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Abstract
The inadequate oxygen (O2) supply to a large extent alters the cellular microen-
vironment and results in hypoxia or even anoxia. Hypoxia-inducible factor (HIF) 
facilitates the cellular response to hypoxia. HIF, a heterodimer composed of two 
subunits, the subunit α and subunit β, is involved in several signaling pathways 
which involves both survival and death pathways, their activation and regulation. 
HIF is believed to be the best molecular target in the treatment of cancer, and also 
numerous inhibitors for HIF-1α are available today. This chapter explains the 
HIF-1α role in cancer and its therapeutic applications that potentially target HIF 
pathway.
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10.1  Introduction

Constant supply of O2 is required for all the cells to carry out oxidative phosphory-
lation in the mitochondria for the generation of ATP by oxidative phosphorylation. 
Under normal regularized conditions, with the normal supply of oxygen, the cells 
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divide in an orderly way and are replaced with new cells when they die, are worn 
out, or are damaged. In contrast, in an inadequate supply of oxygen, the lack of 
oxygen leads the cells to enter into abnormal and stressful conditions, where the 
regulated cell division becomes irregular and thereby activating several mechanisms 
in the process to sustain their viability. The inadequate supply of oxygen (O2) in 
large extent alters the cellular microenvironment and results in hypoxia or even 
anoxia leading to the cellular transformation [56]. Under the hypoxic conditions, 
the transformed cells divide rapidly and result in the formation of tumors by crowd-
ing out the normal cells. In such condition, the energy requirement and production 
are the most important aspects to understand the differences between the proliferat-
ing and nonproliferating cells [91]. The heterogenous cells in a complex structure of 
tumor are undergoing different stresses, e.g., low oxygen levels in the interior, so 
often the core of a tumor is necrotic [32, 60, 71, 94].

Under the hypoxic conditions, due to nonavailability of oxygen, tumor cells gener-
ate energy by non-oxidative breakdown of glucose, followed by fermentation of lactic 
acid in cytosol [25, 28, 32, 36, 47, 91]. In such conditions, hypoxia plays a major role 
at different stages of cancer (initiation, accumulation, angiogenesis, and metastasis) 
by initiating the changes in the microenvironment, altering the oncogenic genes and 
normal metabolism, and in the development of new blood vessels, thereby inducing 
the metastasis. The cellular response to hypoxia is mainly mediated by the HIF. HIF 
is found in mammalian cells grown under hypoxic condition. It is stimulated in 
response to intrahumoral hypoxia leading to genetic alterations by activating the 
oncogenes and inactivating the tumor suppressor genes. HIF plays an important role 
in adapting the cancer cells to low oxygen condition by triggering the transcription 
of over 100 target genes that regulate the tumor survival and progression [122–125].

10.2  HIF Structure

Hypoxia-inducible factor (HIF) is a heterodimer composed of two subunits, the 
subunit α and subunit β. The HIF-1α subunit is oxygen sensitive and is a cytoplas-
mic protein. It is degraded by the ubiquitin–proteasome system continuously in 
well-oxygenated cells. The HIF-1β subunit is also known as aryl hydrocarbon 
receptor nuclear translocator (ARNT), a nuclear protein, independent to oxygen 
tension and a heterodimeric partner of aryl hydrocarbon receptor (AhR). HIF-1β is 
constitutively expressed to levels within the nucleus that remain relatively constant 
and binds to AhR and facilitates its translocation. These two subunits (α and β) 
belong to the family of basic helix-loop-helix (bHLH) and PER-ARNT-single- 
minded protein (SIM) (PAS) transcription factors. The characteristic feature of 
these family proteins is that they have recognizable domains and can regulate their 
own transcription. Among all the family members, the PAS domain was the only 
domain that is conserved. The N-terminal region of this PAS domain is essential to 
mediate DNA binding and interaction with HIF-1β subunit [118].
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The subunit α has three different isoforms, HIF-1α, HIF-2α, and HIF-3α. Analogs 
of α subunits of HIF-1α and HIF-2α are more comprehensively studied and were 
compared to HIF-3α. HIF-3α is less analyzed when compared with the other HIF-α 
homologs. The inhibitory PAS domain protein (IPAS), a spliced variant of HIF-3α 
discovery, led practical information about HIF-3α. It functions as dominant- negative 
regulator of hypoxia-inducible gene expression and does not show any intrinsic 
transactivation activity as compared to the COOH-terminal transactivation domain 
(C-TAD) of HIF-1α and HIF-2α [111, 148].

The analogs of HIF-1α and HIF-2α share high percentage sequence identity 
(48%) and can heterodimerize with HIF-1β subunit. These two analogs when het-
erodimerized with HIF-1β subunit have distinct tissue-specific expression. The 
ubiquitously expressed HIF-1α is constantly expressed and degraded in presence of 
induced hypoxic conditions. However, HIF-2α distribution is restricted to specific 
tissue origins like vascular endothelial cells, the kidney, catecholamine-producing 
cells, renal interstitial fibroblasts, and some glomerular cells [95].

HIF-1α in its C-terminal has two transactivation regions: the N-terminal transac-
tivation region or N-TAD (AA 531–575) and the C-terminal transactivation region 
or C-TAD (AA 786–826) (Fig.  10.1). HIF-1α transcriptional activity is mostly 
dependent upon these two domains. Under hypoxia conditions the transcription of 
HIF-1α is modulated by C-TAD whereas stabilization by N-TAD. The requirement 
of C-TAD or N-TAD for different gene sets regulation is completely dependent on 
oxygen tension. N-TAD, also known as an oxygen-dependent degradation domain 
(ODDD), is responsible for stabilizing HIF-1α against degradation as hydroxylation 
of conserved prolyl residues resides in this region. This domain is also important in 
mediating oxygen regulation stability. Prolyl-4-hydroxylases (PHDs), 
2- oxoglutarate-dependent oxygenase superfamily enzymes, mediate this hydroxyl-
ation and promote the subunit degradation [77].

PAS DOMAIN ODDD 

bHLH A B N
LS

C-TAD
N803 

P564
p300/CBP

N TAD
P402       K532             P564

ARD1

OH CH3-C=O

PHD 1-3 PHD 1-3 FIH

Polyubiquitination

Degradation

Transcriptional activity

DNA Binding

pVHL

N
LS

OH OH

Fig. 10.1 Oxygen-dependent regulation of HIF-1α activity (This figure is adapted from [95, 121] 
with modifications)
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HIF-1α hydroxylation does not occur in hypoxic conditions. In this condition α 
subunit along with other cofactors acts as transcription factor and thereby migrates 
to nucleus and dimerizes with β subunit and initiates its transcriptional program 
[18]. The resultant active protein that is HIF-1 is a messenger which is translocated 
to the nucleus to induce transcriptional responses to hypoxia [171].

The active HIF-1 protein activates transcription of target genes by adhering to 
specific hypoxic response elements (HRE) which comprises A/GCGTG consensus 
motif. Similarly HIF-2 and HIF-3 are resultant active heterodimers of HIF-2α or 
HIF-3α with ARNT [119]. The presence of two nuclear localization signals in 
bHLH domain (17–33 amino acids) and COOH-terminal regulatory domain (718–
721 AA) results in translocation of HIF-1α into nucleus [110].

The interaction of C-TAD with coactivators CBP/p300 results in the change in 
transcription of HIF-1α under hypoxia. This interaction is governed by the CH1 
region of p300/CBP and also improved by SRC-1, and synergistic effect was 
observed at limited concentrations. Phosphorylation of p300 by the MAPK pathway 
increases the HIF-1 α/p300 complex formation and thereby increases the transcrip-
tional activity of HIF-1. Upon blocking of HIF-1α/p300 CH1 interaction, HIF-1 
transactivation is inactivated as the p300-CH1 interacting protein and p35srj (for 
serine–glycine-rich junction) bind to p300/CBP. C-TAD interaction with p300/CBP 
does not occur in normal conditions. This is due to oxygen-dependent hydroxyl-
ation of N803 residue in the carboxyl-terminal transactivation domain (CAD) of 
HIF-1α by factor-inhibiting HIF (FIH-1), a 2-oxoglutarate-dependent dioxygenase 
enzyme [77]. It prevents the interaction of HIF-1α with transcriptional coactivators, 
p300 and CBP (cAMP response element-binding protein). Small redox protein 
thioredoxin- 1(Trx-1) under both normoxic and hypoxic conditions has been reported 
to enhance the binding of CBP/p300 to the C-TAD of HIF-1α. This leads to the 
expression of HIF-1α and its downstream target VEGF and improved angiogenesis 
[39]. Transactivation of HIF-1 by Ref-1 leads decrease of a cysteine residue in the 
C-TAD of HIF-1α. But, the useful status of this cysteine residue and the conse-
quence of CBP/p300 remains doubtful [59, 77].

The PHD enzymes (prolyl hydroxylase-domain protein) hydroxylate the proline 
402 and 564 residues that are present in LXXLAP amino acid motif of ODDD of 
HIF-1α subunit under normal oxygen conditions. This allows modified HIF-1α at 
prolyl sites to bind to the von Hippel–Lindau (VHL) tumor suppressor protein. Only 
modified HIF-1α is able to bind to the VHL protein whose binding may also be 
promoted by acetylation of K532 residue by the arrest-defective-1(ARD1) acetyl-
transferase [42]. This VHL protein is a recognition component of an E3 ubiquitin- 
protein ligase. This ligase finally targets the HIF-1α for proteasomal degradation by 
26S proteasome. OS-9 is another factor that impacts on the degradation of HIF-1α. 
OS-9 interacts HIF-1α directly, and the prolyl hydroxylases PHD2 and PHD3 and 
forms a ternary complex. This complex formation stabilizes the interaction between 
HIF-1α and PHDs, thus helping HIF-1α hydroxylation and pVHL-mediated ubiqui-
tination, and finally leads to degradation of HIF-1α [34].
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The HIF-1 activity depends on the regulation of its subunits (α and β) at several 
levels including transcription, translation, ubiquitin-mediated protein breakdown, 
and nuclear translocation. The loss of this activity decreases the vascularization, 
tumor growth, and energy metabolism. HIF-1, by employing transcriptional 
coactivators, controls the expression of many genes. The HIF-1 expression directly 
regulates the tumor growth. The overexpression of HIF-1 promotes the tumor 
growth by increasing HIF-1 transcription factor activity. The protein products play 
important roles in the severe and long-lasting adaptation to hypoxia, including 
angiogenesis, erythropoiesis, and pH regulation glycolysis. Pulse-chase studies of 
MCF-7 breast cancer cells stimulated with heregulin increase HIF-1α synthesis but 
do not activate transactivation-region function that was stopped by rapamycin in 
PC-3 prostate cancer cells. In another study when Rat-1 fibroblasts and breast 
cancer cells (MCF7) were overexpressed with BNIP3 (BCL2/adenovirus E1B 
19 kDa interacting protein 3) and NIX (BNIP3 homolog) at the transcriptional level, 
it induced apoptosis. The cell death induced by BNIP3 is mediated by binding of 
BNIP3 to anti-apoptotic proteins Bcl-2 and Bcl-xL and inhibiting those proteins. 
This hypoxia-induced apoptosis may be HIF-1α dependent because BNIP3 promoter 
contains HRE [46].

10.2.1  Glucose Metabolism

The glycolytic rates in normal cells when compared to cancerous cells are very high 
even in the presence of oxygen, and energy required for cancerous cells is generated 
by glycolysis followed by fermentation of lactic acid in cytosol rather than oxida-
tion of pyruvate in mitochondria, also defined as “aerobic glycolysis” [25, 28, 32, 
36, 47, 91].

The aerobic glycolysis is an important pathway by which cells in the body could 
generate energy using glucose as main fuel source, whereas glutamine becomes the 
secondary fuel source for carcinogenic cells [91]. Glucose, the primary fuel source 
after entering the cell, is metabolized to pyruvate by a multistep set of reactions 
called glycolysis [32]. In typical normal cells, this pyruvate undergoes oxidative 
phosphorylation (OXPHOS) in mitochondria through Krebs cycle (TCA cycle) to 
generate energy (ATP) in order to meet the energy demands of the cell; however if 
oxygen levels are low, pyruvate is converted into lactate in cytoplasm through the 
action of lactate dehydrogenase (LDH) enzyme [28, 44]. In glycolysis one glucose 
molecule is broken down into two molecules of pyruvate thus generating two ATPs 
by consuming NAD+, whereas in OXPHOS one glucose molecule produces 30 
ATPs by oxidation of NADH and FADH2, clearly stating that OXPHOS is more 
efficient than glycolysis [36, 139]. The main difference between cancer and normal 
cells dwells here. In cancer cells the pyruvate is converted into lactate even when an 
ample amount of oxygen is available [28]. For creation of new biomass such as 
nucleotides, lipids, amino acids, and nonessential amino acids, cancer cells require 
more nitrogen. The excess glucose that is generated is deviated to produce 
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nucleotides through pentose phosphate stunt (PPS) [32]. In multiple steps, PPS 
pathway by the action of malic enzyme generates NADPH reducing equivalents to 
produce more pyruvate. These NADPH reducing equivalents are required to pro-
duce acetyl CoA from citrate through the action of ATP-citrate lyase (ACL) in cyto-
sol [25]. This production leads to synthesizes of fatty acids that are required for 
membrane production. Glutamine an essential metabolite acts as an intermediate 
in the bloodstream to transport reduced nitrogen and is also required for cell growth. 
This metabolite is utilized by tumor cells as secondary energy source because it 
plays a crucial role in uptake of essential amino acids and can replenish the TCA 
cycle by supplying carbon, and also through the action of malic enzyme, it can pro-
duce more pyruvate [24]. More NADPH in PPS pathway is produced by transactiva-
tion of TP-53-induced glycolysis and apoptosis regulator (TIGAR) by p53 oncogene. 
PI3K/Akt and Ras are activated through RTKs by stimulation of growth factor. RTK 
signaling to C-Myc activates many genes that are involved in lactate production and 
glycolysis [25, 28, 32, 47, 91].

The sequence initiation of angiogenesis and glycolysis in differentiating cells is 
arbitrated partly by triggering HIF-1. HIF-1 target genes are mainly the genes that 
are intricate in the glucose uptake and glycolysis. HIF-1 controls expressions of 
phosphoglycerate kinase 1, aldolase A, and pyruvate kinase M in the glycolytic 
pathway, as well as expression of the glucose transporters (GLUT1 and GLUT3), 
which facilitate uptake of glucose by the cells [62]. It also induces adaptive responses 
to ensure that the cells should have sufficient energy levels and thus allowing their 
survival in a hostile environment [77, 140].

10.3  HIF-Associated Pathways

Although HIF-1α transcription is constant, the mRNA translation and transacti-
vation activity of HIF-1α are induced by associated pathways and cell surface 
receptors of tyrosine kinases and G protein-coupled receptors. In pseudohypoxia 
circumstances, HIF-1α subunits are stabilized by a variety of oxygen-independent 
signaling and cellular stress events. In hypoxia condition, in response to growth 
factor stimulation, the HIF-1α levels increase in a specific manner. If hypoxia is 
associated with decreased degradation of HIF-1α, growth factors, cytokines, and 
other signaling molecules stimulate synthesis of HIF-1α through stimulation of the 
phosphatidylinositol 3- kinase (PI3K) or mitogen-activated protein kinase (MAPK) 
pathways [98].

Activation of phosphatidylinositol-4, 5-bisphosphate-3-kinase (PI3K)/AKT 
pathway has been shown to upregulate the HIF-1α protein translation. Under non- 
hypoxic conditions, due to extremely short half-life, HIF-1α protein expression is 
particularly sensitive to changes in the rate of synthesis. In the phosphatidylinositol- 
3- kinase (PI3K) pathway, binding of a growth factor (e.g., insulin-like growth factor 
1, IGF-1) to its cognate tyrosine kinase receptor activates PI3K by phosphorylation 
and stimulates the downstream serine/threonine kinase Akt (protein kinase B). This 
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stimulation subsequently phosphorylates mammalian target of rapamycin (mTOR), 
providing a link between the microenvironment and HIF signaling [118, 120]. 
mTOR increases protein translation and mediates its action by phosphorylation of 
the mRNA cap-binding protein eukaryotic initiation factor 4E (eIF4E)-binding pro-
tein (4E-BP1). mTOR provide a potential mechanism for increasing HIF-1a levels 
under normoxic conditions by disrupting the integrity of 4E-BP1, which is essential 
for inhibiting cap-dependent mRNA translation. In hypoxic conditions mTOR may 
increase HIF-1α levels by the mechanism in which it occurs independently without 
eIF4E. Alternatively, mTOR induces protein translation by phosphorylation of p70 
S6 kinase (S6K) which promotes ribosomal protein S6 phosphorylation, a substrate. 
This pathway is upset by a tumor suppressor protein (PTEN) which backs the phos-
phorylation of PI3K products.

In MAPK pathway, certain growth factors are involved in activation of RAS; this 
activation in turn stimulates RAS/RAF/MEK/ERK kinase cascade and induces 
HIF-1α transactivation-domain function. Growth factors activate the mitogen- 
activated protein kinase (MAPK) to phosphorylate MAPK (extracellular signal- 
regulated kinase, ERK). Activated ERK is then capable of phosphorylating 
p70S6K1, 4E-BP1, S6K, and MAP kinase interacting kinase (MNK) [107, 161]. 
MNK can also phosphorylate eIF-4E directly that activates the translation initiator 
factor together with mTOR by inhibiting the 4E-binding protein (4E-BP). These 
signaling events result an increased rate of HIF-1α protein synthesis through its 
effects on eIF4E.  ERK and p70S6K1 are essential factors that are required for 
HIF-1α mRNA translation. ERK regulates HIF-1α synthesis and also plays a pivotal 
role in its transcriptional activation. ERK phosphorylates the coactivator CBP/p300, 
hence increasing HIF-1α/p300 complex formation, and thus stimulates its transcrip-
tional activation function (Fig. 10.2) [7, 26, 67, 70, 97].

The von Hippel–Lindau protein (pVHL) pathway along with p53, a tumor suppres-
sor gene which induces apoptosis by regulating proteins such as Bax, regulates the 
levels of HIF-1α. In environmental stress or DNA damage, p21 mediates p53 to cause 
growth arrest (Fig. 10.2). The murine double minute 2 (Mdm2) ubiquitin- protein 
ligase mediates ubiquitination and proteasomal degradation of HIF-1α. Direct binding 
of the p53 tumor suppressor gene to the ODD domain of HIF-1α causes the ubiquiti-
nation and degradation [46]. It is evident that absence of p53 tumor suppressor gene 
in certain types of tumor cells enhances HIF-1α levels. In hypoxic tumors, mutations 
in tumor suppressor genes cancel the Mdm2-mediated degradation of HIF-1α. It was 
studied that Hsp90 inhibitors such as geldanamycin (GA) could nullify HIF-1α levels 
even in cell lines lacking von Hippel–Lindau protein (pVHL) regardless of the 
availability of oxygen. Mutation of prolyl residues (p402 and p564) in HIF-1α does not 
protect HIF-1α from geldanamycin (GA)-induced degradation, suggesting that 
Hsp90 degradation involves a novel E3 ubiquitin ligase [46, 131, 140].

Redox (reduction-oxidation)-dependent processes displays a vital role in the 
control of HIF-1α. Some studies have shown that generation of ROS can start both 
MEK/ERK and PI3K/Akt signaling pathways. This activation leads to enhanced 
HIF-1α expression in human cancers such as ovarian, prostate, and breast cancer 
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[34, 171]. Breast carcinoma is characterized by persistent ROS generation. In 
human prostate cancer cells, carcinogens such as vanadium and arsenate were 
shown to elevate ROS and induce HIF-1α and VEGF expression through p70S6K1 
activation. In human ovarian cancer cells, it is shown that p70S6K1 activation is 
stimulated by elevated epidermal growth factor (EGF) and its receptor (EGFR) 
which triggers H2O2 production.

Under hypoxia, mitochondrial ROS and intracellular secondary messengers such 
as CaM (calcium binding protein) levels increase and stimulate the accumulation of 
HIF-1α. CaM targets proteins (CaM kinase II, calcineurin, and actin) involved in the 
stimulation of transcriptional activity of HIF-1α expression. Thus, the inhibition of 
Ca2þ/CaM by a CaM-dominant mutant, Ca2þ/CaM antagonist such as HBC, or 
Ca2þ chelator downregulates the transcriptional activity of HIF-1, and subsequently 
angiogenesis is suppressed. The ROS levels in mitochondria increase through trans-
fer of electrons from ubisemiquinone to molecular oxygen at the Q0 site of complex 
III electron transport chain (ETC). HIF-1α activation is modulated by inhibiting its 
hydroxylation by the prolyl and asparaginyl hydroxylases. Mitochondrial ROS also 
induces signaling components of HIF-1α (ERK and p38 MAP kinase pathways) 
under hypoxic conditions. The activated ERK2 phosphorylates HIF-1α and increases 
its transcriptional activity [34, 42, 110].
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10.3.1  HIF and Cell Cycle

Under hypoxia, there are different adaptive responses to lessen oxygen and nutrients 
for hypoxia-/hypoglycemia-regulated genes, which are involved in the cell cycle 
regulation. These genes are either HIF-1α dependent (p53, p21, Bcl-2) or HIF-1α 
independent (p27, GADD153). Hypoxia causes a HIF-1-dependent escalation in the 
expression of the cyclin-dependent kinase (CDK) inhibitors p21Cip1 and p27Kip-
1and hypophosphorylation of retinoblastoma protein (Rb). Decreased activity of 
CDK complexes and hypophosphorylation of retinoblastoma protein regulate the 
cell cycle progression in response to hypoxia. HIF-1α activation may serve as a 
primary gatekeeper at the G1/S transition through at least two distinct mechanisms – 
the action of CKIs and another by cyclin E regulation. HIF-1α regulates cyclin E, 
not the cyclin A protein levels, but both may bind CDK2 and control its kinase activ-
ity dependent upon phase of cell cycle [15, 42, 43].

10.3.2  HIF and Cancer

HIFα is expressed in various types of cancers that include colorectal, liver, gastric, 
pancreatic, renal, gastrointestinal (IBD), esophagus, and many others. But mecha-
nism and the factors that regulate the HIF1α expression remains poorly understood 
in cancer. Several studies demonstrated the associated mechanisms that activate the 
HIFα and their upstream or downstream factors. In this context, we explore recent 
updates on the impact of HIFα in different types of cancers.

HIF-1α and HIF-2α play a significant role and have overlapping and distant 
functions in inflammatory bowel disease (IBD) [154, 158]. IBD, a chronic inflam-
matory disease of the intestine, is characterized by repeated mucosa wounding and 
losing of intestinal epithelial barrier functions. It comprises two distinct pathologi-
cal entities, ulcerative colitis (UC) and Crohn’s disease (CD) [157, 158]. 
Immunohistochemical and immunostaining studies of surgical specimens from 
patients with IBD revealed higher vascular density in diseased tissue than in nor-
mal tissue [40].

Studies revealed that HIF was essential for restoration and intestinal barrier 
integrity [63]. Mouse models and cell studies demonstrated distinct functions for 
HIF-1α and HIF-2α and regulate diverse sets of genes to modulate the epithelial 
barrier [41, 92, 132, 154]. Regulation of HIF-1α and HIF-2α by different subset of 
genes also promotes disruption of intestinal tight junctions and increased barrier 
permeability. HIF-1α is a critical transcriptional factor in intestinal epithelial cells 
and is beneficial in regulating the epithelial barrier following inflammation. HIF-1α 
activation in intestinal epithelial cells decreases proinflammatory cytokines. Two 
mouse models of colon cancer, a sporadic and a colitis-associated colon cancer 
model, were assessed and proved that activation of HIF-1α in intestinal epithelial 
cells did not result in spontaneous tumor formation. HIF-2α activates several proin-
flammatory mediators and is important in wounding response, whereas its activation 
increases inflammation [157, 158, 168].
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Pharmacologic inhibition of prolyl hydroxylases (PHDs) primes more vigor-
ous activation of HIF-1α rather than HIF-2α. PHD inhibitors activate HIF-1α and 
HIF-2α in pulsatile manner and protect acute colitis in murine models. DMOG, a 
pan-hydroxylase inhibitor, activates the HIF pathway by mimicking hypoxia 
through the inhibition of hydroxylase activity, leading to stabilization and trans-
activation of HIF-1α [22]. AKB-4924, a HIF-1-specific prolyl hydroxylase inhibi-
tor (PHDi), enhances innate immunity by robustly activating HIF-1α [61]. 
FG-4497, a novel PHD inhibitor, provides a protective adaptation in murine TNBS 
colitis [114].

HIF-1α is a critical protein in the development of colorectal cancer (CRC) [84]. 
Various studies have reported the role of HIF-1α in angiogenesis and tumor progres-
sion via regulation of VEGF in human colorectal carcinoma [75]. In colon cancer 
HIF isoforms have different cellular functions. In human colon cancer tissues, 
expression of HIF-1 α and, to a lesser extent, HIF-2 α was linked to upregulation of 
VEGF and tumor angiogenesis [52]. Overexpression of HIF-1α was found in the tis-
sue of stage III and stage IV lymph nodes and liver metastases [13]. HIF-1α expres-
sion was strongly observed in the epithelium around the necrosis region of tumor 
compared to normal mucosa suggesting a significant correlation of HIF-1α expres-
sion along with CXCR4, VEGF, and microvessel density. Immunohistochemical 
studies of tumor cells in colon cancer cases by Wu et al. [152] also indicated that 
HIF-1α expression correlates with tumor TNM stage, lymph node status, tumor inva-
sion, and distant metastases. JMJD2B upregulates hypoxia-inducible genes involved 
in cancer cell proliferation, apoptosis, cell cycle arrest, and invasion through specifi-
cally demethylating the H3K9me3 on their promoters. Study by Fu et al. [33] sug-
gested a significant role of JMJD2B in CRC tumorigenesis and progression in 
HIF-1α-dependent manner under hypoxia. Activation of HIF-1α results in increasing 
transcription of STAT-3 and HSP90 in the CRC cell lines. This interaction between 
HIF-1α and STAT-3 in the CRC cell lines is dependent on the presence of an active 
HSP90 [35]. HSP90 in HCC cells regulated the levels of HIF-1α by inhibiting the 
ubiquitination and proteasomal degradation of HIF-1α. Further studies also analyzed 
a positive correlation between HSP90 and HIF-1α, with statistical significance, 
showing they may exert a synergistic effect on the occurrence, development, inva-
sion, and metastasis of colorectal cancer [88, 155]. The results by Zhang et al. [167] 
and Zhang et al. [169] suggest that HIF-1α enhances EMT and cancer metastasis by 
binding to ZEB1 promoter in CRC and proposed a novel molecular mechanism for 
HIF-1α-inducing epithelial–mesenchymal transition (EMT) and cancer metastasis. 
LRG1 plays a crucial role in the progression of CRC by regulating HIF-1α expres-
sion thereby inducing VEGF-A expression and EMT markers of E-cadherin, VDR, 
N-cadherin, α-SMA, vimentin, and Twist1. In human CRC cells, HIF-1α under 
hypoxia induces B-cell CLL/lymphoma 9 protein (BCL- 9) expression, an important 
underlying mechanism for increased BCL-9 expression [135].

In esophageal squamous cell carcinoma, HIF-1α expression levels significantly 
correlates with the expression of VEGF protein and with initial response to concur-
rent CRT. HIF-1α expression strongly apparent within nuclei and/or cytoplasm of 
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tumor cells and its expression are also found to be different in two separate tumor 
microenvironments: SCCs and ACs of the esophagus cancer proposing a different 
mechanism for HIF-1α expression in esophagus cancer [45, 96, 106].

Under hypoxic conditions, ERK1/2 phosphorylates and activates HIF-1α in pan-
creatic cancer cells. This activation contributes the ABCG2 expression by inducing 
binding of HIF-1α to target promoter region for transcription [51]. Recent findings 
in pancreatic cancer patients indicated that HIF-2α induces cell migration, invasion 
in vitro, and regulated E-cadherin and MMPs protein expression; these are vital to 
epithelial–mesenchymal transition (EMT). It is regulated by binding of Twist2 
protein to E-cadherin promoter; this indicates HIF-2α may act as an effective 
therapeutic target for prevention of pancreatic cancer [159].

HIF-1α is an important mediator and also acts as potential target for treatment of 
gastric cancer. The overexpression of HIF-1α in human gastric cancer proves the 
fact of it being a potential target. While regulating VEGF expression in cancer cells, 
it also plays a major role in the formation of complex proangiogenic microenviron-
ment in tumors, and thereby affecting vessel morphology and vessel function. The 
in vitro studies in metastatic human gastric cancer cells evidenced that HIF-1α was 
not required for cellular proliferation. The inactivation of the HIF-1α activity by 
2ME significantly reduced migratory, invasive, and adhesive features of gastric can-
cer cells. Inhibition of its function has proven the antitumor efficacy in rodent mod-
els and angiogenesis. In human gastric cancer cells, inhibition of HIF-1α activity by 
transfection with a construct expressing a dominant-negative mutant version of 
HIF-1α (pHIF-1αDN) that dimerizes with HIF-1β to form HIF-1 complexes that 
cannot activate transcription leads to impaired gastric tumor growth, angiogenesis, 
and vessel maturation [115, 131]. HIF-1α also regulates transcription factors (NF-
κB1, BRCA1, STAT3, STAT1) and their corresponding network genes (MMP1, 
TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) that were associated with hypoxia, 
inflammation, and immune disorder in gastric cancer [145]. In the recent study, it is 
revealed a novel mechanism in three GC cell lines, 44As3, 58As9, and MKN45, and 
the integrity of mitochondrial autophagy (mitophagy) might determine the aggres-
siveness of cancer via the mitochondrial ROS (mtROS)/HIF-1α interplay under 
hypoxic conditions [127]. Relative mRNA expression of miR-421 (microRNAs), a 
crucial factor in carcinogenesis, was found to be upregulated by HIF-1α in gastric 
cancer tumor tissues [38]. Low expression of microRNA-186 (miR-186) facilitates 
aerobic glycolysis and suppresses cell proliferation induced by HIF-1α in gastric 
cancer cell lines. The in vivo xenograft tumor studies demonstrate that the miR-186/
HIF-1α axis has an antioncogenic role in gastric cancer [86]. The in vitro and in vivo 
results revealed that dextran sulfate (DS) may reduce tumor metastasis through inhi-
bition of HIF-1α and ITGβ1 expression in gastric cancer cells [156]. In hypoxic 
gastric cancer cells, angiopoietin-like protein 4 (ANGPTL4), a hypoxia-inducible 
gene expression, is independent of HIF-1α [73]. Expression of HSP60 or HIF2α 
serves as predictive marker for diagnosis of gastric cancer. In gastric cancer cells, 
HSP60 or HIF2α inhibition induce apoptosis and suppresses cell mobility by nega-
tive relation of MEK/ERK signaling [138].
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10.3.3  HIF Pathway Inhibitors

Research is currently focused to target HIF involved pathways, and several drugs 
have been developed by considering the fundamental role of HIF and the analogs in 
the activation of various pathways involved in tumor progression in several cancers. 
Based on the mechanism of action, HIF inhibitors can be divided into the agents that 
modulate HIF1α (1) mRNA expression, (2) protein translation, (3) protein degrada-
tion, (4) DNA binding, and (5) transcriptional activity. The inhibitors representing 
each group are depicted in Fig. 10.3 and discussed below and listed in Table 10.1.

In diverse human cancer cell lines, the elevation of HIF-1α protein is by PI3K/
Akt/mTOR signaling pathway. Various compounds for inhibiting PI3K/Akt/mTOR 
signaling pathway are under the exploitation stage, and few compounds are in 
clinical trials. Inhibitors wortmannin, LY294002, GDC-0941, and PI-103 specifi-
cally inhibit PI3 kinase in dose-dependent manner [105]. FDA-approved drugs 
like rapamycin and its chemical derivatives (temsirolimus and everolimus) have 
more potency to target mTOR and inhibit the protein translation of HIF-1α at 
cellular levels [113].

Glyceollins, a set of phytoalexins present in soybean, potentially inhibit the 
HIF-1α synthesis and decrease stability by blocking the PI3K/AKT/mTOR pathway 
and interaction of Hsp90 with HIF-1α [81].

TSL-1, an agent in aqueous extracts of Toona sinensis (TS) leaves, which induces 
apoptosis via mitochondria-dependent pathway. TSL-1 stops cell division in G0/G1 
phase via the decrease in cyclin D1, cyclin-dependent kinases (CDK2 and CDK4), 
and induced p53 expression. TSL-1 suppresses progression of cell cycle and motil-
ity through phosphorylation inhibition of JAK2/stat3, Akt, MEK/ERK, and 
mTOR. TSL-1 also inhibits p21, HIF-2α, c-Myc, VEGF, and MMP9 expressions 
and its anti-migration activity [19].

EZN-2968, an antisense oligodeoxynucleotide that precisely targets HIF-1α. A 
trial with administered EZN-2968 in patients with advanced solid tumors observed 
modulation of HIF-1α mRNA, protein, and its target genes [55]. In MCF-7 xenografts, 
aminoflavone, a potential therapeutic target for several human diseases, inhibited 
HIF-1α protein accumulation and expression of target genes [137].

GL 331, a topoisomerase II inhibitor, suppresses tumor-induced angiogene-
sis. In CL1-5 cells treated with GL331 downregulates HIF-1alpha expression 
through transcriptional repression. It also exerts cytotoxic effects on the glioma 
cells [16, 20].

Camptothecins (CPTs) analogs, topotecan and irinotecan, are active in different 
human tumors and shown significant anticancer activity against various tumors by 
inhibiting DNA topoisomerase I. Topotecan is the approved agent using in the 
treatment of lung cancer [37]. Irinotecan is a cytotoxic drug used for the patients 
suffering with colorectal cancer (CRC) in advanced stage. SN-38 (10-hydroxy-
7-ethyl-camptothecin) is the active metabolite of irinotecan prevents re-ligation of 
single-stranded DNA breaks induced during the DNA synthesis [37, 90]. These 
agents have shown the antitumor activity in xenograft model by inhibiting HIF-1α 
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Table 10.1 Classification of HIF-1α pathway inhibitors and their molecular targets

Inhibitory mechanism Target Compound
PI3/AKT/mTOR 
inhibitors

PI3K Wortmannin
LY294002
GDC-0941
PI-103

AKT/mTOR, Hsp90 Glyceollins
Toona sinensis (TSL-1)

mTOR Rapamycin derivatives
• Temsirolimus (CCI-779)
  Everolimus (Rad 001)
  PP242

mRNA expression HIF-1α mRNA EZN-2968
GL 331
Amino flavone

Protein translation Topoisomerase I (top-1) inhibitor/
HIF-1α accumulation inhibitor

Camptothecins (CPTs)
• Topotecan (NSC-609699)
• (PEG-SN 38)
• SN-38
  Irinotecan

NORMOXIA

Translation

Nucleus

Dimerization

• EZN-2968
• GL 331
• AMINO FLAVONE HIF-1α mRNA

5’                     3’

Growth factors

PI3K

mTOR

HIF-1α

GLYCELOLLINS
RAPAMYCIN deriva�ves 
• TEMSIROLIMUS (CCI-779)
• EVEROLIMUS (Rad 001)
PP242

• WORTMANNIN
• LY294002
• GDC-0941
• PI-103

PROTEIN

HIF-1α

• CPTs
• CARDIAC 

GLYCOSIDES
• PX-478
• 2ME2
• VINCRISTINE
• TAXOL

HYPOXIA

HIF-1α HIF-1β

HIF-1

Acri�lavine

• Amphotericin B
• Chetomin
• PS-341
• YC-1

HIF-1α HIF-1β

P300/CBP

HRE

• Echinomycin
• Anthracyclines

PHD

P402-OH
P564-OHHIF-1α

HSP inhibitors
HDACi

Degradation

HIF-1α

Fig. 10.3 Inhibitors that modulate different HIF-1α pathways

(continued)
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Inhibitory mechanism Target Compound
Topoisomerase II inhibitor GL-331

HIF-1α/mTOR-independent 
mechanism

Cardiac glycosides
• Digoxin
• Ouabain
• Proscillaridin
Strophanthidin glycoside

HIF-1α/pVHL and p53-independent 
mechanism

PX-478

Disrupts tumor interphase 
microtubules

2ME2 (2-methoxy- estradiaol) 
derivatives
• ENMD-1198
• ENMD-1200
• ENMD-1237
Vincristine
Taxol

HIF-1α degradation HSP90 inhibitors Geldanamycin derivatives
• 17-AAG
• 17-AG
• 17-DMAG
Radicicol derivatives
• KF58333
• Apigenin
IPI-504 (retaspimycin)
Y-632

FIH YC-1
Farnesyl transferase inhibitor SCH66336
Histone deacetylase inhibitors 
(HDACi)

Sirtuin1 (SIRT1)
FK228 (romidepsin)
Trichostatin A (TSA)
LW6
LAQ824
LBH589

TRX-1 signaling (thioredoxin-1) PX-12
Pleurotin
AJM 290
AW 464

HIF-α/HIF-1β 
dimerization inhibitors

HIF-1α/2α PAS B-domain Acriflavine
HIF-2α PAS B-domain PT-2385

Transcriptional activity p300 recruitment Chetomin
Bortezomib (PS-341)

FIH interaction and p300 recruitment Amphotericin B
Hsp70 Triptolide
Histone acetylation with repression 
of p300

FM19G11

DNA binding HRE Echinomycin
Anthracyclines derivatives
  Doxorubicin (DXR)
  Daunorubicin (DNR)

Table 10.1 (continued)
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accumulation. Clinical trials of these compounds are under progress to provide 
evidence as anticancer activity agents.

Cardiac glycosides, a group of natural products used in cardiac congestion and 
cardiac arrhythmias treatment. Recent studies suggested that cardiac glycosides 
have potential characteristic properties for the treatment of cancer [100]. Cardiac 
glycosides also inhibit cancer cell proliferation at nanomolar concentrations [117]. 
For example, strophanthidin glycoside, an organic solvent extract from Crossosoma 
bigelovii, showed the HIF-1α translation inhibitory effect [68].

Digoxin, a cardiac glycoside extracted from the foxglove plant, having antitumor 
activity against many cancers including lung, colon, prostate, and ovary. It shows 
activity through Erk and stress response pathways [30]. It exerts antitumor proper-
ties through antiproliferative and apoptosis mechanisms in HepG2 cell line cultured 
with different concentrations of digoxin [133]. Digoxin when treated also has shown 
to prolong tumor latency and hampers tumor xenograft growth in mice. It also 
inhibits HIF-1α expression and its target genes VEGF, GLUT1, HK1, and HK2 
[166]. Digitoxin in H1975 cells showed a significant cytotoxic effect by causing G2 
phase arrest and suppressed microtubule polymerization through decreasing 
α-tubulin [170].

Ouabain is another cardiac glycoside used as novel anticancer HIF-1α antagonist. 
It can regulate HIF-1α translation and affects neither HIF-1α mRNA levels nor pro-
tein degradation. Studies revealed that inhibitory effect of ouabain on HIF-1α protein 
synthesis is by eIF4E rather than mTORC1, eIF2α signaling, or Na(+)/K(+)-ATPase 
inhibition. Mechanistically, ouabain straightly binds to eIF4E and disrupts associa-
tion between IF4E/eIF4G complex rather than eIF4E/mRNA complex both in vitro 
and in vivo, finally suppressing the intracellular CAP-dependent translation [14].

Proscillaridin A exerts its cytotoxic activity by targeting both topoisomerase I 
and II enzymes simultaneously. In human fibroblasts it elevates intracellular Ca2+ 
concentration, activates caspase-3, and induces apoptosis relatively at high 
concentration. It exerts the antiproliferative and apoptotic activity at nanolevel drug 
concentrations (30 and 100 nM) [10, 151].

PX-478 (S-2-amino-3-[4′-N,N,-bis(chloroethyl)amino] phenyl propionic acid 
N-oxide dihydrochloride) decreases Hif-1α levels in both in vitro and in vivo by 
suppressing mRNA and blocking translation. PX-478 inhibitory mechanism is inde-
pendent of pVHL or p53. This drug inhibits HIF-1α levels and transactivation in a 
variety of cancer cell lines including HT-29, PC-3, DU-145, MCF-7, Caki-1, and 
Panc-1. The effect of PX-478 is limited to hypoxia, as baseline levels of vascular 
endothelial growth factor is not altered under normoxic conditions [69, 149]. A 
recent study showed that PX-478 significantly decreased or inhibited extra skeletal 
bone formation by inhibition of Hif1α. This finding indicates that Hif-1α represents 
a promising target to prevent and treat pathologic extra skeletal bone or heterotopic 
ossification (HO) [2].

2-Methoxyestradiol (2ME2) is a natural estrogen metabolite having antiangio-
genic, antiproliferative, and pro-apoptotic drug activities. It culminates induction of 
apoptosis by diverse cellular effects including microtubule disruption, commence-
ment of signal transduction pathways, and generation of reactive oxygen species 
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[102]. 2ME2 targets apoptosis in rapidly proliferating cells of both the tumor cell 
and endothelial cell compartments and inhibiting blood vessel formation. The abil-
ity of 2ME2 to inhibit metastatic spread in several models adds to its therapeutic 
value for cancer treatment at various stages of the disease. Many genes regulating 
cell death and repression of growth/survival machinery were also induced tran-
siently in multiple myeloma (MM) cells. Cells under normoxia and hypoxia condi-
tions when exposed to 2-ME reduced mRNA expression of HIF-1α and HIF-2α 
were observed [4, 8]. 2ME2 significantly induced apoptosis in HIF-1α overex-
pressed AML cells by suppressing the expression HIF-1α. In vivo 2ME2 has been 
shown to downregulate HIF-1α target genes, such as for VEGF, phosphoglycerate 
kinase, glucose transporter-1, GLUT1, and HO-1 [8, 172]. In clinical trials the 
2ME2 was noticed to target both tumor cells and neovasculature in preclinical mod-
els. The report of first Phase I trials of 2-methoxyestradiol, alone and in combina-
tion with docetaxel, was well tolerated in patients with metastatic breast cancer 
(MBC) [23, 53]. 2ME2 analogs (ENMD-1198, ENMD-1200, and ENMD-1237) 
with superior properties have been identified [76, 109, 128].

Few compounds like Taxol and vincristine also inhibit protein translation of 
HIF-1α by disrupting tumor interphase microtubules. Taxol induces static magnetic 
field (SMF) effect on microtubules to cause abnormal mitotic spindles that delay 
cell exit from mitosis [93]. Vincristine clinical trials in adults have demonstrated 
clinical activity without dose-limiting neurotoxicity. The safety, tolerability, and 
activity of vincristine might be reasons for FDA approval for adults with relapsed 
acute lymphoblastic leukemia [126].

Hsp90 antagonists induce degradation of HIF-1α proteins because binding of 
HSP90 to HIF-1α promotes HIF-1α activity [95]. Heat shock protein 90 is a 90-kDa 
ATPase-dependent molecular chaperone which is a ubiquitously expressed and 
highly conserved. The expression of Hsp90 in cancer cells is generally higher than 
that in normal cells. The Hsp90 proteins include a wide variety of signal- transducing 
proteins that regulate cell growth and differentiation; these are like protein kinases 
and steroid hormone receptors [101]. Hsp90 inhibitors may be organ-specific and 
should be carefully monitored, and they have some effects on cell adhesion-asso-
ciated molecules. Hsp90 has long been regarded as an emerging drug target for a 
wide spectrum of cancers. Heat shock protein inhibitors are a diverse group of 
agents which have been verified to have pro-apoptotic effects on malignant cells [3, 
129]. The high sensitivity of the inhibitor in cancer cells is proposed due to the 
formation of the Hsp90–cochaperone–client super complex that is highly unstable 
and possesses high ATPase activity [89]. Initial development of hsp90 inhibitors, 
geldanamycin and 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), 
showed nearly 100-fold higher binding affinity in cancer cells than in normal cells. 
The effect is restricted by hepatotoxicity and need for solvent carrying agents. On 
the other hand, retaspimycin, or IPI-504, a derivative of geldanamycin and 
17-AAG, is highly soluble in water and has shown promising activity in gastroin-
testinal stromal tumor in Phase I/II trials [28]. Currently, Phase I/II trials are under-
way in the evaluation of dosing schedules and activity for IPI- 504 in breast cancer 
[49, 146].
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Y-632, a novel pyrimidine derivative, Hsp90 function suppressed through induced 
thiol oxidation and disruption of Hsp90–Hsp70/Hsp90 organizing protein complex. 
This further induces inhibition of cell adhesion, G0/G1 cell cycle arrest, and apopto-
sis [147].

17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin), another 
geldanamycin derivative of the HSP90 inhibitor, stalled the viability of human lung 
cancer cell lines via reduced expression of client proteins, including the proto-onco-
gene RAF-1. 17-DMAG treatment in human SCLC cell line SBC-5 inhibited the 
formation of metastatic sites in both liver and bone [134].

KF58333, a novel oxime derivative of radicicol, binds to Hsp90 and destabilizes 
its associated signaling molecules. KF58333, without altering the HIF-lα mRNA 
expression, resulted in significant downregulation of HIF-1α under hypoxic condi-
tions. KF58333 also inhibited tumor angiogenesis and vascular endothelial growth 
factor (VEGF) secretion in a dose dependently [74].

Apigenin a naturally occurring flavonoid exhibits antiproliferative and antiangio-
genic activities. Apigenin inhibits VEGF expression via degradation of HIF-1α and 
interferes with the function of Hsp90 in endothelial cells of human umbilical artery. 
In pancreatic cancer cells, it inhibits HIF-1α, GLUT-1, and VEGF mRNA and pro-
tein expression in both normoxic and hypoxic conditions [99, 108]. It inhibits the 
growth of UV-induced skin cancer and thyroid cancer cells by activating AMP- 
activated protein kinase (AMPK), leading to suppression of basal mTOR activity. 
This suppression of mTOR activity inhibits cell proliferation and arrests the cell 
cycle at G2/M phase. Apigenin is shown to reduce CDK4 and cyclins D1 and A, but 
not the cyclin E, CDK2, and CDK6 protein expression. Its growth inhibitory effects 
are mediated by targeting signal transduction pathways and emerging as a promis-
ing anticancer agent [11, 163].

YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole], a HIF-1 inhibitor, acts 
by reducing HIF-1α expression [50, 104]. YC-1 inhibits HIF-1α expression via the 
FIH-dependent CAD inactivation as well as protein downregulation [83]. YC-1 sup-
presses the hypoxic responses by posttranslationally inhibiting HIF-1α accumula-
tion and exhibits novel antiangiogenic anticancer agent properties [21, 160].

SCH66336, a small molecule farnesyl protein transferase inhibitor that shares a 
common tricyclic nucleus and competes with peptide/protein substrates for binding 
to farnesyl protein transferase [87]. It also inhibits the interaction between HIF-1α 
and Hsp90 to inhibit VEGF production in NSCLC and HNSCC cells [48].

Under hypoxia, histone deacetylase (HDAC) inhibitor enhances p53 and von 
Hippel–Lindau expression and thereby stimulates angiogenesis. This stimulation 
leads to downregulation of HIF-1α and VEGF thus promoting HIF-1α degradation 
[65]. Stress-responsive genetic regulator, sirtuin 1 (Sirt1) gene expression, increases 
in a HIF-dependent manner, and loss of HIF signaling affects Sirt1 deacetylase 
activity during hypoxia [17]. SIRT1 downregulation was due to decreased NAD 
levels; this allowed the acetylation and HIF-1α activation. SIRT1 deacetylase and 
the HIF-1α transcription factor act as redox and oxygen sensors, respectively, 
whereas hypoxic HIF-1α stabilization requires SIRT1 activation [85]. Sirt1 regu-
lates HIF-1α and HIF-2α by deacetylating Lys674 of HIF-1α and HIF-1α K674 and 
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HIF-2α K741 by PCAF and CBP, respectively. HIF-1α deacetylation blocks the 
recruitment of p300 to HIF-1α. This blockade consequently inactivates HIF-1α; 
represses HIF-1 target genes including VEGF, GLUT1, and MMP2; and finally pro-
motes cancer cell invasion [58, 165].

Trichostatin A (TSA), an antifungal antibiotic showing histone deacetylase 
(HDAC) activity. In vitro and in vivo studies in human breast cancer and squamous 
cell carcinoma cell lines assessed the antitumor efficacy and toxicity of TSA [141]. 
It induced caspase-dependent or caspase-independent apoptosis according to cell 
types. In gastric cancer cells, TSA increased TRAIL-induced apoptosis [82]. In 
HSC-3 cells, TSA enhanced the Bim protein expression levels by dephosphorylat-
ing ERK1/2 pathway. In Ca9.22 cells TSA damaged MMP and increased cytosolic 
apoptosis-inducing factor (AIF) [54].

LW6, a small compound, inhibits the HIF-1α accumulation. LW6 degrade HIF-1α 
via VHL expression, with modifications of P402A and P564A, at hydroxylation 
sites in the oxygen-dependent degradation domain (ODDD), without affecting the 
activity of prolyl hydroxylase (PHD) [78]. A recent data revealed that angiogenesis 
suppression through LW6 inhibited HIF-1α stability via direct binding with calci-
neurin B homologous protein 1 (CHP1) [64].

LAQ824 and LBH589, the inhibitors of histone deacetylase (HDACi) and estab-
lished cancer therapeutic agents. Both engage in the intrinsic apoptotic cascade 
which does not require p53. Mitochondrial damage is the key event for LAQ824 and 
LBH589 to mediate tumor cell death [31].

Thioredoxin-1 (Trx-1), a redox protein usually overexpressed in many human 
tumors. It increases aerobic and hypoxia-induced HIF-1α protein in the cells and 
leads to expression of HIF-regulated genes. Trx-1 controls multiple aspects of cell 
growth and survival [57].

PX-12 (1-methylpropyl 2-imidazolyl disulfide), an irreversible inhibitor of Trx- 
1. This is currently under clinical development [5, 112]. PX-12 decreases plasma 
VEGF levels and contributes to the antitumor activity [6]. PX-12 acts independently 
and increases nuclear Nrf2; this one interacts with PMF-1 to increase SSAT1 expres-
sion, and further SSAT1 binds to HIF-1α and RACK1, finally resulting in oxygen- 
independent HIF-1 ubiquitination and degradation [66].

Pleurotin, a growth inhibitory and antitumor agent shown to decrease HIF-1α 
protein levels, HIF-1-trans-activating activity, VEGF formation, inducible nitric 
oxide synthase, and the expression of downstream target genes [150].

AJM290 and AW464 (quinols), two novel anticancer drugs that inhibit Trx-1 
function and also inhibit HIF-1α CAD transcription activity and DNA binding. In 
contrast to other Trx inhibitors, these agents also inhibit HIF degradation [57].

Small molecules can inhibit HIF-1 dimerization and potentially inhibit the tumor 
growth and vascularization.

Acriflavine antagonizes HIF upon binding to the HIF-α PAS-B domain. It directly 
binds to HIF-1alpha and HIF-2alpha and suppresses dimerization of HIF-1 and tran-
scriptional activity. It also induces cell death under hypoxic conditions and reduced 
the expression of the HIF-1 target genes VEGF, PTGS2, and EDN1 [12, 80].
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PT2385, HIF-2α inhibitor allosterically binds to PAS-B domain of HIF-2α, 
thereby preventing HIF-2α dimerization with ARNT (aryl hydrocarbon receptor 
nuclear translocator, HIF-1β). This results in decreased transcription and expression 
of HIF-2α downstream target genes, many of which regulate tumor cell growth and 
survival. Blocking HIF-2α reduces the proliferation of HIF-2α-expressing tumor 
cells. PT2385 is currently under evaluation in Phase I clinical trials for the treatment 
of clear cell renal carcinoma [144].

In hypoxic conditions, HIF-1α is translocated into nucleus, heterodimerizes with 
HIF-1β, and binds to hypoxia response element (HRE) DNA sequence. Chetomin, 
a metabolite complex, produced by several fungi of the genus Chaetomium, disrupts 
the ability of tumors to adapt to hypoxia by blocking the HIF pathway and reduces 
hypoxia-dependent transcription. Chetomin targets transcriptional coactivator p300 
by disrupting its CH1 domain and impairs the interaction of between HIF-1α and 
p300 [130, 142].

Bortezomib, the first proteasomal inhibitor (PI) and also confirmed antitumor 
activity-containing agent in clinical setting. Bortezomib attenuates the transcrip-
tional activity and impairs tumor growth only of HIF-1, and not HIF-2. Bortezomib 
inhibits HIF-1α protein expression at the translational level under both normoxic 
and hypoxic conditions and its nuclear targeting through inhibition of PI3K/Akt/
mTOR and MAPK pathways, respectively, by dephosphorylation of phospho-Akt, 
phospho-p70S6 K, and phospho-S6RP [1, 9].

Amphotericin B (AmB), an agent that interferes the HIF-1α expression through 
CAD-FIH. AmB represses the C-terminal transactivation domain (CAD) of HIF-1α, 
a target site of the factor-inhibiting HIF-1 (FIH). CAD-FIH interaction inhibits the 
recruitment of p300 through CAD of HIF-1α [162].

Triptolide possesses anticancer, antiangiogenesis, and drug-resistance activities. 
Triptolide suppresses HIF-1α through c-Myc-dependent mechanism. Triptolide 
treatment in SKOV-3 cells resulted in loss of function of HIF-1α protein transcrip-
tional activity and reduced mRNA levels of its target genes [29, 173].

FM19G11, an agent that inhibits HIF-alpha protein expression and suppresses 
target genes of two alpha subunits in several tumor cell lines. FM19G11 reduces 
overall histone acetylation with significant p300 repression and behaves as a target 
gene of HIF2alpha at nanomolar range of FM19G11 inhibiting transcriptional and 
translational expression of Oct4, Sox2, Nanog, etc. [103].

Echinomycin (NSC-13502), a small molecule that binds in a sequence-specific 
manner in the DNA and shows dual effect on HIF-1 activity under normoxic 
and hypoxic conditions. It inhibits binding of HIF-1α and HIF-1β proteins to a 
HRE sequence. It suppresses cell growth and induces apoptosis with decreased 
mRNA expression of HIF1 targets, glucose transporter-1 (GLUT1), and B-cell 
CLL/lymphoma- 2 (BCL2). This agent has failed as anticancer agent due to its dual 
effect [72, 143, 164].

Anthracycline and its chemical derivatives (doxorubicin (DXR) and daunorubi-
cin (DNR)) are the topoisomerase inhibitor family that suppresses hypoxia- inducible 
factor-1 (HIF-1) transcriptional activity by obstructing its binding to DNA. These 
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agents are using widely in the prevention of tumors [116]. Doxorubicin (DXR) 
weakens the transcriptional activity of the HIF by inhibiting the binding of the HIF 
heterodimer to the consensus  – RCGTG  – enhancer element and downregulated 
HIF target lysyl oxidase (LOX) family members [136]. Anthracyclines also inhibit 
the endogenous HIF-1 target gene expression. In hypoxic cells the VEGF and 
GLUT1 mRNA levels were significantly decreased by DNR, and DXR, in a dose- 
dependent manner [79].

10.3.4  Future Approaches

The thrust is continuously inundated in identifying the novel metastasis-associated 
oncogenes and tumor suppressor genes. Several therapeutic approaches that target 
HIF and its associated factors in tumor progression are emerging continuously. 
Further studies are needed for answering how the cells sense hypoxia and how 
HIF-1α activation occurred along with other signaling pathways. In recent studies, 
researchers have focused on the determination of the pathways (pro-survival and 
apoptosis) activated in response to hypoxia in cancer cells, and further it is needed 
to analyze the hypoxia-response gene expression patterns to the levels such as apop-
tosis, angiogenesis, and metastasis in human cancer cells through microarray analy-
sis and other high-throughput technologies.
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