
process of the decision making about cooperative innovation.

4.2 Computational Results with the LR Method

According to Eq. (3), we construct the linear programming model and we find that
there is no feasible solution by using the LR method (i.e., ranking relation: if a� b and
�a� �b, then â� b̂). Hereby, these three companies may have not any desire for coop-
erative innovation.

Table 1. Interval-valued cores of the interval-valued bi-objective 3-person cooperative games

x1 ;x2ð Þ a	f1;2g1 a	f1;3g1 a	f2;3g1 a	f1;2g2 a	f1;3g2 a	f2;3g2 x̂		T1 x̂		T2 x̂		T3

(0,1) 0.875 0.875 0.875 1 1 0.929 ½12:290; 13:101�; ½19; 24�ð Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.1,0.9) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.2,0.8) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.3,0.7) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.4,0.6) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.5,0.5) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.6,0.4) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.7,0.3) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.8,0.2) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(0.9,0.1) 0.875 0.875 0.875 1 1 0.929 ð½12:290; 13:101�; ½19; 24�Þ ð½13:210; 16:399�; ½36; 36�Þ ð½14:5; 14:5�; ½6; 6�Þ
(1,0) 0.875 0.875 0.875 0.908 0.875 1 ð½12:290; 13:101�; ½17; 22�Þ ð½13:210; 16:399�; ½36:625;

36:625�Þ
ð½14:5; 14:5�; ½7:375;
7:375�Þ
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Obviously, it is shown that there is not feasible solution with traditional LR interval
ranking method. On the contrary, we can obtain the alternative feasible solution by
introducing the satisfactory degrees of comparing intervals, which can give more
scientific suggestions for players (or managers).

Therefore, it is shown that the traditional LR ranking method is relatively strict,
which may affect the cooperative desire and the decision making in the real situation
with interval-valued payoffs. Moreover, we can easily obtain the maximum satisfactory
degrees that companies accept and corresponding feasible solution with this new
two-phase approach. It can give more scientific suggestions for decision makers. These
conclusions agree with the actual situation as expected. On the other hand, it is shown
that it is necessary to consider the special conditions and different possibility in real
situations.

5 Conclusion

Interval-valued multiobjective n-person cooperative games can provide a basic con-
ceptual framework for formulating and analyzing cooperative decision problems. In
this paper, we introduce a satisfactory degree of comparing intervals including the
feature of inclusion and/or overlap relations, then hereby propose a new two-phase
nonlinear programming models and bisection solving method of interval-valued cores
for any interval-valued multiobjective n-person cooperative games. It is shown that the
method of interval ranking order is very important, which can give more scientific
suggestions for decision makers. Furthermore, this approach takes into full account the
internal/external fuzzy decision making environment, including many different objec-
tives and weight preference.

It is obvious that interval-valued multiobjective n-person cooperative games is
special case of multiobjective n-person cooperative games. In fact, if all the interval
value degenerate to the real number, i.e.,tik ¼ �tik ¼ tik, then the interval-valued mul-
tiobjective n-person cooperative games are reduced to the classical multiobjective
n-person cooperative games.

Obviously, although we propose the new two-phase method for solving the
interval-valued core Cðt̂Þ with the maximum satisfactory degree, the Cðt̂Þ of the
interval-valued multiobjective n-person cooperative games maybe empty or non-unique
which is the same as that of the classical multiobjective n-person cooperative games.
Moreover, intervals are just a special case of fuzzy number and core is one of solution
of multiobjective n-person cooperative games. In reality, there are various forms of
fuzzy numbers such as trapezoidal fuzzy number, triangular fuzzy number. And, there
are various forms of solutions such as Shapley value, stable sets and s value. Also, the
coalitions in the interval-valued multiobjective n-person cooperative games may be
restricted and complex. These are the further study directions in the future.
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Abstract. The aim of this paper is to develop a new method for computing
least square interval-valued nucleoli of cooperative games with interval-valued
payoffs, which usually are called interval-valued cooperative games for short. In
this methodology, based on the square excess which can be intuitionally
interpreted as a measure of the dissatisfaction of the coalitions, we construct a
quadratic programming model for least square interval-valued prenucleolus of
any interval-valued cooperative game and obtain its analytical solution, which is
used to determine players’ interval-valued imputations via the designed algo-
rithms that ensure the nucleoli always satisfy the individual rationality of
players. Hereby the least square interval-valued nucleoli of interval-valued
cooperative games are determined in the sense of minimizing the difference of
the square excesses of the coalitions. Moreover, we discuss some useful and
important properties of the least square interval-valued nucleolus such as its
existence and uniqueness, efficiency, individual rationality, additivity, symme-
try, and anonymity.

Keywords: Game algorithm � Cooperative game � Interval computing �
Quadratic programming � Optimization model

1 Introduction

Due to uncertainty and imprecision in real economic management situations, player
coalitions’ values usually have to be estimated. Recently, intervals seem to be suitable
for employing to deal with inherited imprecision or vagueness in coalitions’ values and
hereby there appears an important type of cooperative games with interval-valued data,
which often are called interval-valued cooperative games for short [1, 2]. A good
example may be the interval bankruptcy games with interval claims [3]. Specifically,
Branzei et al. [3] introduced interval-valued cooperative games which are used to
handle bankruptcy situations where the estate is known with certainty while claims
belong to known bounded intervals of real numbers and hereby defined two
Shapley-like values for solving the interval-valued cooperative games. Obviously,
interval-valued cooperative games are remarkably different from classical cooperative
games from the point of view of the data type of the player coalitions’ values.
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The coalitions’ values of interval-valued cooperative games are expressed with inter-
vals but that of classical cooperative games are expressed with real numbers [4, 5].

Lately, interval-valued cooperative games have attracted attention of researchers and
their solution concepts have applied to many fields such as business [6], operations
research [7], economy, modern finance, climate negotiations and policy, tourism
management [2], environmental management, and pollution control. To be more pre-
cise, Branzei et al. [3] firstly defined two Shapley-like values, which associate vectors of
intervals with interval-valued cooperative games of the interval bankruptcy problems
with interval claims, and studied the interrelations among using the arithmetic of
intervals [8]. To place the models of interval-valued cooperative games within the
cooperative game theory and to motivate continued interest in theory and application
development, Branzei et al. [1] gave a good survey that discussed how the models of
interval-valued cooperative games extended the cooperative game theory, and reviewed
their existing and potential applications in economic management and business situa-
tions with interval data. Alparslan Gök et al. [4] studied the properties of the interval-
valued Shapley value on the class of size monotonic interval-valued cooperative games
and gave an axiomatic characterization of the interval-valued Shapley value on a special
subclass of interval-valued cooperative games. Kimms and Drechsel [6] proposed a
general mathematical programming algorithm which can be used to find an element in
the interval-valued core. Hong and Li [9] constructed an auxiliary nonlinear program-
ming model and hereby proposed a corresponding effective bisection method for
computing elements of interval-valued cores of interval-valued n-person cooperative
games by introducing the satisfaction degree index (or fuzzy ranking index) of interval
comparison. Theoretically, Branzei et al. [10] defined the interval-valued cores of
interval-valued cooperative games through discussing the interval-valued square dom-
inance and interval-valued dominance imputations. Alparslan Gök et al. [11] introduced
some set-valued solution concepts of interval-valued cooperative games, which include
the interval-valued core, the interval-valued dominance core, and the interval-valued
stable sets. Alparslan Gök et al. [12] extended the classical two-person cooperative game
theory to two-person cooperative games with interval data and studied the interval-
valued core, balancedness, superadditivity, and some other properties.

However, it is easy to find that most of the aforementioned works used the Moore’s
interval operations [8], especially the Moore’s interval subtraction, which usually
enlarges uncertainty of the resulted interval. This case usually is not accordant with real
economic management situations. Therefore, the aim of this paper is to develop simple
and effective quadratic programming methods for solving interval-valued cooperative
games. More precisely, based on the differences of the square excesses of the player
coalitions, we construct two quadratic programming models and obtain their analytical
solutions, i.e., least square interval-valued prenucleoli and nucleoli, which are used to
determine players’ interval-valued imputations through using the designed algorithms
which ensure that they satisfy the individual rationality of players. Hereby, the least
square interval-valued prenucleoli and nucleoli of interval-valued cooperative games
are determined in the sense of minimizing the difference of the square excesses of the
player coalitions. The quadratic programming methods proposed in this paper are
remarkably different from the aforementioned methods. On the one hand, the devel-
oped methods can provide analytical formulae for determining the least square
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interval-valued prenucleoli and nucleoli of interval-valued cooperative games and
hereby obtain the interval-valued imputations of players. On the other hand, the
developed methods can effectively avoid the Moore’s interval subtraction [8].

The rest of this paper is arranged as follows. In the next section, we briefly review
the interval-valued cooperative games and their solution concepts and hereby define the
square excesses of players’ coalitions on interval-valued payoff vector to measure the
dissatisfaction of the coalitions. In Sect. 3, we construct two quadratic programming
models based on the square excesses of the player coalitions to compute the least
square interval-valued prenucleoli and nucleoli of interval-valued cooperative games.
The effective algorithm is designed to determine players’ interval-valued imputations
through considering the individual rationality of players. Furthermore, we discuss some
important and useful properties of the least square interval-valued prenucleoli and
nucleoli of interval-valued cooperative games. The quadratic programming models and
algorithms are illustrated with a numerical example about the optimal allocation of the
cooperative profits of joint production and the computational result is analyzed in
Sect. 4. The validity, applicability, and advantages of the methods proposed in this
paper are shown and some remarks on further research are discussed in the last section.

2 Notations of Intervals and Interval-Valued Cooperative
Games

2.1 Interval Notations and Arithmetic Operations

To facilitate introducing interval-valued cooperative games, we firstly review the
concepts of intervals and their distances as well as interval arithmetic operations.

Usually, �a ¼ ½aL; aR� ¼ fa a 2 R; aL � a� aRj g is used to express an interval,
where R is the set of real numbers, aL 2 R and aR 2 R are called the lower bound and
the upper bound of the interval �a, respectively. Let �R be the set of intervals on the set R.

Clearly, if aL ¼ aR, then the interval �a ¼ ½aL; aR� degenerates to a real number,
denoted by a, where a ¼ aL ¼ aR. Conversely, a real number a may be written as an
interval �a ¼ ½a; a�. Therefore, intervals are a generalization of real numbers. That is to
say, real numbers are a special case of intervals [2, 8].

If aL � 0, then �a ¼ ½aL; aR� is called a non-negative interval, denoted by �a� 0.
Likewise, if aR � 0, then �a is called a non-positive interval, denoted by �a� 0. If aL [ 0,
then �a is called a positive interval, denoted by �a[ 0. If aR\0, then �a is called a
negative interval, denoted by �a\0.

To facilitate the sequent discussion, we briefly review arithmetic operations of
intervals such as the equality, the addition, and the scalar multiplication [2, 8, 13].

Assume that �a ¼ ½aL; aR� and �b ¼ ½bL; bR� be two intervals on the set �R. Then, �a is
equal to �b if and only if aL ¼ bL and aR ¼ bR, denoted by �a ¼ �b.

�aþ �b ¼ ½aL þ bL; aR þ bR�: ð1Þ
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The scalar multiplication of a real number c 2 R and an interval �a is defined as
follows:

c�a ¼ ½caL; caR� ðc� 0Þ
½caR; caL� ðc\0Þ

�
ð2Þ

Clearly, the above arithmetic operations of intervals are a generalization of those of
real numbers.

In most management situations, we usually have to compare or rank intervals.
However, ranking intervals or interval comparison is a difficult and an important
problem. In a parallel way to comparison of the real numbers, Moore [8] firstly pro-
posed the order relation between intervals as follows:

�a� �b if and only if aL � bL and aR � bR; ð3Þ

which is simply called the Moore’s order relation between intervals.
To measure differences between intervals, we give the distance concept as follows.

Definition 1. Assume that �a and �b be two intervals on the set �R. If a mapping d :
�R� �R 7!R satisfies the three properties (1)–(3) as follows:

(1) Non-negativity: dð�a; �bÞ� 0;
(2) Symmetry: dð�a; �bÞ ¼ dð�b; �aÞ;
(3) Trigonometrical inequality relation: dð�a; �bÞ� dð�a;�cÞþ dð�c; �bÞ for any interval �c on

the set �R, then dð�a; �bÞ is called the distance between the intervals �a and �b.

It is easy to see from Definition 1 that the distance between intervals is a natural
generalization of that of the set of real numbers.

Obviously, there are various forms of distances between intervals which satisfy
Definition 1. For instance, to meet the need of modeling interval-valued cooperative
games in the subsequent sections, we define the distance between two intervals �a 2 �R
and �b 2 �R as follows:

Dð�a; �bÞ ¼ ðaL � bLÞ2 þðaR � bRÞ2: ð4Þ

It is easy to see that Eq. (4) is very similar to the distance between two points in the
two-dimension Euclidean space.

Theorem 1. Dð�a; �bÞ defined by Eq. (4) is the distance between the intervals �a 2 �R and
�b 2 �R.

Proof. We need to validate that Dð�a; �bÞ defined by Eq. (4) satisfies the three properties
(1)–(3) of Definition 1, respectively.

It is easy to see from Eq. (4) that Dð�a; �bÞ� 0 and Dð�a; �bÞ ¼ Dð�b; �aÞ for any
intervals �a and �b. Namely, Dð�a; �bÞ satisfies the properties (1) and (2) of Definition 1.

For any interval �c on the set �R, where �c ¼ ½cL; cR�, it is easily derived from Eq. (4)
that

Models and Algorithms for Least Square Interval-Valued Nucleoli 283



Dð�a; �bÞ ¼ðaL � bLÞ2 þðaR � bRÞ2

� ½ðaL � cLÞ2 þðcL � bLÞ2� þ ½ðaR � cRÞ2 þðcR � bRÞ2�
¼½ðaL � cLÞ2 þðaR � cRÞ2� þ ½ðcL � bLÞ2 þðcR � bRÞ2�
¼Dð�a;�cÞþDð�c; �bÞ;

i.e.,

Dð�a; �bÞ�Dð�a;�cÞþDð�c; �bÞ:

Therefore, Dð�a; �bÞ satisfies the property (3) of Definition 1. Thus, we have proven
that Dð�a; �bÞ defined by Eq. (4) is the distance between the intervals �a and �b.

It is noted that the square appears in Eq. (4). In fact, Eq. (4) is the square of the
distance between the intervals. In the sequent, the distance between two intervals is
referred to the square of the distance given by Eq. (4) unless otherwise specified.

2.2 Interval-Valued Cooperative Games and Notations

A n-person interval-valued cooperative game in characteristic function form is an
ordered-pair \N;�t[ , where N ¼ f1; 2; � � � ; ng is the set of n players, each subset
S�N is called a coalition of the player set N, and �t : 2N ! R is the interval-valued
characteristic function of players’ coalitions. 2N denotes the set of coalitions of the
player set N. Obviously, N is the grand coalition. For each coalition S�N, its size is
denoted by s, which represents the number of players in the coalition S. The interval
�tðSÞ ¼ ½tLðSÞ; tRðSÞ� represents the range of reward (or profit) that the coalition S can
achieve on its own if all the players in it act together, where the lower bound tLðSÞ of
the interval �tðSÞ is the minimal reward of the coalition S and the upper bound tRðSÞ of
the interval �tðSÞ is the maximal reward of the coalition S. The interpretation of
interval-valued cooperative games is that a coalition S�N can obtain for its members a
worth that is somewhere in the interval �tðSÞ. Stated as the above Sect. 2.1, we stipulate
�tð£Þ ¼ ½0; 0�, where £ is an empty set. Note that usually �tð£Þ can be simply written
as �tð£Þ ¼ 0 according to the notation of intervals in Sect. 2.1. For convenience,
�tðS[figÞ, �tðSnfigÞ, �tðfi; jgÞ, and �tðfigÞ are usually written as �tðS[ iÞ, �tðSniÞ, �tði; jÞ,
and �tðiÞ, respectively. In the sequent, a n-person interval-valued cooperative game
\N;�t[ is simply called the interval-valued cooperative game �t. The set of n-person
interval-valued cooperative games �t is denoted by �Gn.

3 Quadratic Programming Model for Least Square
Interval-Valued Prenucleoli of Interval-Valued
Cooperative Games

For any interval-valued cooperative game �t 2 �Gn, it is obvious that each player’s
payoff obtained from cooperation should be also an interval due to the fact that the
payoff (or characteristic value) of each coalition S�N is an interval. Thus, let �xi ¼
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½xLi; xRi� be the interval-valued payoff which is allocated to the player i 2 N when the
grand coalition N is reached. Denote �x ¼ ð�x1;�x2; � � � ;�xnÞT, which is the interval-valued
payoff vector of n players in the grand coalition N. For any coalition S�N, denote
�xðSÞ ¼ P

i2S
�xi, which represents the collective (or aggregated) interval-valued payoff of

all the players in the coalition S. According to Eq. (1), �xðSÞ ¼ ½xLðSÞ; xRðSÞ� can be
expressed as the following interval:

�xðSÞ ¼ ½
X
i2S

xLi;
X
i2S

xRi�:

In a similar way to the definitions of the efficiency and individual rationality of the
classical cooperative game [2, 14], if an interval-valued payoff vector �x satisfies both
the efficiency and individual rationality conditions as follows:

Xn
i¼1

�xi ¼ �tðNÞ ð5Þ

and

�xi ��tðiÞ ði ¼ 1; 2; � � � ; nÞ; ð6Þ

respectively, then �x is called an imputation of the interval-valued cooperative game
�t 2 �Gn. In other word, an interval-valued payoff vector �x is said to be efficient or a
preimputation if the efficiency condition �xðNÞ ¼ �tðNÞ is valid. Further, �x is said to be
an imputation if the individual rationality conditions �xi ��tðiÞ for all players i 2 N are
also satisfied. �IPrð�tÞ and �Ið�tÞ denote the sets of interval-valued preimputations and
imputations of the interval-valued cooperative game �t 2 �Gn, respectively.

Using Eqs. (1) and (3), Eqs. (5) and (6) can be rewritten as follows:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xRi ¼ tRðNÞ

8>>>><
>>>>:

ð7Þ

and

xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ;

�
ð8Þ

respectively.
For any interval-valued payoff vector �x and any coalition S�N, where S 6¼ £,

according to Eq. (4), denote

eðS;�xÞ ¼ ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2; ð9Þ
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which is just the square of the distance between the intervals �xðSÞ and �tðSÞ. Then, eðS;�xÞ
is called the square excess of the coalition S on the interval-valued payoff vector �x.

Usually, for any coalition S�N, we use eLðS;�xÞ to express tLðSÞ � xLðSÞ, i.e.,

eLðS;�xÞ ¼ tLðSÞ � xLðSÞ; ð10Þ

which is called the lower bound of the excess of the coalition S on the interval-valued
payoff vector �x. Likewise, we use eRðS;�xÞ to represent tRðSÞ � xRðSÞ, i.e.,

eRðS;�xÞ ¼ tRðSÞ � xRðSÞ; ð11Þ

which is called the upper bound of the excess of the coalition S on �x. Therefore, eðS;�xÞ
can be rewritten as follows:

eðS;�xÞ ¼ ðeLðS;�xÞÞ2 þðeRðS;�xÞÞ2:

It is noted that eðS;�xÞ can be interpreted as a measure of the dissatisfaction of the
coalition S if �x were suggested as a final interval-valued payoff vector for all the players
in the grand coalition. Obviously, eðS;�xÞ� 0. Further, the square excess eðN;�xÞ of the
grand coalition N on �x is equal to 0 if the interval-valued payoff vector �x satisfies the
efficiency. Hence, the greater eðS;�xÞ the more unfair the coalition S.

Least square interval-valued prenucleoli and nucleoli are an important type of
solutions for interval-valued cooperative games. In a paralleled way to the definitions
of the prenucleoli and nucleoli [15, 16] of classical cooperative games, we can define
the least square interval-valued prenucleoli and nucleoli of interval-valued cooperative
games based on the square excesses of coalitions on the interval-valued payoff vectors.

The least square interval-valued prenucleolus of an interval-valued cooperative
game would choose an interval-valued payoff vector to minimize the sum of the square
excesses from the preimputation set according to the lexicographical order. Whereas,
the least square interval-valued nucleolus would choose an interval-valued payoff
vector to minimize the sum of the square excesses from the imputation set. In both
cases, the key problem to obtain least square interval-valued prenucleoli and nucleoli of
interval-valued cooperative games is to minimize the maximal complaint with the
square excess of a coalition on an interval-valued payoff vector. This selection is
regarded as equitable and reasonable. To attain the minimum of

P
S�N

eðS;�xÞ and balance

the gain of each player i 2 N, we will choose the interval-valued payoff vector to
minimize the sum of the squares of the differences between the excesses of the
coalitions and their means (or average excesses). Namely, we try to find the
interval-valued payoff vector so that the resulting excesses are the closest to the means
under the least square criterion. Thus, combining with Eq. (7), solving a least square
interval-valued prenucleolus of any interval-valued cooperative game can be trans-
formed into solving the constructed quadratic programming model as follows:
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min
X

S�N;S 6¼£

½ðeLðS;�xÞ � eLmðS;�xÞÞ2 þðeRðS;�xÞ � eRmðS;�xÞÞ2�
( )

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ;

8>><
>>:

ð12Þ

where the summation is taken over all nonempty coalitions S�N, and eLmðS;�xÞ and
eRmðS;�xÞ are the means of the excesses of coalitions on �x, i.e.,

eLmðS;�xÞ ¼ 1
2n�1

X
S�N;S 6¼£

eLðS;�xÞ ð13Þ

and

eRmðS;�xÞ ¼ 1
2n�1

X
S�N;S6¼£

eRðS;�xÞ: ð14Þ

Analogously, combining with Eqs. (7) and (8), solving a least square interval-
valued nucleolus of any interval-valued cooperative game can be converted into
solving the constructed quadratic programming model as follows:

minf
X

S�N;S 6¼£

½ðeLðS;�xÞ � eLmðS;�xÞÞ2 þðeRðS;�xÞ � eRmðS;�xÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>>><
>>>>>>>:

ð15Þ

It is easily observed the following conclusion: for any interval-valued cooperative
game �t 2 �Gn, if an interval-valued payoff vector �x satisfies the efficiency, then the sum
of the lower (or upper) bounds of the excesses of all coalitions S�N on �x is the same
as that on any other interval-valued payoff vector which also satisfies the efficiency. In
fact, due to the assumption that �x is an interval-valued payoff vector which satisfies the
efficiency, then we have
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X
S�N;S6¼£

eLðS;�xÞ ¼
X

S�N;S6¼£

ðtLðSÞ � xLðSÞÞ

¼
X

S�N;S6¼£

tLðSÞ�
X

S�N;S 6¼£

xLðSÞ

¼
X

S�N;S6¼£

tLðSÞ� 1
2
½

X
S�N;S 6¼£

xLðSÞþ
X

S�N;S 6¼£

xLðNnSÞþ xLðNÞ�

¼
X

S�N;S6¼£

tLðSÞ� 1
2

X
S�N;S 6¼£

ðxLðSÞþ xLðNnSÞÞ � 1
2
xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ� 1
2
ð2n � 1ÞxLðNÞ � 1

2
xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ�2n�1xLðNÞ

¼
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞ;

i.e.,

X
S�N;S6¼£

eLðS;�xÞ ¼
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞ; ð16Þ

which easily implies that
P

S�N;S6¼£
eLðS;�xÞ is a constant for any interval-valued payoff

vector which satisfies the efficiency.
Likewise, we can easily obtain

X
S�N;S6¼£

eRðS;�xÞ ¼
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞ: ð17Þ

Thus, Eqs. (16) and (17) show that the sums of the lower (or upper) bounds of the
excesses of all coalitions are identical for all interval-valued payoff vectors which
satisfy the efficiency.

Further, it is easy to see from Eqs. (16) and (17) that the means of the lower (or
upper) bounds of the excesses of all coalitions are identical for all interval-valued
payoff vectors which satisfy the efficiency.

Using Eqs. (10)–(14) and Eqs. (16) and (17), then Eq. (15) can be rewritten as
follows:

minf
X

S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ
X

S�N;S6¼£

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2g
ð18Þ
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s:t:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xRi ¼ tRðNÞ:

8>>>><
>>>>:

4 A Fast Method for Computing Least Square
Interval-Valued Prenucleoli of Interval-Valued
Cooperative Games

In this section, based on the square excess, we focus on developing an effective and a
fast quadratic programming method for solving interval-valued cooperative games as
stated in Sect. 2.2. It is easy to see from Eq. (18) that computing the least square
interval-valued prenucleolus of an interval-valued cooperative game becomes solving
the quadratic programming model.

Using the Lagrange multiplier method, the Lagrange function of Eq. (18) can be
constructed as follows:

Lð�x; k;lÞ ¼
X

S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ
X

S�N;S 6¼£

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2

þ kð
Xn
i¼1

xLi � tLðNÞÞþ lð
Xn
i¼1

xRi � tRðNÞÞ;

where k and l are Lagrange multipliers.
The partial derivatives of Lð�x; k; lÞ with respect to the variables xLj, xRj (j 2 S�N),

k, and l are obtained as follows:

@Lð�x; k; lÞ
@xLj

¼ �2
X
S:i2S

½tLðSÞ � xLðSÞ � 1
2n � 1

ð
X

S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ� þ k;

@Lð�x; k; lÞ
@k

¼
Xn
i¼1

xLi � tLðNÞ;

@Lð�x; k; lÞ
@xRj

¼ �2
X
S:i2S

½tRðSÞ � xRðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ� þ l;

and

@Lð�x; k; lÞ
@l

¼
Xn
i¼1

xRi � tRðNÞ;

respectively.
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Let the partial derivatives of Lð�x; k; lÞ with respect to the variables xLj, xRj
ðj 2 S�NÞ, k, and l be equal to 0, respectively. Consequently, we have

�2
X
S:i2S

½tLðSÞ � x	EL ðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tLðSÞ�2n�1tLðNÞÞ� þ k	E ¼ 0; ð19Þ

Xn
i¼1

x	ELi ¼ tLðNÞ; ð20Þ

�2
X
S:i2S

½tRðSÞ � x	ER ðSÞ � 1
2n � 1

ð
X

S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ� þ l	E ¼ 0; ð21Þ

and

Xn
i¼1

x	ERi ¼ tRðNÞ; ð22Þ

respectively.
It is obvious that

X
S:i2S

x	EL ðSÞ ¼ 2n�1x	ELi þ
X
j2Nni

2n�2x	ELj ði; j 2 NÞ ð23Þ

It can be easily derived from Eqs. (19) and (23) that

�2
X
S:i2S

tLðSÞþ 2� 2n�1x	ELi þ 2
X
j2Nni

2n�2x	ELj þ
2

2n � 1

X
S�N;S6¼£

tLðSÞ � 2n

2n � 1
tLðNÞþ k	E ¼ 0

Combining with the equality:

x	ELi þ
X
j2Nni

x	ELj ¼ tLðNÞ ði; j 2 NÞ;

we can directly obtain

� 2
X
S:i2S

tLðSÞþ 2n�1x	ELi þð2n�1 � 2n

2n � 1
ÞtLðNÞþ 2

2n � 1

X
S�N;S6¼£

tLðSÞþ k	E ¼ 0; ð24Þ

which can be rewritten as follows:

x	ELi ¼
2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S 6¼£

tLðSÞ�k	E

2n�1

ð25Þ
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Thus, the key to solve x	ELi ði ¼ 1; 2; 3; � � � ; nÞ becomes obtaining k	E. It is easily
derived from Eq. (20) that

X
i2N

2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S6¼£

tLðSÞ�k	E

2n�1
¼ tLðNÞ;

i.e.,

2
X

S�N;S 6¼£

stLðSÞ � nð2n�1 � 2n

2n � 1
ÞtLðNÞ � 2n

2n � 1

X
S�N;S 6¼£

tLðSÞ � nk	E ¼ 2n�1tLðNÞ;

where s denotes the cardinality of the coalition S�N, i.e., s ¼ jSj. Hence, we can
easily obtain

k	E ¼
2

P
S�N;S 6¼£

stLðSÞ

n
� ð2n�1 � 2n

2n � 1
ÞtLðNÞ � 2

2n � 1

X
S�N;S6¼£

tLðSÞ � 2n�1

n
tLðNÞ;

ð26Þ

which is substituted into Eq. (25), we directly have

x	ELi ¼
2
P
S:i2S

tLðSÞ � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S 6¼£

tLðSÞ

2n�1

�

2
P

S�N;S 6¼£

stLðSÞ

n � ð2n�1 � 2n
2n�1ÞtLðNÞ � 2

2n�1

P
S�N;S6¼£

tLðSÞ � 2n�1

n tLðNÞ

2n�1

¼
2
P
S:i2S

tLðSÞ �
2

P
S�N;S 6¼£

stLðSÞ

n þ 2n�1

n tLðNÞ
2n�1

¼ tLðNÞ
n

þ
2
P
S:i2S

tLðSÞ �
2

P
S�N;S 6¼£

stLðSÞ

n

2n�1

¼ tLðNÞ
n

þ 1
n2n�2 ðn

X
S:i2S

tLðSÞ �
X

S�N;S 6¼£

stLðSÞÞ

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

X
S:j2S

tLðSÞÞ

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ;
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i.e.,

x	ELi ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ ði 2 NÞ; ð27Þ

where aLiðtÞ ¼
P
S:i2S

tLðSÞ.
Likewise, using Eqs. (21) and (22), the upper bounds of the interval-valued optimal

solution �x	E of Eq. (18) can be obtained as follows:

x	ERi ¼
tRðNÞ
n

þ 1
n2n�2 ðnaRiðtÞ �

X
j2N

aRjðtÞÞ ði 2 NÞ; ð28Þ

where aRiðtÞ ¼
P
S:i2S

tRðSÞ ði 2 NÞ.
Then, we obtain the interval-valued optimal solution �x	E ¼ ð�x	E1 ;�x	E2 ; � � � ;�x	En ÞT of

Eq. (18), whose components’ lower and upper bounds consist of Eqs. (27) and (28),
respectively, where �x	Ei ¼ ½x	ELi ; x	ERi � ði 2 NÞ. Therefore, the least square interval-valued
prenucleolus of the interval-valued cooperative game �t is �x	E.

In what follows, we discuss some useful and important properties of the least
square interval-valued prenucleoli for interval-valued cooperative games.

Theorem 2. Assume that �t 2 �Gn is any interval-valued cooperative game. Then, there
always exists a unique least square interval-valued prenucleolus, which is determined
by Eqs. (27) and (28).

Proof. It is straightforward to prove Theorem 2 according to Eqs. (27) and (28).

Theorem 3. Assume that �t 2 �Gn is any interval-valued cooperative game. Then, its
least square interval-valued prenucleolus �x	E satisfies the efficiency, i.e.,
Pn
i¼1

�x	Ei ¼ �tðNÞ.

Proof. According to Eq. (1), it is easily derived from Eqs. (27) and (28) that

Xn
i¼1

�x	Ei ¼ ½
Xn
i¼1

x	ELi ;
Xn
i¼1

x	ERi �

¼ ½
Xn
i¼1

tLðNÞ
n

þ 1
2n�2

Xn
i¼1

aLiðtÞ � 1
2n�2

X
j2N

aLjðtÞ;
Xn
i¼1

tRðNÞ
n

þ 1
2n�2

Xn
i¼1

aRiðtÞ � 1
2n�2

X
j2N

aRjðtÞ�

¼ ½tLðNÞ; tRðNÞ�;

i.e.,
Pn
i¼1

�x	Ei ¼ �tðNÞ. Thus, we have completed the proof of Theorem 3.

Theorem 4. Assume that �t 2 �Gn and �m 2 �Gn are any interval-valued cooperative
games. Then, �x	Eð�tþ�mÞ ¼ �x	Eð�tÞþ �x	Eð�mÞ.
Proof. It is easily derived from Eq. (27) that
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x	ELi ð�tþ�mÞ ¼ tLðNÞþ mLðNÞ
n

þ 1
n2n�2

½nðaLiðtÞþ aLiðmÞÞ �
X
j2N

ðaLjðtÞþ aLjðmÞÞ�

¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞþ mLðNÞ
n

þ 1
n2n�2 ðnaLiðmÞ �

X
j2N

aLjðmÞÞ

¼x	ELi ð�tÞþ x	ELi ð�mÞ;

i.e., x	ELi ð�tþ�mÞ ¼ x	ELi ð�tÞþ x	ELi ð�mÞ.
Analogously, according to Eq. (28), we can easily prove that

x	ERi ð�tþ�mÞ ¼ x	ERi ð�tÞþ x	ERi ð�mÞ. Hence, according to Eq. (1), we have

�x	Ei ð�tþ�mÞ ¼ �x	Ei ð�tÞþ�x	Ei ð�mÞ ði ¼ 1; 2; � � � ; nÞ;

i.e., �x	Eð�tþ�mÞ ¼ �x	Eð�tÞþ �x	Eð�mÞ, which implies that Theorem 4 is valid.

Theorem 5. If players i 2 N and k 2 N ði 6¼ kÞ are symmetric in an interval-valued
cooperative game �t 2 �Gn, then �x	Ei ¼ �x	Ek .

Proof. For the players i 2 N and k 2 N ði 6¼ kÞ, it is easily derived from Eq. (27) that

x	ELi ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLiðtÞ �

X
j2N

aLjðtÞÞ ð29Þ

and

x	ELk ¼ tLðNÞ
n

þ 1
n2n�2 ðnaLkðtÞ �

X
j2N

aLjðtÞÞ: ð30Þ

It is easily derived from the symmetric players’ assumption [2] that

aLiðtÞ ¼ aLkðtÞ ði 2 N; k 2 N; i 6¼ kÞ;

which easily follows from Eqs. (29) and (30) that x	ELi ¼ x	ELk .
In the same way, using Eq. (28), we can easily prove x	ERi ¼ x	ERk . Combining with

the aforementioned conclusion and Eq. (1), we can obtain

½x	ELi ; x	ERi � ¼ ½x	ELk ; x	ERk �;

i.e., �x	Ei ¼ �x	Ek . Accordingly, we have completed the proof of Theorem 5.

Theorem 6. Assume that �t 2 �Gn is any interval-valued cooperative game. For any
permutation r on the set N, then �x	ErðiÞð�trÞ ¼ �x	Ei ð�tÞ.
Proof. It can be easily proven according to Eqs. (27) and (28) (omitted).

Obviously, if all coalitions’ values �tðSÞ degenerate to real numbers, i.e., tðSÞ ¼
tLðSÞ ¼ tRðSÞ for any coalition S�N, then it easily follows from Eqs. (27) and (28)
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that x	Ei ¼ x	ELi ¼ x	ERi ði 2 NÞ, i.e., Eqs. (27) and (28) are identical. Namely, either
Eq. (27) or Eq. (28) is applicable to the classical cooperative games. Thus, the model
and method developed in this section may be regarded as an extension of that for the
classical cooperative games when uncertainty and imprecision are taken into account.

5 Algorithms for Least Square Interval-Valued Nucleoli
of Interval-Valued Cooperative Games

Equation (18) is used to compute the least square interval-valued prenucleolus of any
interval-valued cooperative game. However, the least square interval-valued prenu-
cleolus is usually not an imputation because it possibly fails to satisfy the individual
rationality. Hereby, we can construct the quadratic programming model of the least
square interval-valued nucleolus for the interval-valued cooperative game �t as follows:

minf P
S�N;S 6¼£

½tLðSÞ � xLðSÞ � 1
2n�1 ð

P
S�N;S6¼£

tLðSÞ�2n�1tLðNÞÞ�2

þ P
S�N;S6¼£

½tRðSÞ � xRðSÞ � 1
2n�1 ð

P
S�N;S 6¼£

tRðSÞ�2n�1tRðNÞÞ�2g
ð31Þ

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>><
>>>>>>:

For discussion concision and convenience, we firstly prove the following conclu-
sion: for any interval-valued cooperative game �t 2 �Gn, if we use any constants mL and
mR to replace �eLðS;�xÞ and �eRðS;�xÞ of the objective function in Eq. (12) (or Eq. (15)),
respectively, then Eq. (12) (or Eq. (15)) remains the identical optimal solution. In fact,
assume that �x is any interval-valued payoff vector which satisfies the efficiency, then
for any constants mL and mR, we have

P
S�N;S 6¼£

½ðeLðS;�xÞ � mLÞ2 þðeRðS;�xÞ � mRÞ2� ¼
P

S�N;S 6¼£
ðeLðS;�xÞ � mLÞ2 þ

P
S�N;S6¼£

ðeRðS;�xÞ � mRÞ2

¼ P
S�N;S 6¼£

eLðS;�xÞ2 þð2n � 1Þm2
L � 2mL

P
S�N;S 6¼£

eLðS;�xÞþ
P

S�N;S 6¼£
eRðS;�xÞ2

þð2n � 1Þm2
R � 2mR

P
S�N;S6¼£

eRðS;�xÞ:

ð32Þ

It is easily derived from Eqs. (16) and (17) that the objective function of Eq. (12)
(or Eq. (15)) replaced with Eq. (32) remains the same optimal solution as Eq. (12) (or
Eq. (15)) while only their optimal objective values have a difference of constants.

In particular, for mL ¼ mR ¼ 0, it is obvious that the optimal solution of Eq. (12) is
the same as that of the quadratic programming model as follows:
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minf
X

S�N;S6¼£

½ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ;

8>><
>>:

ð33Þ

and the optimal solution of Eq. (15) is the same as that of the quadratic programming
model as follows:

minf
X

S�N;S6¼£

½ðtLðSÞ � xLðSÞÞ2 þðtRðSÞ � xRðSÞÞ2�g

s:t:

Pn
i¼1

xLi ¼ tLðNÞ
Pn
i¼1

xRi ¼ tRðNÞ
xLi � tLðiÞ ði ¼ 1; 2; � � � ; nÞ
xRi � tRðiÞ ði ¼ 1; 2; � � � ; nÞ:

8>>>>>>><
>>>>>>>:

ð34Þ

Stated as earlier, computing the least square interval-valued nucleolus of any
interval-valued cooperative game can be equivalently converted into solving the
optimal solution of Eq. (34). Therefore, combining with the optimal solution of
Eq. (33), i.e., the least square interval-valued prenucleolus of any interval-valued
cooperative game, we mainly propose simple and effective algorithms for solving the
least square interval-valued nucleolus.

Without loss of generality, assume that we are considering any interval-valued
cooperative game �t with �tðiÞ ¼ ½0; 0� for all i 2 N. In the following, we summarize the
algorithms for solving the lower and upper bound of the least square interval-valued
nucleolus of the interval-valued cooperative game �t as follows.

We propose Algorithm 1 for determining nonnegativity of the lower bounds of the
least square interval-valued nucleolus of the interval-valued cooperative game �t as
follows:

Step 1: Set k ¼ 1. Let xkL ¼ x	EL , where x	EL ¼ ðx	EL1 ; x	EL2 ; � � � ; x	ELnÞT is the lower
bound vector of the least square interval-valued prenucleolus of the interval-valued
cooperative game �t, which is given by Eq. (27) (or generated by solving Eq. (33)).
Let Mk

L ¼ fj 2 NjxkLj\0g, which is the set of the players who have negative lower

bounds of the interval-valued payoff vector xkL.
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Step 2: Compute

xkþ 1
Lj ¼ xkLj þ xkLðMk

LÞ
n�mk

L
ðj 62 Mk

LÞ
0 ðj 2 Mk

LÞ;

(

where mk
L is the cardinality of the player set Mk

L, i.e., m
k
L ¼ jMk

Lj.
Step 3: Let Mkþ 1

L ¼ Mk
L [fj 2 Njxkþ 1

Lj \0g, which is the new set of the players

who have negative lower bounds of the interval-valued payoff vector xkþ 1
L .

Step 4: IfMkþ 1
L 
 Mk

L, then set k ¼ kþ 1 and return to Step 2; If Mkþ 1
L ¼ Mk

L, then
the solving process stops, hereby we can obtain the lower bounds of the least square
interval-valued nucleolus of the interval-valued cooperative game �t, depicted as in
Fig. 1.

Analogously, we can propose Algorithm 2 for determining nonnegativity of the
upper bounds of the least square interval-valued nucleolus of the interval-valued
cooperative game �t as follows:

Step 1: Set k ¼ 1. Let xkR ¼ x	ER , where x	ER ¼ ðx	ER1; x	ER2; � � � ; x	ERnÞT is the upper
bound vector of the least square interval-valued prenucleolus of the interval-valued
cooperative game �t, which is given by Eq. (28) (or generated by solving Eq. (33)).

Set 1k = , initialize k
Lx and k

LM

Compute 1k
Ljx +

Determine 1k
LM +

1k k
L LM M+ ⊃ ?YSet 1k k= +

Stop, hereby obtain the lower bounds of the 
least square interval-valued nucleolus

N

Fig. 1. Algorithm for determining nonnegativity of the lower bounds of the least square
interval-valued nucleolus
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Let Mk
R ¼ fj 2 NjxkRj\0g, which is the set of the players who have negative upper

bounds of the interval-valued payoff vector xkR.
Step 2: Compute

xkþ 1
Rj ¼ xkRj þ xkRðMk

RÞ
n�mk

R
ðj 62 Mk

RÞ
0 ðj 2 Mk

RÞ;

(

where mk
R is the cardinality of the player set Mk

R, i.e., m
k
R ¼ jMk

Rj.
Step 3: Let Mkþ 1

R ¼ Mk
R [fj 2 Njxkþ 1

Rj \0g, which is the new set of the players

who have negative upper bounds of the interval-valued payoff vector xkþ 1
R .

Step 4: IfMkþ 1
R 
 Mk

R, then set k ¼ kþ 1 and return to Step 2; IfMkþ 1
R ¼ Mk

R, then
the solving process stops, hereby we can obtain the upper bounds of the least square
interval-valued nucleolus of the interval-valued cooperative game �t, depicted as in
Fig. 2.

From the above discussion, we can propose Algorithm 3 for computing the least
square interval-valued nucleolus of any interval-valued cooperative game �t, depicted as
in Fig. 3.

Set 1k = , initialize k
Rx and k

RM

Compute 1k
Rjx +

Determine 1k
RM +

1k k
R RM M+ ⊃ ?YSet 1k k= +

Stop, hereby obtain the upper bounds of the 
least square interval-valued nucleolus

N

Fig. 2. Algorithm for determining nonnegativity of the upper bounds of the least square
interval-valued nucleolus
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In the following, we discuss some important and useful properties of the least
square interval-valued nucleolus of any interval-valued cooperative game.

Theorem 7. Assume that �t is any interval-valued cooperative game. Then, there exists
a unique least square interval-valued nucleolus, which satisfies the efficiency, indi-
vidual rationality, additivity, symmetry, and anonymity.

Proof. It is easy to prove Theorem 7 in a similar way to Theorems 2–6 and combining
with Algorithms 1 and 2 (omitted).

6 A Numerical Example of Joint Production Problems

The following is an example how interval-valued cooperative games are applied to
solve joint production problems.

Let us consider a joint production problem in which five decision makers actively
cooperate with one another to develop new products. The five decision makers are
named players 1, 2, 3, 4, and 5, respectively. Denoted the set of players by
N 0 ¼ f1; 2; 3; 4; 5g. Before the cooperation starts, it is necessary for the five players
(i.e., decision makers) to evaluate the revenue of the joint production project in order to
decide whether the coalitions can be formed. However, the cooperative profit is
dependent on many factors such as cost of human resources, product price, supply, and
demand. Usually, players may estimate ranges of their profits instead of precisely
forecasting their profits. Namely, the profit of a coalition S�N 0 of the players may be

N 

N 

Obtain the least square interval-valued nucleolus

Algorithm 1

Y 

Nonnegativity of 
the upper bounds? Algorithm 2

Y 

Nonnegativity of 
the lower bounds?

To compute the least square interval-valued 
prenucleolus by solving Eq. (33) 

Fig. 3. Algorithm 3 for computing the least square interval-valued nucleolus
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expressed with an interval �t0ðSÞ ¼ ½t0LðSÞ; t0RðSÞ�. In this case, the optimal allocation of
profits for the five decision makers may be regarded as an interval-valued cooperative
game �t0 in which the interval-valued characteristic function is equal to �t0ðSÞ for any
coalition S�N 0.

For example, let us consider a specific interval-valued cooperative game �t0 which is
defined as follows: �t0ð2; 3Þ ¼ �t0ð2; 4Þ ¼ �t0ð3; 4Þ ¼ �t0ð3; 5Þ ¼ �t0ð4; 5Þ ¼ ½100; 200�,
�t0ð1; 3; 4Þ ¼ �t0ð1; 3; 5Þ ¼ �t0ð1; 4; 5Þ ¼ �t0ð2; 3; 5Þ ¼ �t0ð2; 4; 5Þ ¼ ½100; 200�,
�t0ð2; 3; 4Þ ¼ ½120; 240�, �t0ð3; 4; 5Þ ¼ ½175; 300�, �t0ð1; 2; 3; 4Þ ¼ ½175; 350�,
�t0ð1; 2; 3; 5Þ ¼ ½100; 220�, �t0ð1; 2; 4; 5Þ ¼ ½100; 250�, �t0ð1; 3; 4; 5Þ ¼ ½200; 380�,
�t0ð2; 3; 4; 5Þ ¼ ½200; 400�, �t0ð1; 2; 3; 4; 5Þ ¼ ½200; 600�, and otherwise �t0ðSÞ ¼ 0:.

Using Eq. (27), we can obtain the lower bounds of the least square interval-valued
prenucleolus of the interval-valued cooperative game �t0 as follows:

x	EL1 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL1ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1075� 7485Þ

¼ �12:75;

x	EL2 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL2ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1295� 7485Þ

¼ 14:75;

x	EL3 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL3ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1770� 7485Þ

¼ 74:125;

x	EL4 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL4ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1770� 7485Þ

¼ 74:125;

and

x	EL5 ¼
tLðN 0Þ

5
þ 1

5� 25�2 ð5aL5ðtÞ �
X
j2N 0

aLjðtÞÞ ¼ 200
5

þ 1
5� 8

ð5� 1575� 7485Þ

¼ 49:75;

respectively.
According to Algorithm 1, it is obvious that

x1L ¼ x	EL ¼ ðx	EL1 ; x	EL2 ; x	EL3 ; x	EL4 ; x	EL5ÞT ¼ ð�12:75; 14:75; 74:125; 74:125; 49:75ÞT:

Then, we give 0 to player 1 and divide �12:75 equally among players 2, 3, 4, and
5. Hereby, we obtain
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x2L ¼ ðx2L1; x2L2; x2L3; x2L4; x2L5ÞT ¼ ð0; 11:5625; 70:9375; 70:9375; 46:5625ÞT

Thus, we finally obtain the lower bounds of the least square interval-valued
nucleolus for the interval-valued cooperative game �t0, i.e.,

x	nL ¼ ð0; 11:5625; 70:9375; 70:9375; 46:5625ÞT:

Likewise, according to Eq. (28), we can obtain the upper bounds of the least square
interval-valued prenucleolus of the interval-valued cooperative game �t0 as follows:

x	ER ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT:

Then, using Algorithm 2, we can obtain

x1R ¼ x	ER ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT:

Owing to the fact that all x1Ri (i 2 N 0) are nonnegative, we directly have

x	nR ¼ x1R ¼ ð19:5; 77; 180:75; 184:5; 138:25ÞT;

which is the upper bounds of the least square interval-valued nucleolus for the
interval-valued cooperative game �t0.

Therefore, we can obtain the least square interval-valued nucleolus of the
interval-valued cooperative game �t0 as follows:

�x	n ¼ ð½0; 19:5�; ½11:5625; 77�; ½70:9375; 180:75�; ½70:9375; 184:5�; ½46:5625; 138:25�ÞT;

which may be interpreted as follows: player 1 can obtain at least 0 and at most 19.5,
i.e., the interval ½0; 19:5�, which is almost greater than the interval �t0ð1Þ ¼ ½0; 0�
obtained by itself alone. Analogously, player 2 can obtain at least 11.5625 and at most
77, i.e., the interval ½11:5625; 77�, which is obviously greater than the interval �t0ð2Þ ¼
½0; 0� obtained by itself alone. Player 3 can obtain at least 70.9375 and at most 180.75,
i.e., the interval ½70:9375; 180:75�, which is remarkably greater than the interval
�t0ð3Þ ¼ ½0; 0� obtained by itself alone. The similar explanation can be done for players
4 and 5. In other words, the optimal allocations of all the five players i (i 2 N 0) satisfy
the individual rationality of interval-valued payoff vectors according to Eq. (3), which
is the Moore’s order relation over intervals [8].

Obviously, we have

X5
i¼1

x	nLi ¼ 0þ 11:5625þ 70:9375þ 70:9375þ 46:5625 ¼ 200
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and

X5
i¼1

x	nRi ¼ 19:5þ 77þ 180:75þ 184:5þ 138:25 ¼ 600:

Hence,

X5
i¼1

x	ni ¼ �t0ðN 0Þ;

which implies that the least square interval-valued nucleolus �x	n satisfies the efficiency
of interval-valued payoff vectors as expected.

7 Conclusions

We propose the quadratic programming model and algorithms for solving the least
square interval-valued nucleoli of interval-valued cooperative games and effectively
avoid the magnification of uncertainty resulted from the Moore’s interval subtraction.
The developed model and algorithms are simple and effective from the viewpoint of
computational complexity. In addition, it is easy to see that the least square
interval-valued prenucleoli and nucleoli of interval-valued cooperative games are
generalizations of the least square prenucleoli and nucleoli for classical cooperative
games.

However, only interval uncertainty is taken into consideration in coalition’s values
in this paper. In fact, uncertainty of coalition’s values may be described by other types
of data such as fuzzy numbers [17] and intuitionistic fuzzy numbers [18, 19]. There-
fore, cooperative games with coalition values expressed by fuzzy numbers and intu-
itionistic fuzzy numbers will be hot topics in further research. What is more, the
axiomatic characterizations of these types of cooperative games will also become hot
issues of research.
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Abstract. In this paper, an important solution concept of interval-
valued (IV) cooperative games with fuzzy coalitions, called the IV least
square prenucleolus, is proposed. Firstly, we determine the fuzzy coali-
tions’ values by using Choquet integral and hereby obtain the IV coop-
erative games with fuzzy coalitions in Choquet integral forms. Then, we
develop a simplified method to compute the IV least square prenucleolus
of a special subclass of IV cooperative games with fuzzy coalitions in
Choquet integral forms. In this method, we give some weaker coalition
size monotonicity-like conditions, which can always ensure that the least
square prenucleolus of our defined cooperative games with fuzzy coali-
tions in Choquet integral form are monotonic and non-decreasing func-
tions of fuzzy coalitions’ values. Hereby, the lower and upper bounds of
the proposed IV least square prenucleolus can be directly obtained via
utilizing the lower and upper bounds of the IV coalitions values, respec-
tively. In addition, we investigate some important properties of the IV
least square prenucleolus. The feasibility and applicability of the method
proposed in this paper are illustrated with numerical examples.

Keywords: Game theory · Interval-valued cooperative game · Fuzzy
game · Least square prenucleolus · Choquet integral

1 Introduction

The cooperative game with transferable utility (Driessen and Radzik 2002), often
called the cooperative game for short, is an important part of game theory. In
crisp (or classical) cooperative games, the coalitions’ values (or payoffs) of play-
ers are expressed with real numbers and the rates of the players’ participation
in a coalition are either 0 or 1, i.e., the players fully participate in the coali-
tion or do not participate in. However, in some real cases, due to complexity
and uncertainty we only can predict the ranges of the coalitions’ values rather
than obtain exact values. Hence, it is more suitable to use intervals to estimate
coalitions’ values and hereby there appear IV cooperative games which were first
introduced by Branzei et al. (2003). Furthermore, in order to reduce risk, players
c© Springer Nature Singapore Pte Ltd. 2017
D.-F. Li et al. (Eds.): GTA 2016, CCIS 758, pp. 303–317, 2017.
https://doi.org/10.1007/978-981-10-6753-2_22
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in some economic situations may choose to participate in a coalition to a certain
extent, i.e., partly participate in the coalition rather than fully participate in.
Therefore, following Zadeh (1965), Aubin defined cooperative games on fuzzy
subsets of the set of n players and hence extended crisp cooperative games to
cooperative games with fuzzy coalitions (Aubin 1980, 1981).

Recently, cooperative games with fuzzy coalitions have attracted much atten-
tion of researchers. Sakawa and Nishizaki (1994) proposed new lexicographical
solution concepts in a cooperative game with fuzzy coalitions. Tijs et al. (2004)
introduced the cores and stable sets of cooperative games with fuzzy coalitions.
Yu and Zhang (2009) defined the fuzzy core of fuzzy games and investigated
the nonempty condition of the fuzzy core. Butnariu (1980) explained the con-
cepts of core and Shapley value for n-persons cooperative games with fuzzy
coalitions. However, Tsurumi et al. (2001) pointed out that the class of the
cooperative games with fuzzy coalitions introduced by Butnariu (1980) lack
monotonicity and continuity. Hence, following Butnariu’s method, Tsurumi et al.
(2001) defined a new class of cooperative games with fuzzy coalitions via using
the concept of Choquet integrals, which overcame the aforementioned draw-
backs. What’s more, some researchers have also proposed other solutions, such
as Weber sets (Sagara 2015), Banzhaf value (Tan et. al. 2014), bargaining sets
(Liu and Liu 2012), and the least square B-nucleolus (Lin and Zhang 2016).
In addition, a fuzzy population monotonic allocation function (FPMAF) and a
Shapley function of cooperative games with fuzzy coalitions and fuzzy charac-
teristic functions are defined by Borkotokey (2008). Meng et al. (2016) studied
the IV Shapley value of IV cooperative games with fuzzy coalitions in Choquet
integral form based on the extended Hukuhara difference.

In recent years, solution concepts and their related properties of IV coop-
erative games have been discussed in many works. Branzei et al. (2010) gave
a survey about cooperative interval games. They overviewed and updated the
results about IV cooperative games and discussed various existing and potential
applications of IV cooperative games in economic management situations. By
defining a new order relation of intervals and using the Moore’s subtraction,
Han et al. (2012) studied the IV core and the IV Shapley-like value of IV coop-
erative games. Based on a partial subtraction operator, Palanci et al. (2015)
focused on the IV Shapley value and its properties and also introduced the IV
Banzhaf value and the IV egalitarian rule. Via discussing the IV square domi-
nance and IV dominance imputations, Alparslan Gök (2014) used the efficiency
property, symmetry property and strong monotonicity property to characterize
the IV Shapley value. Alparslan Gök et al. (2011) introduced some set-valued
solution concepts of IV cooperative games, such as the IV core, the IV domi-
nance core, and the IV stable sets. Hong and Li (2016) developed a nonlinear
programming approach to compute the IV cores of IV cooperative games. How-
ever, most of the aforementioned works except from Hong and Li (2016) used the
partial subtraction operator or the Moore’s interval subtraction (Moore 1979)
which is not invertible and usually enlarges uncertainty of the resulted interval.
Therefore, in this paper, we aim at solving the IV cooperative games with fuzzy
coalitions without using the interval subtraction.
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Ruiz et al. (1996) introduced the least square prenucleolus of a cooperative
game. Later on, Li and Ye (2016) investigated the IV least square prenucleolus
of a special subclass of IV cooperative games with crisp coalitions. The primary
goal of this paper is to study and develop an effective and a simplified approach
for IV cooperative games with fuzzy coalitions in Choquet integral forms. In
this approach, through adding some coalition size monotonicity-like conditions,
we proved that the least square prenucleolus of our defined cooperative game
with fuzzy coalition in Choquet integral form is a monotonic and non-decreasing
function of coalitions payoffs. Hereby, the lower and upper bounds of the IV least
square prenucleolus proposed in this paper can be attained through utilizing the
lower and upper bounds of the IV coalitions payoffs, respectively. Moreover, it
is pointed out that the derived IV least square prenucleolus possess some useful
and important properties as expected.

The rest of this paper is organized as follows. Section 2 briefly reviews some
basic concepts of intervals, IV cooperative games, cooperative games with fuzzy
coalitions, and IV cooperative games with fuzzy coalitions in Choquet integral
forms. In Sect. 3, we investigate the IV least square prenucleolus of a subclass of
IV cooperative games with fuzzy coalitions in Choquet integral forms. In Sect. 4,
some important properties of the IV least square prenucleolus are discussed.
Section 5 gives two examples to illustrate the proposed method. Conclusion is
made in Sect. 6.

2 Some Basic Concepts and Notations

2.1 Interval Arithmetic Operations and Interval-Valued
Cooperative Games

Consider an interval ā = [aL, aR] = {a |a ∈ R, aL ≤ a ≤ aR }, where R is the
set of real numbers. Then aL ∈ R and aR ∈ R are called the lower bound and
the upper bound of the interval ā, respectively. Let R̄ be the set of intervals on
the set R. Some interval arithmetic operations are given as follows (Moore 1979;
Li 2016):

Definition 1. Let ā = [aL, aR] and b̄ = [bL, bR] be two intervals on the set R̄.
The interval arithmetic operations are stipulated as follows:

(1) Equality of two intervals: ā = b̄ ⇔ aL = bL and aR = bR;
(2) Addition (or sum) of two intervals: ā + b̄ = [aL + bL, aR + bR];
(3) Scalar multiplication of a real number and an interval:

γā =

{
[γaL, γaR] if γ ≥ 0
[γaR, γaL] if γ < 0

,

where γ ∈ R is any real number.
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A n-person IV cooperative game ῡ is an ordered-pair < N, ῡ >, where
N = {1, 2, · · · , n} is the set of players and ῡ is the IV characteristic function of
players’ coalitions, and ῡ(∅) = [0, 0]. Generally, for any coalition S ⊆ N , ῡ(S)
is denoted by the interval ῡ(S) = [υL(S), υR(S)], where υL(S) ≤ υR(S). In the
sequent, a n-person IV cooperative game < N, ῡ > is simply called the IV coop-
erative game ῡ. The set of IV cooperative games is denoted by Ḡn. Obviously, if
υL(S) = υR(S) for any coalition S ⊆ N , then the IV cooperative game ῡ ∈ Ḡn

is reduced to a (crisp) cooperative game, denoted by υ ∈ Gn. Thus, IV coopera-
tive games may be regarded as a generalization of cooperative games. For any IV
cooperative games ῡ ∈ Ḡn and ν̄ ∈ Ḡn, according to the interval addition, ῡ + ν̄ is
defined as an IV cooperative game with the IV characteristic function ῡ+ ν̄, where

(ῡ + ν̄)(S) = ῡ(S) + ν̄(S),

for any coalition S ⊆ N , i.e.,

(ῡ + ν̄)(S) = [υL(S) + νL(S), υR(S) + νR(S)]. (1)

Usually, ῡ + ν̄ is called the sum of the IV cooperative games ῡ ∈ Ḡn and
ν̄ ∈ Ḡn.

For any IV cooperative game ῡ ∈ Ḡn, it is easy to see that each player
should receive an IV payoff from the cooperation due to the fact that each
coalition’s value is an interval. Let x̄i(ῡ) = [xLi(ῡ), xRi(ῡ)] be the IV payoff
which is allocated to the player i ∈ N under the cooperation that the grand
coalition is reached. Denote x̄(ῡ) = (x̄1(ῡ), x̄2(ῡ), · · · , x̄n(ῡ))T, which is the
vector of the IV payoffs for all n players in the grand coalition N . For any
IV cooperative game ῡ ∈ Ḡn, the efficiency of an IV payoff vector x̄(ῡ) =

(x̄1(ῡ), x̄2(ῡ), · · · , x̄n(ῡ))T can be expressed as
n∑

i=1

x̄i(ῡ) = ῡ(N).

2.2 Cooperative Games with Fuzzy Coalitions

Consider cooperative games with fuzzy coalitions, whose set of players is
N = {1, 2, · · · , n}. A fuzzy coalition is a fuzzy subset of N , which is defined
as a mapping from N to [0, 1]. Any fuzzy coalition S̃ can be represented by
S̃ = (S̃(1), S̃(2), · · · , S̃(n)), where S̃(i) ∈ [0, 1] is the membership degree of i in
S̃, i.e., the rate of participation of player i to the coalition S̃. Here, S̃(i) = 0
means that player i does not participate in coalition S̃, and S̃(i) = 1 indicates
that player i fully participate in coalition S̃. If all S̃(i) equal to either 0 or 1,
then fuzzy coalitions degenerate to crisp coalitions N . For any fuzzy coalition
S̃, we denote the level set by [S̃]h = {i ∈ N |S̃(i) ≥ h} for any h ∈ [0, 1], and
denote the support by Supp(S̃) = {i ∈ N |S̃(i) > 0}. For any fuzzy coalitions S̃
and S̃′ = (S̃′(1), S̃′(2), · · · , S̃′(n)), we stipulate as follow:

S̃ ∪ S̃′ = (max{S̃(i), S̃′(i)})1×n.

In the sequent, we write fuzzy coalition S̃∪ S̃′(i) for any i /∈ Supp(S̃) instead
of S̃ ∪ (0, · · · , 0, S̃′(i), 0, · · · , 0). Thus, for any i /∈ Supp(S̃), S̃ ∪ S̃′(i) means
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that player i participates in the newly formed fuzzy coalition S̃ ∪ S̃′(i) with
the participation rate max{S̃(i), S̃′(i)}. We denote by F (N) the set of all fuzzy
subsets of N , A cooperative game with fuzzy coalitions is a function υf : F (N) →
[0,+∞] and υf (∅) = 0.

2.3 Interval-Valued Cooperative Games with Fuzzy Coalitions
in Choquet Integral Form

In the following, we study interval-valued cooperative games with fuzzy coali-
tions. Following Tsurumi et al. (2001) and combining with Definition 1, the IV
cooperative game with fuzzy coalitions in Choquet integral form can be defined
as follow.

For any S̃ ∈ F (N), denote Q(S̃) = {S̃(i)|S̃(i) > 0, i ∈ N}, and let q(S̃) be
the number of Q(S̃). We write the elements of Q(S̃) in the increasing order as
h1 < h2 < · · · < hq(S̃). Then, ῡc is called as an IV cooperative game with fuzzy
coalitions in Choquet integral form if and only if the following holds:

ῡc(S̃) =
q(S̃)∑
l=1

ῡ([S̃]hl
) · (hl − hl−1)(S̃ ∈ F (N)), (2)

where h0 = 0, ῡ ∈ Ḡn. We denote by Ḡn
c the set of all IV cooperative games

with fuzzy coalitions in Choquet integral form.
Obviously, according to Definition 1, Eq. (2) can be written as follows:

ῡc(S̃) = [
q(S̃)∑
l=1

υL([S̃]hl
) · (hl − hl−1),

q(S̃)∑
l=1

υR([S̃]hl
) · (hl − hl−1)]

= [υcL(S̃), υcR(S̃)],

i.e.,

υcL(S̃) =
q(S̃)∑
l=1

υL([S̃]hl
) · (hl − hl−1), υcR(S̃) =

q(S̃)∑
l=1

υR([S̃]hl
) · (hl − hl−1) (3)

Thus, we can easily obtain the values of all fuzzy coalitions by Eq. (2). It
is obvious that there is a one-to-one correspondence between an IV cooperative
game ῡ ∈ Ḡn and an IV cooperative game ῡc ∈ Ḡn

c with fuzzy coalitions in
Choquet integral form.

3 Interval-Valued Least Square Prenucleolus

For an arbitrary cooperative game υ ∈ Gn stated as in the previous Sect. 2.1, its
least square prenucleolus can be defined as

x∗(υ) = (x∗
1(υ), x∗

2(υ), · · · x∗
n(υ))T,
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whose components are given as follows (Ruiz et al. 1996):

x∗
i (υ) =

υ(N)
n

+
n

∑
S:i∈S

υ(S) − ∑
j∈N

∑
S:j∈S

υ(S)

n2n−2
(i = 1, 2, · · · , n),

or equivalently,

x∗
i (υ) =

υ(N)
n

+

∑
S:i∈S

(n − s0)υ(S) − ∑
S:i/∈S

s0υ(S)

n2n−2
, (4)

where s0 denotes the cardinality of the coalition S.
For any IV cooperative game ῡc ∈ Ḡn

c with fuzzy coalitions in Choquet inte-
gral form, we can define an associated cooperative game υc(α) with fuzzy coali-
tions in Choquet integral form, where the set of players still is N = {1, 2, · · · , n}
and the characteristic function υc(α) is defined as follows:

υc(α)(S̃) = (1 − α)υcL(S̃) + αυcR(S̃)(S̃ ∈ F (N)), (5)

and υc(α)(∅) = 0.
According to Eq. (4), we can easily obtain the least square prenucleolus

x∗(υc(α)) = (x∗
1(υc(α)), x∗

2(υc(α)), · · · x∗
n(υc(α)))T of the cooperative game

υc(α) ∈ Gn
c with fuzzy coalitions in Choquet integral form, where

x∗
i (υc(α)) =

υc(α)(Ñ )
n

+

∑
S̃ :i∈Supp(S̃)

(n − s)υc(α)(S̃) − ∑
S̃ :i/∈Supp(S̃)

sυc(α)(S̃)

n2n−2

(i = 1, 2, · · · , n),

i.e.,

x
∗
i (υc(α)) =

(1 − α)υcL(Ñ ) + αυcR(Ñ )

n

+

∑

S̃:i∈Supp(S̃)
(n − s)[(1 − α)υcL(S̃) + αυcR(S̃)] − ∑

S̃:i/∈Supp(S̃)
s[(1 − α)υcL(S̃) + αυcR(S̃)]

n2n−2

(i = 1, 2, · · · , n),

(6)

where s denotes the cardinality of Supp(S̃). Obviously, x∗
i (υc(α))(i = 1, 2, · · · , n)

is a continuous function of the parameter α ∈ [0, 1].

Theorem 1. For any IV cooperative game ῡc ∈ Ḡn
c with fuzzy coalitions in

Choquet integral form, if the following system of inequalities

υcR(Ñ) − υcL(Ñ)

≥

∑

S̃ :i/∈Supp(S̃)

s(υcR(S̃) − υcL(S̃)) − ∑

S̃ :i∈Supp(S̃)

(n − s)(υcR(S̃) − υcL(S̃))

2n−2

(i = 1, 2, · · · , n)

(7)
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is satisfied, then the least square prenucleolus x∗
i (υc(α))(i = 1, 2, · · · , n) of

the cooperative game υc(α) with fuzzy coalitions in Choquet integral form is a
monotonic and non-decreasing function of the parameter α ∈ [0, 1].

Proof. For any α ∈ [0, 1] and α′ ∈ [0, 1], according to Eq. (6), we have

x
∗
i (υc(α)) − x

∗
i (υc(α

′
)) =

(α − α′)(υcR(Ñ ) − υcL(Ñ ))

n

+

∑

S̃:i∈Supp(S̃)
(n − s)[(α − α′)(υcR(S̃) − υcL(S̃)] − ∑

S̃:i/∈Supp(S̃)
s[(α − α′)(υcR(S̃) − υcL(S̃))]

n2n−2

=
(α − α′)

n
[(υcR(Ñ ) − υcL(Ñ ))

+

∑

S̃:i∈Supp(S̃)
(n − s)(υcR(S̃) − υcL(S̃)) − ∑

S̃:i/∈Supp(S̃)
s(υcR(S̃) − υcL(S̃))

2n−2
],

where i = 1, 2, · · · , n.
If α ≥ α′, then combining with Eq. (7), we have

x∗
i (υc(α)) − x∗

i (υc(α′)) ≥ 0,

i.e., x∗
i (υc(α)) ≥ x∗

i (υc(α′)) (i = 1, 2, · · · , n), which mean that the least
square prenucleolus x∗

i (υc(α))(i = 1, 2, · · · , n) are monotonic and non-decreasing
functions of the parameter α ∈ [0, 1]. Thus, we have completed the proof of
Theorem 1.

We call Eq. (7) as a size monotonicity-like condition. For any IV cooperative
game ῡc ∈ Ḡn

c with fuzzy coalitions in Choquet integral form, if it satisfies
Eq. (7), then it is directly derived from Theorem 1 and Eq. (6) that the lower
and upper bounds of x̄∗

i (ῡc)(i = 1, 2, · · · , n) are given as follows:

x
∗
Li (ῡc) = x

∗
i (υc(0)) =

υcL(Ñ)

n
+

∑

S̃:i∈Supp(S̃)
(n − s)υcL(S̃) − ∑

S̃:i/∈Supp(S̃)
sυcL(S̃)

n2n−2
(i = 1, 2, · · · , n),

and

x∗
Ri(ῡc) = x∗

i (υc(1))

=
υcR(Ñ)

n
+

∑
S̃:i∈Supp(S̃)

(n − s)υcR(S̃) − ∑
S̃:i/∈Supp(S̃)

sυcR(S̃)

n2n−2

(i = 1, 2, · · · , n).

Thus, x̄∗
i (ῡc) of the players i(i = 1, 2, · · · , n) in the IV cooperative game

ῡc ∈ Ḡn
c with fuzzy coalitions in Choquet integral form are directly and explicitly

expressed as follows:

x̄∗
i (ῡ) = [

υcL(Ñ)
n

+

∑
S̃:i∈Supp(S̃)

(n − s)υcL(S̃) − ∑
S̃:i/∈Supp(S̃)

sυcL(S̃)

n2n−2
,
υcR(Ñ)

n

+

∑
S̃:i∈Supp(S̃)

(n − s)υcR(S̃) − ∑
S̃:i/∈Supp(S̃)

sυcR(S̃)

n2n−2
],
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or equivalently,

x̄∗
i (ῡc) = [

υcL(Ñ)

n
+

n
∑

S̃ :i∈Supp(S̃)

υcL(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcL(S̃)

n2n−2
,
υcR(Ñ)

n

+

n
∑

S̃ :i∈Supp(S̃)

υcR(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcR(S̃)

n2n−2
].

(8)

4 Some Properties of the Interval-Valued Least Square
Prenucleolus

Players i ∈ N and k ∈ N (i �= k) are said to be symmetric in the IV cooperative
game ῡc ∈ Ḡn

c with fuzzy coalitions in Choquet integral form, if ῡc(S̃ ∪ S̃′(i)) =
ῡc(S̃ ∪ S̃′(k)) for any fuzzy coalition S̃ ∈ F (N) with i, k /∈ Supp(S̃).

Let P be an arbitrary permutation of the set N . The permutation P has
associated with a substitution σ which is a one-to-one function, i.e., σ : N → N
such that for i ∈ N , then σ(i) ∈ N is the corresponding element, which is
changed in the permutation. For an IV cooperative game ῡc ∈ Ḡn

c with fuzzy
coalitions in Choquet integral form, we define an IV cooperative game ῡσ

c ∈ Ḡn
c

with fuzzy coalitions in Choquet integral form and its IV characteristic function
is ῡσ, where ῡσ

c (S̃) = ῡc(σ−1(S̃)) for any fuzzy coalition S̃ ∈ F (N).
In the sequent, a theorem is given to describe some properties of the IV least

square prenucleolus of IV cooperative game ῡc ∈ Ḡn
c with fuzzy coalitions in

Choquet integral form which satisfies Eq. (7).

Theorem 2. For an arbitrary IV cooperative game ῡc ∈ Ḡn
c with fuzzy coalitions

in Choquet integral form, if ῡc satisfies Eq. (7), then there always exists a unique
IV least square prenucleolus x̄∗(ῡc) determined by Eq. (8), which satisfies the
following properties:

(1) Efficiency:
∑

i∈Supp(Ñ)

x̄∗
i (ῡc) = ῡc(Ñ),

(2) Additivity: x̄∗
i (ῡc + ν̄c) = x̄∗

i (ῡc) + x̄∗
i (ν̄c)(i = 1, 2, · · · , n) for any IV coop-

erative game ῡc ∈ Ḡn
c with fuzzy coalitions in Choquet integral form which

satisfies Eq. (7),
(3) Symmetry: x̄∗

i (ῡc) = x̄∗
k(ῡc) for any symmetric players i ∈ N and k ∈

N (i �= k),
(4) Anonymity: x̄∗

σ(i)(ῡ
σ
c ) = x̄∗

i (ῡc)(i = 1, 2, · · · , n) for any substitution σ on the
set N .

Proof. According to Eq. (8) and Definition 1, there always exists a unique IV
least square prenucleolus x̄∗(ῡc), which is determined by Eq. (8).
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(1) According to Eq. (8), and combining with Definition 1, we have

∑

i∈Supp(Ñ)

x̄
∗
Li (ῡc) =

∑

i∈Supp(Ñ)

[
υcL(Ñ)

n
+

n
∑

S̃:i∈Supp(S̃)
υcL(S̃) − ∑

j∈Supp(Ñ)

∑

S̃:j∈Supp(S̃)
υcL(S̃)

n2n−2
]

= υcL(Ñ) +

n
∑

i∈Supp(Ñ)

∑

S̃:i∈Supp(S̃)
υcL(S̃) − n

∑

j∈Supp(Ñ)

∑

S̃:j∈Supp(S̃)
υcL(S̃)

n2n−2

= υcL(Ñ),

i.e.,
∑

i∈Supp(Ñ)

x̄∗
Li(ῡc) = υcL(Ñ).

Similarly, it can be easily proven that
∑

i∈Supp(Ñ)

x̄∗
Ri(ῡc) = υcR(Ñ), Combining

with the aforementioned conclusion, according to the case (1) of Definition 1, we
obtain

∑
i∈Supp(Ñ)

x̄∗
i (ῡc) = ῡc(Ñ).

Therefore we have proved the efficiency.
(2) According to Eqs. (1) and (8), we have

x
∗
Li(ῡc + ν̄c) =

υcL(Ñ) + νcL(Ñ)

n

+

n
∑

S̃:i∈Supp(S̃)

(υcL(S̃) + νcL(S̃)) − ∑

j∈Supp(Ñ)

∑

S̃:j∈Supp(S̃)

(υcL(S̃) + νcL(S̃))

n2n−2

= (
υcL(S̃)

n
+

n
∑

S̃:i∈Supp(S̃)

υcL(S̃) − ∑

j∈Supp(Ñ)

∑

S̃:j∈Supp(S̃)

υcL(S̃)

n2n−2
)

+ (
νcL(Ñ)

n
+

n
∑

S̃:i∈Supp(S̃)

νcL(S̃) − ∑

j∈Supp(Ñ)

∑

S̃:j∈Supp(S̃)

νcL(S̃)

n2n−2
)

= x
∗
Li(ῡc) + x

∗
Li(ν̄c),

i.e., x∗
Li(ῡc + ν̄c) = x∗

Li(ῡc) + x∗
Li(ν̄c)(i = 1, 2, · · · , n).

Analogously, we can easily prove that x∗
Ri(ῡc+ν̄c) = x∗

Ri(ῡc)+x∗
Ri(ν̄c). Hence,

we obtain
x̄∗

i (ῡc + ν̄c) = x̄∗
i (ῡc) + x̄∗

i (ν̄c), (i = 1, 2, · · · , n).

Thus we have proved the additivity.
(3) As the assumption that the players i ∈ N and k ∈ N (i �= k) are

symmetric in the IV cooperative game ῡc ∈ Ḡn
c with fuzzy coalitions in Choquet

integral form, then we know that for any fuzzy coalition S̃ ∈ F (N) with i, k /∈
Supp(S̃), we have

ῡc(S̃ ∪ S̃′(i)) = ῡc(S̃ ∪ S̃′(k)).

Namely, υcL(S̃∪ S̃′(i)) = υcL(S̃∪ S̃′(k)) and υcR(S̃∪ S̃′(i)) = υcR(S̃∪ S̃′(k)).
Hence, we have

∑
S̃:i∈Supp(S̃)

υcL(S̃) =
∑

S̃:k∈Supp(S̃)

υcL(S̃),
∑

S̃:i∈Supp(S̃)

υcR(S̃) =
∑

S̃:k∈Supp(S̃)

υcR(S̃).
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According to Eq. (8), we can easily obtain that

x̄∗
i (ῡc) = [

υcL(Ñ )

n
+

n
∑

S̃ :i∈Supp(S̃)

υcL(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcL(S̃)

n2n−2
,
υcR(Ñ )

n

+

n
∑

S̃ :i∈Supp(S̃)

υcR(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcR(S̃)

n2n−2
]

= [
υcL(Ñ )

n
+

n
∑

S̃ :k∈Supp(S̃)

υcL(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcL(S̃)

n2n−2
,
υcR(Ñ )

n

+

n
∑

S̃ :k∈Supp(S̃)

υcR(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcR(S̃)

n2n−2
]

= x̄∗
k (ῡc),

i.e., x̄∗
i (ῡc) = x̄∗

k(ῡc). Thus we have proved the symmetry.
(4) According to Eq. (8) and combining with ῡσ

c (S̃)=ῡc(σ−1(S̃)), we can
obtain that

x̄∗
σ(i)(ῡ

σ
c ) = [

υσ
cL(Ñ)

n
+

n
∑

S̃ :σ(i)∈Supp(S̃)

υσ
cL(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υσ
cL(S̃)

n2n−2
,
υσ

cR(Ñ)

n

+

n
∑

S̃ :σ(i)∈Supp(S̃)

υσ
cR(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υσ
cR(S̃)

n2n−2
]

= [
υcL(Ñ)

n
+

n
∑

S̃ :i∈Supp(S̃)

υcL(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcL(S̃)

n2n−2
,
υcR(Ñ)

n

+

n
∑

S̃ :i∈Supp(S̃)

υcR(S̃) − ∑

j∈Supp(Ñ )

∑

S̃ :j∈Supp(S̃)

υcR(S̃)

n2n−2
]

= x̄∗
i (ῡc),

i.e., x̄∗
σ(i)(ῡ

σ
c ) = x̄∗

i (ῡc)(i = 1, 2, · · · , n).
Therefore, we have proved the Theorem 2.

In particular, for any fuzzy coalition S̃ = (S̃(1), S̃(2), · · · , S̃(n)), a new fuzzy
coalition is defined as S̃

′′
= (S̃′′(1), S̃′′(2), · · · , S̃′′(n)), whose components are

given as

S̃′′(i)=
{

1, if 0 < S̃(i) ≤ 1
0, if S̃(i) = 0

,

where i = 1, 2, · · · , n.
Therefore S̃

′′
degenerates to the crisp coalition S ⊆ N , we regard the coali-

tion S as the associated crisp coalition of fuzzy coalition S̃
′′
. And we have

Q(S̃
′′
) = {1}, q(S̃′′) = 1, h1 = 1, h0 = 0.
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According to Eq. (3), we get

υcL(S̃
′′
) =

q(S̃′′)∑
l=1

υL([S̃
′′
]hl

) · (hl − hl−1) = υL(S), υcR(S̃
′′
)

=
q(S̃

′′
)∑

l=1

υR([S̃′′]hl
) · (hl − hl−1) = υR(S).

So Eq. (8) can be rewritten as

x̄∗
i (ῡc) = [

υL(N)
n

+
n

∑
S:i∈S

υL(S) − ∑
j∈N

∑
S:j∈S

υL(S)

n2n−2
,
υR(N)

n

+
n

∑
S:i∈S

υR(S) − ∑
j∈N

∑
S:j∈S

υR(S)

n2n−2
] (9)

Furthermore, if the interval-valued payoffs ῡ(S) = [υL(S), υR(S)] degenerate
to crisp payoffs, i.e., υL(S) = υR(S) = υ(S), then, Eq. (9) simply becomes

x̄∗
i (ῡc) =

υ(N)
n

+
n

∑
S:i∈S

υ(S) − ∑
j∈N

∑
S:j∈S

υ(S)

n2n−2
.

Namely, if a coalition size monotonicity-like IV cooperative game with fuzzy
coalitions in Choquet integral form degenerates to the associated IV coopera-
tive game with crisp coalitions, then Eq. (8) degenerates to the IV least square
prenucleolus introduced by Li and Ye (2016), and if interval values further degen-
erate to crisp values, then we obtain the least square prenucleolus introduced by
Ruiz et al. (1996) as we expect.

5 Two Numerical Examples

Example 1. Suppose that there exist three companies (i.e., players) 1, 2, and 3,
they plan to work together to complete a project. Due to the incomplete and
uncertain information, they can only estimate the ranges of their profits (or
gains) rather than precisely forecast their profits. Suppose that if the companies
work independently, then their gains are expressed as

ῡ0(1) = [0, 2], ῡ0(2) = [1, 2.5], ῡ0(3) = [1.5, 2.5].

If any two companies cooperatively complete the project, then their gains
are

ῡ0(1, 2) = [3, 5], ῡ0(1, 3) = [2.5, 6], ῡ0(2, 3) = [5, 8].

If three companies work together, then the gain is ῡ0(N ′) = [7.5, 10], and
ῡ0(∅) = 0, where N ′={1, 2, 3}. However, in order to reduce or avoid risk, three
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companies are unwilling to put all their resources into one project, they may
choose to provide partial resources. Suppose that each player has 100 units of
resources, if player 1 supplies 30 units resources to the cooperation, then we
regard the rate of participation of player 1 as 0.3=30/100. Consider a fuzzy
coalition S̃

′
, where S̃′(1) = 0.3, S̃′(2) = 0.4, S̃′(3) = 0.5. Hence, the problem can

be regarded as a three-person IV cooperative game with fuzzy coalitions. Now
compute the IV least square prenucleolus of the IV cooperative game ῡ0

c ∈ Ḡ3
c

with fuzzy coalitions in Choquet integral form.
Using the above values of the crisp coalitions, and according to Eq. (2), the

values of the fuzzy coalitions are

ῡ
0
c(0.3, 0, 0) = [0, 0.6], ῡ

0
c(0, 0.4, 0) = [0.4, 1], ῡ

0
c(0, 0, 0.5) = [0.75, 1.25], ῡ

0
c(0.3, 0.4, 0) = [1, 1.75],

ῡ
0
c(0.3, 0, 0.5) = [1.05, 2.3], ῡ

0
c(0, 0.4, 0.5) = [2.15, 3.45], ῡ

0
c(0.3, 0.4, 0.5) = [2.9, 4.05].

Obviously, the IV cooperative game ῡ0
c ∈ Ḡ3

c with fuzzy coalitions in Choquet
integral form satisfies Eq. (7). Thus, according to Eq. (8), we have

x̄∗
1 (ῡ

0
c ) = [

υ0
cL(Ñ

′
)

3
+

∑

S̃
′
:1∈Supp(S̃′)

(3 − s)υ0
cL(S̃

′
) − ∑

S̃
′
:1/∈Supp(S̃′)

sυ0
cL(S̃′)

3 × 23−2
,
υ0

cR(Ñ
′
)

3

+

∑

S̃′:1∈Supp(S̃′)
(3 − s)υ0

cR(S̃′) − ∑

S̃′:1/∈Supp(S̃′)
sυ0

cR(S̃′)

3 × 23−2
]

= [
2.9

3
+
(0 + 1 + 1.05) − (0.4 + 0.75 + 4.3)

6
,
4.05

3

+
(1.2 + 1.75 + 2.3) − (1 + 1.25 + 6.9)

6
] = [0.4,0.7],

x̄∗
2 (ῡ

0
c ) = [

υ0
cL(Ñ′)

3
+

∑

S̃
′
:2∈Supp(S̃

′
)

(3 − s)υ0
cL(S̃′) − ∑

S̃′:2/∈Supp(S̃
′
)

sυ0
cL(S̃

′
)

3 × 23−2
,
υ0

cR(Ñ′)
3

+

∑

S̃′:2∈Supp(S̃′)
(3 − s)υ0

cR(S̃′) − ∑

S̃′:2/∈Supp(S̃′)
sυ0

cR(S̃
′
)

3 × 23−2
]

= [
2.9

3
+
(0.8 + 1 + 2.15) − (0 + 0.75 + 2.1)

6
,
4.05

3

+
(2 + 1.75 + 3.45) − (0.6 + 1.25 + 4.6)

6
] = [1.15, 1.475],

and

x̄∗
3 (ῡ

0
c ) = [

υ0
cL(Ñ′)

3
+

∑

S̃′:3∈Supp(S̃′)
(3 − s)υ0

cL(S̃′) − ∑

S̃′:3/∈Supp(S̃′)
sυ0

cL(S̃′)

3 × 23−2
,
υ0

cR(Ñ′)
3

+

∑

S̃′:3∈Supp(S̃′)
(3 − s)υ0

cR(S̃′) − ∑

S̃′:3/∈Supp(S̃′)
sυ0

cR(S̃′)

3 × 23−2
]

= [
2.9

3
+
(1.5 + 1.05 + 2.15) − (0 + 0.4 + 2)

6
,
4.05

3

+
(2.5 + 2.3 + 3.45) − (0.6 + 1 + 3.5)

6
]= [1.35, 1.875].
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Hence, we obtain the IV least square prenucleolus of the IV cooperative game
with fuzzy coalitions in Choquet integral form as follows:

x̄∗(ῡ0
c ) = ([0.4, 0.7], [1.15, 1.475], [1.35, 1.875])T.

However, if we using the Moore’s interval subtraction (Moore 1979), i.e.,
ā − b̄ = [aL − bR, aR − bL], then we have

x̄∗M
1 (ῡ0

c ) =
ῡ0

c (Ñ
′)

3
+

∑

S̃′:1∈Supp(S̃′)
(3 − s)ῡ0

c (S̃
′) − ∑

S̃′:1/∈Supp(S̃′)
sῡ0

c (S̃
′)

3 × 23−2
=

[2.9, 4.05]

3

+
(2 × [0, 0.6] + [1, 1.75] + [1.05, 2.3]) − ([0.4, 1] + [0.75, 1.25] + 2 × [2.15, 3.45])

6

=
[2.9, 4.05]

3
+

[2.05, 5.25] − [5.45, 9.15]

6
= [−0.217, 1.317].

Obviously, the above result is irrational due to the lower bound −0.217 < 0
from the realistic meaning of the profit.

Example 2. The economic situation is stated as in Example 1. We construct a
new IV cooperative game ῡ′′ ∈ Ḡ2, where the set of players N ′′ = {1, 2}. Suppose
that

ῡ′′(1) = [0.3, 1], ῡ′′(2) = [2, 5], ῡ′′(1, 2) = [5.5, 6], S′′(1) = 0.3, S′′(2) = 0.4.

Let us discuss the IV least square prenucleolus of the IV cooperative game ῡ′′
c ∈

Ḡ2
c with fuzzy coalitions in Choquet integral form.

According to Eq. (2), we have

ῡ′′
c (0.3, 0) = [0.09, 0.3], ῡ′′

c (0, 0.4) = [0.8, 2], ῡ′′
c (0.3, 0.4) = [1.85, 2.3].

Therefore, we obtain

ῡ′′
cR(0.3, 0.4) − ῡ′′

cL(0.3, 0.4) = 2.3 − 1.85 = 0.45.

Hereby, we have

υ
′′
cR(Ñ

′′
) − υ

′′
cL(Ñ

′′
)

<

∑

S̃′′:1/∈Supp(S̃′′)
s(υcR(S̃′′) − υcL(S̃′′)) − ∑

S̃′′:1∈Supp(S̃′′)
(n − s)(υcR(S̃′′) − υcL(S̃′′))

2

= 0.495,

i.e., the IV cooperative game ῡ′′
c ∈ Ḡ2

c with fuzzy coalitions in Choquet integral
form does not satisfy Eq. (7). But, if Eq. (8) is used, then we can obtain
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x̄∗
1 (ῡ

′′
c ) = [

υ′′
cL(Ñ

′′
)

2

+

∑

S̃′′:1∈Supp(S̃′′)
(2 − s)υ′′

cL(S̃′′) − ∑

S̃′′:1/∈Supp(S̃′′)
sυ′′

cL(S̃′′)

2 × 22−2
,
υ′′

cR(Ñ′′)
2

+

∑

S̃′′:1∈Supp(S̃′′)
(2 − s)υ′′

cR(S̃′′) − ∑

S̃′′:1/∈Supp(S̃′′)
sυ′′

cR(S̃′′)

2 × 22−2
]

= [
1.85

2
+
0.09 − 0.8

2
,
2.3

2
+
0.3 − 2

2
]= [0.57, 0.3].

Clearly, the above result is irrational due to 0.57 > 0.3 from the notation of
intervals. That is to say, if Eq. (7) is not satisfied, then the IV least square
prenucleolus of the IV cooperative game with fuzzy coalitions in Choquet integral
form given by Eq. (8) is not always reasonable and correct.

6 Conclusions

The least square prenucleolus is one of the important solution concepts of coop-
erative game. In this paper, we use Choquet integral to establish the IV fuzzy
characteristic function. The main contribution of this paper is that we develop a
simplified method to compute the IV least square prenucleolus for the class of IV
cooperative games with fuzzy coalitions in Choquet integral forms which satisfy
Eq. (7) and obtain their simplified expressions. Unlike much existing research, the
method proposed in this paper uses the monotonicity rather than the Moore’s
interval subtraction or interval comparison. Hence, it can overcome the draw-
backs of them. What’s more, we give some important properties of the IV least
square prenucleolus introduced in this paper. Finally, the method may make
contribution to the theoretical investigation of IV cooperative games with fuzzy
coalitions. In the future, we will study other solution concepts of the cooperative
games under uncertain situations, such as cooperative games with interval-valued
coalitions and fuzzy payoffs.
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Abstract. The purpose of this paper is to develop a quadratic programming
method for solving interval-valued cooperative games with fuzzy coalitions. In
this method, the interval-valued cooperative games with fuzzy coalitions are
converted into the interval-valued cooperative games (with crisp coalitions) by
using the Choquet integral. Two auxiliary quadratic programming models for
solving the interval-valued cooperative games are constructed by using the least
square method and distance between intervals. The proposed models and
method are validated and compared with other similar methods. A numerical
example is examined to demonstrate the validity, superiority and applicability of
the method proposed in this paper.

Keywords and phrases: Cooperative game � Quadratic programming �
Dissatisfaction function � Lagrange multiplier method � Choquet integral �
Fuzzy coalition

1 Introduction

As competition and cooperation is becoming an important problem in management
with economy globalization and integration, cooperative games have become an active
research field in management science and operational research. According to players’
knowledge about payoff values and participation levels in coalitions, cooperative
games are divided into two categories: classical cooperative games and fuzzy coop-
erative games. In classical cooperative games, the players either fully participate in a
specific coalition or fully opt out of it, which means that the participation rate of each
player in a coalition is either 1 or 0. Besides, the payoff value of each coalition is
expressed as a real number. However, in most real-world situations, the above
assumption does not hold. Because of limited resource, ability, and the tolerant level of
risk and complexity of decision making environment, players may not supply all units
of resource to the formed coalition and coalitional values are not always expressed as
real numbers. In this case, players can partially participate in a specific coalition (i.e.,
the participation rate of players in a coalition is between 0 and 1) and the coalitional
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values can be expressed as intervals, fuzzy numbers and linguistic variables. Such a
cooperative game is called a fuzzy cooperative game.

Fuzzy cooperative games may be roughly divided into three categories: cooperative
games with fuzzy coalitions, cooperative games with fuzzy payoff values and cooper-
ative games with fuzzy coalitions and fuzzy payoff values (i.e., fuzzy cooperative games
with fuzzy coalitions). The fuzzy cooperative games started with the work of Aubin [1]
where the notions of a fuzzy cooperative game and the core of a fuzzy cooperative game
were introduced. In the meantime, many solution concepts have been developed [4, 5,
10, 13, 17]. In order to incorporate fuzziness (uncertainty) in the degree of players’
participation in a coalition, Butnariu [4] defined a Shapley function that maps a fuzzy
cooperative game to the Shapley value from a fuzzy coalition. He furnished explicit
forms of the Shapley function for a limited class of fuzzy cooperative games. However,
it was later established by Tsurumi et al. [17] that most of the fuzzy cooperative games
considered by Butnariu [4] are neither monotonically non-decreasing nor continuous
with regard to the participation rate of the players in a coalition. Tsurumi et al. [17]
conducted a study of the Shapley values for cooperative games with fuzzy coalitions,
which incorporate players’ rates of participation in each coalition and proposed a new
class of fuzzy cooperative games using the concept of Choquet integrals. Borkotokey [2]
proposed an extension of a fuzzy cooperative game with fuzzy coalitions and obtained
some interesting properties. A Shapley function in the fuzzy sense was proposed as a
solution concept for a class of fuzzy cooperative games. Mallozzi et al. [11] studied a
core-like concept (called F-core) for cooperative games in which the worth of any
coalition is given as a fuzzy interval, introduced a balancing condition and proved that
the condition was necessary but not sufficient to guarantee the F-core to be non-empty.
Tijs et al. [16] introduced cores and stable sets for cooperative games with fuzzy
coalitions and studied relations between cores and stable sets of fuzzy cooperative
games. Yu et al. [18] proposed a generalized form of fuzzy cooperative games that may
be seen as an extension of the fuzzy cooperative game and gave an explicit form of the
Shapley value for a new class of fuzzy cooperative games based on the Hukuhara
difference [9] and the Choquet integral.

However, as far as we know, there is no investigation on how to solve interval-valued
cooperative games with fuzzy coalitions. In other words, there is no specific and effective
method for determining payoffs of players in interval-valued cooperative games with
fuzzy coalitions. In this paper, by using the Choquet integral, the least square method, and
the concepts of dissatisfaction functions and distance between intervals, we focus on
developing a simple and an effective method for solving interval-valued cooperative
games with fuzzy coalitions. The method proposed in this paper is remarkably different
from other methods in that the former can provide analytical formulae for determining the
interval-valued payoffs of all players.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce dis-
tances between two intervals and the concept of the Choquet integral. In Sect. 3, we
introduce interval-valued solution concepts of interval-valued cooperative games with
fuzzy coalitions and define a dissatisfaction function to measure differences between
payoffs and values of coalitions. Two quadratic programming models are constructed to
compute the interval-valued solution for any interval-valued cooperative game. We
subsequently present an algorithm and process of solving the interval-valued cooperative
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games with fuzzy coalitions. In Sect. 4, a simple numerical example about optimal
allocation of players in a fuzzy coalition is used to illustrate the validity and applicability
of the proposed method. Further discussions on fuzzy cooperative games with fuzzy
coalitions and conclusions are given in Sect. 5.

2 Distances Between Intervals and the Choquet Integral

Denote �a ¼ aL; aR½ � ¼ xjx 2 R; aL � x� aRf g, which is called an interval, where R is
the set of real numbers and aL 2 R, aR 2 R. Obviously, if aL ¼ aR, then the interval
�a ¼ ½aL; aR� degenerates to a real number, denoted by a, where a ¼ aL ¼ aR. There-
fore, intervals are a generalization of real numbers and real numbers are a special case
of intervals.

In the following, we give some operations of intervals such as the equality, addition
and the scale multiplication as follows [8, 10, 14].

Definition 1. Let �a ¼ ½aL; aR� and �b ¼ ½bL; bR� be two intervals on IðRÞ and a 2 R be
any real number. (1) Equality of two intervals: �a ¼ �b if and only if aL ¼ bL and
aR ¼ bR; (2) Addition (or sum) of two intervals: �aþ �b ¼ ½aL þ bL; aR þ bR�; (3) Scale
multiplication: if a� 0, then a�a ¼ ½aaL; aaR�, otherwise, i.e., if a\0, then
a�a ¼ ½aaR; aaL�.

The concept of distance is introduced to measure differences between intervals.

Definition 2. Let �a, �b, and �c be three intervals on the set IðRÞ. If a mapping d :

IðRÞ � IðRÞ 7!R satisfies the following four properties: (1) dð�a; �bÞ� 0,
(2) dð�a; �bÞ ¼ dð�b; �aÞ, (3) dð�a; �bÞ� dð�a;�cÞþ dð�c; �bÞ, (4) dð�a; �aÞ ¼ 0, then dð�a; �bÞ is
called the distance between the intervals �a and �b.

In order to elaborate the quadratic programming models for interval-valued
cooperative games based on the least square method, we define (the square of) the
distance between the intervals �a and �b as follows:

Dð�a; �bÞ ¼ ðaL � bLÞ2 þðaR � bRÞ2 ð1Þ

It is easy to validate that Dð�a; �bÞ defined by Eq. (1) satisfies the four properties
(1)–(4) in Definition 2. Namely, Dð�a; �bÞ defined by Eq. (1) is the distance between the
intervals �a and �b.

Note that the square appears in Eq. (1), which is also the distance between two
intervals. In the following, the distance between two intervals is referred to as the
square of the distance given by Eq. (1) unless otherwise stated.

3 Interval-Valued Cooperative Games with Fuzzy Coalitions

The set of players is denoted by N ¼ f1; 2; � � � ; ng, which is called the grand coalition.
�rðS0Þ is the interval-valued characteristic function of any (crisp) coalition S0�N,
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denoted by �rðS0Þ ¼ ½rLðS0Þ; rRðS0Þ�, where rLðS0Þ � rRðS0 Þ. Any fuzzy coalition �S is
expressed as �S ¼ ð�Sð1Þ; �Sð2Þ; � � � ; �SðnÞÞ, where �SðiÞ is the participation rate of the
player i 2 N in the fuzzy coalition �S. Obviously, if the participation rates of all players
are either 0 or 1, then the fuzzy coalition �S is degenerated to a crisp coalition.
Therefore, the fuzzy coalition is a generalization of the crisp coalition and crisp
coalitions can be regarded as a special case of fuzzy coalitions. All fuzzy coalitions are
denoted by the set Lf ðNÞ: The triple ð�r;N; Lf ðNÞÞ is the interval-valued cooperative
games with fuzzy coalitions.

3.1 Transformation of Interval-Valued Cooperative Games with Fuzzy
Coalitions

In this section, we introduce the concept of the Choquet integral and the transformation
of interval-valued cooperative games with fuzzy coalitions.

Definition 3. Letm be the capacity on X for any non-negative real function f : X ! Rþ .
The Choquet integral of f with respect to m is defined as follows [6, 7, 12, 15]:

Z
fdm ¼

Z 1

0
mðFaÞda ð2Þ

where Fa ¼ fx f ðxÞ� aj g is called an a-cut of f , and a 2 ½0;1Þ.
For the finite set X ¼ fx1; x2; � � � ; xng, the function f can be expressed as

ff ðx1Þ; f ðx2Þ; � � � ; f ðxnÞg. We write f ðxiÞ ði ¼ 1; 2; � � � ; nÞ in a monotonically
non-decreasing order as f x	1

� �� f x	2
� �� � � � � f x	n

� �
. According to the same mono-

tonically non-decreasing order, the element set fx1; x2; � � � ; xng can be rewritten as
fx	1; x	2; � � � ; x	ng. Then, Eq. (2) is reduced to the following discrete form:

Z
fdm ¼

Xn
i¼1

ðf ðx	i Þ � f ðx	i�1ÞÞmðAiÞ ð3Þ

where f ðx	0Þ ¼ 0 and Ai ¼ fx	i ; x	iþ 1; � � � ; x	ng (i ¼ 1; 2; � � � ; n).
Given any fuzzy coalition �S 2 Lf ðNÞ, let Qð�SÞ ¼ �SðiÞ �SðiÞ[ 0; i 2 Njf g and qð�SÞ ¼

Qð�SÞj j be the cardinality of Qð�SÞ. �SðiÞ 2 ½0; 1� expresses the participation rate of the
player i 2 N to a particular coalition �S. We write the elements of Qð�SÞ in a mono-
tonically non-decreasing order as 0\h1\h2\ � � �\hqð�SÞ. For any fuzzy coalition
�S 2 Lf ðNÞ, we have h0 ¼ 0 and ½�S�hl ¼ i �SðiÞj � hl; i 2 Nf g. Thus, ½�S�hl is a crisp
coalition and defined as the coalition of players whose participation rates are no smaller
than hl.

For any fuzzy coalition �S, let S ¼ i �SðiÞ[ 0; i 2 Njf g. Thus, S is the crisp coalition
related to the fuzzy coalition �S. Then, using Eq. (3) and Definition 1, we can obtain
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�tðSÞ ¼
Xqð�SÞ
l¼1

�rð½�S�hlÞðhl � hl�1Þ

¼
Xqð�SÞ
l¼1

½rLð½�S�hlÞ; rRð½�S�hlÞ�ðhl � hl�1Þ

¼
Xqð�SÞ
l¼1

½rLð½�S�hlÞðhl � hl�1Þ;rRð½�S�hlÞðhl � hl�1Þ�

¼ ½
Xqð�SÞ
l¼1

rLð½�S�hlÞðhl � hl�1Þ;
Xqð�SÞ
l¼1

rRð½�S�hlÞðhl � hl�1Þ�;

ð4Þ

Then, we have

tLðSÞ ¼
Xqð�SÞ
l¼1

rLð½�S�hlÞðhl � hl�1Þ

and

tRðSÞ ¼
Xqð�SÞ
l¼1

rRð½�S�hlÞðhl � hl�1Þ:

rLð½�S�hlÞ expresses the lower bound of the characteristic function of the crisp
coalition ½�S�hl . Thus, tLðSÞ expresses the lower bound of the characteristic function of
the crisp coalition S related to the fuzzy coalition �S. Similarly, rRð½�S�hlÞ expresses the
upper bound of the characteristic function of the crisp coalition ½�S�hl , and tRðSÞ
expresses the upper bound of the characteristic function of the crisp coalition S related
to the fuzzy coalition �S, respectively.

Therefore, �tðSÞ is the interval-valued characteristic function of the crisp coalition S
related to the fuzzy coalition �S. That is to say, ð�t;NÞ is the interval-valued cooperative
game, which is derived from the interval-valued cooperative game ð�r;N; Lf ðNÞÞ with
fuzzy coalitions by using Eq. (4).

3.2 The Construction of Dissatisfaction Functions of Interval-Valued
Cooperative Games

Utilizing Eq. (4), we can convert any interval-valued cooperative game with fuzzy
coalitions into an interval-valued cooperative game. Then, the key of solving an
interval-valued cooperative game is to obtain optimal payoffs for all players. As men-
tioned previously, we denote the interval-valued characteristic function of coalition S by
�tðSÞ ¼ ½tLðSÞ; tRðSÞ�. Due to the fact that each coalitional value is an interval, it is
obvious that each player should receive an interval-valued payoff from cooperation. Let
�xi ¼ ½xLi; xRi� be the interval-valued payoff of each player i 2 N. Denote
�x ¼ ð�x1;�x2; � � � ;�xnÞT, which is the vector of the interval-valued payoffs for all players
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i 2 N. �xðSÞ ¼ P
i2S

�xi is the sum of the interval-valued payoffs of players in the coalition S.

According to the interval operations given in Definition 1, we can express �xðSÞ as the
interval �xðSÞ ¼ ½P

i2S
xLi;

P
i2S

xRi�. In order to avoid the disadvantage of the interval sub-

traction operator, we use distances tomeasure the difference between�xðSÞ and�tðSÞ. Thus,
using Eq. (1), we define the square of the distance between the intervals �xðSÞ and �tðSÞ for
the coalition S as follows:

Dð�xðSÞ;�tðSÞÞ ¼ ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2

In order to describe the dissatisfaction of the coalition S more intuitively, we define
eLðS; �xÞ ¼

P
i2S

xLi � tLðSÞ and eRðS; �xÞ ¼
P
i2S

xRi � tRðSÞ. In this context, eLðS; �xÞ is

called the lower bound of the excess of S on �x and eRðS; �xÞ is called the upper bound of
the excess of S on �x. Note that eLðS; �xÞ and eRðS; �xÞ can be respectively interpreted as a
measure of the lower and upper bound of the dissatisfaction of the coalition S if �x were
suggested as a final payoff vector. It is obvious that the less eLðS; �xÞ (or eLðS; �xÞ) the
more satisfactory the coalition S. However, owing to the fact that the total value of
players’ payoffs is limited, other players would not satisfy with the distribution result if
one of the possible coalitions obtains too much. Egalitarian and utilitarian principles
need to be considered. According to the excess vector and adhering to the principle of
fairness and equity, we take a quite different angle to implement it. The highest excess
is pushed down to flatten the excess vector. That is to say, we choose the payoff vector
so that the sums of the payoffs of all players in the coalition S are as close to the
coalitional values as possible.

Then, we can define the sum of the squares of the distances between �xðSÞ and �tðSÞ
for all coalitions S�N as follows:

Lð�xÞ ¼
X
S�N

Dð�xðSÞ;�tðSÞÞ ¼
X
S�N

½ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2�:

A interval-valued payoff vector x is said to be efficient (or a preimputation) if
�xðNÞ ¼ �tðNÞ. Lð�xÞ may be interpreted as a dissatisfaction function.

3.3 A Quadratic Programming Model and Its Optimal Solution

It is directly derived from the concept of dissatisfaction functions that an optimal
interval-valued payoff vector of all players is the solution of the following quadratic
programming model:

minfLð�xÞ ¼
X
S�N

½ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2�g: ð5Þ
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Let partial derivatives of Lð�xÞ with respect to the variables xLj and xRj (j 2 S�N) be
equal to 0, respectively. Thus, we have

X
S�N:j2S

X
i2S

xLi ¼
X

S�N:j2S
tLðSÞ ðj ¼ 1; 2; � � � ; nÞ ð6Þ

and

X
S�N:j2S

X
i2S

xRi ¼
X

S�N:j2S
tRðSÞ ðj ¼ 1; 2; � � � ; nÞ: ð7Þ

To solve xLi (i ¼ 1; 2; � � � ; n) and xRi (i ¼ 1; 2; � � � ; n), we rewrite Eqs. (6) and (7) as
follows:

a11xL1 þ a12xL2 þ a13xL3 þ � � � þ a1nxLn ¼
P

S�N:12S
tLðSÞ

a21xL1 þ a22xL2 þ a23xL3 þ � � � þ a2nxLn ¼
P

S�N:22S
tLðSÞ

. . .
an1xL1 þ an2xL2 þ an3xL3 þ � � � þ annxLn ¼

P
S�N:n2S

tLðSÞ

8>>>><
>>>>:

ð8Þ

and

a11xR1 þ a12xR2 þ a13xR3 þ � � � þ a1nxRn ¼
P

S�N:12S
tRðSÞ

a21xR1 þ a22xR2 þ a23xR3 þ � � � þ a2nxRn ¼
P

S�N:22S
tRðSÞ

. . .
an1xR1 þ an2xR2 þ an3xR3 þ � � � þ annxRn ¼

P
S�N:n2S

tRðSÞ;

8>>>><
>>>>:

ð9Þ

respectively.
Let jSj be the number of all players in the coalition S. According to the knowledge on

permutation and combination, for player i 2 N, the number of coalitions S including i
with jSj ¼ 1 can be expressed as C0

n�1. In the same way, the number of coalitions S
including i with jSj ¼ 2 can be expressed as C1

n�1. Generally, the number of coalitions S
including i with jSj ¼ k (k ¼ 1; 2; � � � ; n) can be expressed as Ck�1

n�1. It is obvious that the
number of coalitions S including i can be written as C0

n�1 þC1
n�1 � � � þCn�2

n�1 þCn�1
n�1,

which is equal to 2n�1 by the simple observation.
In a similar way, the number of coalitions S including i and j simultaneously can be

written as C0
n�2 þC1

n�2 � � � þCn�3
n�2 þCn�2

n�2, which is 2n�2.
Then, it can be easily derived from the conclusions mentioned above that

aij ¼ 2n�1 ði ¼ jwith i; j 2 1; 2; � � � ; nf gÞ
2n�2 ði 6¼ jwith i; j 2 1; 2; � � � ; nf gÞ:

�
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Denote XL ¼ ðxL1; xL2; � � � ; xLnÞT, XR ¼ ðxR1; xR2; � � � ; xRnÞT,
BL ¼ ð P

S�N:12S
tLðSÞ;

P
S�N:22S

tLðSÞ; � � � ;
P

S�N:n2S
tLðSÞÞT,

BR ¼ ð P
S�N:12S

tRðSÞ;
P

S�N:22S
tRðSÞ; � � � ;

P
S�N:n2S

tRðSÞÞT, and

A ¼ ðaijÞn�n ¼
2n�1 2n�2 � � � 2n�2

2n�2 2n�1 � � � 2n�2

..

. ..
. ..

.

2n�2 2n�2 � � � 2n�1

0
BB@

1
CCA

n�n

:

Thus, Eqs. (8) and (9) can be rewritten in a matrix representation as follows:

AXL ¼ BL

and

AXR ¼ BR;

respectively.
By using matrix multiplication, we obtain the solutions of Eqs. (8) and (9) as

follows:

XL ¼ A�1BL ð10Þ

and

XR ¼ A�1BR; ð11Þ

respectively, where

A�1 ¼ 1
2n�2

n
nþ 1

� 1
nþ 1

� � � � 1
nþ 1

� 1
nþ 1

n
nþ 1

� � � � 1
nþ 1

..

. ..
. ..

.

� 1
nþ 1

� 1
nþ 1

� � � n
nþ 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

n�n

:

Thus, we can obtain the optimal interval-valued payoffs of all players i 2 N, which
are expressed as �xi ¼ ½xLi; xRi� (i ¼ 1; 2; � � � ; n).

In what follows, we discuss some useful and important properties of the optimal
interval-valued solution for any interval-valued cooperative game �t.
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Theorem 1. (Existence and Uniqueness) For an arbitrary interval-valued cooperative
game �t, there always exists an unique optimal interval-valued solution, which is
determined by Eqs. (10) and (11).

Proof. According to Eqs. (10) and (11), it is straightforward to prove Theorem 1.

Theorem 2. (Additivity) For any two interval-valued cooperative games �t and �m, then
�xið�tþ�mÞ ¼ �xið�tÞþ�xið�mÞ (i ¼ 1; 2; � � � ; n).
Proof. According to Eq. (10), we have

xLið�tÞ ¼
n

P
S�N:i2S

tLðSÞ �
Pn

j¼1;j6¼i

P
S�N:j2S

tLðSÞ

2n�2ðnþ 1Þ ;

then

xLið�tþ�mÞ ¼
n

P
S�N:i2S

ðtLðSÞþ mLðSÞÞ �
Pn

j¼1;j6¼i

P
S�N:j2S

ðtLðSÞþ mLðSÞÞ

2n�2ðnþ 1Þ

¼
n

P
S�N:i2S

tLðSÞ �
Pn

j¼1;j 6¼i

P
S�N:j2S

tLðSÞ

2n�2ðnþ 1Þ þ
n

P
S�N:i2S

mLðSÞ �
Pn

j¼1;j6¼i

P
S�N:j2S

mLðSÞ

2n�2ðnþ 1Þ
¼xLið�tÞþ xLið�mÞ;

i.e., xLið�tþ�mÞ ¼ xLið�tÞþ xLið�mÞ.
Similarly, according to Eq. (11), we can easily prove that xRið�tþ�mÞ ¼

xRið�tÞþ xRið�mÞ.
According to the aforementioned conclusion and the case (1) of Definition 1, it is

obvious that

�xið�tþ�mÞ ¼ �xið�tÞþ�xið�mÞ ði ¼ 1; 2; � � � ; nÞ

Thus, we have proven Theorem 2.

Theorem 3. (Symmetry) If i 2 N and k 2 N (i 6¼ k) are two symmetric players in an
interval-valued cooperative game �t, then �xið�tÞ ¼ �xkð�tÞ.
Proof. For the players i 2 N and k 2 N (i 6¼ k), according to Eq. (10), we obtain

xLið�tÞ ¼
� Pn

j¼1;j 6¼i;j 6¼k

P
S�N:j2S

tLðSÞþ ðn P
S�N:i2S

tLðSÞ �
P

S�N:k2S
tLðSÞÞ

2n�2ðnþ 1Þ

and
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xLkð�tÞ ¼
� Pn

j¼1;j6¼i;j6¼k

P
S�N:j2S

tLðSÞþ ð� P
S�N:i2S

tLðSÞþ n
P

S�N:k2S
tLðSÞÞ

2n�2ðnþ 1Þ

Due to the assumption that the players i and k are symmetric in the interval-valued
cooperative game �t, it easily follows that

X
S�N:i2S

tLðSÞ ¼
X

S�N:k2S
tLðSÞ;

which directly infers that

n
X

S�N:i2S
tLðSÞ �

X
S�N:k2S

tLðSÞ ¼ �
X

S�N:i2S
tLðSÞþ n

X
S�N:k2S

tLðSÞ

Hereby, we have xLið�tÞ ¼ xLkð�tÞ. In the same way, we can prove xRið�tÞ ¼ xRkð�tÞ.
According to the conclusion above and the case (1) of Definition 1, it is obvious that

½xLið�tÞ; xRið�tÞ� ¼ ½xLkð�tÞ; xRkð�tÞ�;

i.e., �xið�tÞ ¼ �xkð�tÞ. Accordingly, we have completed the proof of Theorem 3.

Theorem 4. (Null player) If i 2 N is a null player in an interval-valued cooperative
game �t, then �xið�tÞ ¼ 0.

Proof. According to Eq. (10) and the assumption that i is a null player, we have

xLið�tÞ ¼
n

P
S�N:i2S

tLððSniÞ [ iÞ � Pn
j¼1;j 6¼i

P
S�N:j2S

tLðSÞ

2n�2ðnþ 1Þ

¼
n

P
S�N:i2S

tLðSniÞ �
Pn

j¼1;j6¼i

P
S�N:j2S

tLðSÞ

2n�2ðnþ 1Þ :

Hereby, we have xLið�tÞ ¼ 0.
Analogously, according to Eq. (11), we can prove xRið�tÞ ¼ 0. Thereby, we obtain

½xLið�tÞ; xRið�tÞ� ¼ 0, i.e., �xið�tÞ ¼ 0. Thus, we have proven Theorem 4.

Theorem 5. (Anonymity) For any permutation r on the set N and an interval-valued
cooperative game �t, then �xrðiÞð�trÞ ¼ �xið�tÞ.
Proof. It can be easily proven according to Eqs. (10) and (11) (omitted).

3.4 An Extension of the Quadratic Programming Model

In real management situations, some constraint conditions need to be considered. In this
case, the quadrtic programming model (i.e., Eq. (5)) is still applicable. For example, if
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we consider the efficiency: �xðNÞ ¼ �tðNÞ (i.e., ½Pn
i¼1

xLi;
Pn
i¼1

xRi� ¼ ½tLðNÞ; tRðNÞ�), then
Eq. (5) can be flexibly rewritten as the following quadratic programming model:

minfLð�xÞ ¼
X
S�N

½ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2�g

s:t:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xRi ¼ tRðNÞ:

8>>>><
>>>>:

ð12Þ

According to the Lagrange multiplier method, the Lagrange function is constructed
as follows:

Lð�x; k; lÞ ¼
X
S�N

½ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2� þ kð
Xn
i¼1

xLi

� tLðNÞÞþ lð
Xn
i¼1

xRi � tRðNÞÞ:

Then, an optimal interval-valued payoff vector for all players (i.e., a solution of the
interval-valued cooperative game �t) is obtained by solving the following quadratic
programming model:

minfLð�x; k; lÞ ¼
X
S�N

½ð
X
i2S

xLi � tLðSÞÞ2 þð
X
i2S

xRi � tRðSÞÞ2� þ

kð
Xn
i¼1

xLi � tLðNÞÞþ lð
Xn
i¼1

xRi � tRðNÞÞg:
ð13Þ

Let the partial derivatives of Lð�x; k; lÞ with respect to the variables xLj, xRj
(j 2 S�N), k, and l be equal to 0, respectively. Then, we have

P
S�N:j2S

P
i2S

xLi þ k
2 ¼

P
S�N:j2S

tLðSÞ ðj ¼ 1; 2; � � � ; nÞ
Pn
i¼1

xLi ¼ tLðNÞ

8><
>: ð14Þ

and

P
S�N:j2S

P
i2S

xRi þ l
2 ¼

P
S�N:j2S

tRðSÞ ðj ¼ 1; 2; � � � ; nÞ
Pn
i¼1

xRi ¼ tRðNÞ;

8><
>: ð15Þ

respectively.
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Denote e ¼ ð1; 1; � � � ; 1ÞTn�1 and X0
L ¼ ðx0L1; x0L2; � � � ; x0LnÞT. Then, Eq. (14) can be

rewritten as follows:

AX0
L þ

k
2
e ¼ BL ð16Þ

and

eTX0
L ¼ tLðNÞ: ð17Þ

It follows from Eq. (16) that

X0
L ¼ A�1BL � k

2
A�1e ¼ XL � k

2
A�1e; ð18Þ

where XL is given by Eq. (10). Then, the key of solving Eq. (14) is to determine k.
Through a series of calculations, we have

k
2
¼ 2n�2 nþ 1

n
ð
Xn
i¼1

xLi � tLðNÞÞ: ð19Þ

Thus, it can be easily derived from Eqs. (18) and (19) that

X0
L ¼ XL � 1

n
ð
Xn
i¼1

xLi � tLðNÞÞe

¼ XL þ 1
n
ðtLðNÞ �

Xn
i¼1

xLiÞe:
ð20Þ

Similarly, we can obtain the solution of Eq. (15) as follows:

X0
R ¼ XR þ 1

n
ðtRðNÞ �

Xn
i¼1

xRiÞe: ð21Þ

So far, we obtain the solution of Eq. (12), which consists of Eqs. (20) and (21).
Thus, if the efficiency is taken into consideration, we can determine optimal
interval-valued payoffs of all players (i.e., a solution of the interval-valued cooperative
game), which are expressed as �x0i ¼ ½x0Li; x0Ri� (i ¼ 1; 2; � � � ; n), whose lower and upper
bounds are given by Eqs. (20) and (21), respectively.

Theorem 6. For any interval-valued cooperative game �t, there always exists a unique
interval-valued payoff vector (i.e., a solution of the interval-valued cooperative game �t
with considering the efficiency), which satisfies the efficiency, the additivity, the
symmetry, and the anonymity.
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3.5 A Process of Interval-Valued Cooperative Games with Fuzzy
Coalitions

According to the discussions above, an algorithm and process of the interval-valued
cooperative games with fuzzy coalitions are summarized as follows:

Step 1: Determine coalitional values by using the Choquet integral and players’
rates of participation in a particular coalition (e.g., Eq. (4));
Step 2: Define the sum of the squares of the distances between �xðSÞ and �tðSÞ for all
coalitions S�N;
Step 3: If the efficiency is taken into account, then get to Step 5; otherwise, get to
Step 4;
Step 4: Compute a solution of the interval-valued cooperative game �t using
Eqs. (10) and (11);
Step 5: Compute an optimal interval-valued payoff vector for all players (i.e., a
solution of the interval-valued cooperative game) using Eqs. (20) and (21).

4 A Numerical Example

Consider a joint production program in which three companies, named 1, 2 and 3,
respectively, decide to cooperate with their resources. Suppose that each company i
ði ¼ 1; 2; 3Þ has 1000 units of resources Ri ði ¼ 1; 2; 3Þ and they can cooperate freely
according to their capital, human and material resources. company i can obtain profit
tðfigÞ by producing 1000 units of the product Pi using 1000 units of the resource Ri. In
order to cope with increasingly fierce market competition and obtain more profit, each
company can choose to cooperate with the other one or two companies. Valuable
products can be produced by combining two or three resources from R1, R2, and R3.
For example, by combining one unit of the resource Ri and one unit of the resource Rj

( i\j; i; j 2 f1; 2; 3g), they can obtain one unit of the product Pij and get profit
tðfi; jgÞ=1000. Here, tðfi; jgÞ is expressed as the coalitional value if companies i and j
form a crisp coalition. In other words, if companies i and j make up a full cooperative
relationship (i.e., they offer all of their 1000 units of the resources to cooperate), then
they can obtain profit tðfi; jgÞ by producing 1000 units of the product Pij. Similarly, by
combining one unit of R1, one unit of R2 and one unit of R3, they can produce one unit
of the product P123 and get profit tðf1; 2; 3gÞ=1000. That is to say, if the three com-
panies offer all of their 1000 units of the resources to cooperate, then they can obtain
profit tðf1; 2; 3gÞ by producing 1000 units of the product P123.

However, each company needs to consider how many resources it should offer in
the cooperation according to the reality. Furthermore, since there exist many uncon-
trollable factors under the fierce market competition, companies only know the
approximate range of the coalitional values. In this paper, we use intervals to denote
inherent fuzziness. Suppose that each company supplies all of its resources to cooperate
(i.e., form a crisp coalition), the interval values of the crisp coalitions are given as
shown in Table 1.
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As we all know, in most cases, each company may not contribute all of its resources
to cooperation in real life. Thus, we have to consider an interval-valued cooperative
game with fuzzy coalitions. Here, company 1 can contribute 200 units of the resource
R1, while company 2 can supply 500 units of the resource R2, and company 3 can
supply 600 units of the resource R3. As company 1 has 1000 units of the resource R1,
we regard the participation rate of company 1 as 200/1000 = 0.2. In a similar way to
the previous calculation, it is easy to see that the participation rate of company 2 is 0.5
and that of company 3 is 0.6.

Therefore, a fuzzy coalition has been defined as follows. If all three companies
form a coalition to cooperate, the participation rates of companies 1, 2, and 3 can be
expressed as �Sð1Þ ¼ 0:2, �Sð2Þ ¼ 0:5, and �Sð3Þ ¼ 0:6, respectively. Using the definition
of fuzzy sets, the aforementioned fuzzy coalition �S can be written as �S ¼ ð0:2; 0:5; 0:6Þ.
According to the previous analysis, it is obvious that companies 1, 2, and 3 join the
cooperation with 200, 500, and 600 units of the resources R1, R2, and R3, respectively.
In order to get the maximum profit from the cooperation mentioned above, the three
companies will produce 200 units of the product P123, 300 units of the product P23, and
100 units of the product P3. Thus, the interval-valued characteristic function of the
crisp coalition S related to the fuzzy coalition �S ¼ ð0:2; 0:5; 0:6Þ can be computed
using Eq. (4) as follows:

�tðSÞ ¼ 0:2�rðf1; 2; 3gÞþ 0:3�rðf2; 3gÞþ 0:1�rðf3gÞ
¼ 0:2� ½120; 200� þ 0:3� ½40; 85� þ 0:1� ½20; 36�
¼ ½38; 69:1�

4.1 Computational Results Obtained by Different Methods and Analysis

In order to obtain a solution of the interval-valued cooperative game with fuzzy coali-
tions, the first task is to estimate the interval-valued characteristic functions of all possible
coalitions related to the fuzzy coalitions. The estimation results are shown in Table 2.

Table 1. The interval-valued characteristic function of the crisp coalitions

S0 �rðS0Þ S0 �rðS0Þ
f1g ½25; 40� f1; 3g ½60; 90�
f2g ½15; 35� f2; 3g ½40; 85�
f3g ½20; 36� f1; 2; 3g ½120; 200�
f1; 2g ½50; 100�

Table 2. Interval-valued characteristic functions of coalitions related to the fuzzy coalitions

�S �tðSÞ �S �tðSÞ
ð0:2; 0; 0Þ ½5; 8� ð0:2; 0; 0:6Þ ½20; 32:4�
ð0; 0:5; 0Þ ½7:5; 17:5� ð0; 0:5; 0:6Þ ½22; 46:1�
ð0; 0; 0:6Þ ½12; 21:6� ð0:2; 0:5; 0:6Þ ½38; 69:1�
ð0:2; 0:5; 0Þ ½14:5; 30:5�
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After determining the interval-valued characteristic functions of the crisp coalitions
S related to the fuzzy coalitions �S, we will compute interval-valued payoffs of com-
panies 1, 2, and 3. It easily follows from Eqs. (10) and (11) that

XL ¼ A�1BL ¼

3
8

� 1
8

� 1
8

� 1
8

3
8

� 1
8

� 1
8

� 1
8

3
8

0
BBBBB@

1
CCCCCA

77:5

82

92

0
B@

1
CA ¼

7:3125

9:5625

14:5625

0
B@

1
CA;

XR ¼ A�1BR ¼

3
8

� 1
8

� 1
8

� 1
8

3
8

� 1
8

� 1
8

� 1
8

3
8

0
BBBBB@

1
CCCCCA

140

163:2

169:2

0
B@

1
CA ¼

10:95

22:55

25:55

0
B@

1
CA;

respectively. Namely, �x1 ¼ ½xL1; xR1� ¼ ½7:3125; 10:95�, �x2 ¼ ½xL2; xR2� ¼ ½9:5625;
22:55�, and �x3 ¼ ½xL3; xR3� ¼ ½14:5625; 25:55�, which are the optimal interval-valued
payoffs of companies 1, 2, and 3, respectively.

If we take into account the efficiency condition, then it is easily derived from
Eqs. (20) and (21) that

X0
L ¼ XL þ 1

3
ðtLðNÞ �

X3
i¼1

xLiÞe ¼ ð7:3125; 9:5625; 14:5625ÞT þ 1
3
� ð38� 31:4375Þð1; 1; 1ÞT

¼ ð9:5; 11:75; 16:75ÞT

and

X0
R ¼ XRþ 1

3
ðtRðNÞ �

X3
i¼1

xRiÞe ¼ ð10:95; 22:55; 25:55ÞT þ 1
3
� ð69:1� 59:05Þð1; 1; 1ÞT

¼ ð14:3; 25:9; 28:9ÞT;

respectively. Namely, �x01 ¼ ½x0L1; x0R1� ¼ ½9:5; 14:3�, �x02 ¼ ½x0L2; x0R2� ¼ ½11:75; 25:9�, and
�x03 ¼ ½x0L3; x0R3� ¼ ½16:75; 28:9�.

In the same analysis as above, the optimal interval-valued payoffs of companies
1, 2, and 3 in different fuzzy coalitions can be obtained as shown in Table 3.

Take company 1 as an example, it can receive an interval-valued payoff ½5; 8� if it
goes alone. If it cooperates with company 2 or 3, it can receive an interval-valued
payoff ½6; 10:5� or ½6:5; 9:4�, respectively. Moreover, it can receive an interval-valued
payoff ½9:5; 14:3� if it chooses to join the grand coalition consisting of all the three
companies. It is easy for company 1 to decide which coalition to join. The same
situation applies to the other two companies.
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The conclusion is easily drawn from the analysis above that each company is
willing to join the grand coalition formed by all the three companies, because each of
them can obtain most profit from this coalition.

4.2 The Comparative Analysis and Conclusions

To compare the method proposed in this paper (i.e., Eqs. (10) and (11)) with the
interval Shapley value put forward by Han et al. [8] (i.e., Eq. (4)), we firstly use Eq. (4)
in Han et al. [8] to obtain the interval-valued characteristic functions for all crisp
coalitions S related to the fuzzy coalitions �S, and then use the method proposed by Han
et al. [8] with the Moore’s interval subtraction [14] to solve the above numerical
example. According to Eq. (4) given by Han et al. [8] and combining with the Moore’s
interval subtraction [14], i.e., �a� �b ¼ ½aL � bR; aR � bL�, where �a ¼ ½aL; aR� and
�b ¼ ½bL; bR�, we have

�/	
1 �tð Þ ¼

X
S�f1;2;3gn 1f g

Sj j!ð3� Sj j � 1Þ!
3!

�t S[ 1f gð Þ � �t Sð Þð Þ

¼ 0!2!
3!

ð�tð1Þ � �tð£ÞÞþ 1!1!
3!

ð�tð1; 2Þ � �tð2ÞÞþ
1!1!
3!

�t 1; 3ð Þ � �t 3ð Þð Þþ 2!0!
3!

�t 1; 2; 3ð Þ � �t 2; 3ð Þð Þ

¼ 0!2!
3!

5; 8½ � � 0; 0½ �ð Þþ 1!1!
3!

14:5; 30:5½ � � 7:5; 17:5½ �ð Þþ
1!1!
3!

20; 32:4½ � � 12; 21:6½ �ð Þþ 2!0!
3!

38; 69:1½ � � 22; 46:1½ �ð Þ
¼ �1:8; 25:52½ �:

In the same way, we can obtain �/	
2 �tð Þ ¼ 5:52; 32:13½ � and �/	

3 �tð Þ ¼ 9:25; 36:4½ �.
From the above analysis, it is easily seen that the lower bound of the interval-valued

payoff of company 1 is negative when using the method given by Han et al. [8]. �/	
1 �tð Þ

means that company 1 may get a negative profit (i.e., loss) which is not acceptable in
real life. That is to say, company 1 may get worse if it cooperates with the other two

Table 3. The optimal interval-valued payoffs of companies in crisp coalitions related to the
fuzzy coalitions

�S Company 1 Company 2 Company 3

ð0:2; 0; 0Þ ½5; 8� 0 0
ð0; 0:5; 0Þ 0 ½7:5; 17:5� 0
ð0; 0; 0:6Þ 0 0 ½12; 21:6�
ð0:2; 0:5; 0Þ ½6; 10:5� ½8:5; 20� 0
ð0:2; 0; 0:6Þ ½6:5; 9:4� 0 ½13:5; 23�
ð0; 0:5; 0:6Þ 0 ½8:75; 21� ½13:25; 25:1�
ð0:2; 0:5; 0:6Þ ½9:5; 14:3� ½11:75; 25:9� ½16:75; 28:9�
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companies. Obviously, the three companies will not cooperate. Moreover, it is obvious
that the sums of the lower and upper bounds of the interval-valued payoffs of the three
companies are 12.97 and 94.05, respectively. The value 12.97 is much smaller than 38
whereas the value 94.05 is much greater than 69.1, where 38 and 69.1 are the lower and
upper bounds of the interval-valued payoff of the grand coalition formed by all the
three companies, respectively.

Comparing the aforementioned modeling, methods, and computational results, we
can easily draw the following conclusions.

(1) The method proposed in this paper (i.e., Eqs. (10) and (11) or Eqs. (20) and (21))
is simpler and more convenient from the viewpoint of computational complexity
than other methods such as the one given by Han et al. [8]. The reason is that
Eqs. (10) and (11) or Eqs. (20) and (21)) are analytical formulae.

(2) The participation rates of players are variable in real economic management,
which may result in overlapping of the interval-valued characteristic functions of
the fuzzy coalitions. If we use the method proposed by Han et al. [8], then we may
obtain negative interval-valued Shapley values for players, which are unaccept-
able in real life. For instance, in the example given above, the lower bound of the
interval-valued payoff of the fuzzy coalition �S ¼ 0:2; 0:5; 0:6ð Þ is smaller than the
upper bound of the interval-valued payoff of the fuzzy coalition �S ¼ 0; 0:5; 0:6ð Þ.
If we use the method proposed by Han et al. [8], company 1 receives a negative
profit because of the interval subtraction. However, the method proposed in this
paper ensures that the interval-valued payoffs of companies (players) are always
positive if all coalitions’ values are positive (i.e., the lower bounds of the
interval-valued payoffs of the coalitions are larger than 0).

(3) The magnification of uncertainty resulted from the interval subtraction such as the
Moore’ interval subtraction [14] is a long-standing problem which is difficult to
solve. In order to overcome effectively the disadvantage of the interval subtraction
[14], we adopted the distance to measure the differences between interval-valued
payoffs and interval-valued payoffs of coalitions in this paper. However, the
problem mentioned above still exists in the method given by Han et al. [8] with
the Moore’s interval subtraction [14]. Take company 1 in the aforementioned
example for instance, the lengths of the interval-valued payoffs of the fuzzy
coalitions �S containing company 1 are no larger than 16 with an average of 10.5.
However, the length of the interval-valued Shapley value of company 1 is equal to
27.32, which is greater than 10.5.

5 Conclusions

Of different types of fuzzy cooperative games, cooperative games with fuzzy payoffs
have been extensively discussed. However, limited research has been carried out on
cooperative games with both fuzzy coalitions and fuzzy payoffs. In this paper, based on
the Choquet integral, the concepts of dissatisfaction functions and the distance between
intervals, we study a class of fuzzy cooperative games taking into account not only the
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participation rates of players in each coalition but also the imprecision and uncertainty
of the coalitional values. The interval-valued payoffs of players can be directly obtained
by using the analytical formulae (i.e., Eqs. (10) and (11) or Eqs. (20) and (21)). The
developed models and method have some advantages as stated previously from the
aspects of the scale, solution process and computational complexity.

As stated earlier, we use intervals to describe uncertainty and imprecision of
coalitional values and real numbers to denote the participation rates of players in a
coalition. However, fuzzy numbers and intuitionistic fuzzy numbers are other possible
tools to characterize uncertainty and imprecision in real life. Thus, we will study and
develop some effective methods for solving cooperative games with participation rates
and/or coalitional values expressed as fuzzy numbers and/or intuitionistic fuzzy
numbers in the near future. Moreover, a general case of fuzzy cooperative games with a
coalition structure where players can participate in different unions also deserves fur-
ther studies.
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Abstract. In this paper, the definition of the Shapley function for intuitionistic
fuzzy cooperative games is given by extending the fuzzy cooperative games.
Based on the extended Hukuhara difference, the specific expression of the
Shapley intuitionistic fuzzy cooperative games with multilinear extension form
is obtained, and its existence and uniqueness are discussed. Furthermore, the
properties of the Shapley function are researched. Finally, the validity and
applicability of the proposed method, as well as comparison analysis with other
methods are illustrated with a numerical example.

Keywords: Intuitionistic fuzzy cooperative games � Shapley function �
Multilinear extension

1 Introduction

Stated as earlier, the cooperative games have been successfully applied in several areas,
such as enterprise management and economics [1, 2]. Cooperative game is used to
study how to fairly and reasonably determine the distribution scheme and meet certain
rational behavior. In response to this issue, many scholars gave various forms of the
solution, which include the core, stable set of solution and so on. However, in real
situation, the coalitions’ values of the player may be imprecise and vague due to the
uncertainty of information and the complexity of player’s behavior. That is to say, the
players may partly participate in a specific coalition (i.e., the rate of the participation of
players in a coalition is between 0 and 1). As a result, the theory of fuzzy coalition
cooperative games started with the work of Aubin [3] in which the notions of a fuzzy
game and the core of a fuzzy game were introduced. In the meantime, many solution
concepts have been developed (Li [4–6]; Adler [7]; Butnariu [8]; Molina and Tejada
[9]; Sheremetov [10]; Butnariu and Klement [11]; Bumariu and Kroupa [12]; Sakawa
and Nishizaki [13]; Butnariu [14]; Mareš [15]; Yu and Zhang [16]; Radzik [17];
Nishizaki and Sakawa [18]; Tsurumi et al. [19]). Mareš [15] and Mareš and Vlach [20]
concerned the uncertainty of the coalition values. In their model, the coalitions are
crisp, namely, all players fully participate in cooperation. But the coalition values of the
players are fuzzy numbers. Since Shapley [21] proposed Shapley value as a cooperative
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game local income of payment solution concept, it has been widely applied and deeply
studied. Based on the Hukuhara difference (Banks and Jacobs [22]), Yu and Zhang [23]
researched the Shapley function for the model given in (Mareš [15, 20]) and studied a
special case (Tsurumi et al. [19]). Meng et al. [24] considered the Shapley function for
fuzzy games with fuzzy characteristic functions. Meng and Jiang [25] studied the
Shapley function for fuzzy games on augmenting systems with fuzzy characteristic
functions.

All above researches only consider the situation that the coalition values are fuzzy
set or characteristic functions are fuzzy numbers. However, these are unrealistic,
because many uncertain factors exist during the process of negotiation and coalition
forming. As a result, the players can only know imprecise information regarding the
real outcome of cooperation. Fuzzy set theory can’t express the “participation”, “no
participation” and “hesitation” three levels of the players. Besides, in real situations,
whether players will participate in the league with certain hesitation degree. The theory
of intuitionistic fuzzy set given Atanassov [26, 27] can effectively describe the affir-
mative, negative and hesitance three states information. Moreover, intuitionistic fuzzy
sets have been researched in multiattribute decision [28–30] and non-cooperative game
[31–33]. However, there exists little investigation on the intuitionistic fuzzy sets to
express the uncertain information in cooperative game. Elena Mielcová [34] introduced
formalization of the n-person transferable utility games in the case when expected
utilities are intuitionistic fuzzy values. To address this issue, we study the Shapley
function for cooperative games with the intuitionistic fuzzy coalitions and intuitionistic
fuzzy characteristic functions. The difference of intuitionistic fuzzy numbers is
important for the Shapley values, then, we propose the concept of the extended
Hukuhara difference, and analyze the relationship between the Hukuhara difference and
the extended Hukuhara difference. The intuitionistic fuzzy coalition is defined. Some
basic concepts of cooperative games with the intuitionistic fuzzy coalitions and intu-
itionistic fuzzy characteristic functions are given. Some new axioms for the Shapley
function that are based on the fuzzy case are presented, and some properties are
discussed. Finally, an illustrative example is offered to confirm theory’s effectiveness.

2 Preliminaries

The concept of an IFS was firstly introduced by Atanassov (1986, 1999).

Definition 2.1 [26, 27]. Let X ¼ fx1; x2; � � � ; xng be a finite universal set. An IFS ~A in
X may be mathematically expressed as ~A ¼ f xl; l~AðxlÞ; v~AðxlÞ

� �jxl 2Xg, where l~A :

X 7! ½0; 1� and v~A : X 7! ½0; 1� are the membership degree and the non-membership
degree of an element xl 2 X to the set ~A�X; respectively, such that they satisfy the
following condition: 0� l~AðxlÞþ v~AðxlÞ� 1 for all xl 2 X.

Let p~AðxlÞ ¼ 1� l~AðxlÞ � v~AðxlÞ, which is called the intuitionistic index (or hesi-
tancy degree) of an element xl to the set ~A. It is the degree of indeterminacy mem-
bership of the element xl to the set ~A. Obviously, 0� p~AðxlÞ� 1.
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If an IFS ~C in X is a singleton set, i.e., ~C ¼ f xk; l~CðxkÞ; v~CðxkÞ
� �g, then it is usually

denoted by ~C ¼ l~CðxkÞ; v~CðxkÞ
� �

for short.

Definition 2.2 [26]. Let ~A ¼ x; l~A xð Þ; v~A xð Þ� �� �
, ~B ¼ x; l~B xð Þ; v~B xð Þ� �� �

be two
intuitionistic fuzzy sets on U, its union and intersection are defined as follows:

(1) ~A\ ~B ¼ x;min l~A xð Þ; l~B xð Þ� �
; max v~A xð Þ; v~B xð Þ� �� �� �

;

(2) ~A[ ~B ¼ x;max l~A xð Þ; l~B xð Þ� �
; min v~A xð Þ; v~B xð Þ� �� �� �

.

The intuitionistic fuzzy number is a special kind of intuitionistic fuzzy set, espe-
cially the triangular intuitionistic fuzzy number (TIFN), which is easier to express
characteristic functions in the cooperative game. Then the triangular intuitionistic fuzzy
numbers is defined as follows:

Definition 2.3 [35, 36]. Let ~a ¼ ða1; a; �a1Þ; ða2; a; �a2Þ
� �

be a TIFN on the real number
set R, whose membership and non-membership function are defined as follows:

l~A xð Þ ¼
0 x\a1; x[ �a1ð Þ
x� a1ð Þ= a� a1ð Þ a1 � x\að Þ
1 x¼að Þ
�a1 � xð Þ= �a1 � að Þ a� x\�a1ð Þ

;

8>><
>>:

v~A xð Þ ¼
1 x\a2; x[ �a2ð Þ
a� xð Þ= a� a2ð Þ a2 � x\að Þ
0 x¼að Þ
x� að Þ= �a2 � að Þ a� x\�a2ð Þ

8>><
>>: ;

respectively, depicted as in Fig. 1.

Fig. 1. Triangular intuitionistic fuzzy number
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The set of all TIFNs is denoted by ~<.
Definition 2.4 [35, 36]. Let ~a ¼ ða1; a; �a1Þ; ða2; a; �a2Þ

� �
, ~b ¼ ðb1; b; �b1Þ; ðb2; b; �b2Þ

� �
be TIFNs, and k be a real number, the arithmetic operations of TIFNs are defined as
follows:

(1) ~aþ ~b ¼ ða1 þ b1; aþ b; �a1 þ �b1Þ; ða2 þ b2; aþ b; �a2 þ �b2Þ
� �

;

(2) ~a� ~b ¼ ða1 � b1; a� b; �a1 � �b1Þ; ða2 � b2; a� b; �a2 � �b2Þ
� �

;

(3) k~a ¼ ðka1; ka; k�a1Þ; ðka2; ka; k�a2Þh i ðk� 0Þ
ðk�a1; ka; ka1Þ; ðk�a2; ka; ka2Þh i ðk\0Þ

(
.

Definition 2.5. Let ~a ¼ ða1; a; �a1Þ; ða2; a; �a2Þ
� �

and ~b ¼ ðb1; b; �b1Þ; ðb2; b; �b2Þ
� �

be
TIFNs,

where

Sk ~að Þ ¼ k a1 þ 2aþ �a1ð Þ=4þ 1� kð Þ a2 þ 2aþ �a2ð Þ=4;

Sk ~b
� � ¼ k b1 þ 2bþ �b1ð Þ=4þ 1� kð Þ b2 þ 2bþ �b2ð Þ=4

are k weighted mean-areas of ~a and ~b respectively, k 2 0; 1½ �, then
(1). if Sk ~að Þ[ Sk ~b

� �
, then ~a [ IF ~b;

(2). if Sk ~að Þ\Sk ~b
� �

, then ~a\IF ~b;

(3). if Sk ~að Þ¼ Sk ~b
� �

, then ~a¼IF ~b.

The symbol “\IF” is an intuitionistic fuzzy version of the order relation “\” in the
real number set and has the linguistic interpretation “essentially less than”. The sym-
bols “[ IF” and “¼IF” are explained similarly.

Since the Shapley function of cooperative game involves the subtraction of intu-
itionistic fuzzy numbers, as the from the point of view Definitions 2.4, we can not have
~aþ ~b� ~b ¼ ~a for all TIFNs ~a and ~b in general. The Hukuhara difference of intervals
(Banks and Jacobs [22]), the generalized Hukuhara difference of intervals (Stefanini
(2010)) and the extended Hukuhara difference of intervals (Meng 2016) can well cope
with this issue. As showed in (Meng 2016), the extended Hukuhara difference can be
applied in more interval games than the Hukuhara difference and the generalized
Hukuhara difference.

Similarly the extended Hukuhara difference of intervals, we give the extended
Hukuhara difference of intuitionistic fuzzy numbers.

Definition 2.6. Let ~a ¼ ða1; a; �a1Þ; ða2; a; �a2Þ
� �

, ~b¼ ðb1; b; �b1Þ; ðb2; b; �b2Þ
� �

and ~c ¼
ðc1; c;~c1Þ; ðc2; c;~c2Þ
� �

be TIFNs. If bi � ai [ �bi � �ai,ði ¼ 1; 2Þ, ~c ¼ ~a�H ~b is said to
the “imaginary” Hukuhara difference. The extended Hukuhara difference is defined
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~a�eH ~b ¼ ða1 � b1; a� b; �a1 � �b1Þ; ða2 � b2; a� b; �a2 � �b2Þ
D E

:

For example, let ~a ¼ 4; 6; 8ð Þ; 3; 6; 10ð Þh i; ~b ¼ 5; 6; 8ð Þ; 3; 6; 10ð Þh i, becsuse of
5� 4[ 8� 8 then ~c ¼ ~a�H

~b is said to the “imaginary” Hukuhara difference between
~a and ~b.

Let ~a ¼ 4; 6; 8ð Þ; 3; 6; 10ð Þh i; ~b ¼ 1; 2; 3ð Þ; 0; 2; 3ð Þh i, then

~a�eH
~b ¼ ð3; 4; 5Þ; ð3; 4; 7Þh i:

3 Cooperative Games with the Intuitionistic Fuzzy Coalitions
and Intuitionistic Fuzzy Characteristic Functions

3.1 Intuitionistic Fuzzy Coalitions and Intuitionistic Fuzzy Characteristic
Functions

In this section, the fuzzy cooperative game is extended. We consider cooperative games
with intuitionistic fuzzy coalitions and intuitionistic fuzzy characteristic functions,
which is called intuitionistic fuzzy cooperative games for short.

For the cooperative game with the set of players N ¼ 1; 2; � � � ; nf g, an intuitionistic
fuzzy coalition is an intuitionistic fuzzy subset on N, which is identified with a function
f : N 7! 0; 1½ � � 0; 1½ �. Then, for an intuitionistic fuzzy coalition

ST ¼ ST 1ð Þ; ST 2ð Þ; � � � ; ST nð Þð Þ

and ST ið Þ ¼ lT ið Þ; vT ið Þh i,ðlT ið Þ 2 0; 1½ �; vT ið Þ 2 0; 1½ �; 0� lT ið Þþ vT ið Þ� 1Þ, where
lT ið Þ is membership degree of the player i in the intuitionistic fuzzy coalition ST , and
vT ið Þ is non-membership degree of the player i in the intuitionistic fuzzy coalition.
pT ið Þ ¼ 1� lT ið Þ � vT ið Þ is hesitation degree of the player i in the intuitionistic fuzzy
coalition.

Specially, let e/ ¼ 1; 0h i; 1; 0h i; � � � ; 1; 0h ið Þ be the empty alliance and eN ¼
1; 0h i; 1; 0h i; � � � ; 1; 0h ið Þ be the grand coalition. Obviously, if lT ið Þþ vT ið Þ ¼ 1, the

intuitionistic fuzzy coalition becomes fuzzy coalition. The set of all intuitionistic fuzzy
coalition on N is denoted by IF Nð Þ.

The support is denoted by Supp STð Þ ¼ i 2 NjlT ið Þ[ 0; 1� vT ið Þ[ 0ð Þ, and the
cardinality is written as Supp STð Þj j. For any ST ; SM 2 IF Nð Þ, the notation ST � SM , if
and only if lT ið Þ; vT ið Þh i ¼ lM ið Þ; vM ið Þh i, and lT ið Þ; vT ið Þh i ¼ 0; 1h i for any i 2 N.
For any ST ; SM 2 IF Nð Þ, its union and intersection are defined as, i.e.,

SM [ STð Þ ið Þ ¼ SM ið Þ [ ST ið Þ ¼ lM ið Þ; vM ið Þh i [ lT ið Þ; vT ið Þh i
¼ max lM ið Þ; lT ið Þf g;min vM ið Þ; vT ið Þf gh i
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SM \ STð Þ ið Þ ¼ SM ið Þ \ ST ið Þ ¼ lM ið Þ; vM ið Þh i \ lT ið Þ; vT ið Þh i
¼ min lM ið Þ; lT ið Þf g;max vM ið Þ; vT ið Þf gh i

Namely, i 2 Supp ST [ SMð Þ if and only if i 2 Supp STð Þ [ Supp SMð Þ. i 2
Supp ST \ SMð Þ if and only if i 2 Supp STð Þ \ Supp SMð Þ.

The crisp coalitions in N are denoted by S0;P0; � � �. The power set of all crisp
subsets on N is denoted by PðNÞ for all S0 �PðNÞ, the cardinality of S0 is denoted by
S0j j. A function

~v0 : PðNÞ ! ~< satisfying ~v0ð/Þ ¼ ~0, is called an intuitionistic fuzzy characteristic
function. The set of all games with intuitionistic fuzzy characteristic function on PðNÞ
is denoted by ~G0ðNÞ.

Let ~v P0ð Þ indicate the intuitionistic fuzzy characteristic function value for any
P0 �PðNÞ, where ~v P0ð Þ ¼ v1 P0ð Þ; v P0ð Þ;�v1 P0ð Þð Þ; v2 P0ð Þ; v P0ð Þ;�v2 P0ð Þð Þh i is TIFN.

Similarly, function ~v : IFðNÞ ! ~<, satisfying ~vð/Þ ¼ ~0, is called an intuitionistic
fuzzy characteristic function. The set of all games with intuitionistic fuzzy character-
istic function on IFðNÞ is denoted by ~GðNÞ.
Theorem 3.1. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ, the function f : IF Nð Þ ! RIF Nð Þ is
called a Shapley function on ~G Nð Þ if it satisfies the following three axioms.

Axiom 1 (Efficiency). If ST is an intuitionistic fuzzy carrier for ~v in SN .

X
i2Supp STð Þ

~fi SN ;~vð Þ ¼ ~v STð Þ:

Axiom 2 (Symmetry). For any i; j 2 Supp SNð Þ and any ST � SN with i; j 62 Supp STð Þ,
we have ~v ST [ SN ið Þð Þ¼~v ST [ SN jð Þð Þ, then ~fi SN ;~vð Þ ¼ ~fj SN ;~vð Þ.

Axiom 3 (Additivity). Let ~v; ~w 2 ~G Nð Þ, if there exists ~vþ ~w 2 ~G Nð Þ such that
~vþ ~wð Þ STð Þ ¼ ~v STð Þþ ~w STð Þ for all ST � SN , then

~fi SN ;~vþ ~wð Þ ¼ ~fi SN ;~vð Þþ~fi SN ; ~wð Þ, for all i 2 Supp SNð Þ.
Theorem 3.2. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ. The function u : IF Nð Þ ! RIF Nð Þ is
defined by

ui SN ;~vð Þ ¼
X

T0�Supp SNð Þn if g

Supp SNð Þj j � T0j jð Þ! T0j j � 1ð Þ!
Supp SNð Þj jð Þ! ~v ST0 [ if g

� �� �eH~v ST0ð Þ�;

8i 2 Supp SNð Þ:

Then u is the unique Shapley function for ~v 2 IFG Nð Þ in SN .Where ,

Proof. From the concept of the extended Hukuhara difference and the Shapley func-
tion, one can obtain the conclusion.
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3.2 Intuitionistic Fuzzy Cooperative Games with Multilinear Extension
Form

In this section, extending the fuzzy cooperative game proposed by Owen [2]. The
characteristic function values of intuitionistic fuzzy cooperative games are calculated as
follows:

~v SNð Þ ¼
X

P�SuppðSN Þ

Y
i2P

kpN ið Þþ lN ið Þð Þ
Y

i2Supp SNð ÞnP
vN ið Þð þ 1� kð ÞpN ið ÞÞ

0
@

1
A � ~v P0ð Þ;

where SN 2 IF Nð Þ and ~v P0ð Þ indicate the value of P0 �PðNÞ.
The value of ST � SN is expressed by

~v STð Þ ¼
X

P�SuppðST Þ

Y
i2P

kpN ið Þþ lN ið Þð Þ
Y

i2Supp SNð ÞnP
vN ið Þþ 1� kð ÞpN ið ÞÞð

0
@

1
A � ~v P0ð Þ:

Namely the players have an influence on the values of other players.

Definition 3.1. ~v 2 ~G Nð Þ is said to be an intuitionistic fuzzy convex if it satisfies

~v ST [ SKð Þþ~v ST \ SKð Þ�~v STð Þþ~v SKð Þ

for all ST ; SK�SN .

Definition 3.2. ~v 2 ~G Nð Þ is said to be an intuitionistic fuzzy supperadditivity if it
satisfies

~v ST [ SKð Þ�~v STð Þþ~v SKð Þ

For all ST ; SK 	 SN ; ST \ SK ¼ /.

Definition 3.3. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ, ST � SN is called an intuitionistic fuzzy
carrier for ~v on SN if

~v ST [ SKð Þ¼~v SKð Þ

for all SK � SN .

Definition 3.4. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ, if
~v ST [ SN ið Þð Þ � ~v STð Þ ¼ ~v SN ið Þð Þ for all ST � SN with i 62 Supp STð Þ,
then i is called an intuitionistic fuzzy dummy player for ~v on SN .

Definition 3.5. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ, if ~v ST [ SN ið Þð Þ ¼ ~v STð Þ for all ST � SN
with i 62 Supp STð Þ, then i is called an intuitionistic fuzzy null player for ~v on SN .
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3.3 The Shapley Function for Intuitionistic Fuzzy Cooperative Games

The Shapley value is a well-known solution concept in cooperative game theory. In this
section, extending the Shapley value of fuzzy cooperative game, the Shapley value of
intuitionistic fuzzy cooperative games is studied.

Theorem 3.3. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ. The function u : IF Nð Þ ! RIF Nð Þ is
defined by

ui SN ;evð Þ ¼
X

T0�Supp SNð Þn if g

Supp SNð Þj j � T0j jð Þ! T0j j � 1ð Þ!
Supp SNð Þj jð Þ!

X
P0�T0 [ if g

ð
Y
j2P0

kpN jð Þþ lN jð Þð Þ
Y

j2Supp SNð ÞnP0

1� kð ÞpN jð Þþ vN jð Þð ÞÞ � ev P0ð Þ
2
4

�eH

X
P0�T0

ð
Y
j2P0

kpN jð Þþ lN jð Þð Þ
Y

j2Supp SNð ÞnP0

1� kð ÞpN jð Þþ vN jð Þð Þð � ev P0ð ÞÞ
3
5;

8i 2 Supp SNð Þ:

ð1Þ

Then u is the unique Shapley function for ~v 2 IFG Nð Þ in SN .

Proof Existence. From Theorem 3.2, one can easily obtain existence.

Uniqueness. Similar the uniqueness proof of the Shapley function in classical case and
fuzzy case, we give the following process.

For any ST � SN ; T 6¼ /, define the unanimity game uT on ST as follows:

uT SRð Þ ¼ 1 ST � SR � SN
0 otherwise

	
ð2Þ

For any 0� c 2 R, Let SM 2 IFðNÞ. Given c 2 Rþ and ST�SM , it is obvious that
the game clT 2 ~GðNÞ and ST is a carrier for game clT , From Definition 2.6, Theorems
3.1 and 3.2, we have thatX

i2Supp SMð Þ
ui c � uTð Þ SMð Þþ c � uT SMð Þ ¼ c ¼ c � uT ¼

X
i2Supp STð Þ

ui c � uTð Þ SMð Þ

X
i2Supp SMð ÞnSupp STð Þ

ui c � uTð Þ SMð Þ ¼ 0:

For any k 2 Supp SMð ÞnSupp STð Þ, it can be seen that Supp STð Þ [ kf g is also a
carrier for game clT , so
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X
i2Supp STð Þ

ui c � uTð Þ SMð Þþuk c � uTð Þ SMð Þ ¼ c � uT Supp STð Þ [ kf gð Þ

¼ c ¼
X

i2Supp STð Þ
ui c � uTð Þ SMð Þ

Therefore, we have that uk

�
c � uT

��
SM
� ¼ 0 for k 62 Supp SMð ÞnSupp STð Þ. Given

any i; j 2 Supp STð Þ, we can see that
c � uT Supp SWð Þ [ jf gð Þ ¼ c � uT Supp SWð Þ [ if gð Þ ¼ 0 for SW 2 SM= i; jf g;
it is apparent that /i

�
c � uT

��
SM
� ¼ c=jSupp�ST�j for any i 2 Supp STð Þ.

Therefore, we get

ui c � uTð Þ SMð Þ ¼
c

Supp STð Þj j i 2 Supp STð Þ;
0 otherwise:

	
We obtain

ui c � uTð Þ SMð Þ ¼
c

Supp STð Þj j i 2 Supp STð Þ
0 otherwise

	
ð3Þ

In the following, ~v 2 IFG Nð Þ can be expressed by

~v ¼
X

SN
ST 6¼/

cTuT ; ; ð4Þ

where cT ¼ P
SK � ST

�1ð Þ Supp STð Þj j� Supp SKð Þj j~v SKð Þ, and uT is expressed as Eq. (2).

For any SK � SN ; SK 6¼ /, we have

X
SN
ST 6¼/

cT kpT þ uTð Þ
 !

SKð Þ ¼
X

SN
ST 6¼/

cT kpT þ uTð Þ SKð Þ ¼
X

SK
ST 6¼/

cT

¼
X

SK
ST 6¼/

X
SW�ST

�1ð Þ Supp STð Þj j� Supp SWð Þj j � ~v SWð Þ

¼
X

SW
SK

X
SK�ST 6¼/

�1ð Þ Supp STð Þj j� Supp SWð Þj j
 !

� ~v SWð Þ

¼
X

SW
SK

XSupp SKð Þj j

Supp STð Þj j¼ Supp SWð Þj j
�1ð Þ Supp STð Þj j� Supp SWð Þj j Supp SKð Þj j � Supp SWð Þj j

Supp STð Þj j � Supp SWð Þj j

 !0
@

1
A � ~v SWð Þ:

Since
Pn
i¼0

�1ð Þi n

i

 !
¼ 0 for any n 2 N, we have
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X
SW
SK

XSupp SKð Þj j

Supp STð Þj j¼ Supp SWð Þj j
�1ð Þ Supp STð Þj j� Supp SWð Þj j Supp SKð Þj j � Supp SWð Þj j

Supp STð Þj j � Supp SWð Þj j

 !0
@

1
A ¼ 0; 8SW 	 SK :

Hence, ev SKð Þ ¼ P
u 6¼ST�SN

cT kpT þ uTð Þ
 !

SKð Þ holds. From Eqs. (3), (4) and

additivity, we know the function u is uniquely determined by SN and ~v 2 IFG Nð Þ. This
completes the proof.

Property 3.1. Let SN 2 IF Nð Þ and ~v 2 ~G Nð Þ, if i 2 Supp SNð Þ is an intuitionistic fuzzy
dummy player for ~v in SN , then

ui SN ;~vð Þ ¼ ~v ið Þ kpN ið Þþ lN ið Þð Þ �
Y

j2Supp SNð Þn if g
1� kð ÞpN ið Þþ vN ið Þð Þ:

Proof. For all SK � SN ; i 62 Supp SKð Þ, we have

~v SK [ SN ið Þð Þ � ~v SKð Þ ¼ ~v SN ið Þð Þ:

Since,

~v lN ið Þð Þ ¼ ~v ið Þ � kpN ið Þþ lN ið Þð Þ �
Y

j2Supp SNð Þn if g
1� kð ÞpN jð Þþ vN jð Þð Þ;

~v SKð Þ ¼
X

T0�Supp SKð Þ

Y
j2T0

kpN jð Þþ lN jð Þð Þ �
Y

j2Supp SNð ÞnT0
1� kð ÞpN jð Þþ vN jð Þð Þ

0
@

1
A

� ~v T0ð Þ:

~v SK [ lN ið Þð Þ

¼
X

T0�Supp SK [ lN ið Þð Þ

Y
j2T0

kpN jð Þþ lN jð Þð Þ �
Y

j2Supp SNð ÞnT0
1� kð ÞpN jð Þþ vN jð Þð Þ

0
@

1
A � ~v T0ð Þ:

Thus, for any T0 � Supp SK [ SN ið Þð Þ with i 2 T0; T0 6¼ if g, we have

Y
j2T0

kpN jð Þþ lN jð Þð Þ �
Y

j2Supp SNð ÞnT0
1� kð ÞpN jð Þþ vN jð Þð Þ

0
@

1
A � ~v T0ð Þ ¼ 0:

From Eq. (1), we get
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ui SN ;~vð Þ ¼
X

i2T0�Supp SNð Þ

Supp SNð Þj j � T0j jð Þ! T0j j � 1ð Þ!
Supp SNð Þj jð Þ! �

~v ið Þ � kpN jð Þþ lN ið Þð Þ �
Y

j2Supp SNð Þn if g
1� kð ÞpN jð Þþ vN jð Þð Þ

0
@

1
A

¼ ~v ið Þ � kpN jð Þþ lN ið Þð Þ �
Y

j2Supp SNð Þn if g
1� kð ÞpN jð Þþ vN jð Þð Þ

0
@

1
A

Property 3.2 [37]. Let ~v; ~w 2 IFG Nð Þ. A method satisfies coalitional monotonicity, if
an increase in the value of a particular coalition implies, ceteris paribus, no decrease in
the allocation to any member of that coalition:

~v STð Þ� ~w STð Þ for some ST and ~v SKð Þ ¼ ~w SKð Þ for all ST 6¼ SK ,
implies ui SN ;~vð Þ�ui SN ; ~wð Þ for all i 2 Supp STð Þ.

4 Analysis of Example and Computational Result
Comparison

There are many applications of the classical cooperative game theory about real
decision problems in finance, management, business, investment, and economics. The
following example is an intuitionistic fuzzy cooperative game, which is applied to
determine optimal allocation strategies of enterprises (or factories).

Suppose that there are three factories (i.e., players) 1, 2, and 3, who have the ability
to produce separately. Denoted the set of players by N ¼ 1; 2; 3f g. Now, they plan to
work together for manufacturing a better product. As we all know, each decision maker
does not need to supply all of his or her resources to cooperate in real life; it depends on
individual preference. Here, decision maker 1 would supply 6 tons of R1 to the
cooperation, and would not supply 3 tons of R1, the rest of 1 tons of R1 hesitate to
supply to the cooperation. While decision maker 2 can provide 3 tons of R2, and would
not supply 6 tons of R2, the rest of 1 tons of R2 hesitate to supply to the cooperation.
While decision maker 3 would supply 2 tons of R3, and would not supply 6 tons of R3,
the rest of 2 tons of R3 hesitate to supply to the cooperation.. As decision maker 1 has
10 tons of R1, we regard the rate of participation and non-participation of decision
maker 1 as 0:6 ¼ 6

10, 0:3 ¼ 3
10.Similarly, we can see that the participation and

non-participation of decision maker 2 is 0:3 ¼ 3
10, 0:6 ¼ 6

10, and that of decision maker
3 is 0:2 ¼ 2

10, 0:6 ¼ 6
10. Therefore, an intuitionistic fuzzy coalition SN has been formed:

SN ¼ 0:6; 0:3ð Þ; 0:3; 0:6ð Þ; 0:2; 0:6ð Þf g:

Otherwise, due to the incomplete and uncertain information, they cannot precisely
forecast their profits (or gains), Namely, the profit of a coalition S�N of the factories
(i.e., players) may be expressed with an intuitionistic fuzzy number ~v Sð Þ ¼
a1; a; �a1ð Þ; a2; a; �a2ð Þh i: In this case, the optimal allocation problem of profits for the
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factories may be regarded as an intuitionistic fuzzy cooperative game ~v in which the
intuitionistic fuzzy characteristic function is equal to ~v Sð Þ for any coalition S�N.
Thus, if they manufacture the product by themselves, then their profits are expressed
with the intuitionistic fuzzy number. Thus, the crisp coalitions’ payoffs are given as
follows:

However, suppose that the rest of 1 tons of R1 supply and half of the 1 tons of R1

would not supply to the cooperation, the rest of 1 tons of R2 supply and half of the 1
tons of R2 would not supply to the cooperation, the rest of 2 tons of R3 supply and half
of the 2 tons of R3 would not supply to the cooperation (Table 1).

From Eqs. (1), we get

u1 SN ;~vð Þ ¼ 9:146; 9:311; 9:477ð Þ; 8:980; 9:311; 9:643ð Þh i

In the same way

u2 SN ;~vð Þ ¼ 6:941; 7:061; 7:182ð Þ; 6:820; 7:061; 7:303ð Þh i;
u3 SN ;~vð Þ ¼ 6:144; 6:249; 6:353ð Þ; 6:040; 6:249; 6:458ð Þh i

~vðSNÞ ¼ ð22:231; 22:621; 23:012Þ; ð21:84; 22:621; 23:404Þh i

Table 1. Cooperative games with the clear coalitions and intuitionistic fuzzy characteristic
functions

The clear coalition T The intuitionistic fuzzy characteristic functions

1f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
2f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
3f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
1; 2f g 49; 50; 51ð Þ; 48; 50; 52ð Þh i
1; 3f g 49; 50; 51ð Þ; 48; 50; 52ð Þh i
2; 3f g 49; 50; 51ð Þ; 48; 50; 52ð Þh i
1; 2; 3f g 94; 95; 96ð Þ; 93; 95; 97ð Þh i

Table 2. Cooperative games with the intuitionistic fuzzy coalitions and intuitionistic fuzzy
characteristic functions

The intuitionistic fuzzy coalition ST The intuitionistic fuzzy characteristic functions

S 1f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
S 2f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
S 3f g 0; 0; 0ð Þ; 0; 0; 0ð Þh i
S 1;2f g 11:1475; 11:375; 11:6025ð Þ; 10:92; 11:375; 11:837ð Þh i
S 1;3f g 9:555; 9:75; 9:945ð Þ; 9:36; 9:75; 10:14ð Þh i
S 2;3f g 5:145; 5:25; 5:355ð Þ; 5:04; 5:25; 5:46ð Þh i
S 1;2;3f g 22:231; 22:621; 23:012ð Þ; 21:84; 22:621; 23:404ð Þh i
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Obviously, u1 SN ;~vð Þþu2 SN ;~vð Þþu3 SN ;~vð Þ¼~v SNð Þ, which is indicated that the
Shapely value proposed in this paper satisfies and individual rationality and efficiency.
so the allocation scheme is accepted by the Bureau of the 1, 2, and 3 (Table 2).

The membership function and the non membership function of player 1:

l~A xð Þ ¼
0 x\5:538; x[ 5:742ð Þ
x� 5:538ð Þ=0:102 ð5:538� x\5:64Þ
1 x ¼ 5:64ð Þ
5:742� xð Þ=0:102 5:64� x� 5:742ð Þ

8>><
>>: ;

v~A xð Þ ¼
1 x\5:436; x[ 5:844ð Þ
5:64� xð Þ=0:204 5:436� x\5:64ð Þ
0 x ¼ 5:64ð Þ
x� 5:64ð Þ=0:204 5:64� x\5:844ð Þ

8>><
>>: :

The membership function and the non membership function of player 2:

l~A xð Þ ¼

0 x\4:215; x[ 4:365ð Þ
x� 4:215ð Þ=0:075 4:215� x\4:29ð Þ
1 x ¼ 4:29ð Þ
4:365� xð Þ=0:075 4:29� x� 4:365ð Þ

8>>><
>>>:

;

v~A xð Þ ¼

1 x\4:14; x[ 4:44ð Þ
4:14� xð Þ=0:15 4:14� x\4:29ð Þ
0 x ¼ 4:29ð Þ
x� 4:14ð Þ=0:15 4:29� x\4:44ð Þ

8>>><
>>>:

:

The membership function and the non membership function of player 3:

Table 3. Cooperative games with the clear coalitions and fuzzy characteristic functions

The clear coalition T The fuzzy characteristic functions

1f g 0; 0; 0ð Þ
2f g 0; 0; 0ð Þ
3f g 0; 0; 0ð Þ
1; 2f g 49; 50; 51ð Þ
1; 3f g 49; 50; 51ð Þ
2; 3f g 49; 50; 51ð Þ
1; 2; 3f g 94; 95; 96ð Þ
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l~A xð Þ ¼
0 x\3:333; x[ 3:815ð Þ
x� 3:333ð Þ=0:057 3:333� x\3:39ð Þ
1 x ¼ 3:39ð Þ
3:815� xð Þ=0:057 3:39� x� 3:815ð Þ

8>><
>>: ;

v~A xð Þ ¼
1 x\3:276; x[ 3:404ð Þ
3:39� xð Þ=0:114 3:276� x\3:39ð Þ
0 x ¼ 3:39ð Þ
x� 3:39ð Þ=0:114 3:39� x\3:404ð Þ

8>><
>>: .

From the above three players of the membership function and the non membership
function can obtain that the income of the players, it has a very deep significance.

Obviously, if SN ¼ 0:6; 0:3ð Þ; 0:3; 0:6ð Þ; 0:2; 0:6ð Þf g, the cooperative games with
the intuitionistic fuzzy coalitions and intuitionistic fuzzy characteristic functions is
reduced to the cooperative games with fuzzy coalitions and fuzzy characteristic
functions. The fuzzy characteristic functions is shown in Table 3.

According to Eq. (2), we can get

u1 ¼ 9:146; 9:311; 9:477ð Þ; u2 ¼ 6:941; 7:061; 7:182ð Þ; u3 ¼ 6:144; 6:249; 6:353ð Þ:

Obviously, the classical cooperative game and fuzzy cooperative game are special
case of intuitionistic fuzzy cooperative game.

5 The Comparison Analysis and Conclusion

This paper researches the cooperative games with the intuitionistic fuzzy coalitions and
intuitionistic fuzzy characteristic functions. The Shapley function proposed in this
chapter is more widely used in real life. As we all know, each decision maker does not
need to supply all of his or her resources to cooperate in real life; it depends on
individual preference. people participate in a coalition with hesitation in real life,
however, intuitionistic fuzzy coalition is more flexible to reflect the degree of people
involved in the league and non-participation in the league, it makes the alliance more
general, more closer to the realistic problems. Thus we use intuitionistic fuzzy coalition
to deal with uncertainty and imprecision in real life. Otherwise, due to the incomplete
and uncertain information, they cannot precisely forecast their profits (or gains),in order
to make the cooperative game theory is more applicable to the real problem, we use
characteristic intuitionistic fuzzy numbers to deal with uncertainty and imprecision in
real life. Thus the research of Yu and Zhang [23], Meng and Zhang [24] and so on are a
special case of this paper, i.e., the crisp cooperative and fuzzy cooperative are a special
case of intuitionistic fuzzy cooperative game.
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Abstract. We consider a profit allocation of employee coalitions in tacit
knowledge sharing. Owing to the existence of uncertain factors, the allocation of
profits cannot be accurately expressed among players. Triangular fuzzy num-
bers, which are expressed as the payoffs of coalitions, are used to give an
allocation solution. Meanwhile, the allocation also addressed the influence of
coalitions’ importance. A quadratic programming model is built to obtain a
suitable solution, which is a triangular fuzzy number distribution value of each
player. Further, we add a constraint to the built model: effectiveness, and obtain
the pre-allocated solution. Finally, the rationality and superiority of the proposed
model are verified through a numerical example.

Keywords: Triangular fuzzy number � Coalitions’ weight � Tacit knowledge �
Cooperative game � Profit allocation

1 Introduction

With the rapid development of knowledge economy, capital, labor and other tangible
resources as the competitive advantages in traditional strategy theory fail to meet
enterprises’ needs of survival and development. Knowledge has become the first factor
of economic growth, which is an important source for enterprises to maintain the
competitive advantages (Fuchs-Kittowski and Kohler 2002). The tacit knowledge,
which accounts for 90% of total amount of knowledge, has become one of the most
important strategic resources for enterprises. Therefore, tacit knowledge sharing has
become the key to knowledge management in enterprises (Li and Cheng 2014).

Tacit knowledge is a concept that Michael Polanyi proposed from the field of
Philosophy in 1958. It exists in employees and organizations, also in production,
supply, sales, researches and decision-making activities of enterprises. It is hardly to
clearly express by using language and text form. Based on nowadays market envi-
ronment, enterprises are eager to achieve tacit knowledge sharing. At present, resear-
ches on tacit knowledge sharing are mainly from the perspective of employers,
studying theoretical models that enterprises motivate staff to share tacit knowledge. For
example, Japanese scholar Nonaka et al. (2000) put forwards a SECI model to study the
transformation of tacit knowledge and explicit knowledge through socialization,
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externalization, integration and internalization. Suppiah and Sandhum (2011) used 4
indicators to realize tacit knowledge sharing, including personal interaction, organi-
zational communication, the willingness to share knowledge and the guidance of the
system. Cai et al. (2015) proposed a two-transformation methods model: decentralized
and centralized, and a transformation “triple mode” which attempted to fully mobilize
individuals, teams and organizations. Through constructing a variety of theoretical
models, scholars have made deep researches on tacit knowledge sharing, and have
achieved some results. However, there is little research from the perspective of staff to
promote tacit knowledge sharing. At present, enterprises in the market do not generate
a common situation of tacit knowledge sharing, which indicates employees are not
completely satisfied with the current remuneration. Therefore, it is necessary to
motivate employees to negotiate with enterprises actively for satisfactory results.
Assuming all the employees are rational, they have willingness to pursue interests of
tacit knowledge sharing. Obviously, only relying on personal strength, it is difficult to
negotiate with employers to get satisfactory rewards. Employees will choose to join a
coalition and then negotiate with employers. But unreasonable profit allocation has
become an important resistance for coalitions. Therefore, it is of great significance to
design a reasonable profit allocation method to promote the coalitions of employees,
and then effectively promote tacit knowledge sharing.

Due to the importance of a fair profit allocation, Scholars have made a lot of efforts
in the study of the allocation of profit. What the most representative is the Shapley model
proposed by Professor Shapley (1953). It introduced some concepts to deal with such a
situation. Shapley value has simple structure and is easily to put into use, so it has been
widely used. However, Shapley value only considers the contribution margin of the
players, ignoring the importance and uncertainty of each factor that affects the final
allocation. Meanwhile, because of uncertainties in the coalitions, it is difficult to pursuit
the exact allocation of profits. For example, in tacit knowledge sharing, both explicit
evaluation index and dominant degree exist many uncertainties, leading to predict the
benefits which the employees bring for enterprises difficultly with an exact value.

In this case, using fuzzy number like triangular fuzzy number can solve this
problem. Triangular fuzzy numbers take the possible range of fuzzy numbers and the
probability of each possible value into account, which can be used to express the fuzzy
uncertainty (Jiang 2016; Huang and Luo 2016; Pan et al. 2015). In the previous study,
Han and Li (2016) transferred cooperative games with intuitionistic fuzzy coalitions
and triangular fuzzy numbers typed payoffs to cooperative games with intuitionistic
fuzzy coalitions and real number typed payoffs by using the continuous ordered
weighted average operator and the concept of cut sets. Yu and Zhang (2010) defined a
new kind of fuzzy cores for cooperative games and give the optimistic allocation
scheme based on fuzzy Shapley and the new fuzzy core. Through the analysis, we can
see that in the existing profit allocation model based on triangular fuzzy numbers,
coalitions’ weights are rarely considered. In the cooperative game, the importance of
each coalition (coalition’s weight) is different when achieving the goals of cooperation.
Therefore, in order to realize the fair and reasonable allocation, it is necessary to assign
the profit depending on coalitions’ weights. According to this analysis, this paper takes
coalitions’ weights into consideration in profit allocation, proposing a new and effective
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solution based on triangular fuzzy numbers. This solution can be better applied to the
profit allocation in employees’ alliance of tacit knowledge sharing.

The remaining part of the paper is organized as follows. In Sect. 2, we give the
preliminary knowledge of constructing the model, including the concept of triangular
fuzzy numbers, and give the definition of triangular fuzzy numbers’ distance based on
the least square method. Our model is given in Sect. 3. With considering the weights of
the coalitions, we propose a quadratic programming model of a cooperative game
whose coalitions’ payoffs are expressed as triangular fuzzy numbers. Besides, by
verifying the effectiveness of the cooperative game to optimize the mathematical
model, we can find the most optimal solution of the coalitions. In Sect. 4, we discuss
the application of the proposed model in tacit knowledge sharing, and illustrate the
feasibility and effectiveness of the proposed method by a numerical example. Some
conclusions and possible future work are summarized in Sect. 5.

2 Preliminaries

2.1 Triangular Fuzzy Number

Let ~a ¼ ðaL; aM ; aRÞ be an arbitrary triangular fuzzy number, then the following Eq. (1)

~aðxÞ ¼
ðx� aLÞ=ðaM � aLÞ; aL � x\aM
1; x ¼ aM
ðaR � xÞ=ðaR � aMÞ; aM\x� aR
0; x\aL; x[ aM

8>><
>>: ð1Þ

is said to be the membership function (Li 2003, 2012). Here, aL and aR are respectively
represent the lower bound and the upper bound of ~a, and aM is expressed as the
intermediate value, that is, the most probable value. The graph of triangular fuzzy
number is shown in Fig. 1.

∼

0

Fig. 1. Triangular fuzzy number ~a ¼ ðaL; aM ; aRÞ
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It can be seen from Fig. 1 that when the lower bound, the intermediate value and
the upper bound of the triangle fuzzy number ~a ¼ ðaL; aM ; aRÞ are equal, that is,
aL ¼ aM ¼ aR, triangular fuzzy number ~a degrades to the exact number. On the con-
trary, the exact number can be easily expressed in the form of triangular fuzzy numbers,
that is, the exact number is a special form of triangular fuzzy numbers.

2.2 Triangular Fuzzy Numbers’ Distance

Definition 1. Let ~a ¼ ðaL; aM ; aRÞ, ~b ¼ ðbL; bM ; bRÞ, and ~c ¼ ðcL; cM ; cRÞ are any three
triangular fuzzy numbers, if Dð~a; ~bÞ satisfies the following properties:

(1) Dð~a; ~bÞ� 0,
(2) Dð~a; ~bÞ ¼ Dð~b; ~aÞ,
(3) Dð~a; ~bÞ ¼ 0 if and only if ~a ¼ ~b,
(4) Dða; bÞ�Dða; cÞþDðc; bÞ,

i.e. Dð~a; ~bÞ is the distance between ~a and ~b.
According to the basic idea of the least square method, the formula for distance of

triangular fuzzy numbers can be given as follows:

Dð~a; ~bÞ ¼ ðaL � bLÞ2 þðaM � bMÞ2 þðaR � bRÞ2 ð2Þ

It is easily to prove that the Eq. (2) satisfies the four properties in Definition 1, so
Eq. (2) can be regarded as the distance between triangular fuzzy numbers and can be
used to measure the difference between triangular fuzzy numbers ~a and ~b.

3 The Profit Allocation Model Based on Triangular Fuzzy
Numbers

In this section, we provide more details regarding our model. We consider the weights
of coalitions and use the triangular fuzzy number as the payoff of the cooperative game.
Based on this, we give the profit allocation model. Throughout the model, we will use
the following notations. The cooperative game, whose coalition’s payoff is expressed
as a triangular fuzzy number, can be represented by an ordered two tuples N;~th i,
N ¼ 1; 2; � � � ; nf g is a finite set of players, and ~t is a triangular fuzzy number, which
represents the characteristic function of a coalition(or coalition’s value), that is,
~tðSÞ ¼ ðtLðSÞ; tMðSÞ; tRðSÞÞ, here, tLðSÞ and tRðSÞ represent the lower bound, the
upper bound of the coalition’s value respectively, and tMðSÞ is expressed as the
intermediate value, that is, the most probable value. In the employee coalitions of tacit
knowledge sharing, tLðSÞ, tRðSÞ and tMðSÞ express the minimum total profit, the
maximum total profit, and the most possible total profit respectively. Next, the
employees will distribute the profits of the coalitions. Accordingly, the allocation of
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each employee has the maximum, minimum, and the most probable rewards, expressed
as triangular fuzzy numbers.

The empty set £, as a special set, represents the coalitions with no player. We set
~tð£Þ ¼ 0. To be clear and efficient, if without special illustration, ~tðSnfigÞ, ~tðS[figÞ,
~tðfigÞ and ~tðfi; jgÞ are respectively noted as ~tðSniÞ, ~tðS[ iÞ, ~tðiÞ and ~tði; jÞ. In addi-
tion, the set of all S�N is noted as 2N , ~GN is the set of cooperation of n players, whose
coalition’s payoff is expressed as a triangular fuzzy number.

3.1 Quadratic Programming Model with Coalitions’ Weights
and Solutions

In this section, we describe the model and the process of solving solutions concretely.
Let xi ¼ ðxLi; xMi; xRiÞ be an allocation for the player iði2 S Þ in our model. It is

rational to expect that player i gets from a coalition at least the amount xLi which he/she
would obtain if played individually (Sibasis et al. 2015). We thus call xLi the minimum
reward. Again xRi is called the maximum reward and xMi is the most probable reward.
Then we give a profit allocation model to determine the allocation value of triangular
fuzzy numbers for each player in the cooperative game (Ye and Li 2016). The model
innovatively takes coalitions’ weights into account, which is given as follows:

min LðxÞ ¼
X
S�N

xðsÞ
X
i2S

xLi � tLðSÞ
 !2

þ
X
i2S

xMi � tMðSÞ
 !2

þ
X
i2S

xRi � tRðSÞ
 !2

2
4

3
5

8<
:

9=
;;

ð3Þ

where s is the number of all players in the coalition S and xðsÞ is the weight of S.
Partial derivatives of LðxÞ with respect to the variables xLj, xMj and xRjðj 2 S�NÞ

are computed as follows:

@LðxÞ
@xLj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

x�Li � tLðSÞ
 !

ðj ¼ 1; 2; � � � nÞ;

@LðxÞ
@xMj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

x�Mi � tMðSÞ
 !

ðj ¼ 1; 2; � � � nÞ

and

@LðxÞ
@xRj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

x�Ri � tRðSÞ
 !

ðj ¼ 1; 2; � � � nÞ;

respectively.
Next, we discuss how to obtain the optimal solution ~x� ¼ ð~x�1;~x�2; � � � ;~x�nÞT of the

above model. Let the partial derivatives of LðxÞ with respect to the variables xLj, xMj

and xRj be equal to 0 respectively. Thus, we have

A Profit Allocation Model of Employee Coalitions 357



X
S�N:j2S

xðsÞ
X
i2S

x�Li ¼
X

S�N:j2S
xðsÞtLðSÞ; ðj ¼ 1; 2; � � � nÞ ð4Þ

X
S�N:j2S

xðsÞ
X
i2S

x�Mi ¼
X

S�N:j2S
xðsÞtMðSÞ; ðj ¼ 1; 2; � � � nÞ ð5Þ

and X
S�N:j2S

xðsÞ
X
i2S

x�Ri ¼
X

S�N:j2S
xðsÞtRðSÞ; ðj ¼ 1; 2; � � � nÞ: ð6Þ

To solve the solution ~x� ¼ ~x�1;~x
�
2; � � � ;~x�n

� �T, Eqs. (4), (5) and (6) can be rewritten
as follows:

a11x�L1 þ a12x�L2 þ a13x�L3 þ � � � þ a1nx�Ln ¼
P

S�N:12S
xðsÞtLðSÞ

a21x�L1 þ a22x�L2 þ a23x�L3 þ � � � þ a2nx�Ln ¼
P

S�N:22S
xðsÞtLðSÞ

..

.

an1x�L1 þ an2x�L2 þ an3x�L3 þ � � � þ annx�Ln ¼
P

S�N:n2S
xðsÞtLðSÞ;

8>>>>>>><
>>>>>>>:
a11x�M1 þ a12x�M2 þ a13x�M3 þ � � � þ a1nx�Mn ¼

P
S�N:12S

xðsÞtMðSÞ
a21x�M1 þ a22x�M2 þ a23x�M3 þ � � � þ a2nx�Mn ¼

P
S�N:22S

xðsÞtMðSÞ

..

.

an1x�M1 þ an2x�M2 þ an3x�M3 þ � � � þ annx�Mn ¼
P

S�N:n2S
xðsÞtMðSÞ;

8>>>>>>><
>>>>>>>:

and

a11x�R1 þ a12x�R2 þ a13x�R3 þ � � � þ a1nx�Rn ¼
P

S�N:12S
xðsÞtRðSÞ

a21x�R1 þ a22x�R2 þ a23x�R3 þ � � � þ a2nx�Rn ¼
P

S�N:22S
xðsÞtRðSÞ

..

.

an1x�R1 þ an2x�R2 þ an3x�R3 þ � � � þ annx�Rn ¼
P

S�N:n2S
xðsÞtRðSÞ;

8>>>>>>><
>>>>>>>:

respectively.
According to the knowledge on the theory of permutation and combination, the

following results can be obtained:

(1) If i ¼ jði; j 2 1; 2; � � � ; nf gÞ, then

aij ¼ C0
n�1x 1ð Þ þC1

n�1x 2ð Þ þC2
n�1x 3ð Þþ � � � þCn�1

n�1x nð Þ

(2) If i 6¼ jði; j 2 1; 2; � � � ; nf gÞ, then
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aij ¼ C0
n�2x 2ð Þ þC1

n�2x 3ð Þ þC2
n�2x 4ð Þþ � � � þCn�2

n�2x nð Þ

Let

a ¼ C0
n�1x 1ð Þ þC1

n�1x 2ð Þ þC2
n�1x 3ð Þþ � � � þCn�1

n�1x nð Þ;
b ¼ C0

n�2x 2ð Þ þC1
n�2x 3ð Þ þC2

n�2x 4ð Þþ � � � þCn�2
n�2x nð Þ;

then

aij ¼ a i ¼ j with i; j 2 1; 2; � � � ; nf gð Þ
b i 6¼ j with i; j 2 1; 2; � � � ; nf gð Þ

�

Denote

X�
L ¼ x�L1; x

�
L2; � � � ; x�Ln

� �T
;

X�
M ¼ x�M1; x

�
M2; � � � ; x�Mn

� �T
;

X�
R ¼ x�R1; x

�
R2; � � � ; x�Rn

� �T
;

BL ¼
X

S�N:12S
xðsÞtLðSÞ; � � � ;

X
S�N:n2S

xðsÞtLðSÞ
 !T

;

BM ¼
X

S�N:12S
xðsÞtMðSÞ; � � � ;

X
S�N:n2S

xðsÞtMðSÞ
 !T

;

BR ¼
X

S�N:12S
xðsÞtRðSÞ; � � � ;

X
S�N:n2S

xðsÞtRðSÞ
 !T

and

Accordingly, Eqs. (4), (5) and (6) can be rewritten in the matrix format as follows:

AX�
L ¼ BL;

AX�
M ¼ BM ;
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AX�
R ¼ BR:

The matrix A is reversible. After a series of elementary rows change operation, we
have:

A�1 ¼

aþ n�2ð Þb
aþ n�1ð Þbð Þ a�bð Þ

�b
aþ n�1ð Þbð Þ a�bð Þ � � � �b

aþ n�1ð Þbð Þ a�bð Þ
�b

aþ n�1ð Þbð Þ a�bð Þ
aþ n�2ð Þb

aþ n�1ð Þbð Þ a�bð Þ � � � �b
aþ n�1ð Þbð Þ a�bð Þ

..

. ..
. ..

. ..
.

�b
aþ n�1ð Þbð Þ a�bð Þ

�b
aþ n�1ð Þbð Þ a�bð Þ � � � aþ n�2ð Þb

aþ n�1ð Þbð Þ a�bð Þ

0
BBBBB@

1
CCCCCA

By using the multiplication of the matrix, we obtain the following solutions of
Eqs. (4), (5) and (6) as follows:

X�
L ¼ A�1BL; ð7Þ

X�
M ¼ A�1BM ; ð8Þ

X�
R ¼ A�1BR; ð9Þ

respectively. Thus, we obtain the optimal allocation with considering of coalitions’
weighs for player i (i 2 N), whose components are expressed as triangular fuzzy
numbers ~x�i ¼ ðx�Li; x�Mi; x

�
RiÞði ¼ 1; 2; � � � ; nÞ. Here, x�Li represents the minimum reward

that the player i (i 2 N) gets from the coalition. Again x�Ri is the maximum reward and
x�Mi is the most probable reward.

3.2 The Pre-allocation with Coalitions’ Weights and Efficiency

In Sect. 3.1, with considering the weights of coalitions, we gain the quadratic program-
ming model’s solution of the cooperative game, which is expressed as a triangular fuzzy
number. However, we do not take into account the effectiveness, an important property to
cooperative games. In the following, we will increase the effectiveness as a constraint in
the Eq. (3), so that the final distribution of each player involved in the coalition is equal to
the major coalition (Li 2016). Add the constraint conditions to Eq. (3), and then it can be
flexibly rewritten as the following quadratic programming model (10):
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min LðxÞ ¼ P
S�N

xðsÞ P
i2S

xLi � tLðSÞ
� �2

þ P
i2S

xMi � tMðSÞ
� �2

þ P
i2S

xRi � tRðSÞ
� �2

" #( )

s:t:

Xn
i¼1

xLi ¼ tLðNÞ

Xn
i¼1

xMi ¼ tMðNÞ

Xn
i¼1

xRi ¼ tRðNÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

From the above analysis, it can be seen that the solution of Eq. (10) can get the
pre-allocation of coalitions with weights, whose payoff is expressed as a triangular
fuzzy number.

In what follows, we focus on how to solve Eq. (10). According to the Lagrange
multiplier method, the Lagrange function of Eq. (10) can be constructed as follows:

L x; k; c; lð Þ ¼
X
S�N

xðsÞ
X
i2S

xLi � tLðSÞ
 !2

þ
X
i2S

xMi � tMðSÞ
 !2

þ
X
i2S

xRi � tRðSÞ
 !2

2
4

3
5g

þ k
Xn
i¼1

xLi � tLðNÞ
 !

þ c
Xn
i¼1

xMi � tMðNÞ
 !

þ l
Xn
i¼1

xRi � tRðNÞ
 ! ð11Þ

where k, c and l are Lagrange multipliers.
The partial derivatives of Lðx; k; c; lÞ with respect to the variables xLj, xMj,

xRjðj 2 S�NÞ, k, c and l are obtained as follows:

@Lðx; k; c; lÞ
@xLj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

xLi � tLðSÞ
 !

þ k; ð12Þ

@Lðx; k; c; lÞ
@xMj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

xMi � tMðSÞ
 !

þ k;

@Lðx; k; c; lÞ
@xRj

¼ 2
X

S�N:j2S
xðsÞ

X
i2S

xRi � tRðSÞ
 !

þ k;

@Lðx; k; c; lÞ
@k

¼
Xn
i¼1

xLi � tLðNÞ; ð13Þ

@Lðx; k; c; lÞ
@c

¼
Xn
i¼1

xMi � tMðNÞ

A Profit Allocation Model of Employee Coalitions 361



and

@Lðx;k; c;lÞ
@l

¼
Xn
i¼1

xRi � tRðNÞ;

here, j ¼ 1; 2; � � � n.
Now continue to discuss how to solve the vector ~xE� ¼ ~xE�1 ;~xE�2 ; � � � ;~xE�n

� �T
. We

use Eqs. (12) and (13) to solve xLj as an example to illustrate the solution process.
Let the partial derivative of Lðx; k; c; lÞ with respect to the variable xLjðj 2 S�NÞ

be equal to 0. Then we obtain

X
S�N:j2S

xðsÞ
X
i2S

xE�Li þ
1
2
kE� ¼

X
S�N:j2S

xðsÞtLðSÞ ð14Þ

here, j ¼ 1; 2; � � � n.
Let the partial derivative of Lðx; k; c; lÞ with respect to the variable k be equal to 0.

Then we obtain

Xn
i¼1

xE�Li ¼ tLðNÞ ð15Þ

Equation (14) can be rewritten as follows:

a11xE�L1 þ a12xE�L2 þ a13xE�L3 þ � � � þ a1nxE�Ln þ 1
2 k

E� ¼ P
S�N:12S

xðsÞtLðSÞ
a21xE�L1 þ a22xE�L2 þ a23xE�L3 þ � � � þ a2nxE�Ln þ 1

2 k
E� ¼ P

S�N:22S
xðsÞtLðSÞ

..

.

an1xE�L1 þ an2xE�L2 þ an3xE�L3 þ � � � þ annxE�Ln þ 1
2 k

E� ¼ P
S�N:n2S

xðsÞtLðSÞ;

8>>>>>>><
>>>>>>>:

ð16Þ

Let XE�
L ¼ xE�L1 ; x

E�
L2 ; � � � ; xE�Ln

� �T
, e ¼ ð1; 1; � � � ; 1ÞTn�1 ,Then, Eqs. (15) and (16) can

be rewritten as follows:

eTXE�
L ¼ tLðNÞ ð17Þ

and

AXE�
L þ 1

2
kE�e ¼ BL; ð18Þ

respectively, where the vector BL and the matrix A are given in previous description.
Combining (17) with (18), we obtain
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XE�
L ¼ X�

L �
1
n

Xn
i¼1

x�Li � tLðNÞ
 !

e: ð19Þ

Analogously, the same method described above can be used to solve XE�
M , XE�

R .

Denote XE�
M ¼ xE�M1; x

E�
M2; � � � ; xE�Mn

� �T
; XE�

R ¼ xE�R1; x
E�
R2; � � � ; xE�Rn

� �T
; then we obtain

the solutions as follows:

XE�
M ¼ X�

M � 1
n

Xn
i¼1

x�Mi � tMðNÞ
 !

e ð20Þ

XE�
R ¼ X�

R �
1
n

Xn
i¼1

x�Ri � tRðNÞ
 !

e; ð21Þ

respectively.
Therefore, for the coalitions whose payoffs are expressed as triangular fuzzy

numbers, we have obtained the pre-allocation solution with considering the efficiency
for player i (i 2 N), and its component is represented as the triangular fuzzy number
~xE�i ¼ xE�Li ; x

E�
Mi ; x

E�
Ri

� �ði ¼ 1; 2; � � � ; nÞ.

4 A Numerical Example

Tacit knowledge sharing among employees in enterprises has always been a hot issue
that needs to be solved. In order to gain greater returns from tacit knowledge, rational
employees will choose to cooperate to negotiate with enterprises. Employees through
coalitions can achieve the integration of resources and complementary advantages, so
that they can get a greater reward. However, any coalition has to deal with allocation of
profits obtained from coalitions. Whether the profits can be distributed reasonably
among players is the key element for coalitions’ stabilization. In our numerical
example, we apply a model proposed in this paper to profit allocation of employee
coalitions, and verify validity of the model.

In our numerical example, we apply the model proposed in this paper to profit
allocation of employee coalitions, and verify validity of the model. Let’s assume that a
company wants to stimulate three employees from three different departments who
have core tacit knowledge to share tacit knowledge. To be clear, the three employees
are called player 1, 2 and 3. Now the three players do not satisfy the reward given by
their enterprise. In order to achieve complementary advantages, and to enhance the
ability for negotiation, the three players would form an alliance of two or three.
Because of the existence of many uncertainties, it is impossible to estimate expected
benefits accurately from tacit knowledge sharing. So we can’t use exact number to
represent employees’ reward. Based on triangular fuzzy numbers, the approximate
value of the profits obtained from the coalition can be easily known.
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Using tðSÞ expresses the characteristic function (or value) of coalition S, the profits
(unit: thousand) that employees choose to do alone or cooperate are as follows:

tð1Þ ¼ ð100; 120; 140Þ; tð2Þ ¼ ð80; 100; 125Þ; tð3Þ ¼ ð150; 160; 190Þ;
tð1; 2Þ ¼ ð300; 400; 500Þ; tð1; 3Þ ¼ ð600; 800; 1000Þ; tð2; 3Þ ¼ ð400; 550; 650Þ;

tð1; 2; 3Þ ¼ ð1200; 1500; 2000Þ:

The importance of each possible coalition (coalition’s weight) will be given in
accordance with the expert evaluation method:

if s ¼ 1, xð1Þ ¼ 1
12; if s ¼ 2, xð2Þ ¼ 2

12; if s ¼ 3, xð3Þ ¼ 3
12 :

That is to say, the weights of the coalitions f1g, f2g and f3g are 1
12; the weights of

the coalitions f1; 2g, f2; 3g, f1; 3g are 2
12; the weights of the coalition f1; 2; 3g is 3

12.
Now the model proposed in Sect. 3 is used to solve the problem. In this case, a total

of 3 players to participate in the cooperation, i.e., n ¼ 3, and,

a ¼ C0
2x 1ð Þ þC1

2x 2ð Þ þC2
2x 3ð Þ ¼ 2

3
; b ¼ C0

1x 2ð Þ þC1
1x 3ð Þ ¼ 5

12
;

hereby,

A�1 ¼

aþ n�2ð Þb
aþ n�1ð Þbð Þ a�bð Þ

�b
aþ n�1ð Þbð Þ a�bð Þ � � � �b

aþ n�1ð Þbð Þ a�bð Þ
�b

aþ n�1ð Þbð Þ a�bð Þ
aþ n�2ð Þb

aþ n�1ð Þbð Þ a�bð Þ � � � �b
aþ n�1ð Þbð Þ a�bð Þ

..

. ..
. ..

. ..
.

�b
aþ n�1ð Þbð Þ a�bð Þ

�b
aþ n�1ð Þbð Þ a�bð Þ � � � aþ n�2ð Þb

aþ n�1ð Þbð Þ a�bð Þ

0
BBBBB@

1
CCCCCA

n�n

¼
26
9 � 10

9 � 10
9� 10

9
26
9 � 10

9� 10
9 � 10

9
26
9

0
@

1
A

According to Eq. (7), we have

X�
L ¼ A�1BL ¼

26
9 � 10

9 � 10
9� 10

9
26
9 � 10

9� 10
9 � 10

9
26
9

0
@

1
A 458:33

423:33
479:17

0
@

1
A ¼

321:30
181:30
404:63

0
@

1
A

Analogously, we can calculate,

X�
M ¼ A�1BM ¼

406:67
233:33
520:00

0
@

1
A; X�

R ¼ A�1BR ¼
541:57
303:24
658:24

0
@

1
A

From the above results, we can see
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321:30þ 181:30þ 404:63 ¼ 907:23\1200;

406:67þ 233:33þ 520:00 ¼ 1160\1500;

541:57þ 303:24þ 658:24 ¼ 1503:05\2000;

the profits have not been shared by all the players, that is, the profits generated by the
coalition are still left. For the players in the coalition, though the allocation scheme is
fair and reasonable, it is not the optimal allocation scheme. Therefore, the following
constraints are added to the problem to adjust the allocation scheme.

According to Eqs. (19) to (21), the results can be obtained sequentially:

XE�
L ¼ X�

L �
1
n

Xn
i¼1

x�Li � tLðNÞ
 !

e ¼
418:89
278:89
502:22

0
@

1
A;

XE�
M ¼ X�

M � 1
n

Xn
i¼1

x�Li � tMðNÞ
 !

e ¼
520:00
346:67
633:33

0
@

1
A;

XE�
R ¼ X�

R �
1
n

Xn
i¼1

x�Ri � tRðNÞ
 !

e ¼
707:22
468:89
823:89

0
@

1
A:

At this point, the solutions have been obtained for all the players to meet the
effectiveness of the optimal allocation schemes, which are given as follows:

~xE�1 ¼ xE�L1 ; x
E�
M1; x

E�
R1

� � ¼ 418:89; 520:00; 707:22ð Þ;
~xE�2 ¼ xE�L2 ; x

E�
M2; x

E�
R2

� � ¼ 278:89; 346:67; 468:89ð Þ;
~xE�3 ¼ xE�L3 ; x

E�
M3; x

E�
R3

� � ¼ 502:22; 633:33; 823:89ð Þ:

Here, ~xE�1 , ~xE�2 and ~xE�3 are the final allocation schemes of player 1, 2 and 3
respectively. From the above results, it can be seen that the sum of the lower bound
value, the intermediate value and the upper bound value of all the players are equal to
the lower bound value, the intermediate value and the upper bound value of the total
profits of the coalition, respectively, that is,

418:89þ 278:89þ 502:22 ¼ 1200; 520:00þ 346:67þ 633:33 ¼ 1500;
707:22þ 468:89þ 823:89 ¼ 2000

In addition, for each player, the profits that obtained from participating in the
cooperation are far larger than doing alone. For further analysis, when all the players do
alone in the case, player 2 obtains the profit is less than player 1 and player 3, therefore,
it is intuitive to understand that the reward player 2 can be assigned from the coalition
should be less than the other two, and the final allocation scheme obtained in this paper
is in good agreement with the above analysis.
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5 Conclusion

Tacit knowledge sharing in the enterprise is a hot issue that needs to be solved. We
study tacit knowledge sharing from employees’ perspective. It is different from pre-
vious studies that are only from the perspective of employers. Meanwhile, we propose
a new and effective profit allocation model based on triangular fuzzy numbers with
considering coalitions’ weights for employee coalitions, and give a solution for each
player who participants in the coalition. In addition, the profit allocation model pro-
posed in this paper is a helpful complement to the least squares pre-kernel solution for
clear cooperation game (Ruiz et al. 1996) and pre-kernel solution for interval-value
cooperative game (Li and Liu 2016). It can be used to provide a new fast and effective
method for cooperative game issues, whose coalitions’ payoffs are expressed by tri-
angular fuzzy numbers. Also, it can expand into other areas of cooperation, such as
economy, management, politics, environment, diplomacy, etc., to provide a new
research perspective and solution for the allocation of cooperative profits. The next step
is to study the stability of employee coalitions in the process of negotiating with the
enterprise. Because of the existence of opportunity Interest, self-interest and so on,
even if the profit allocation scheme is fair and reasonable, the coalitions in tacit
knowledge sharing still can be broken. Therefore, it’s necessary to establish reasonable
and effective punishment mechanism to ensure the stability of coalitions. Only when
the profit allocation and the punishment mechanism are both reasonable and effective,
can the employee coalitions be stable to promote tacit knowledge sharing rapidly.
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