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1Transcription Factors in Gastrointestinal 
Malignancies

Pallaval Veera Bramhachari 
and Ganji Purnachandra Nagaraju

Abstract
Gastrointestinal cancer are complex diseases and most lethal amongst all other 
cancer types. Recent studies have revealed that transcriptional factors are ubiqui-
tously expressed and modulates various physiological processes such as progres-
sion and metastasis in Gastrointestinal malignancies. Therefore, targeting these 
transcriptional factors is an important therapeutic strategy against cancer. In this 
book, we will discuss some of the important transcriptional factors in depth and 
further evaluate their role in Gastrointestinal malignancies.

Keywords
Gastrointestinal malignancies · Transcription factors · NF-κB · HIF-1α · AP1 · 
E2-F1 · STAT-3

1.1  Introduction

Gastrointestinal (GI) malignancies have high mortality rates due to the lack of 
proper diagnoses in their early stages as they do not cause any symptoms until they 
have progressed to advanced stages. A high amount of fat content in food intake, 
lifestyle, genetic risk, consumption of excessive alcohol, and smoking are some of 
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the risk factors for cancer [1]. Surgery is the choice of therapy for some patients 
with GI cancer, but it is not possible if the cancer has metastasized. The therapeutic 
choice of surgery, however, for completely removing the liver or pancreatic cancer 
is not feasible as it is highly malignant and spreads very quickly to other parts of the 
body. All of these cancers show poor responses to either radiation or chemotherapy, 
so the recurrence of cancer is very high [2], and due to transcriptional reactivation, 
patients have poor survival rates [3]. Therefore, it is essential to target transcrip-
tional factors in people who have a GI-type cancer. Furthermore, understanding the 
mechanism of initiation of GI cancers and the role of different agents in regulating 
the cancer aids in therapeutically curing the cancer at an early stage. Transcriptional 
inactivation leads to selective death of GI cancer cells, whereas healthy (noncancer-
ous) cells regularly tolerate the loss of transcriptional activity with little significance 
because of inactivity in regular signaling pathways. For the past two decades, there 
has been considerable progress in targeting tumorigenic factors and discharging 
tumor-suppressive transcriptional molecules, as well as therapeutically modulating 
transcription at the chromatin level.

Attempts at improving the outcome of GI malignancies by incorporating cyto-
toxic agents such as chemo drugs have been disappointing [1]. These results indi-
cate that the main challenge remains primary resistance of GI malignant cells to 
cytotoxic chemotherapy in the majority of patients. Therefore, improvement in the 
outcomes of GI malignancies is dependent on the introduction of agents that can 
modulate the intrinsic mechanisms of resistance.

Mode of resistance to radio-chemotherapy in GI malignancies includes the activa-
tion of NF-κB, the hypoxia-inducible factor (HIF-1α), AP1, E2-F1, and STAT-3. All 
three of these transcriptional factors control the expression of several oncogenes 
involved in tumor growth, angiogenesis, and inflammation [2–5]. These transcriptional 
factors are well-known to be activated in GI malignancies [4]. Therefore, NF-κB, 
HIF-1α, AP-1, E2-F1, and STAT-3 are rational targets for GI malignancy therapy.

1.2  Significance

Worldwide GI malignancies are the leading cause of most cancer deaths and repre-
sent a challenging therapeutic problem. Survival from GI malignancies is particu-
larly poor even when diagnosed during early stages. Patients at the possibility of 
increasing GI malignancies can be diagnosed based on risk factors (such as taken 
from familial history). At the current time, these groups of high-risk patients have 
two options, either close monitoring or surgical resection, which both carry signifi-
cant risks. Therefore, an effective therapy approach will provide a rational strategy 
to lower rates of mortality, morbidity, and cost associated with this disease and as 
such will have a significant impact on this group of high-risk patients. This study 
will also provide insight into the effects of modulation of inflammatory pathways by 
selected agents on the development of GI malignancies. These pathways are also 
central for the development of several other malignancies as well as degenerative 
diseases; thus, the results of this study may provide a basis for prevention for other 
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disease types. Therefore, we selected major transcriptional factors and their role in 
GI malignancies.
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2YY1 and KLF4: Their Role 
in Gastrointestinal Malignancies

Himanshu Tillu and Ganji Purnachandra Nagaraju

Abstract
Gastrointestinal (GI) malignancies are among the most serious threats to global 
health and are among the major causes of morbidity and mortality. KLF4 and 
YY1 occupy a central niche and can influence the process of oncogenesis of the 
various tissues of the GI tract in a major way by being closely associated with 
several cellular processes such as cell proliferation, differentiation, DNA repair, 
epigenetic modifications, and apoptosis. Although evidence over the years has 
implicated KLF4 and YY1 in the process of tumorigenesis, significant loopholes 
still remain. This review is an attempt to evaluate the relative contributions of 
KLF4 and YY1 to various aspects of GI malignancies.

Keywords
Krüppel-like factor 4 (KLF4) · Yin Yang 1 (YY1) · Gastric cancer (GC) · 
Colorectal carcinoma (CRC)

2.1  Introduction

The gastrointestinal (GI) tract comprises of the organs esophagus, stomach, small 
and large intestines, and rectum and other accessory organs playing a crucial role in 
digestion, namely, the liver, gallbladder, and pancreas. Gastrointestinal cancers 
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account for 22% of all malignancies and are an important cause of morbidity and 
mortality worldwide [36]. The public health burden of GI malignancies is evident 
by the statistical observation implicating GI cancer as the reason for 12% of all the 
deaths caused by cancer annually [16, 78]. Tumorigenesis of the GI tract is the 
result of tumor suppressor gene inactivation and dysregulated proto-oncogene acti-
vation of p53 (TP53) [13], anaphase-promoting complex (APC) [23], E-cadherin/
CDH1 [1], and p16 [55]. Accumulating evidence over the years has implicated 
KLF4 [59] and YY1 [7] in the pathogenesis of GI malignancies.

Krüppel-like factors (KLFs) are the transcription factors which are homologous 
with Krüppel, a transcription factor that is crucial for segmentation during 
Drosophila embryogenesis [40]. KLFs contain three C-terminal C2H2-type zinc 
fingers, which are able to bind to guanidine-cytidine-rich promoters of several genes 
[49]. KLFs also are considerably homologous with the specificity protein (SP) fam-
ily of zinc-finger transcription factors [51]. The 17 KLF family members identified 
in mammals [17] are crucial for regulation of proliferation, development, differen-
tiation, and apoptosis of cells of mammalian origin. Of the 17 known KLFs, KLF4 
plays a critical role in the regulation of cell differentiation, proliferation, and tumor-
igenesis in the GI epithelium. Clinical and experimental findings have verified 
tumor suppressor activities of KLF4 in the context of gastric and CRCs.

Yin Yang 1 or YY1 is another GLI-Krüppel transcription factor family member 
which binds to DNA by virtue of four C2H2-type zinc fingers located at the 
C-terminus of YY1 [45, 50]. YY1 is important for numerous processes that influ-
ence carcinogenesis including cell proliferation, DNA repair, induction of apopto-
sis, and epithelial-mesenchymal transition. The levels of YY1 have also been found 
to be altered in numerous cancers [61]. Unlike KLF4, YY1 is required for the induc-
tion of carcinogenesis. However, very few studies have elucidated the role of YY1 in 
GI malignancies.

2.2  Alterations in the KLF4 and YY1 Expression Levels in GI 
Malignancies

KLF4 or gut-enriched KLF (GKLF) is a transcription factor that shows extensive 
expression in the GI tract. In mice, KLF4 was found to be expressed primarily in ter-
minally differentiated epithelial cells of the GI tract, especially in the middle to upper 
epithelium of the crypt [49] in addition to epithelial cells in other organs [14]). In 
neonatal mice, higher levels of KLF4 have been observed in the colon as compared to 
the small intestine, the expression at both sites increasing with age [54]. KLF4 expres-
sion is essential for terminal differentiation of goblet cells of the murine intestines 
[20]. In humans, prominent expression of KLF4 is observed at the epithelium surface 
in normal intestine, with gradual decrease in expression toward the crypt [47, 48, 63]. 
Colonic bacteria continuously synthesize butyrate by fermentation of dietary fiber 
[41]. Butyrate has been reported to induce KLF4expression [5, 47, 48].

Independent investigations employing microarray [22], real-time PCR, and 
immunohistochemistry [20] also have yielded data suggesting reduced expression of 

H. Tillu and G. P. Nagaraju



7

KLF4 in GC. The levels of KLF4 mRNA were found to be significantly reduced in 
the intestine of the (APC Min/+) mice during tumor formation in multiple intestinal 
neoplasia [11, 54]. Significantly reduced expression of KLF4 was found in the dys-
plastic epithelium of the colon, such as an adenomatous polyp, and in CRC (CRC) 
[9, 47, 48]. KLF4 protein has primarily cytoplasmic expression in CRC-derived 
cells, suggesting that hindered nuclear translocation of KLF4 contributes to carcino-
genesis [46]. Patients with familial adenomatous polyposis (FAP) have significantly 
reduced KLF4 expression in colonic adenomas as compared to adjacent normal 
mucosa [11, 54]. In addition, lower levels of KLF4 mRNA were observed in sporadic 
intestinal carcinomas and adenomas compared to normal colonic tissues [47, 48]. 
Expression of KLF4 is reduced in esophageal cancer [57]. Reduced or lost expres-
sion of KLF4 was also observed in esophageal squamous cell carcinomas as com-
pared to the normal esophageal tissue [31]. KLF4 knockdown in the cell line EC9706 
of esophageal cancer enhanced cell proliferation and reduced cell adhesion [57].

KLF4 expression was elevated in pancreatic intraepithelial neoplasia, a precur-
sor lesion of pancreatic cancer [39]. However, ectopic KLF4 expression was 
reported to cause cell cycle arrest of BxPC-3 cells which are derived from pancre-
atic carcinoma. Furthermore, tumor growth and metastasis were found to be inhib-
ited via the KLF4-p27 (Kip1) promoter interaction in human pancreatic cancer cells 
inoculated into ectopic and orthotopic mouse models. These findings suggest that 
increase in KLF4 expression may be an attempt of the transformed cells to halt cell 
cycle progression to prevent tumor formation [60].

Epigenetic modifications such as promoter hypermethylation and hemizygous 
deletion reduce KLF4 expression in GI malignancies. Hemizygous deletion of the 
KLF4 gene was found in SK-GT5 and SNU-16 GC cell lines [58]. Loss of hetero-
zygosity (LOH) at the KLF4 locus has also been observed in some of the CRC 
specimens and cell lines. In addition to epigenetic modifications, numerous point 
mutations contained in the open reading frame (ORF) of the KLF4 gene have been 
reported in CRC (CRC) cell lines leading to flocculated KLF4 protein distribution 
in the nucleus which in turn is thought to hinder the ability of KLF4 to activate the 
p21WAF1/Cip1 promoter. Hypermethylation of the 5′ untranslated region (5′-UTR) of 
KLF4 which is found in CRC, GC tissues, and cell lines could lead to the reduced 
expression of KLF4; blockade of gene hypermethylation was found to reactivate 
the expression of KLF4 in the cells of human GC [74]. However, epigenetic alter-
ations of KLF4 loci may not be important in all the cases of gastric oncogenesis 
[8]. Xu et  al. have presented evidence in the favor of epigenetic modifications 
altering KLF4 expression levels. The authors have reported that KLF4 expression 
could be stimulated in CRC-derived cell lines upon treatment with 5-aza-2- 
deoxycytidine (5-aza-dC), an agent which induces DNA demethylation (hypo-
methylation) and gene activation by remodeling [63]. Abrogation of KLF4 
expression leads to Sp1 overexpression which may contribute to the development 
and progression of GC [18]. Zheng et al. reported involvement of microRNAs in 
KLF4 downregulation in GI malignancies. The microRNA (miR)103 that is asso-
ciated with increased tumor size, lymph node metastasis, and poor survival was 
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reported to induce KLF4 downregulation in SGC7901 and BGC823, the cell lines 
derived from human GC [77].

Murine studies revealed that KLF4 deletion enhanced cellular proliferation and 
decreased the frequency of pit mucous cells. MUC2, a marker of intestinal goblet 
cells, which is silent in disease-free gastric tissues, was found to be highly induced 
in KLF4-deleted cells at the base of antral glands. This finding was replicated in 
human GC tissue; MUC2 expression was inversely associated with KLF4 expres-
sion. Thus, KLF4 appears to be required for antral stem cell homeostasis; the loss of 
KLF4 expression and induction of MUC2 expression might be crucial diagnostic 
markers of GC [70].

Several groups have reported changes in expression levels of KLF4 in gastroin-
testinal cancers. However, there is paucity of data regarding changes in expression 
levels of YY1. Kaufhold et al. analyzed the expression levels of certain markers of 
cancer stem cells such as sex-determining region Y-box 2 (SOX2), B-cell-specific 
Moloney murine leukemia virus insertion site 1 (BMI1), and octamer-binding tran-
scription factor 4 (OCT4) in the context of YY1in several types of cancers. Low 
expression of YY1 was found to be accompanied by low expression of SOX2 and 
high expression of BMI1and OCT4 in stomach, liver, and pancreatic cancers. On 
the other hand, CRC was characterized by high-intensity expression of YY1 accom-
panied by high levels of SOX2 and OCT4 and reduced BMI1 expression [21]. 
Elevated YY1 expression was reported in nine GC cell lines and in nine out of ten 
primary gastric adenocarcinoma tissue samples. YY1 was not detectable in three 
noncancerous gastric tissue samples. YY1 knockdown led to G1 cell cycle arrest via 
inhibition of Wnt/β-catenin pathway. Ectopic expression of YY1 augmented cell 
proliferation as seen from in vitro experiments in MKN28, AGS, and NCI-N87 cells 
and in  vivo in nude mice. Significant miR-205 downregulation was observed in 
cancerous tissue with respect to adjacent healthy tissue in the GI tract. Inhibiting 
miR-205 activity in vitro significantly augmented the proliferation of AGS and NCi- 
N87 GC cells. miR-205 was able to suppress YY1 expression by binding to 3′-UTR 
[66]. Chinnappan et al. have detected six isoforms of YY1 mRNA in mice as well as 
humans. Higher levels of 7.5 and 2.9 kb isoforms of YY1 mRNA were found in 
SIIA GC cell line, DLD-1, HT-29, Caco-2 colonic adenocarcinoma cell lines, and 
BON-I, an endocrine cancer cell line derived from the pancreas, as compared to 
normal skeletal muscle tissue which has the highest YY1 mRNA expression among 
normal tissues. YY1 overexpression has been detected in primary colon cancer 
(CC), especially in poorly differentiated and mucinous tumors. However, surpris-
ingly, lower YY1 expression correlated with poor survival [7].

2.3  Role of KLF4 and YY1 in Cell Cycle and Cell Proliferation

The proliferation of somatic eukaryotic cells is regulated through stringent control 
of cell cycle progression. The cell cycle has four phases: Gap 1 or G1 phase, where 
the cell prepares for DNA replication; synthesis or S phase, where actual replication 
of DNA occurs; G2 phase, where the cell prepares for mitosis; and mitosis or M 
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phase, when actual cell division occurs. Differentiated, nonproliferating cells are 
said to lie in the G0 phase. Cyclins and their corresponding cyclin-dependent 
kinases (CdKs) form cyclin-CdK complexes which act at G1-S, S-G2, and G2-M 
checkpoints and mediate cell cycle progression. In the event of abnormalities, the 
inhibitors of cyclin-CdK complexes mediate cell cycle arrest. Aberrant cell cycle 
regulation is linked to the process of carcinogenesis [44].

KLF4 was initially reported to be essential for enterocyte differentiation and 
negatively regulate cell proliferation. KLF4 expression was higher in growth- 
arrested cultured cells [49, 73]. Constitutive KLF4 expression inhibited synthesis of 
DNA [49]. KLF4 inhibits growth in p53-dependent fashion and is mediated through 
the interaction of KLF4 with the Sp1-1 binding loci in the p21 WAF1/Cip1 promoter, a 
CdK inhibitor [4, 73]. In addition, KLF4 represses the transcription of numerous 
cell cycle promoters such as cyclin D1 [47, 48] and ornithine decarboxylase (ODC) 
[6] and induces G1/S cell cycle arrest [4, 69]. KLF4 promotes the expression of cell 
cycle inhibitors such as p21, p27, p53, and retinoblastoma and inhibits the prolifera-
tion of redox-sensitive vascular smooth muscle cells [33]. In mice with gastric 
epithelium- specific KLF4 ablation, marked hypertrophy of gastric epithelia was 
observed, the number of dividing cells in gastric unite was increased by fourfold, 
and p21WAF1/CIP1 mRNA expression in gastric epithelia was reduced by 45% [20]. 
KLF4 is crucial for p53-mediated cell cycle arrest at G1/S junction after DNA dam-
age in CC HCT116 cells [69]. Yoon et al. also found G2/M arrest in HCT116 cells 
post γ-irradiation, which was associated with increased KLF4, p53, and p21WAF1/CIP1 
expression but decreased expression of cyclin B1 through a specific GC-rich element  
in the cyclin B1 promoter [68]. KLF4 and KLF5 can both upregulate p21waf1/cip1 
expression in response to UV-induced DNA damage [64]. Thus, in addition to G1/S 
arrest, KLF4 is also involved in G2/M arrest. Mice with gastric epithelium- specific 
KLF4 ablation expression display premalignant features such as gastric epithelial 
hypertrophy as well as altered expression profile of acidic mucins and TFF2/
SP-positive cells [20]. The antiproliferative action of KLF4 is also mediated via 
transcriptional repression of survivin in esophageal squamous cancer cells [71].

YY1 favors S phase entry; the process is regulated by the retinoblastoma protein 
[38]. A previous genome-wide study has reported prostate stem cell antigen (PSCA) 
as a susceptibility gene for diffuse-type GC. PSCA protein inhibits the proliferation 
of GC-derived cell lines. The expression of PSCA is reduced in diffuse-type GC, 
indicating a tumor-suppressive activity of PSCA. The T allele of the single nucleo-
tide polymorphism rs2294008 (C/T) is associated with GC [43]. The variant with T 
allele suppresses the transcriptional activity of the −3.2 kb PSCA upstream region. 
The authors reported that existence of the T allele at rs2294008 created YY1 bind-
ing site leading to recruitment of YY1 to the PSCA promoter leading to in vivo 
repression of PSCA expression which eventually predisposes gastric epithelial cells 
carcinogenesis [42]. However, there is no information regarding the role of YY1 in 
cell cycle progression in GI malignancies. A study by Yokoyama et al. has revealed 
that YY1 indirectly influences cell proliferation via repression of double-negative 
lymphoid enhancer factor 1 (dnLEF-1) in intestinal cancer cells. LEF-1 is an impor-
tant mediator of Wnt signaling and is abnormally expressed in CCs. Two promoters 
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P1 and P2 transcribe LEF-1. TCF-β-catenin complexes activate P1, a Wnt target 
gene. P2, a second promoter in an intron 2, transcribes dominant negative form of 
LEF-1 (dnLEF-1). Ectopic expression of dnLEF-1 in CC cells has been reported to 
slow their rate of proliferation. Yokoyama et  al. have identified YY1 as the 
P2-specific protein essential for the suppression of dnLEF-1. YY1-binding locus at 
+25 position has been identified in P2 using site-directed mutagenesis and EMSA; 
chromatin immunoprecipitation assays have confirmed the binding of YY1 to the P2 
promoter. The authors have proposed that YY1 plays an important role in evading 
growth arrest in CC by inhibiting the expression of dnLEF-1 [67]. Investigations of 
YY1 activity in the context of hepatocellular carcinoma (HCC) also highlighted the 
oncogenic potential of YY1. The ratio of YY1 to Raf-1 kinase inhibitor protein 
(RKIP), a potent tumor suppressor, was found to be uniformly inverted in the cancer 
cells relative to the adjacent normal cells. Upregulation of YY1 in tumor tissue was 
accompanied by its localization to the nucleus and by increase in the levels of 
YY1AP, a YY1 coactivator which is usually undetectable in normal liver, and the 
survivin [34]. YY1 expression was also found to be upregulated in QGY7701and 
QGY7703 HCC cell lines. YY1 silencing inhibited the proliferation of HCC cells. 
YY1 was also found to directly downregulate CCAAT/enhancer- binding protein 
alpha (CEBPA), a factor that is critical for hepatocyte differentiation. CEBPA resto-
ration in HCC cells expressing YY1 was found to induce growth inhibition and 
cellular differentiation, while CEBPA knockdown in normal hepatocytes promoted 
cell proliferation [72].

2.4  Role of KLF4 and YY1 in Invasion and Metastasis

Loss in KLF4 expression contributes to metastasis of the gastrointestinal tumors. As 
compared to normal mucosa, KLF4 was expressed at lower levels in primary gastric 
tumors and especially in metastasized tumors. Progressive loss in KLF4 expression 
was observed in American Joint Committee on Cancer stage I to stage IV of GC and 
was a predictor of poor survival [59]. KLF4 overexpression was found to hinder 
colony formation, invasion, and migration in vitro. Reduced/lost KLF4 expression 
was also observed in cell lines HTB103, AGS, N87, SK-GT5, HTB135, TMK1, and 
SNU-1 derived from GC. The restoration of expression of KLF4 in human GC cells 
hindered their tumorigenicity and abrogated metastasis [59]. MicroRNAs 103 and 
107 (miR-103 and miR-107) inhibit death-associated protein kinase (DAPK) and 
KLF4 and favor metastasis of CRC. Investigations by Chen et al. have revealed that 
DAPK and KLF4 downregulation via miR-103/miR-107 resulted in increased cell 
motility and cell-matrix adhesion and enhanced colonization of CRC cells at the site 
of metastasis, while the epithelial marker expression and cell-cell adhesion was 
decreased. The clinical profile miR-103/107high+ DAPKlow+ KLF4low favored lymph 
node and distant metastases in CRC cases and could predict the recurrence of metas-
tasis and poor survival [3]. miR-29a was also reported to mediate KLF4 downregu-
lation. The overexpression of miR-29a and knockdown of KLF4 both promoted 
MMP2 expression and inhibited the E-cadherin expression. In addition, the extent 
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of KLF4 expression was negatively correlated with the expression of MMP2 but 
positively correlated with the expression of E-cadherin. Moreover, clinical studies 
suggested that both elevated miR-29a expression and reduced KLF4 mRNA levels 
were significantly associated with metastases and poor outcome in CRC patients 
[52]. miR-10b also downregulated KLF4 and promoted metastasis of esophageal 
cancer cell migration and invasion [53]. Leng and group generated spheroidal cells 
from DLD-1 CC cells in vitro. These spheroidal cells possess the hallmarks of can-
cer stem cells. The tumorigenic and invasive abilities of spheroidal cells in addition 
to their capabilities of resisting chemicals were attributed to KLF4 [25]. Ectopic 
expression of KLF4  in murine HCC cell lines was found to reduce anchorage- 
independent cell growth in soft agar and cell invasion and migration in in  vitro 
assays. Ectopic KLF4 expression was also found to favor epithelial phenotype and 
directly downregulate Slug, a crucial epithelial-mesenchymal transition (EMT)-
associated protein. Low expression of KLF4 was reported in HCC tumors [29].

Qi et al. also found reduced/lost expression of KLF4 in primary HCC samples, 
in particular, lymph node metastases, as compared to normal liver tissue. Loss of 
KLF4 in primary tumor correlated with poor survival. Ectopic KLF4 expression in 
HCC cells inhibited their migration, invasion, and proliferation in vitro. Nude mice 
inoculated with KLF4 expressing HCC cells displayed tumors which had reduced 
growth kinetics and inhibition of metastasis as compared to the mice inoculated 
with HCC cells not expressing KLF4. KLF4 was found to increase the expression 
of vitamin D receptor, thereby rendering the cells sensitive to inhibitory effects of 
vitamin D [26].

Wang and colleagues have recently highlighted the action of YY1  in favoring 
tumor growth, invasion, and metastasis. Experimental data revealed that the (miR- 
34) family members miR-34a, miR-34b, and miR-34c target 3′-UTR of YY1 
mRNA. miR-34 overexpression led to YY1 downregulation in NUGC-3 cells 
derived from GC, causing suppression of tumor sphere and colony formation, 
migration, and invasion. Conversely, silencing of miR-34 family promoted tumori-
genesis via YY1 upregulation, in AZ521 and SC-M1 GC cells. YY1-deleted SC-M1 
cells formed smaller tumors as relative to the control cells. The expression of pluri-
potency genes SOX-2, Nanog, CD44, and Oct4 was found to be upregulated by 
YY1 in SC-M1 cells [56]. YY1 was highly expressed in esophageal squamous cell 
carcinoma (ESCC) tissues with lymph node metastasis as compared to those with-
out lymph node metastasis. YY1 overexpression also promoted the invasive abilities 
of the esophageal cancer TE-1 cells. Higher YY1 expression was observed in 
advanced tumor grades as compared to stage I/II [30].

2.5  Role of KLF4 in Angiogenesis

Angiogenesis or the generation of blood vessels is important for the growth and 
survival of transformed cells in vivo by virtue of their dependence on blood for 
oxygen and nutrient supply. Very few reports have characterized the role of either 
KLF4 or YY1  in mediating angiogenesis. KLF4 was reported to inhibit the 
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formation of a vascular network through induction of miR-15a in the endothelial 
and vascular smooth muscle cells [76]. miR-15a has been previously reported to 
inhibit angiogenesis [65]. Angiogenesis requires Notch signaling. Notch signaling 
pathway downregulates KLF4 expression in CC cell line HCT116 [75]. Thus, it is 
conceivable that KLF4 inhibits angiogenesis, although no studies have investigated 
the contribution of KLF4 toward inhibition of angiogenesis in the context of GI 
malignancies. De Nigris et al. have reported that YY1 has the ability to enhance 
vascular endothelial growth factor (VEGF) expression in nude mice inoculated with 
SAoS osteosarcoma cells, resulting in neoangiogenesis [12]. Silencing of YY1 in 
HCT116 CC cells which were then transfected into nude mice has also been reported 
to attenuate angiogenesis [62].

2.6  Role of KLF4 and YY1 in the Induction/Prevention 
of Apoptosis

Apoptosis or programmed cell death is indispensable for normal cellular turnover. 
Failure of apoptosis is important for tumor cell survival. KLF4 is known to induce 
apoptosis in HT29 CC cells [47, 48], but not in RKO [4, 10] and HCT116 CC cells 
[69]. KLF4 induces the 14-3-3σ protein expression CRC cells upon DNA damage 
[2, 15]. The 14-3-3σ protein is highly expressed in GC tissue relative to healthy 
gastric tissue and correlates positively with tumor size, tumor node metastasis, and 
expression of antiapoptotic Bcl-2 [27]. Other reports have also suggested that 14-3- 
3σ protein is associated with apoptosis prevention in CRC [37] as well as pancreatic 
cancer [28, 32]. Nuclear 14-3-3σ expression correlated significantly with lymphatic 
invasion, depth of invasion, stage, and poor outcome in esophageal cancer [35]. 
Immunohistochemical analysis of gastric tumors from 96 GC cases revealed KLF4 
positivity in 78.1% cases; 15.6% cases showed strong positivity. Strong Fas positiv-
ity was associated with a weak KLF4 expression [24]. Human esophageal squa-
mous cancer cell line TE2 obtained from cases with poorly differentiated esophageal 
squamous cancer typically does not express KLF4 or KLF5. However, TE2 cells 
with stably transfected KLF4 show reduced viability in response to hydrogen per-
oxide treatment and have increased anoikis. However, KLF5 but not KLF4 can 
upregulate the proapoptotic protein Bax in response to ultraviolet (UV)-induced 
DNA damage [64].

There is a scarcity of data regarding the contribution of YY1 to induction or pre-
vention of apoptosis. YY1 was found to be upregulated in primary CRC tumors as 
compared to normal adjacent tissue. The proliferation of sh-YY1-stably transfected 
HCT116 tumor cells in nude mice was significantly slower as relative to vector 
control mice. Ectopic expression of YY1 was reported to suppress apoptosis and 
increase proliferation of CC cell lines HCT116 as well as LOVO. YY1 was reported 
to exert carcinogenic effect by inhibiting the activity of p53 and thus altering the 
activity of the downstream effectors c-Jun, p15, and caspase cascades. YY1 was 
also reported to activate Wnt signaling pathway by activating β-catenin, antiapop-
totic survivin, and fibroblast growth factor 4. Moreover, high YY1 expression 
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Fig. 2.1 KLF4 is a tumor 
suppressor in GI 
malignancies. KLF4 
induces cell cycle arrest by 
downregulating cyclin D1 
and ornithine 
decarboxylase (ODC) 
expression and 
upregulating the expression 
cell cycle inhibitors p21, 
p27, p53, and Rb. KLF4 
also contributes to 
metastasis inhibition. 
miR-29a, miR-103, and 
miR-107 inhibit KLF4 
activity and favor 
tumorigenesis

favored poor overall survival [72]. YY1 knockdown also resulted in apoptosis as 
seen from increased cleavage of poly(ADP-ribose) polymerase (PARP), in three GC 
cell lines, namely, MKN28, NCI-N87, and AGS.  In primary gastric adenocarci-
noma, the nuclear YY1 expression favored poor outcome in early stages and corre-
lated with shorter survival [19].

2.7  Conclusions and Future Perspectives

KLF4 and YY1, the members of same transcription factor family and both binding 
to guanidine-cytidine-rich DNA, have opposite relevance with respect to GI malig-
nancies. The studies by most of the labs agree that KLF4 is a tumor suppressor 
(Fig. 2.1) while YY1 favors oncogenesis (Fig. 2.2) in GI malignancies. However, 
there are significant loopholes in the available literature. Most of the studies have 
focused on gauging the differential expression profiles of the two transcription fac-
tors. Comparatively, there are very few studies aiming at elucidating the molecular 
mechanism of KLF4 or YY1 by which they participate in development or preven-
tion of cancer. The contribution of KLF4 or YY1 toward angiogenesis of the tumors 
of the GI tract is a largely unexplored field. The exact mechanism of action by 
which YY1 helps the transformed cells to evade apoptosis has not yet been 
described. The investigations aimed at filling these loopholes would further our 
understanding regarding the exact niche which these transcription factors occupy 
in the context of GI malignancies. It is a well-established fact that a certain protein 
may favor oncogenesis in certain cancers, while the same protein may be a tumor 
suppressor in some others. One of the main reasons for this observation is that the 
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proteomes of different tissues are very different which gives rise to differing inter-
actomes. It is the interactome which finally determines whether a particular tran-
scription factor will favor carcinogenesis or not. Thus, the generation of extensive, 
all-encompassing interactomes will help us to generate a holistic picture of the 
relative importance of various transcription factors in GI malignancies and allow 
us to design effective therapies.
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Abstract
The role of transcription factor AP-1 (activator protein 1) in human physiology is 
distinct due to its involvement in tissue regeneration in which the metabolism is 
instigated by the signals which trigger undifferentiated proliferative cells to pro-
ceed toward cell differentiation. Consequently the functions of AP-1 may be 
altered in response to extracellular signals. The studies on gene-knockout mice 
and AP-1-deficient cell lines propose that AP-1 regulates multiple gene targets 
and accomplishes accurate physiological functions. There is a significant break-
through in unveiling the molecular mechanisms and signaling pathways that 
monitors AP-1 activity. AP-1 functions as a double-edged sword in cancer pro-
gression through monitoring gene expression involving cell proliferation, cellu-
lar differentiation, cell death, and tumor invasion. AP-1 can be oncogenic and 
antioncogenic too. The activities of AP-1 in cancer appear to rely on composition 
of AP-1 dimers and type, stage, and genetic basis of cancer. c-Jun protein, one of 
the subunits of AP-1 up on activation, is expressed primarily at invasive front in 
carcinomas leading to the proliferation of malignant cells. Thus, c-Jun mainly 
has oncogenic functions, while JunB and JunD have antioncogenic effects. 
AP-1’s role is being studied not only in cancers but also in disorders such as 
psoriasis, asthma, and transplant rejection. AP-1 emerged as drug discovery 
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 target in recent years. This review is being structured to highlight the role of 
AP-1 transcription factor in the gastrointestinal malignancy progression.

Keywords
AP-1 transcription factor · c-Jun · c-Fos · Cell proliferation · Cellular 
 differentiation · Apoptosis · Gastrointestinal cancers

3.1  Introduction

Cancer is an out-of-control proliferation of particular cell type originating with an 
undesirable mutation, which results in aggregation of abnormalities in many classes 
of genes. The proto-oncogenes accelerate the cell cycle, and the tumor suppressor 
genes control the cell growth. The signal transduction pathways along with two 
stress response pathways act as molecular circuits found to be highly conserved in 
all the vertebrates. The transcription factors are the proteins that participate at the 
endpoint in signal transduction pathways resulting in alteration of specific genes. 
Most of the cancer-causing genes participate in these pathways by transferring the 
exogenous and endogenous signals at the cellular level. Tumor progression can be 
due to the cross talk between the healthy cells, loss of communication in between 
cancer-causing genes, abnormal DNA methylation status, hypermutability, and 
genetic instability. Cancer has multifaceted etiology, a large number of defects in 
thousands of genes leading to pernicious disease. Transcription factors execute dis-
tinct transcription programs. The activator protein 1 (AP-1) may be referred to as a 
matrix of transcription factors which functions throughout the trajectory of tumor 
progression. This perspective outlines the current perusal of changes in AP-1 and its 
role in gastrointestinal malignancies which includes carcinoma of the liver, pan-
creas, esophagus, stomach, and gallbladder and colorectal cancers.

AP-1 is a transcription factor that has a heterodimer structure made up of  protein 
molecules belonging to families JDP, ATF, c-Fos, and c-Jun. AP-1 monitors diverse 
cellular processes which include cellular differentiation, cell growth, cell prolifera-
tion, and apoptosis or programmed cell death (Fig. 3.1) [1]. It was discovered as 
TPA-activated transcription factor bound to a cis-regulatory unit of human metallo-
thionein IIa promoter and SV40. The AP-1 binding site was distinguished as the 
12-O-tetradecanoylphorbol-13-acetate (TPA) response element (TRE) with 
5′-TGA G/C TCA-3′ as consensus sequence [2, 3]. Jun (the subunit of AP-1) and 
Fos- associated p39 protein were identified as an oncoprotein of avian sarcoma 
virus and the transcript of cellular Jun gene, respectively. Wagner reported that Fos 
is a cellular homologue of two viral v-Fos oncogenes (which induces osteosarcoma 
in rats and mice) [4].

AP-1 is reported to regulate the expression patterns of target genes in reciproca-
tion with external stimuli like stress, cytokines, growth factors, and viral as well as 
bacterial infections [5]. The AP-1 activity is in turn regulated by means of posttrans-
lational modifications, by its DNA-binding dimer composition and also mainly their 
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interaction within different binding partners. Right from the time of discovery, AP-1 
is associated with many physiological functions (principally in determination of life 
span of an organism and in tissue regeneration process) as well as regulatory pro-
cesses, while some of its novel functions are still under investigation.

The AP-1 subunits, c-Fos and c-Jun, form dimers and play a crucial role in cell 
growth and cellular proliferation. Hence, the activation and functions of AP-1 are 
primarily determined by critical patterns of the AP-1 dimers [1]. The AP-1 subunits 
may bind to the palindromic DNA motif (5′-TGA G/C TCA-3′) in order to modu-
late the target gene expression, but specificity depends on the composition of dimers 
of corresponding bZIP subunit [1]. The role of c-Jun is imperative for fibroblast 
proliferation [6], and both the subunits were expressed above the basal levels in the 
course of cell division [7]. The expression patterns of c-Fos increase in reciproca-
tion with the introduction of growth factors into the cell, besides strengthening its 
evocative participation in cell cycle. IL2, TGF-α, and TGF-β-like growth factors 
were displayed to invigorate c-Fos and reinforce the process of cellular proliferation 
by activating AP-1 subunits.

Several systems proposed the involvement of AP-1 in cellular differentiation. 
AP-1 was reported to participate in synchronizing the expression of target genes. 
The alterations in gene expression at cellular level reflect the DNA synthesis 
initiation resulting in the generation of differentiated derivatives which in turn 
leads to cellular differentiation. In a study on chicken embryo fibroblasts (CEF), 

Fig. 3.1 Mechanism of AP-1 transcription factor in cellular process.The growth factors stimulat-
ing c-Fos resulting in cell growth and proliferation via AP-1 activation. AP-1 modulating gene 
expression leading to cell differentiation. Extracellular matrix and genotoxic agents induce AP-1 
activity resulting in apoptosis
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it has been proved that when AP-1 is formed by stable heterodimers with c-Jun, 
the bZIP region of the v-Fos enhances the binding potential of the transcription 
factor to the target genes through c-Jun; this activation intiates differentiation of 
CEF [8].

AP-1 and its association with apoptosis is widely identified. Its mechanism is 
instigated through several genotoxic agents and extracellular matrix proposing their 
participation in apoptosis [1]. The c-Jun N-terminal kinases (JNKs) are triggered by 
these stimuli resulting in Jun protein phosphorylation and increased transcriptional 
activity of genes dependent on AP-1 [1]. Increased range of JNK activity and Jun as 
well as Fos protein levels was reported in cells where apoptosis has taken place. 
Few studies reported cells of inactivated c-Jun-ER showing general morphology, 
whereas c-Jun-ER activated cells are apoptotic [9]. Increased levels of AP-1 lead to 
the activation of target gene expression. Thus, the regulation of activity of AP-1 is 
crucial for cell function which is monitored by events such as posttranscriptional 
and posttranslational events and dimer composition as well as their interaction with 
respective accessory proteins [10].

AP-1 is known to play a vital role in physiology of the skin along with tissue 
regeneration. The metabolism is instigated by extracellular signals which set off 
undifferentiated proliferative cells and undergo cellular differentiation. Thus, the 
AP-1 subunit activity in response to the extracellular signals can be modified under 
circumstances when the balance of keratinocyte proliferation as well as differentia-
tion has to be temporally and rapidly altered [11]. Earlier studies reported the 
involvement of AP-1 in the growth of breast cancer through multiple mechanisms, 
which include regulation of the genes downstream to E2F and cyclin D1 expression 
regulation, and their target genes. The AP-1 subunit, c-Jun, was proved to regulate 
the breast cancer cell growth. The activated c-Jun is known to be mostly expressed 
at the invasive front in squamous breast cell carcinoma and is said to be prominently 
linked with breast cell proliferation [12].

3.2  AP-1 and Hepatocellular Carcinoma

The liver secretes bile juice which can break down the fat consumed in food to ease 
absorption. These fats are being processed along with some proteins which play an 
important role in clotting of blood. In addition the liver processes alcohol, toxins, 
poisons, and some medicines to flush them out of the body. The liver malignancy, 
which is diagnosed in 500,000 cases annually as hepatocellular carcinoma (HCC), 
is the third most common cause of cancer deaths in the world [13] .The major risk 
factors of HCC are consumption of alcohol and infections due to hepatitis B and 
hepatitis C [14]. The incessant intrahepatic inflammation due to infections main-
tains a balance in the cycle of cell (liver) destruction and regeneration which often 
ends up in HCC [15, 16]. To examine the molecular mechanisms behind HCC pro-
gression in different stages, a wide range of mouse models were developed [17] 
which imitate the etiology of hepatocellular carcinoma in man. HCC may be due to 
DNA damage induced in hepatocytes by external chemical carcinogens. When mice 
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are injected with diethylnitrosamine (DEN), a tumor initiator, they can develop liver 
cancer [18, 19]. Inflammation also plays a promising role in liver cancer progres-
sion [20, 21].

AP-1 transcription factors identified near the receiving ends of numerous sig-
naling pathways are made up of homodimers or heterodimers of leucine zipper 
(bZIP) protein family [4].The functions of AP-1 protein were established through 
experimental mice model in which the functional manipulation of bZIP proteins 
was studied. Johnson and his co-workers suggested that c-Jun disruption in mice 
model resulted in embryonic lethality during midgestation. The embryos evi-
denced cardiovascular imperfections and impaired liver development [22]. HCC 
development was completely inhibited in the DEN liver cancer model (c-Jun 
knockout in the liver of an adult mice), thus demonstrating the importance or 
prominence of c-Jun in liver cancer progression [23]. Smeal and co-workers’ 
study has shown that c-Jun coordinates with Ha-Ras during normal cell transfor-
mation to cancer cell [24].

Multiple studies demonstrated the role of JDP2 in malignant cell transformation 
and inhibit AP-1 transcription by interfering with the c-Jun oncogenic properties. 
JDP2 is implicated in cell differentiation like differentiation of skeletal muscle cell 
[25] and osteoclasts [26] in stress response to ultraviolet irradiation [27]. JDP2 pre-
vents cellular transformation influenced by Ras in  vitro and also in xenografts 
implanted into SCID mice [28]. In some studies, in mice model with viral inser-
tional mutagenesis, JDP2 was identified as a candidate oncogene in high- throughput 
screening. Several gene expression studies noticed the increased levels of JDP2 in 
cancers of the kidney, skeletal muscle, liver, and prostate. Transgenic mice were 
developed with liver-specific expression of JDP2 and chemically induced cancer 
hepatocellular model to examine/investigate the involvement of JDP2 increased 
expression in hepatocellular carcinoma. It was proved that increased JDP2 expres-
sion enhanced liver cancer severity.

3.3  AP-1 and Pancreatic Cancer

The pancreas, a flat pear-shaped gland with both exocrine and endocrine function, 
is located in the abdomen. It is both an exocrine and endocrine gland. The exocrine 
cells help in digestion, while the endocrine cells of the pancreas help in blood sugar 
regulation. The lining of the pancreatic duct usually divides more rapidly than the 
normal cells; thus, there are more chances for an abnormal cell to develop, which 
divides abnormally and can spread inside the pancreas and then to the nerves and 
the blood vessels around the pancreas bringing about blockage in the bile duct. 
Pancreatic cancers mainly spread through the blood as well as through the lym-
phatic system to other organs of the body.

Signaling pathways as well as their transcription factor targets may be dysregu-
lated in pancreatic ductal adenocarcinoma (PDAC) [29]. The determined activation 
of the two main transcription factors, nuclear factor-κB (NF-κB) and AP-1, is a 
characteristic of cancer. Despite the fact that NF-κB was extensively studied [30, 
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31], very little information is available on AP-1 in PDACs. The AP-1 protein is a 
dimeric complex (homodimer and heterodimer) composed of Jun (Jun, JunB,  
and JunD) and Fos (Fos, Fra1, Fra2, and FosB) families, activating transcription 
factor subfamily (Atf and Creb), and Maf subfamily. Each complex can be function-
ally defined in determining the certainty of the genes being regulated [32, 8]. AP-1 
complexes which bind to palindromic DNA sequences are interpreted as TRE or 
cARE (cyclic AMP response elements) in promoters as well as enhancers of c-Jun 
and other target genes [23, 33]. The genetic deletion of c-Jun, JunB, or Fra1 may 
lead to the embryonic lethality in mice model because of abnormal organogenesis. 
c-Fos and c-Jun were initially discovered as viral oncoproteins, which are impli-
cated in bone, skin, and liver carcinogenesis. Hezel and co-workers reported that 
c-Jun is found to be overexpressed in Hodgkin’s as well as anaplastic large cell 
lymphoma and may increase oncogenic Ras-mediated cell transformation [29, 34]. 
c-Jun and c-Fos might be overexpressed because of an epidermal growth factor 
receptor-mediated autocrine pathway in PDACs [35–38]. In comparison with c-Fos, 
FosB, and c-Jun, the AP-1 proteins Fra1, Fra2, JunB, and JunD may have poor 
transactivation potential and with less or without transforming activity. However, 
the overexpression of Fra1 and Fra2  in mice induced tumors in different organs 
which include the pancreas suggesting that they are dimerized with AP-1 proteins 
which have more potent transactivation domains. JunB and c-Jun have overlapping 
developmental functions; JunB may be a tumor suppressor which antagonizes the 
tumorigenic potential of c-Jun [8, 23]. A study reported that Rap1, a Ras antagonist, 
with the increase in transforming growth factor-β type II receptor expression through 
a JunB-dependent pathway, reduces the tumorigenicity of pancreatic tumor cells. 
The regulating ability of c-Jun in cellular proliferation, survival, and cell death may 
contribute to counteracting its roles in development and tumorigenesis. Thus, the 
mouse fibroblasts of c-Jun are proliferation defective, and liver regeneration is dam-
aged without c-Jun [39]. c-Jun is considered essential for cell survival in the livers 
of fetal mice and is also required for apoptosis [40, 41]. c-Jun’s ability to induce 
apoptosis mediators called Fas L and Bim and transcriptionally repress tumor sup-
pressors such as p53 may explain these opposing roles [8]. The activity of AP-1 is 
not only regulated by dimer composition but also by other mechanisms. Interactions 
with NF-κB and MPK (mitogen-activated protein kinase) or PI3K (phosphoinosit-
ide 3-kinase) signaling pathways [42, 43] may be critical for AP-1 function in pan-
creatic cancer cells. In comparison with c-Jun, NH2-terminal kinase (JNK) controls 
c-Jun transcription via phosphorylation of Ser63 and Ser73, and PI3K and its pro-
tein kinase mediator Akt may regulate AP-1 at various levels. There are evidences 
that Akt induces c-Fos and Fra1 expression and also it may suppress the phosphory-
lation of c-Jun (Thr239) via glycogen synthase kinase-3 (GSK-3) in order to stabi-
lize it [44, 45], [46–49]. Feedback loops may be involved because c-Jun can activate 
Akt and enhance proliferation and survival in cells through Ras stimulation or sup-
pression of the PI3K antagonist PTEN [50, 51]..Although JNK and AKT may inter-
act through the ASK, POSH, and JIP1 proteins, they are known to use distinct 
mechanisms to regulate c-Jun. When compared with JNK [52], still there is a con-
troversy regarding the role of Akt in pancreatic cancer cells. It was earlier studied 
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that AKT and P13K are activated in pancreatic cancer cells because of aberrant 
PTEN expression as well as insulin receptor substrate-1-mediated signaling [53, 54] 
. Shun and his co-workers identified the probability of activation in these cells which 
is regulated by the PI3K signaling pathway. Their inference shows that different 
AP-1 proteins are expressed in pancreatic cancer cells; c-Jun is imperative for their 
proliferation and is regulated by Akt signaling through transcriptional activity inde-
pendently of Thr239 and Ser63/Ser73, the phosphorylation sites regulated by 
GSK-3 and JNK, respectively.

3.4  AP-1 and Esophageal Cancer

The esophagus or in simple terms the food pipe transfers food from the mouth to the 
stomach. The cancer can develop throughout the length of esophagus. Glands 
around esophageal walls produce mucus which helps food to slide down after swal-
lowing. These mucous glands may turn out to be carcinogenic and develop adeno-
carcinoma of the esophagus, one of the frequent cancers. Other cancer types include 
squamous cell carcinoma.

Esophageal cancer is known to be one of the most virulent malignancies, ranking 
eighth in incidence and sixth in mortality rate globally [55]. These neoplasms are 
particularly incident in China and few other countries in Asia, where esophageal squa-
mous cell carcinoma (ESCC) is the most prevalent [55]. A 5-year overall survival rate 
was not improved evidently despite the progressed surgical techniques and new thera-
peutic approaches in the past few decades [56]. Adjuvant chemotherapy for ESCC 
may reduce postoperative recurrence as well as improve survival [57]. Evidences 
report that the cancer often acquires resistance through chemotherapy after the nonle-
thal exposure [56, 58]. Thus an integrated view of chemoresistance can provide a 
more valuable approach for developing novel therapies for this disease.

ID1 belonging to the helix-loop-helix (HLH) protein family contributes to cancer 
by counteracting cellular differentiation and stimulating cell proliferation as well as 
enabling tumor neoangiogenesis [59]. ID1 was known to be overexpressed in mul-
tiple human tumor types which include breast, colon, prostate, and esophagus. The 
overexpression of ID1 is most common in human primary ESCC. ID1 expression 
directly correlates with tumor invasion and metastasis as well as poor prognosis in 
esophageal cancer patients [58, 60, 61]. It was known that ID1 was involved in 
radiotherapy resistance and chemotherapy resistance in human cancers like breast 
cancer, pancreatic adenocarcinoma, colorectal cancer, lung cancer, and esophageal 
cancer which becomes a novel potential therapeutic target [62–64]. ID1 is transac-
tivated in the 5-FU therapy, which can provide a resource for the future study direct-
ing the molecular mechanisms of chemotherapy in breast cancer patients. In a study 
of p53 protecting cells from cell cycle arrest caused by arsenic, ID1 is extensively 
induced by arsenite in p53-proficient cells than p53-deficient cells, which show 
greater resistance to arsenite-induced apoptosis and mitotic arrest [65]. According 
to recent study, the competitive binding degeneration and thymidylate synthase 
expression take place to stimulate chemoresistance among esophageal cancer 
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patients. The ID1-E2F1-IGF2 regulatory axis has prominent implications for cancer 
prognosis as well as treatment options. It is indicated that ID1 is upregulated by 
chemotherapeutic drugs and can be involved in chemoresistance although the mech-
anisms of ID1 affecting chemoresistance are yet to be investigated.

AP-1 is a menagerie of dimeric basic region-leucine zipper (bZIP) proteins 
which are identified either as TRE (5′-TGAG/CTCA-3′) or cARE (CRE, 
5′-TGACGTCA-3′) [5]. AP-1, a mammalian transcription factor, collectively illus-
trates a group of functionally as well as structurally related members of Jun protein 
family and Fos protein family [5]. Previously it was reported that AP-1 is involved 
in multidrug resistance along with cell survival [66, 67]. Recently researchers dem-
onstrated that aberrantly high levels of ID1 expression in neoplasms are due to 
induction of transcriptional activity by several proteins that are activated in a consti-
tutive way among cancerous cells and affect the chemoresistance in patients [68, 
69]. Identifying the important roles of ID1 and AP-1 in chemoresistance as well as 
transcriptional regulation between these ID proteins and AP-1 is a challenge to be 
addressed.

According to earlier studies, ID1 communicated etoposide chemoresistance via 
inhibiting caspase 3 activity and PARP cleavage, and etoposide-induced apoptosis 
was promoted via ID1 ablation. Spontaneously c-Jun/c-Fos can bind directly to the 
ID1 promoter region and activate its transcription in vivo. Ectopic expression of 
c-Jun/c-Fos enhances ID1 transactivation. Contrarily knockdown of c-Jun/c-Fos 
prevents ID1 transactivation. Overexpression of ID1 retrieves cells from apoptosis 
in c-Jun/c-Fos knockdown cells. The expression levels of ID1 are positively corre-
lated with c-Jun/c-Fos in human cancers. More significantly analysis of the gene 
expression profiles of different cancer types indicated that high expression of ID1 
and c-Jun or c-Fos may be associated with poor survival rate among patients. These 
findings suggest that c-Jun/c-Fos is involved in the chemosensitivity mechanisms 
and they contribute to the regulation of ID1 with response to chemotherapeutic 
drugs instigating apoptosis.

AP-1 may transcriptionally regulate ID1 in response to DNA damage thus caus-
ing chemoresistance to therapeutic drugs in ESCC cells. ID1 expression may be 
directly correlated with c-Jun and c-Fos in majority of malignancies. More pre-
dominantly, high ID1 and c-Jun/c-Fos expression levels in human neoplasms are 
significantly correlated with shorter survival rates among cancer patients. In addi-
tion they demonstrated the prominence of c-Jun/c-Fos-ID1 signaling pathway in 
chemoresistance of esophageal cancer cells. This study provides an insight in tar-
getting c-Jun/c-Fos-ID1 for cancer therapeutic strategies. Moreover their results 
evidence the importance of developing novel anticancer therapies and pathways in 
understanding the unrevealed mechanisms among ESCC cell studies.

3.5  AP-1 and Gallbladder Cancer

Gallbladder (GB) malignancy is quite a rare tumor of the biliary tract especially in 
Western societies and Asia-Pacific countries including Korea, Australia, and Japan. 
In 2011, among 771 Australians, half of the patients were diagnosed with 
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gallbladder cancer and other half with biliary tract cancer. Majority of patients with 
these cancers were diagnosed in later stages where the tumor becomes too large to 
be removed surgically.Only one fourth of gallbladder cancer patients were reported 
to be eligible for surgery.The survival rate of these patients is very low still. 
According to the reports, the average 5-year survival rate for these patients is only 
18.5%. For the patients who are not eligible for surgery, chemotherapy remains the 
other treatment option. At present, there are no prescribed chemotherapy regimens 
for GB cancer that was shown to specifically help patients to survive longer.

In gallbladder patients, tumor necrosis factor-alpha (TNF-α) was identified to 
play an important role in lymphatic metastasis. Vascular endothelial growth factor-
 D (VEGF-D) is another factor considered to be associated with lymph node metas-
tasis and lymphangiogenesis. However VEGF-D’s role in TNF-α-induced lymphatic 
metastasis in GB cancers remains unknown. The TNF-α levels are correlated with 
VEGF-D expression in clinical specimens. According to earlier studies, the effects 
of TNF-α are due to multiple signaling pathway activations in combination with 
TNF-α and its receptors (via NF-κB or AP-1 pathway). The two binding sites in 
VEGF-D promoter core region reveal that the upregulation of VEGF-D is through 
the AP-1 pathway. TNF-α upregulates the expression of protein as well as promoter 
activity of VEGF-D via ERK1/2/AP-1 pathway. Additionally TNF-α promotes 
HDLEC tube formation and lymph node metastasis among GBC patients by upreg-
ulating VEGF-D in vivo and in vitro. So considerably it suggests that TNF-α may 
promote lymphangiogenesis and lymphatic metastasis of GBC via ERK1/2/AP-1/
VEGF-D pathway.

The studies by Schafer and Ming suggested that HNF-4α (hepatocyte nuclear 
factor 4α), COUP-TF1 and COUP-TF2 (chicken ovalbumin upstream promoter 
transcription factors 1 and 2), and AP-1 bind to VEGF-D promoter, [70]. Multiple 
transcription studies demonstrated that NF-κB or AP-1, [71] is associated with 
tumor progression. TF bind and promoter scan were used to determine the potential 
binding sites of NF-κB or AP-1 in the VEGF-D promoter having three fragments 
with higher activities. Eventually, it is confirmed that both the AP-1 sites can bind 
to the VEGF-D promoter and that TNF-α might enhance the combination by site- 
directed mutagenesis.

3.6  AP-1 and Gastric Cancer

The stomach receives and stores food from the esophagus. Ingested food is passed 
from the stomach to the small intestine where nutrients are absorbed into the blood-
stream. Majority of gastric cancers develop within the cells of mucosa resulting in 
adenocarcinoma of the stomach. Gastric cancers develop steadily and take several 
years before the onset of symptoms.

The activity of c-Jun is augmented in several tumor types, but its role in gastric 
cancer is largely unknown. The aminoterminal phosphorylation of c-Jun by JNKs 
shows that the phosphorylation-dependent interaction between c-Jun and TCF4 
regulates intestinal tumorigenesis by integrating JNK and APC/beta-catenin.These 
two distinct pathways are activated by Wnt signaling [72]. It was proposed by Wong 
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and colleagues that a COX-2 inhibitor suppresses AP-1 via JNK in carcinoma of the 
stomach. Earlier studies reported c-Jun positivity in a large number of gastric cancer 
patients.

3.7  AP-1 and Colorectal Cancers

Colorectal cancer is sometimes referred to as bowel cancer. The bowel connects the 
stomach to the anus taken together with the large colon and rectum. The bowel usu-
ally develops small growths called polyps which appear like tiny dots near the bowel 
lining. However, all the polyps are not cancerous.The early detection of polyps in 
the colon or rectum may reduce the risk of colorectal cancers.

AP-1 functions to regulate gene expression in conjugation with multiple stimuli 
and is also involved in multiple cellular processes, such as differentiation, prolifera-
tion, and apoptosis, like other gastrointestinal cancers [1, 5]. Various genes may 
encode the monomers of the AP-1 complex. These transcription factors play a cru-
cial role as they are located downstream to many transduction pathways. The hall-
mark of CSC phenotype is interpreted by several genes; however, NANOG, 
POU5F1 (OCT3/4), and SOX2 have prominent roles [73].

Recent experimental studies indicate that c-Jun is salient for the maintenance of 
self-renewal as well as tumorigenicity of glioma stem-like cells [74] . Another study 
reports that in colon cancer c-Jun and TCF4 stimulated a subpopulation of colorec-
tal cancer tumor cells to endorse a stem-like phenotype through the NANOG pro-
moter [75] . Furthermore c-Fos enables to continue hematopoietic stem cells in the 
quiescence [76]. Panagiotis Apostolou and colleagues focused at demonstrating the 
association between the AP-1 complex and the stemness transcription factors. They 
addressed whether the AP-1 transcription factor is required to activate or suppress 
NANOG, OCT3/4, and SOX2 transcription factors and also whether it has an effect 
on apoptosis and cell cycle events.

c-Fos which is a proto-oncogene has a leucine zipper DNA-binding domain. 
c-Jun is also a proto-oncogene which has got important roles in cellular prolifera-
tion and cell death [77]. The AP-1 transcription factor operates downstream of mul-
tiple transduction pathways; thus various processes were implicated. Few studies 
have elaborated that c-Jun and c-Fos may be involved in the stemness pathways. 
c-Jun has a crucial role in the maintenance of self-renewal as well as tumorigenicity 
in glioma stem-like cells. In contrast a study has detailed that AP-1 and NF-B induce 
differentiation of mouse ESCs [66, 74, 78].

Thus there exists an association between AP-1 and stemness. The AP-1 has its 
contributions in apoptosis, along with that of individual proteins. AP-1 appears to 
deliver a central role in balancing stemness through monitoring OCT3/4, SOX2, 
and NANOG.  Repression of AP-1 leads to NANOG level reduction as well as 
expression of SOX2 gene, which in turn may lead to an increase in cells encounter-
ing apoptosis. The cells which are unable to conduct stemness undergo apoptosis.

The recent studies evidence that AP-1 could be potentially associated with the 
stemness phenotypes in colorectal squamous cell carcinomas. The decrease of its 
expression may lead to changes in expression of the major transcription factors 
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which are requisites for balancing pluripotency as well as undifferentiation. 
Additional studies are required to investigate this association further.

3.8  Conclusion

Advances in the field of gene regulation have commenced to discover the transcrip-
tional networks which are operated in the neoplastic cells. These approaches in 
research offered insights into transcriptional regulatory molecules that can be tar-
geted to rectify irregular gene functions. An accurate survey on signaling networks 
that are involved in oncogenic transcription factors can provide up-to-date features 
in transcription that has to be addressed. Advanced, structure-based minute drug 
molecules with minimum side effects and high selectivity can be generated in the 
future basing on the transcription factors instrumental in cancer formation. The 
mechanisms contributing to AP-1 activity regulation and its gene targets whose 
expression has to be regulated by AP-1 are still under investigation. Few mecha-
nisms were disclosed such as modulation of transcription factor activity by protein 
phosphorylation and methodology used by cell surface receptors to interface 
nucleus. Forbye the recognition of critical AP1 gene targets can divulge the activi-
ties of AP1. One of the major challenges to be tackled in cancer biology is compre-
hending the probable mechanisms that confer the actions of protein kinases and 
transcription factors. The generic and ubiquitous signaling proteins like compo-
nents of AP1 may be involved in immensely specific biological responses.
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Abstract
Esophageal cancer is one of the most malignant cancer types which rapidly 
invade into the neighbouring tissues, metastasize to adjacent lymph nodes, reside 
at distant organs, and develop secondary tumors. Transcription factors (TFs) are 
frequently deregulated in the pathogenesis of esophagus cancer and are a key 
class of cancer cell dependencies. Deregulated activation and inactivation of 
transcription factors in addition to mutations and translocations play central role 
in tumorigenesis. In normal physiological conditions, TFs are regulated in highly 
specific manner by upstream transcriptional regulators. However, in  cancer, 
aberrant activation of transcriptional factors guide deregulated expression of 
numerous genes is coupled with tumor development and progression. This 
review will summarize about the transcriptional factors involved in poor progno-
sis of esophagus cancer and the chemotherapeutic drugs targeting transcriptional 
factors.
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4.1  Introduction

Esophageal cancer is the sixth most widespread and eighth most common cancer in 
the world cause malignancy-related deaths [28]. There are two main types of esoph-
agus cancer with diverse malignant behaviors: esophagus squamous cell carcinoma 
(ESCC) and esophagus adenocarcinoma (EA). Enormous numbers of genetic and 
epigenetic alterations were found to be concerned in the growth and progression of 
esophagus cancers [2].

Transcription factors are important regulators for the gene expression pattern in 
cell and organize copious physiological processes such as self-renewal, develop-
ment, proliferation, differentiation, survival, and invasion. Aberrant activities of TFs 
are due to several mechanisms, viz., changes in expression, posttranslational modi-
fications, protein stability, and protein-protein interactions. In addition to mutations 
and translocations, deregulated activation plus suppression of TFs plays crucial 
roles in cancer cell proliferation, survival, and metastasis [7]. Depending on tumor 
stage, conventional treatment and therapies including chemotherapy and radiation 
therapy are prevailing for treating esophagus cancer. Despite therapeutic approaches, 
the prognosis of esophageal cancer in patients stays behind underprivileged, with a 
survival rate 15–34% [4].

The resistance to radiation and chemotherapy contributes to the high recurrence 
and poor survival rate. Mechanisms of resistance to radio-chemotherapy in esopha-
gus comprise the activation of several transcription factors including NF-κB, 
HIF-1α, STAT3, E2F1, and specificity protein 1 (Sp1). TFs can be targeted at differ-
ent levels that comprise inhibition of their interactions with coactivators and core-
pressors along with other interacting proteins or hindering their binding to DNA 
[25]. The failure of these therapeutic approaches in efficient treatment of esopha-
geal cancer has attracted the attention toward the therapeutics with the aim of selec-
tively targeting molecular pathways in cancer cells.

4.2  Transcription Factors

4.2.1  STAT3

STATs are signaling proteins, intricate in mediating cell signaling originated by 
binding of extracellular proteins to ligands [49]. The STAT protein family comprises 
six members, encoded by different genes: STAT (1–6). Numerous studies have 
highlighted overexpression of STAT3 in ESCC. In addition to that, STAT proteins 
perform dual functions: signal transduction in cytoplasm and activation of transcrip-
tion in nucleus [64].

Several cytokine factors like IL-6 and IL-22 [9] and growth factors like EGFR 
[1] and FGFR [66] are identified to activate STAT3. The binding for these ligands to 
the receptor phosphorylates and activates STAT3; phosphorylation of STAT3 is 
mediated by non-receptor tyrosine kinase JAK2. Upon activation STAT3 dimerizes 
and translocates to the nucleus where it activates the transcription of genes intricate 
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in cancer metastasis (VEGF, MMP-2), progression (survivin), and cell cycle regula-
tion (p53, cyclinD1) [61, 64]. Interestingly, the overexpression of STAT3 proteins 
promotes tumor angiogenesis that intercedes immune evasion and confers resis-
tance to apoptosis by chemotherapeutic agents. STAT3 is an essential mediator of 
the tumorigenic effects of EGF and TGF in squamous cell carcinoma of the head, 
neck, and non-small cell lung cancer [15].

The JAK/STAT signaling pathways also plays significant role in several physio-
logical processes. Inhibition of the JAK/STAT signaling pathway may suppress can-
cer cell growth and support apoptosis in many cancers [21]. Moreover, the JAK/
STAT pathways play an important role in upregulation of COX-2, involved in the 
progression, tumorigenesis, and recurrence of various tumors together with breast, 
prostate, stomach, and esophagus cancer. Nimesulide, a selective COX-2 inhibitor, 
downregulates the expression of COX-2 and survivin. In addition to that, nimesu-
lide also upregulates the expression of caspase-3  in ESC cells by inactivation of 
JAK2/STAT3 pathway [29].

4.2.2  NF-κB

The nuclear factor-κΒ (NF-κB) pathway is an essential mediator for immune 
responses in mammals. NF-κB, a ubiquitous transcription factor, influences all six 
hallmarks of cancer through the transcriptional stimulation of target genes tangled 
in cancer cell proliferation, angiogenesis, metastasis, tumor promotion, inflamma-
tion, and repression of apoptosis [23, 37, 52]. NF-κB in mammals contains five 
protein forms, namely, RelA (p65), RelB, c-Rel, p50 (NF-κB1), and p52 (NF-κB2). 
However, these proteins assemble into homo- or heterodimers and form NF-κB. The 
protein of NF-κB family has a conserved Rel homology domain essential for dimer-
ization and nuclear translocation along with inhibition [19]. NF-κB p50/p65 dimers 
are usually coupled with inhibitory molecule IκB and sequestered in cytoplasm. 
NF-κB can be triggered through numerous stimuli which include pro-inflammatory 
cytokines, viz., TNF-α, IL-1β, and IL-32, bacterial and viral products, and neutral 
pH [16]. Upon activation of NF-κB, phosphorylation, ubiquitination, and proteoly-
sis of IκB inhibitory proteins by IκB kinase (IKK) complex occur. However, this 
allows the translocation of NF-κB p50/p65 to the nucleus and induces the transcrip-
tion of several target genes [53].

Nkx2-8, a novel NK2-related transcription factor, is downregulated in various 
cancers and elicits an imperative role in development and progression of cancer. 
Nkx2 restricts the nuclear localization of NF-κB p50/p65 and suppresses the 
activity of NF-κB via downregulation of AKIP1 and also by binding to the promoter 
regions of AKIP1. AKIP1 (A-kinase-interacting protein 1) is a binding partner of 
NF-κB p50/p65 complex. Promoters of angiogenesis (COX-2, VEGF-C) are the 
downstream targets of NF-κB [26]. Activation of NF-κB is accompanied via 
stimulation of several factors associated with infiltration and metastasis, such as 
MMP, vascular endothelial growth factor (VEGF), adhesion molecules (ICAM, 
VCAM), and E-selectin [48].
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Survivin, the smallest member of the IAP (inhibitor of apoptosis proteins) fam-
ily, affects the expression of NF-κB p65, IKKα, and IKKβ at gene and protein levels 
in esophagus cancer cells. In Eca109 cancer cells, survivin activates the activity and 
expression of NF-κB p65 via binding to the IKKβ promoter region and increases 
transcriptional activity. Interestingly, downregulation of survivin arrested the cell 
cycle at the G2/M phase and induced apoptosis in ESCC. However, the upregulated 
expression of survivin eventually activates NF-κB p65 which is a significant factor 
in the acquisition and maintenance of the oncogenic features of ESCC [65].

4.2.3  HIF-1α

HIF-1α mediates the adaptive responses to changes in levels of tissue oxygen. The 
HIF-1α protein is a good intrinsic marker of tumor hypoxia. HIF-1α was upregu-
lated in a group of cancers that include prostate, gastric, breast, and colon cancer. 
Expression of HIF-1α is stimulated by EGF signals and also by hypoxia [40]. 
Furthermore, HIF-1α is a heterodimeric protein encompassing constitutionally 
expressed oxygen-sensitive HIF-1α subunit and oxygen-insensitive HIF-1β subunit. 
Under hypoxic environment (reduced oxygen levels), HIF-1α is stabilized, dimer-
izes with HIF-1β, and interacts with coactivator CBP/P300 which then translocates 
to the nucleus and activates target genes [45, 46]. Notably, in normoxic condition, 
hydroxylation of asparagine residues in HIF-1α C-terminal transactivation domain 
(CAD) is mediated by FIH (factor-inhibiting HIF-α). FIH evades the binding of 
p300/CBP coactivator, rendering HIF-1α transcriptionally inactive [22].

HIF-1α modulates transcription of numerous genes involved in stemness of 
esophagus cancer cell [68], proliferation (IGFBP-3) [36], invasion/migration, 
metastasis, and angiogenesis (VEGF, COX-2) [20, 35] under hypoxia. HIF-1α 
stabilizes p53 protein and contributes to hypoxia-induced p53-dependent apoptosis 
which is linked with cytochrome c release [14]. Furthermore, HIF-1α regulates 
the expression of insulin-like growth factor-binding protein (IGFBP)-3  which 
promotes tumor progression by binding to the HRE elements in promoter region. 
This leads to augmented transcription of IGFBP-3 and translation in cap-dependent 
manner under hypoxia conditions [36].

4.2.4  Sp1

Specificity protein 1 (Sp1), a zinc-finger protein belonging to the Sp/Krüppel-like 
factor (KLF) family, plays a significant role in carcinogenesis and is thought to play 
an important role in cancer metastasis. The literature witnesses that increased 
expressions of Sp1 have been reported in esophageal, breast, bladder, lung, and 
pancreatic cancer cell lines [44, 58]. Sp1-dependent transcription is controlled in 
response to various stimuli. Sp1 controls a group of genes that play a critical role in 
cell proliferation and growth (EGFR, HGFR, TGF-α), cell survival and apoptosis 
resistance (Bcl-2, Bcl-x, and survivin), cell migration and invasion (MMP-2 and 
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urokinase-type plasminogen), and angiogenesis (VEGF) [18]. Sp1 and Ap1 bind to 
the promoter regions of VIL2 which encodes ezrin, a membrane cytoskeletal linker 
protein, critical for various cellular processes which comprise determination of 
cell polarity, cell adhesion, cell-cell interaction, migration/invasion, and signal 
transduction [12, 67]. AKIP1 increases the binding affinity of Sp1, NF-κB, and 
AP-2 to VEGF-C promoters and increases the expression of VEGF-C that promotes 
angiogenesis/lymph angiogenesis of ESCC cells [27] (Fig. 4.1).

4.2.5  E2F1

E2F1 belongs to the E2F family of transcription factors that are crucial for cell cycle 
progression. E2F1 controls the proliferation of cells in quiescent stage through G1/S 
phase transition by trans-activating genes involved in chromosomal DNA replica-
tion, including its own promoter [60]. Zinc-finger protein 282 (ZNF282 also known 
as HUB1), often upregulated in esophageal squamous cell carcinoma, is an inde-
pendent adverse prognostic factor. It is notable that depletion of ZNF282 decreases 
the expression of E2F1 target genes. However this depletion also increased 

Fig. 4.1 Schematic representation of STAT3, HIF-1α, and NF-κB signaling pathways. In response 
to various stimuli, transcriptional factors get activated and promote the transcription of genes 
involved in cancer progression, survival, metastasis, and angiogenesis. Cisplatin, a most com-
monly used anticancer drug, targets Stat3 proteins and exerts growth inhibition in esophagus can-
cer cells
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apoptosis and inhibited cell cycle progression at G1/S. ZNF282 serves as coactivator 
of E2F1 and plays an important role in tumor progression in esophagus cancer [63]. 
Remarkably, E2F1 can stimulate proliferation and apoptosis; therefore, it functions 
as an oncogene and a tumor suppressor. The tumor suppressor and oncogene func-
tions of E2F1 depend on its protein levels in cells.

E2F1 is inactivated through pocket protein binding of pRb (retinoblastoma). 
Hypo-phosphorylated pRb protein forms a complex with E2F1 and blocks its activ-
ity. CyclinD-CDK4/CDK6 complex phosphorylates pRb during G1 phase and 
releases E2F1, allowing transcription of genes involved in cell cycle progression 
[59]. However, inactivation of the pRb pathway may perhaps lead to inappropriate 
activation of E2F1 and increased cellular proliferation rates and tumorigenesis. 
As a consequence, inhibition of E2F activity has been proposed as a therapeutic 
strategy for the treatment of cancer [57]. E2F1 triggers apoptosis, via p53-depen-
dent and p53-independent pathways. Furthermore, E2F1 directs p53-dependent and 
p53-independent apoptosis through transcriptional activation of ARF gene and p73 
(p53 family member), respectively [51].

4.2.6  KLF4

KLF4 (Krüppel-like factor 4), belongs to the Krüppel-like factor family, and is a 
zinc-finger-type DNA-binding transcription factor expressed highly in different 
human tissues and implicated in pathogenesis of numerous cancers. Tumor suppres-
sor activity of transcription factor KLF4 has been reported in several cancers such 
as gastrointestinal cancer, pancreatic cancer [62], colorectal cancer [55], and breast 
cancer [34]. The literature reports suggest that downregulation/loss of KLF4 pro-
motes tumor invasion, development, and progression in numerous cancers. KLF4 is 
a crucial regulator of normal cell proliferation and squamous epithelial differentia-
tion [33, 56].

Many studies have successfully demonstrated that KLF4 is controlled directly or 
indirectly by the transcription factors ZNF750, p63, PKCδ, and lncRNA in squa-
mous epithelia [5, 30, 47]. Tetreault et al. [56] delineated novel pathway for epithe-
lial stratification and differentiation in ESCC. KLF4 controls esophageal epithelial 
differentiation and stratification via WNT5A, a noncanonical Wnt ligand and direct 
transcriptional target of KLF4. KLF4 upregulates WNT5A and inhibits activity of 
CDC42, a small GTPase of the Rho family essential for normal differentiation. 
KLF4 together with WNT5A and CDC42 control β-catenin-dependent Wnt signal-
ing, and play a role in esophageal squamous cell carcinogenesis [56].

4.2.7  YY1

YY1(Yin Yang 1) is a ubiquitous and multifunctional GLI-Krüppel zinc-finger tran-
scription factor that belongs to the polycomb protein family that plays critical roles 
in cell proliferation, differentiation, cell homeostasis, and tumorigenesis [43]. 
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Nevertheless, YY1 was also reported to upregulate in several types of tumors, which 
affect the clinical outcome of cancers. Expression of YY1 is high in ESCC tissues 
with lymph node metastasis and tissues of stages III–IV to stages I–II compared to 
tissues without lymph node metastasis. YY1 inhibits cell proliferation by increasing 
the binding potential of P21 to cyclin D1 and CDK4 in ESCC. Interestingly, YY1 
also upregulates the expression of heme oxygenase 1, implicated in inhibition of 
ESCC proliferation [32]. However, this clearly indicates that YY1 has a tumor sup-
pressor effect in ESCC. Luo et al. [31] depicted that YY1 promoted the invasion of 
ESCC cells, while the YY1 inhibition could retain invasion of EC cells. Notably, 
several TFs have intricate biological pathways and are involved in ESCC progres-
sion. Nevertheless, YY1 is one of the significant transcription factors that can inhibit 
ESCC proliferation but also promote metastasis. Conversely, the functional role and 
mechanisms of YY1 in esophageal cancer are still ambiguous and necessitate addi-
tional investigation.

4.3  Drugs Targeting Transcriptional Factors

4.3.1  Cisplatin

Cisplatin is a commonly used anticancer compound and most frequently used for 
esophagus cancer treatment. But the clinical efficiency remains undesirable. 
Dasatinib had a synergistic effect with cisplatin in growth inhibition of esophagus 
cancer cell via suppressing PI3K/AKT and STAT3 pathways. Chen et al. [3] reported 
that disatinib treatment targets downstream proteins of PI3K/AKT and STAT3 path-
ways and may be an alternative for adjuvant chemotherapy in esophagus cancer. 
Cisplatin represses the transcriptional activity of NF-κB while activating p53 [8]. 
Propofol (2, 6-diisopropylphenol, PPF), a general sedative and hypnotic reagent, 
enhances the cisplatin-induced cell apoptosis cervical cancer cells via EGFR/JAK2/
STAT3 pathway. Moreover, the drug propofol was shown to suppress angiogenesis, 
invasion, and proliferation of cancer cell via ERK-VEGF/MMP-9 signal pathway in 
esophagus and human colon carcinoma [24]. Esophagus cancer cell lines induced 
the cell death mechanisms in response to chemotherapeutic drugs 5-fluorouracil 
(5-FU) and cisplatin [38].

4.3.2  Metformin

Metformin, an antidiabetic drug, employs chemopreventive and antineoplastic 
effects, and mechanisms responsible for action of metformin seem diverse and dif-
fer with cancer type. Metformin-mediated inhibition of cell growth in ESCC tumor 
cells is achieved by inactivation of STAT3 and Bcl-2 with induction of apoptosis 
and autophagy. Metformin suppresses the activity of Bcl-2 proto-oncogene, an 
inhibitor for apoptosis and autophagy [10].
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4.3.3  Tolfenamic Acid

Tolfenamic acid (TA) has been used in treatment of rheumatoid arthritis and 
migraine headaches in humans. TA is also used as a veterinary drug product for 
treating pain and stress responses in animals. Papineni et al. [39] reported that TA, 
a nonsteroidal anti-inflammatory drug, can contribute to anticancer activity. TA 
reduces expression of Sp family proteins and some Sp-dependent genes and pro-
teins such as VEGF, survivin, cyclin D1, and bcl-2.

4.3.4  Ramucirumab

VEGF (vascular endothelial growth factor)-mediated and VEGFR-2 (VEGF 
receptor- 2)-mediated angiogenesis plays a crucial role in the pathogenesis of gas-
troesophageal cancer. In animal models of gastric adenocarcinoma, VEGFR-2 inhi-
bition was previously depicted to reduce tumor growth and vascularity [17]. 
Ramucirumab is a human IgG1 monoclonal antibody and VEGFR-2 antagonist that 
avoids the ligand binding and receptor-mediated pathway activation in endothelial 
cells. In a recent report, ramucirumab drug depicted prolonged survival in patients 
with advanced gastric cancer or gastroesophageal junction adenocarcinoma pro-
gressing after first-line chemotherapy [11].

4.3.5  Bevacizumab

Bevacizumab, a human monoclonal antibody against VEGF (vascular endothelial 
growth factor), reduced microvessel density and increased intra-tumor hypoxia, but 
did not prompt apoptosis. Administration of bevacizumab with topotecan (TPT) 
triggered prominent antitumor effect, with tumor regression. Topotecan is a topoisom-
erase I poison that induces DNA damage and cytotoxicity and also potently blocks 
HIF-1α translation by a DNA damage-independent mechanism [42]. Furthermore, 
bevacizumab alone increased intra-tumor hypoxia and HIF-1 transcriptional activity 
and decreased proliferation, but did not prompt apoptosis of cancer cells. In con-
trast, by adding TPT to bevacizumab, HIF-1 activity and tumor cell proliferation 
were reduced effectively and apoptosis was induced [41].

4.4  Conclusion and Future Perspectives

Transcriptional factors STAT3, NF-κB, HIF-1α, Sp1 and E2F1 are potent onco-
genes that are ubiquitously expressed and control abundant physiological processes 
in development, progression, and metastasis of cancer. There exist collaboration 
and cross talk between STAT3 and NF-κB that play a significant role in governing 
the discourse between the tumor cell and its microenvironment. Transcription fac-
tors STAT3 and NF-κB interact with each other and exert tumorigenic effects in 
cancer types [13]. Notably, in head and neck squamous cell carcinoma (HNSCC), 
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anomalous expression of the transcription factor NF-κB kindles the expression of 
STAT3 by an autocrine or paracrine mode that involves the release of IL-6 in an 
EGFR-independent manner [50]. Moreover, STAT3 interacts with HIF-1α and 
activates the target genes of HIF-1α, by recruiting the coactivators, CBP (CREB- 
binding protein), p300, and RNA polymerase II (Pol II) [6]. NF-κB was also a sig-
nificant regulator for gene transcription of HIF-1α and VEGF. Additionally, NF-κB 
modulates HIF-1α expression at the level of transcription by binding to the pro-
moter regions [54].

A more and complete understanding of oncogene targets and cross talk between 
transcriptional factors will help reveal the complex transcriptional networks 
involved in regulation of cancer progression, metastasis, and prognosis. Interestingly, 
few chemotherapeutic drugs that are clinically efficient drugs have been reported for 
treating esophagus cancer. Despite the potential effects of transcription factors, they 
signify a tremendous approach to combat cancer, and their inhibition not only 
affects growth and survival of tumor cells but also confers resistance to drugs.
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Abstract
A multifactorial disease cancer arises due to mutation in the gene encoding par-
ticular transcription factor or proteins. Globally cancer is one of the diseases 
which is responsible for maximum mortality annually. Transcription factor plays 
an important role in cell physiology, and any alteration in this transcription factor 
may lead to diseases like cancers. NF-κB is a transcription factor which has 
immense homeostasis role in cell physiology and in several diseases. NF-κB is 
actively expressed in many cancers and helps in initiations, cell proliferations, 
and metastasis of different cancers. The present chapter discusses the role of 
NF-κB in cancer promotion and different drug targets, targeting NF-κB pathway 
for the treatment of cancers.
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5.1  Introduction

Cancer is a multifactorial disease which occurs due to mutations in few genes and 
leads to abnormal growth of cells. According to the WHO, cancer accounts for a 
large number of deaths worldwide, and it is the world’s leading health problem. 
Cancers originate from any tissue. The cancer cells lose normal control mechanism 
and attain a number of characteristic properties like immortality, invading of neigh-
boring tissue, and migrating to remote parts of the body. Continuous growth and 
multiplication of cancerous cells form tumors which can invade to normal tissues 
and make them cancerous. However tumors can be cancerous and noncancerous.

In general various cellular developmental signaling pathways like MAPK, PI3K- 
Akt, and NF-κB take part in controlling regular cell proliferation, motility, cell sur-
vival, and cellular metabolic processes. Mutational alteration in signaling molecules 
or receptors in these pathways plays a significant role in development of cancer [1]. 
Important molecules responsible for cancer development and progression are tran-
scription factors; these factors play an important role in various cellular gene expres-
sions in different stages of development and cellular metabolic activities. Because 
of their role in development, intercellular and intracellular signaling, and cell 
growth, some human diseases are also associated with mutation in the transcription 
factors. Cancer suits as the best example of the disease which results due to muta-
tion in few transcription factors. Transcription factors are central in many human 
cancers. Many signaling proteins are often mutated in cancers and change the tran-
scription pattern directly in cancer cells. In general more signaling proteins are 
mutated in cancer than the transcription factors; finally transcription factors are 
elected as the strong targets for treatment of cancer because transcription is the final 
outcome of any cancer prognosis.

Therefore they are of important clinical significance for at least two following 
reasons:

 1. Mutation can be associated with specific transcription factor with specific 
cancer.

 2. They can also act as targets of medication.

There are many inter- and intracellular checkpoints in signal transduction path-
ways and one or more stress sensing checkpoints. For example, early developmental 
pathways (Wnt, Sonic Hedgehog pathways, TGF-β receptor pathways, Notch/Delta 
pathways, cytokine receptor (cytoplasmic tyrosine kinase, JAK/STAT) pathways), 
mid-developmental pathways (IL-1/toll-like receptor pathways, nuclear factor- 
kappaB (NF-κB) pathways, nuclear hormone receptor pathways, apoptosis pathways 
(TNF, Fas L, TNK pathway)), late developmental pathways (receptor guanylate 
cyclase (FOS, JUN, AP1), GPCR pathways, cadherin pathway, gap junction path-
ways), and finally stress- or checkpoint-induced pathways (oxidative stress-induced 
pathway, UV-induced stress response, and checkpoint for DNA damage and replica-
tion (p21 and p53) checkpoint pathways) are some of the important cellular physio-
logical pathways. Finally at the end of all these pathways, innumerable transcription 
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factors participate ultimately as an outcome of signaling. All primary and modified 
cancer genes also participate in one or other of these pathways; many of the transcrip-
tion factors are tumor suppressor or oncogenes/proto-oncogenes. Mutations or aber-
rant regulation of these factors is associated with outcome of different cancers. For 
example, tumor suppressor APC transcription factor participates in Wnt pathways via 
β-catenin transduction pathway where alteration in APC can lead to colons cancers. 
Generally four groups of transcription factors are known to be important in many 
human cancers. They are NF-κB and AP1 families, STAT family, and steroid receptor 
family. The present article focuses on NF-κB role in regulating cancer cell prolifera-
tion, apoptosis, cell invasiveness, metastasis, tumor angiogenesis, and finally target-
ing transcription factor NF-κB in cancer therapy for treatment of various cancers.

5.2  NF-κB Gene Family and Proteins

NF-κB is one of the transcription factors which is made up of hetero- or homodi-
mers produced by the NF-κB family members (Fig. 5.1). Nearly 30 years ago, Dr. 
Ranjan Sen discovered NF-κB in 1986 while studying its interaction with few 
sequences of immunoglobulin light chain enhancer in B cells. The coincident dis-
covery of three proteins NF-κB, v-Rel, and dorsal had been shown different nucleo-
cytoplasmic subcellular distributions, but soon these proteins have shown to be 
members of the same family proteins notably NF-κB family proteins [2–5]. From 
the time of discovery to the present date, the role and importance of NF-κB in regu-
lating cellular processes has been extensively studied. NF-κB is well known for its 
immune regulatory function, and it is a key pathway in inflammatory responses, but 
growing evidences suggest that mutation in this factor also has significant conse-
quences of outcome of cancer. NF-κB was found to be involved in regulating 
expression of the crucial genes which are necessary in certain developmental stages 
and in diseases like cancer.

NF-κB family proteins are ubiquitous in nature and present in all vertebrate cells. 
p65 (RelA), p50/p105, RelB, p52, and c-Rel are five NF-κB family proteins which 
are ubiquitous. These proteins have distinctive structural features like N-terminal 

Fig. 5.1 Family member of NF-κB transcription factors
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Fig. 5.2 Family members of IκB

Rel homology domain (RHD) and C-terminal transactivation domain (TAD) [6]. 
Rel homology domain forms dimers which can bind to DNA and can also bind to its 
inhibitors. At C-terminal TAD interacts with the transcription machineries which 
ultimately enhances gene transcription, it is harbored by proteins like p65 (RelA), 
RelB, and c-Rel of NF-κB family members. In the absence of this TAD, generally 
the homodimers of either p50 or p52 act as a transcriptional repressors that give a 
stimulus for the activation of NF-κB [7]. In cell signaling, and in protein sorting, the 
conserved nuclear localization signal (NLS) sequence is commonly required for 
translocation of the proteins to nucleus. Similarly the transcription factor NF-κB 
also requires NLS sequence for translocation to the nucleus. This NLS sequence in 
NF-κB family proteins is positioned in the center.

5.3  Nuclear Factor of Kappa Light Polypeptide Gene 
Enhancer in B-Cell Inhibitor

IκB is the physiological inhibitor of the NF-κB. Binding of IκB to NF-κB in nor-
mal quiescent cells leads to the formation of NF-κB-IκB complex. This binding 
masks the NLS sequence in NF-κB proteins and makes it to be in inactive state as 
it inhibits nuclear localization. IκB family proteins specially bind to NF-κB RHD 
domains and inhibit NF-κB proteins by squelching it in the cytoplasm [8]. IκB 
family proteins are IκBβ, IκBα, IκBε, IκBγ, BCL-3, and p10 and p100 (Fig. 5.2). 
The IκB kinase (IKK) is a protein that specifically binds to IκB family members 
and inhibits IκB by causing its degradation. Degradation of IκB is a controlled 
event and initiated upon phosphorylation of specific residue by activated 
IKK. This event leads to the dissociation of IκB from NF-κB and its imgrations 
into nucleus to induce the expression of more than 150 genes which also include 
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anti-apoptotic genes. The IKK activity in cells can be purified as a 700 to 900 kDa 
complex. IKK contains different subunits such as IKK alpha (IKKα), IKK beta 
(IKκβ), and IKK gamma (IKKγ) or NEMO (NF-κB essential modifier) [9, 10] 
(Fig. 5.3).

5.4  NF-κB Pathways

NF-κB signaling occurs mainly through the classical pathway which is called as 
canonical pathway and by the alternative pathway which is also called as nonca-
nonical pathway.

5.5  Classical Pathway or Canonical Pathway

p65, c-Rel, and p50 proteins play an important role and drives the classical 
pathway.

This pathway has been characterized in many cell types as one of the most estab-
lished pathways. This pathway also consists of an IKK which consists of complex 
catalytic kinase subunits like IKKα, IKKβ, and one nonenzymatic regulatory scaf-
fold protein called IKKγ or NEMO. These are known as the essential modulators of 
NF-κB signaling.

In this pathway after activation of NF-κB, p50 and RelA dimers migrate to 
nucleus and result with output of increasing the transcription of genes which 
encodes the chemokines; cytokines; cell adhesion molecules such as ICAM-1, 
VCAM-1, and ELAM-1; inhibitors of programed cell death; and many other 
enzymes which produce inflammatory mediator. In the classical pathway, NF-κB/
Rel proteins are bound and strongly inhibited by IκB proteins in normal cells. In 
viral or bacterial infections, stimulatory signals in cells lead to release of various 
proinflammatory cytokines, LPS (lipopolysaccharides), growth factors, toll-like 
receptors (TLRs), various cell-induced stress signals, and antigen receptors that can 

Fig. 5.3 The IκB kinase (IKK) proteins
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Fig. 5.4 NF-κB pathways (a) canonical pathway (b) Noncanonical pathway

activate an IKK complex which is made up of both catalytic and regulatory proteins 
IKKα and IKKβ and NEMO/IKKγ, which phosphorylates IκB proteins which 
bound to NF-κB to make it inactive and reside in the cytoplasm. The phosphoryla-
tion by IKK complex to IκB leads to ubiquitin-mediated proteasomal degradation of 
IκB and finally generates NF-κB/Rel complexes free from its inhibitor IκB and 
makes NF-κB/Rel complex partially active. Now this partially activated NF-κB/Rel 
complex undergoes few posttranslational modifications like phosphorylation, acety-
lation, and glycosylation and gets completely activated and translocated to the 
nucleus. Alone or in combination with few other transcription factors like AP-1, 
E26 transformation-specific (ETS), and signal transduction molecule and transcrip-
tion activator (STAT), it induces the multiple target gene expression of innate 
immune genes [11, 12] (Fig. 5.4).
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5.6  Alternative Pathway or Noncanonical Pathway

The alternative pathway is generally activated by the members like tumor necrosis 
receptor family such as lymphotoxin-beta (LTβ), CD40, and viral proteins of 
Epstein-Barr virus (EBV) such as LMP1 and B-cell-activating factor (BAF). In this 
pathway p52 and RelB NF-κB complexes are the central targets to be activated. 
p100 is a molecule which is the precursor of p52 and RelB. Inducible processing of 
p100 generates p52 and a RelB-specific inhibitor. NF-κB-inducing kinase (NIK) 
plays a central role in this pathway. NIK integrates signals from TNF family recep-
tor and activates the downstream kinases like IKKα to initiate the p100 phosphory-
lation triggering its processing into p52 and RelB. Phosphorylated form of IκBs is 
ubiquitinated and subsequently assigned for degradation, or processed in the case of 
p100, by the proteasome [13]. The untied, NF-κB dimers migrate to the nucleus, 

Fig. 5.4 (continued)
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where they bind to specific sequences in the promoter regions of target genes and 
induce gene expression of target gene (Fig. 5.4b).

Apart from canonical and non-canonical pathways of NF-κB, other pathways 
had also reported. For example, NF-κB also gets activated by short wavelength of 
ultraviolet (UV) rays, this involves the IKK casein kinase 2 (CK2)-mediated phos-
phorylation and calpain-dependent IκB degradation. In this UV-mediated pathway, 
there is no role of IKK-independent NF-κB activation. In some cases, CK2 activity 
toward IκB is UV inducible through a mechanism that depends on activation of p38 
MAP kinase. Thus, the p38-CK2-NF-κB axis is an important component of the 
mammalian UV response [14]. NF-κB also gets activated by hydrogen peroxide 
through the phosphorylation of tyrosine at position Tyr42 of IκB by the involvement 
of spleen tyrosine kinase (Syk kinases) [15].

5.7  Biological Significance of NF-κB

Due to NF-κB importance and involvement in many physiobiological and patho-
logical processes, NF-κB can be termed as multifunctional transcription factor. 
Many reports stated that it has an immense role in immune responses as it regulates 
expression of growth factors involved in immune responses, in cytokine signaling, 
and also in regulation of both T-cell receptors (TCR), B-cell receptors (BCR), CD40, 
tumor necrosis factor receptor superfamily member 13C (TNFRSF13C), TLRS, and 
interleukin-1 (IL-1) receptor family. Genes which are located outside the immune 
system are also known to be regulated by the NF-κB, and hence it can influence 
multiple aspects of disease and normal physiology. NF-κB was also known that it 
has a role in embryonic development and in the development and physiology of tis-
sues including the mammary gland, bone, skin, and central nervous system, tissue 
homeostasis, and inflammation. While at the molecular and cellular level, NF-κB 
regulates gene expression, cell apoptosis, and cell proliferation [11, 16, 17].

5.8  NF-κB in Gene Expression

NF-κB plays a very important task in transcription. In transcriptions it acts as a 
transcription activator or enhancer by binding at the promoter to assist transcrip-
tion. Most physiological response such as growth, immune response, and inflam-
mation are induced by the expression of NF-κB genes. Previous studies revealed 
that activation of NF-κB can be done by endotoxins, carcinogens, tumor promoters, 
stress (pH, hypoxia, heavy metals), apoptosis inducers such as chemotherapeutic 
agents, gamma radiations, bacterial and viral infections and cytoκines like TNF 
family, IL-1, IL-17 plays a major role in NF-κB activation and can induce cellular 
transformation, through continous cell proliferation mediated invasion and angio-
genesis, metastasis. NF-κB activation can prevents tumorigenesis [18]. The tran-
scriptional suppression of NF-κB is only a probably cell type-specific property as 
some of this agent-induced NF-κB was clearly transcriptionally active in different 
cells [19].
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5.9  Role of NF-κB in Apoptosis

Programed death of cell is known as apoptosis. This is a physiological process of 
removal of unnecessary old cells or damaged cells or cells of which DNA damage 
is not repairable. Apoptosis is crucial for organ development; it creates diverse 
organ from mass of cells. For apoptosis to start, it needs a variety of induction 
stimuli. All necessary components are constitutively expressed in cells; as soon as 
the signal comes cells start suicide program. In different cells Rel/NF-κB factor has 
shown to have regulatory function for apoptosis pathway. Regulatory function 
involves activation of pathway or inhibition of pathway. Overall activation or inhi-
bition depends on different conditions as cell type, inducing agents, and damage of 
cells. This defines anti- or proinflammatory effects of Rel/NF-κB complexes. Few 
proapoptotic proteins have an effect on Rel/NF-κB signaling pathway, e.g., Bcl-2 
and caspases. There are three ways by which NF-κB regulates apoptosis pathway as 
follows: first is by direct regulation of genes that inhibits or enhances apoptosis, 
second is by controlling cell cycle, and third is by interaction of NF-κB with cel-
lular proteins whose concentration is vital for cell survival, thereby altering cell 
survival [20].

As viruses are intracellular pathogens, many viruses found to be interfering 
with NF-κB metabolism. Viruses may increase the signaling by direct interaction 
with NF-κB factor. Increased NF-κB may enhance replication by binding with 
promoter binding site in viral genome or may enhance pathogenicity of viruses. 
In HIV-1 genome, there are two sites for NF-κB binding in the promoter region. 
In some conditions binding of NF-κB supports viral replication in cells. NF-κB 
also protects HIV-1 by inhibiting apoptosis of infected myeloid cells. Apart from 
HIV-1 virus, other viruses such as hepatitis C virus, and encephalomyocarditis 
virus infection, NF-κB blocks apoptosis [21]. Many targets of NF-κB like physi-
ological apoptosis inhibitors (cIAP-1, cIAP-2), TNF receptor-associated factors 
(TRAF1, TRAF2), B-cell lymphoma-extra large (Bcl-XL), X-linked inhibitor of 
apoptosis (XIAP), manganese superoxide dismutase (MnSOD), and immedi-
ately early gene 1 (IEX-1) were shown to have anti-apoptotic properties. 
Sometimes, NF-κB could be proapoptotic in such scenario; it enhances expres-
sion of apoptosis mediators such as death receptor DR5, Fas ligand, PUMA, and 
Bax [22, 23].

In tumor cells NF-κB found to be constitutively expressed, and it is responsible 
for enhanced growth or resistance to induced apoptosis.

5.10  Role of NF-κB in Cellular Proliferation

NF-κB family members are shown to regulate cell proliferation on several kinds 
of cells. Different cytokine secretions including growth factors are under control 
of NF-κB transcription factor. TNF and many other different interleukins mostly 
proinflammatory interleukins are under regulation of NF-κB. This leads to either 
of inflammatory signals or cell proliferation signals; thereby it is involved in 
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carcinogenesis. NF-κB-mediated increase in TNF or IL-1β and IL-8 is acute 
myeloid leukemia, Hodgkin’s lymphoma, cutaneous T-cell lymphoma, and glio-
mas. Growth factors signal via NF-κB factors and finally lead to increased signal-
ing which finally helps to the proliferation of cells. In multiple myeloma IL-6 
cytokine [24] which involves NF-κB signaling acts as inducer. Epidermal growth 
factor is one important factor that utilizes NF-κB signaling to increase prolifera-
tion of cells [25–28]. In cancers like breast and prostate and in some other cancers, 
epidermal growth factor receptor is overexpressed. This effect is mediated through 
activation of NF-κB [29]. Cell cycle regulator genes such as cyclins D1, D2, and 
D3 and cyclin E and c-myc are also regulated by NF-κB and help in cell cycle 
progression [18].

5.11  NF-κB in Cancer

5.11.1  Activation of NF-κB in Cancer

Very common factor involved in tumorigenesis is NF-κB. Several studies on normal 
and tumor cells and in vivo models proved the NF-κB involvement in cancer devel-
opment. In 2001 Balkwill and Mantovani showed a role of NF-κB in inflammation 
and tumorigenesis. NF-κB can be activated by most of the carcinogens and tumor 
promoters and by inflammatory agents which can finally lead to cancer [30]. Agents 
like few chemotherapeutic drugs, radiations, and few cytokines generally known to 
induce apoptosis are also known to activate the NF-κB expression as part of cell 
auto defense mechanism and mediate the desensitization, chemoresistance, and 
radioresistance [31]. In some human hematopoietic and solid tumors, chromosomal 
amplification, overexpression, and rearrangement of gene coding for Rel/NF-κB 
factors have been identified. Epigenetic alteration or mutations in NF-κB protein 
lead to continuous expression of NF-κB in a certain type of cancers. In some cancer 
cell lines, the persistent activity of NF-κB in nucleus was observed due to the muta-
tion of inhibitory IκB subunits. These mutations inactivate the inhibitory IκB sub-
units or due to constitutive activation of upstream signaling kinases also make 
NF-κB to be persistent in nucleus. Continuous activity of NF-κB was observed in 
Hodgkin’s lymphoma due to the mutation in the gene of IκBα. Her2/Neu is an onco-
gene; its overexpression is most commonly observed in the aggressive cancers like 
breast cancers. Apart from breast cancer, it is also observed in lung and prostate. 
The overexpression of Her2/Neu is mediated through NF-κB. NF-κB may also be 
activated by few viral-derived proteins like T-cell leukemia virus (HTLV) Tax pro-
teins, reticuloendothelial (REV-T) retrovirus protein, hepatitis B virus X protein, 
and EBV latent membrane protein (LMP)-1 and can cause the viral infection- 
associated cancers [32, 33].
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5.11.1.1  Inducers of NF-κB Activation
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5.12  NF-κB Role in Inflammation and Cancer

According to the fact sheet data of World Health Organization, cancer is the major 
cause of the highest number of mortality worldwide. Around 14 million new cases 
and 8.2 million deaths solely associated with different types of cancers and nearly 
15% cancer in world population are exclusively caused by inflammation [34]. 
Infectious agents are the one which can cause inflammation in specific tissues. 
There are different ways/mechanisms by which infectious agents can cause the car-
cinogenesis like by chronic infections (e.g., hepatitis B virus and hepatitis C virus 
chronic viral infections in case of hepatocellular carcinomas), making normal cells 
to become transformed cancer cells by insertion of oncogenes and further inhibiting 
the tumor suppressor genes and finally suppressing the induction of immune 
responses. Evidences proved that NF-κB plays a major role as like that of other 
transcription factors like p53, E2F, and sp1 in generalized cellular processes like 
inflammation, stress response, and cell proliferation apoptosis. In a process of 
defense mechanism by body’s immune system, NF-κB gets activated with an aim of 
targeting and eliminating the altered and transformed cells in acute infections by 
recruiting the highly active cytotoxic immune cells against cancer cells. In various 
stress-induced responses like in inflammatory responses, activation of NF-κB in 
cancerous tissues usually results in upregulating a variety of pro-tumorigenic func-
tions such as upregulating the anti-apoptotic genes and thereby helping to provide 
best cell survival signals to develop the progression of cancer and escape of immune 
defenses mechanism. Cytokines like TNF-α, IL-1, IL-6, and IL-8 that regulate the 
immune responses and cell adhesion molecules are induced by NF-κB and recruit 
different immune cells at the site of infection. In innate immune responses, neutro-
phils release the reactive oxygen species (ROS) to destroy invading pathogen by 
ROS-mediated DNA; this might cause genetic mutations in host cells which may be 
responsible for tumor initiations. In gene knockdown experiments carried out by 
Greten et  al. [35] in mouse model, knocking down the IKK gene in enterocytes 
results in blocking the activity of NF-κB and also resulted into reduction of tumor 
multiplicity by 80% in dextran sulfate sodium-induced chronic inflammatory colitis 
cancer in mouse. This states that NF-κB takes part in early development of cancer. 
Blocking of NF-κB reduced the expression of few other anti-apoptotic gene expres-
sions of Bcl-XL and also the tumor multiplicity to half by reducing cytokine growth 
factor like IL-6 in myeloid cells. These show that NF-κB interacts with many cel-
lular proteins and promotes the tumor progression. In some other cases, the obstruc-
tion of NF-κB into the hepatocyte-specific, IκB expression leads to increased 
number of liver cell apoptosis and reduced the level of hepatocellular carcinoma. In 
mouse model the progression of hepatocellular carcinoma and activation of NF-κB 
are most likely mediated by the cytokines like TNF-α, because the administration of 
TNF-α antibody surpassed the levels of nuclear RelA immunostaining in liver cell 
and lowered the hepatocellular carcinoma [36]. In some cancers like mucosa- 
associated lymphoid tissue-derived lymphoma (MALT), the overexpression of Bcl- 
10 and MALT resulted in aberrant expression of NF-κB [37]. In some cases the 
deletion of IΚKβ in myeloid cancer showed low expression of certain proinflamma-
tory cytokines and ICAM 1 genes in macrophages and reduced the tumor growth in 
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myeloid cells without showing an effect on apoptosis [38]. Increased  levels of 
COX2 and MMP were observed in enterocyte-specific deletion of IKK, and 
myeloid-specific deletion of IKKβ decreases the levels of COX2 and MMP. Thus 
IKKβ promoted tumor injury growth in myeloid cells through the production of 
tumor growth, promoting paracrine factors rather than inhibiting the tumor cell 
apoptosis which shows that IKKβ is involved in inflammatory mediator’s produc-
tion to promote tumor growth. This shows that IKKβ has different approach to initi-
ate tumor growth because in enterocytes tumor are formed by expressing the 
anti-apoptotic proteins like Bcl-2, whereas in the myeloid cells, tumor imitations 
and progression are by tumor growth factors.

5.13  Role of NF-κB in Cellular Transformation and Tumor 
Growth

In cellular transformations and in tumor growth, the role of NF-κB is very much 
significant as it interacts with apoptotic and anti-apoptotic and with several cell 
cycle-regulating proteins and genes to initiate cancer cell transformation and tumor 
growth. In human cancer cells of colon, prostate, fibroblast, and lymphocytes, sev-
eral oncogenes like HTLV tax genes, PIM, and RAS cause the cell transformation 
with the help of NF-κB. It also has a positive role in cell transformation with many 
transcription factors. In case of DNA damage which is caused by cell stress like UV 
and inflammations or by heavy metals, toxicity, NF-κB comes into the picture and 
protects from regular cell apoptosis by stimulating the enhanced proliferation of 
cells to resist the stress. This enhanced cell proliferation leads to the neoplastic 
transformations and finally initiates the cancer. In this process many anti- apoptotic 
factors and growth factors are involved like Bcl-XL, survivin, and p21WAF, cyclin 
D and C-myc which are cell cycle regulators, and cytokines which act as growth 
factors like IL-6 and IL-1β and certain growth factors such as EGF and HIF-1α 
which are hypoxia-induced factors expressed highly in tumor cells; all these interact 
with NF-κB making it active and lead to tumor formation. HIF-1α in myeloid cells 
interacts with NF-κB and increases the expression HIF-1α and leads to formation of 
NF-κB and HIF-1α-induced tumors [38–40].

5.14  Role of NF-κB in Tumor Cell Invasiveness and Metastasis

In any cancer processes, cell adhesion, migration, and invasion are the three basic 
steps involved in tumor metastasis as it is the only process and special property of 
cancer disease that drives cancerous tissue to occupy and translocate to distant 
remote tissues in the body making the invaded area cancerous. In cancer cell inva-
sion and metastasis, the role of NF-κB has been investigated in different types of 
cancers both in vitro and in vivo. Epithelial-mesenchymal transition (EMT) is the 
process involved in cell invasion and metastasis, and this process in one and some 
other way is also mediated by NF-κB by interaction of NF-κB with EMT genes. 
In some aggressive cancers like breast cancers, EMT genes ICAM 1, ELAM-1, and 
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VCAM-1, twist, MMPs, and serine protease urokinase-type plasminogen activators 
(uPA) are enhanced by the activation of NF-κB. Bcl-2 activated by NF-κB also pro-
motes the EMT in breast cancer. Sometimes NF-κB has also been shown to have 
different roles in cell invasion and metastasis. In one (in vitro) study, it was shown 
that an increased level of TNF enhanced the ability of the tumor cells to adhere 
strongly with mesothelium, whereas in in vivo it showed opposite results. Increased 
TNF levels in in vivo showed the enhanced tumor migration and invasion. This is 
mediated by the NF-κB-dependent induction of some chemokine receptor like 
CXCR4 and upregulation of monocyte chemokine attractant protein-1 (MCP-1) and 
IL-8 and ICAM-1 [41–43].

5.15  Role of NF-κB in Angiogenesis of Tumor

Angiogenesis is the development of new blood vessels, a process which is most 
important for progression of cancer. It helps in tumor invasion and metastases to 
take cancerous cells to remote tissues by means of newly formed blood vessels. 
Angiogenesis of the tumors is generally dependent on many signals like proinflam-
matory cytokine growth factor signals like IL-8, TNF-α, and VEGF that are secreted 
by macrophages and other inflammatory cells. Continuous activation of NF-κB trig-
gers the autocrine of angiogenesis by angiogenic chemokines in cancerous tissues. 
Inhibition of this angiogenic chemokine suppresses the tumor growth and angiogen-
esis and finally cancer progression. Several angiogenic genes are associated via 
NF-κB and mediate the tumor angiogenesis. For example, in basal cell carcinoma, 
a gene called stromal cell-derived factor 1 alpha (SDF-1α) is known to boost the 
tumor angiogenesis by regulating the genes that are associated with angiogenesis 
via NF-κB. In bone marrow-derived cells, tumor vascularization is much essential 
for tumor angiogenesis, and IL-8 is mediated in this process. Many cytokines, che-
mokines, and growth factors are also involved in angiogenesis apart from IL-8, and 
this process is finally mediated through the NF-κB [44] (Table 5.1).

5.16  Targeting of NF-κB for Cancer Therapy

NF-κB is a transcription factor that plays a central role during tumorigenesis in many 
cancers types. It has numerous roles in cellular activities like in development, immune 
system, and in maintaining cellular plasticity and promoting the expression of several 
genes which controls cellular activities like apoptosis, angiogenesis, and metastasis 
and in interaction with many other transcription factors, chemokines, and cytokine 
growth factors and receptors. As it is expressed in many cells, NF-κB family genes and 
their pathways are the one of best targets for cancer therapy. There are many treatment 
approaches based on NF-κB like gene silencing mechanisms and chemotherapy target-
ing the NF-κB genes and proteins [139]. NF-κB is mainly regulated by the processes 
like methylation, phosphorylation, and ubiquitination- mediated modifications.

From past few years, many investigations had been done on the NF-κB path-
ways, mainly on the canonical pathways, and opened a door for targeting the 
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Table 5.1 Constitutive NF-κB activity in human cancer cells and proposed mechanism (Modified 
from http://www.bu.edu/nf-kb/the-gilmore-lab)

Cancer type Proposed mechanism References
Burkitt’s lymphoma 
(EBV)

EBV-encoded latent membrane protein 1 
(LMP1) – TRAF2-mediated NF-kappaB 
activation, AP-1 induction, and JAK3/STAT 
activation

[45]

Acute nonlymphocytic 
leukemia

NF-κB continual activity is mediated by the 
overexpression of WT1 and MDR1

[46]

Breast Altered IkBα activity [47]
[48]
[49]

Cervix Altered IkBα activity [50]
[51]
[52]

Ovary Altered IkBα activity [53]
[54]

Vulva Continuous activation of NF-κB in vulva cancer 
tissue is by growth inhibitory cytokines

[55]

Prostate Altered IkBα activity is observed [56–60]
Kidney Altered IkBα activity is observed [61]
Bladder Altered IkBα activity [62–64]
Lung Altered NF-κB p65 nuclear expression leads to 

continuous activation of NF-κB in lung cancers
[65–69]

Mesothelioma TNF-α signaling through NF-κB pathway is 
anti-apoptotic

[70, 71]

Non-small-cell lung Altered NF-κB and p65 nuclear expression leads 
to continuous activation of NF-κB in lung 
cancers

[72–74]

Liver Defective IkBα activity [75–78]
Pancreas Defective IkBα activity [79, 80]

[81, 82]
Esophageal/gastric NF-κB blocks apoptosis and mediates tumor cell 

proliferation
[83, 84]
[85]

Laryngeal By altered levels of NF-κB p65, protein makes 
NF-κB continuously active

[86, 87]

Stomach Constitutive activation of NF-κB is likely due to 
the activation of ubiquitin-proteasome pathway

[88, 89]

Colon Defective IkBα activity [90–92]
Thyroid Defective IkBα activity [93–95]
Parathyroid Defective IkBα activity [96]
Melanoma Defective IkBα activity [97]

[98]
Head and neck Defective IkBα activity [99–102]
Endometrial (uterus) NF-κB and IkB families of genes may be 

important in endometrial carcinogenesis, by 
controlling apoptosis and cell proliferation

[103, 104]

(continued)
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Table 5.1 (continued)

Cancer type Proposed mechanism References
Cylindromatosis CYLD, a tumor suppressor gene which is 

mutated in familial cylindromatosis, interacts 
with NEMO, the regulatory subunit of IKK, and 
makes NF-κB active continually

[105–107]

Hilar 
cholangiocarcinoma

Defective IkBα activity [108]

Oral carcinoma Altered IkB kinase alpha and Akt kinase activity 
lead to continual activity of NF-κB

[109, 110]
[111, 112]
[113]

Astrocytoma/
glioblastoma

ING4 interaction with p65 (RelA) subunit of 
nuclear factor NF-κB involved in regulation of 
brain tumor angiogenesis via transcriptional 
repression of NF-κB-responsive genes

[114, 115]

Neuroblastoma Constitutive NF-κB DNA binding activity 
specifically involving p65 and p50 in 
neuroblastoma

[116, 117]

Glioblastoma Defective IkBα activity [118, 119]
Hodgkin’s lymphoma Constitutive IKK activity; IkBα and IkBε 

mutations
[120–122]

Acute lymphoblastic 
leukemia

Constitutive IKK activity; NF-κB1 chromosomal 
rearrangement

[123, 124]

Acute myelogenous 
leukemia

[125, 126]

Acute T-cell leukemia 
(+/−HTLV-1)

Increased IkBα degradation [127, 128]

Acute nonlymphocytic 
leukemia

[46]

Chronic lymphocytic 
leukemia

STAT-3 activates NF-κB in chronic lymphocytic 
leukemia cells

[129, 130]
[131]

Multiple myeloma RelA amino acid substitution [132]
[133, 134]

MALT lymphoma Translocations are involved in few genes which 
lead to induction of NF-κB pathway

[135]
[136]
[137]

Waldenstrom 
macroglobulinemia

Continuous NF-κB is mediated by different 
proteasomal and Akt pathways

[138]

molecules involved in these pathways. Much more efforts had also taken for devel-
oping therapy against NF-κB factor as well as its characterization. By trying differ-
ent natural and synthetic compounds and their combinations of NF-κB inhibitors, 
more than 700 inhibitors are identified. It is an important drug target because of the 
central role that NF-κB has in many pathologies, besides inflammation and cancers 
[140]. Best approaches according to known literature are the use of anti- inflammatory 
drugs, DNA binding inhibitors and inhibitors of nuclear translocation migration of 
NF-κB, IKK activation, proteasome inhibitors, and targeting genes to inhibit tran-
scription. Degradation of IkB and nuclear targeting of NF-κB and DNA binding is 
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the main targeted action of NF-κB signaling pathways. So far discovered NF-κB 
targets are based on these steps as follows.

5.17  Inhibitors of IKK

IKK is one of the major and well-studied molecular targets for NF-κB inhibition as 
it has a central important role in the activation of NF-κB. IΚK inhibition and inhibi-
tion of its related kinases had been investigated as good therapeutic targets for the 
treatments of many inflammatory diseases and in many different types of cancers. 
SC-514, TPCA-1, IMD-1, bardoxolone methyl, BMM-345541, IKK16, BAY 3264, 
BAY 11-7085, BAY 11-7082, MLN120B, BMS345541, SC-514, and CHS828 can 
inhibit IKK by direct interaction with IKK. Inhibition might depend on inhibition 
ability of kinase or indirectly inhibiting IKK activation [141–145, 156–158].

5.18  Inhibitors Based on Proteasome

Bortezomib is a reversible 26S proteasomal inhibitor which acts as inhibitor of the 
activity of proteasome which blocks NF-κB pathway by IkB protein degradation. It 
is one of the first drugs approved by both the European Medicines Agency and FDA 
for the treatment of multiple myeloma. In many malignant tumors like breast, colon, 
lung, and bladder and in prostate cancers, bortezomib is tested in combination with 
other anticancer drugs including DNA damage-inducing drugs and achieved a very 
better response compared to administration of bortezomib alone. Carfilzomib, 
RP-171, and NPI-0052 are some of other proteasomal inhibitors [146].

5.19  Inhibitor for Nuclear Translocation and DNA Binding

Translocation of NF-κB into the nucleus and DNA binding is inhibited by this cat-
egory of drugs. SN50 is one drug that acts in the nucleus by inhibiting both nuclear 
translocation and DNA binding of NF-κB. Hence NF-κB is retained in the cyto-
plasm after IkB protein degradation. SN 50 is a peptide 41 amino acids long consist-
ing of P50 NLS sequences that block the machinery of nuclear transport in sensitized 
cisplastin anticancer activity in ovarian cancer cells [147]. Apart from the IKK 
inhibitors, proteasome inhibitors, nuclear translocation, and DNA binding inhibi-
tors of NF-κB, some anti-inflammatory drugs are also used in blocking the 
NF-κB. Sulindac, aspirin, ibuprofen, COX2 inhibitors, and indomethacin which are 
nonsteroidal anti-inflammatory drugs (NSAIDs) are also used as potential targets of 
NF-κB. These drugs suppress the inflammatory cell response which in turn sup-
presses the NF-κB or act by suppressing the NF-κB at key agenesis NF-κB activa-
tion pathways. Combination of these agents with other anticancer agents is widely 
used for chemosensitization [148]. Epigallocatechin gallate, eicosapentaenoic acid, 
curcumin, and luteolin which are natural anti-inflammatory agents are also able to 
block the NF-κB [149].
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5.20  Gene Therapy Based on Targeting NF-κB

Gene therapy is one of the promising areas for various cancer treatments as genes 
are the key component of carcinogenesis pathways. One advantage of gene therapy 
is that it can directly target key components of pathways so it is very sensitive than 
other approaches.

• Overexpression of IkB SR with viral vector or with plasmid
• RNA interference which specifically eliminates the NF-κB gene expression
• IKKα, IKKβ, and kinase TAK1 are targeted by siRNA for blocking NF-κB 

expression for treatment of cancer [150–152] (Table 5.2)

Table 5.2 Drug targets of NF-κB pathways for cancer therapy

Drugs Mode of action Reference
BAY 11-7085 It irreversibly inhibits IkBα phosphorylation, preventing 

activation of NF-κB by cytokines and lipopolysaccharide
[153]
[154]

BAY 11-7082 It irreversibly inhibits TNF-α-induced IkBα [154, 
141]Phosphorylation and its selective IkBα phosphorylation 

inhibitor
MLN120B Directly binds to IKKβ and inhibits activity of IKKβ kinase and 

blocks NF-κB activation
[149, 
155]

BMS3345541 Directly binds to IKK and inhibits IKK kinase activity and 
blocks NF-κB activation

[142]

SC-514 Binds and inhibits IKKβ
CHS828 Directly binds to IKK and inhibits IKK kinase activity and 

blocks NF-κB activation
[144]

TPCA-1 TPCA-1 is an inhibitor of IKK2 and inhibits NF-κB pathway [156, 
157]

IMD0354 It blocks IkBα phosphorylation in NF-κB by inhibiting IKKβ [158, 
159]

Bardoxolone 
methyl

It is an IKK inhibitor [162]

IKK16 Acts on IKKα and IKKβ [160]

A2D3264 Novel IKK2 inhibitor [161]
LY2409881 IKKβ inhibitor [163]

BMS-345541 Inhibits both IKKβ and IKKα
Bortezomib Inhibits proteasome action by blocking NF-κB activation during 

the process of IkB protein degradation
Carfilzomib Acts on p50 and p65
RP-171 Proteasomal inhibitors [146]
NPI-0052 Proteasomal inhibitors [146]
SN50 Inhibits the translocation of NF-κB and its binding to DNA [147]
Sulindac Selectively acts on IKKβ [164]

Ibuprofen It is an anti-inflammatory agent that blocks the constitutive 
activity of NF-κB

[57]

Aspirin Inhibits the kinase activity of IKKβ [148]
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5.21  Conclusion

NF-κB is one of the well-studied transcription factors which has diverse roles in 
regulation of cellular physiology. It is well known to involve in many signal trans-
duction pathways such as cell metabolic pathways, cell growth pathways, and apop-
totic pathways and even in several immunological pathways especially innate 
immune signaling pathways. Besides its role in normal cell physiology, it also plays 
a critical role in many diseases. One such disease is cancer. As its expression is seen 
in many cancers, NF-κB is involved in different progression stages of cancer like 
tumor initiations, cell proliferations, apoptosis, tumor invasion, and metastasis. In 
this chapter activation of NF-κB and drug targets based on NF-κB signaling have 
shown in different cancers. Many therapeutic targets are also used against different 
stages of NF-κB pathways to cure cancers. Approaches like RNA-based gene ther-
apy on NF-κB are very much promising for treatment of cancers.
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Abstract
Hypoxia is a significant factor of the tumor microenvironment. Transcriptional 
factor HIF-1α serves as a drive for tumor hypoxic microenvironment and triggers 
gene transcription that intricate in important aspects of cancer biology. Hypoxic 
effects can be either positive or negative, depending on the context, severity and 
duration on a tissue. In oesophagus cancer, hypoxia stabilizes the transcription 
factor HIF-1α and regulates diverse functions such as metastasis, angiogenesis, 
cell cycle regulation and apoptosis chemo-resistance. miRNAs also play essen-
tial roles in the adaptive response of tumors to hypoxia. Therefore, HIF-1α acts 
as a promising target in advancement of new therapeutics for oesophagus cancer 
therapy. Recent developments in regulation of HIF-1α and functional involve-
ment in tumor growth, migration, stemness and drugs affecting HIF-1α expres-
sion will be discussed in this review.
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6.1  Introduction

Oesophageal cancer (EC) is malignant tumor of upper digestive tract. Oesophageal 
cancer is extremely lethal disease with an overall 5-year survival in less than 15% 
and mostly prevalent in developing and underdeveloped countries [49]. Oesophageal 
cancer (EC) is the eighth most common cancer and the sixth most common cause of 
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cancer death worldwide. Oesophageal adenocarcinoma and squamous cell carci-
noma are two major types of cancer which typically arises in gastric reflux- 
associated Barrett’s oesophagus, squamous epithelial cell, respectively. Risk factors 
are associated with chronic smoking and alcohol consumption [2]. More than 90% 
of oesophageal cancers arise within the stratified squamous epithelial cell (ESCC) 
[87] and account for oesophageal malignancies in East Asia, including China and 
Japan. In recent years incidence of oesophageal adenocarcinoma (EAC) is increas-
ing in Western counties [70].

Mammalian cells usually require adequate levels of oxygen to execute aerobic 
metabolism and energy production to support their biological functions. Tumor 
expansion increases the diffusion distances from the existing vascular supply. 
Consequently, the regular normal blood supply into tumor cells is impaired, resulting 
in a low oxygen level (hypoxia) [48]. In this unique microenvironment of hypoxia, 
intratumoral cells start to activate the transcriptional factor, HIF-1 (hypoxia-induc-
ible factor-1), which controls transcriptional response of several genes. HIF-1controls 
the expression of over 100 genes involved in cell survival, proliferation, invasion, 
tumor metabolism and angiogenesis and stimulates cytokines such as VEGF (vascu-
lar endothelial growth factor) [48, 56] and COX-2 (prostaglandin (PG) H syn-
thase-2). However, tumor growth generated hypoxic environment due to insufficient 
blood supply, stimulates ROS (reactive oxygen species) production and HIF-1 
expression [22, 39]. HIF-1α is a good intrinsic marker of tumor hypoxia.

HIF-1α is overexpressed in several cancers like pancreatic cancer, colon cancer, 
gastric cancer, oesophagus cancer and breast cancer. Furthermore, up-regulation of 
HIF-1α affects the biological action of tumor cells, recruits the infiltrated lympho-
cytes and promotes angiogenesis in tumor microenvironments [19, 57, 79]. Increased 
expression of HIF-1α also activates protein kinase C (PKC) which promotes tumor 
differentiation and proliferation [6]. HIF-1α facilitates the transcription of several 
genes encoding for autocrine and angiogenic growth factors including VEGF, 
TNF-α (tumor necrosis factor-α) and transforming growth factor (TGF)-β1, which 
consequently benefit the progression of cancer cell metastasis and angiogenesis [20, 
104]. Increased expression levels of HIF-1α in both tumor cells and TILs (tumor- 
infiltrating lymphocytes) were significantly associated with poor survival in ESCC 
patients [97–99]. Notably, HIF-1α up-regulation is associated with mortality in 
cervical cancer, ovarian cancer and breast cancer and treatment failure in oesopha-
gus cancer and squamous cell carcinomas. Hypoxia is one of the most prominent 
conditions that promotes both radio-resistance and chemo-resistance of cancer 
cells. Resistance to therapy is partly intervened by defect in autophagy or an inher-
ent apoptosis [68].

6.2  Hypoxia Inducible Factor-1α

HIF-1 is a heterodimeric protein composed of a constitutional expressed an oxygen- 
sensitive HIF-1α subunit and oxygen insensitive HIF-1β subunit. The α-subunit 
consists of three isoforms, viz. HIF-1α, HIF-2α and HIF-3α, whereas HIF-1β is the 
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only β-subunit known. HIF-1β subunit is also known as the aryl hydrocarbon nuclear 
translocator (ARNT). Both HIF-1α and HIF-1β subunits belong to basic-helix-loop- 
helix (bHLH) PER, ARNT and SIM (PAS) superfamily of eukaryotic transcription 
factors. DNA binding is mediated by the basic domains and subunit dimerization by 
the bHLH domains [3, 72, 73].

Under hypoxic conditions, HIF-1α is stabilized and dimerize with HIF-1β. HIF-1 
heterodimers then translocate to the nucleus where it binds with cofactors p300/
cAMP (response element-binding protein) and forms an active transcription com-
plex (Fig. 6.1). This assembled complex is able to interact with hypoxia response 
elements (HRE 5′-G/ACGTG-3′) and regulate transcription of various genes 
[42, 56, 100]. In normoxic condition, hydroxylation of Asparagine residues in 
C-terminal transactivation domain (CAD) of HIF-1α is mediated by factor 
inhibiting HIF-α (FIH) to prevent the binding of p300/CBP co-activator, rendering 
HIF transcriptionally inactive [3, 42]. Nuclear translocation of HIF-1α is achieved 
by importin-α nuclear transport protein. Binding of importin-α to HIF-1α facilitates 
transport of HIF-1α into nucleus involves importins 4 and 7 [1].
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Fig. 6.1 Regulation of HIF-1α under normoxic and hypoxic conditions. (a) HIF-1α is hydroxyl-
ated by PHD at proline residues. Hydroxylated HIF-1α is polyubiquitinated by tumor suppressor 
protein VHL and undergoes 26s proteasomal degradation. FIH (factor inhibiting HIF-1α) hydrox-
ylates the asparagine residues of HIF-1α and prevents interaction with p300/CBP rendering 
HIF-1α transcriptionally inactive. (b) Under hypoxic condition, HIF-1α interacts with HIF-1β and 
translocates to nucleus where it binds to co-activator p300/CBP and activates the transcription of 
genes by binding to HRE elements
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6.2.1  HIF-1α Stabilization in Mitochondria

In mitochondria under normoxic conditions, prolyl hydroxylases (PHD1, PHD2 
and PHD3) hydroxylate ODD (oxygen-dependent degradation domain) domain of 
HIF-1α at proline and arginine residues (Fig.  6.1). PHDs are dioxygenases that 
require oxygen, Fe2+ and 2-oxoglutarate as co-substrates and as well as ascorbic 
acid and iron as cofactors [66]. The von Hippel–Lindau tumor suppressor protein 
now binds to both hydroxylated HIF-1α and Elongin-C, which in turn recruits 
Elongin-B, CUL2 and RBX1 and E3 ubiquitin ligase and targets HIF-1α for ubiqui-
tination [32, 63]. Ubiquitination targets HIF-1α for degradation, which can be hin-
dered by proteasome inhibitors. In the absence of oxygen, prolyl hydroxylase 
cannot alter HIF-1α, and the protein remains stable. Furthermore, reactive oxygen 
species (ROS) helps in stabilization of HIF-1α and impedes the action of PHD [54]. 
However, inhibition of cell growth during hypoxic condition leads to formation of 
more malignant phenotype in tumors by provoking genes involved in angiogenesis 
and energy metabolism (Fig. 6.2).
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Fig. 6.2 HIF-1α target genes under hypoxia and therapeutic intervention. HIF-1α dimerizes with 
HIF-1β, and co-activator CBP/p300 binds to HRE regions of DNA and transcribes the genes neces-
sary for ECC progression. STAT3 interacts with HIF-1α and stabilizes under hypoxia condition. 
Berberine, Ginsenoside and rotundic acid inhibit the expression of HIF-1α
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6.2.2  Oxygen-Independent Regulation of HIF-1α

In addition to hypoxia induced activation, growth factors stimulate the HIF-1α pro-
tein synthesis via a signal transduction pathway.HIF-1α can be activated by genetic 
alterations of oncogenic proteins PTEN; VHL appears to depend on the signal trans-
duction pathways that are active in a particular tumor cell [38]. Growth factors, viz. 
EGFR, IGFR and HER2, mediate activation of HIF-1α through RAS/MAPK and 
the PI3K-Akt-mTOR signal transduction pathway [43]. This pathway is negatively 
controlled by the tumor suppressor PTEN, which dephosphorylates downstream 
targets of the PI3K. Increased levels of PTEN inhibit HIF-1α expression and HIF-1α 
facilitated gene transcription in prostate cancer and glioma cells [102]. Gain-in- 
function mutation of oncogene and loss-of-function mutation of tumor suppressor 
gene promote tumor vascularization and increase glucose uptake and lactate pro-
duction (Warburg effect). In addition, the notable frequency with which genetic 
alterations occur in cancer cells is linked with increased HIF-1α expression and 
tumor progression.

6.3  HIF-1α in Cell Proliferation and Survival

In hypoxic microenvironment, cells may adapt to certain metabolic changes and 
cellular signalling. Under hypoxia several growth factors and signalling pathways 
are induced which promote cell proliferation and survival. Growth factors such as 
cytokines, mitogen-activated protein kinases, insulin-like growth factor-3 (IGF3) 
and transforming growth factor-α (TGF-α) stimulate HIF-1α expression by binding 
to their cognate receptors and amplify the HIF-1 activity together with Ras and Myc 
oncogenes [12, 41]. HIF-1 target gene IGF2 encodes insulin-like growth factor-2 
(IGF2), which promotes tumor cell survival. IGFBP-3 (insulin-like growth factor- 
binding protein-3), a major carrier protein of IGFs, regulates the cell proliferation in 
oesophagus squamous cell carcinoma in IGF (or IGF1R)-dependent and IGF- 
independent manners [84]. The expression of insulin-like growth factor-binding 
protein (IGFBP)-3 is regulated by HIF-1α but not HIF-2α in ESC cells. HIF-1α 
binds to the HRE elements in promoter region of IGFBP-3 [60], leading to increased 
transcription of IGFBP-3, translation in cap-dependent manner under hypoxia 
conditions.

In addition to cancer cells, tumor microenvironment also contains immune cells 
(lymphocytes) and stromal cells. The collaborations of diverse cell subsets in tumor 
microenvironment play a vital role in clinical behaviour of cancer patients. Prospero 
homeobox 1 (PROX1) is a transcription factor and master regulator of lymphangio-
genesis and associated metastasis. PROX1 expression in colon cancer [65], hepato-
cellular carcinoma [52] and malignant [11] is associated with cancer progression. 
PROX1 acts as a tumor suppressor in hepatocellular carcinoma [52], neuroblastoma 
[13], breast cancer [90] and pancreatic cancer [71], suggesting that the oncogenic 
potential of PROX1 is cancer type-dependent. However, the clinical significance of 
PROX1  in human solid cancers is controversial. PROX1 regulates lymph node 
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metastasis via induction of VEGFR3 (vascular endothelial growth factor receptor 3) 
and FOXC2 (forkhead box protein C2) expression. PROX1 regulates cell prolifera-
tion in ESCC patients,  is a downstream target of hypoxia-induced gene and 
NF-κB. PROX1 involves in cancer progression by increasing the protein stability 
and nuclear accumulation of HIF-1α. High expression of PROX1 reduces expres-
sion of epithelial marker E-cadherin and increases lymph node metastases in ESCC 
patients. PROX1 is independent diagnostic marker in ESCC patients [94]. Hypoxia 
is a characteristic attribute of tumor environments and up-regulates HIF-1α in lym-
phocytes which in turn promotes Foxp3 (master regulator of regulatory pathway in 
development and function of regulatory T cells) expression. Foxp3 mounts the 
suppressive function of regulatory Treg cells and impairs cytotoxic T cells function. 
Increased levels of HIF-1α in both TILs and tumor cells were significantly associ-
ated with poor survival in ESCC patients [99].

6.4  HIF-1α in Cell Cycle

Cells can respond differently to a wide range of oxygen and also alter homeostatic 
functions of normal or cancer cells. Hypoxia prompts cell cycle arrest by inactiva-
tion of enzymes responsible for nucleotide synthesis, eventually inhibiting DNA 
replication [18]. Acute and chronic hypoxia induces cell cycle arrest in G0–G1 phase 
and reduces the percentage of cells in G2/M and S phases. Chronic and acute hypoxia 
down-regulate the expression of DNA repair genes BRCA1, BRCA2 and RAD51 
which account for G0–G1 arrest [35]. In hypoxia normal amount of BRCA1 regulate 
the stability of HIF-1α, possibly by interacting with HIF-1α [33].

MicroRNAs are small (17–25 ntd long), conserved, non-coding single-stranded 
RNAs that work as post-transcriptional regulators of gene expression. miRNAs play 
a significant role in cancer development by regulating cell proliferation, invasion 
and apoptosis. miRNAs have potential dual role in cancer: both as oncogenes and 
tumor suppressor genes [26]. Up-regulation of several miRNAs has been detected 
in ESCC such as miR-93, miR-210, miR-106b, miR-192, miR-147and miR-196a. 
miRNAs such as miR-375, miR-203, miR-145, miR-133a, miR-133b and miR- 
125b were reported to be down-regulated in ESCC that may exert tumor suppressive 
functions. [97–99] reported that miR-145, miR-133a and miR-133b suppressed 
tumor cell growth and invasion via targeting FSCN1 gene (organize F-actin to paral-
lel bundles). MiR-21 unregulated in several malignancies including ESCC, pancre-
atic, colon, lung and breast cancers in response to hypoxia and allows cell survival 
in hypoxic environment. MiR-21 overexpresses and promotes cell proliferation, 
which inhibit cell cycle arrest at G2/M phase in lung cancer [103]. Unregulated 
expression of miR-203 down-regulates mir-21 expression through suppression of 
small GTPase Ran (downstream target of miR-203) [98]. Down- regulation of miR-
21 inhibits cell growth and invasion and induce cell apoptosis by targeting RECK, 
FASL and TIMP3 genes [92]. MiR-210, a downstream target of HIF-1α, promotes 
cancer cell proliferation and induces G0/G1phase transition of cell cycle by targeting 
E2F3 and FGFRL1. Increased levels of MiR-210 reduce PLK1 (Polo-like kinase 1) 
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a crucial regulator of mitosis which facilitate the activation of Cdk1 (cyclin D kinase 
1)/cyclin B an essential factor in G2/M transitions of the normal cell cycle. MiR-
210 is elevated in ESCC patients and also serves as a biomarker for cancer diag-
nosis [47].

Down-regulation of gankyrin (also known as PSMD10 and p28GANK) expres-
sion inhibits cell proliferation and accumulation of cells in the G1/S phase in vitro in 
ESCC cell lines. Gankyrin is reported as negative regulator for several tumor sup-
pressors, viz. RB and p53. Binding of Gankyrin hyperphosphorylates RB protein 
through binding of CDK4 (cyclin-dependent kinase 4) and promotes ubiquitination 
of p53 by MDM2 that ensures degradation by 26 s proteasome. Gankyrin stabilizes 
E2F1 in relation to the G1/S transition [16, 64, 101]. Gankyrin regulates the stability 
of HIF-1α via ubiquitination and degradation in ovarian cancer cells [4].

6.5  Role of HIF in Metastasis

Cancer metastasis is associated with propagation of tumor cells from primary tumor 
mass to another site (secondary tumor) via blood/lymphatic vessels. Metastasis 
includes invasion of cancer cells into neighbouring tissues and the growth of second-
ary tumor in distant organs through angiogenesis. Metastasis of tumor cells occurs 
via detachment and migration of metastatic cells from the primary tumor invasion 
from the basement membrane (BM) and ECM into the blood and or lymphatic ves-
sels (intravasation). These metastatic cells adhere to the endothelium of capillaries of 
the target site (adhesion), and cells invade through the endothelial cell layer and sur-
rounding BM (extravasation). Finally, these cells reside and promote their growth for 
the formation of secondary tumors at the target organ site [8, 27, 75].

HIF-1α activates the transcription of cell adhesion genes like L1 cell adhesion 
molecule (L1CAM) [74]. Loss of the epithelial markers β-catenin and E-cadherin 
and the expression of the mesenchymal markers N-cadherin, vimentin and fibro-
nectin are the molecular hallmarks of EMT [50, 80]. EMT is regulated by various 
oncogenic signalling pathways that include TGF-β, NF-κB, Wnt and Notch.

6.5.1  HIF-1α in Invasion and Migration

EGFR, IL-6R increase expression of STAT3 (JAK2/STAT3 pathway), hitherto 
induces migratory phenotype, a fibroblast-like morphology with the up-regulation 
of mesenchyme-associated N-cadherin and vimentin expression and the nuclear 
translocation of β-catenin. STAT3 increases stability of HIF-1α protein by interacting 
with HIF-1α and bind to promoters of HIF-1α target genes. Silencing of STAT3 and 
HIF-1α under hypoxic conditions shows reduced hypoxia-mediated EMT and 
increased in E-cadherin expression while reducing vimentin expression. STAT3 
controls EMT by targeting transcription factors SLUG, TWIST and SNAIL, which 
regulates E-cadherin expression [7]. HIF-1α binds to E-box elements of SNAIL and 
inhibits E-cadherin expression while promoting MMP-2 expression [29]. 
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NSC74859, a STAT3 inhibitor, down-regulates the HIF-1α expression and increases 
radiosensitivity of ESCC [97]. Transcription factor SOX2 that belongs to the family 
of SOX (SRY-related high-mobility group box) plays a key role in maintenance of 
pluripotency of undifferentiated neuronal and embryonic stem cells. SOX2 
mediates cell migration/invasion by elevated expression of a zinc-finger protein 
SLUG (an EMT regulator) that down-regulates E-cadherin expression via STAT3/
HIF-α activation [15].

Oncoproteins like p63 and p28GANK are overexpressed in several other types of 
cancer including hepatocellular carcinoma, lung, colon, gastric and oesophageal 
cancers and promote invasion, metastasis in ESC cells [14]. p63 belonging to p53 
gene family increases the mRNA expression and protein levels of TWIST (onco-
gene inhibits expression of E-cadherin), vimentin (mesenchymal marker), uPA (ser-
ine protease) and SUSD2 (cell-cell and cell-matrix adhesion protein). Knockdown 
of p63 reduced the levels of β-catenin and c-Myc (cell cycle-regulating genes) and 
also target genes of β-catenin: cyclin D1 [86], uPA and MMP-7 (genes related to the 
metastasis and invasion of cancer cells). p63 in part regulates WNT signalling path-
way through activation of β-catenin/c-Myc pathway [45].

In addition to growth factors, oncoproteins, expression of chemokine receptors 
such as CXCR4 (bone marrow-homing receptor) and CCR7 mediates tumor inva-
sion. Fibroblasts secrete chemokines, particularly SDF-1 (stromal cell-derived fac-
tor- 1, also known as CXCL12) [10]. Interaction between CXCR4 and SDF-1 
participates in homing of ECC (oesophagus cancer cells) to bone marrow and lymph 
nodes, stimulates tumor cell growth, induces angiogenesis, promotes motility, inva-
siveness, and employs tumor cells to metastatic sites [9, 23, 30]. SDF-1/CXCR4/
CXCR7 expression has been reported in both ESCC and EAC, and activity of this 
axis is coupled with survival as well as tumor invasion and metastasis. CXCR7 is 
expressed predominantly in ESCC and occasionally in EAC [69, 83]. Under hypoxic 
conditions, HIF-1α activates the transcription of CXCR4 mRNA in human renal 
carcinoma and oral squamous cell carcinoma cell lines [28]. CXCR4, a receptor for 
stromal cell-derived factor-1 (CXCL12/SDF-1α), also binds to MIF and plays a 
significant role in tumor progression and antitumor immunity. In tumor cells, 
CXCR4 and MIF were also independent prognostic markers for ESCC [99].

6.5.2  HIF-1α in Angiogenesis

Angiogenesis is involved in formation of new blood vessels, important for tumor 
growth and metastasis. COX-2 and VEGF play key role in carcinogenesis, angiogen-
esis and poor overall survival in oesophagus malignancy [67]. HIF-1α controls the 
expression of genes involved in angiogenesis of ESC cells by binding to HRE pro-
moter regions of VEGF [37], COX-2 [106] and other angiogenic growth factors such 
as angiopoietin 2 (ANGPT2) and stromal derived factor 1 (SDF1). COX-2 and VEGF 
serve as independent prognostic markers for poor prognosis in EAC and ESCC [67].

VEGF belongs to the family platelet-derived growth factor and is comprised of 
six VEGF members (VEGF A-E) and placenta growth factor (PIGF). HIF-1α 
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activates transcription of VEGF via direct binding to HRE regions, and by recruiting 
additional transcriptional factors such as P-CREB and P-STAT3, to the promoter. 
Inhibition of HIF-1α down-regulates the expression of VEGF and increases apopto-
sis of cancer cells. This supports the role of HIF-1α in tumor progression and angio-
genesis and is a potential target for cancer therapy. VEGF-D and HIF-1α act as 
independent survival predictors and therapeutic targets in ESCC. VEGF expression 
was associated with a high micro-vessel density [1, 88].

Cyclooxygenase is a rate-limiting enzyme in biosynthesis of prostaglandin from 
arachidonic acid. COX-1 and COX-2, two isoforms of COX genes, have been 
reported. COX-1 is constitutively expressed in many tissues, whereas COX-2 
expression is induced by inflammation or by a variety of stimuli, such as cytokines, 
mitogens and various growth factors [34, 76]. HIF-1α transcriptionally regulates the 
expression of COX-2 by binding to HRE elements in COX-2 promoter region and 
increases theCOX-2 expression. Prostaglandin E synthase (PTGES) a functional 
downstream of COX-2 in synthesizes prostaglandin E2 (PGE2) from prostaglandin 
H2 (PGH2), is synthesized from arachidonic acid catalyzed by COX-2. Pro- 
inflammatory stimuli such as IL-1β (interleukin-1β) and lipopolysaccharide also 
activate COX-2-PTGES axis [31]. PTGES is up-regulated in gastrointestinal can-
cers [89], colon cancer [59] and hepatocellular carcinoma [85]. Overexpression of 
PTGES boosts PGE2 levels and leads to vascularization. In ESCC PTGES overex-
pressed at both mRNA and protein levels, expression of mRNA is regulated by 
HIF-dependent transcriptional activation; PTGES protein is stabilized upon reoxy-
genation [44].

Apurinic/apyrimidinic endonuclease-1 (APE-1) is a multifunctional protein that 
interacts with HIF-1α and STAT3 and activates hypoxia-induced expression of 
VEGF. APE-1 is a crucial enzyme responsible for DNA base excision repair. APE-1 
stimulates the expression of COX-2 via NF-κB activation by stimulating the DNA- 
binding activity of NF-κB [58]. Additionally, the MCP-1 (monocyte chemoattrac-
tant protein-1) receptor and CC-chemokine receptor 2 (CCR2) are reported to 
influence on angiogenesis and VEGF production. MCP-1 plays a key role in tumor 
vascularity of oesophageal cancer [62]. The non-steroidal anti-inflammatory drug 
(NSAID) celecoxib, a selective COX-2 inhibitor [95], also repressed APE-1 expres-
sion through reduction of IkBα phosphorylation [58].

6.6  HIF-1α in Apoptosis

In contrast to necrosis, apoptosis is an energy-dependent process which occurs in 
the presence of ATP.  Cells under environmental stress can endure apoptosis. 
Transcription factor p53 controls cell cycle inhibition, apoptosis and blood vessel 
formation. p53 protein, an important regulator of apoptosis after DNA damage, 
induces the Bax and Bak proteins. These proteins control the release of cytochrome 
C from the mitochondria, thereby initiating apoptosis cascade (Apaf-1 and caspase-
 9 activity) [21, 24]. In early-stage oesophageal cancer, the combined expression of 
HIF-1α and anti-apoptotic protein BCL-2 is significantly associated with treatment 
failure [40].
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HIF-1α stabilizes p53 and contributes to hypoxia-induced p53-dependent apop-
tosis. The interaction p53 a (tumor suppressor protein) and HIF-1α depends on the 
microenvironment. Under severe prolonged hypoxia, dephosphorylated HIF-1α is 
induced and stabilizes p53. In case of mild hypoxic conditions, HIF-1α is phos-
phorylated and transactivates various genes, including the angiogenic factor VEGF 
[36, 82]. In addition to HIF-1α, p53 is stabilized by the ATR and also by decreased 
expression of MDM2 or by phosphorylation of MDMX E3 ubiquitin ligases. p53 
induces apoptosis through intrinsic pathway. Hypoxia-induced p53-dependent 
apoptosis occurs through inhibition of AKT signalling via PHLDA3 and INPP5D 
genes. AKT inhibition may increase response to radiotherapy in p53-deficient 
tumors [46].

TRAF6 (tumor necrosis factor receptor-associated factor 6), a signal trans-
duction molecule, belongs to both the tumor necrosis factor receptor (TNFR) 
superfamily and the interleukin-1 superfamily. TRAF6 is involved in regulation of 
IL-1R/TLR family signalling pathway to activate NF-κB. Independent of oxygen 
TRAF6 regulates the expression of HIF-1α and enhances HIF-1α activity in a 
proteasome- dependent manner [81]. TRAF6 regulates caspase-8-dependent 
apoptosis and activating NF-κB. siRNA-mediated silencing of TRAF6 reduced 
proliferation and enhanced apoptosis of EC109 cells, and levels of NF-κB were 
simultaneously reduced [55].

Drug-induced ESC cell death is induced by mitochondrial apoptotic pathway. 
Apoptosis is mediated by BCL family of proteins such as Bax which increase per-
meability of outer mitochondrial membrane through loss of mitochondrial mem-
brane potential that enhances the release of cytochrome C and Caspase cascade such 
as caspase-3 and caspase-9. Bax suppress the expression of anti-apoptotic factor 
Bcl-2. Protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate (EDHB) is an 
antioxidant and common food additive found in the testa of peanut seeds. The prolyl 
hydroxylase inhibitor EDHB stabilizes HIF-1α protein by inhibiting proteasomal 
degradation and increases HIF-1α protein expression, impacting HIF-1α-mediated 
downstream gene expression. EDHB promotes the expression of NDRG1 (N-myc 
downstream-regulated gene-1) and BNIP3 a pro-apoptotic protein and promotes 
apoptosis. HIF-1α induces the expression of NDRG1 and BNIP3 by binding to 
HRE elements. EDHB also promotes caspase-dependent apoptosis [25].

6.7  HIF-1α in Stemness

Notch, Wnt/β-catenin and Hedgehog pathways play a significant role in proliferation, 
differentiation and self-renewal of stem cells. These pathways have been associated 
in the regulation of EC CSCs and are potential therapeutic targets. Although not 
reported in EC, hypoxia targets Notch, Wnt/β-catenin, Hedgehog, PI3K/mTOR and 
unfolded protein response (UPR) pathways to regulate EMT and CSC stemness and 
is stimulated by a number of oncogenes or loss of tumor suppressor genes [91]. 
WNT10A, an activator of the Wnt/β-catenin pathway, was highly expressed in ESCC 
tissue which associated with poor outcome. WNT10a-expressing cells showed 
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enhancement for CD44+/CD24− cells, increased self-renewal and invasive and 
metastatic potential [53]. Inhibition of the PI3K/mTOR pathway or a hypoxic 
environment leads to activation of autophagy and may also be of attention in EC. Cell 
surface marker for potentially identifying EC CSCs are ABCG2, CD44+/CD24−, 
CD44+/ICAM1+, CD44+/CD133+, CD90 or Thy-1. In EC, cancers stem cells which 
express these markers that might be of prognostic or predictive value [91].

6.8  HIF-1α in Tumor Resistance

Hypoxic condition of tumors is identified to be associated with resistance to radia-
tion, photodynamic therapy and chemotherapy (CRT) in ESCC cancer [78]. Hypoxic 
environment with the more malignant tumor phenotypes increased metastatic poten-
tial, invasiveness and poor survival. Radiation up-regulates expression of HIF-1α 
via enhancement in oxidative stress and increases the availability of glucose and 
oxygen in oesophageal cancer cells. Therefore, HIF-1α increases VEGF expression, 
which guards vascular endothelial cells against cytotoxic effects of radiation. After 
radiation therapy, recombinant human endostatin could enhance the radiosensitivity 
of ESCC via the down-regulation of VEGF and HIF-1α expression [105]. Berberine 
[93] and Ginsenoside Rg3 [17] enhance radiosensitivity of oesophageal squamous 
cancer cell lines under hypoxic conditions by targeting HIF-1α and VEGF expres-
sion. Under hypoxic condition, HIF-1α induces the expression of MDR-1 in gastric 
cancers [51] and colon cancer [5]. The direct role of HIF-1α in the regulation of 
MDR gene expression is not discovered in ESCC so far. Metronomic chemotherapy 
is an effective treatment option described in most cancer types, due to its very low 
reported toxicity, modest efficacy, low cost and ease of administration. 
Chemotherapeutic drugs administrations at a lower dose than the MTD (maximal 
tolerated dose) without prolonged drug-free intervals refer to metronomic chemo-
therapy. Capecitabine is the most common drug used in metronomic therapy; other 
drugs include cyclophosphamide and paclitaxel. In oesophagus cancer, metronomic 
chemotherapy is under clinical trials, and it can be considered to be a therapeutic 
option [61].

6.9  Conclusion and Future Directions

Oesophageal cancers are one of the least studied cancers and are highly aggressive 
in nature with poor survival rate. Its mortality rate ranks sixth among all cancers. 
The impact of hypoxia in most of the cellular metabolic pathways is still not clearly 
established. Nonetheless, hypoxia drives malignant progression in oesophagus 
cancers, resulting in poorer survival through increased metastatic potential and 
resistance to therapy. Hence it is warranted to understand how hypoxia alters cel-
lular metabolism in order to target these pathways, thereby killing malignant cells. 
High levels of MIB-1 and NF-κB and low levels of HER2 and ER (oestrogen 
receptor) were good prognostic factors following definitive curative 
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chemoradiation therapy for ESCC [77]. No efficient or specific HIF-1α inhibitors/
drugs have completed clinical trials for the treatment of ESCC. Since HIF-1α has 
a significant role in oesophagus cancer, targeting hypoxia may become an effective 
approach in preventing or reducing metastasis and resistance to therapies in 
oesophagus cancer.
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Abstract
Hypoxia-inducible factor-1 (HIF-1) is a regulatory protein, mainly responsible 
for maintaining oxygen homeostasis in response to reduced oxygen concentra-
tion in cells and tissues. The protein is a heterodimer which consists of subunit 
HIF-α and HIF-β. It is an important transcription factor involved in the transcrip-
tional regulation of many genes related to embryonic development, metabolism, 
cell proliferation, angiogenesis, metastasis, and response to radiation therapy, 
making it an important regulator in most cancer therapies. Esophageal cancer 
(EC) is not a well-studied and a poorly understood cancer. It is highly aggressive 
in nature with poor survival rate. Its mortality rate ranks sixth among all cancers. 
Overexpression studies of HIF-1  in correlation with other target gene expres-
sions revealed its role in both upregulation and downregulation of certain mole-
cules in particular cancer types. Considering all parameters, HIF-1 inhibitor 
could present a potential approach to cancer therapy. This chapter summarizes 
the potential roles of HIF-1α in cell cycle, proliferation, apoptosis, and metasta-
sis and future perspectives in targeting esophageal cancer for developing novel 
anticancer therapies.
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7.1  Introduction

Hypoxia-inducible factor-1 (HIF-1) as the name suggests is a key regulator of oxy-
gen homeostasis in cells and tissues in case of lower oxygen concentration. It is an 
important transcription factor involved in the transcriptional regulation of many 
genes related to embryonic development, metabolism, cell proliferation, angiogen-
esis, metastasis, and response to radiation therapy, making it an important regulator 
in most cancer therapies [1]. In this chapter, we can study and understand the poten-
tial roles of HIF-1α in cell proliferation, cell cycle, metastasis, and apoptosis and 
future perspectives in targeting esophageal cancer for developing novel anticancer 
therapies.

HIFs are made up of heterodimers which contain one α-subunit of 120 kDa 
(HIF- α) and one 94  kDa β-subunit (HIF-β). HIF falls in the basic helix-loop-
helix (bHLH) transcription factors of PAS (PER-ARNT-SIM) family. HIF-α has 
three isoforms that are named as HIF-1α, HIF-2α, and HIF-3α. HIF-1α is the 
extensively studied one of all the three isoforms. These isoforms are formed due 
to alternative splicing, and these subunits are encoded by discrete loci on gene. 
HIF-1α is discovered after the recognition of sequence 5′-RCGTG-3′, a hypoxia-
response element (HRE) present in 3′ enhancer of the erythropoietin gene (EPO): 
it induces transcription process in response to hypoxic condition [2, 3]. This 
transcriptional factor targets more than 60 genes where HIF-1α binds to cis-act-
ing elements present in the promoter region. HIF-1α binds to DNA in heterodi-
meric form constituting oxygen- dependent subunit-α (HIF-α) and an 
oxygen-independent, constitutively expressed subunit-β (HIF-β). The HIF-1α 
subunit has four distinct domains from N- to C-terminal of the protein: a DNA-
binding and dimerization domain or bHLH domain, followed by a dimerization 
and target gene specificity domain or PAS domain and an oxygen-dependent 
degradation domain or ODD domain which utilizes ubiquitin-proteasome path-
way for degradation [4]. Two transactivation domains or TAD are present in the 
C-terminal end [5] (Fig. 7.1).

The HIF-2α and HIF-3α also contain bHLH-PAS domain and ODD motifs [6], 
can dimerize with ARNT/HIF-1β like HIF-1α, and bind with hypoxia-response ele-
ments (HREs) in vitro. Multiple splice variants are formed by HIF-3α, in that the 
best-studied one is an inhibitory domain PAS protein (IPAS). IPAS is formed by 
truncated HIF-3α protein which does not have a transactivation domain. IPAS is a 
dominant negative; it binds to HIF-1α and prevents to construct HIF-1α/ARNT het-
ero complex. In vivo function of HIF-3α in the hypoxia-induced gene regulation is 
not understood properly [7].
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7.2  Regulation and Stability of HIF

DNA-binding and transcriptional activities are mainly reliant on the levels of 
HIF-1α [8]. Expression of HIF-1α in hypoxic microenvironments is a critical step 
and occurs through increased mRNA expression, protein stabilization, and nuclear 
localization. When oxygen level in the cells is poor and insufficient, proteasomal 
degradation gets ceased, thereby stabilizing the HIF-1α protein, and is accumulated 
by different post-translational modifications, i.e., acetylation, phosphorylation, and 
hydroxylation.

In case of normal oxygen tension, HIF-1α remains low because of its continuous 
proteasomal degradation by von Hippel-Lindau (VHL) tumor suppressor via pVHL- 
mediated ubiquitin-proteasome pathway [9]. pVHL provides a substrate binding 
site for ubiquitylation of HIF-1α by E3 ubiquitin ligase complex. HIF-1α/E3, 
ubiquitin- proteasomal degradation is mediated and depends on oxygen concentra-
tion. The process of degradation is very rapid during normoxia and the half-life is 
predicted lower than 5 min. In state of cell’s normal oxygen condition, HIF degrada-
tion is maintained by proteins containing-prolyl-4-hydroxylase domain (PHD). It 
mediates the binding of pVHL with HIF-1α by hydroxylation of conserved proline 
(402 and 564) and the acetylation of lysine residue in the ODD of HIF-α ([10, 11]. 
The PHD enzymes show oxygen-dependent hydroxylation activity. There are three 
non-heme-containing PHD (iron-dependent) enzymes that help progress the 
hydroxylation of HIF-1α. When the levels of oxygen decrease, hydroxylation of 
proline also decreases and the interaction of VHL with HIF is dissociated. 
Inactivation of VHL leads to increased target expression and stabilization of HIF 
irrespective of oxygen concentrations in the cells [12].

Fig. 7.1 Schematic of HIF-1α: the HIF-1α subunit has four distinct domains from N- to C-terminal 
of the protein: a DNA-binding and dimerization domain (bHLH), followed by a dimerization and 
target gene specificity domain or PAS domain and an oxygen-dependent degradation domain 
(ODD).Two transactivation domains (TAD) at C-terminal end
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Hypoxia conditions increase the transcription level of HIF-1 resulting in 
enhanced expression. In poor oxygen concentration, the HIF-1α subunit translo-
cated to the nucleus where HIF-1α heterodimerizes with ARNT/HIF-β and binds to 
hypoxia-response elements (HREs) located on the regulatory regions of HIF target 
genes. Now, HIF-1α subunit turns stable by interacting with its co-activators such as 
p300/CBP and increases its transcriptional ability. Also, this HIF-p300/CBP inter-
action is oxygen concentration dependent and regulated by factor inhibiting HIF-1 
(FIH-1). FIH-1 belongs to the superfamily of 2-oxoglutarate and Fe+2-dependent 
oxygenase. In normal concentrations of oxygen, FIH prevents binding of p300/CBP 
by hydroxylation of asparagine residues present in HIF-α C-terminal transactivation 
domain (CTAD) [13], so that the HIF-1α/HIF-β heterodimer cannot bind to HREs. 
When oxygen concentration goes low (hypoxic conditions), disruption occurs in 
asparaginyl hydroxylation leading to increased interaction of HIF-1α and CBP/
p300. In this way, both stabilization of HIFα and activation of CTAD are requisites 
to activation of transcriptional activity of HIF [14] and are regulated by FIH hydrox-
ylation. Thus for a number of hypoxia-inducible gene, HIF-1α is a master regulator 
under hypoxic conditions.

Recently it has been observed that under hypoxia, mitochondrial reactive oxygen 
species (ROS) play a critical role to regulate the HIF protein levels. The hypoxic 
condition in mitochondria leads to inhibition of electron transport chain due to 
genetic and chemical changes and produces ROS resulting in decreased stability of 
HIF-1α [15–17].

7.3  Esophageal Cancer and Its Risk Factors

Esophageal cancer (EC) is not a well-studied and a poorly understood cancer. It is 
highly aggressive in nature with poor survival rate. Its mortality rate ranks sixth 
among all cancers. Esophageal cancer commonly develops inside the esophagus 
lining and progress outward. Esophageal cancer is not easily identified, but, as the 
tumor progresses, it can block the esophagus passage, which makes swallowing of 
food and liquid difficult and painful. Squamous cell carcinoma and adenocarcinoma 
are the most common types of esophageal cancers.

Squamous cell carcinoma is the most common type and presents the 95% of all 
esophageal cancers worldwide. A thin layer of flat squamous cells normally makes 
the lining of the esophagus and can develop squamous cell carcinoma at any por-
tion, but it is most common in the middle portion.

The second most common type of esophageal cancer is adenocarcinoma. The 
incidences for adenocarcinoma have become almost equal as squamous cell carci-
noma. Adenocarcinoma develops in glandular tissues found in the lower part of the 
esophagus near the opening of the stomach as a symptom of Barrett’s esophagus. It 
is a precancerous stage; the chronic acid reflux or gastroesophageal reflux disease 
(GERD) induces the transformation in squamous cells present in the lower esopha-
gus into glandular cells. Patients having Barrett’s esophagus are usually 30–40 
times more susceptible toward adenocarcinoma of the esophagus than the general 
population.
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7.4  Risk Factors

Though the exact cause to develop esophageal cancer is not known, genetic factors 
are found to play a crucial role. General risk factors include alcohol consumption, 
smoking, a habit of drinking hot tea, and poor oral health, and red meat consump-
tion, inadequate consumption of fresh fruit and vegetables, and low socio-economic 
condition have been linked with high risk of esophageal squamous cell carcinoma. 
GERD also might create an environment wherein the cells are transformed with 
altered genetic and metabolic functions which may further develop in cancer.

7.5  Cell Proliferation and HIF-1

In hypoxic microenvironment, cells may adapt to certain metabolic changes and 
cellular signaling. There are several growth factors and signaling pathways which 
are induced during hypoxia to stimulate proliferation cell and its growth. Several 
cell growth inducers like growth factors, such as cytokines, mitogen-activated pro-
tein kinases, insulin-like growth factor-3 (IGF3), and transforming growth factor-α 
(TGF-α), can stimulate HIF-1 expression by binding to their corresponding recep-
tors and increase the HIF activity along with Ras and Myc oncogenes [18, 19]. 
Cytokines and growth factors can activate MAP kinase and PI3K signaling path-
ways, which not only to promote proliferation of cells but also contributes to 
increase the HIF-1 activity. This increased activity of HIF-1 improves transcrip-
tional activity of HIF-1 target genes which helps cell proliferation [20]. When 
HIF-1α is phosphorylated by mitogen-activated protein kinases such as p42/p44, 
transcription activity HIF-1α target genes are increased which further helps in cell 
proliferation. Generally HIFs are known to play a devoted role in both hypoxia and 
normoxia by regulating the expression of the genes involved in glucose metabolism 
like glycolysis, lactate and pyruvate metabolism, and glucose transport. Studies 
with transformed cell lines showed the regulatory role of HIF-1 in the regulation of 
mitochondrial respiration process. In von Hippel-Lindau tumor suppressor (VHL) 
gene-deficient renal cancer cells (RCC), HIF-1 also regulates mitochondrial oxygen 
consumption in negative manner which shows that HIF plays a key role in cancer 
cell metabolic processes [21].Hypoxia signaling pathways may also be affected by 
cross talk from other cellular metabolisms. Apart from HIF-1, other genes such as 
nitric oxide synthase and heme oxygenase-1 can also be induced during hypoxic 
conditions producing nitric oxide (NO) and carbon monoxide(CO). Generally NO 
and CO can bind directly to HIF-1 or indirectly through c GMP or guanylate 
cyclase-dependent protein kinases [22]. Binding of NO and CO to HIF-1 inhibits 
the genes induced by hypoxia by regulating the dimerization or DNA-binding activ-
ity of HIF-1 showing any effect on HIF-1 protein levels [23]. This shows that both 
NO and CO can downregulate HIF-1 activity. In few cancers like human oral squa-
mous cell carcinoma, when the levels of nitric oxide synthase and its isoforms are 
increased, the protein stability of HIF-1 is highly improved. Mutations in genes 
such as p53, PTEN, and pVHL which are tumor suppressor and in few oncogenes 
also lead to induction and amplification of the HIF system [24].
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7.6  Cell Cycle and HIF-1

To maintain the cell viability, the processes of cell growth and cell cycle arrest are 
two important phenomenons. In response to a wide range of oxygen concentrations, 
cells can respond differentially through the changes in both their metabolic pro-
cesses and growth kinetics. Hypoxic conditions cause cell cycle arrest by inactivat-
ing nucleotide biosynthesis enzymes which leads to inhibition of DNA replication 
and alterations in cell proliferation and finally causes the programmed cell death 
(apoptosis). Hypoxia-induced apoptotic pathways were triggered by any mutations 
in the p53. HIF-1 regulates the activity of both p53 and p21. Overexpression of 
HIF-1 leads to the aberrations in p53 gene which leads its accumulations in tumors. 
This p53 in turn induces the Bax and Bak genes and proteins which cause the cyto-
chrome C-mediated apoptosis ([25, 26, 27]). Also, mutations in cell cycle- regulating 
genes also play a key role in the progression of carcinogenesis, and some of them 
may act as prognostic factors in esophageal cancer. Altered expressions of p53, p16, 
pRB, and cyclin D1 proteins were observed in esophageal cancers.

7.7  Metastasis and HIF

Metastasis is one of the critical steps in progressions of tumor, and it is one of key 
causes of difficulty in treatments resulting in deaths caused by human cancers. HIF 
controls the expression of some factors that have both anti-metastatic and metastatic 
factors in cell adhesion, invasion, migration, and angiogenesis. HIF regulates cell 
adhesion proteins like E-cadherin and vascular endothelial growth factor (VEGF) 
during angiogenesis [28]. In human esophageal squamous cell carcinoma, VEGF-C 
expression was correlated with the tumor invasion, tumor stage, venous invasion, 
lymphatic invasion, and lymph node metastasis [29]. Transfection and inhibitory 
experiments have confirmed the importance of VEGF in angiogenesis and tumor 
growth. HIF-1 may be a potential target for angiogenic therapies to treat esophageal 
squamous cell carcinoma. HIF has a great potential to directly regulate the over 
activation of pro-angiogenic and metastatic factors such as VEGF and its receptors 
(FLT-1 and FLK-1), PDGF-B, PAI-1, and angiopoietins ANG-1 and ANG-2. Kitadai 
et al. showed that VEGF-C expression in esophageal squamous cell carcinoma was 
highly associated with tumor development and invasion, venous invasion, lymphatic 
and lymph node invasion, and metastasis. Inhibitory experiments of VEGF proved 
the importance of VEGF in angiogenesis and metastasis. HIF-1 is an important 
angiogenic drug target in esophageal squamous cell carcinoma [29].

7.8  Hypoxia-Induced Apoptosis

Hypoxia-induced apoptosis is a general process in solid tumors. This is essential for 
the cells to remain untransformed. Depending on the available oxygen concentra-
tion and nutrients, cells may choose to survive by adapting to the hypoxic 
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environment or undergoing apoptosis. Cells, which are adapted to repeated hypoxic 
conditions, can easily gain resistance to hypoxia-induced apoptosis and transform 
into aggressive tumor phenotypes with low or no response to the treatment. HIF-1 
plays a crucial role in balancing cell proliferation and apoptosis, thereby activating 
intrinsic or extrinsic apoptotic pathways and preventing accumulation of cells with 
hypoxia-induced mutations. HIF-1α can induce the genes involved in apoptosis 
such as p53 and Bcl-2 family members. HIF-1 can cause apoptosis by two different 
mechanisms: first, by increasing the stability of the products of the p53 gene, and, 
second, by activating pro-apoptotic BNIP3 and NIX proteins in the peri-necrotic 
regions of tumors. As earlier mentioned, in hypoxic stress or during DNA damage, 
p53 induces apoptosis through apoptotic protein Bax. This can be achieved by direct 
binding of HIF-1α to MDM2 which is p53 ubiquitin ligase in both in vitro and in- 
vivo [30, 31].

7.9  Diagnosis of Esophageal Cancer

Screening of esophageal cancer-suspected cases appears to provide an early assess-
ment of responsiveness to preoperative chemotherapy. It can aid to determine the 
extent or the stage of cancer. Further tests can help in the treatment and recovery of 
the patients. It includes esophagram, endoscopy, biopsy CT scan, and PET scan. 
Esophagram is done by letting the patient swallow liquid containing barium to coat 
the inner walls of the esophagus, followed by X-ray imaging. In Esophagram it is 
easy to identify the early formation of cancer. Endoscopy includes upper endos-
copy, endoscopic ultrasound, bronchoscopy, thoracoscopy, laparoscopy, etc.; this 
helps in identifying the spread of the tumor to nearby lymph nodes, the trachea, 
lungs, the stomach, and other body parts. The extent of spread of a tumor to lymph 
nodes and other nearby organs can be assessed by computed tomography (CT) 
scans. Positron emission tomography (PET) scanning helps in the assessment of 
the presence of distant metastatic lesions. It provides accurate information regard-
ing the spread of the tumor, which is helpful in further radiation therapy. A biopsy 
is most often done after endoscopy. It involves the removal of the small piece of 
tissue from an abnormal region. It shows the abnormal pattern of tissue or cells 
seen under the microscope.

7.10  Treatment Strategies

Initial treatment of esophageal cancer depends on various factors including patient’s 
age, stage of cancer, and overall health of the patient. Surgical endoscopic resection 
alone primarily offers a potential cure. Effective palliation can be achieved with 
surgical resection in combination with chemotherapy, radiation therapy, stents, and 
photodynamic therapy. Preoperative chemotherapy and radiotherapy offer survival 
benefits in early cancer treatments. In some cases, preoperative chemoradiotherapy 
provides limited survival benefits, but surgical resection along with 
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chemoradiotherapy may limit the reoccurrence of esophageal cancer and metastasis 
which may provide a better survival outcome. Clinical trials in the usage of anti-
angiogenic factors, stem cell therapy, and gene therapy including esophageal-spe-
cific gene silencing methods are in progress.

7.11  Conclusion

HIF-1 plays a prominent role in inducing directly or indirectly many target genes 
involved in physiological functions of a cell. The study on the regulation of HIF-1 
is very essential in the treatment of specific cancers. Tumor cells are more hypoxic 
and express higher level of HIF-1α as compared to normal cells, making it a poten-
tial molecule for therapeutic approach. Overexpression of HIF-1α observed in biop-
sies of brain, ovarian, cervical, breast, oropharyngeal and esophageal cancer is 
correlated with treatment failure and mortality. Overexpression studies of HIF-1 in 
correlation with other target gene expressions revealed its role in both upregulation 
and downregulation of certain molecules in particular cancer types. Considering all 
parameters, HIF-1 inhibitor could present a promising approach to cancer therapy. 
Extensive research and understanding of signaling mechanisms and cross talks are 
to be considered in treating esophageal cancer cell.
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8Genistein and Its Role in Regulation 
of AP-1 in Colorectal Cancer
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Abstract
Colorectal cancer (CRC) is a prominent source of cancer-related deaths across 
the world. AP-1 is involved in CRC growth and metastasis. AP-1 is a transcrip-
tion factor that regulates many oncogenic transduction pathways. In the current 
chapter, we discuss the importance of AP-1 on CRC growth and metastasis. 
Additionally, we discuss the mechanism of genistein, a tyrosine kinase inhibitor, 
and its effect on CRC treatment.
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8.1  Introduction

The third most leading cause of cancer-associated fatalities is CRC in developed 
countries [7]. Higher incidences of CRC have been seen in developing countries, 
most likely due to changes in the environment and dietary habits. CRC patients with 
initial stages of the disease have more than 90% of 5-year survival rate. On the other 
hand, patients with advanced stages of metastatic CRC have a survival rate of less 
than 20% [8]. Therefore, the advancement of tumor metastasis is a key determinant 
of patient prognosis and survival. The development of such therapies and drugs that 
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could effectively inhibit CRC metastasis could serve as an important discovery in 
cancer treatment. Incidences of CRC are highly associated with the country and 
region. For instance, Asians, who are known to historically consume a traditional 
diet that is rich in soy, tend to have lower rates of clinical CRC incidences in general 
[9]. On the other hand, Asians, who migrate to Western countries and adopt the 
Western diet, tend to have higher incidences of CRC [10].

CRC progression involves multiple stages of genetic variation of cancer pro-
moter and suppressor genes. These variations lead to deregulation of important 
molecular pathways [11]. Alteration of the anti-oncogene, adenomatous polyposis 
coli (APC), results in the deregulation of the APC/β-catenin/T-cell factor 4 (Tcf-4) 
signaling, which is observed in the initial stages of a large number of CRC patients 
[12]. Several investigations have identified the potential downstream target proteins 
of the APC/β-catenin/Tcf-4 signaling cascade, which are known to be very signifi-
cant in regulating the transformation of non-malignant colon and rectal cells into 
malignant colorectal epithelium. These genes belong to the activator protein-1 (AP- 
1) transcription factor family, namely, fra-1 and c-jun [13]. Several investigations 
reveal that diet and lifestyle influence the occurrence of CRC and the importance of 
soy (genistein) in controlling such transcription factors.

8.2  Genistein

Genistein is an isoflavone, a type of phytoestrogen that is abundantly found in soy. 
As a protein tyrosine kinase inhibitor, genistein is identified as an inhibitor of angio-
genesis, cell proliferation, apoptosis, and uncontrolled tumor growth by regulating 
the vital components of signal transduction cascades like Akt [1], EGFR [2], and 
MAPK [3], as well as important transcription factors like AP-1. Akt is an important 
downstream controller of phosphatidylinositide-3-kinase (PI3K). Abnormal expres-
sion of Akt is associated with the progression and advancement of various human 
malignancies, including CRC [4]. Earlier investigations have revealed that genistein 
is responsible in inhibiting CRC cell migration and reducing Akt phosphorylation, 
signifying that Akt pathway suppression could be a key regulator associated with 
the anti-cancerous properties of genistein in colorectal malignancies [5]. Moreover, 
additional tumor-associated factors, like EGFR [6], have been known to be involved 
in the tumor progression and are negatively regulated by genistein in CRC cell lines. 
Further, genistein also sensitizes tumor cell lines toward chemotherapy.

8.3  Activator Protein-1

The transcription factor AP-1 is a dimeric complex, which can form different com-
binations of homo- and heterodimers. AP-1 comprises of dimers of the Fos (FosB, 
c-Fos, Fra-1, Fra-2) and Jun (c-Jun, JunB, JunD) subfamilies, which harbors a stan-
dard leucine zipper (bZIP) domain and is capable of forming duplexes between 
themselves as well as with other bZIP genes. The capability of forming complexes 
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allows AP-1 transcription factors to aim a larger variation of DNA-binding domains 
and modulate oncogenes that engage in cellular cycle and inflammation, such as 
cyclin D1, p53, etc. and COX-2, respectively. AP-1 is involved in basal protein 
expression and also in the initial cellular response toward a variety of pathological 
and biological stimuli comprising of oncogenic signals. Activation of AP-1 is 
induced by the cis-elements in promoter regions of AP-1-encoding proteins, suc-
ceeded by a spontaneous phosphorylation of AP-1 genes essentially via mitogen- 
stimulated protein kinase (MAPK) signaling. Growth factors trigger 
pro-inflammatory cytokines, extracellular signal regulated kinase (ERK), as well as 
genotoxic stress-mediated p38 MAPKs and JNKs, whereas oncogenes such as Src 
and Ras stimulate the ERK or JNK signaling cascade [14].

In CRC patients, AP-1 aids in regulating transcriptional stimulation of redox- 
modulating enzymes in regions with solid tumors [15]. Investigations have revealed 
that AP-1 activity is positively associated with the expressions of VEGF, EGFR, 
and COX-2, which are its downstream targets [16] (Fig.  8.1). Elevated 

Fig. 8.1 Role of transcription factors in regulation of growth and metastasis
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concentrations of bile acids increase the expression levels of AP-1 via ERK and 
protein kinase C (PKC) pathway and leads to COX-2 activation, which regulates 
invasion, anti- apoptosis, and motility [17]. A series of pathways in CRC cell lines 
that are regulated via AP-1 activity include the stimulation of Wnt/β-catenin sig-
naling pathway that regulates the c-jun and fra-1 proteins [13], as well as the Ras-
GTPases signaling pathways. Gain-of-function alterations in the K-ras protein 
activates the ERK and JNK signaling cascade, initiates AP-1 transcription factor, 
and is even known to play a critical role in the progression of CRC [18]. AP-1 acts 
like a homeostasis switch that controls cell cycle. AP-1 is capable of upregulating 
cyclin D1 and also acts as an anti-apoptotic factor through negative regulation of 
p53 [19] in addition to stimulation of the anti-apoptotic Bcl proteins. Furthermore, 
AP-1 can also motivate cell death via inducing Fas ligand and therefore initiate 
apoptosis depending upon the stimulus. In CRC cell lines, AP-1 facilitates an anti-
apoptotic reaction to the hypoxic situations that are often discovered in the solid 
tumor microenvironment and therefore aids in the resistance toward radio- and 
chemotherapy [19]. Besides, AP-1 regulates the activity levels of VEGF and MMPs 
of malignant cells [17].

AP-1 activates epithelial-to-mesenchymal transition (EMT) signaling pathways, 
in addition to the EGFR and mTOR cascades, revealing that AP-1 is an important 
target to regulate EMT as well as CRC progression. Various inhibitors that target 
these pathways and upstream EMT signaling, which is elevated by receptor and 
non-receptor tyrosine kinases like Src, EGFR, integrins/focal adhesion kinase 
(FAK), VEGF-R, IGF-R, and G-protein-coupled receptors (GPCR), are undergoing 
preclinical and clinical investigations for CRC treatment [20]. The invention of 
without adverse side effects could also offer further options in developing novel 
treatment strategies to cure CRC.

8.4  Mechanism

Genistein has been known to exert anti-proliferative properties via targeting NF-κB 
as well as AKT pathways. Genistein has been linked with the initiation of cell death 
through modulating the AKT/GSK3β/FOXO3a/androgen receptor signaling path-
way [21]. Moreover, stimulation of cell death via genistein has been observed in 
CRC cell lines through induction of the BAX and p21WAF1 pro-apoptotic activity 
[22]. In vitro studies have revealed that genistein acts in conjunction with chemo-
therapy to inhibit cancer cell progression and metastasis. CRC cell lines reveal 
enhanced apoptosis upon addition of genistein to fluoropyrimidine 5-FU [23]. 
Genistein is also known to sensitize different types of cancer cell lines toward apop-
tosis once added to the chemotherapeutic drugs such as gemcitabine, cisplatin, 
docetaxel, and doxorubicin [24]. Genistein acts simultaneously with oxaliplatin in 
order to inhibit cell amplification in PC cell lines [25] and decreases the size of PC 
tumor in mice. These investigations suggest that genistein might improve response 
rates in CRC patients as well since oxaliplatin and 5-FU are the standard chemo-
therapy drugs that are utilized in CRC treatment regimen.
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Genistein exhibits several regulatory mechanisms such as inhibiting Wnt path-
ways, inhibiting NF-κB pathways, inhibiting EGFR pathways, as well as influenc-
ing other signaling pathways that are operative in CRC and signaling via estrogen 
receptor. Due to its extremely low toxicity, genistein might be therapeutically valu-
able for preventing primary CRC in patients with elevated risk or even as a second-
ary CRC preventive factor in order to lessen the risk of deterioration following 
therapeutic surgical resection as well as adjuvant analysis. This methodology is 
reinforced by epidemiologic results, which show that prolonged exposure to soy 
and its derivatives decreases the occurrence of CRC.
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9Role and Regulation of Transcriptional 
Factors in Gastric Cancer
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Abstract
Gastric cancer is the second major cancer diagnosed worldwide. Cytokines, che-
mokines, metalloproteinases, prostaglandins, and reactive oxygen nitrogen spe-
cies induce, amplify, and sustain inflammation (in the lining of the stomach) in 
the host. Signalling pathways like β-catenin, NF-κB, etc. bring about changes in 
the genetic material leading to diversification of genetic material. Genetic diver-
sification in oncogenes and tumour suppressor genes leads to gastric cancer. 
Transcriptional factors’ role in apoptosis, cell cycle, cell proliferation, and 
metastasis (adhesion, invasion, migration, angiogenesis) is well known and 
established. The role and regulation of transcriptional factors in relation to gas-
tric cancer was reviewed.
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9.1  Introduction

Helicobacter pylori in a coordinated cascade manner colonizes the host. Neelapu 
et al. [81] reviewed the mechanism of pathogenesis in H. pylori. H. pylori adapt to 
the harsh environment (acidic) initiating colonization in the stomach with the help 
of chemoreceptor TlpB and enzyme urease. The pH of the stomach is perceived by 
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H. pylori and moves towards the less acidic region of the stomach with the help of 
chemoreceptor TlpB [25]. Urease produced by H. pylori neutralizes its periplasm 
and cytoplasm [134]. The gastric mucosal barrier (GMB) prevents the passage of 
the H. pylori and further colonization [4]. Pathogen uses toxin VacA, cytokines, 
and gastrin to weaken GMB by slackening/disrupting the mucous layer or modify-
ing the glycoproteins in mucous [81]. Once the GMB is weakened, adhesion mol-
ecules are used by H. pylori to attach to the lining of the stomach [39, 71, 76, 93]. 
Further, pathogen institutes gastritis in the host by injecting toxins like CagA, pep-
tidoglycan, and VacA via T4SS system. CagA is known to alter host cell expres-
sion; brings about elongation of the cell, loss of cell proliferation, and cell polarity; 
decreases acid secretion; and degrades cell–cell junctions [140]. Cytokines, che-
mokines, metalloproteinases, prostaglandin E2, and reactive oxygen nitrogen spe-
cies induce, amplify, and sustain the inflammation in the host [81]. Sustained 
inflammation activates G cells, and the hormone gastrin is secreted, “in turn stimu-
lating loads of acid damaging duodenum leading to a condition known as ulcers” 
[109]. DNA of the H. pylori genome is damaged as it is unprotected from acidic 
environment, peristaltic movement, harmful effects of oxidative stress, and phago-
cytes [86]. For successful infection, H. pylori uses the acquired DNA repair mech-
anism [74]. The changes in the host cell result in double-stranded breaks (DBS) 
and sometimes defective mitotic checkpoints (DMC). Directly or indirectly 
β-catenin and NF-κB signalling pathways induce DBS and DMC and deregulate 
HR pathway of DSB repair and enzymes of DNA repair heading towards chromo-
somal instability (CI) and microsatellite instability (MSI) [12]. Genetic material of 
the host is randomly diversified due to MSI and CI; subsequently oncogenes are 
turned on, and tumour suppressor genes are turned off leading to gastric cancer. 
Several studies have identified tumour suppressor genes like ASPP2, GKN1, 
GKN2, p53, TFF1, TFF2, TFF3, and RUNX3 [81].

9.2  Genetic Alterations, Epigenetic Alterations, and Gastric 
Cancer

Genetic alterations (in p53, KRAS, PIK3CA, ARID1A, MLL3, C-MET, ERBB4, 
CD44) and epigenetic alterations (due to methylation of CpG islands, microRNAs, 
non-coding RNAs, nucleosome positioning posttranslational modifications of his-
tones) are involved in gastric cancer [99]. Genetic alterations such as mutations or 
amplifications and epigenetic alterations are responsible for acquiring oncogenes 
function and forfeiture of tumour suppressor genes function. Epigenetic alterations 
directly or indirectly affect transcription mechanism in gastric cancer. Evidences are 
increasing in favour of epigenetic alterations leading to either transcriptional activa-
tion or repression, and epigenetic alterations are now considered as an important 
hallmark of cancer cells. Epigenetic alterations were known to effect apoptosis, cell 
adherence and cell cycle, cell growth and differentiation, DNA repair, invasion and 
migration, transcriptional regulation, Ras pathway, retinoic acid pathway, STAT 
pathway, Wnt pathway, and others in gastric cancer till date [99].
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Table 9.1 Transcriptional factors involved in regulation of cell proliferation, cell cycle, metasta-
sis, and apoptosis

S. No
Transcription 
factor

Cell 
proliferation

Cell 
cycle

Metastasis
ApoptosisAdhesion Invasion Migration Angiogenesis

1 NF-κB Yes Yes Yes Yes Yes Yes Yes

2 STAT3 Yes Yes No No No Yes Yes
3 BTF-3 Yes Yes Yes No No No Yes
4 Sp1 Yes No No Yes No Yes Yes
5 GKN1 Yes No No No No No Yes
6 GATA Yes Yes No Yes Yes No Yes
7 FOXM1 No Yes No Yes Yes Yes Yes
8 RUNX3 No No No No No No Yes
9 SOX2 No Yes No No No No Yes

9.3  Role of Transcriptional Factors in Cell Proliferation

Cell proliferation is described as “the balance between cell divisions and cell loss 
through cell death or differentiation…”. The cell is said to be proliferative, “…if an 
increase in the number of cells…” was witnessed in any tissue as in case of tumours. 
Increased cell proliferation was observed in several cancers like breast, gastric, 
colon, stomach, etc. Transcription factors like BTF3, GATA6, GKN1, NF-κB, Sp1, 
and STAT3 play a significant role in proliferation of gastric cancer cell (Table 9.1, 
Figs. 9.1 and 9.2).

9.3.1  NF-κB, Cell Proliferation, and Gastric Cancer

Peptidoglycan of H. pylori enters the host cell and stimulates intracellular pathogen 
receptor Nod1, to signal and activate transcription factor NF-κB. Keates et al. [51] 
observed activated NF-κB in epithelial cells of gastric biopsy that were infected 
with H. pylori. NF-κB is a dimer with a motif related to the nucleotide sequence of 
the κB site (REL homology domain- RHD). There are two classes of REL homology 
domains – REL proteins and NF-κB. REL proteins (A, B, C) contain RHD at amino- 
terminal and transcription-modulating domain at their carboxy terminal. RHD at 
amino-terminal is responsible for DNA binding and dimerization. NF-κB (β1 and 
β2) also contain RHD at the amino-terminal and ANKYRIN REPEATS at their 
carboxy terminal [23]. NF-κB is essential to stimulate innate and adaptive immune 
responses against pathogens [81]. Cancer and chronic inflammation are due to con-
stitutive and sustained expression of NF-κB [33]. Constitutively activated NF-κB 
transcription helps in proliferation of cancer cell, prevents apoptosis, and increases 
tumour’s angiogenic and metastatic potential [48].

NF-κB is activated in two ways; the first regulatory pathway is turned on as result 
of microbial infections, proinflammatory cytokines, and viral infections activating I 
B kinase (IKK) complex. Two serines which are conserved, present in the I B 
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Fig. 9.2 Transcriptional factors involved in regulation of cell proliferation, cell cycle, metastasis, 
and apoptosis

Fig. 9.1 Transcriptional factors regulating various stages of gastric cancer

N-terminal regulatory domain, are phosphorylated by IKK targeting I B for ubiqui-
tin-dependent degradation translocating the released NF-κB dimers to the nucleus 
[24, 47, 62]. The second pathway activates NF-κB2, by dimerizing with RELB5, 
where members of tumour necrosis factor (TNF) cytokine family trigger this pro-
cess. TNF selectively activates IKK and NIK, inducing phosphorylation- dependent 

N. R. R. Neelapu



111

proteolytic removal of the I B like C-terminal domain of NF-κB2. This allows 
RELB–p52 dimers to translocate to the nucleus [110, 115]. NF-κB is phosphory-
lated in the nucleus to transcriptionally activate several genes with broad functional 
categories contributing to tumorigenesis. Immunoregulatory and inflammatory 
genes, antiapoptotic genes, cell proliferation genes, and genes that encode negative 
regulators of NF-κB are the genes activated transcriptionally [48]. NF-κB activates 
genes such as interleukin (IL)-2, granulocyte–macrophage colony- stimulating fac-
tor (GMCSF), and CD40 ligand (CD40L)-stimulating proliferation of cells [48].

Li et al. [64] demonstrated constitutive activation of transcriptional factor NF-κB 
leading to proliferation of gastric cell lines. Inhibitory activity of pyrrolidine dithio-
carbamate (PDTC) on NF-κB was measured by MTT method. MTT assay measured 
inhibition of NF-κB by pyrrolidine dithiocarbamate (PDTC) and proliferation of 
gastric cancer cell lines [64]. PDTC was able to inhibit the activity of NF-κB and 
proliferation of gastric cell lines. Ishikawa et al. [41] knocked out NF-κB1/p100 in 
mice to constitutively express NF-κB2 and established that NF-κB can stimulate 
gastric epithelium proliferation. NF-κB signalling must be turned off appropriately 
to prevent sustained and harmful inflammatory responses. The cell employs several 
strategies at multiple levels for termination of NF-κB signalling. Downregulation of 
NF-κB signalling leads to loss or overpowered expression of cylindromatosis 
(CYLD) and synthesis of 1kβα. Degradation of NF-κB and direct ubiquitination are 
the other mechanisms which turn off NF-κB [141].

9.3.2  STAT3, Cell Proliferation, and Gastric Cancer

Signal transducers and activators of transcription (STATs) are a family of transcription 
factors. STAT3 is a regulator of cell proliferation in gastric cancer. In gastric cancer, 
IL-26 activates STAT3 signalling pathway. The activated STAT3 pathway induces 
upregulation of Bcl-2, Bcl-XL, and c-Myc expression, which lead to proliferation of 
cell [145]. Inhibitors of STAT3 suppress cell proliferation in gastric cancer [45].

9.3.3  BTF3, Cell Proliferation, and Gastric Cancer

Basic transcription factor 3 (BTF3) is an evolutionarily conserved 27-kD protein 
[46, 69, 96, 149]. BFT3 involvement in proliferation of human gastric cancer cells 
is known [69]. BTF3 is expressed in two isoforms, BTF3a and BTF3b [90]. Isoform 
BTF3a is transcriptionally active, whereas isoform BTF3b is transcriptionally inac-
tive [90]. BTF3 is a transcriptional initiation factor that interacts with proximal 
promoter elements and forms a complex with RNA polymerases [6, 148]. 
Overexpression of BTF3 gene was reported in colorectal cancer, glioblastomas gas-
tric cancer, and hepatocellular carcinomas [18, 69, 83, 105, 132]. BFT3 and BFT3a 
mRNAs were increased by 1.3 and 4.6 folds, respectively, when compared to the 
normal tissues in the pancreatic ductal adenocarcinoma. BFT3 expression was 
downregulated using small interfering RNA (siRNA) [91, 119]. Liu et  al. [69] 
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reported BFT3 mRNA and protein levels in gastric tumours and normal samples and 
also downregulated BTF3 expressions using siRNA-BTF3 in gastric tumour cells. 
Liu et al. [69] also detected that BTF3 expression is connected with enhanced cell 
proliferation, and its silencing decreased proliferation of gastric cancer cells.

9.3.4  Sp1, Cell Proliferation, and Gastric Cancer

Sp multigene family with sequence-specific DNA-binding proteins transcribes 
many genes having GC boxes in their promoter [120]. Sp1, Sp2, Sp3, and Sp4 are 
the transcriptional factors of Sp multigene family [11, 15, 30, 32, 59, 72, 124]. Sp1 
is an essential transcription factor contributing to gastric cancer. Sp1 is involved in 
signal transduction pathways linked to cancer [60]. Investigations reported rise in 
Sp1 mRNA and binding activity. Inhibition of cell growth when Sp1 is interfered 
further corroborates its role in gastric cancer [8]. Sp1 was directly correlated with 
proliferation of cell and cancer [28]. The interrelation between levels of Sp1 
expressed, development of gastric cancer, and patient survival was observed [129]. 
Wang et al. [129] reported distinct expression of Sp1  in gastric cancer cell lines 
when compared with normal gastric tissue and proposed that abnormally activated 
Sp1 directly contributes to gastric cancer development and progression.

9.3.5  GKN1, Cell Proliferation, and Gastric Cancer

Gastrokine 1 (GKN1), a novel tissue-specific secretory protein, is present under the 
apical plasma membrane. GKN1 is of 6 kb in length, located on chromosome 2p13, 
and contains six exons. Several mammalian species expressed GKN1  in gastric 
mucosa cells [73]. GKN1 was known for maintaining the gastric mucosa integrity 
and mediating repair after injury. Oien et al. [84] measured the expression of GKN1 in 
normal and in gastric tissues to establish transcriptional silencing of GKN1 gene in 
gastric cancer. Oien et al. [84] reported abundant mRNA in the normal human stom-
ach, whereas GKN1 was absent in gastric adenocarcinomas, gastro- oesophageal 
adenocarcinoma cell line, and other normal and tumour gastrointestinal tissues.

H. pylori-positive chronic gastritis patients reported low levels of GKN1 protein 
[103]. Nardone et al. [79, 80] analysed 28 gastric cancer patients and demonstrated 
downregulation or the complete absence of the protein. Reduced colony formation 
in MKN-28 gastric carcinoma cells was reported when transfected with GKN1 
[112]. GKN1 increased apoptosis and reduced proliferation of gastric cancer cells 
[104]. These data suggest that GKN1 may function as gastric tumour suppressor 
gene [17].

Yoon et al. [143] with the objective of investigating the mechanism of silencing 
GKN1 gene analysed 81 gastric carcinoma and 40 gastric adenoma samples. Studies 
identified hyper-methylation of GKN1 gene promoter in two tumours and decreased 
number of GKN1 levels in gastric cancer. This study provided insights on the epi-
genetic mechanisms that could contribute to silencing of GKN1 gene. Overall, 
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studies suggest that hyper-methylation of GKN1 gene promoter silences GKN1 
gene reducing the levels of GKN1 and thus demonstrates the possibility of tumour 
suppressor activity of GKN1 operating downstream of the pathways.

9.3.6  GATA6, Cell Proliferation, and Gastric Cancer

Transcription factors of the GATA family share conserved zinc fingers (C2H2 type) 
that mediate DNA binding and protein interactions. GATA factors bind to  
A/TGATAA/G and control activation or repression of transcription leading to carci-
nogenesis. It was established that loss/expression/silencing of GATA factors was 
responsible for breast, colorectal, lung, and gastric cancer. Studies identified differ-
ent types of factors like GATA 1, 2, 3, 4, 5, and 6. Silencing (GATA 4 and GATA 5 
genes) and loss (GATA6) were observed in colorectal and gastric cancer. Sulahian 
et al. [118] studied the transcriptional regulation of GATA6 in gastric cancer cell 
lines. Chromatin immunoprecipitation and sequencing (ChIP-seq) was used to iden-
tify GATA6-bound genes in primary gastric cancers. Analysis of genes suggests that 
GATA6 directly regulates 75 genes that control cell replication; and cell prolifera-
tion was promoted by 41 of these genes. This study suggests that GATA6 directly 
regulates genes promoting cell proliferation.

9.4  Role of Transcriptional Factors in Cell Cycle

Cell cycle involves a series of events leading to duplication (DNA), and cell division 
produces two daughter cells. The cell cycle is divided into three phases: interphase, 
mitotic (M) phase, and cytokinesis. The following are the checkpoints G0, G1, G2, S, 
and M for the cell cycle. G1, S, and G2 checkpoints of interphase control transitions 
from G1 to S phase, S phase to G2, and G2 to M phase, respectively. M checkpoint 
controls the transition from M to G0 phase, whereas G0 checkpoint controls the 
transition from G0 to G1 phase. Several studies have identified cell cycle regulators, 
which control the transition from one phase to another. Transcription factors like 
NF-κB, STAT3, GATA, BFT3, Sp1, and FOXM1 play a vital role in regulating cell 
cycle of gastric cancer cells (Table 9.1, Figs. 9.2 and 9.3). Deregulation at check-
point controls may lead to tumour formation.

9.4.1  NF-κB, Cell Cycle, and Gastric Cancer

NF-κB master transcriptional regulator has a role in cell cycle regulation. Receptor 
activator of NF-κB ligand (RANKL), a member of TNF family, binds to the recep-
tor activator of NF-κB (RANK) activating IKK and NIK, inducing phosphorylation- 
dependent proteolytic removal of the I B like C-terminal domain of NF-κB2. Freeing 
of NF-κB2 translocates it to the nucleus activating cyclin D1 expression, leading to 
cell cycle progression [48]. κB site present in promoter of cyclin D1 induces 

9 Role and Regulation of Transcriptional Factors in Gastric Cancer



114

proliferation. Several other studies have identified cell cycle regulators like D1, D2, 
and G1 which were associated with NF-κB. Transition from G1 to S phase is stimu-
lated by D1, D2, and G1 which are activated by NF-κB ([5, 29, 34]; Fig. 9.3).

9.4.2  STAT3, Cell Cycle, and Gastric Cancer

Cell cycle is controlled by STAT3 in gastric cancer, and data in favour of cell cycle 
transition by STAT3 was well proven [113, 138]. Shirogane et al. [113] studied the 
synergistic roles of Pim-1 and c-Myc in STAT3-mediated cell cycle progression. 
The study established that two STAT3 genes, c-myc and pim of JAK/STAT signal-
ling pathway, mediate cell cycle transition from G1 to S (Fig. 9.3; [113]).

9.4.3  GATA, Cell Cycle, and Gastric Cancer

GATA6 of the GATA family controls transcription leading to carcinogenesis. 
Sulahian et al. [118] investigated the regulation of transcription using ChIP-seq to 
identify GATA6-bound genes in primary gastric cancers. Studies demonstrated that 
M-phase of the cell cycle is controlled by GATA6 [118]. Decrease in levels of 
GATA6/protein controlled the expression of the genes downstream, and the cells in 
G2 and M phases are arrested (Fig. 9.3). This research comprehends the involvement 
of GATA6 in regulating cell cycle at G2 and M phases.

9.4.4  Sp1, Cell Cycle, and Gastric Cancer

Progression of cell cycle and growth of cell are inhibited by Sp1. SiRNA and decoy 
oligonucleotides of Sp1 supressed progression of cell cycle and growth of cell [1, 
40]. In the cell cycle protein, Sp1 is prevailing in the G1 phase and directly 

Fig. 9.3 Transcriptional 
factors regulating various 
transition stages of cell 
cycle
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correlates with cell proliferation ([28]; Fig. 9.3). Overexpression of Sp1-responsive 
genes, ODC, and cyclin D1 augment the proliferation. The results of study indicate 
that Sp1 contributes to the progression of gastric cancer.

9.4.5  BFT3, Cell Cycle, and Gastric Cancer

BFT3 expression is correlated with reduced cell cycle regulation of gastric cancer 
cells. Human Protein Atlas reported high levels of BTF3 protein in gastric cancer 
[125]. Liu et  al. [69] examined samples of gastric tumours, healthy cell lines of 
gastric tumour for the mRNA, and protein patterns of BFT3 and also studied the 
silencing of BFT3 expression using SiRNA BFT3. Liu et  al. [69] reported that 
BFT3 was upregulated in gastric tumour samples when compared with normal sam-
ples. At the same time, the expression levels of BFT3 were similar in all gastric 
cancer cell lines. Liu et al. [69] also reported that there is a connection between G1, 
G2/M, and S phases regulation and expression of BFT3. The shift in the phases from 
G1 to the G2/M and S in the cell cycle was witnessed when expression of BFT3 was 
silenced (Fig.  9.3). This study clearly indicates that there is a close association 
between regulation of cell cycle and BFT3 expression.

9.4.6  FOXM1, Cell Cycle, and Gastric Cancer

Forkhead proteins contain a motif helix-turn-helix (loops in appearance of butterfly 
or winged helix DNA-binding domain) acting as a transcription factor. This family 
contains proteins from Forkhead box protein (FOX)A-FOXC, and FOXM1 is one of 
the members of the family with 100 amino acids [135]. FOXM1 promotes tumour 
development in several cancers along with overexpression in gastric cancer [68, 85, 
142]. Li et al. [66] studied the relationship between expression of transcription fac-
tor FOXM1 and gastric cancer. Li et al. [66] reported overexpression of FOXM1 in 
samples of gastric cancer when compared with normal samples. Ras-MAPK and 
hedgehog signalling pathway activate FOXM1 promoting transition from G1 to S 
phase (Fig. 9.3). The genes such as Cdc25B, CDK1, and p27KIP promote the pro-
gression to mitosis [13, 131]. These results suggest that FOXM1 plays an important 
role in the progression of human gastric cancer.

9.5  Role of Transcriptional Factors in Metastasis

Metastasis is one of the “hallmarks of cancer” where cancer is spread from the place 
of genesis to the other sites. Cancer cells spread through the vessels and circulate in 
the bloodstream to establish themselves in multiple new sites. Cancer cells to metas-
tasize shall have the ability to adhere, invade tissue, migrate, and form new blood 
vessels (angiogenesis). Hanahan and Weinberg [31] proposed the essentials of 
tumorigenesis, “…altered cell physiology; self-sufficiency in growth signals; 
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insensitivity to growth inhibition; evasion of apoptosis; immortalization; sustained 
angiogenesis; tissue invasion and metastasis…”. Transcription factors like NF-κB, 
STAT3, RUNX3, GKN1, Sp1, BFT3, and FOXM1 play an important role in metas-
tasis of gastric cancer cells (Figs. 9.2 and 9.4).

9.5.1  NF-κB, Metastasis, and Gastric Cancer

NF-κB has the metastatic potential to increase tumour’s angiogenesis. NF-κB’s 
activity directly or indirectly was involved in cell migration, extracellular matrix 
destruction, angiogenesis, and tumour invasion. Increased NF-κB activity deregu-
lates production of chemokines inducing migration of the cell. Koch et  al. [54] 
revealed that NF-κB deregulates the production of chemokine IL8 and promotes 
angiogenesis. Proteolytic enzymes matrix metalloproteinases (MMPs) were known 
to promote tumour invasion. κB sites were identified in promoters of genes that 
encode MMPs. NF-κB activation was also reported to contribute to extracellular 
matrix destruction by cancer cells [3, 121, 128]. NF-κB may act as a TF, inducing 
MMPs promoting destruction of extracellular matrix and tumour invasion. Huang 
et al. [37] reported that the activation of NF-κB induces vascular endothelial growth 

Fig. 9.4 Various stages of metastasis
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factor (VEGF) and IL8 expression thus stimulating angiogenesis. Thus, studies on 
NF-κB provided information that NF-κB has the metastatic potential and is involved 
in cell migration, extracellular matrix destruction, angiogenesis, and tumour 
invasion.

9.5.2  STAT3, Metastasis, and Gastric Cancer

STAT3 is associated with evasion of immune system and angiogenesis of tumours. 
Immune evasion and angiogenesis are the properties representing the metastatic 
potential of a gastric tumour. Immunosurveillance detects and eliminates cancer 
cells; however, cancer cells have the capability to evade immune system. Several 
roles of STAT3 like inhibition of cytokine expression, negative regulation CXCL10 
expression, promotion of NF-κB, and IL-6/GP130/JAK pathways were reported in 
immune evasion. Wang et al. [130] hypothesized that STAT3 signalling regulates 
innate and adaptive immune responses in tumour cells. Activation of STAT3 inhibits 
cytokine expression leading to decrease in MHC expression. This subsequently 
decreases presentation of antigen and T-cell activation [130]. Saudemont et al. [107] 
reported that STAT3 negatively controls CXCL10 expression significantly enhanc-
ing natural killer cells that can kill cancer cells. STAT3 promotes NF-κB and IL-6/
GP130/JAK pathways preventing antitumour immune responses of T helper 1 [146]. 
Therefore, STAT3 regulates immune responses and helps in immune evasion.

Angiogenesis includes “degradation of the vascular basement membrane, vascu-
lar epithelial cell proliferation and migration, and new vessel reformation and reso-
lution…” [44]. There exists a relationship between STAT3, metalloproteinase 2 
(MMP-2), vascular basement membrane, basic fibroblast growth factor (bFGF2), 
and VEGF A. Vascular basement membrane, bFGF2, and VEGF A are important for 
proliferation of vascular endothelial cells. Inhibition of STAT3 downregulates 
MMP-2 which in turn degrades vascular basement membrane, basic fibroblast 
growth factor (bFGF2), and VEGF A. So, suppression of STAT3 inhibits angiogen-
esis and thus prevents tumour formation.

9.5.3  RUNX3, Metastasis, and Gastric Cancer

RUNX family (mammalian runt-related genes) code for proteins with DNA-
binding function. Members like RUNX1/AML1, RUNX2, and RUNX3 belong to 
the family RUNX genes [42, 88]. Hyper-methylation of the CpG islands in the 
promoter region can lead to loss of RUNX3 gene. RUNX3 promoter was hyper-
methylated in different cancers, including gastric cancers [63]. In gastric cancer 
methylation of RUNX3 gene was observed in chronic gastritis (8%), intestinal 
metaplasia (28%), and gastric adenomas (27%). RUNX3 knockout mice exhibited 
hyperplasia, reduced apoptosis, and reduced sensitivity to TGFβ1. These reports 
suggest that epigenetic gene silencing of RUNX3 operates downstream as the sig-
nalling pathways demonstrating tumour suppressor activity [53, 106]. H. pylori 
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infection induces nitric oxide production resulting in methylation of the RUNX3 
promoter and may downregulate RUNX3 gene with an epigenetic mechanism [50]. 
Hsu et  al. [35] reported that damage of RUNX3 expression correlates with the 
metastatic spread of gastric cancer [35].

9.5.4  GKN1, Metastasis, and Gastric Cancer

Epithelial–mesenchymal transition (EMT) is a critical pathophysiological state 
observed during tumour genesis and progression. According to Huang et al. [36], 
“…activation of EMT promotes cancer cell stemness, initiation, invasion, metasta-
sis, and repression of E-cadherin allowing tumour cells to disseminate and spread 
throughout the body …”. Pathogens like H. pylori, stress, and hypoxia activate 
EMT thereby inducing and aggravating gastric cancer. Overexpression of transcrip-
tion factors downstream of signalling pathways like TGF-β, Wnt/β-catenin, Notch, 
etc. and microRNAs trigger microenvironmental, membrane, and intracellular cues 
modulating EMT.

GKN1 known as gastric tumour suppressor gene is having specific role in metas-
tasis of gastric cancer. Yoon et al. [144] reported that GKN1 inhibits EMT in GKN1- 
transfected AGS cells, whereas EMT was observed in AGS cells enabling 
mesenchymal cells to migrate, invade, and resist apoptosis. Transfected GKN1 and 
recombinant GKN1-treated AGS cells revealed decreased levels of reactive oxygen 
species (ROS), phosphatidylinositol 3-kinase (PI3K)/Akt pathway proteins, EMT- 
related proteins (cytoplasmic and nuclear b-catenin, slug, snail, fibronectin, and 
vimentin), and re-expression of E-cadherin. This study suggests that GKN1 effects 
the progression of cancers by inhibiting EMT. Xing et al. [137] reported that GKN1 
inhibits cell growth by activating p16/Rb and p21waf pathways and also showed 
that Ras/Raf/MEK/ERK signalling is activated when cells of gastric cancer and 
xenograft nude mouse model are treated with GKN1. Therefore, GKN1 has a spe-
cific role in metastasis of gastric cancer.

9.5.5  Sp1, Metastasis, and Gastric Cancer

Sp1 regulates several aspects of metastasis like invasion and angiogenesis. Shi et al. 
[111] showed that VEGF is expressed constitutively due to Sp1 activation. Wang 
et al. [129] revealed that multiple genes leading to development of tumour and pro-
gression of cancer are regulated by transcription factor Sp1. Several studies estab-
lished the fact that Sp1 controls “promoters of multiple growth-regulated genes…” 
for cell growth. Sp1 regulates promoters of epidermal growth factor receptor (FGFR1) 
[16, 89, 92, 147], hamster dihydrofolate reductase [43, 82], insulin- like growth fac-
tor-binding protein 2 [58], insulin-like growth factor receptor 1 [16, 89, 92, 147], 
ornithine decarboxylase [56], rep3a [108], serum response factor [117], thymidine 
kinase [116], and VEGF [75, 111] for cell growth. Sp1 also regulates multiple aspects 
of tumour angiogenesis like vessel formation by the expression of VEGF and basic 
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fibroblast growth factor [10, 20, 22, 70, 78, 111]. Further, Sp1 is involved in tumour 
invasion and metastasis by upregulating matrix metalloproteinase- 2 [97, 98] and 
urokinase-type plasminogen activator [38]. These studies clearly suggest that Sp1 
regulates tumour cell survival, growth, and angiogenesis.

9.5.6  BFT3, Metastasis, and Gastric Cancer

Transcription factor BFT3 involved in development and progression of gastric cancer 
regulates cell adhesion in gastric cancer cells. The association between downregula-
tion of the BTF3 expression and cell adhesion was reported. Liu et al. [69] studied 
both upregulation and downregulation of BTF3 expression in samples of gastric 
tumours, normal tissue, and cell lines of gastric cancer. The expression of BFT3 is 
downregulated and is correlated with adhesion of cells in gastric tumours/cancers 
and also reported change in cell adhesion [69]. The plausible mechanism of action 
could be that heparanase 2, an enzyme involved in cell adhesion, is reduced when 
BTF3 expression is downregulated [91, 119]. This study clearly indicates that there 
is a close relationship between BFT3 expression and adhesion of gastric cancer cells.

9.5.7  FOXM1, Metastasis, and Gastric Cancer

FOXM1 is correlated with angiogenesis, growth, and metastasis of gastric cancer 
[65]. Okada et al. [85] showed that there is no relationship between expression of 
FOXM1 and any of the clinical pathological parameters (tumour size, depth of inva-
sion, lymph node metastasis, proliferation activity of the tumour cells). Li et al. [66] 
studied the influence of FOXM1 expression levels on tumour size (>5 cm), depth of 
invasion (pT – T3 and T4), and pTNM (stage III–IV) and further confirmed that 
there is no significant relationship between FOXM1 expression, survival of patients, 
stage T1-2, I–II, and smaller tumour size.

FOXM1 induces angiogenesis by controlling expression of VEGF gene. Li et al. 
[65] studied the correlation between expression of VEGF gene and microvessel den-
sity (MVD) and established that there exists a correlation with expression of VEGF 
gene and MVD.  Cancer cells showed increased invasive and migratory abilities 
when FOXM1 was overexpressed [9]. The above studies clearly show the metastatic 
properties like invasion, migration, and angiogenesis are correlated with the expres-
sion of FOXM1.

9.6  Role of Transcriptional Factors in Apoptosis

Apoptosis or programmed cell death (PCD) takes place predominantly in multicel-
lular organisms where altered biochemical events lead to changes in morphology of 
cell and death; “Blebbing, cell shrinkage, chromatin condensation, chromosomal 
DNA fragmentation, nuclear fragmentation, and global mRNA decay” are the 
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changes [26]. NF-κB, STAT3, GKN1, Sp1, GATA6, BFT3, and FOXM1 are the TFs 
known to control apoptosis (Table 9.1, Fig. 9.2).

9.6.1  NF-κB, Apoptosis, and Gastric Cancer

Production of proinflammatory cytokines, infection, and activation of oncogenic 
constitutively activate the expression of NF-κB. Constitutively activated NF-κB pre-
vents apoptosis. NF-κB is an inhibitor of PCD and transcriptionally activates anti-
apoptotic factors [2, 67, 126, 127]. Cellular inhibitors of apoptosis (cIAPs), caspase 
8/FADD (FAS-associated death domain) like IL1-converting enzyme (FLICE) 
inhibitory protein (cFLIP), and members of the BCL2 family (such as A1/BFL1 and 
BCLXL) are the antiapoptotic factors that are induced by NF-κB [49]. NF-κB upon 
inhibition of PCD prevents the death of cells, thereby increasing the cells with chro-
mosomal rearrangements or DNA damage. So, “prevention of apoptosis increases 
the pool of genetically altered cells, which will eventually give rise to transformed 
progeny…”. In general, genetically altered cells are rejected by checkpoint controls 
[133].

9.6.2  STAT3, Apoptosis, and Gastric Cancer

STAT’s role was studied well in development of cancer and apoptosis. STAT3’s role 
in increasing the repression of apoptosis was established [14, 19, 21, 45]. Fukuda 
et  al. [21] studied and showed that STAT3 is engaged in anti-apoptosis. STAT3 
induces upregulation of Bcl-XL to repress apoptosis [21]. Inhibitors of STAT3 also 
promote apoptosis in gastric cancer [45]. Kanai et al. [45] studied the role of inhibi-
tors on STAT3  in gastric cancer and demonstrated that inhibition of STAT3 pro-
moted apoptosis in gastric cancer. Thus, these studies provide comprehensive 
information on STAT3 in gastric cancer development and apoptosis.

9.6.3  GKN1, Apoptosis, and Gastric Cancer

Several studies have established that GKN1 controls proliferation in cells of gastric 
cancer by increasing apoptosis [77, 104]. Moss et al. [77] attempted to study the 
influence of GKN1 and GKN2 expression in tumour and gastric cancers. Moss et al. 
[77] related that individuals with a lower expression of the GKN1 and GKN2 pro-
teins have risk of gastric diseases. Decrease in proliferation of cell lines  – AGS 
gastric cancer by GKN1 when compared to other cell lines, HEK 293, human lung 
epidermoid carcinoma cell line (H1355), and non-gastric cancer cells  – was 
observed in MTT assay. This study suggests that GKN1 and GKN2 act like a modu-
lator of apoptotic signals controlling proliferation of cells in gastric cancer. Further, 
GKN1 overexpression in cells of gastric cancer was studied [104]. Overexpression 
of GKN1 increased apoptosis in cells of gastric cancer when compared to control 

N. R. R. Neelapu



121

cells [104]. These findings suggest that GKN1 and GKN2 have a role in apoptosis, 
and overexpression of GKN1 can increase apoptosis.

9.6.4  Sp1, Apoptosis and Gastric Cancer

Gastric cancer progression is dependent on how cells show resistance to apoptosis. 
Sp1 is known to control the promoters of apoptosis-related genes like Bcl-2, Bcl-x 
[27, 101], survivin [61], and TGF-ß [52, 136]. Thus, apoptosis is regulated by tran-
scriptional factor Sp1 [7, 57, 95, 102].

9.6.5  GATA6, Apoptosis and Gastric Cancer

GATA6 of GATA family controls transcription leading to carcinogenesis. Sulahian 
et al. [118] studied regulation of GATA6 at the level of transcription using ChIP-seq 
to identify GATA6-bound genes in primary gastric cancers and observed that 
GATA6 controlled apoptosis. Sulahian et al. [118] also observed that GATA6 binds 
DNA and directly regulates dependent genes implicated in cell death.

9.6.6  BFT3, Apoptosis and Gastric Cancer

Transcription factor BFT3 is overexpressed in cells of gastric cancer. The relation-
ship with reference to downregulation of BFT3 and apoptosis rates in gastric cancer 
was reported. Liu et al. [69] investigated the relationship between BTF3 expression, 
apoptosis, and gastric cancer. Overexpression of BTF3  in gastric cancer samples 
was observed when compared to normal cells [69]. Downregulation of BFT3 
expression using SiRNA in cells of gastric cancer increased apoptotic rates signifi-
cantly. This study clearly establishes relationship between BTF3, apoptosis, and 
gastric cancer.

9.6.7  FOXM1, Apoptosis and Gastric Cancer

The association between FOXM1 expression, apoptosis, and gastric cancer was 
well studied. Overexpression of FOXM1 mediates inhibition of apoptosis [66]. The 
probable mechanisms which work against induced apoptosis are “…upregulation of 
MDR1 (multi-drug resistant protein 1); a P-Glycoprotein; CIAP (inhibitors of apop-
tosis) family members including survivin; and the altered microtubule dynamics” 
[87]. Li et al. [66] investigated the expression of FOXM1 in regulating the dynamics 
of microtubules during mitosis in tumour cells. Li et al. [66] reported that overex-
pression of FOXM1 mediates the alteration of microtubule dynamics and prevents 
induced apoptosis in gastric cancer cell lines.
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9.7  Other Transcriptional Factors

Several other transcriptional factors were also studied and reported in relation to 
cell proliferation, cell cycle, metastasis (adhesion, invasion, migration, angiogene-
sis), and apoptosis. Studies on SRY-related high-mobility group (HMG)-box pro-
tein- 2 (SOX2), hepatocyte nuclear factor 4 alphas P1(HNF4aP1), CDX2, etc. 
reported association with gastric cancer. SOX2 is a member of the HMG-domain 
DNA-binding protein family and is highly expressed in upper gastrointestinal tract 
[100], regulating transcription and chromatin architecture [94, 123]. SOX2 inhibits 
growth by preventing the apoptosis and cell cycle. CDX2 is a mammalian homeo-
box gene involved in identity and polarity of a cell. CDX2 transcriptionally controls 
specific genes of intestine [114]. CDX2 is expressed in the colonic epithelium and 
intestinal epithelium of the stomach [123], whereas half of gastric cancer cells 
express CDX2. Hepatocyte nuclear factor 4 alphas (HNF4a) is necessary for devel-
opment of the liver and metabolism of fat [122]. Mutations in HNF4a cause matu-
rity onset diabetes of the young-1 (MODY-1). Splicing of HNF4a by alternative 
promoter (P1 and P2) is responsible for different isoforms and also depends on the 
organ. In the colon and small intestine, P2-driven HNF4a (HNF4aP2) and P1-driven 
HNF4a (HNF4aP1) are expressed. HNF4aP1 is expressed in about half of gastric 
cancers, whereas in the normal stomach, HNF4aP2 is expressed [55, 122].

Xu et al. [139] constructed the transcriptional network to screen the TFs driving 
the gastric cancer progression. The analysis identified 70 differentially expressed 
transcriptional factors in a transcriptionally regulatory network. The top ten tran-
scriptional factors that regulate the downstream genes were ARID3A, BRCA1, 
EHF, FEV, FOXC1, FOXD1. FOXL1, GATA3, SOX10, and ZNF263.

9.8  Conclusion

Transcriptional factors regulate cell proliferation, cell cycle, metastasis (adhesion, 
invasion, migration, angiogenesis), and apoptosis of gastric cancer cells. Proliferation 
in gastric cancer cells is regulated by transcription factors like ARID3A, BRCA1, 
BTF3, CDX2, EHF, FEV, FOXC1, FOXD1, FOXL1, GATA3, GATA6, GKN1, 
HNF4aP1, NF-κB, Sp1, SOX2, SOX10, STAT3, and ZNF263. BFT3, FOXM1, 
GATA, NF-κB, Sp1, and STAT3 are the TFs which control the cycle of cells in gas-
tric cancer. Metastasis of the cell in gastric cancer is regulated by TFs like BFT3, 
FOXM1, GKN1, NF-κB, RUNX3, Sp1, and STAT3. BFT3, FOXM1, GKN1, 
GATA6, NF-κB, Sp1, and STAT3 are the TFs known to control apoptosis.
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10Role of Hypoxia-Inducible Factor (HIF) 
in the Initiation of Cancer and Its 
Therapeutic Inhibitors
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Abstract
The inadequate oxygen (O2) supply to a large extent alters the cellular microen-
vironment and results in hypoxia or even anoxia. Hypoxia-inducible factor (HIF) 
facilitates the cellular response to hypoxia. HIF, a heterodimer composed of two 
subunits, the subunit α and subunit β, is involved in several signaling pathways 
which involves both survival and death pathways, their activation and regulation. 
HIF is believed to be the best molecular target in the treatment of cancer, and also 
numerous inhibitors for HIF-1α are available today. This chapter explains the 
HIF-1α role in cancer and its therapeutic applications that potentially target HIF 
pathway.

Keywords
Cancer · Hypoxia · Hypoxia-inducible factor (HIF) · HIF-1α inhibitors · 
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10.1  Introduction

Constant supply of O2 is required for all the cells to carry out oxidative phosphory-
lation in the mitochondria for the generation of ATP by oxidative phosphorylation. 
Under normal regularized conditions, with the normal supply of oxygen, the cells 
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divide in an orderly way and are replaced with new cells when they die, are worn 
out, or are damaged. In contrast, in an inadequate supply of oxygen, the lack of 
oxygen leads the cells to enter into abnormal and stressful conditions, where the 
regulated cell division becomes irregular and thereby activating several mechanisms 
in the process to sustain their viability. The inadequate supply of oxygen (O2) in 
large extent alters the cellular microenvironment and results in hypoxia or even 
anoxia leading to the cellular transformation [56]. Under the hypoxic conditions, 
the transformed cells divide rapidly and result in the formation of tumors by crowd-
ing out the normal cells. In such condition, the energy requirement and production 
are the most important aspects to understand the differences between the proliferat-
ing and nonproliferating cells [91]. The heterogenous cells in a complex structure of 
tumor are undergoing different stresses, e.g., low oxygen levels in the interior, so 
often the core of a tumor is necrotic [32, 60, 71, 94].

Under the hypoxic conditions, due to nonavailability of oxygen, tumor cells gener-
ate energy by non-oxidative breakdown of glucose, followed by fermentation of lactic 
acid in cytosol [25, 28, 32, 36, 47, 91]. In such conditions, hypoxia plays a major role 
at different stages of cancer (initiation, accumulation, angiogenesis, and metastasis) 
by initiating the changes in the microenvironment, altering the oncogenic genes and 
normal metabolism, and in the development of new blood vessels, thereby inducing 
the metastasis. The cellular response to hypoxia is mainly mediated by the HIF. HIF 
is found in mammalian cells grown under hypoxic condition. It is stimulated in 
response to intrahumoral hypoxia leading to genetic alterations by activating the 
oncogenes and inactivating the tumor suppressor genes. HIF plays an important role 
in adapting the cancer cells to low oxygen condition by triggering the transcription 
of over 100 target genes that regulate the tumor survival and progression [122–125].

10.2  HIF Structure

Hypoxia-inducible factor (HIF) is a heterodimer composed of two subunits, the 
subunit α and subunit β. The HIF-1α subunit is oxygen sensitive and is a cytoplas-
mic protein. It is degraded by the ubiquitin–proteasome system continuously in 
well-oxygenated cells. The HIF-1β subunit is also known as aryl hydrocarbon 
receptor nuclear translocator (ARNT), a nuclear protein, independent to oxygen 
tension and a heterodimeric partner of aryl hydrocarbon receptor (AhR). HIF-1β is 
constitutively expressed to levels within the nucleus that remain relatively constant 
and binds to AhR and facilitates its translocation. These two subunits (α and β) 
belong to the family of basic helix-loop-helix (bHLH) and PER-ARNT-single- 
minded protein (SIM) (PAS) transcription factors. The characteristic feature of 
these family proteins is that they have recognizable domains and can regulate their 
own transcription. Among all the family members, the PAS domain was the only 
domain that is conserved. The N-terminal region of this PAS domain is essential to 
mediate DNA binding and interaction with HIF-1β subunit [118].
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The subunit α has three different isoforms, HIF-1α, HIF-2α, and HIF-3α. Analogs 
of α subunits of HIF-1α and HIF-2α are more comprehensively studied and were 
compared to HIF-3α. HIF-3α is less analyzed when compared with the other HIF-α 
homologs. The inhibitory PAS domain protein (IPAS), a spliced variant of HIF-3α 
discovery, led practical information about HIF-3α. It functions as dominant- negative 
regulator of hypoxia-inducible gene expression and does not show any intrinsic 
transactivation activity as compared to the COOH-terminal transactivation domain 
(C-TAD) of HIF-1α and HIF-2α [111, 148].

The analogs of HIF-1α and HIF-2α share high percentage sequence identity 
(48%) and can heterodimerize with HIF-1β subunit. These two analogs when het-
erodimerized with HIF-1β subunit have distinct tissue-specific expression. The 
ubiquitously expressed HIF-1α is constantly expressed and degraded in presence of 
induced hypoxic conditions. However, HIF-2α distribution is restricted to specific 
tissue origins like vascular endothelial cells, the kidney, catecholamine-producing 
cells, renal interstitial fibroblasts, and some glomerular cells [95].

HIF-1α in its C-terminal has two transactivation regions: the N-terminal transac-
tivation region or N-TAD (AA 531–575) and the C-terminal transactivation region 
or C-TAD (AA 786–826) (Fig.  10.1). HIF-1α transcriptional activity is mostly 
dependent upon these two domains. Under hypoxia conditions the transcription of 
HIF-1α is modulated by C-TAD whereas stabilization by N-TAD. The requirement 
of C-TAD or N-TAD for different gene sets regulation is completely dependent on 
oxygen tension. N-TAD, also known as an oxygen-dependent degradation domain 
(ODDD), is responsible for stabilizing HIF-1α against degradation as hydroxylation 
of conserved prolyl residues resides in this region. This domain is also important in 
mediating oxygen regulation stability. Prolyl-4-hydroxylases (PHDs), 
2- oxoglutarate-dependent oxygenase superfamily enzymes, mediate this hydroxyl-
ation and promote the subunit degradation [77].
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Fig. 10.1 Oxygen-dependent regulation of HIF-1α activity (This figure is adapted from [95, 121] 
with modifications)
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HIF-1α hydroxylation does not occur in hypoxic conditions. In this condition α 
subunit along with other cofactors acts as transcription factor and thereby migrates 
to nucleus and dimerizes with β subunit and initiates its transcriptional program 
[18]. The resultant active protein that is HIF-1 is a messenger which is translocated 
to the nucleus to induce transcriptional responses to hypoxia [171].

The active HIF-1 protein activates transcription of target genes by adhering to 
specific hypoxic response elements (HRE) which comprises A/GCGTG consensus 
motif. Similarly HIF-2 and HIF-3 are resultant active heterodimers of HIF-2α or 
HIF-3α with ARNT [119]. The presence of two nuclear localization signals in 
bHLH domain (17–33 amino acids) and COOH-terminal regulatory domain (718–
721 AA) results in translocation of HIF-1α into nucleus [110].

The interaction of C-TAD with coactivators CBP/p300 results in the change in 
transcription of HIF-1α under hypoxia. This interaction is governed by the CH1 
region of p300/CBP and also improved by SRC-1, and synergistic effect was 
observed at limited concentrations. Phosphorylation of p300 by the MAPK pathway 
increases the HIF-1 α/p300 complex formation and thereby increases the transcrip-
tional activity of HIF-1. Upon blocking of HIF-1α/p300 CH1 interaction, HIF-1 
transactivation is inactivated as the p300-CH1 interacting protein and p35srj (for 
serine–glycine-rich junction) bind to p300/CBP. C-TAD interaction with p300/CBP 
does not occur in normal conditions. This is due to oxygen-dependent hydroxyl-
ation of N803 residue in the carboxyl-terminal transactivation domain (CAD) of 
HIF-1α by factor-inhibiting HIF (FIH-1), a 2-oxoglutarate-dependent dioxygenase 
enzyme [77]. It prevents the interaction of HIF-1α with transcriptional coactivators, 
p300 and CBP (cAMP response element-binding protein). Small redox protein 
thioredoxin- 1(Trx-1) under both normoxic and hypoxic conditions has been reported 
to enhance the binding of CBP/p300 to the C-TAD of HIF-1α. This leads to the 
expression of HIF-1α and its downstream target VEGF and improved angiogenesis 
[39]. Transactivation of HIF-1 by Ref-1 leads decrease of a cysteine residue in the 
C-TAD of HIF-1α. But, the useful status of this cysteine residue and the conse-
quence of CBP/p300 remains doubtful [59, 77].

The PHD enzymes (prolyl hydroxylase-domain protein) hydroxylate the proline 
402 and 564 residues that are present in LXXLAP amino acid motif of ODDD of 
HIF-1α subunit under normal oxygen conditions. This allows modified HIF-1α at 
prolyl sites to bind to the von Hippel–Lindau (VHL) tumor suppressor protein. Only 
modified HIF-1α is able to bind to the VHL protein whose binding may also be 
promoted by acetylation of K532 residue by the arrest-defective-1(ARD1) acetyl-
transferase [42]. This VHL protein is a recognition component of an E3 ubiquitin- 
protein ligase. This ligase finally targets the HIF-1α for proteasomal degradation by 
26S proteasome. OS-9 is another factor that impacts on the degradation of HIF-1α. 
OS-9 interacts HIF-1α directly, and the prolyl hydroxylases PHD2 and PHD3 and 
forms a ternary complex. This complex formation stabilizes the interaction between 
HIF-1α and PHDs, thus helping HIF-1α hydroxylation and pVHL-mediated ubiqui-
tination, and finally leads to degradation of HIF-1α [34].
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The HIF-1 activity depends on the regulation of its subunits (α and β) at several 
levels including transcription, translation, ubiquitin-mediated protein breakdown, 
and nuclear translocation. The loss of this activity decreases the vascularization, 
tumor growth, and energy metabolism. HIF-1, by employing transcriptional 
coactivators, controls the expression of many genes. The HIF-1 expression directly 
regulates the tumor growth. The overexpression of HIF-1 promotes the tumor 
growth by increasing HIF-1 transcription factor activity. The protein products play 
important roles in the severe and long-lasting adaptation to hypoxia, including 
angiogenesis, erythropoiesis, and pH regulation glycolysis. Pulse-chase studies of 
MCF-7 breast cancer cells stimulated with heregulin increase HIF-1α synthesis but 
do not activate transactivation-region function that was stopped by rapamycin in 
PC-3 prostate cancer cells. In another study when Rat-1 fibroblasts and breast 
cancer cells (MCF7) were overexpressed with BNIP3 (BCL2/adenovirus E1B 
19 kDa interacting protein 3) and NIX (BNIP3 homolog) at the transcriptional level, 
it induced apoptosis. The cell death induced by BNIP3 is mediated by binding of 
BNIP3 to anti-apoptotic proteins Bcl-2 and Bcl-xL and inhibiting those proteins. 
This hypoxia-induced apoptosis may be HIF-1α dependent because BNIP3 promoter 
contains HRE [46].

10.2.1  Glucose Metabolism

The glycolytic rates in normal cells when compared to cancerous cells are very high 
even in the presence of oxygen, and energy required for cancerous cells is generated 
by glycolysis followed by fermentation of lactic acid in cytosol rather than oxida-
tion of pyruvate in mitochondria, also defined as “aerobic glycolysis” [25, 28, 32, 
36, 47, 91].

The aerobic glycolysis is an important pathway by which cells in the body could 
generate energy using glucose as main fuel source, whereas glutamine becomes the 
secondary fuel source for carcinogenic cells [91]. Glucose, the primary fuel source 
after entering the cell, is metabolized to pyruvate by a multistep set of reactions 
called glycolysis [32]. In typical normal cells, this pyruvate undergoes oxidative 
phosphorylation (OXPHOS) in mitochondria through Krebs cycle (TCA cycle) to 
generate energy (ATP) in order to meet the energy demands of the cell; however if 
oxygen levels are low, pyruvate is converted into lactate in cytoplasm through the 
action of lactate dehydrogenase (LDH) enzyme [28, 44]. In glycolysis one glucose 
molecule is broken down into two molecules of pyruvate thus generating two ATPs 
by consuming NAD+, whereas in OXPHOS one glucose molecule produces 30 
ATPs by oxidation of NADH and FADH2, clearly stating that OXPHOS is more 
efficient than glycolysis [36, 139]. The main difference between cancer and normal 
cells dwells here. In cancer cells the pyruvate is converted into lactate even when an 
ample amount of oxygen is available [28]. For creation of new biomass such as 
nucleotides, lipids, amino acids, and nonessential amino acids, cancer cells require 
more nitrogen. The excess glucose that is generated is deviated to produce 
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nucleotides through pentose phosphate stunt (PPS) [32]. In multiple steps, PPS 
pathway by the action of malic enzyme generates NADPH reducing equivalents to 
produce more pyruvate. These NADPH reducing equivalents are required to pro-
duce acetyl CoA from citrate through the action of ATP-citrate lyase (ACL) in cyto-
sol [25]. This production leads to synthesizes of fatty acids that are required for 
membrane production. Glutamine an essential metabolite acts as an intermediate 
in the bloodstream to transport reduced nitrogen and is also required for cell growth. 
This metabolite is utilized by tumor cells as secondary energy source because it 
plays a crucial role in uptake of essential amino acids and can replenish the TCA 
cycle by supplying carbon, and also through the action of malic enzyme, it can pro-
duce more pyruvate [24]. More NADPH in PPS pathway is produced by transactiva-
tion of TP-53-induced glycolysis and apoptosis regulator (TIGAR) by p53 oncogene. 
PI3K/Akt and Ras are activated through RTKs by stimulation of growth factor. RTK 
signaling to C-Myc activates many genes that are involved in lactate production and 
glycolysis [25, 28, 32, 47, 91].

The sequence initiation of angiogenesis and glycolysis in differentiating cells is 
arbitrated partly by triggering HIF-1. HIF-1 target genes are mainly the genes that 
are intricate in the glucose uptake and glycolysis. HIF-1 controls expressions of 
phosphoglycerate kinase 1, aldolase A, and pyruvate kinase M in the glycolytic 
pathway, as well as expression of the glucose transporters (GLUT1 and GLUT3), 
which facilitate uptake of glucose by the cells [62]. It also induces adaptive responses 
to ensure that the cells should have sufficient energy levels and thus allowing their 
survival in a hostile environment [77, 140].

10.3  HIF-Associated Pathways

Although HIF-1α transcription is constant, the mRNA translation and transacti-
vation activity of HIF-1α are induced by associated pathways and cell surface 
receptors of tyrosine kinases and G protein-coupled receptors. In pseudohypoxia 
circumstances, HIF-1α subunits are stabilized by a variety of oxygen-independent 
signaling and cellular stress events. In hypoxia condition, in response to growth 
factor stimulation, the HIF-1α levels increase in a specific manner. If hypoxia is 
associated with decreased degradation of HIF-1α, growth factors, cytokines, and 
other signaling molecules stimulate synthesis of HIF-1α through stimulation of the 
phosphatidylinositol 3- kinase (PI3K) or mitogen-activated protein kinase (MAPK) 
pathways [98].

Activation of phosphatidylinositol-4, 5-bisphosphate-3-kinase (PI3K)/AKT 
pathway has been shown to upregulate the HIF-1α protein translation. Under non- 
hypoxic conditions, due to extremely short half-life, HIF-1α protein expression is 
particularly sensitive to changes in the rate of synthesis. In the phosphatidylinositol- 
3- kinase (PI3K) pathway, binding of a growth factor (e.g., insulin-like growth factor 
1, IGF-1) to its cognate tyrosine kinase receptor activates PI3K by phosphorylation 
and stimulates the downstream serine/threonine kinase Akt (protein kinase B). This 
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stimulation subsequently phosphorylates mammalian target of rapamycin (mTOR), 
providing a link between the microenvironment and HIF signaling [118, 120]. 
mTOR increases protein translation and mediates its action by phosphorylation of 
the mRNA cap-binding protein eukaryotic initiation factor 4E (eIF4E)-binding pro-
tein (4E-BP1). mTOR provide a potential mechanism for increasing HIF-1a levels 
under normoxic conditions by disrupting the integrity of 4E-BP1, which is essential 
for inhibiting cap-dependent mRNA translation. In hypoxic conditions mTOR may 
increase HIF-1α levels by the mechanism in which it occurs independently without 
eIF4E. Alternatively, mTOR induces protein translation by phosphorylation of p70 
S6 kinase (S6K) which promotes ribosomal protein S6 phosphorylation, a substrate. 
This pathway is upset by a tumor suppressor protein (PTEN) which backs the phos-
phorylation of PI3K products.

In MAPK pathway, certain growth factors are involved in activation of RAS; this 
activation in turn stimulates RAS/RAF/MEK/ERK kinase cascade and induces 
HIF-1α transactivation-domain function. Growth factors activate the mitogen- 
activated protein kinase (MAPK) to phosphorylate MAPK (extracellular signal- 
regulated kinase, ERK). Activated ERK is then capable of phosphorylating 
p70S6K1, 4E-BP1, S6K, and MAP kinase interacting kinase (MNK) [107, 161]. 
MNK can also phosphorylate eIF-4E directly that activates the translation initiator 
factor together with mTOR by inhibiting the 4E-binding protein (4E-BP). These 
signaling events result an increased rate of HIF-1α protein synthesis through its 
effects on eIF4E.  ERK and p70S6K1 are essential factors that are required for 
HIF-1α mRNA translation. ERK regulates HIF-1α synthesis and also plays a pivotal 
role in its transcriptional activation. ERK phosphorylates the coactivator CBP/p300, 
hence increasing HIF-1α/p300 complex formation, and thus stimulates its transcrip-
tional activation function (Fig. 10.2) [7, 26, 67, 70, 97].

The von Hippel–Lindau protein (pVHL) pathway along with p53, a tumor suppres-
sor gene which induces apoptosis by regulating proteins such as Bax, regulates the 
levels of HIF-1α. In environmental stress or DNA damage, p21 mediates p53 to cause 
growth arrest (Fig. 10.2). The murine double minute 2 (Mdm2) ubiquitin- protein 
ligase mediates ubiquitination and proteasomal degradation of HIF-1α. Direct binding 
of the p53 tumor suppressor gene to the ODD domain of HIF-1α causes the ubiquiti-
nation and degradation [46]. It is evident that absence of p53 tumor suppressor gene 
in certain types of tumor cells enhances HIF-1α levels. In hypoxic tumors, mutations 
in tumor suppressor genes cancel the Mdm2-mediated degradation of HIF-1α. It was 
studied that Hsp90 inhibitors such as geldanamycin (GA) could nullify HIF-1α levels 
even in cell lines lacking von Hippel–Lindau protein (pVHL) regardless of the 
availability of oxygen. Mutation of prolyl residues (p402 and p564) in HIF-1α does not 
protect HIF-1α from geldanamycin (GA)-induced degradation, suggesting that 
Hsp90 degradation involves a novel E3 ubiquitin ligase [46, 131, 140].

Redox (reduction-oxidation)-dependent processes displays a vital role in the 
control of HIF-1α. Some studies have shown that generation of ROS can start both 
MEK/ERK and PI3K/Akt signaling pathways. This activation leads to enhanced 
HIF-1α expression in human cancers such as ovarian, prostate, and breast cancer 
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[34, 171]. Breast carcinoma is characterized by persistent ROS generation. In 
human prostate cancer cells, carcinogens such as vanadium and arsenate were 
shown to elevate ROS and induce HIF-1α and VEGF expression through p70S6K1 
activation. In human ovarian cancer cells, it is shown that p70S6K1 activation is 
stimulated by elevated epidermal growth factor (EGF) and its receptor (EGFR) 
which triggers H2O2 production.

Under hypoxia, mitochondrial ROS and intracellular secondary messengers such 
as CaM (calcium binding protein) levels increase and stimulate the accumulation of 
HIF-1α. CaM targets proteins (CaM kinase II, calcineurin, and actin) involved in the 
stimulation of transcriptional activity of HIF-1α expression. Thus, the inhibition of 
Ca2þ/CaM by a CaM-dominant mutant, Ca2þ/CaM antagonist such as HBC, or 
Ca2þ chelator downregulates the transcriptional activity of HIF-1, and subsequently 
angiogenesis is suppressed. The ROS levels in mitochondria increase through trans-
fer of electrons from ubisemiquinone to molecular oxygen at the Q0 site of complex 
III electron transport chain (ETC). HIF-1α activation is modulated by inhibiting its 
hydroxylation by the prolyl and asparaginyl hydroxylases. Mitochondrial ROS also 
induces signaling components of HIF-1α (ERK and p38 MAP kinase pathways) 
under hypoxic conditions. The activated ERK2 phosphorylates HIF-1α and increases 
its transcriptional activity [34, 42, 110].
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Fig. 10.2 Regulation of HIF-1α activity at different levels (This figure is adapted with some 
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10.3.1  HIF and Cell Cycle

Under hypoxia, there are different adaptive responses to lessen oxygen and nutrients 
for hypoxia-/hypoglycemia-regulated genes, which are involved in the cell cycle 
regulation. These genes are either HIF-1α dependent (p53, p21, Bcl-2) or HIF-1α 
independent (p27, GADD153). Hypoxia causes a HIF-1-dependent escalation in the 
expression of the cyclin-dependent kinase (CDK) inhibitors p21Cip1 and p27Kip-
1and hypophosphorylation of retinoblastoma protein (Rb). Decreased activity of 
CDK complexes and hypophosphorylation of retinoblastoma protein regulate the 
cell cycle progression in response to hypoxia. HIF-1α activation may serve as a 
primary gatekeeper at the G1/S transition through at least two distinct mechanisms – 
the action of CKIs and another by cyclin E regulation. HIF-1α regulates cyclin E, 
not the cyclin A protein levels, but both may bind CDK2 and control its kinase activ-
ity dependent upon phase of cell cycle [15, 42, 43].

10.3.2  HIF and Cancer

HIFα is expressed in various types of cancers that include colorectal, liver, gastric, 
pancreatic, renal, gastrointestinal (IBD), esophagus, and many others. But mecha-
nism and the factors that regulate the HIF1α expression remains poorly understood 
in cancer. Several studies demonstrated the associated mechanisms that activate the 
HIFα and their upstream or downstream factors. In this context, we explore recent 
updates on the impact of HIFα in different types of cancers.

HIF-1α and HIF-2α play a significant role and have overlapping and distant 
functions in inflammatory bowel disease (IBD) [154, 158]. IBD, a chronic inflam-
matory disease of the intestine, is characterized by repeated mucosa wounding and 
losing of intestinal epithelial barrier functions. It comprises two distinct pathologi-
cal entities, ulcerative colitis (UC) and Crohn’s disease (CD) [157, 158]. 
Immunohistochemical and immunostaining studies of surgical specimens from 
patients with IBD revealed higher vascular density in diseased tissue than in nor-
mal tissue [40].

Studies revealed that HIF was essential for restoration and intestinal barrier 
integrity [63]. Mouse models and cell studies demonstrated distinct functions for 
HIF-1α and HIF-2α and regulate diverse sets of genes to modulate the epithelial 
barrier [41, 92, 132, 154]. Regulation of HIF-1α and HIF-2α by different subset of 
genes also promotes disruption of intestinal tight junctions and increased barrier 
permeability. HIF-1α is a critical transcriptional factor in intestinal epithelial cells 
and is beneficial in regulating the epithelial barrier following inflammation. HIF-1α 
activation in intestinal epithelial cells decreases proinflammatory cytokines. Two 
mouse models of colon cancer, a sporadic and a colitis-associated colon cancer 
model, were assessed and proved that activation of HIF-1α in intestinal epithelial 
cells did not result in spontaneous tumor formation. HIF-2α activates several proin-
flammatory mediators and is important in wounding response, whereas its activation 
increases inflammation [157, 158, 168].
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Pharmacologic inhibition of prolyl hydroxylases (PHDs) primes more vigor-
ous activation of HIF-1α rather than HIF-2α. PHD inhibitors activate HIF-1α and 
HIF-2α in pulsatile manner and protect acute colitis in murine models. DMOG, a 
pan-hydroxylase inhibitor, activates the HIF pathway by mimicking hypoxia 
through the inhibition of hydroxylase activity, leading to stabilization and trans-
activation of HIF-1α [22]. AKB-4924, a HIF-1-specific prolyl hydroxylase inhibi-
tor (PHDi), enhances innate immunity by robustly activating HIF-1α [61]. 
FG-4497, a novel PHD inhibitor, provides a protective adaptation in murine TNBS 
colitis [114].

HIF-1α is a critical protein in the development of colorectal cancer (CRC) [84]. 
Various studies have reported the role of HIF-1α in angiogenesis and tumor progres-
sion via regulation of VEGF in human colorectal carcinoma [75]. In colon cancer 
HIF isoforms have different cellular functions. In human colon cancer tissues, 
expression of HIF-1 α and, to a lesser extent, HIF-2 α was linked to upregulation of 
VEGF and tumor angiogenesis [52]. Overexpression of HIF-1α was found in the tis-
sue of stage III and stage IV lymph nodes and liver metastases [13]. HIF-1α expres-
sion was strongly observed in the epithelium around the necrosis region of tumor 
compared to normal mucosa suggesting a significant correlation of HIF-1α expres-
sion along with CXCR4, VEGF, and microvessel density. Immunohistochemical 
studies of tumor cells in colon cancer cases by Wu et al. [152] also indicated that 
HIF-1α expression correlates with tumor TNM stage, lymph node status, tumor inva-
sion, and distant metastases. JMJD2B upregulates hypoxia-inducible genes involved 
in cancer cell proliferation, apoptosis, cell cycle arrest, and invasion through specifi-
cally demethylating the H3K9me3 on their promoters. Study by Fu et al. [33] sug-
gested a significant role of JMJD2B in CRC tumorigenesis and progression in 
HIF-1α-dependent manner under hypoxia. Activation of HIF-1α results in increasing 
transcription of STAT-3 and HSP90 in the CRC cell lines. This interaction between 
HIF-1α and STAT-3 in the CRC cell lines is dependent on the presence of an active 
HSP90 [35]. HSP90 in HCC cells regulated the levels of HIF-1α by inhibiting the 
ubiquitination and proteasomal degradation of HIF-1α. Further studies also analyzed 
a positive correlation between HSP90 and HIF-1α, with statistical significance, 
showing they may exert a synergistic effect on the occurrence, development, inva-
sion, and metastasis of colorectal cancer [88, 155]. The results by Zhang et al. [167] 
and Zhang et al. [169] suggest that HIF-1α enhances EMT and cancer metastasis by 
binding to ZEB1 promoter in CRC and proposed a novel molecular mechanism for 
HIF-1α-inducing epithelial–mesenchymal transition (EMT) and cancer metastasis. 
LRG1 plays a crucial role in the progression of CRC by regulating HIF-1α expres-
sion thereby inducing VEGF-A expression and EMT markers of E-cadherin, VDR, 
N-cadherin, α-SMA, vimentin, and Twist1. In human CRC cells, HIF-1α under 
hypoxia induces B-cell CLL/lymphoma 9 protein (BCL- 9) expression, an important 
underlying mechanism for increased BCL-9 expression [135].

In esophageal squamous cell carcinoma, HIF-1α expression levels significantly 
correlates with the expression of VEGF protein and with initial response to concur-
rent CRT. HIF-1α expression strongly apparent within nuclei and/or cytoplasm of 
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tumor cells and its expression are also found to be different in two separate tumor 
microenvironments: SCCs and ACs of the esophagus cancer proposing a different 
mechanism for HIF-1α expression in esophagus cancer [45, 96, 106].

Under hypoxic conditions, ERK1/2 phosphorylates and activates HIF-1α in pan-
creatic cancer cells. This activation contributes the ABCG2 expression by inducing 
binding of HIF-1α to target promoter region for transcription [51]. Recent findings 
in pancreatic cancer patients indicated that HIF-2α induces cell migration, invasion 
in vitro, and regulated E-cadherin and MMPs protein expression; these are vital to 
epithelial–mesenchymal transition (EMT). It is regulated by binding of Twist2 
protein to E-cadherin promoter; this indicates HIF-2α may act as an effective 
therapeutic target for prevention of pancreatic cancer [159].

HIF-1α is an important mediator and also acts as potential target for treatment of 
gastric cancer. The overexpression of HIF-1α in human gastric cancer proves the 
fact of it being a potential target. While regulating VEGF expression in cancer cells, 
it also plays a major role in the formation of complex proangiogenic microenviron-
ment in tumors, and thereby affecting vessel morphology and vessel function. The 
in vitro studies in metastatic human gastric cancer cells evidenced that HIF-1α was 
not required for cellular proliferation. The inactivation of the HIF-1α activity by 
2ME significantly reduced migratory, invasive, and adhesive features of gastric can-
cer cells. Inhibition of its function has proven the antitumor efficacy in rodent mod-
els and angiogenesis. In human gastric cancer cells, inhibition of HIF-1α activity by 
transfection with a construct expressing a dominant-negative mutant version of 
HIF-1α (pHIF-1αDN) that dimerizes with HIF-1β to form HIF-1 complexes that 
cannot activate transcription leads to impaired gastric tumor growth, angiogenesis, 
and vessel maturation [115, 131]. HIF-1α also regulates transcription factors (NF-
κB1, BRCA1, STAT3, STAT1) and their corresponding network genes (MMP1, 
TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) that were associated with hypoxia, 
inflammation, and immune disorder in gastric cancer [145]. In the recent study, it is 
revealed a novel mechanism in three GC cell lines, 44As3, 58As9, and MKN45, and 
the integrity of mitochondrial autophagy (mitophagy) might determine the aggres-
siveness of cancer via the mitochondrial ROS (mtROS)/HIF-1α interplay under 
hypoxic conditions [127]. Relative mRNA expression of miR-421 (microRNAs), a 
crucial factor in carcinogenesis, was found to be upregulated by HIF-1α in gastric 
cancer tumor tissues [38]. Low expression of microRNA-186 (miR-186) facilitates 
aerobic glycolysis and suppresses cell proliferation induced by HIF-1α in gastric 
cancer cell lines. The in vivo xenograft tumor studies demonstrate that the miR-186/
HIF-1α axis has an antioncogenic role in gastric cancer [86]. The in vitro and in vivo 
results revealed that dextran sulfate (DS) may reduce tumor metastasis through inhi-
bition of HIF-1α and ITGβ1 expression in gastric cancer cells [156]. In hypoxic 
gastric cancer cells, angiopoietin-like protein 4 (ANGPTL4), a hypoxia-inducible 
gene expression, is independent of HIF-1α [73]. Expression of HSP60 or HIF2α 
serves as predictive marker for diagnosis of gastric cancer. In gastric cancer cells, 
HSP60 or HIF2α inhibition induce apoptosis and suppresses cell mobility by nega-
tive relation of MEK/ERK signaling [138].
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10.3.3  HIF Pathway Inhibitors

Research is currently focused to target HIF involved pathways, and several drugs 
have been developed by considering the fundamental role of HIF and the analogs in 
the activation of various pathways involved in tumor progression in several cancers. 
Based on the mechanism of action, HIF inhibitors can be divided into the agents that 
modulate HIF1α (1) mRNA expression, (2) protein translation, (3) protein degrada-
tion, (4) DNA binding, and (5) transcriptional activity. The inhibitors representing 
each group are depicted in Fig. 10.3 and discussed below and listed in Table 10.1.

In diverse human cancer cell lines, the elevation of HIF-1α protein is by PI3K/
Akt/mTOR signaling pathway. Various compounds for inhibiting PI3K/Akt/mTOR 
signaling pathway are under the exploitation stage, and few compounds are in 
clinical trials. Inhibitors wortmannin, LY294002, GDC-0941, and PI-103 specifi-
cally inhibit PI3 kinase in dose-dependent manner [105]. FDA-approved drugs 
like rapamycin and its chemical derivatives (temsirolimus and everolimus) have 
more potency to target mTOR and inhibit the protein translation of HIF-1α at 
cellular levels [113].

Glyceollins, a set of phytoalexins present in soybean, potentially inhibit the 
HIF-1α synthesis and decrease stability by blocking the PI3K/AKT/mTOR pathway 
and interaction of Hsp90 with HIF-1α [81].

TSL-1, an agent in aqueous extracts of Toona sinensis (TS) leaves, which induces 
apoptosis via mitochondria-dependent pathway. TSL-1 stops cell division in G0/G1 
phase via the decrease in cyclin D1, cyclin-dependent kinases (CDK2 and CDK4), 
and induced p53 expression. TSL-1 suppresses progression of cell cycle and motil-
ity through phosphorylation inhibition of JAK2/stat3, Akt, MEK/ERK, and 
mTOR. TSL-1 also inhibits p21, HIF-2α, c-Myc, VEGF, and MMP9 expressions 
and its anti-migration activity [19].

EZN-2968, an antisense oligodeoxynucleotide that precisely targets HIF-1α. A 
trial with administered EZN-2968 in patients with advanced solid tumors observed 
modulation of HIF-1α mRNA, protein, and its target genes [55]. In MCF-7 xenografts, 
aminoflavone, a potential therapeutic target for several human diseases, inhibited 
HIF-1α protein accumulation and expression of target genes [137].

GL 331, a topoisomerase II inhibitor, suppresses tumor-induced angiogene-
sis. In CL1-5 cells treated with GL331 downregulates HIF-1alpha expression 
through transcriptional repression. It also exerts cytotoxic effects on the glioma 
cells [16, 20].

Camptothecins (CPTs) analogs, topotecan and irinotecan, are active in different 
human tumors and shown significant anticancer activity against various tumors by 
inhibiting DNA topoisomerase I. Topotecan is the approved agent using in the 
treatment of lung cancer [37]. Irinotecan is a cytotoxic drug used for the patients 
suffering with colorectal cancer (CRC) in advanced stage. SN-38 (10-hydroxy-
7-ethyl-camptothecin) is the active metabolite of irinotecan prevents re-ligation of 
single-stranded DNA breaks induced during the DNA synthesis [37, 90]. These 
agents have shown the antitumor activity in xenograft model by inhibiting HIF-1α 
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Table 10.1 Classification of HIF-1α pathway inhibitors and their molecular targets

Inhibitory mechanism Target Compound
PI3/AKT/mTOR 
inhibitors

PI3K Wortmannin
LY294002
GDC-0941
PI-103

AKT/mTOR, Hsp90 Glyceollins
Toona sinensis (TSL-1)

mTOR Rapamycin derivatives
• Temsirolimus (CCI-779)
  Everolimus (Rad 001)
  PP242

mRNA expression HIF-1α mRNA EZN-2968
GL 331
Amino flavone

Protein translation Topoisomerase I (top-1) inhibitor/
HIF-1α accumulation inhibitor

Camptothecins (CPTs)
• Topotecan (NSC-609699)
• (PEG-SN 38)
• SN-38
  Irinotecan

NORMOXIA

Translation

Nucleus

Dimerization

• EZN-2968
• GL 331
• AMINO FLAVONE HIF-1α mRNA

5’                     3’

Growth factors

PI3K

mTOR

HIF-1α

GLYCELOLLINS
RAPAMYCIN deriva�ves 
• TEMSIROLIMUS (CCI-779)
• EVEROLIMUS (Rad 001)
PP242

• WORTMANNIN
• LY294002
• GDC-0941
• PI-103

PROTEIN

HIF-1α

• CPTs
• CARDIAC 

GLYCOSIDES
• PX-478
• 2ME2
• VINCRISTINE
• TAXOL

HYPOXIA

HIF-1α HIF-1β

HIF-1

Acri�lavine

• Amphotericin B
• Chetomin
• PS-341
• YC-1

HIF-1α HIF-1β

P300/CBP

HRE

• Echinomycin
• Anthracyclines
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P564-OHHIF-1α
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HDACi

Degradation
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Fig. 10.3 Inhibitors that modulate different HIF-1α pathways

(continued)
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Inhibitory mechanism Target Compound
Topoisomerase II inhibitor GL-331

HIF-1α/mTOR-independent 
mechanism

Cardiac glycosides
• Digoxin
• Ouabain
• Proscillaridin
Strophanthidin glycoside

HIF-1α/pVHL and p53-independent 
mechanism

PX-478

Disrupts tumor interphase 
microtubules

2ME2 (2-methoxy- estradiaol) 
derivatives
• ENMD-1198
• ENMD-1200
• ENMD-1237
Vincristine
Taxol

HIF-1α degradation HSP90 inhibitors Geldanamycin derivatives
• 17-AAG
• 17-AG
• 17-DMAG
Radicicol derivatives
• KF58333
• Apigenin
IPI-504 (retaspimycin)
Y-632

FIH YC-1
Farnesyl transferase inhibitor SCH66336
Histone deacetylase inhibitors 
(HDACi)

Sirtuin1 (SIRT1)
FK228 (romidepsin)
Trichostatin A (TSA)
LW6
LAQ824
LBH589

TRX-1 signaling (thioredoxin-1) PX-12
Pleurotin
AJM 290
AW 464

HIF-α/HIF-1β 
dimerization inhibitors

HIF-1α/2α PAS B-domain Acriflavine
HIF-2α PAS B-domain PT-2385

Transcriptional activity p300 recruitment Chetomin
Bortezomib (PS-341)

FIH interaction and p300 recruitment Amphotericin B
Hsp70 Triptolide
Histone acetylation with repression 
of p300

FM19G11

DNA binding HRE Echinomycin
Anthracyclines derivatives
  Doxorubicin (DXR)
  Daunorubicin (DNR)

Table 10.1 (continued)
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accumulation. Clinical trials of these compounds are under progress to provide 
evidence as anticancer activity agents.

Cardiac glycosides, a group of natural products used in cardiac congestion and 
cardiac arrhythmias treatment. Recent studies suggested that cardiac glycosides 
have potential characteristic properties for the treatment of cancer [100]. Cardiac 
glycosides also inhibit cancer cell proliferation at nanomolar concentrations [117]. 
For example, strophanthidin glycoside, an organic solvent extract from Crossosoma 
bigelovii, showed the HIF-1α translation inhibitory effect [68].

Digoxin, a cardiac glycoside extracted from the foxglove plant, having antitumor 
activity against many cancers including lung, colon, prostate, and ovary. It shows 
activity through Erk and stress response pathways [30]. It exerts antitumor proper-
ties through antiproliferative and apoptosis mechanisms in HepG2 cell line cultured 
with different concentrations of digoxin [133]. Digoxin when treated also has shown 
to prolong tumor latency and hampers tumor xenograft growth in mice. It also 
inhibits HIF-1α expression and its target genes VEGF, GLUT1, HK1, and HK2 
[166]. Digitoxin in H1975 cells showed a significant cytotoxic effect by causing G2 
phase arrest and suppressed microtubule polymerization through decreasing 
α-tubulin [170].

Ouabain is another cardiac glycoside used as novel anticancer HIF-1α antagonist. 
It can regulate HIF-1α translation and affects neither HIF-1α mRNA levels nor pro-
tein degradation. Studies revealed that inhibitory effect of ouabain on HIF-1α protein 
synthesis is by eIF4E rather than mTORC1, eIF2α signaling, or Na(+)/K(+)-ATPase 
inhibition. Mechanistically, ouabain straightly binds to eIF4E and disrupts associa-
tion between IF4E/eIF4G complex rather than eIF4E/mRNA complex both in vitro 
and in vivo, finally suppressing the intracellular CAP-dependent translation [14].

Proscillaridin A exerts its cytotoxic activity by targeting both topoisomerase I 
and II enzymes simultaneously. In human fibroblasts it elevates intracellular Ca2+ 
concentration, activates caspase-3, and induces apoptosis relatively at high 
concentration. It exerts the antiproliferative and apoptotic activity at nanolevel drug 
concentrations (30 and 100 nM) [10, 151].

PX-478 (S-2-amino-3-[4′-N,N,-bis(chloroethyl)amino] phenyl propionic acid 
N-oxide dihydrochloride) decreases Hif-1α levels in both in vitro and in vivo by 
suppressing mRNA and blocking translation. PX-478 inhibitory mechanism is inde-
pendent of pVHL or p53. This drug inhibits HIF-1α levels and transactivation in a 
variety of cancer cell lines including HT-29, PC-3, DU-145, MCF-7, Caki-1, and 
Panc-1. The effect of PX-478 is limited to hypoxia, as baseline levels of vascular 
endothelial growth factor is not altered under normoxic conditions [69, 149]. A 
recent study showed that PX-478 significantly decreased or inhibited extra skeletal 
bone formation by inhibition of Hif1α. This finding indicates that Hif-1α represents 
a promising target to prevent and treat pathologic extra skeletal bone or heterotopic 
ossification (HO) [2].

2-Methoxyestradiol (2ME2) is a natural estrogen metabolite having antiangio-
genic, antiproliferative, and pro-apoptotic drug activities. It culminates induction of 
apoptosis by diverse cellular effects including microtubule disruption, commence-
ment of signal transduction pathways, and generation of reactive oxygen species 
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[102]. 2ME2 targets apoptosis in rapidly proliferating cells of both the tumor cell 
and endothelial cell compartments and inhibiting blood vessel formation. The abil-
ity of 2ME2 to inhibit metastatic spread in several models adds to its therapeutic 
value for cancer treatment at various stages of the disease. Many genes regulating 
cell death and repression of growth/survival machinery were also induced tran-
siently in multiple myeloma (MM) cells. Cells under normoxia and hypoxia condi-
tions when exposed to 2-ME reduced mRNA expression of HIF-1α and HIF-2α 
were observed [4, 8]. 2ME2 significantly induced apoptosis in HIF-1α overex-
pressed AML cells by suppressing the expression HIF-1α. In vivo 2ME2 has been 
shown to downregulate HIF-1α target genes, such as for VEGF, phosphoglycerate 
kinase, glucose transporter-1, GLUT1, and HO-1 [8, 172]. In clinical trials the 
2ME2 was noticed to target both tumor cells and neovasculature in preclinical mod-
els. The report of first Phase I trials of 2-methoxyestradiol, alone and in combina-
tion with docetaxel, was well tolerated in patients with metastatic breast cancer 
(MBC) [23, 53]. 2ME2 analogs (ENMD-1198, ENMD-1200, and ENMD-1237) 
with superior properties have been identified [76, 109, 128].

Few compounds like Taxol and vincristine also inhibit protein translation of 
HIF-1α by disrupting tumor interphase microtubules. Taxol induces static magnetic 
field (SMF) effect on microtubules to cause abnormal mitotic spindles that delay 
cell exit from mitosis [93]. Vincristine clinical trials in adults have demonstrated 
clinical activity without dose-limiting neurotoxicity. The safety, tolerability, and 
activity of vincristine might be reasons for FDA approval for adults with relapsed 
acute lymphoblastic leukemia [126].

Hsp90 antagonists induce degradation of HIF-1α proteins because binding of 
HSP90 to HIF-1α promotes HIF-1α activity [95]. Heat shock protein 90 is a 90-kDa 
ATPase-dependent molecular chaperone which is a ubiquitously expressed and 
highly conserved. The expression of Hsp90 in cancer cells is generally higher than 
that in normal cells. The Hsp90 proteins include a wide variety of signal- transducing 
proteins that regulate cell growth and differentiation; these are like protein kinases 
and steroid hormone receptors [101]. Hsp90 inhibitors may be organ-specific and 
should be carefully monitored, and they have some effects on cell adhesion-asso-
ciated molecules. Hsp90 has long been regarded as an emerging drug target for a 
wide spectrum of cancers. Heat shock protein inhibitors are a diverse group of 
agents which have been verified to have pro-apoptotic effects on malignant cells [3, 
129]. The high sensitivity of the inhibitor in cancer cells is proposed due to the 
formation of the Hsp90–cochaperone–client super complex that is highly unstable 
and possesses high ATPase activity [89]. Initial development of hsp90 inhibitors, 
geldanamycin and 17-AAG (17-N-allylamino-17-demethoxygeldanamycin), 
showed nearly 100-fold higher binding affinity in cancer cells than in normal cells. 
The effect is restricted by hepatotoxicity and need for solvent carrying agents. On 
the other hand, retaspimycin, or IPI-504, a derivative of geldanamycin and 
17-AAG, is highly soluble in water and has shown promising activity in gastroin-
testinal stromal tumor in Phase I/II trials [28]. Currently, Phase I/II trials are under-
way in the evaluation of dosing schedules and activity for IPI- 504 in breast cancer 
[49, 146].
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Y-632, a novel pyrimidine derivative, Hsp90 function suppressed through induced 
thiol oxidation and disruption of Hsp90–Hsp70/Hsp90 organizing protein complex. 
This further induces inhibition of cell adhesion, G0/G1 cell cycle arrest, and apopto-
sis [147].

17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin), another 
geldanamycin derivative of the HSP90 inhibitor, stalled the viability of human lung 
cancer cell lines via reduced expression of client proteins, including the proto-onco-
gene RAF-1. 17-DMAG treatment in human SCLC cell line SBC-5 inhibited the 
formation of metastatic sites in both liver and bone [134].

KF58333, a novel oxime derivative of radicicol, binds to Hsp90 and destabilizes 
its associated signaling molecules. KF58333, without altering the HIF-lα mRNA 
expression, resulted in significant downregulation of HIF-1α under hypoxic condi-
tions. KF58333 also inhibited tumor angiogenesis and vascular endothelial growth 
factor (VEGF) secretion in a dose dependently [74].

Apigenin a naturally occurring flavonoid exhibits antiproliferative and antiangio-
genic activities. Apigenin inhibits VEGF expression via degradation of HIF-1α and 
interferes with the function of Hsp90 in endothelial cells of human umbilical artery. 
In pancreatic cancer cells, it inhibits HIF-1α, GLUT-1, and VEGF mRNA and pro-
tein expression in both normoxic and hypoxic conditions [99, 108]. It inhibits the 
growth of UV-induced skin cancer and thyroid cancer cells by activating AMP- 
activated protein kinase (AMPK), leading to suppression of basal mTOR activity. 
This suppression of mTOR activity inhibits cell proliferation and arrests the cell 
cycle at G2/M phase. Apigenin is shown to reduce CDK4 and cyclins D1 and A, but 
not the cyclin E, CDK2, and CDK6 protein expression. Its growth inhibitory effects 
are mediated by targeting signal transduction pathways and emerging as a promis-
ing anticancer agent [11, 163].

YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole], a HIF-1 inhibitor, acts 
by reducing HIF-1α expression [50, 104]. YC-1 inhibits HIF-1α expression via the 
FIH-dependent CAD inactivation as well as protein downregulation [83]. YC-1 sup-
presses the hypoxic responses by posttranslationally inhibiting HIF-1α accumula-
tion and exhibits novel antiangiogenic anticancer agent properties [21, 160].

SCH66336, a small molecule farnesyl protein transferase inhibitor that shares a 
common tricyclic nucleus and competes with peptide/protein substrates for binding 
to farnesyl protein transferase [87]. It also inhibits the interaction between HIF-1α 
and Hsp90 to inhibit VEGF production in NSCLC and HNSCC cells [48].

Under hypoxia, histone deacetylase (HDAC) inhibitor enhances p53 and von 
Hippel–Lindau expression and thereby stimulates angiogenesis. This stimulation 
leads to downregulation of HIF-1α and VEGF thus promoting HIF-1α degradation 
[65]. Stress-responsive genetic regulator, sirtuin 1 (Sirt1) gene expression, increases 
in a HIF-dependent manner, and loss of HIF signaling affects Sirt1 deacetylase 
activity during hypoxia [17]. SIRT1 downregulation was due to decreased NAD 
levels; this allowed the acetylation and HIF-1α activation. SIRT1 deacetylase and 
the HIF-1α transcription factor act as redox and oxygen sensors, respectively, 
whereas hypoxic HIF-1α stabilization requires SIRT1 activation [85]. Sirt1 regu-
lates HIF-1α and HIF-2α by deacetylating Lys674 of HIF-1α and HIF-1α K674 and 
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HIF-2α K741 by PCAF and CBP, respectively. HIF-1α deacetylation blocks the 
recruitment of p300 to HIF-1α. This blockade consequently inactivates HIF-1α; 
represses HIF-1 target genes including VEGF, GLUT1, and MMP2; and finally pro-
motes cancer cell invasion [58, 165].

Trichostatin A (TSA), an antifungal antibiotic showing histone deacetylase 
(HDAC) activity. In vitro and in vivo studies in human breast cancer and squamous 
cell carcinoma cell lines assessed the antitumor efficacy and toxicity of TSA [141]. 
It induced caspase-dependent or caspase-independent apoptosis according to cell 
types. In gastric cancer cells, TSA increased TRAIL-induced apoptosis [82]. In 
HSC-3 cells, TSA enhanced the Bim protein expression levels by dephosphorylat-
ing ERK1/2 pathway. In Ca9.22 cells TSA damaged MMP and increased cytosolic 
apoptosis-inducing factor (AIF) [54].

LW6, a small compound, inhibits the HIF-1α accumulation. LW6 degrade HIF-1α 
via VHL expression, with modifications of P402A and P564A, at hydroxylation 
sites in the oxygen-dependent degradation domain (ODDD), without affecting the 
activity of prolyl hydroxylase (PHD) [78]. A recent data revealed that angiogenesis 
suppression through LW6 inhibited HIF-1α stability via direct binding with calci-
neurin B homologous protein 1 (CHP1) [64].

LAQ824 and LBH589, the inhibitors of histone deacetylase (HDACi) and estab-
lished cancer therapeutic agents. Both engage in the intrinsic apoptotic cascade 
which does not require p53. Mitochondrial damage is the key event for LAQ824 and 
LBH589 to mediate tumor cell death [31].

Thioredoxin-1 (Trx-1), a redox protein usually overexpressed in many human 
tumors. It increases aerobic and hypoxia-induced HIF-1α protein in the cells and 
leads to expression of HIF-regulated genes. Trx-1 controls multiple aspects of cell 
growth and survival [57].

PX-12 (1-methylpropyl 2-imidazolyl disulfide), an irreversible inhibitor of Trx- 
1. This is currently under clinical development [5, 112]. PX-12 decreases plasma 
VEGF levels and contributes to the antitumor activity [6]. PX-12 acts independently 
and increases nuclear Nrf2; this one interacts with PMF-1 to increase SSAT1 expres-
sion, and further SSAT1 binds to HIF-1α and RACK1, finally resulting in oxygen- 
independent HIF-1 ubiquitination and degradation [66].

Pleurotin, a growth inhibitory and antitumor agent shown to decrease HIF-1α 
protein levels, HIF-1-trans-activating activity, VEGF formation, inducible nitric 
oxide synthase, and the expression of downstream target genes [150].

AJM290 and AW464 (quinols), two novel anticancer drugs that inhibit Trx-1 
function and also inhibit HIF-1α CAD transcription activity and DNA binding. In 
contrast to other Trx inhibitors, these agents also inhibit HIF degradation [57].

Small molecules can inhibit HIF-1 dimerization and potentially inhibit the tumor 
growth and vascularization.

Acriflavine antagonizes HIF upon binding to the HIF-α PAS-B domain. It directly 
binds to HIF-1alpha and HIF-2alpha and suppresses dimerization of HIF-1 and tran-
scriptional activity. It also induces cell death under hypoxic conditions and reduced 
the expression of the HIF-1 target genes VEGF, PTGS2, and EDN1 [12, 80].
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PT2385, HIF-2α inhibitor allosterically binds to PAS-B domain of HIF-2α, 
thereby preventing HIF-2α dimerization with ARNT (aryl hydrocarbon receptor 
nuclear translocator, HIF-1β). This results in decreased transcription and expression 
of HIF-2α downstream target genes, many of which regulate tumor cell growth and 
survival. Blocking HIF-2α reduces the proliferation of HIF-2α-expressing tumor 
cells. PT2385 is currently under evaluation in Phase I clinical trials for the treatment 
of clear cell renal carcinoma [144].

In hypoxic conditions, HIF-1α is translocated into nucleus, heterodimerizes with 
HIF-1β, and binds to hypoxia response element (HRE) DNA sequence. Chetomin, 
a metabolite complex, produced by several fungi of the genus Chaetomium, disrupts 
the ability of tumors to adapt to hypoxia by blocking the HIF pathway and reduces 
hypoxia-dependent transcription. Chetomin targets transcriptional coactivator p300 
by disrupting its CH1 domain and impairs the interaction of between HIF-1α and 
p300 [130, 142].

Bortezomib, the first proteasomal inhibitor (PI) and also confirmed antitumor 
activity-containing agent in clinical setting. Bortezomib attenuates the transcrip-
tional activity and impairs tumor growth only of HIF-1, and not HIF-2. Bortezomib 
inhibits HIF-1α protein expression at the translational level under both normoxic 
and hypoxic conditions and its nuclear targeting through inhibition of PI3K/Akt/
mTOR and MAPK pathways, respectively, by dephosphorylation of phospho-Akt, 
phospho-p70S6 K, and phospho-S6RP [1, 9].

Amphotericin B (AmB), an agent that interferes the HIF-1α expression through 
CAD-FIH. AmB represses the C-terminal transactivation domain (CAD) of HIF-1α, 
a target site of the factor-inhibiting HIF-1 (FIH). CAD-FIH interaction inhibits the 
recruitment of p300 through CAD of HIF-1α [162].

Triptolide possesses anticancer, antiangiogenesis, and drug-resistance activities. 
Triptolide suppresses HIF-1α through c-Myc-dependent mechanism. Triptolide 
treatment in SKOV-3 cells resulted in loss of function of HIF-1α protein transcrip-
tional activity and reduced mRNA levels of its target genes [29, 173].

FM19G11, an agent that inhibits HIF-alpha protein expression and suppresses 
target genes of two alpha subunits in several tumor cell lines. FM19G11 reduces 
overall histone acetylation with significant p300 repression and behaves as a target 
gene of HIF2alpha at nanomolar range of FM19G11 inhibiting transcriptional and 
translational expression of Oct4, Sox2, Nanog, etc. [103].

Echinomycin (NSC-13502), a small molecule that binds in a sequence-specific 
manner in the DNA and shows dual effect on HIF-1 activity under normoxic 
and hypoxic conditions. It inhibits binding of HIF-1α and HIF-1β proteins to a 
HRE sequence. It suppresses cell growth and induces apoptosis with decreased 
mRNA expression of HIF1 targets, glucose transporter-1 (GLUT1), and B-cell 
CLL/lymphoma- 2 (BCL2). This agent has failed as anticancer agent due to its dual 
effect [72, 143, 164].

Anthracycline and its chemical derivatives (doxorubicin (DXR) and daunorubi-
cin (DNR)) are the topoisomerase inhibitor family that suppresses hypoxia- inducible 
factor-1 (HIF-1) transcriptional activity by obstructing its binding to DNA. These 
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agents are using widely in the prevention of tumors [116]. Doxorubicin (DXR) 
weakens the transcriptional activity of the HIF by inhibiting the binding of the HIF 
heterodimer to the consensus  – RCGTG  – enhancer element and downregulated 
HIF target lysyl oxidase (LOX) family members [136]. Anthracyclines also inhibit 
the endogenous HIF-1 target gene expression. In hypoxic cells the VEGF and 
GLUT1 mRNA levels were significantly decreased by DNR, and DXR, in a dose- 
dependent manner [79].

10.3.4  Future Approaches

The thrust is continuously inundated in identifying the novel metastasis-associated 
oncogenes and tumor suppressor genes. Several therapeutic approaches that target 
HIF and its associated factors in tumor progression are emerging continuously. 
Further studies are needed for answering how the cells sense hypoxia and how 
HIF-1α activation occurred along with other signaling pathways. In recent studies, 
researchers have focused on the determination of the pathways (pro-survival and 
apoptosis) activated in response to hypoxia in cancer cells, and further it is needed 
to analyze the hypoxia-response gene expression patterns to the levels such as apop-
tosis, angiogenesis, and metastasis in human cancer cells through microarray analy-
sis and other high-throughput technologies.
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Abstract
The transcription factor STAT3 important for regulating factors that involve in 
the modulation of gene expression. The factors such as growth factors and cyto-
kines regulate homeostasis of both epithelial and stromal cells. Deregulation of 
STAT3 activation is important in the initiation of transformation of various can-
cers that are epithelial in origin. This chapter mainly focuses on STAT3 activa-
tion in gastric cancer and its progression with the activation of cytokines; it also 
discusses how STAT3 associated with progression of gastric cancer. The studies 
have shown the association of deregulated JAK/STAT in the development of 
solid cancers especially in gastric cancer. Therapeutic use of STAT3 may prevent 
the development of gastric cancer. Inhibitors of STAT3 are emerging as a potent 
drug in treatment options. STAT3 inhibitors are under evaluation in various clini-
cal trials, showing promising results for the treatment.
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DC  Dendritic cells
DCF  5-Flurouracil
EGFR Epidermal growth factor receptor
EMT  Epithelial mesenchymal transition
EPISA Mutation of tyrosine to serine
EPIYA c Terminal Glu-Pro-Ile-Tyr-Ala
ERK  Extracellular signal-regulated kinase
FOLFRI 5-Fluorouracil, leucovorin, and irinotecan
gp  Glycoprotein
H. pylori Helicobacter pylori
HB-EGF Heparin-binding epidermal growth factor
HER2 Human epidermal growth factor receptor-2
HIF-1 Hypoxia-inducible factor 1-alpha
IEC  Intestinal epithelial cells
IFN  Interferon
IL  Interleukin
IRAK1 Interleukin 1 receptor associated kinase
JAK  Janus kinase
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteases
MPL  Myeloproliferative leukemia
MyD88 Myeloid differentiation primary response gene 88
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
OS  Overall survival
PIAS Inhibitor of activated STATS
PTPs  Protein tyrosine phosphatase
REG  Member of regenerate family
SHP2 SHATTERPROOF2
SOCS Inhibitor of cytokine signaling
SOCS Suppressor of cytokine signaling
STAT Signal transducer and activator protein
TH  T helper cells
TLR2 Toll-like receptors
TNM Tumor node metastasis
Tregs The regulatory T cells
VEGF Vascular endothelial growth factor

11.1  Introduction

Gastric cancer is considered as the third most common cancer deaths in the world. 
It remains very difficult to cure especially in Western countries, due to its nature and 
advancement. Especially in the United States, stomach malignancy is considered as 
the 15th most common type of cancer [1]. In the year 2017, according to the 
American Cancer Society, nearly 28,000 cases of stomach cancer have been 
reported, and its more prevalent in males compared with females (17,750 in men 
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and 10,250  in women) [1]. The median age for the diagnosis is considered as 
69 years; out of every ten patients around six patients would be with an age of 65 or 
older. According to the reports of the World Health Organization in 2012, gastric 
cancer accounted for 723,000 deaths around the globe. The disease is more preva-
lent in Asia and some parts of South America and lowest in North America. Record 
death rates were reported in the countries like the former Soviet Union, Chile, 
Japan, and South America [1].

Transcription factors play a vital role in the regulation of various cell functions 
such as activation, repression, and alterations of gene expression that are important 
for cell growth, development, and differentiation process. Activation of various 
transcription factors has been found to be associated with acquisition of resistance 
to gastric cancer treatment. The transcription factors that play a vital role in activa-
tion of oncogenes and tumor progression include NF-κB, HIF-1, AP-1, and STAT3. 
The protein STAT3 is hyperactivated in a wide variety of cancers; specifically it is 
well shown in head and neck cancer [2]. In gastric cancer, STAT3 protein is hyper-
activated via a number of pathways that are associated with poor treatment and 
metastatic potential [3, 4]. The signaling of STAT3 is considered as central for the 
propagation cancer stem cells, which is important in cancer metastasis [3, 4]. Both 
cancer stem cells and hypermalignant cancer cells are metastatic, and they are 
highly tumorigenic; STAT3 inhibitors have shown an intended results in reducing 
the growth of cancer [4]; these inhibitors are considered as the most effective. The 
transcription factor STAT3 activates via a number of routes, and hence there are a 
number of strategies that are being employed to block these pathways.

11.2  STAT Proteins

STAT proteins are considered as a family of transcription factors [5]. It was first 
identified in the year 1994 [5, 6]. There are seven STAT proteins, STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b, and STAT6. These proteins are responsible for 
the generation of signals from growth factors or cytokines and helps in migration of 
signals from the plasma membrane to the cell nucleus for its activation [5]. The 
transcription factors are involved to regulate cell proliferation, differentiation, 
apoptosis, angiogenesis, and production of inflammatory responses [7]. Non- 
phosphorylated, inactivated STAT proteins are mainly present in cytoplasm, and 
they are phosphorylated/activated via cytokines through their receptors. The 
proteins such as STAT2, STAT4, and STAT6 play a major role in development of T 
cells and signaling process involved interferon gamma. STAT3 and STAT5 are often 
involved in the development of cancer progression among humans [5].

STAT proteins share common features in their structure, and the size of STAT 
proteins ranges from 750 to 847 amino acids (90–155 kDa). Each protein is com-
prised of N-terminal region for dimerization and C-terminal region for transcription 
activation through serine residues, a coiled domain for interaction with other pro-
teins, DNA-binding domain to determine the selectivity of STAT proteins and a 
linker domain, and a src domain for both binding and dimerization [5]. Among all 
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STAT proteins, there is Y located approximately at aminoacid position 700 near 
SH2 domain. Phosphorylation of Y domain is crucial for its dimerization, function, 
and nuclear localization that help in DNA binding [8]. STAT1, STAT3, and STAT5 
are phosphorylated at its C-terminal end, which is critical for its transcriptional 
activation (Y727 in STAT3); phosphorylation at this site has both stimulatory and 
inhibitory effects on gene expression [5, 8, 9]. STAT3 protein is located on chromo-
some 17q21.31 [9] and its structure is depicted in Fig. 11.1.

11.2.1  STAT3 Signaling Pathway

The STAT3 signaling pathway can be activated via various number of ways. JAKs are 
activated upon binding to cytokine receptors (e.g., IL 6), via cross- phosphorylation 
pathway. Figure 11.2 represents the overview of STAT3 signaling pathway. JAK/STAT 
pathway involved a wide range of cellular and physiological process that includes cel-
lular proliferation, immune responses, renewal of stem cells, and normal homeostasis 
[6, 10–12]. Deregulation of JAK/STAT pathway involves in a wide range of patho-
physiological conditions of many human cancer and immune-related disorders [13].

The signaling cascade is conserved from slime molds to human, across the phyla 
[60]. This cascade was originally defined as signaling mediated by IFNα, IL-6, and 
IFN-γ. Along with these signals, attachment of immunomodulator to their receptors 
results in the activation and dimerization of specific receptors and further results in 
the phosphorylation of various kinases [14]. The receptors are activated upon phos-
phorylation by the activation of JAKs and act as a docking site for SH2 domain [15]. 
STAT protein, upon phosphorylation, translocates to the nucleus and acts a tran-
scription factor, which in turn controls the expression of targeted genes in down-
stream process. This cascade is mainly regulated at various levels of signaling by 
three classes of protein molecules which are PTP, PIAS, and SOCS [16]. PTPs 
involve in the dephosphorylation of JAK, STAT, or its receptors and inactivate them; 
PIAS molecules inhibit the signaling process and prevent the binding of activated 
STAT dimers to their downstream targets [17]. SOCS molecules interfere with the 
recruitment of STAT to its receptors [16]. In mammalians, four members are 
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included in JAK family, and they are JAK1, JAK2, JAK3, and TYK2. JAK family 
members, JAK1 to JAK3, are expressed ubiquitously, and JAK3 is expressed only 
in hematopoietic cells and involves in the development and regulation of hemato-
poietic cells [18]. The STAT family involves in various cellular processes, and it 
includes seven different members from STAT1 to STAT6, whereas STAT5 has both 
STAT5a and STAT5b [6]. STAT proteins are involved in transcription of various 
molecules that are involved in proliferation, differentiation, inflammation, and 
apoptosis. In recent years, JAK/STAT has been found to associate with stability of 
heterochromatin and epigenetic regulation such as DNA methylation and remodeling 
of chromatin [19].

Many scientists observed the continuous activation of both JAK and STAT 
signaling pathways in various cancers. It may be due to increased expression of 
cytokine and its receptors or decreased expression of its negative regulators [20]. In 
myeloproliferative disorders, activation of somatic mutations such as JAK2 or MPL 
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(encodes thrombopoietin receptors) was observed leading to persistent activation of 
both STAT3 and STAT5 [21, 22]. In pathogenesis of hepatocellular carcinoma, 
deletion of gp130 results in the continuous activation of STAT3 even without the 
presence of its ligand [69]. In various epithelial cancers, there is a continuous upreg-
ulation of JAK2/STAT3 signaling pathways with increase in STAT3 signaling 
resulting in tumorigenesis of various cancers [23]. The dephosphorylation of STAT3 
by tumor suppressor PTP delta was found to frequently mutate in various cancers 
such as head and neck cancers, human glioblastoma, and lung cancer [24]. Deregulation 
of JAK/STAT signaling pathway results in tumor initiation and progression in 
hematopoietic malignancies and other solid cancers [21–23, 25]. STAT3 was found 
to increase antiapoptotic proteins such as Bcl-2 family proteins and prevent cells 
to undergo apoptosis [24]. STAT3 mediates mitogenic activity within the cells, 
resulting in pro-survival pathway via surviving [24, 26]. Other studies revealed that 
STAT3 controls epithelial-to-mesenchymal transition regulators through metastasis 
[27]. The protein STAT3 promotes the initiation of various blood vessels by increas-
ing the levels of HIF-1α and VEGF [28–30]. STAT3 facilitates tumor progression 
through aberrant expression of STAT3 via cell motility and invasion [31]. JAK/
STAT pathway regulates several immunomodulatory molecules. An aberrant activation 
of STAT3 molecules regulates cancer cell proliferation and cell survival, suggesting 
the role of STAT3 in inflammation and angiogenesis modulating tumor microenvi-
ronment of cancer [28].

Several in vitro and in vivo studies have implicated the deregulation of JAK/
STAT signaling pathway resulting in various hematological malignancies and solid 
cancers. The aberrant activation of this pathway has contributed to the propagation 
of gastric cancer [32, 33]. Inhibition of STAT3 protein resulted in the decrease of 
antiapoptotic protein levels such as survivin, decreasing cell survival in gastric can-
cers [34]. In 86 cases of gastric cancer patients, the studies revealed the activation 
of STAT3 with increase in angiogenesis factors such as microvessel density and the 
expression of VEGF. The studies on univariate survival analysis revealed the aber-
rant expression of STAT3 protein that plays a role in angiogenesis of gastric cancer 
and its progression [30]. To study the expression of IL-6 inducible protein, REG Iα 
in tissues of gastric cancers suggested the role of STAT3 in inflammation process. 
Both REG Iα and phospho-STAT3 expression predict the role in tumorigenesis in 
gastric cancer.

Kim et al. analyzed 100 gastric adenocarcinoma tissues collected after gastrec-
tomy to identify the STAT3 expression through immunohistochemical staining [35]. 
It was identified that the expression of STAT3 found to be associated with survival 
and TNM imaging; this STAT3 expression can act as a biomarker for the treatment 
of gastric cancer. STAT3, SOCSI, phospho-STAT3, and other clinicopathological 
factors were evaluated by Deng et al. in 53 gastric cancer patient tissue samples with 
overall survival rate. Both phospho-STAT3 and lymph node metastasis are consid-
ered as independent predictors of OS in the patients of gastric cancer, revealed by 
both univariate and multivariate analysis, and the expression of STAT3 correlates 
with lymph node metastasis [3]. Nearly 106 gastric cancer tissue samples were ana-
lyzed by immunohistochemistry to identify the expression of SOCS3 among 
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patients; they revealed that SOCS3 acts as a good biomarker to identify lymph node 
metastasis [36].

Extensive studies on STAT3 revealed its role in gastric cancer-mediated inflam-
mation. Bollrath et al. reported in colitis-associated cancer model that gain and loss 
of function of STAT3 revealed the link associated between inflammation and gastric 
cancer. Tumor progression was found to associate with IEC progression and sur-
vival mediation through cell cycle progression [37]. In STAT3-deficient mice, pro-
gression of intraepithelial lesions to tubular tumors that are in advanced stage 
confirmed the involvement of STAT3 in tumorigenesis [38]. STAT3 activation that 
was found to be observed in more aggressive gastric tumors could be due to either 
introduction of SOCS3-binding-deficient mutation or ablation of SOCS3 [39, 40]. 
Together these results have revealed valuable details about inflammation driven by 
STAT3 in gastric cancer [40].

11.3  Inflammation of H. pylori and Regulators of STAT3

H. pylori is a stomach bacteria that is mainly associated with the development of 
gastric adenocarcinoma. Major advances have been made to study the underlying 
mechanism of H. pylori to evade mucosa of host immunity. The pro-inflammatory 
cytokines that are produced by both immune cells and epithelial cells help in main-
taining the chronic inflammatory condition resulting in gastric cancer. Widely dis-
cussed the STAT3 role in various organ systems raises a question of STAT3 activity 
in the immune response to H. pylori infection, which may mediate oncogenic effects 
of H. pylori.

Both gastric and immune compartments are influenced by functional effects of 
STAT3 [2, 41–43] and controlled by specific intracellular signaling events. In phar-
macotherapy, STAT3 has been recognized as a potential target for the treatment of 
gastric cancer as a strategy to prevent the pathology of gastritis, metaplasia, and 
adenocarcinoma, respectively. H. pylori infections are caused by both immune and 
mucosal perspectives, and STAT3 is considered as a potential target for therapy. 
Jackson et al. reported that the hyperactivation of STAT3 is dependent on gastritis 
tumorigenesis, and they identified the functional role of STAT3 in the early stages 
of gastric cancer development [44]. Infections of mucosal surface a pit epithelial 
cell are identified with nuclear localization of phosphorylated STAT3 and its engage-
ment with active gene promoters [44].

11.3.1  Toll-Like Receptors (TLR) and STAT3 Activation

Toll-like receptors play a role in recognizing and responding to microbial pathogens 
(pathogen-associated molecular pattern) and host danger signals (damage- associated 
molecular patterns) and facilitate the process of inflammation [45]. TLRs are specifi-
cally located on immune cells, especially on dendritic cells and macrophages [46]. 
The antigens of H. pylori such as LPS, flagellin A, and unmethylated CpG DNA 
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activate TLR2, TLR4, TLR5, TLR8, and TLR9 [47]. H. pylori responses to both 
TLR2 and TLR4 were best studied in both immunocytes and in the stomach; and the 
outcomes mainly depend on the type of cell and microenvironment- dependent altera-
tions in response with well-defined antigens. In non-gastric tissues, both TLR4 and 
TLR9 involved in STAT3-dependent activation [48]. But there is no evidence that the 
same mechanism will occur in gastric epithelial cells. STAT3 was found to increase 
the gene expression of TLR2 in IL-11/STAT3 dependent in in vivo models; removal 
of TLR2 blocks the growth of tumor without any inflammation [49]. IL-6/STAT3 
regulates the activation of spleen TLR4 and directly involves in inflammation [50]. 
Altogether, the data suggests that differential cytokine/STAT3 inductions are impor-
tant for the activity of both TLR2 and TLR4. Together these data suggests that H. 
pylori infection influences the outcome of pathogenicity in stomach.

11.3.2  Regulation of STAT3 in H. pylori Tolerance

STAT3 plays important roles in the production of inflammatory cytokines. Emerging 
evidence from various mouse models reveals that H. pylori has evolved toward 
tolerance at immunity [51, 52]. Inflammatory responses raised against H. pylori 
infections by Tregs resulting in the release of cytokines that involve in the suppres-
sion of pro-inflammatory T-cell responses [53]. The transcription factor, FOCP3, 
forms a complex and regulates the expression of IL-10 in Tregs [54]. IL-19 involves 
in regulating STAT3, which is important for the suppression mediated by Tregs of 
pro- inflammatory TH 17 cells; STAT3 deletion resulted in suppressive function or 
IL-10Rα but not IL-6Rα [55] in Tregs. DCs upon reprogramming of its phenotype 
with H. pylori infection induce favorable Treg responses [56, 57]. There is less 
number of studies to show the functional responses of STAT3 protein [58, 59]. This 
provided a strong evidence that IL-10-mediated signaling of STAT3 proteins involves 
impairment and tolerization of human DCs maturation [58]. In immune cells, STAT3 
plays an important role in gastric epithelial cells that facilitates the persistence of 
infection caused by H. pylori. CagA signals in the activation of IL-11/gp130/STAT3 
mediated by tyrosine phosphorylation with the help of C-type lectin [60].

11.3.3  STAT3 and Epidermal Growth Factor Signaling

EGF family members act as ligands for receptor tyrosine kinases such as ERBB1-4. 
It includes the family members of various factors such as EGF, HB-EGF, transform-
ing growth factor-alpha amphiregulin, betacellulin, and epiregulin that can induce 
the dimerization of both ERBB1/ERBB2 and ERBB1 heterodimers to begin signal-
ing cascades. There are several signaling networks in EGFR that are interconnected 
including the pathways such as PI3K/Akt, ERK1/2, STAT, and PLCγ [61]. Ligands 
such as STAT1, STAT3, and STAT5 utilizes ERBB1 homodimers to activate signal-
ing pathways [62]. ERBB1 receptor-mediated STAT activation is compulsory for 
STAT3 activation without the involvement of JAK [62, 63].
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Ligands of EGF family are involved in the pathophysiology of diverse activities 
ranging from cell proliferation, apoptosis, differentiation, and cell motility [44]. 
EGFR is considered as the first receptor that provides a link between various 
cancers and receptor overexpression; the hyperactivity of these receptors is demon-
strated in a wide range of cancers such as the stomach, pancreatic, colorectal, head 
and neck, breast, lung, and brain. A wide variety of inhibitors are available to inhibit 
EGFR signaling pathways [61].

11.3.3.1  Ligands of EGF and H. pylori
Protein and mRNA expression of EGFR and its ligands are found to be increased in 
human stomachs infected with H. pylori. There is a direct correlation between the 
increased infection with an increased expression of transcription factors such as 
amphiregulin and HB-EGF; this has a direct correlation with the proliferation index 
of gastric carcinoma [64, 65]. The expression of both EGF and EGFR are increased 
in gastritis and gastric cancer patients infected with H. pylori but not in H. pylori- 
negative gastritis [66]. In gastric cancer cell lines, the infection of H. pylori caused 
increased expression of HB-EGF and EGFR [5]. Increased activity of HB-EGF has 
been directly linked to EMT through increased expression of EMT transcriptome 
[67]. Infection with H. pylori for a longer duration of time results in the increased 
expression of EGFR resulted with the inhibition of endocytosis [47].

The activation of EGFR in H. pylori-infected epithelial cells of gastric carcinoma 
results in increased survival rate with the decrease in apoptosis rate and with an 
increased expression of polyamine oxidase [68, 69]; it further enhances the expres-
sion of genes that are involved in early growth responses [70]. Modification of 
EGFR signaling is required for the development of gastric organoids through stem 
cells derived from pluripotent cells [71]. All the mentioned activities are important 
in progressing pathologic conditions of cancer induced by H. pylori infections.

11.3.4  STAT3 and Cytotoxin-Associated Antigen A (CagA)

Among various numbers of bacterial factors that involve in the pathogenesis of H. 
pylori, a very well-understood mechanism of STAT3 signaling is CagA. Over the 
last decade, much importance has grown in the biology of H. pylori compared with 
CagA.  It is a principal cytotoxin of H. pylori with a molecular weight of 120–
145 KDa, encoded by virulence gen CagA. The CagA is located in the region of cag 
pathogenicity island; this region contains genomic DNA of 40 kb with 27–31 viru-
lence genes; few genes encode key components of bacterial type IV secretion sys-
tem that involves in the delivery of CagA into epithelial cells of gastritis [72, 73]. H. 
pylori strains exhibit greater virulence with CagA positive, and they carry a high 
risk of gastric adenocarcinoma [74]. In mouse transgenic experiments, overexpres-
sion of CagA resulted in the uniform overgrowth of gastric epithelium and late onset 
of focal tumorigenesis, without altering significant changes to gastritis or atrophy 
[75]. CagA involves in autonomous deregulation of gastric epithelial cell 
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homeostasis; other factors such as secondary somatic mutations or inflammatory 
cytokines are necessary for oncogenesis. CagA along with other immortalizing 
agents involves in mediation of oncogenic transformation of primary gastric epithe-
lial cells [76].

Translocation of CagA from epithelial cells of gastritis through type IV secretion 
system of bacteria [77]. Upon internalization, CagA localizes to the internal surface 
of the plasma membrane, and the tyrosine is phosphorylated at a specific location of 
EPIYA repeat motifs by kinases of src and c-Abl [78, 79]. On translocation CagA 
has been shown to interact with other intercellular signaling cascades that are 
associated with cell motility and growth [60, 78, 80–83]. The recent literature 
identifies CagA as the most widely discussed intracellular target of Src-homology 
protein tyrosine phosphatase SHP2 [72]. Activation of SHP2 results in binding and 
phosphorylation of CagA resulting in an inappropriate signaling via SHP2-(Ras)-
ERK (MAP-kinase) cascade mechanism with deregulated cell polarity of epithelial 
cells and its increased motility, hummingbird phenotype [60, 80–84]. Knockdown 
of SHP2 restricts CagA-dependent ERK activation and induction of hummingbird 
phenotype [84]. Altogether, SHP2 plays an important role of CagA function in 
gastritis in epithelial cells.

The connection between SHP2 and gastric gp130 signaling is well explained 
[85] with the regulation of gp130/JAK/STAT3 pathway activation for the mainte-
nance of gastric mucosal homeostasis [42, 85]. Lee et al. reported that the transfec-
tion of CagA triggers the activation and phosphorylation of STAT3  in gastric 
epithelial cells [60]. The phosphorylation of EPIYA motif is considered as a major 
determinant of CagA-mediated signaling in phosphorylation stage [60, 78, 80–83, 
86, 87]. The phosphorylation of tyrosine residue within EPIYA of CagA is neces-
sary for the activation of STAT3; it was revealed by EPISA [59]. Other groups 
reported that activation of STAT3 occurs independent of tyrosine phosphorylation 
of CagA [87] or through unphosphorylation of CagA [88].

The other groups performed a detailed investigation of STAT3 activation through 
CagA dependence in non-gastritis group, laryngeal carcinoma-derived HEp-2 cells 
[87]. The other group assessed the role of STAT3 response in gastric AGS cells after 
infection with the different H. pylori strains that lacks phosphorylation-defective 
CagA mutant that lacks EPIYA motif [88]. The studies based on gastric cell lines 
using an inducible transgene that carries either mutant in EPIYA tyrosine residue or 
wild-type CagA has been replaced with EPISA [60]. The following approach helped 
in abolishing EPIYA tyrosine phosphorylation without affecting cell membrane 
tethering of CagA [89].

11.4  Therapeutic Options for Gastric Cancer

Based on the size and location of initial tumor, either total surgical resection or 
subtotal gastrectomy will be performed. Both radiotherapy and chemotherapy are 
considered to be major treatment options for the treatment of cancer. The contribu-
tions of nontargeted effect for the development of secondary cancer are far less clear 
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[87–90]. In patients, chemotherapeutic interventions will be revealed in the adjuvant, 
neoadjuvant, and metastatic settings. The trial, SWOG 9008, is evaluated by 
postoperative chemoradiation after removing gastric tumors. Patients were closely 
monitored under observation versus 5-FU/leucovorin, and the radiation dose was 
delivered at 45  Gy. After 10  years, follow-up revealed that there is a dramatic 
improvement in overall survival of the treatment arm; generally, the postoperative 
chemotherapy is not well tolerated in patients undergoing treatment [98]. The 
MAGIC trial was evaluated with the treatment of epirubicin, 5-FU, and cisplatin in 
patients suffering from adenocarcinoma, and they found that chemotherapy had 
a very good overall survival compared with surgery alone [99]. In patients with 
metastatic carcinoma, any combinations of DCF, FOLFRI, and DCF are considered 
as best supportive care [100–102].

Several therapies have been studied till now, but only two therapeutic treatments 
have been approved in the United States based on positive clinical trials. 
Characteristics of various molecular-targeted agents in gastric cancer therapy are 
given in Table 11.1. HER2 inhibitors are considered as the best targeted therapy for 
several cancers. The monoclonal antibody, trastuzumab, targets HER2 and inhibits 
its signaling pathways [109]. In phase III international study (ToGA trial), trastu-
zumab was evaluated in combination with cisplatin plus 5-FU or capecitabine. 
Patients were classified based on HER2 overexpression. Treatment with trastu-
zumab and chemotherapy has improved overall survival rate compared with chemo-
therapy alone [110]. A monoclonal antibody, ramucirumab, given against vascular 
endothelial growth factor receptors 2 demonstrated survival benefits in patients with 
advanced gastric cancer [111, 112]. Ramucirumab is the first Food and Drug 
Administration-approved biologic therapy used as a single agent [112]. Ohtsu et al. 
[113] demonstrated that monoclonal antibody against VEGFA and bevacizumab in 
combination with cisplatin and capecitabine that was administered in AVAGAST 
trial demonstrated improved overall response rate and progression-free survival, but 
overall survival was not improved.

Table 11.1 Targeted agents for the treatment of gastric carcinoma

Target Agent Treatment prospects
Trastuzumab HER2 FDA approved
Ramucirumab VEGFR FDA approved
Sorafenib VEGF, PDGF Ongoing phase II and III clinical trails
Marimastat MMPs Ongoing phase II and III clinical trails
Erlotinib EGFR Ongoing phase II clinical trails
Foretinib c-Met, KDR VEGFR2 Ongoing clinical trials
Bevacizumab VEGF Treatment given individually [103]
Pertuzumab HER2 Ongoing phase III clinical trials
Sunitinib VEGF, PDGF, KIT, FLT-3, RET Promising outcomes [104–106]
Bortezomib NF-κB Promising outcomes [107]
Rilotumumab c-MET Promising outcomes [108]
Figitumumab IGFR-IR Ongoing phase I clinical trials
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11.5  Conclusion

Among transcription factors, STAT3 plays a pivotal role in gastric mucosal func-
tion. STAT3 activation by hyperphosphorylation constitutively results in increased 
gene expression that contributes to pre-neoplastic progression in the stomach. The 
progression leads to cell proliferation, angiogenesis, and inflammation and inhibits 
cell death. The aberrant expression of STAT3 has made promising biomarkers in 
gastric cancer patients. Several cell culture and mouse model studies confirmed of 
STAT3  in precancerous pathological conditions of the stomach, which confirms 
STAT3 as a diagnostic biomarker for early detection in patients suffering with gas-
tric cancer. The blockage of STAT3 with effective antagonists will be effective in 
spreading metastasis to secondary sites, a common situation for effective treatment 
of gastric cancer.
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12Role of STAT3 in Gastric Cancer 
Initiation, Development, 
and Progression

Aleem Basha Pinjari and Abdul Razak Meerza

Abstract
Gastric cancer (GC), a leading cancer that occupies the second position in terms 
of morbidity and mortality, occupies the fourth place of all cancers in terms of 
manifestation. Annual gastric cancer manifestations are reaching several mil-
lions of deaths along with millions of new cases. Gastric cancer which is not 
detected in the early stages has very poor prognosis, and the 5-year survival rate 
is only around 20%. Gastric cancer development includes numerous alterations 
at genome level leading to changes in the expression of quite a lot of genes 
involved in several physiological processes. Even though a number of factors 
showed their role in advancement of GC, a link between STAT3 and the risk of 
GC has become apparent in current years. Signal transducers and activators of 
transcriptions (STATs) which are predominantly known for their role as tran-
scription factors are implicated in controlling numerous physiological processes 
such as cell propagation, differentiation, apoptosis, and angiogenesis by control-
ling the expression of critical genes in the pathway. Abnormal activation of 
STAT3 plays a key role in inflammation and transformation in numerous cancers 
including gastric cancer (GC). Earlier, STAT3 has never been considered as a 
target, and hence there is no FDA-approved STAT3 inhibitor till now. Recent 
advances in drug discovery and cancer biology now focused on STAT3 globally 
for treating different types of cancers. The present chapter summarizes the recent 
literature and gives an idea about involvement of STAT3 in gastric cancer initia-
tion and progression.
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12.1  Introduction to STATs

In 1994, STATs, which were firstly recognized, constitute a group of proteins which 
are involved in transcription and control of several physiological processes such as 
cell division, differentiation, survival, apoptosis, angiogenesis, immune modula-
tion, and inflammatory functions. Mainly STAT family of transcription factors con-
tains seven members which are encoded by STATs 1, 2, 3, 4, 5A, 5B, and 6 genes 
[60, 74]. The twin roles of STATs show their uniqueness where firstly they com-
municate from the cytoplasmic membrane to the nucleus and, secondly, they control 
the expression of some critical genes involved in physiological processes at the gene 
level [23, 32, 70]. Initially, STATs were identified as part of interferon (IFN) signal-
ing complex [42, 49]. Based on their functional role, STAT proteins are classified 
into two groups [69, 73]. STATs 2, 4, and 6 form the first set which are actively 
involved in IFN-γ signaling and T-cell development, while the second set involves 
STATs 1, 3, and 5 having a significant role in mammary gland development, IFN-γ 
signaling, and embryogenesis. Each family member of STATs has specific func-
tions, which include regulation of antiviral host response [21, 35], regulation of 
T-cell development [39–41, 52, 54], stimulation of cell proliferation, and survival to 
apoptosis [7, 28, 56, 71]. Most of the cellular functions of STATs are elucidated by 
gene knockout studies in animal models. STAT proteins 1 and 2 elicit a remarkable 
role in the control of several cellular and physiological processes which is mediated 
through interferons. STAT1 knockout or deletion studies in mice have shown their 
inability to respond to interferons and thereby become susceptible to several micro-
bial infections [26]. The most important member of STAT proteins is STAT3, which 
controls the expression of central genes involved in many physiological processes at 
DNA level in response to several signaling molecules. In response to cytokine IL-6, 
STAT3 which gets activated was firstly identified as acute phase response factor [2, 
96]. Upon stimulation with cytokines, STAT3 undergoes activation through phos-
phorylation in the cytoplasm by Janus kinases (JAK), and the active phosphorylated 
STAT3 moves to the nucleus to control the transcription of several important genes 
by binding to specific DNA sequences [33]. Within 15 min STAT3 undergoes maxi-
mum phosphorylation to exhibit its activity and phosphorylation ceases in 60 min 
[73]. Activation of STAT3 by several signaling molecules follows two modes in 
which the first mode is through Tyrosine 705 phosphorylation (cytokines, growth 
factors, and interferons follow this mode) and the second mode is through Serine 
727 phosphorylation [68] (mitogen-activated protein kinases (MAPK) [79] and 
non-receptor tyrosine kinases follow this mode). Animal model studies clearly 
showed that the deletion of STAT3  in homozygous condition is embryonically 
lethal, indicating a crucial role in early stages of embryonic development [75]. From 
the previous reports, it was clear that STAT3 activation is essential to maintain 
embryonic stem cells (ESCs) in undifferentiated state though STAT3 is enough for 
embryonic stem cell (ESC) regeneration [51]. TH17 helper T cells, which are known 
to exhibit a remarkable role in several autoimmune diseases, also require STAT3 for 
their differentiation [91]. STAT4 is the predominant STAT protein present in macro-
phages, activated monocytes, and dendritic cells which perform immunological 
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functions. Similar to STAT3, STAT4 also gets activated through phosphorylation in 
response to cytokines specifically IL-12, is translocated to the nucleus, and regu-
lates the transcription of genes involved in inflammation [84, 86, 89]. In mice, it was 
clearly shown that impairments in IL-12- induced proliferation of activated T cells 
may result due to the deletion of STAT4 [40, 78]. Even though they have identical 
names, STAT5A and STAT5B have independent genes coded by different chromo-
somes, and their knockouts exhibit different phenotypes. The studies related to 
STAT5A knockout revealed its importance in the development of the mammary 
gland and lactogenesis in adult mice, whereas STAT5B knockout studies discovered 
its role in sexual dimorphism of body growth rates and gene expression in the liver 
[83]. Even if several cytokines activate both STAT5 isoforms, some of them show 
specificity toward either STAT5A or STAT5B [59]. STAT6, another important asso-
ciate of the STAT group, exhibits a lead role in the maintenance of equilibrium 
between immune protection and allergic reactions [89]. One of the important func-
tions of STAT6 is M2 macrophage polarization. Upon stimulation with cytokines 
specifically IL-4 and/or IL-13, STAT6 displays its transcription activator activity 
and regulates the transcription of several genes depending upon the cell type [43, 
85]. The best examples include the enhancement of transcription of IgE chain and 
CD23 genes in B cells and transcription of gata3 and crth2 genes involved in Th2 
differentiation in T cells [40, 65, 76]. With the involvement of other transcription 
factors, STAT6 also suppresses the expression of genes besides its original activa-
tion function [85]. The loss of IL-4 response in STAT6 knockout mice acts as driv-
ing force for Th1 differentiation, whereas loss of IL-12 response shows impaired 
Th1 differentiation in STAT4 null mice.

12.2  Structural Characteristics of STAT Proteins

Analysis of the STAT group proteins revealed their structural details as they contain 
seven conserved domains which include both structural and functional domains [13, 
59], namely, N-terminal domain, coiled-coil domain, DNA-binding domain, linker 
domain, SH2 domain, phosphotyrosyl tail segment (Y domain), and C-terminal 
transactivation domain. The N-terminal domain encompassing about 125 amino 
acid residues exhibits a remarkable role in the formation of dimers. This domain 
also plays a dual role by maintaining the STATs in an off conformation and recruit-
ing STAT dimers at the receptor. Coiled-coil domain is one of the important domains 
(amino acid residues 136–317) containing four α helices. This domain is rich in 
charged amino acids and has potential to interact with other proteins. The documen-
tary evidence shows that this domain not only is essential in establishing protein–
protein interactions with many regulatory proteins [44] but also performs a central 
role in translocating STAT proteins in and out of the nucleus [55, 60]. The other 
most important and essential domain is DNA binding (amino acids 320–480) by 
virtue of which STAT proteins exhibit their remarkable function, transcriptional 
regulation of genes. Through this conserved domain STAT proteins bind to diverse 
palindromic sequences and the GAS sequence [22]. In between DNA-binding and 
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SH2 domains, there exists a highly conserved domain known as the linker domain 
(463–566 amino acids), which acts as a chief contact point in the formation of 
STAT-determined transcription complex. Another domain which is thought to be 
well conserved is Src homology2 (SH2) domain (amino acid residues 575–680). 
The SH2 domain binds specifically to phosphotyrosine and acts as a phosphorylation- 
dependent knob to control receptor recognition and binding to DNA.  Thus SH2 
domain exhibits a straight link with the cell surface receptor activation and tran-
scriptional gene regulation. The crucial step in STAT activation is the tyrosine phos-
phorylation and the conserved tyrosine residue that is exposed to outer surface in 
tyrosine activation motif is very much essential for phosphorylation by JAKs [50]. 
The minimum conserved domain in STAT proteins is C-terminal transcriptional 
activation domain (TAD) which acts as the docking site for several coactivators and 
also known to affect the stability of protein [44, 59].

12.3  Activation of STAT3

STAT3 is a well-known transcription factor which gets stimulated by a bunch of 
cytokines including growth factors, interferons, hormones, and interleukins. Almost 
all types of growth factor receptors can stimulate the STAT3 activation in response 
to signaling molecules. Stimulation with growth factors or cytokines through recep-
tor binding promotes their homo- or heterodimerization, thereby switching on 
intrinsic receptor tyrosine kinases to stimulate tyrosine phosphorylation of STAT3. 
Receptors lacking tyrosine kinase activity intrinsically get activated by other tyro-
sine kinases that are bound to receptors such as JAK and SRC. Receptor-associated 
tyrosine kinases subsequently phosphorylate the tyrosine residues present in the 
receptor, and these phosphorylated sites serve as docking sites for the binding of 
proteins containing SH2 domain, for instance, STAT3. STAT3 phosphorylation at 
Tyr 705 by JAK converts inactive form of STAT3 to active form. Once STAT3 gets 
activated by phosphorylation, it undergoes dimerization with another STAT3 pro-
tein by establishing a connection between phosphorylated tyrosines at position 705 
of one monomer with the SH2 domain of the other. Dimerized STAT3 then moves 
from the cytoplasm to the nucleus and performs its function of transcriptional regu-
lation by binding to specific regions in DNA. The transcriptional activity of STAT3 
is regulated by MAPK or mTOR pathways via phosphorylation of Ser727 present in 
the transactivation domain. Phosphorylation of STAT3 Tyr 705 converts inactive 
form to active form, whereas to attain complete activation, it requires one more 
phosphorylation specifically at Ser 727 [11, 92]. Besides these two phosphorylation 
sites, STAT3 is also regulated by acetylation of Lys 685 which stabilizes STAT3 
dimers [94]. Along with phosphorylation, STAT3 also requires association of coact-
ivators such as CBP/p300, c-Jun, APE1/Ref-1, MCM5, Nmi [97], and NCOA/
SRC1a [29, 30] for its transcriptional activity. STAT3 regulates wide range of tran-
scription factors predominantly c-Fos and HIF-1α which exhibit broad functions. 
STAT3 upregulates c-Fos and HIF-1α by directly binding to their promoters. 
Increased levels of c-Fos and HIF-1α regulate their downstream target genes 
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involved in various physiological processes related to inflammation, invasion, cell 
metabolism, angiogenesis, and apoptosis [46, 61, 63, 88, 90]. These three transcrip-
tion factors STAT3, c-Fos, and HIF-1α alone can stimulate the initiation and pro-
gression of tumors. In addition, STAT3 activates the expression of many genes 
which are related to physiological processes such as cell proliferation, apoptosis, 
and angiogenesis. STAT3 enhances antiapoptotic gene transcription, for instance, 
Bcl-2, Bcl-xL, and survivin, and genes related to cell cycle progression such as 
p21WAF1/CIP2, cyclins, CDC25A, APE1/Ref-1, c-Myc, and Pim1 and also acti-
vates genes such as VEGF involved in angiogenesis. In fact, most of the STAT3 
target genes play a key role in controlling various physiological processes which 
include cell proliferation, transformation, and metastasis.

12.4  Abnormal Activation of STAT3

Current literature recommends that continuous activation of STAT proteins plays 
a significant role development of tumors associated with different malignancies 
and it is also responsible for poor prognosis [14]. Recent study conducted by 
Xiong et al. with gastric cancer (GC) samples revealed the importance of phos-
phorylation of STAT3 in terms of survival rate. Patients having tumors with phos-
phorylated STAT3 have relatively shorter life compared to those with 
non-phosphorylated protein. Not only in gastric cancer, pSTAT3 was also associ-
ated with shorter overall survival in other cancers which include colorectal carci-
noma, B-cell lymphoma, cervical cancer [77], and head and neck squamous cell 
carcinoma [47, 62]. Pathways that are responsible for continuous activation of 
STAT3 include loss of negative regulation, excessive stimulation, positive feed-
back, and somatic mutations of STAT3. Different types of mechanisms which lead 
to abnormal activation of STAT3 are shown in Table 12.1. The predominant nega-
tive feedback regulators of STAT3 are suppressor of cytokine signaling (SOCS) 
and protein tyrosine phosphatases (PTPs). The SOCS (suppressor of cytokine sig-
naling) family of proteins acts as competitors to STAT3 to bind to JAKs and pre-
vent their interaction with kinase domain of JAKs and thereby stop their signaling 
[87]. As SOCS proteins are involved in the maintenance of homeostasis of physi-
ological processes by inhibiting the hyperactivation of important signaling mole-
cules, their expression is under tight control. Accordingly, the JAK/STAT3 
pathway that is activated with respect to cytokine stimulation enhances the tran-
scription of SOCS3, and this protein functions as a negative feedback regulator to 
prevent its own overstimulation. Protein tyrosine phosphatases (PTPs) belong to a 
large group of proteins involved in counteracting the effects of protein tyrosine 
kinases. These phosphatases maintain the phosphorylation status in the cell. 
Several phosphatases mediate their action in the same manner to that of SOCS 
proteins, by regulating JAK/STAT3 signaling pathway. PTPs inhibit the JAK/
STAT3 signaling by dephosphorylating the tyrosine residues that are required for 
interaction of JAKs and STAT3 [5]. SOCS proteins and PTPs which act equally as 
negative feedback regulators are repressed or silenced in many types of cancers 
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Table 12.1 Mechanisms involved in aberrant activation of STAT3

Proteins/
cytokines Type of action Mechanism Expression Reference
SOCS 
(Suppressor 
of Cytokine 
Signaling)

Negative 
feedback 
regulation

Acts as competitors to 
STAT3 to bind to JAKs and 
prevent their signaling

Repressed or 
silenced in 
many cancer

Ward et al. 
(2009)

PTPs (Protein 
Tyrosine 
Phosphatases)

Negative 
feedback 
regulation

Inhibits JAK/STAT3 
signaling by 
dephosphorylating the 
tyrosine residues required 
for interaction of JAKs and 
STAT3.

Repressed or 
silenced in 
many cancer

Alonso et al. 
(2004)

IL-6, IL-10, 
IL-11, IL-21, 
IL-23, 
oncostatin

Direct 
stimulation

Persistent activation of 
STAT3 through continuous 
stimulation

Over 
expressed in 
many cancers

Yu et al. 
(2009)

v-src Positive 
feedback 
regulation

stimulates NF-κB which in 
turn stimulates IL-6 which 
brings constant activation 
of STAT3

Over 
expressed in 
many cancers

Iliopoulos  
et al. (2010)

Pyruvate 
kinase M2 
(PKM2)

Positive 
feedback 
regulation

Activates STAT3 by 
phosphorylating Y705

Over 
expressed in 
many cancers

Luo et al. 
(2011)

leading to abberant activation of STAT3. Tumor microenvironment is more impor-
tant in the persistent activation of STAT3 protein as several surrounding cells 
release signaling molecules into the environment. Predominant cytokines that are 
involved in persistent activation of STAT3 belong to interleukin family members 
along with leukemia inhibitory factor and oncostatin [93]. The activated STAT3 in 
return stimulates the transcription of those cytokines that are responsible for its 
activation; hence a round of continuity occurs in between STAT3 activation and 
cytokine production which often exists in tumors (Yu and Jove 2004; [93]). 
Several previous reports have shown the contribution of IL-6 to prolong STAT3 
activation in cancer cells [19].The transcription of several oncogenic protein tyro-
sine kinases (PTKs) also results into constitutive activation of STAT3. One such 
oncogenic member is Src, which is overstimulated in different cancer types. Src is 
overstimulated by Y416 phosphorylation and Y527 dephosphorylation. Many 
cancers revealed that the dephosphorylation of Y527 results due to the action of 
tyrosine phosphatase such as PTP1B, deletion of Y527, or Y527F mutation [6, 
27]. Src activation further brings STAT3 activation which in turn regulates the 
expression of several genes which are very necessary for v-src-mediated cellular 
transformation [10, 15, 81]. Constitutive activation of STAT3 also results from 
positive feedback loops. Several mechanisms utilize IL-6/STAT3 signaling path-
way which is more prevalent in many cancer types for activating STAT3 in a posi-
tive feedback loop. Recent studies conducted on MCF- 10A, STAT3 activated by 
v-src increases the expression of two miRNAs which in turn stimulates NF-κB 
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that inhibits the transcription of two tumor suppressor genes PTEN and CYLD. In 
addition, the stimulation of IL-6 by NF-κB leads to constant activation of STAT3. 
In another study conducted in cancer cells and tumor microenvironment, it was 
shown that G-protein-coupled receptor overexpression in response to transcrip-
tion factor STAT3 promotes persistent activation of STAT3 by IL-6 production 
and tyrosine kinase activity of JAK2. Activation of STAT3 through Y705 phos-
phorylation by pyruvate kinase M2 (PKM2) is another example for positive feed-
back. Activated STAT3 then promotes the transcription of HIF-1α which in turn 
enhances PKM2 expression. One more example for positive feedback comes from 
STAT3 and COX-2 which was established in Helicobacter pylori-associated gas-
tric cancer. Various mechanisms of STAT3 activation are shown in Fig. 12.1.

12.5  STAT3 and Gastric Cancer

In malignancy, the second foremost cancer responsible for high mortality is gastric 
cancer (GC) [3, 9]. Even though there is a rapid development with respect to diag-
nosis and cure, the actual mechanisms that are responsible for gastric cancer devel-
opment are still unclear. The aggressive behavior of gastric cancer results due to 
accumulation of mutations resulting in oncogene activation, tumor suppressor gene 
suppression, and their aberrant downstream signaling pathways concerned with 
many aspects of cancer biology [20, 67]. Gastric cancer which results due to 

Fig. 12.1 Different mechanisms of STAT3 activation leading to cancer
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accumulation of damages at gene level involves oncogene activation and suppres-
sion of tumor suppressor genes. Some of the oncogenes that specifically altered in 
gastric cancer include epidermal growth factor receptor (EGFR), human epidermal 
growth factor receptor (HER2), K-ras, and COX-2. Hyperactivation of these genes 
may be responsible for the abnormalities associated with gastric cancer and also for 
its poor prognosis [25, 45]. Many molecular biological factors serve as predictors of 
clinical importance and explore novel targets in gastric cancer patients. One of the 
STAT family proteins, STAT3, which controls many physiological processes such 
as cell proliferation, apoptosis, survival, and inflammation [33], is aberrantly 
expressed under pathological conditions such as human cancers [15]. The major 
mechanism of STAT3 activation is tyrosine −705 phosphorylation. Once the STAT3 
gets phosphorylated, it undergoes dimerization and then translocates into the 
nucleus followed by its binding to specific DNA sequences for transcription. 
Subsequently STAT3 proteins are inactivated by dephosphorylation of tyrosine resi-
due and return to the cytoplasm [69]. STAT3 is often found to be hyperactivated in 
many cancer cell lines and tumors which include breast [64], prostate [53], renal 
[31], head and neck, colorectal [82], cervical [77] ovary [8], lung [4], and gastric 
(Xiong et  al. 2012) cancers. Continuous activation of STAT3 has been shown to 
encourage several physiological processes such as growth, survival, angiogenesis, 
and suppression of antitumor responses in tumor cells (Yu and Jove 2004; [37]). 
Persistent activation of STAT3 observed in gastric cancer cell lines is responsible 
for progression of gastric cancer [36, 38]. The mechanism(s) essential for STAT3 
activation in gastric cancer are not clear. Several molecules have been identified in 
gastric cancer which induces progression of gastric cancer through STAT3 signaling 
pathway.

In a recent report, it was shown that mitochondrial GRIM-19 (gene associated 
with retinoid interferon-induced mortality 19) has a role in gastric cancer tumori-
genesis. The loss or suppression of GRIM-19 as observed in gastric cancer and 
chronic acute gastritis (CAG) results in the activation of STAT3 leading to gastric 
tumor initiation and progression. Reduction or loss of the function of GRIM-19 is 
correlated by way of advanced stages in gastric cancer along with infections of H. 
pylori with short overall survival. GRIM-19 expression studies in gastric cancer cell 
lines have shown the suppression of tumor formation which revealed the inhibition 
of STAT3 activation and its downstream target genes by GRIM-19. On the other 
hand, knockdown studies of GRIM-19 have led to STAT3 activation in an abnormal 
manner [34]. Recent report revealed Fas signaling involvement in the development 
of gastric cancer metastasis happens through the stimulation of STAT3/Fascin sig-
naling pathway. Fas signaling is a very well-known mechanism to stimulate apopto-
sis by activating several caspases [95]. In some cancers, Fas signaling promotes 
apoptosis, while in some cancers, it promotes tumor cell proliferation, migration, 
and invasion [12, 57, 66, 80]. The downstream signaling of Fas has resulted in the 
upregulation of Fascin through STAT3 signaling pathway [24, 58, 72]. Fascin that 
plays a key role in tumor metastasis is overexpressed in many cancers, along with 
gastric cancer [1, 48]. Several studies have revealed that Helicobacter pylori CagA 
positive is more detrimental that CagA negative with respect to gastric cancer [17, 

A. B. Pinjari and A. R. Meerza



187

18]. In H. pylori infection, STAT3 activity is enhanced leading to gastric cancer 
progression [16, 36]. These results confirm STAT3 activation in gastric epithelial 
cells with H. pylori infection.
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Abstract
Sp1 protein binds to GC/GT-rich promoter elements through zinc finger motifs 
present at their C-terminal domains and regulates expression of multiple genes in 
normal tissues and tumors. Sp1 protein plays a critical role in the growth and 
metastasis of gastrointestinal cancers by regulating expression of cell cycle genes 
and VEGF. However, Sp1 is involved much in growth-related signal transduction 
pathways, and its overexpression has both positive and negative effects on prolif-
eration of cells. In addition to growth control, Sp1 is intricate in apoptosis and 
angiogenesis; therefore, Sp1 is involved in several aspects of tumorigenesis. 
Consistent with a role of Sp1 in cancer, it interacts with oncogenes and tumor 
suppressors and alters their expression. Effects of changes in Sp1 factor are 
context- dependent and are paradoxical. Sp1 proteins have been recognized as an 
essential cancer drug target.
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13.1  Introduction

Gastrointestinal (GI) cancers are malignant tumors of the GI tract and accessory 
organs of digestion. GI cancers include carcinomas rising in the oral cavity, esopha-
gus, stomach, liver, gallbladder, pancreas, small intestine, large intestine, rectum, 
and anus. GI cancer represents about 30% of all tumor incidences and is responsible 
for approximately 40% of tumor-related mortality worldwide. Gastric cancer 
remains the fourth most commonly detected malignant cancer in the world and 
ranks the third most cause of cancer-related deaths in 2008. Although the occur-
rence of gastric cancer (GC) is decreasing worldwide, but it is still higher to a cer-
tain extent in Eastern Asia, particularly in China and Japan. Gastrointestinal cancers 
are highly aggressive tumors, existing in a locally advanced stage with a poor prog-
nosis and survival. Colorectal cancer (CRC) is the third most common cancers glob-
ally and accounts for 1.2 million fresh cases and 600,000 deaths per year [30]. The 
biological and clinical outcome of gastric carcinoma is associated with mutations of 
various oncogenes, tumor suppressor genes, and aberrations of growth factors and 
their receptors. These mutations and abnormalities affect the downstream signal 
transduction pathways that intricate the cell growth and differentiation. Precisely, 
these perturbations confer a noteworthy survival and growth advantage to gastric 
cancer cells [39, 42].

Sp1 is a key transcription factor that plays a vital role in regulating various 
aspects of tumor. Abnormal expression and activation of Sp1 contribute for gastric 
cancer progression and development. Sp1 was first recognized as a promoter- 
specific binding factor that is important for transcription of the SV40 major 
immediate- early (IE) gene. Interestingly, the Sp1 specifically binds at GC-rich sites 
with the help of three Cys2His2 (C2H2) domains of zinc finger motif [32]. The Sp/
KLF family comprises of 20 transcription factors, Sp1–5, several Krüppel-like fac-
tors (KLF1–14) and KKLF Fig. 13.1. Firstly, Sp1 was considered as a general tran-
scription factor, required for transcription of “housekeeping genes,” due to its 
involvement in cell proliferation, metabolism, growth, and cell death [3]. It is nota-
ble that there are several housekeeping genes involved in cancer progression and 
Sp1 is one of them. Approximately about 12,000 Sp1 binding sites were identified 
from human genome. This review details about the role of Sp1 in transcription of 
diversified genes involved in apoptosis, cell division, and cell metabolism.

13.1.1  Sp-Transcription Factor Family Member Structure

Sp family has different transcriptional properties and can modulate the activity and 
gene expression of its own family (Sp1–6 and KLF1–14). All SP family members are 
made up of three zinc finger motifs at C-terminus and glutamine (Sp)/ proline/ 
Serine-rich domains at N-terminus [4]. It is noteworthy that Sp factors have specific-
ity toward GC boxes and CACCC boxes to which KLF eventually bind. Broadly SP 
factors are categorized into two groups based on similarity in domain organization: 
Sp1–4 and Sp5–6. Domain organizations of first group Sp1–4 are similar, but Sp5–6 
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factors are similar to Krüppel-like factors. N-terminal region have transactivation 
domains, rich in serine and threonine which most of the times are found near to 
glutamine-rich regions in Sp (1–4) [16]. Sp1 has multimerization domain, to carry 
out super- activation of promoter having multiple adjacent Sp sites [10] Fig. 13.1.

13.2  Regulation of Transcription Factor Sp1

Sp1 protein is highly modified by variety of posttranslational modifications, viz., 
O-linked glycosylation, phosphorylation, SUMOylation, ubiquitylation, and acety-
lation. The 785 amino acid Sp1 protein includes 164 threonine and serine residues, 
which signifies highly phosphorylated and O-glycosylated attribute of Sp1. 
Nevertheless, posttranslational modifications of Sp1 affect activity and stability, by 
modulating proteasomal degradation. Various posttranscriptional modifications 
were revealed in vitro; contrastingly, its associations with specific functions in cells 
are unclear. Some of these modifications are detailed below with the context of 
controlling Sp1 stability and transcriptional activity [3].

13.2.1  Posttranslational Regulations

Notably 164 serine and threonine residues in Sp1 explain the first regulatory 
mechanism of phosphorylation and glycosylation. Several kinases such Ataxia 
Telangiectasia (ATM), JNK1, ERK 1, CDK2 and PI3K, ATR kinase, and DNA-
dependent protein kinase show their action directly or indirectly by interacting with 
other proteins on Sp1 for posttranslational modifications. Single Sp1 molecule can 

Fig. 13.1 Sp1 transcription factor family. Structural representation of human Sp family proteins. 
Sp1, Sp2, Sp3, and Sp4 are aligned based on transactivation domain, and DNA binding (Cys2His2 
light green) transactivation domains are made up of serine- and threonine-rich domains; glutamine- 
rich domains are adjacent to it. Charged domain in purple promotes DNA binding domain to bind 
to DNA. Only Sp1 in Sp family has inhibitory in red and multimerization domain in pink
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be modified in several ways in a single cell which changes stability of Sp1 and its 
functions in a number of different ways. Such modification and changes in structure 
of Sp1 make it to interact with numerous proteins and other transcription factors. 
This phenomenon differentially regulates transcription of several numbers of genes. 
Several modifications discovered in vitro yet have to be studied in context of cell 
functions [3].

In gastric cancer, glycosylation is an essential posttranslational modification of 
proteins and one of the causes of cancer. Fucosylation is one of the most common 
types of glycosylation in carcinogenesis carried out by fucosyltransferases (FUTs). 
FUT4 is one of the key enzymes to catalyze the fucosylation, and its elevated 
expression is stated in diverse types of cancers such as breast, colon, pancreatic, and 
gastric cancers [43]. Recent reports stated that gastric cancer cell proliferation is 
stimulated by cytotoxin of H. pylori with FUT4 upregulation in cells. Transcription 
factors HSF1 and Sp1 monitor expression of FUT4. The fucosylated blood group of 
antigens allow H. pylori colonization on gastric epithelial cells which leads to 
gastric cancer with alteration of specific FUT expression.

13.2.2  Sp1 Protein Stability

Sp1 interacts with a number of binding partners and modulates expression of 
several genes. Sp1 is important to regulate either at expression level or stability in 
cell to control subsequent genes. Ubiquitination of Sp1 protein leads to degrada-
tion, which cleaves at N-terminus of amino acids [13, 31]. Sp1 cleavage may occur 
via interaction of proteasome with Skp-cyclin-F (SCF) box ubiquitin ligase com-
plex [40]. β-TCRP of proteasome also interacts with Sp1. Although direct interact-
ing partners have yet to be identified, proteasomal degradation may be regulated by 
ERK and GSK3-β by phosphorylating Sp1 at 728,732 Ser or Thr residues respec-
tively. SUMOylation to Sp1 occurs at lysine (16), but this needs modification of 
first seven amino acids. SUMOylation causes destabilization of Sp1 via ubiquitina-
tion through ring finger protein 4 (RNF4); this reaction is catalyzed by 
SUMOdependent ubiquitin ligase. Ubiquitination-independent binding of RNF4 to 
Sp1 changes the interaction between RNF 4 from its targets and depicts the altera-
tions in Sp1 functions. Nonetheless, the phosphorylation at 238 residue also inhib-
its Sp1 interaction with RFN4 and helps in maintaining stability. But the role for 
phosphorylation at 739 threonine is yet unclear. More investigations are warranted 
to know the developments of phosphorylation on SUMOylation and ubiquitination 
and stability of Sp1 attained after posttranslational modifications.

13.3  Sp1: Protein Interactions

Sp1 protein has been reported to interact with large number of proteins. At the same 
time various in vitro studies, evidenced that Sp1 interacts with multiple proteins. As 
we know, it forms tetramer and then it interacts with promoter and enhancer 
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simultaneously; it makes the study of this protein in vivo difficult to distinguish 
specific binding partners of Sp1 from a large protein complex. Large basal tran-
scriptional factors, other transcriptional factors, DNA repair machinery, and cell 
cycle regulators are found to be associated with Sp1.

13.4  Sp1 in Carcinogenesis

Sp1 expression and dependent transcription are tightly regulated in various develop-
mental stages. Sp1 control several genes involved in many diseases. One well-
known example is cancer [8, 37]. Sp1 is one of the important transcription factors 
found to be upregulated and associated with poor prognosis in cancers which 
include breast, gastric, pancreatic brain, and lung cancers. Several studies reported 
that Sp1 can act as target for cancer treatment. Although feasibility of targeting Sp1 
is in controversy as it is present in normal cells also, its inhibition can affect cell 
division of normal cells. It is noteworthy that the inhibitor of Sp1 is yet unidentified. 
Additionally, it is essential to understand the functions, associations, and binding 
patterns of Sp1 to completely emphasize its role and inhibition in cancer [17, 29]. 
Hanahan and Weinberg stated the following four key cancer hallmarks viz., abberrant 
metabolic pathways, escaping from immune system, genome instability, and 
inflammation, resistance to death, angiogenesis induction, escaping from the growth 
suppressors, cancer metastasis and invasion, cellular energetic deregulation, and 
resistance to death and overexpression of proliferation signals, respectively [14, 15]. 
Interestingly, Sp1 is involved in regulation of genes that directly or indirectly 
regulates all eight hallmarks of cancer.

13.5  Role of Sp1 in Proliferative and Survival Signals

In contrast with normal cells, cancer cells maintain their cellular proliferation by 
escaping need for growth factors. Four growth factors and its receptors regulate cell 
division and cell cycle; out of four growth factors, epidermal growth factor (EGF), 
fibroblast growth factor (FGF), nerve factors, and their receptors mediate through 
Sp1. Insulin-like growth factor 1 receptor (IGF1R) is antiapoptotic in nature; 
increased expression of IGF1R is associated with cancer [9]. Commonly Sp1 and its 
receptor are overexpressed in many types of cancer such as breast, prostate, colon, 
and lung cancers. Sp1 affects proliferation of cancer cells, adhesion, migration, and 
functions critical for cancer cell survival. Therefore, Sp1 is stated as a potential drug 
target for cancer therapy [27, 46]. Breast cancer-associated factor 1 (BRAC1) 
repairs double-stranded breaks in DNA, and if DNA is damaged beyond repair, then 
it destroys cell. It associates with Sp1 and with other factors and consequently sup-
presses IGF1R transcription [22, 23]. Furthermore, Sp1 binds to BRCA1 directly 
and represses the transcription of IGFIR Fig. 13.2.
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13.6  Role of Sp1 in Metastasis

EMT is generally associated with loss of cell adhesion molecules. Epithelial mesen-
chymal transition (EMT) generally falls in three basic categories. EMT engages in 
secondary epithelial or endothelial cell transitioning to tissue fibroblast in the pro-
cess called as fibrogenesis. EMT is also involved in primitive epithelial cell transi-
tioning to mesenchymal cells during embryological body plan or in early 
development. EMT also has role in transition of epithelial carcinoma cells in pri-
mary modules to metastatic phenotypes.

MTA2 is vital for activity of NuRD complex and Twist complex which is involved 
in inhibition of E-cadherin gene transcription. MTA2 protein could alter gastric 
cancer cell morphology via disrupting F-actin structure. NuRD complex, with 
MTA, regulates expression of genes involved in cytoskeleton remolding, necessary 
for cell motility and invasion. Alteration in expression of CD24 and MYLK might 
be a reason for MTA2 involvement in cytoskeleton. Overexpression of Sp1 regu-
lates the transcriptional activity of MTA2 promoter and might partially contribute to 
gastric cancer [47]. Both ZEB2 and Sp1 associate with mesenchymal gene activa-
tion during EMT in cancer cells. Transcription factor ZEB2 is generally involved in 
EMT via repressing the E-cadherin transcription and upregulating integrin α5 
expression to induce invasion. During EMT in human cancer cells, ZEB2 associates 
with Sp1 and activates integrin α5, vimentin, and cadherin-11 expression [24, 25].

Fig. 13.2 Cancer causing genes regulated by Sp1
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Although transcription of Sp1 is tightly regulated under normal conditions, over-
expression of Sp1 targets many downstream factors, those that promote cell prolif-
eration and oncogenes. In TGF-β mediated induction of epithelial mesenchymal 
transition (EMT); Sp1 associates with Smad complex to express EMT-associated 
marker genes in pancreatic cancer. Inhibition or knockdown of Sp1 has key role in 
decreasing tumor formation growth and metastasis [28, 38]. E2F1 transcription 
 factor modulates the expression of matrix metalloproteases, involved in degradation 
of extracellular matrix proteins (MMP). E2F1 modulates expression of Sp1 which 
in turn modulates MMP9 expression in small lung cell cancer [21]. Additionally, 
TIAM2 (neuron-specific protein) and Sp1 bind directly to GC box of TIAM2S pro-
moter and function as oncogenes in hepatic cancer tumorigenesis [45].

13.6.1  Adhesion

Tumor metastasis involves invasion into neighboring tissue, intravasion, and persis-
tence in circulation, extravagation, and colonization of distant organs. In order to 
metastasize, the tumor cells must alter their adhesion molecules to detach from the 
primary tumor mass and translocate to distant sites for growth of metastatic lesions. 
Activated leukocyte cell adhesion molecule (ALCAM) of immunoglobulin (IgG) 
super family is implicated in inflammation, tumor progression, and hematopoietic 
stem cell differentiation. A recent report stated that Sp1 binds to GC boxes in pro-
moter region of ALCAM. Overexpression of Sp1 significantly increases basal pro-
moter activity [33].

13.6.2  Angiogenesis

Increased cell division and metabolism require additional nutrients and growth fac-
tors for tumor microenvironment to fulfill demand through new vessel formation. 
Angiogenesis is controlled by proangiogenic molecules such as vascular endothelial 
growth factor (VEGF) and angiopoietin-2 in microenvironment. Cancer cells induce 
angiogenesis by several mechanisms; hypoxia and acidosis are the major causes for 
activation of VEGF. Loss of function or activation of tumor suppressor genes is 
associated with VEGF overexpression [6]. Promoter region of VEGF has a number 
of different transcription factor binding sites, viz., activator protein (AP)-1, AP-2, 
early growth response-1 (Egr-1), Sp1, and hypoxia-inducible factor-1 (HIF-1). 
Interestingly, Sp1and matrix metalloproteases (MMP) play an imperative role in 
angiogenesis which in turn promotes aggressiveness of human pancreatic adenocar-
cinoma [41]. MMP-2 involved in remodulation of basement membrane which helps 
in sprouting of vessels. During this process, the matrix-bound angiogenic factors 
get released which further helps in generation of new blood vessel. In gastric cancer, 
MMP-2 expression was depicted to be dependent on Sp1 transcription factor. 
Furthermore, the MMP-2 levels were elevated in different other cancer types as 
melanoma, lung cancer, and breast cancer [6].
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13.7  Role of Sp1 in Cellular Immortality

Activation of telomerase is essential for cells to attain immortality. Telomerase 
activity in human cells is tightly regulated by human telomerase reverse transcrip-
tase (hTERT) which in turn is regulated by HDAC. hTERT gene is repressed by 
binding of HDAC which could be the major, universal transcriptional repression of 
hTERT. HMGA2, important in telomere maintenance, is reported to be upregulated 
in a number of human cancers and promote tumorigenesis. Sp1 interacts with 
HMGA2 and interferes with HDAC2 recruitment to the hTERT proximal promoter 
and enhances histone H3-K9 acetylation, thereby stimulating hTERT expression 
and telomerase activity. Sp1 interferes with HDAC binding on hTERT and relieves 
the HDAC-mediated repression of the hTERT promoter [20]. In contrast to normal 
cells, tumor cell possesses ability of unlimited replication. Tumor cells overcome 
antiapoptotic cellular barrier and become cancerous. For unlimited cellular prolif-
eration, tumor cell requires multiple factors, such as CDK inhibitor p16, p53, and 
telomerase enzyme [5]. Sp1 has a role in transcription of p53, p16, as well as telom-
erase genes. Sp1 mutation or modulation evades cancer cell through several mecha-
nisms by employing tumor suppressor and hTert genes.

13.8  Sp1 Role in Regulation of EGFR

Epidermal growth factor receptor (EPGR) belongs to receptor tyrosine kinase fam-
ily. EGFR overexpression is associated with aggressive tumor nature and resistance 
to chemotherapy. Sp1 is translational regulator of EGFR; it inhibits EGFR gene 
transcription [12, 18, 19]. Epidermal growth factor receptor gene transcription is 
inhibited, when Sp1 interacts with promyelocytic leukemia protein (PML). DNA 
binding domain of Sp1 and PML’s dimerization domain interact in different manner. 
This makes Sp1 to bind the promoter region of EGFR and inhibits its gene transcrip-
tion [34]. Sp1 is targeted to nuclear bodies by the association of PML proteins [26].

13.9  Encoding Tumor Suppressor Activity

In normal conditions, growth factor and nutrients are absent in environment, and 
cells remain quiescent. Additionally, damaged DNA prevents cell transition into 
mitotic phase. Sp1 and Sp family members regulate several stress signals generated 
in cancer cells (Figs. 13.1 and 13.2).

13.10  Role of Sp1 in Immune Evasion of Tumor

Tumor cells need to evade from immune system. In order to attain resistance to 
immune system, tumor cells should overcome intrinsic and extrinsic signals for 
apoptosis and senescence. Sp1 is reported to be involved in regulation of several 
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anti- and proapoptotic signal, viz., BCl-2 [11], TRAIL and TNF-α, X-linked inhibitor 
of apoptosis (XIAP), E3 ubiquitin protein ligase, cellular FLICE-like inhibitory 
protein (FLIP), BCL-2 antagonist (BAK), and Fas ligand (FasL) [1, 7].

13.11  Sp1 and Cancer Chemotherapy

In gastric cancers, Sp1 regulate several genes involved in vital processes ranging 
from cell cycle, cell differentiation, and apoptosis. Sp1 is one of the negative prog-
nostic factors for survival of patients with gastric cancer. Survival of patients after 
surgical tumor resection seems to correlate with Sp1 expression [39]. Poor survival 
in patients with resected gastric, pancreatic cancers occurs due to increased expres-
sion of Sp1 and VEGF [44]. Bevacizumab, a neutralizing antibody against VEGF, 
suppresses angiogenesis and abrogates gastric cancer growth. Bevacizumab block 
function of VEGF while activating its expression through a positive feedback. 
Mithramycin A suppresses Sp1 expression in tumors in vitro. Bevacizumab plus 
mithramycin has synergistic effects in tumor suppression, consistent with suppres-
sion of the Sp1 expression. This corroborates that alteration of Sp1 signaling has 
significant and potential clinical effects for the treatment of pancreatic and gastric 
cancer in mice [17, 35, 36]. Ginsenoside Rg3, active component in ginseng, has 
antitumorigenic, proapoptotic properties and antimetastatic significance to treat 
gastric cancer. Rg3 triggered the activation of caspases 3, 8, and 9 and PARP which 
considerably increases the expression of proapoptotic proteins. Furthermore, Rg3 
repressed FUT4 expression through downregulation of HSF1 and Sp1 upregulation. 
Hence, Rg3 therapy might be an effective approach in gastric cancer treatment. 
Moreover Sp1 and HSF1 might serve as potential diagnostic and therapeutic targets 
for gastric cancer [2].

13.12  Conclusion and Future Directions

This review establishes the highly regulated role of Sp1 transcription factor in 
regulation and expression of a numerous genes that promote all the “hallmarks of 
cancer.” The role of Sp1 in gastric cancer is not well established. Sp1 activates and 
suppresses the expression of several oncogenes and tumor suppressors, as well as 
genes involved in cellular functions, viz., proliferation, differentiation, DNA 
damage response, apoptosis, senescence, and angiogenesis. Sp1 has a significant 
role in cancer and important downstream signals transmitter for growth factor in 
normal cells; further studies on functions of Sp1 are essential for understanding its 
complete role in tumorigenesis. Targeting Sp1 may become an effective approach in 
preventing or reducing metastasis and resistance to therapies in gastrointestinal can-
cer (Table 13.1).
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14Curcumin: Its Role in Regulation 
of HIF- 1α in Gastric Cancer
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Abstract
Gastric cancer is a malignancy and is the fourth most common cause of cancer 
globally. An oxygen-deficient microenvironment is a common state of gastric 
cancer, associated with tumor invasion and metastasis. Under hypoxic condi-
tions, cancer cells start their own adaptive pathways to have a facilitated oxygen 
and energy supply for survival. In this condition, hypoxia-inducible factors (HIF) 
such as HIF-1α have a vital role particularly in cellular response to hypoxia and 
stimulate the major hallmark processes of tumor development, for example, 
angiogenesis, glucose transport, and metabolism by activating the transcriptional 
factors of various targeted gene involved in tumor development. Curcumin, a 
major phytochemical extracted from roots of Curcuma longa, inhibits prolifera-
tion of many types of solid cancer cells. Earlier, curcumin shows strong thera-
peutic potential against gastric cancer cell lines by downregulating the levels of 
the oncogene c-Myc expression and thereby hindering the expression of the tar-
geted gene. Curcumin also exhibits antitumor effects under hypoxic conditions 
by significantly decreasing levels of hypoxia-induced HIF-1α protein, in cancer 
cells. Furthermore, curcumin eliminates cell proliferation, migration, and inva-
siveness generated by a hypoxic microenvironment and associated with HIF- 1α 
accumulation.
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14.1  Introduction

Curcumin (C21H20O6), commonly called as diferuloylmethane, is a natural lipid 
soluble and major biological active compound extracted from the rhizomes of tur-
meric plant, Curcuma longa. It is a golden-yellow hued flavor ordinarily utilized as 
a part of Indian subcontinent, for human services and safeguarding of nourishments. 
This nontoxic natural compound has numerous therapeutic activities for various 
diseases such as wound, inflammation, hepatitis, hemorrhoids, and liver disorders. 
Also, its several biological activities are therapeutically beneficial for the treatment 
of cancer. Curcumin additionally exhibits anti-inflammatory activity by suppressing 
the enactment of one of the inducible transcription factor that controls the expres-
sion of host genes involved in aggravation [3]. Since endless provocative conditions 
unequivocally favor the development of cancer, curcumin can possibly be a decision 
preventive agent for the treatment of cancer. Unlike most chemotherapeutic agent, 
curcumin has the potency to reduce the signs of cancer development, i.e., oncogene 
enactment [29], cancer cell multiplication [28], apoptosis evasion [12], metastasis 
[8], limitless replicative potential, and some emerging trademarks such as activator 
protein 1, B-cell lymphoma 2, JAK/STAT, and steroid receptors, respectively [26]. 
Along these lines, curcumin can possibly defeat chemoresistance and can hit differ-
ent intracellular focuses without causing any reactions; these properties render it a 
promising contender for potential utilization in the treatment of cancer.

Cancer frequently depicted as disease of the genome since it obtains through the 
accumulation of DNA mutations and genome unsteadiness. Additionally, transfor-
mation of proto-oncogenes has been distinguished in several tumors [23]. Curcumin 
has been accounted for to suppressively affect the oncogenes and dysregulate their 
downstream action, which is an underlying stride in tumorigenesis. In spite of the 
fact that curcumin is ineffectively consumed after ingestion, numerous reviews have 
proposed that even in low concentration, curcumin indicates against proliferative 
effect which causes cell cycle arrest.

The enhancement of gastric (including gastroesophageal junction) cancer is a 
multifactorial process emerging through the perplexing interaction of natural and 
hereditary factors over a patient’s lifetime [1, 14]. It is a common malignancy and is 
the fourth most normal and second driving reason of cancer demise in the world 
[10]. Albeit the incidence is declining due to amended pabulum, victuals preserva-
tion, better aversion, earlier diagnosis, and treatment, the disease still carries a poor 
prognosis. Surgical resection with adjuvant chemotherapy stayed as the main poten-
tial curative treatment choice for gastric cancer. In spite of resection, the disease 
requests never-ending consideration and research with respect to prevention, early 
detection, and novel therapeutic options.

14.2  Chemistry of Curcumin

Natural products have always been a venue for the search of new drugs or leads. 
These natural compounds have increased impressive enthusiasm for their potential as 
treatment and preventive operators for human diseases. Curcumin is a polyphenolic 
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and major biological active compound extracted from the rhizomes of turmeric plant, 
Curcuma longa, and has been utilized broadly in customary solution since old cir-
cumstances as a household remedy against various diseases, including hepatic disor-
ders, cough, sinusitis, rheumatism, and biliary disorders[4, 5]. Recently a large 
number of studies have shown that curcumin has a surprising array of antioxidant, 
antitumor, anti-inflammatory, anticancer, and other desirable medicinal properties. 
Curcumin, isolated from Curcuma longa, was once accepted to be a solitary segment 
yet was later found to have three closely related species, known by the name of “cur-
cuminoids,” which embody curcumin (curcumin I), demethoxycurcumin (curcumin 
II), and bisdemethoxycurcumin (curcumin III) (Fig. 14.1). These three types of cur-
cumin are contrast by a methoxy group apended to the phenolic rings.

Natural curcumin extracted from turmeric usually contains curcumin I (77%) as 
the significant component, while curcumins II and III constitute approximately 17% 
and 3%, respectively. Notwithstanding the way that curcumin I, curcumin II, and 
curcumin III differ in their synthetic structures similarly as to methoxy substitution, 
they indicate by and large remarkable antioxidant, antitumor, and anti-inflammatory 
activities. To date there has been no proficient review that evidently interfaces the 
physiochemical and molecular properties of the three curcuminoids with their bio-
logical activities. Curcumin forms a ruddy brown salt with alkali and forms solvent 
with ethanol, acetic acid, and chloroform. It has two tautomeric forms, i.e., keto and 
enol (Fig. 14.2). The enol form is more vigorously stable in solution [16].

Curcumin has molecular weight of 368.37 with a melting point temperature of 
about 180–186 °C and shows a spectrophotometric maximum absorption (λmax) at 
450 nm in methanol [22]. The curcumin molecule is one of a kind in its physiological 

Fig. 14.1 Curcumin structure. Curcumin I 1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene- 
3,5-dione, curcumin II 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-diene- 3,5-
dione, curcumin III 1,7-bis(4-hydroxyphenyl)hepta-1,6-diene-3,5-dione

Fig. 14.2 The keto-enol tautomeric forms of curcumin
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effects, having an incredible number of molecular focuses than whatever other par-
ticles so far are detailed. Curcumin has been accounted for to have different natural 
activities. Such an assortment of activities might be the consequence of its receptive 
α, β-unsaturated β-diketone moiety, which can covalently bind proteins [2]. Different 
normally occurring bioactive compounds have exhibited some auxiliary resemblance 
to the curcumin molecule; they incorporate ferulic acid, cinnamic acid, caffeic acid, 
chlorogenic acid, dibenzoylmethane, cassumuin, and yakuchinone [4, 5].

14.3  Anticancer Effects of Curcumin

Cancer is a heterogeneous group of diseases characterized by uncontrolled growth 
of the cells, distinguished by metastasis into the vital organs of the body through 
invasion and angiogenesis. Curcumin obstructs the transformation, proliferation, 
and invasion of tumor cells. Curcumin stifles the development of few tumor cell 
lines, including drug-resistant lines [21]. Curcumin in like manner stifles the activa-
tion of few transcription factors that are involved in carcinogenesis [2]. Some of the 
transcription factors, such as nuclear factor kappa B (NF-κB), activator protein 1 
(AP-1), signal transducer, and activator of transcription proteins (STAT3, STAT5), 
and some cellular protein-coding genes, such as early growth response protein 1 
(Egr-1), peroxisome proliferator-associated receptor gamma (PPAR-γ), β-catenin, 
and Nrf-2, are intimately involved in the cellular pathway causing tumorigenesis. 
Curcumin inhibits the activation of both NF-κB and AP-1 and their regulated gene 
products involved in tumor development. Also, curcumin downregulates the expres-
sion of Egr-1, PPAR-γ, β-catenin, and Nrf-2, thereby inhibiting tumor growth. 
Expression of cyclin D1, a component subunit of cyclin-dependent kinases 4 (Cdk4) 
and 6 (Cdk6) which are rate-limiting components in progression of cells through the 
cell cycle, is suppressed by curcumin [21]. Curcumin likewise initiates apoptosis in 
tumor cells by activating caspase-8, which promotes cleavage of BID, which in turn 
is responsible for release of mitochondrial cytochrome C, thereby activating cas-
pase- 9 and caspase-3, which promote the activation of poly ADP-ribose polymerase 
(PARP) and apoptosis of tumor cells. Curcumin has the potency to downregulate 
expression of genes responsible for cell multiplication, cell invasion, metastasis, 
angiogenesis, and resistance to chemotherapy [2]. Additionally, it also downregu-
lates the expression of Bcl-2, Bcl-XL, cyclooxygenase-2 (COX-2), matrix metallo-
proteinase (MMP)-9, tumor necrosis factor (TNF), cyclin D1, and the adhesion 
molecules [27]. Curcumin binds to over 30 proteins and targets transcription fac-
tors, growth factors, cytokines, enzymes, and genes regulating cell proliferation and 
death pathways involved in cancer (Fig. 14.3).
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14.4  Curcumin and Gastric Cancer

Curcumin has been appeared to hinder the development of almost all types of cancer 
cells, including gastric cancer. Subsequently, there has been a vast collection of 
in  vitro work exploring the restorative viability of curcumin in gastric cancer. 
Curcumin has potency to overcome the apoptosis resistance of cancer cells by regu-
lating both intrinsic (mitochondrial) and extrinsic (death receptor) pathways. The 
expression levels of anti-apoptotic Bcl-2 and Bcl-XL, causing cytochrome c release, 
caspase-3 activation, and PARP cleavage are suppressed by curcumin by promoting 
apoptosis in human gastric cancer cell lines [6]. Curcumin upregulates the mito-
chondrial Bax protein expression by involving p53, which acts as a transcription 
factor, recommending the intrinsic pathway as a leading pathway of curcumin- 
incited apoptosis in tumor cell. The upregulation of expression of p53 by curcumin 
induces apoptosis in cancer cells at G2 phase of cell cycle. Curcumin additionally 
invigorates the extrinsic pathway through activation of caspase-8 by triggering the 
death activators such as TNF-α and Fas ligand. Curcumin enhances the levels of Fas 
and caspase-8, thereby inducing apoptosis in cancer cells. Curcumin repress the 
multiplication of gastric cancer cells by inducing apoptosis by facilitating the col-
lapse of mitochondrial membrane potential (MMP) which was believed to initiate 
the mitochondria-induced apoptotic pathway. It hinders the opening of the ATP- 
sensitive potassium channel opening, in this manner, causing apoptosis in gastric 
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Fig. 14.3 Various molecular targets of curcumin in cancer cell
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cancer cells [18]. The Wnt/β-catenin signaling pathway is important for the initia-
tion, progression, and prognosis of human cancers. The β-catenin protein is multi-
functional and plays a vital role in the canonical Wnt/β-catenin pathway [11], and it 
is activated by Wnt signaling. Previous reports proposed that the silencing of 
β-catenin hindered cell growth in different malignancies, indicating that β-catenin is 
indispensable for cancer growth. Curcumin inhibits Wnt/β-catenin signaling and 
diminished expression of Wnt target genes in human gastric cell lines, by reducing 
the levels of low-density lipoprotein receptor-related protein 6 (LRP6) and LRP6- 
phosphorylation, thereby inhibited cancer cell growth [34]. The development of 
P-glycoprotein subordinate multidrug resistance in gastric carcinoma is a notewor-
thy hindrance for effective chemotherapy [7]. Curcumin tweaks the expression of 
function of P-glycoprotein by lowering the levels and reversing the multidrug resis-
tance capability through caspase-3 activation in gastric carcinoma cell lines [30]. 
Fluorouracil (5-FU) has been utilized as the standard of care to cutting-edge gastric 
cancer and has been found to increase general survival by 6% and lessen the risk of 
mortality by 18% [15]. However, lethal drug resistance to fluorouracil has created 
an impediment for the treatment of gastric cancer. Curcumin downregulates the 
NFκB-signaling pathway; a standout among the most critical survival-signaling 
cascade involved in drug resistance in tumor cells, subsequently, turns around the 
drug-resistance mechanism to fluorouracil [13].

14.5  HIF-1α: Therapeutic Target in Cancer

Oncogenesis is governed by genetic and epigenetic events that co-opt to malignant 
progression. Oxygen supply is one of the rate-limiting microenvironmental factors. 
As all mammalian cells rely on legitimate oxygen hemostasis so as to execute their 
metabolism and energy generation, cancer cells are no exemption. Hypoxia is the 
condition in which the partial oxygen pressure has dropped to levels that are no 
longer sufficient to sustain normal cellular function. In growing tumors, significant 
areas loose access to supporting blood vessels due to inefficient formation of the 
tumor vasculature. In these regions, oxygen delivery is insufficient to meet the oxy-
gen demand, and the tumor suffers from hypoxic stress. The most very much 
described mechanism by which tumor cells adjust to a hypoxic environment is the 
enactment of the hypoxia-inducible transcription factor, HIF-1. The cellular adapta-
tion to hypoxia is mainly constitutes by hypoxia-induced factor 1 (HIF-1).

HIF-1 is a heterodimeric transcription factor, made out of two subunits, the 
HIF-1α and HIF-1β subunits [31]. HIF-1β is otherwise called as aryl hydrocarbon 
nuclear translocator (ARNT). HIF-1α is an oxygen-sensitive subunit, and its expres-
sion is induced under hypoxic conditions and has two other isoforms, HIF-2α and 
HIF-3α [9]. The HIF-1 belongs to basic-helix-loop-helix-PAS (bHLH-PAS) protein 
family. Four groups of HIF-1α target genes that are particularly relevant to cancer 
progression are (1) angiogenic factors (LEP, VEGF, NOS, ADM), (2) genes involved 
in glucose metabolism (HK1, HK2, GLUT1, GLUT3), (3) survival factors (ADM, 
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EPO, IGF2, TGF-α), and (4) factors involved in invasion and metastasis (C-MYC, 
ID2, uPA) (Fig. 14.4) [17].

HIF-1α overexpression is related to increased mortality in patients with various 
tumors, including gastric malignancy [19, 25]. This association depends on the reg-
ulation of genes that assumes a fundamental part in the hallmark processes of can-
cer. HIF-1α targeting anticancer agents can be divided into different groups 
according to their mechanisms of action:

• Inhibition of HIF-1α protein translation
• Inhibition of HIF-1α protein by promoting its proteasomal degradation
• Inhibition of HIF-1 DNA-binding capacity
• Inhibition of HIF-1 transcriptional activity

HIF-1α regulates both transcription factors and chromatin modifiers to incite 
metastasis in an EMT-subordinate or EMT-autonomous manner. What’s more, dif-
ferent targets controlled by HIF-1α that intervene other biological effects such as 
metabolism may likewise contribute to metastasis [20]. In gastric cancer, both 
HIF-1α and HIF-2α play the possible role in the progression of invasiveness and 
metastasis during hypoxia by involving the JNK signal  pathway. Also, the expres-
sion levels of both HIF-1α and HIF-2α were  significantly very high in metastatic 
gastric cancer in comparison to nonmetastatic gastric cancer [32].

TUMOR

HYPOXIA

HIF-1α

Angiogenesis
LEP
NOS
VEGF
LRP1
ADM

Metabolism
HK1
HK2

GLUT1
GLUT3
LDHA

Cell Survival
ADM
EPO
IGF2
TGF-α
NOS2

Cell Proliferation
C-MYC
ID2
uPA

Fig. 14.4 HIF-1α regulatory genes and their impact on tumor progression. LEP leptin, NOS nitric 
oxide synthase, VEGF vascular endothelial growth factor, LRP1 LDL-receptor-related protein 1, 
ADM adrenomedullin, TGF-β3 transforming growth factor-β3, EPO erythropoietin, HK1 hexoki-
nase 1, HK2 hexokinase 2, GLUT1 glucose transporter 1, GLUT3 glucose transporter 3, LDHA 
lactatedehydrogenase, IGF2 insulin-like growth factor 2, TGF-α transforming growth factor α, 
C-MYC myelocytomatosis virus oncogene cellular homolog, ID2 DNA-binding protein inhibitor, 
uPA urokinase plasminogen activator
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14.6  Curcumin: HIF-1α Crosstalk

Under hypoxic stress, cells start their own adaptive pathway in response to lower 
oxygen and imbalanced energy status to continuously grow and survive. HIF-1α is 
a well-known adaptive pathway-regulating molecule in hypoxic condition, which 
stimulates the transcription of several genes involved in angiogenesis, metastasis, 
glucose transport, and apoptosis inhibition. For this reason, protracted exposure of 
cancer cells to the hypoxic conditions leads to resistance to chemotherapies and 
tumor malignancy. Aberrant expression of vascular endothelial growth factor 
(VEGF), a transcription factor, is one of the key regulators in hypoxia-induced 
angiogenesis. Curcumin inhibits the expression of VEGF through NFκB regulation. 
Both HIF-1α and NFκB are interdependent in regulating the expression of each 
other. Curcumin also excreted α1-inhibitory effects in hypoxic condition, resulting 
downregulation of HIF-1α and HIF-1β (ARNT) through degradation of transcrip-
tional activity. In other ways, HIF-1α protein stability may be initiated indirectly by 
p53 levels elevated by curcumin. p53 interacts with HIF-1α and limits hypoxia- 
induced expression of HIF-1α by promoting its ubiquitin-proteasome degradation 
[24]. Taking everything into account, curcumin downregulates HIF-1α protein lev-
els and activity and prompts the hindrance of VEGF gene expression. Moreover, 
curcumin adequately hinders the hypoxia-stimulated angiogenesis of tumor cells.

14.7  Conclusion

Given its promising viability in an assortment of variety of diseases including can-
cer, curcumin has garnered much consideration in research. Be that as it may, the 
low bioavailability including poor retention, rapid metabolism, and limited tissue 
appropriation, remain the real worries in the headway of curcumin as a drug. These 
advantages of curcumin make ready for future research on multidimensional thera-
peutic approaches to deal with gastric cancer including combinatorial strategies 
incorporating standard chemotherapies as well as natural compounds, offering the 
guarantee of conquering imperviousness to chemotherapy and enhancing chemore-
sistant tolerant results. Curcumin can stifle transformation, proliferation, and metas-
tasis of tumors by regulation of specific molecules involved in cancer progression. 
Curcumin overwhelms proliferation and prompts apoptosis of human cancer cells in 
a concentration subordinate manner by hindering the Wnt signaling pathway [33]. 
The anticancer effect of curcumin was observed to be in part intervened by repress-
ing HIF-1α stabilization in tumor cells, without influencing HIF-1α transcription. 
These outcomes recommend potential for the treatment of malignancy by altering 
the upregulation of HIF-1α observed. Finally, these findings on curcumin’s role in 
gastric cancer have the potential to be extended to other types of cancer, ultimately 
contributing to the eradication of cancer.
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Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide 
among various cancer malignancies. The drugs and targeted therapies that target 
various intracellular signaling pathways have improved the progression free sur-
vival of CRC patients, but they suffer with therapeutic resistance. Dysregulation 
or mutations in several oncogenic transcriptional factors such as c-MYC, nuclear 
factor κB (NFκB), NF-E2-related factor 2 (Nrf2), signal transducer and activator 
of transcription-3 (STAT-3) and p53, were reported to be associated with 
CRC. Understanding the transcription factors involved in various CRC patho-
genesis will be useful in designing novel therapeutic strategies specifically tar-
geting the dysregulated transcription factors. This chapter emphasizes the role of 
major transcription factors and their dysregulation in CRC.

Keywords
Colorectal cancer · Transcription factors · Dysregulation

15.1  Introduction

Colorectal cancer (CRC) is one of the most general and most serious malignancies. 
Worldwide, CRC is the second in women (614,000 cases, 9.2% of the total) and the 
third most common cancer in men (746,000 cases, 10.0% of the total). The 
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incidence of CRC shows wide geographical variation across the world, with almost 
55% of the cases occurring in economically developed countries [38]. According to 
the Centers for Disease Control and Prevention (CDC), around 14.1 million new 
cancer cases were diagnosed, and 8.2 million people died worldwide in the year 
2012. In 2013 colorectal cancer was 10% of all cancers diagnosed, i.e., 1.4 million 
approximately. Mortality is lower (694,000 deaths, 8.5% of the total) with more 
deaths (52%) in developing countries, reflecting a poorer survival in these regions. 
By 2025, 19.3 million new cancer cases are expected to be detected (http://www.
cdc.gov/uscs).

Worldwide, CRC is the second most in women and the third most common neo-
plasia in men [59]. The lifetime risk of developing CRCs is about 1 in 23 (4.4%) for 
women and 1 in 21 (4.7%) for men, which indicates that risk of developing CRCs is 
slightly higher in men than in women [112]. Both environmental and genetic risk 
factors play a crucial role in CRC development. A number of other factors such as 
diet, obesity or weight, physical exercise, smoking, alcohol consumption, age, 
chronic intestinal inflammation, and family history also affect person’s risk for 
developing CRC. Generally, CRC consists of colitis-associated cancer (CAC) and 
sporadic (noninflammatory adenomatous). CAC is the subtype of CRC that is asso-
ciated with inflammatory bowel disease (IBDs) including ulcerative colitis (UC) 
and Crohn’s disease (CD). Moreover, patients with IBD including ulcerative colitis 
(UC) and Crohn’s disease (CD) show an increased risk of CRC. Both CAC and 
sporadic CRC are associated with dysplastic cancer sequence and multiple muta-
tions for carcinoma development. However, CAC differs from sporadic CRC; 
chronic inflammation precedes CAC development, but inflammation does not initi-
ate tumorigenesis in the case of sporadic CRC, but rather chronic inflammation 
follows tumor development [69, 120].

Nearly 20% of the patients with IBD develop CAC [44]. These statistics are for-
bidding for the reason that cancer is a well-studied malignancy, which has preneo-
plastic lesions, slow development, and known risk factors that can be diagnosed and 
treated. Additionally, the cautioning symptoms and signs related to CRC are often 
found in the advanced stages, which significantly reduce the chances of using cura-
tive therapy. Hence, there is a need to introduce measures for screening and a better 
management of patients with CRC. The colon, rectal, and colorectal cancers are 
considered together as CRC in this chapter, unless stated otherwise.

15.2  Colorectal Cancer Genetics

The origin of CRC is not acknowledged specifically, but a few features become vis-
ible to amplify the risk of extending the malignancy. Around 10% of CRC patients 
have a true inherited predisposition to CRC, and the causative genetic event was 
identified in most of them.

Nearly 25% of diagnosed CRC cases have family history of CRC (familial 
CRC) [4].
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Members of families with certain unusual hereditary circumstances such as juve-
nile polyposis syndrome (JPS), Gardner syndrome, familial adenomatous polyposis 
(FAP), Lynch syndrome, attenuated familial adenomatous polyposis (AFAP), 
Peutz-Jeghers syndrome (PJS) Muir-Torre syndrome, MYH-associated polyposis 
(MAP), and Turcot syndrome have a considerably high chances of developing 
CRC. Family members of women with endometrial cancer (uterine) may also have 
a higher risk of developing CRC compared to others. However, sporadic cases of 
CRC with no family history or genetic predisposition are found in nearly 90% of the 
CRC cases [37]. Both familial and sporadic CRC are genetically driven malignan-
cies, but they differ from each other in that familial CRC is driven by germline 
mutations, whereas sporadic CRC is caused by alternations in DNA structure (muta-
tions) or function (epigenetics) [92].

15.3  Molecular Mechanisms

CRC is highly heterogeneous malignancy with a number of key epigenetic and 
genetic alterations which lead to malignant transformation [3]. Major molecular 
pathways that have been identified to play a role in CRC include CpG island meth-
ylation pathway, microsatellite instability (MSI) pathway, and chromosomal insta-
bility (CIN) pathway. Chromosomal instability (CIN) is the most common pathway 
leading to CRC, which is characterized by mutations in oncogenes or specific tumor 
suppressor genes. MSI and CIMP pathways are characterized and distinguished by 
dysfunction of DNA mismatch repair genes and hypermethylation of CpG islands, 
respectively [58, 92].

15.4  Transcription Factors and CRC

The clinical and biological behavior of CRC is affected by multiple pathways regu-
lating cellular processes such as proliferation, differentiation, migration, apoptosis, 
DNA replication, and DNA repair. These pathways are controlled and exercised by 
transcription factors (TFs) that ultimately regulate gene expression resulting tumor 
initiation and development. TFs are the DNA-binding proteins, which initiate and 
regulate expression of gene by controlling the activity of RNA polymerase in a gene-
dependent manner. TFs do so by using their DNA-binding domain (e.g., basic helix-
loop-helix, zinc finger, homeodomain) and transactivation domain (usually nine 
amino acids long), which interacts with various cofactors or transcription coregula-
tors to either activate or repress the target genes. In addition, some TFs also possess 
a third domain called a signal-sensing domain (SSD), which senses external signals 
or signaling molecules. The human genome encodes nearly 2000 different TFs, many 
of which show cell-specific expression to regulate gene expression [12, 99, 139].

A very high percentage of oncogenes and tumor suppressor genes encode TFs. 
The TF expression or activity is tightly controlled in normal tissue conditions to 
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maintain tissue homoeostasis. Therefore, when the TF expression is altered or func-
tionality is deregulated, TFs become oncogenic which in turn leads to dysregulation 
of genes implicated in tumorigenesis-related cellular processes including cell pro-
liferation, apoptosis, angiogenesis, and metastasis. The TF deregulation could be 
due to multiple genetic alterations including amplifications, deletions, insertions, 
point mutations, and rearrangement via chromosomal translocations (e.g., TP53 and 
MYC). Studies also showed that alterations of TF cofactors (e.g., p300/CBP, SWI/
SNF and mediator) are also major mechanism that contributes to the tumorigenesis. 
Furthermore, as TFs are the downstream effectors of many signaling pathways, 
alteration of TF functions by upstream oncogenic signal transduction cascades leads 
to tumorigenesis [75, 86, 131] (Fig. 15.1).

Current targeted therapies developed to date have been targeted against cell sur-
face receptors (EGFR or VEGF) or kinase inhibitors targeting kinases including 
intracellular protein tyrosine kinase, serine/threonine kinases, and receptor tyrosine 
kinases (RTKs). Though these strategies have made major progress, their efficacy is 
restricted because of development of drug resistance due to mutation of the target 
gene or downstream molecules and overexpression of the target gene or parallel 
signaling pathways activation, thus demanding new therapies or strategies [53]. 

Genetic Alterations of Transcription Factors (TFs) 
or TFs Cofactors

Angiogenesis ApoptosisMetastasis Proliferation Inflammation

Transcription of Target genes
NUCLEUS

Aberrant Activity and expression of 
Transcription Factor

CYTOPLASM

NF-kBSTAT3 NRF-2 C-Myc HIF-1 GATA E2F SOX ATF3 AP-1p53SP-1

Drug
Resistance

Fig. 15.1 Transcription factor (TF) and colorectal cancer (CRC). TFs expression or activity is 
triggered by multiple genetic alterations such as amplifications, deletions, insertions, and point 
mutations that result in gain- or loss-of-function, rearrangement via chromosomal translocations. 
Deregulation of TFs expression or alteration of TFs functionality leads to activation of intracellular 
signaling cascade, resulting in nuclear translocation of TFs and transcriptional activation of target 
genes involved in tumorigenesis-related cellular processes such as proliferation, angiogenesis, 
metastasis, and apoptosis
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Conventionally, targeting transcription factors was generally considered too diffi-
cult. However, recent technological advances have made TFs as realistic and attrac-
tive drug targets. Recent preclinical studies of targeting TFs in animal models and 
in cancerous cell lines showed promising results. Normal cells often tolerate the 
disruption or targeting oncogenic transcription factors and/or reactivation of tumor 
suppressor genes with minimal toxicity because of overlapping cellular signaling 
pathways. Conversely, as many cancerous cells are dependent on oncogenic TFs, 
inhibition of their activity leads to selective killing of tumor cells [41, 141, 24]. An 
improved understanding of dysregulated TFs affecting tumor malignancies may 
direct to have better ability to design novel therapeutic strategies and predict clinical 
outcome. In the following sections, we discuss about the major transcription factors 
dysregulated in CRC.

15.4.1  STAT3

Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic tran-
scription TF that regulates expression of genes related to many cellular processes 
including cell survival, growth, apoptosis, and differentiation. Mammalian STAT 
family consists of seven members (STAT1-4, STAT5α, STAT5 β, and STAT6) 
encoded by separate genes but shared similarity in structure. STAT3 appears to be 
more commonly transcribed than the other identified family members [25]. STAT3 
is activated through the binding of extracellular signaling molecules such as cyto-
kines (IL-6, IL-10, and IL-11) or growth factors (vascular endothelial growth fac-
tor (VEGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF)) to 
cell surface receptors via Janus kinase (JAK), focal adhesion kinase (FAK), and 
Src. Upon activation through phosphorylation, STAT3 forms a homodimer or het-
erodimer and translocates to the nucleus where it transcribes target genes involved 
in cell cycle (c-MYC and cyclin D1), angiogenesis (VEGF and IL-8), invasion/
migration (MMP-2 and MMP-9), and anti-apoptosis (Bcl-xL, Bcl-2, and survivin). 
STAT3 also plays a key role in regulation of genes connected with anti-apoptosis, 
invasion/migration, and angiogenesis [39, 70].

Transitory levels of activated STAT3 are maintained in normal cells. However, 
clinically, in 70% of solid and hematological tumors, STAT3 is shown to be either 
constitutively active or overexpressed. Further, the level of activated STAT3 in CRC 
adenomas (18%) is much lower than that in adenocarcinomas (72%). STAT3 was 
shown to be a key regulator of tumor initiation and progression in CRC which regu-
lates tumor-related proliferation, survival, inflammation, and angiogenesis and thus 
results in carcinogenesis and cancer progression [70, 82]. In clinical cases of CRC, 
STAT3 activation is negatively correlated with clinical efficacy and is associated 
with the prognosis of CRC. Constitutive activation of STAT3 is frequently high in 
dedifferentiated CRC cells and infiltrating lymphocytes, than in normal colon epi-
thelium [21, 73]. Further, in vitro and in vivo studies had shown that the inhibition 
of STAT3 sensitizes CRC cells to chemoradiotherapy [114].
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15.4.2  Nrf2

NF-E2-related factor 2 (Nrf2)/nuclear factor-erythroid 2-related factor 2 (Nrf2) is a 
leucine zipper-containing antioxidative transcription factor that plays a vital role in 
controlling of battery of genes implicated in multiple pathways including cell sur-
vival, proliferation, invasion, inflammation, and oxidative and electrophilic stress. 
The most important role of Nrf2 is activating the antioxidant responsive element 
(ARE)-mediated antioxidative response. Expression of Nrf2 is suppressed under 
unstressed conditions but markedly induced under oxidative stress. Under unstressed 
conditions, Cul3-dependent E3 ubiquitin ligase complex with cytosolic Kelch-like 
ECH-associated protein 1 (Keap1)-nuclear factor (Keap1) as substrate adaptor neg-
atively regulates Nrf2 through polyubiquitination and subsequent degradation by 
26s proteasome. Upon exposure to reactive oxygen species (ROS), toxicants, elec-
trophilic molecules, and carcinogens, Keap1 sequestered Nrf2 is released and trans-
activates the expression of cryoprotective and antioxidative genes in the nucleus by 
forming the active complex with other regulatory proteins such as musculoaponeu-
rotic fibrosarcoma (Mafs) [42, 60]. Nrf2 binds to the antioxidant responsive element 
(ARE) in promoter regions of target genes involved in antioxidants and xenobiotic 
metabolism. The Nrf2-ARE target genes include antioxidant genes, glutathione 
S-transferase (GST), NAD(P)H: quinone oxidoreductase 1 (NQO1), phase II 
enzymes such as heme oxygenase-1 (HO-1), and glutathione peroxidases. Apart 
from Keap1 inhibition of Nrf2, stress-induced upregulation of Nrf2 results from 
enhanced translation of Nrf2, mediated by functional IRES elements (internal ribo-
somal entry site) present within the 5′ untranslated region of the Nrf2 mRNA [78].

Nrf2 TF plays an intricate role in the cell, and its expression is strongly affected 
by various external agents or mechanisms. Any interruption of Nrf2 normal expres-
sion, either downregulation or overexpression, may encourage CRC initiation and 
progression. Basal-level expression of Nrf2 reduces the risk of CRC by exerting 
cytoprotective effect and by activating antioxidant target genes. Nevertheless, the 
loss of Nrf2 activity compromises the protection against the oxidizing agents and 
thus increases the occurrence of CRC [20]. On the other hand, many studies have 
reported that the risk of CRC increases with overexpression or constitutive expres-
sion of Nrf2 and its target genes, and the increased risk arises from Nrf2-induced 
colonic inflammation, increased cell proliferation, inhibition of apoptosis, and 
resistance to chemotherapy [54]. Increased chemoresistance to the chemotherapeu-
tic agents due to Nrf2 overexpression is mediated by the activity of demethylases 
and methyltransferases. This overexpression can occur due to either constitutive 
mutation in the Nrf2 gene or in Keap1 repressor gene. Chronic inflammation is a 
major contributing factor for the development of CRC, and several recent studies 
have shown that Nrf2 is associated with chronic inflammation leading to CRC [91, 
105]. Thus, Nrf2 can function both as tumor suppressor and also as an oncogene, 
and hence, targeting the Nrf2 represents a promising alternative approach for the 
treatment of both oxidative stress-induced CRC and colorectal inflammatory dis-
eases [87].
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15.4.3  NF-κB

Nuclear factor κB (NF-κB) proinflammatory TFs are key regulators of inflamma-
tion, innate immune responses, and cell survival. Mammalian NF-κB family is com-
posed of five members: NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), 
RelB, and c-Rel (Rel). All the members of NF-κB TF family contains a structurally 
conserved unique amino-terminal RH domain (Rel-homology domain), which is 
required for inhibitor binding, nuclear localization, homo- and heterodimerization, 
and DNA binding. Further, RelA, RelB, and c-Rel contain an additional transactiva-
tion domain that promotes transcription of target genes, while p50 and p52 do not. 
NF-κB subunits assemble by dimerization of two of the five subunits: p65 (RelA), 
c-Rel, RelB, p50/NF-κB1, and p52/NF-κB2 [102, 129].

NF-κB signaling in mammalian cells usually operates through two pathways: the 
canonical (classical) and the noncanonical (nonclassical) pathway. Noncanonical 
pathway is triggered by binding of tumor necrosis factor receptor family members 
such as BAFF, CD40, receptor-activated NF-κB ligand (RANKL), and lympho-
toxin- B, and this pathway plays an important role in controlling the development 
and function of secondary lymphoid organs [115]. Canonical pathway is activated 
by various signals, including proinflammatory cytokines (TNF-α), growth factors 
(HGF), pathogen-associated molecular patterns (LPS), stress-inducing stimuli such 
as radiation and oxidative stress, and various other drugs [48]. These stimuli activate 
membrane-bound receptors, including the TNF receptor superfamily (TNFRSF) 
and interleukin-1 receptor (IL-1R)/Toll-like receptor (TLR) superfamily as well as 
TCR or intracellular mediators, culminating in the activation of the inhibitor of 
kappa B (IκB) kinase (IKK) complex, composed of the scaffold protein NEMO 
(IKKγ) and two IKK subunits (IKKα and IKKβ).

Without stimulation (under nonactivated conditions), most of the members of 
NF-κB family are sequestered in the cytoplasm by specific inhibitory proteins, IκBs. 
Upon activation, NF-κB is released or freed from IκBα through kappa β (IκB) 
kinase (IKK) complex, composed of the scaffold protein NEMO (IKKγ) and two 
IKK subunits (IKKα and IKKβ) (IKK)-mediated phosphorylation and proteasomal 
degradation of the IκB inhibitory proteins. The freed NF-κB subunits form either 
homo- or heterodimers and translocate to the nucleus and trigger the expression of 
target genes, including anti-apoptotic factors, proinflammatory cytokines, and pro-
liferation factors [30, 102].

In addition to NF-κB roles in the inflammatory signaling, the NF-κB pathway 
has been extensively tied to CRC. NF-κB is reported to be constitutively active in 
various cancer cells, cell lines, xenograft animal models, or clinical sites. NF-κB is 
found to be constitutively activated approximately in 40% of human CRCs and 67% 
of CRC cell lines [81, 103, 125]. The NF-κB pathway plays a key role in the pro-
gression of colitis-associated cancers (CAC) because of persistent STAT3 activation 
and sphingosine-1-phosphate (S1P)-mediated upregulation of IL-6 production [80]. 
Recent studies depicted that constitutively activated NF-κB promotes carcinogene-
sis by stimulating proliferation of malignant CRC cells, angiogenesis regulation, 
apoptosis inhibition, promotion of tumor invasion, and metastasis [100, 102, 103].
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The process of epithelial mesenchymal transmission (EMT) is important for carci-
nogenesis, invasion, and metastasis. The EMT driving TF snail (promotes lymph node 
metastasis) and twist (enhances EMT) is co-regulated by NF-κB and HIF with poten-
tial clinical significance in CRC [22]. Moreover, increased expression levels of twist 
and NF-κB are correlated with tumor metastasis to the lymph nodes [106]. Another 
important feature of constitutive activation of NF-κB imparts resistance to chemo-
therapy. Tumor cells with constitutive NF-κB activation are highly resistant to anti-
cancer drugs, and the inhibition of NF-κB activity in those cells has increased tumor 
sensitivity to inhibitors or drugs. As NF-κB activation contributes to the CRC tumori-
genesis, the inhibition of NF-κB activation may be useful in antitumor therapy.

15.4.4  P53

P53 is a tumor suppressor protein encoded by the human TP53 gene. P53 plays a 
key role in cell cycle and senescence or apoptosis in response to various intrinsic 
and extrinsic cellular stress signals such as DNA damage by gamma or UV radia-
tions, oxidative free radicals, hypoxia, depurination of DNA, etc. P53 protein has 
many mechanisms of anticancer functions such as inhibition of angiogenesis, acti-
vation of DNA repair, inducing growth arrest, or initiating apoptosis. The human 
p53 protein contains 393 amino acids and has four functional domains: basic domain 
or DNA-binding domain (DBD), tetramerization domain (TD), transactivation 
domain (TAD), and proline-rich domain [62].

During the normal conditions, p53 level is maintained at low level through con-
tinuous ubiquitination and degradation process by the E3 ubiquitin ligase MdM2, 
which functions as negative regulator of p53. The stress signals disrupt or inhibit the 
Mdm2-p53 interaction and activate p53 through series of posttranslational modifi-
cations such as phosphorylation and acetylation of Mdm2 by c-Abl and ATM 
kinases. Once activated, the activated p53 protein binds target DNA sequence and 
triggers the expression of diverse target genes (including p21), which results a cell 
cycle arrest to allow either cellular repair or apoptosis. In addition, activated p53 
also interacts with several other proteins (PML bodies (promyelocytic leukemia 
bodies), Werner helicase) for its transcriptional activity to selectively modulate tar-
get genes. In healthy humans, wild-type p53 induces the expression of MDM2; in 
contrary mutant p53 can’t induce MDM2 and results in the accumulation of p53 at 
very high concentrations [47].

The p53 protein is most commonly altered protein in all types of human cancers 
and is frequently mutated or inactivated in CRC. Dysregulation of p53 is one of the 
most common events for the CRC development, progression, and tumor metastasis 
[79]. Inactivation of the p53 tumor suppressor is a key event in CRC and correlates 
with the transition from benign adenoma to malignant carcinoma. The p53 gene is 
mutated in about 40–50% of sporadic CRC [117]. The mutations mainly occur in 
DNA-binding domain (DBD) (Exons 5–8) followed by tetramerization domain 
(TD), majorly in a few hotspot codons, including 175, 245, 248, 273, and 282, con-
sisting of GC>AT transitions which are predominantly located at the CpG 
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dinucleotide. Loss of heterozygosity (LOH) of the short arm of 17p chromosome is 
also found in aggressive phenotype CRC tumors. Further, the frequency of occur-
rence of LOH of the 17p chromosome and p53 mutation was more in carcinomas 
than in early adenomas in both non-familial and familial adenomatous polyposis 
patients. Loss of p53 function via allelic loss or mutation also contributes to the 
chemoresistance and leads to poorer prognosis [96]. Abnormal pattern of p53 
expression is closely associated with disease outcome of sporadic CRC. In CRC, it 
has been shown that accumulation of mutations in a sequential manner in APC, 
K-Ras, and p53 genes is closely associated with the progression of CRC [79]. The 
inactive p53 mutations were observed more often in advanced stages of tumor and 
were negatively associated with patient survival [55].

15.4.5  Hypoxia-Inducible Factor (HIF)- 1

Hypoxia-inducible factor-1 (HIF-1) is an oxygen-sensitive TF induced during 
hypoxia (low oxygen tension) and plays a key role in cell proliferation/survival, 
angiogenesis, and glucose and iron metabolism. HIF-1is heterodimeric TF consist-
ing of an oxygen-regulated HIF-1α subunit (or its human paralogs HIF-2α and 
HIF-3α) and constitutively expressed/oxygen-independent HIF-1β subunit (also 
called as aryl hydrocarbon receptor nuclear translocator; ARNT). The HIF-1α and β 
subunits contain basic helix-loop-helix motifs that bind DNA and cause dimeriza-
tion of HIF subunits. HIF α subunit has an additional oxygen-dependent degrada-
tion (ODD) domain apart from Per-ARNT-Sim (PAS) domain [22].

The activity and stability of HIF-α subunit are regulated at posttranslational level 
by phosphorylation, ubiquitination, hydroxylation, and acetylation. Under nor-
moxic conditions, ODD domain is hydroxylated by non-heme, Fe2+ and 
2- oxoglutarate (2OG)-dependent dioxygenase enzyme proline-hydroxylase-2 
(PHD-2). Subsequently, the hydroxylated HIF-α is recognized by the von Hippel- 
Lindau (pVHL) E3-ubiquitin ligase complex rendering HIF-α Lys48-linkedpoly- 
ubiquitination and subsequent HIF-α subunit degradation via ubiquitin-proteasome 
pathway. Further, FIH (factor inhibiting HIF) provides another layer of regulation 
by blocking HIF binding with its coactivators p300/cAMP response element- 
binding (CREB) protein (CBP) through hydroxylation of asparaginyl residue in the 
transactivation domain of HIF-α subunit [93, 122].

In hypoxia (oxygen deprivation conditions), the HIF-α subunit becomes stable 
due to diminished PHD activity then translocates into the nucleus, and dimerizes 
with the HIF-1β subunit. The HIF- α and β dimer then binds to the hypoxia respon-
sive elements (HRE) along with its coactivators and regulates transcription of 
downstream target genes implicated in a large variety of processes [89]. In hypoxic 
conditions, HSP90 and STAT3 interact with HIF1α transactivation domain and 
PAF domain, respectively, and stabilize HIF-α [63, 67]. Further, an intimate  
bidirectional crosstalk between HIF and NF-κB has been demonstrated under 
inflammatory conditions to regulate the common targets against activating stimuli 
[8, 22, 123].
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Elevated levels of HIF-1α and HIF-2α have been found in CRC [16, 98] due to 
either hypoxia or upregulation of signal transduction pathways or loss of the von 
Hippel-Lindau (VHL) expression. Immunohistochemical studies have shown that 
HIF-1α is detected in both adenomas and colorectal adenocarcinomas, and more-
over HIF-1α is frequently expressed in adenocarcinomas compared to adenomas 
[43, 57]. Expression of HIF-1α is also frequently correlated with disease stages 
[72]. In contrast to HIF2α (EPAS1), HIF1α regulates numerous genes essential for 
development of CRC. Though both the isoforms are induced by hypoxia, HIF-1α 
and HIF-2α have divergent and specific roles in colon cancer [56].

Hypoxic microenvironment created in tumors supports tumor growth, invasion, 
metastasis, and angiogenesis in CRC. HIF1α plays an essential role in mediating 
these effects of hypoxia. HIF1α regulates expression of battery of genes involved in 
CRC survival (GLUT-1) [90], tumor vascularization (COX2) [64], angiogenesis 
(VEGF) [16], invasion and metastasis (cathepsin D, matrix metalloproteinase 2, 
urokinase plasminogen activator receptor (uPAR), fibronectin 1, keratins, vimentin, 
and transforming growth factor α) [72], chemo-/drug and radiation resistance 
(MDR-1/P-gp) [29, 89], and hypoxia survival (Nur77) [6, 119, 133].

15.4.6  Specificity Protein-1 (SP1)

Specificity protein-1 is a zinc finger TF that belongs to SP/KLF (Krüppel-like fac-
tor) family of TFs that binds to GC-rich Sp1-binding sites located on promoter 
regions of several genes having diversified roles in cell growth, differentiation, 
apoptosis, DNA damage, and immune responses. Sp1 is 785 amino acids long pro-
tein encoded by sp1 human gene located at the 12q13.1 locus. Sp1 plays a key role 
in cell proliferation, angiogenesis, metastasis, and apoptosis. There are 12,000 Sp1- 
binding sites in the human genome, and Sp1 serves as activator as well as repressor 
based on the promoter to which it binds and also the coregulators or interacting 
partners with which it interacts [26].

Sp1 comprises of four distinct domains (A, B, C, and D), of which A and B 
domains rich in glutamine serve as transactivating domains (TAD) which directly 
interact with components of the transcription machinery, i.e., TBP (TATA-
binding protein) and TAF4 (TBP-associated factor 4). Domain C of sp1 is a 
highly charged group of 69 residues comprising 12 negative and 6 positive 
charges. Domain D lacks its own transactivation and is essential for synergistic 
transactivation by Sp1. Three Cys2-His2 type zinc finger motifs located between 
domain C and D of Sp1 serve as its DNA-binding domain (DBD). Each of three 
Sp1 zinc finger motifs possesses its own preference for specific DNA sequence, 
and all of them are required for binding to the Sp1-binding site. The N-terminus 
of Sp1 consists of small inhibitory domain (IB) at the extreme N-terminus end, 
which regulates the domains A and B functions by directly interacting with core-
pressors such as SMRT (silencing mediator of retinoid and thyroid receptor), 
NCoR (nuclear hormone receptor corepressor), and BCoR (BCL-6 interacting 
corepressor) [7, 132].
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Sp1 was the founding member of the Sp TF family, which consists of two broad 
groups: Sp1–4 group and the Sp5–9 group. Members of Sp1–Sp4 group have simi-
lar domain organization having N-terminal transactivation domains, which are 
absent in Sp5–Sp9 group. Sp1, Sp3, and Sp4 have two TADs, whereas SP2 pos-
sesses only one TAD. The activity of Sp1 is compensated by other members of the 
family due to homologous sequences among members of sp. [10]. The transcrip-
tional activity of Sp1 is regulated by posttranslational changes such as phosphoryla-
tion, glycosylation, acetylation, and proteolytic processing as well as by interactions 
with tumor suppressors and oncogenes [18]. Sp1 binds to consensus GC box 
5′-(G/T)GGGCGG (G/A) (G/A) (C/T)-3′ through its C2H2-type zinc fingers and 
recruits other proteins and general transcription factors, coregulators associated 
with transcriptional complex. A promoter can have either single or multiple Sp1- 
binding sites. Sp1 acts as a transactivator and binds directly to other Sp1 molecules 
and forms homooligomers. Sp1 transactivates simply via a single or synergistically 
via two or more Sp1-binding sites without cooperative DNA binding or super acti-
vates the Sp1-mediated transcription through interaction with DNA-bound Sp1 
molecule. Sp1 also interacts with other cellular factors such as the cell cycle regula-
tors, ATP-dependent remodelers, chromatin modifiers, factors participating DNA 
repair, and other transcription factors to modulate expression of specific target genes 
[7, 26, 132].

Sp1 is an important transcriptional regulator that plays a significant role in CRC 
initiation and metastasis [7]. Recent studies have shown that Sp1 and its other fam-
ily members are highly expressed in human CRC stem cells and CRC cell lines and 
tissues [1, 45]. Further, higher levels of Sp1 protein have been observed in colon 
cancer patients [127, 128]. The role of Sp1 in CRC is described in detail with respect 
to cell proliferation, angiogenesis, metastasis, and apoptosis. Sp1 also contributes to 
the resistance to chemo- and radiotherapy in CRC apart from NF-B and hypoxia- 
inducible factor (HIF-1). Recent study has shown that transcriptional enhancer acti-
vator domain 1 (TEAD1) overexpression increases the CRC cell proliferation 
through enhancing the Sp1 expression levels [143].

15.4.7  GATA

GATA transcription factors are zinc finger motif containing TFs, which play an 
essential role regulation of the differentiation and organogenesis during vertebrate 
development. Based on the tissue expression and phylogenetic analysis, the six TFs 
in vertebrates are classified into two subgroups: GATA1/GATA2/GATA3 and 
GATA4/GATA5/GATA6. The members of subgroups GATA1/GATA2/GATA3 are 
implicated in differentiation of ectoderm and mesoderm, whereas GATA4/GATA5/
GATA6 are involved in development and differentiation of mesoderm-derived  
tissues (embryonic stem cells, cardiovascular embryogenesis) and endoderm. All 
the members of GATA TFs contains two highly conserved DNA-binding zinc finger 
domains,Cys-X2-C-X17-Cys-X2-Cys (ZNI and ZNII), which typically bind to the 
(A/T)GATA(A/G) elements and also mediate interactions with other proteins [76, 
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146]. GATA TFs are not conventional tumor suppressors; however their loss leads 
to malignant transformation.

Impaired function through mutations, reduced expression, or overexpression of 
GATA transcription factors has been associated with several cancers including 
CRC. In addition, many factors that associate with these TFs are proto-oncoproteins 
and function in part by modulating the GATA proteins activities. GATA2 expression 
levels are correlated with the worse patient survival outcomes in CRC patients with 
KRAS mutations and associated poor prognosis and disease recurrence in CRC [19, 
137]. GATA4 and GATA5 exhibit tumor suppressive properties in human CRC, and 
these genes are frequently transcriptionally silenced by hypermethylation [2, 50]. 
Overexpression of GATA6 is found in CRC cells, and in vitro studies on human 
colon cancer cells have shown that GATA6 regulates the suppression of 
15- lipoxygenase (LOX)-1 (15-LOX-1) [111]. Altered GATA6 expression promotes 
CRC tumorigenesis and tumor invasion by regulating urokinase plasminogen acti-
vator genes (uPA) [11] and also regenerating gene 4 (REG4) expressions [68]. 
Further it was shown that aberrant GATA6 expression in CRC was associated with 
poor prognosis and liver metastasis [109]. Pradhan et al. [97] have shown a possible 
link of GATA1 with CRC using system biology approach.

15.4.8  E2F

The E2F family of TFs controls several cellular functions related to cell cycle, 
DNA damage, and apoptosis and regulates many tumor suppressors. Mammalian 
E2F family consists of eight proteins, of which E2F1, E2F2, and E2F3a act as 
activators and E2F3b, E2F4–E2F8 serve as repressors. E2F7 and E2F8 are newly 
identified members of E2F family and show modest homology with other estab-
lished E2F family members. The E2F3 gene encodes longer E2F3a and a shorter 
E2F3b protein products, of which E2F3b lacks the cyclin A binding domain [121]. 
Traditional E2F family members (E2F1–6) contain several evolutionally conserved 
domains, including N-terminal DNA-binding domain, dimerization domain with 
marked box important for dimerization and DNA bending, acidic amino acid-
enriched transactivation domain with pocket protein-binding region, and a tumor 
suppressor protein association domain. C-terminal transactivation domain is absent 
in E2F6 factor. E2F1–E2F3 have an additional cyclin A binding domain with an 
adjacent nuclear localization signal (NLS). NLS assists in modulating E2F activity 
in cell cycle- dependent manner through regular nucleocytoplasmic movement of 
E2F TF. E2F4 and E2F5 are additionally tagged with nuclear export signal (NES) 
and require differentiation regulated transcription factor proteins (DP) for their 
nuclear translocation. E2F1–E2F6 TFs form heterodimers with one of their partner 
proteins (DP1 or DP2 or DP3) to form functional TF complex which can bind to 
their target genes [88]. These proteins bind preferentially to retinoblastoma protein 
pRB or the associated pocket proteins p107 and p130  in a cell cycle-dependent 
manner and can regulate cell proliferation as well as p53-dependent/independent 
apoptosis [95, 135].
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E2F TF family members are downstream targets of the pRb-CDKs pathway. Free 
E2F proteins are transcriptional activators, whereas binding of pRB proteins changes 
them to transcriptional repressor state. Phosphorylation and dephosphorylation of 
Rb control the binding of Rb to E2F during the cell cycle. Upon phosphorylation of 
pocket proteins by the cyclin-dependent kinases (CDK), heterodimer E2F-pocket 
protein complex is disrupted, and free E2F is released. E2F then translocates to the 
nucleus and activates the transcription of target genes (S-phase-promoting genes) 
such as cyclins, CDKs, checkpoint regulators, DNA repair, and replication proteins. 
On the other hand, in repressors (E2F4 and E2F5), p107 and p130 picking binding 
proteins mediate the recruitment of repression complexes to induce apoptosis via 
the p53 stabilization as well as through the p732 activation [28, 32, 124]. 
Transcriptional genes regulated during apoptosis are TP73, APAF1, CASP3, 
CASP7, CASP8, and MAP3K5. E2F6–8 factors act as repressors of E2F target 
genes through their interaction with mammalian polycomb complex (PcG) family 
proteins but not through pocket proteins [27].

Mammalian E2F family of TFs can function as tumor suppressors or activators, 
and the dual function depends on the tissue of expression. E2F1 acts as tumor sup-
pressor in CRC and esophageal adenocarcinoma, whereas it has tumor-promoting 
role in pancreatic ductal adenocarcinoma and esophageal squamous carcinoma. 
E2F4 has tumor-promoting role in gastric, CRC, and liver carcinogenesis [40]. The 
function of E2F TFs especially E2F1 in CRC has been shown by a number of stud-
ies. Increased expression of E2F1 was found in CRC [116, 140], and the increased 
expression of E2F1 decreases the cell proliferation and induces apoptosis of CRC 
adenocarcinoma [14, 36, 136]. E2F1 expression levels are high in lung metastasis of 
colon adenocarcinoma and correlate with the thymidylate synthase expression lev-
els coupled with poor response to 5-fluorouracil treatment [9, 66]. E2F1 promotes 
the aggressiveness of human CRC by activating the ribonucleotide reductase small 
subunit M2 (RRM2) [36]. Increased expression of E2F-1 sensitizes CRC cells to 
camptothecin, indicating the role of E2F1 in mediating the cytotoxicity of cells to 
DNA-damaging agents such as topoisomerase I and topoisomerase II inhibitors 
[31]. Recently, it has been shown that E2F2 plays a tumor suppressor role in colon 
cancer through inhibition of survivin and modulating the expression of CDK2, 
CCNA2, MCM4, and C-MYC. At tissue level, E2F2 expression is very low; how-
ever, E2F2 acts as tumor suppressor in colon cancer and plays an important role in 
microRNA-31 (miR-31) mediated proliferation of colon cancer [77, 79].

E2F4 TF has a tumor-promoting activity, and it is directly connected with cell 
proliferation of CRC cells. In agreement of this, in vitro and in vivo studies of CRC 
demonstrated higher nuclear expression levels of E2F4 in the replicating colon epithe-
lium [85, 136]. Intriguingly, E2F4 contains a longer spacer segment of 13 consecutive 
serine amino acid residues in the transactivation domain region encoded by AGC tri-
nucleotide repeat. This region of E2F4 is highly vulnerable to frameshift mutations in 
situations of genetic instability leading/contributing to the human CRC. Further, E2F4 
mutations enhance the capacity of CRC cells to grow without anchorage, thereby 
contributing to tumor progression [94, 113, 142]. Microarray analysis of sporadic 
colorectal carcinoma tissues showed upregulation of E2F5 TF [74].
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15.4.9  C-MYC

The proto-oncogene MYC family comprises of N-MYC, L-MYC, and C-MYC 
(MYC). MYC is a multifunctional, nuclear phosphoprotein that plays pivotal role in 
diverse cellular process such as cell cycle, survival, differentiation, apoptosis, 
energy metabolism, and cellular transformation [52]. MYC gene encodes a basic 
helix-loop-helix zipper (bHLHZ) protein that dimerizes with Max (small bHLHZ 
transcription factor) partner protein and binds the enhancer box (E-box) sequence 
CACGTG to transactivate target genes through recruiting histone acetyltransferases 
(HATs). MYC can also repress the gene expression via binding with another part-
ner, Miz1. Thus, MYC protein is associated with both transcriptional activation as 
well as transcriptional repression. MYC protein through its leucine zipper 
TF-binding motif interacts with its partner proteins (Max or Miz1) to form heterodi-
mers. L-MYC and N-MYC also encode transcription regulators whose expression is 
altered in a large variety of tumors [33, 51].

MYC is the most commonly mutated oncogene in human cancers. MYC expres-
sion is tightly controlled involving several transcriptional regulators, and its expres-
sion increases in cells requiring high MYC protein levels in response to mitogens. 
However, expression of MYC oncoprotein and/or its activity is often deregulated in 
different types of cancers by various mechanisms including mutations, gene ampli-
fications, increased protein stability, activation of upstream mitogen signaling path-
way and chromosomal translocations. In the context of CRC, deregulation of the 
RTK/RAS/MEK/ERK and WNT/APC/β-catenin pathways enhances MYC expres-
sion and increases protein stability [13, 23]. MYC amplification is observed in 
nearly 6% of the consensus molecular subtypes of CRC [65]. Amplification and 
increased expression of the MYC gene were reported in metastatic CRC [101]. 
Furthermore, frequent inactivating mutations in the SMAD, ARID1A (transcrip-
tional regulators), and FBXW7 (E3 ubiquitin ligase) may result in increased mRNA 
transcription and protein stability, respectively. Deregulation of MYC often corre-
lates with disease aggressiveness and poor patient prognosis and confers resistance 
to chemotherapy [15, 49, 138].

15.4.10  SOX Family of Transcription Factors

SOX proteins are characterized by the evolutionarily conserved approximately 
80-amino-acid-residue-long DNA-binding motif called HMG (high-mobility group) 
box. SOX TF family consists of more than 20 members. SOX proteins bind to minor 
groove of DNA on a common 7-nucleotide-long (A/T)(A/T)CAA(A/T)G consensus 
sequence through the HMG box. Apart from regulating DNA binding of SOX pro-
teins, HMG domain mediates nucleocytoplasmic shuttling and physical interaction 
of SOX proteins with other interacting proteins through nuclear localization signals 
(NLSs) and leucine-rich nuclear export signal (NES). SOX stands for SRY-related 
HMG box [108]. Based on the phylogenetic analysis of HMG domain sequence, 
structure, and functions of SOX proteins, SOX family is subdivided into A to J 
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subgroups. Members of the same subgroup possess similar biochemical properties 
and thus show functional redundancy. SOX TFs regulate diverse developmental 
events including cell type specification and cellular differentiation, and they work in 
concert with other TFs to regulate expression of their target genes [104, 130].

Gene amplification and/or overexpression of SOX genes (SOX4 and SOX11) are 
linked to a variety of malignant tumors including CRC.  Immunohistochemical 
staining and RT-PCR studies have shown increased expression of SOX2, SOX4, and 
SOX9  in CRC tissues compared with adjacent normal tissues [35, 83, 126]. The 
increased SOX2 expression is correlated with mutated BRAF (V600E mutation) 
indicating that its expression is regulated by BRAF signaling pathway [84]. Wang 
et al. [126] have shown that increased expression of SOX4 plays a crucial role in the 
development and progression of CRC [126]. Increased expression of SOX9 corre-
lates with tumor progression and connected with lower overall survival [17, 83, 
110]). On the contrary, SOX7 has tumor suppressor activity in CRC. SOX7 expres-
sion is downregulated in primary tissues as well as CRC cells, inhibits proliferation, 
and induces apoptosis of CRC cells [145]. SOX proteins modulate tumorigenicity 
by modulating the expression of Wnt signaling pathway that targets genes either by 
enhancing (SOX2, SOX4, and SOX9) or by suppressing (SOX7) the β-catenin/TCF 
activity [71].

15.4.11  Activating Transcription Factor 3 (ATF3)

ATF3 (activating transcription factor 3) is a member of the ATF/CREB (mammalian 
activation transcription factor/cAMP responsive element binding) TF family which 
are implicated in the regulation of cellular stress response. ATF/CREB family mem-
bers include ATF1-7, B-ATF, CREB, and CREM, which commonly contain basic 
region leucine zipper (bZIP) type of DNA-binding domain. The basic region part 
mediates sequence-specific DNA binding, whereas the leucine zipper region is 
required for forming homodimers or heterodimers with other bZIP domain contain-
ing proteins such as C/EBP, AP-1, or Maf families. ATF/CREB TFs bind to the 
TGACGTCA consensus sequence present in the cyclic AMP response element 
(CRE) of various promoters [118]. In vitro and in  vivo studies have shown that 
ATF3 promotes growth and metastasis of colon cancer tumors [46, 134]. Further, it 
was shown that ATF3 downregulates the expression of retinoblastoma (Rb), Bcl-2, 
β-catenin, and EMT-inducing transcription factors, while ATF3 increases collective 
cell migration and expression of CD44 (cluster of differentiation 44). Therefore, 
ATF3 may play a complex dichotomous role in metastasis and apoptosis in human 
CRC cells [61].

15.4.12  Activator Protein 1 (AP-1)

The activator protein 1 (AP-1) TF is a dimeric complex consisting of basic region 
leucine zipper (bZIP)-containing proteins including members of the FOS (c-Fos, 
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Fra-1, Fra-2, and Fos-B) and JUN (c-Jun, Jun-B, Jun-D), Maf (Nrl, c-Maf, MafB, 
MafA and MafG/F/K), and ATF (B-ATF, JDP1, JDP2, ATF2 and LRF1/ATF3) pro-
tein. JUN family members can form homodimers, whereas the FOS family mem-
bers require JUN family to form active transcriptional complex. Dimeric AP-1 
complexes are bind to TPA response elements (TREs) and cAMP response elements 
(CREs) in the promoter and enhancer regions of target genes. AP-1 is a TF that 
regulates expression of target genes in response to bacterial and viral infections, 
growth factors, cytokines, and stress and controls cellular processes such as cellular 
proliferation, apoptosis, and differentiation [107]. AP-1 TF family members are dif-
ferentially expressed in neoplastic and nonneoplastic colorectal tissues. Upregulation 
of c-Jun and Fra-1 is an early event in human CRC tumorigenesis [144]. Hypoxia, 
mutations in β-catenin and K-ras genes and LOH (loss of heterozygosity), or allelic 
imbalance of the adenomatous polyposis coli (APC) gene induce AP-1  in colon 
cells [5].

15.5  Conclusion

Colorectal cancer (CRC) is one of the most important causes of death worldwide. 
Despite the improvement in our understanding about CRC in recent years, current 
treatments are not effective in controlling the metastatic forms of CRC. CRC is a 
multistep process involving genetic alterations in both oncogenes and tumor sup-
pressor genes. A very large number of tumor suppressor genes and oncogenes 
encode TFs. Under normal conditions, TF expression levels or activity is under tight 
control to maintain tissue homoeostasis. However, when the TF expression is altered 
or functionality is deregulated, TFs become oncogenic which in turn leads to dys-
regulation of genes implicated in tumorigenesis-related cellular process including 
proliferation, apoptosis, angiogenesis, and metastasis. A number of oncogenic TFs 
such as NFκB, Nrf2, c-MYC, and STAT-3 are over-activated in CRC, and on the 
other side, p53, a tumor suppressor TF, is under-activated.

Many cancer malignancies require a subset of oncogenic and/or tumor suppres-
sor TFs for their survival, proliferation, and disease progression. In contrary, these 
TFs appear to be dispensable for normal cells. Hence, targeting such TFs, either 
inhibition of oncogenic TFs or reactivation of tumor suppressor genes, may have 
highly synergistic anticancer activity against the tumor cells with little or minimal 
toxicity against the normal cells. Additionally, targeting TFs in tumor-associated 
immune cells may have the possibility to surmount the tumor-associated immuno-
resistance. Various novel strategies for targeting dysregulated TFs include blocking 
DNA-binding inhibition of protein-protein interactions (interaction with coactiva-
tors, corepressors, and other interacting proteins) and epigenetics. Direct inhibition 
of TF expression via RNA interference or antisense oligonucleotides or DNA 
decoys and blocking DNA binding via oligodeoxynucleotide decoys or pyrrole- 
imidazole polyamide have shown antitumor effect with minimal side effects and are 
succeeding into clinical trials.
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Abstract
Activator protein-1 transcription factors play a critical role in the development of 
many cancers. Although many studies indicated the role of transcription factors 
driving the progression of cancer, there is still a knowledge gap in the process of 
better understanding the molecular mechanisms controlled by AP-1 transcription 
factors during cancer advancement. In conclusion, we have evaluated the role of 
transcription factors which provides new insights into mechanisms of regulation 
of colorectal cancer by AP-1 family transcription factors.
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CRC  Colorectal cancer
MAF Musculoaponeurotic liposarcoma
TPA  12-O-tetradecanoylphorbol-13-acetate
TRE  TPA-response element

16.1  Introduction

16.1.1  Cancer

The oncogenic transcription factors drive vast majority of fatal courses of cancer. 
Despite therapeutic advances, the high mortality of patients with cancer has not been 
substantially reduced over the past years, largely because of the lack of understanding 
of the complex molecular network which enables tumour cells to invade tissues and 
metastasize. Therefore, an improved understanding of transcription factors and their 
molecular mechanisms which regulate metastatic transformation and progression of 
the cancer cells has to be better understood. Tumour metastasis involves a series of 
events which promote and regulate the migration of cancer cells to generate metasta-
ses at distant sites. The process is initiated in the primary tumour, where cancer cells 
dysregulate important cellular components like oncogenes and tumour-suppressor 
genes leading to alterations in the expression of other genes or errant activation of 
important signal transduction pathways; transcription factors regulating extracellular 
matrix degradation, angiogenesis and other processes are important for metastasis.

For this reason, identification of cancer-associated biomarkers and essential 
molecular interactions connected to this interplay between transcription factors and 
further downstream components will help to develop strategies to prohibit the meta-
static spread of cancer cells.

16.2  Cancer Types

A large body of existing literature shows that cancers are of different kinds. 
Common types include tumours of the colon, lung, breast and prostate. 
Malignancies of the plasma and the lymphatic system include leukaemias, 
Waldenström’s disease, Hodgkin’s disease, lymphomas and multiple myeloma. 
Skin diseases include malignant melanoma. Tumours of the digestive tract include 
the pancreas, head and neck, stomach, oesophagus, liver, anal, colon and rectum. 
Malignancies of the urinary system include the bladder, prostrate, kidney and 
testis. Malignancies targeting women are breast cancer, ovarian cancer, gynaeco-
logical cancer and choriocarcinoma. Other miscellaneous malignancies include 
the retroperitoneal, brain, soft tissue, bone, thyroid, carcinoid tumour, nasopha-
ryngeal and tumours of the unknown primary site. The two important hallmarks 
of cancer growth and progression are invasion and metastasis [40]. Cancer is 
defined to denote the kind of malignant growth or tumour. It is not limited to 
humans but occurs widely in animals and vegetable kingdom. Cancer is neither 
contagious nor infectious. The growth begins locally, spreads to different organs 
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and finally leads to death which is a multistep process. The cause of the cancer 
remains unknown. The probable estimation of stomach cancers is 30% in men and 
22% in women [11]. Constitutive activation of transcription and growth factors 
also leads to malignant transformation [19]. The majority of the malignancies are 
triggered upon lost functionality of tumour- suppressor genes leading to the altera-
tions in oncogenes [22, 36] (Fig. 16.1).

16.3  Colorectal Cancer

Colorectal cancer is the third leading cause of cancer death in each sex and second 
overall in men and women combined. Approximately 5–6% of individuals will 
develop a cancer of the colon or rectum within their lifetime (American Cancer 
Society. Cancer facts and figures 2009, Atlanta). Colorectal cancer is a major cause 
of mortality in the western population and accounts for 10% of all cancer deaths in 
the UK [43, 53]. The higher rates of risk factors for CRC include overconsumption 
of red and processed meat [16, 35], excess alcohol intake [15], excess body weight 
[5], physical inactivity [8, 9] and diabetes mellitus [20, 27–30]. Death due to cancer 
occurs in 1 of every 13 men and 1 of every 11 women. The estimation of cancer 

Fig. 16.1 Cancer incidence (Source: American Cancer Society)
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incidence in the stomach is 30% among men and 22% in women [11]. Among dif-
ferent types of cancers, prostrate, bronchi, colon and rectum in men and women. 
Among women breast cancer accounts for half of total cancer deaths [23]. Usual 
consumption of fruits and vegetables combined is weakly inversely associated with 
risk of colorectal cancer, particularly colon cancer [48].

16.4  Transcription Factors

Transcription factors serve as an important constituent in regulating protein expres-
sion [50]. They either bind to the enhancer or the promoter region of the DNA, 
thereby regulating the proteins. These factors are vital and important for many cel-
lular processes [14]. The transcription factors which generally bind to the DNA 
sequence is known as the response element or as the transcription factor binding 
site. The TPA-response element is called as TRE as it is strongly induced by the 
tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Additionally the 
DNA binding of the AP-1 complex to the TRE sequence is induced by the cyto-
kines, oncoproteins and growth factors which show an effect on proliferation, sur-
vival, differentiation and transformation of cells [13]. Various transcription factors 
are functional upon communication with other genes, for instance, the Fos tran-
scription gene dimerizes with the Jun transcription factor, thereby increasing the 
expression levels of numerous genes that modulate cell division [10]. Increased 
expression of AP-1 family FOS proteins is associated with the acquisition of meta-
static behaviour in many kinds of tumours [7, 21, 54]. Forced expression of Fra-I 
induces cell migration [2, 3, 26, 46] (Fig. 16.2).

16.5  AP-1 Family Transcription Factors

The first identified mammalian transcription family is AP-1 (activator protein) [4]. 
AP-1 is a dimeric complex consisting of members of JUN, FOS, ATF (activating 
transcription factor) and MAF (musculoaponeurotic liposarcoma) protein families. 
These complexes can form heterodimers and homodimers. These genes are well- 
known as the basic leucine-zipper genes since they interact with the DNA backbone 
with their basic domain and dimerize through a leucine-zipper motif. FOS and JUN 
are the main AP-1 proteins in mammalian cells. These two genes were initially rec-
ognized as viral oncogenes, v-Fos in the Finkel-Biskis-Jinkins osteosarcoma virus 
and v-Jun in avian sarcoma virus, respectively. JUNB and JUND are Jun family 
members, and FOSB, FRA1 and FRA2 are FOS proteins which have potent trans-
activation domains which induce target-gene transcription. The major role of 
AP-1 in transformation results in the regulation of cell morphology than cell prolif-
eration [13]. The extracellular signals from growth factor receptors through mitogen- 
activated protein kinase convert into changes in the gene expression by AP-1 by 
targeting the AP1-responsive target genes [52]. AP1 activity has been implicated in 
a number of biological processes which include cell proliferation, differentiation, 
apoptosis and oncogenesis [24, 41] (Fig. 16.3).
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Fig. 16.2 Oncogenic transcription factors

Fig. 16.3 Potential role of AP1 transcription factors
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16.6  Role of Transcription Factors in Cancer

Cancer is commonly caused by the alterations in oncogenic transcription factors, 
which are typically somatic events, even though germ line alterations could predis-
pose an individual towards inherited or familial cancer. A distinct genetic variation 
is not enough for developing a cancerous tumour. Many evidences points towards 
the involvement of a multistep process of consecutive alterations in many oncopro-
teins, tumour-suppressor genes or transcription factors in tumour microenvironment 
[17, 42]. Molecular pathways of invasion-related cellular activation include cell to 
cell adhesion, cell and matrix adhesion as well as proteolysis, ectopic survival and 
cell migration. The extracellular signal towards the receptor leading to the signal 
transduction and eventually to cellular response is vital for the modification of the 
invasive phenotype. Metastasis is a multistep process of invasion [32]. Proteolytic 
degradation of extracellular matrix is an important event for the activity of the inva-
sive cells [51]. The activities of the normal cell behaviour and tissue maintenance 
mainly depend on ECM [31]. ECM along with its biological integrin and non- 
integrin receptors are known as a barrier, a substrate for invasion, a signal, a source 
of advancement and motility and also a modulator of survival in case of invasion 
[49]. The loss of E-cadherin is correlated with N-cadherin upregulation, eventually 
leading to migration and invasion [6, 18]. Cellular and biological activities are posi-
tively or negatively related to the invasive phenotypes comprising of cell-to-cell 
adhesion, cell and matrix adhesion, proteolysis, ectopic survival as well as migra-
tion [32]. The multi-phased invasion process of metastasis reveals that metastasis is 
an essential requirement for invasion [1]. Mainly the diagnosis of cancer includes 
grade of differentiation in terms of growth and invasion based on the staging of 
tumours. The TNM system, which is propagated by the International Union to fight 
against cancer, is used to evaluate and stage tumours for therapeutic resolutions. The 
root of clinical manifestations in the majority of invasive malignancies is the factors 
such as progression, invasion, survival and loss of differentiation [34]. Cell growth 
disturbances are implicated by oncogenes and tumour-suppressor genes which may 
differ in promoting or suppressing invasion, differentiation and survival [33].

The oncogenes were discovered in 1910 by Peyton Rous, who demonstrated the 
infectious filterable virus causing fibrosarcomas in chickens ([38, 39]. This virus 
was eventually known as Rous sarcoma virus [45], later shortened to v-Src [12]. 
This led to the final discovery of the first cellular proto-oncogene called as c-src in 
1976 by Michel Bishop, Harold Varmus and Dominique Stehelin [44]. These are 
structurally and functionally heterogeneous groups of genes, whose protein prod-
ucts affect multiple regulatory cascades within the cell which finally decide cell fate 
[37]. Products of oncogenes are classified into six groups: transcription factors, 
chromatin remodellers, growth factors, growth factor receptors, signal transducers 
and apoptosis regulators [10]. Oncogenic transcription factors can control cell pro-
liferation, apoptosis or both [25]. Proto-oncogenic transcription factors transform 
into activated oncogenic transcription factors by structural alterations resulting 
from gene translocations or mutations [25, 47] or by amplification. Oncogenes 
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represent a class of genes which generally carry out critical functions to cellular 
signalling, growth and differentiation under normal conditions, but upon abnormal 
expression, these genes are able to induce tumorigenesis, ultimately leading to can-
cer [37] (Fig. 16.4).
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17NF-κB: Its Role in Colorectal Cancer

A. Hartley, H. Wei, L. Prabhu, M. Martin, and T. Lu

Abstract
Colorectal cancer (CRC) is a major worldwide health problem and is the second 
leading cause of cancer-related deaths in the United States. Despite considerable 
progress in diagnosis and treatment, a high mortality rate persists, largely due to 
the complications associated with metastatic incidences. The pro-inflammatory 
transcription factor nuclear factor κB (NF-κB) is a central player in inflammatory 
responses and tumor progression. In CRC, constitutively activated NF-κB has 
been observed in the majority of patients. NF-κB significantly affects the process 
of tumorigenesis by promoting many aspects including tumor growth, prolifera-
tion, invasiveness, and angiogenesis. Importantly, the critical contribution of 
NF-κB to inflammation and tumorigenesis is due to its control of the expression 
of a large variety of target genes, many of which, when aberrantly expressed, 
help to orchestrate and promote CRC malignant potential. These NF-κB target 
genes include those vital to cell cycle regulation, cell proliferation, metastasis, 
and cell survival. Additionally, activation of NF-κB in both cancerous cells and 
inflammatory cells and subsequent induction of cytokines/chemokines within the 
tumor microenvironment also contribute to CRC cell malignancy in both 
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 autocrine and paracrine manners. These evidences implicate inhibition of NF-κB 
as an important approach for CRC therapy. Several recent combinatorial 
approaches using classical chemotherapeutics with NF-κB inhibitors seem to 
have resulted in very promising outcomes.

Keywords
Colorectal cancer · NF-κB · Transcription factor

17.1  Introduction

Colorectal cancer (CRC) is a serious worldwide health problem and remains the 
second leading cause of deaths from cancer in both men and women combined. 
Despite considerable advances in diagnosis and treatment, a high mortality rate per-
sists, largely due to the complications associated with metastatic disease. CRC 
patients often present with a broad spectrum of neoplasms, ranging from benign 
adenomas to malignant carcinomas. While genetic factors such as mutations in 
DNA mismatch repair genes constitute a strong risk factor for developing CRC, 
they only account for 20–30% of all CRC cases. Notably, the majority of CRC cases 
(70–85%) are sporadic in nature and arise from the aggregate effects of multiple 
somatic mutations and epigenetic aberrations leading to the transformation of colon 
epithelial cells into adenocarcinomas [1].

Over the past decade, the pro-inflammatory transcription factor nuclear factor κB 
(NF-κB) has emerged as a central player in inflammatory responses and tumor 
development. In general, aberrant NF-κB activity seems to have a critical role in 
tumorigenesis and acquired resistance to chemotherapy. In CRC especially, NF-κB 
has been shown to be constitutively activated in nearly 60–80% of patients [2]. This 
elevated constitutive NF-κB activity is usually achieved by the induction of a local 
network of cytokines/chemokines and cell infiltration into affected sites. The con-
tinuous release of cytokines and growth factors by tumor cells and cells of the tumor 
microenvironment results in a tumor-promoting, feed-forward, and prolonged reten-
tion of nuclear NF-κB in malignant and tumor-associated immune/inflammatory 
cells. As a result, this sustained NF-κB-mediated inflammation significantly affects 
the process of tumorigenesis by modulating tumor growth and invasiveness, tumor- 
mediated angiogenesis, and the patterns of tumor-host interactions in the reactive 
tumor microenvironment [3].

The interconnection between inflammation and cancer was initially proposed by 
Virchow in the mid-nineteenth century when he hypothesized that cancer arose at 
regions of chronic inflammation brought about by irritants and tissue injury [4, 5]. 
There is now increasingly growing evidence to support the role of NF-κB as a criti-
cal mediator in the development of these inflammation-driven sporadic tumors. 
Perhaps the best-studied example is constitutive NF-κB activation in inflammatory 
bowel diseases (IBDs), which has been shown to significantly increase the risk of 
CRC development in patients with a number of years of active disease [6, 7]. IBD is 
associated with persistent NF-κB activation in cells such as the myeloid and epithe-
lial cells located within the colonic mucosa. Such aberrant NF-κB activation was 
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shown to bring about the transformation of colon epithelial cells by upregulating the 
expression of proteins that mediate cellular proliferation (e.g., cyclin D1), anti- 
apoptosis (e.g., survivin, B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apopto-
sis protein (XIAP), inhibitor of apoptosis protein 1 (IAP1)), angiogenesis (e.g., 
vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), cyclooxygenase 2 
(COX2)), and metastasis (e.g., matrix metallopeptidase 9 (MMP9), intercellular 
adhesion molecule 1 (ICAM-1)) [8, 9]. This chapter discusses recent evidence sup-
porting the progression of CRC and briefly explores the implications of NF-κB as 
an important therapeutic target in this disease.

17.2  NF-κB Proteins and Signaling Pathways

As shown in Fig. 17.1, the family of NF-κB transcription factors consists of five 
proteins, namely, p65 (RelA), RelB, c-Rel, p105/p50 (NF-κB1), and p100/52 (NF- 
κB2). These proteins form distinct homo- or heterodimeric complexes, with the 
p65/p50 heterodimer being the most abundant. Both p50 and p52 are produced by 
proteasomal processing of their precursors p105 and p100, respectively. Although 
diverse, all NF-κB family members share a highly conserved domain  – the 
N-terminal Rel homology domain (RHD), which is required for dimerization, DNA 
binding, interaction with the inhibitors of NF-κB (IκBs), and nuclear translocation. 
Unlike the RHD, the C-terminal transactivation domain (TAD) is conserved only 
among the Rel proteins, including p65 (RelA), RelB, and c-Rel. It confers positive 
regulation of gene transcription. In normal cells, NF-κB dimers are latent and are 

Fig. 17.1 Schematic of the NF-κB family members (Adapted from [10]). The NF-κB family 
members are defined by the N-terminal Rel homology domain (RHD), which is responsible for 
DNA binding and dimerization. All except p52 and p50 contain a transactivation domain (TAD), 
which confers positive regulation of gene expression. p52 and p50 also contain glycine-rich 
regions (GRR), which are necessary for their proteolytic cleavage and ankyrin repeats (ANK) 
similar to those found in IκB family of inhibitor proteins. Additionally, RelB contains a leucine 
zipper motif (LZ). Other abbreviation: DD dimerization domain
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mainly retained in the cytoplasm via association with the inhibitory IκB family of 
proteins. The IκB family also consists of several members (IκBα, IκBβ, IκBγ, IκBε, 
Bcl-3, p100, and p105) with IκBα and IκBβ being known for their prominent roles 
in binding to NF-κB heterodimers, effectively blocking their nuclear localization. 
All members of the inhibitory IκB complexes including p100 and p105 are charac-
terized with the presence of ankyrin repeat domains (ANK) in their structure, which 
act to effectively mask the nuclear localization signals (NLS) of NF-κB heterodi-
mers, keeping them sequestered in the cytoplasm [10].

Activation of NF-κB can be classified into two distinct pathways, commonly 
referred to as the canonical and non-canonical pathways (Fig.  17.2). In general, 
NF-κB can be activated by a divergent array of stimuli that lead to IκB kinase 
(IKK)-dependent phosphorylation, polyubiquitination, and subsequent proteasome- 
mediated degradation of IκB proteins. The liberation of NF-κB subunits then allows 
them to translocate to the nucleus, where they can bind to cognate κB sites in spe-
cific promoter regions and regulate target gene expression [10]. The canonical 

Fig. 17.2 Schematic of the canonical and non-canonical NF-κB pathways (Adapted from [11]). 
The canonical pathway (left) is induced by most physiological NF-κB stimuli and is represented 
here by TNF, IL-1, and LPS signaling. Stimulation of the corresponding receptor leads to the IKK 
complex activation comprised of two catalytic subunits, IKKα and IKKβ, as well as the regulatory 
IKKγ or NEMO subunit. IκBα is then phosphorylated in an IKKβ- and NEMO-dependent manner, 
which results in its polyubiquitination and subsequent degradation. The liberated p65/p50 het-
erodimer undergoes nuclear translocation where it engages in target gene transcriptional activa-
tion. The non-canonical pathway (right) is induced by a more selective family of cytokines, such 
as LPS, CD40L, BAFF, and lymphotoxin-β (LT-β). Upon activation, p100 processing depends on 
NIK, which triggers IKKα-mediated phosphorylation of p100, leading to partial processing of 
p100 and the generation of transcriptionally active p52/RelB complexes
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pathway is typically simulated by factors such as tumor necrosis factor α (TNFα), 
interleukin 1 (IL-1), or lipopolysaccharide (LPS), leading to IKK activation 
(Fig. 17.2, left panel). The IKKβ subunit of the IKK complex phosphorylates serine 
residues in the signal responsive region (SRR) of IκBα, leading to its ubiquitination 
and subsequent proteasomal degradation. This results in the release of the p65/p50 
heterodimer, which then translocates to the nucleus to induce transcription of target 
genes [11]. In contrast, the non-canonical pathway depends on NF-κB-inducing 
kinase (NIK)-induced activation of IKKα and is typically simulated by ligands such 
as cluster of differentiation 40 ligand (CD40L), LPS, and B-cell-activating factor 
(BAFF) (Fig. 17.2, right panel). In this pathway, p100/RelB complexes are retained 
in an inactive state in the cytoplasm. Signaling through a subset of receptors, includ-
ing lymphotoxin-β receptor (LTβR), CD40, and BAFF receptor 3 (BR3), activates 
NIK, which in turn activates IKKα, leading to the phosphorylation and ubiquitina-
tion of p100 and its subsequent proteasomal processing to p52. This series of events 
creates a transcriptionally competent RelB/p52 complex that can translocate to the 
nucleus and induce target gene expression [12].

In addition to the association with their inhibitory IκB proteins, posttranslational 
modifications (PTMs) of NF-κB constitute another critical aspect of the extremely 
dynamic regulation of NF-κB activity. Besides the well-known PTMs, such as phos-
phorylation, acetylation, etc., our lab has recently demonstrated that protein arginine 
methyltransferase 5 (PRMT5), an epigenetic enzyme, positively regulates NF-κB 
activity through IL-1β-stimulated dimethylation of p65. This served as the first piece 
of evidence that NF-κB can be methylated on an arginine residue [13]. Previously, we 
also demonstrated that NF-κB can be methylated on lysine residues by the nuclear 
receptor-binding SET domain-containing protein 1 (NSD1) and demethylated by the 
F-box and leucine-rich repeat protein 11 (FBXL11). Overexpression of FBXL11 was 
shown to inhibit NF-κB activity, whereas high levels of NSD1 served to enhance 
NF-κB activity and rescued the inhibitory effect of FBXL11 [14]. These findings 
point to the highly sophisticated and fine-tuned regulation of the NF-κB pathway.

17.3  NF-κB Regulates Cell Cycle Progression and Promotes 
Cell Proliferation

The cell cycle, also known as the “cell-division cycle,” is characterized by a series 
of coordinated events or phases that control the process of DNA replication and cell 
division. These phases include G0, during which the cell is quiescent; G1 and G2, 
in which the cell increases in size and prepares for DNA synthesis and mitosis [15]; 
the S phase, which involves duplication of a cell’s DNA (DNA replication); and 
finally the M phase, during which the cell undergoes mitosis and subsequently 
divides to produce two daughter cells. In normal cells, the cell cycle is regulated by 
multiplex signaling. Phase transitions are tightly regulated by key regulatory pro-
teins known as cyclin-dependent kinases (CDKs), a family of serine/threonine pro-
tein kinases activated during precise points of the cell cycle. Importantly, these 
regulatory proteins also govern a set of checkpoints responsible for monitoring 
completion of critical transitional events such that progression to the next phase is 
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delayed if necessary conditions are not achieved. CDK activation generally requires 
association with a set of secondary subunits known as cyclins, the levels of which 
fluctuate at the appropriate period of the cell cycle to create an active, CDK-cyclin 
complex that has unique substrate specificity [16].

NF-κB plays a critical role in the cell cycle via transcriptional control of cyclins. 
The best-studied example is cyclin D1, which is expressed early in the cell cycle. 
Cyclin D1 serves as a key regulator of G1 checkpoint control [15, 17–19]. Guttridge’s 
group showed that inhibition of NF-κB activity decreased cyclin D1 expression 
causing cells to enter G1 cell cycle arrest [19]. In contrast, in transformed cells, 
dysregulated cyclin activity has been shown to accelerate cell cycle progression. For 
instance, cyclin D1 is overexpressed in a variety of human cancers, including CRC 
[20–22]. High expression of cyclin D1 plays a vital role in promoting tumor cell 
proliferation [16]. This aberrant expression of cyclin D1 in cancers may be attrib-
uted in part to the constitutively active NF-κB frequently observed in cancers. 
Several research groups have reported that NF-κB may directly induce cyclin D1 
gene expression through binding to multiple consensus sites in the cyclin D1 pro-
moter [19, 23]. However, enhanced cyclin D1 expression can also occur indirectly 
via the transcriptional activity of other oncogenes, such as the signal transducer and 
activator of transcription (STAT) 3/5, which are also activated by NF-κB-mediated 
production of cytokines, such as IL-6 [24, 25]. Overall, NF-κB-mediated dysregula-
tion of cyclin D1 in tumor cells represents a crucial mechanism by which uncon-
trolled cell growth is achieved in cancer cells, among which are CRC cells, due to 
its promotion of the G1-to-S-phase transition [23].

In vivo, the direct relationship between constitutive NF-κB activation and CRC 
development was initially demonstrated in a colitis-associated colorectal cancer mouse 
model [11], in which various “irritants” of the gut biome promoted tissue injury and 
inflammation and increased intestinal epithelial cells (IECs) proliferation. As a conse-
quence, malignant neoplasms were formed in the colon regions with NF-κB-mediated 
chronic inflammation [4, 5, 9]. Furthermore, conditional disruption of IKKβ-driven 
NF-κB activation within IECs attenuated the development of colonic adenomas [9]. 
NF-κB can accelerate the proliferative capabilities of cancer cells by dysregulating the 
expression of numerous target genes that are involved in cell growth and division. 
Similar to in vitro data, cyclin D1, once again, is an important gene among this list. 
Taken together, NF-κB activity has a critical role in regulating a variety of target genes 
that are required for cell cycle progression and cell proliferation in CRC.

17.4  Role of NF-κB in Metastasis

Metastatic CRCs are defined by their spread to distant organs and tissues, most often 
the liver, lungs, and abdominal cavity. Treating metastatic CRC is often more diffi-
cult and these patients tend to have a worse prognosis with an overall 5-year survival 
rate of ~11%. Constitutive activation of NF-κB has been increasingly recognized as 
a critical player in promoting initiation, progression, and metastasis of CRC. In fact, 
many of the distinct features of metastasis, such as cell migration, invasion, adhe-
sion, and angiogenesis, can be attributed to the aberrant upregulation of several 
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NF-κB target genes that facilitate these processes [26]. Below, we will discuss some 
of the best-defined and prominent NF-κB target genes, whose upregulation has been 
shown to confer metastatic cells with their unique survival advantage.

17.4.1  Migration

Activation of NF-κB has been linked to tumor cell migration through NF-κB- 
mediated enhanced matrix metalloproteinase (MMP) production in tumor cells 
[27]. MMPs are essential to cell migration by facilitating rearrangement of the 
extracellular matrix (ECM). Perhaps the overall role of aberrant NF-κB activity in 
promoting tumor migration may be appreciated by the consequences of suppressing 
NF-κB activity. For instance, curcumin inhibited cell migration through its inhibi-
tion of NF-κB activity and subsequent downregulation of the expression of Cox-2 
and MMP-2 in COLO 205 CRC cells [28, 29]. Another study also demonstrated the 
inhibitory effect of ginsenoside Rg3 on SW480 colon cancer cell migration via 
inhibition of MMP-9 and Cox-2 [30]. Furthermore, tumor migration and metastasis 
also correlated with enhanced NF-κB-dependent induction and secretion of a range 
of chemotactic factors that induce cell migration. These factors include chemokines 
and their receptors such as chemokine receptor CXCR4, monocyte chemoattractant 
protein-1 (MCP-1), ICAM-1, and migration inhibitory factor (MIF) [31]. Taken 
together, NF-κB has been shown to play a pivotal role in CRC cell migration.

17.4.2  Invasion

Invasion of cancer cells into surrounding tissue and the vasculature constitutes 
another early step in tumor metastasis. This is a multi-step process that requires 
chemotactic migration of cancer cells from their primary foci and their subsequent 
protrusive activity into the lymphatic or vascular circulation. One of the hallmarks 
of cancer cell penetrance into surrounding stroma involves degradation of and 
attachment to the ECM. It is well known that the major NF-κB target genes upregu-
lated during these processes include MMP-2 and MMP-9. Both participate in the 
degradation of the ECM [30, 32]. There is also strong evidence supporting the idea 
that the mechanisms underlying tumor invasion tend to mimic the developmental 
process known as epithelial-to-mesenchymal transition (EMT). EMT is a highly 
dynamic process that allows epithelial-like tumor cells to assume a mesenchymal 
phenotype and is critical to the acquisition of invasive capability of CRC cells [33]. 
Constitutive NF-κB activity has also been implicated as an important factor in EMT 
of CRC cells. For instance, it has been reported that enhanced activation of NF-κB 
activity in tumor-associated macrophages (TAM) could lead to the increased expres-
sion of NF-κB target gene TNFα. When secreted, TNF-α activates the signal trans-
duction of Wnt/β-catenin through inhibiting glycogen synthase kinase (GSK)-3β, 
promoting the EMT, which is deemed necessary for the invasion of CRC [34, 35]. 
Furthermore, it has been shown that NF-κB induces the expression of the 
mesenchymal- specific gene vimentin [35]. Therefore, inhibition of NF-κB is an 
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attractive therapeutic approach for counteracting the invasion and metastasis of 
CRC cells in part by limiting deregulated EMT.

17.4.3  Adhesion

Following protrusion, adhesion of escaped tumor cells to the substratum is largely 
accomplished by integrin and non-integrin molecules that facilitate binding of the 
leading edge of the cell to specific extracellular matrix protein domains. Additionally, 
selectins, integrins, and members of the immunoglobulin superfamily can also sup-
port CRC progression by promoting malignant cell attachment to secondary tissue 
sites. Cell adhesion molecules (CAMs) play a major role in the CRC metastatic poten-
tial and, therefore, significantly influence patient prognosis. Multiple reports have 
indicated that NF-κB activation increases expression of several adhesion molecules 
such as E-selectin, VCAM-1, and ICAM-1. Moreover, inhibition of NF-κB has been 
shown to reduce leukocyte adhesion and extravasation to the site of inflammation 
[36]. In contrast, NF-κB-mediated downregulation of cadherins (mainly E-cadherin) 
can facilitate tumor cell detachment from the primary site [37]. Ultimately, hyperac-
tive NF-κB could facilitate CRC cells’ detachment from the primary site, prolifera-
tion, and attachment at a new location to produce the secondary tumor.

17.4.4  Angiogenesis

Angiogenesis, which involves formation of new blood vessels from the preexisting 
vasculature, constitutes another important component of tumor growth and is con-
sidered a primary target in the treatment of metastatic CRC. VEGF and IL-8/CXCL8 
are prominent pro-angiogenic and pro-metastatic proteins that serve as negative 
prognostic factors in CRC [38, 39]. Particularly, the VEGF family and their recep-
tors represent the most important and widely studied pro-angiogenic factors. Among 
them, VEGF-A binding to VEGF receptor 2 (VEGFR-2) is believed to be the key 
mitogenic signaling pathway mediating angiogenesis [40]. Both VEGF and CXCL8 
expression levels are upregulated in CRC via activation of the NF-κB pathway [38, 
41, 42]. Of interest, a previous study also reported that endothelial cells not only 
respond to but also store and secrete VEGF, resulting in the autocrine activation of 
the VEGFR2, further enhancing tumor cells’ migratory and invasive capabilities 
[42]. Another critical growth factor in CRC malignancy is epidermal growth factor 
receptor (EGFR), found on the surface of tumor cells. EGFR contributes to a num-
ber of processes involved in CRC development and progression and particularly 
angiogenesis. Approximately 80% of malignant tumors of the CRC are EGFR- 
positive [43, 44]. Furthermore, constitutive EGFR and NF-κB activities may com-
bine to enhance the angiogenic potential of CRC cells, whereby EGFR- and 
NF-κB-dependent pathways establish positive loops to increase oncogenic poten-
tial, rendering CRC cells resistant to EGFR inhibitors [45].

Collectively, the above evidence affirms the critical involvement of NF-κB in four 
aspects of tumorigenesis, including migration, invasion, adhesion, and angiogenesis 
processes, which ultimately lead to the aggressive metastatic capabilities of CRC.
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17.5  Role of NF-κB in Apoptosis

Apart from the various roles described above, NF-κB is also a salient player in 
apoptosis, a process by which cells undergo programmed cell death and is an essen-
tial part of normal physiology. Apoptosis is known to be critical for normal cell 
turnover, atrophy, immune defense, and embryonic development. Unsurprisingly, 
inappropriate apoptosis (either too little or too much) has been linked to many dis-
orders including CRC. Failure of tumor cells to undergo apoptosis results in their 
evasion of death, further promoting their malignant potential and resistance to che-
motherapeutic treatments. Here, we will briefly explore the role of constitutively 
active NF-κB in mediating evasion of apoptotic pathways in CRC cells as a major 
survival factor. Additionally, evidence for certain pro-apoptotic functions of NF-κB 
will also be mentioned.

17.5.1  The Predominant Anti-apoptotic Activity of NF-κB

Aberrant activation of NF-κB pathway is one of the key survival mechanisms for 
CRC cells because it results in the enhanced transcription of several NF-κB target 
genes that are known to impede the induction of apoptosis. These genes include 
IAPs, cellular FADD-like IL-1β-converting enzyme inhibitory protein (c-FLIP), 
and anti-apoptotic members of the Bcl-2 family (e.g., A1/BFL1 and B-cell 
lymphoma- extra-large (Bcl-xl)) [26]. In a significant portion of CRCs, one impor-
tant means by which the NF-κB pathway becomes increasingly active is via the loss 
of p53 function. Normally, tumor suppressor genes like p53 play an important role 
to induce apoptosis of cancerous cells that would otherwise accumulate mutations 
and contribute to a transformed phenotype. However, in CRC cells, p53 is mutated 
and subsequently loses its pro-apoptotic function. This facilitates the uncontrolled 
growth of colon cells, thus leading to an aggressive CRC phenotype. The link 
between NF-κB and p53 has been well documented. Shao et al. demonstrated that 
overexpressed wild-type p53 markedly increased cytoplasmic expression of IκBα, 
resulting in a significant decrease in NF-κB nuclear localization and suppression of 
NF-κB-induced anti-apoptotic gene expression. This led to a rapid induction of 
apoptosis in CRC cells, therefore, leading to inhibition of CRC progression [46].

Moreover, Karin’s group confirmed that the oncogenic role of NF-κB in colon 
epithelial cells was mediated through its anti-apoptotic function [47], which further 
prevented the apoptotic elimination of premalignant cells [9]. Furthermore, other 
researchers also reported that suppression of NF-κB activity could attenuate apop-
tosis in a number of CRC cell lines [48]. For instance, certain factors in our diet, 
such as genistein, a biologically active flavonoid found in high amounts in soy, were 
shown to inhibit NF-κB activity, leading to the downregulation of anti-apoptotic 
Bcl-2 as well as upregulation of pro-apoptotic Bcl-2-associated X protein (BAX) in 
CRC cells LoVo and HT-29 [49], resulting in increased apoptosis. Similarly, inhibi-
tion of NF-κB activity by a pharmacological agent, quercetin, also correlated with 
increased apoptosis in human CRC cells CACO-2 and SW-620, through downregu-
lation of Bcl-2 and upregulation of BAX [50].
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Taken together, these evidences support the notion that hyperactive NF-κB could 
lead to the induction of anti-apoptotic genes, while inhibition of NF-κB activity 
could abolish their expression, therefore impeding CRC progression.

17.5.2  The Potential Pro-apoptotic Activity of NF-κB

It is worth noting that the role of NF-κB in apoptosis is complicated. Although 
NF-κB activation in tumor cells is predominantly oncogenic, nevertheless, a few 
sporadic studies have shown that NF-κB may also function as a tumor suppressor by 
inducing apoptosis under certain specific conditions [51–53]. This is highly corre-
lated to the induction of Fas in cancer cells. A pro-apoptotic role for NF-κB in CRC 
was reported by Kimura et al., in which cytokine-induced activation of NF-κB func-
tioned as a potential pro-apoptotic factor through enhancement of Fas expression in 
a human CRC cell line, RPMI4788 [52]. The authors found that Fas expression was 
strongly potentiated by TNF/IFN-α-mediated activation of NF-κB and postulated 
that the pro-apoptotic tendency of NF-κB might be due to differences in down-
stream signal transduction induced by TNF/IFN-α or TNF-α alone. Similarly, 
another study showed that NF-κB directly regulated Fas transcription to modulate 
Fas-mediated apoptosis and tumor suppression, suggesting that canonical NF-κB 
signaling could serve as a transcriptional activator of Fas [53].

Based on the current knowledge, it is difficult to reconcile the potential dual roles 
of NF-κB in apoptosis in CRC, yet it is important to call attention to the above scien-
tific findings. It may take researchers a long time to exactly figure out how such kind 
of dual functions of NF-κB in apoptosis may occur. Nonetheless, realizing the com-
plexity of the function of NF-κB in CRC is crucial to studies that target inappropriate 
NF-κB activation. Collectively, we have presented strong evidence that NF-κB pri-
marily  exerts its oncogenic function via the upregulation of various anti- apoptotic 
factors, providing a rationale for developing anticancer strategies to inhibit 
NF-κB. Nonetheless, the complex nature of NF-κB-mediated apoptosis may offer cli-
nicians better insight for developing more effective chemotherapeutic agents for CRC.

17.6  Conclusions and Perspectives

As shown in Fig. 17.3, the NF-κB family controls the expression of a large variety of 
target genes, many of which, when aberrantly expressed, help to orchestrate and 
promote CRC tumorigenic potential by affecting cell cycle regulation, cell prolifera-
tion, metastasis, and anti-apoptotic activity. Additionally, activation of NF-κB in 
inflammatory cells from the tumor microenvironment also contributes to CRC devel-
opment by inducing expression of cytokines, chemokines, and growth factors. This 
leads to constitutive activation of NF-κB in tumor cells, which in turn release numer-
ous factors that sustain the ongoing paracrine inflammatory process between the 
tumor microenvironment and tumor cells [3]. These evidences confirm that inhibi-
tion of NF-κB may be an important approach for CRC therapy. In fact, many efforts 
are already under way to develop NF-κB inhibitors. However, there remains some 
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reluctance to their use since NF-κB is also an essential player in the immune response 
against cancer. Prolonged immunosuppression via NF-κB inhibition is likely to have 
deleterious effects on patients. However, this can be largely overcome by the way 
that the drugs are administered. For instance, minimizing the dosage, with frequent 
but short-term administration, may help to alleviate the side effects. Furthermore, 
combinatorial approaches using classical chemotherapeutics with NF-κB inhibitors 
seem to have resulted in very promising synergies in recent studies [54].

Certain phytochemicals have also demonstrated beneficial effects in CRC 
patients. For instance, curcumin, ginseng extract, resveratrol, and green tea extract 
have been shown to inhibit IKK/NF-κB activity [11, 28]. C086 is another compound 
derived from curcumin and has recently been shown to be more potent than cur-
cumin by downregulating NF-κB activity in both CRC cells and xenograft tumors 

Fig. 17.3 Constitutive activation of NF-κB promotes inflammation and progression of 
CRC. Bacteria and various “irritants” of the gut cause tissue injury and inflammation, leading to 
excessive production of pro-inflammatory cytokines. These cytokines bind to cell surface receptors 
of colon epithelial cells, resulting in NF-κB activation in these cells. NF-κB activation in colon 
epithelial cells increases cell proliferation and survival via upregulation of proliferative and pro- 
survival NF-κB target genes, thus contributing to the malignant transformation of these cells. 
Activation of NF-κB in inflammatory cells from the tumor microenvironment also contributes to 
CRC development by inducing expression of cytokines, chemokines, and growth factors. This 
leads to constitutive activation of NF-κB in tumor cells, which in turn releases numerous factors 
that sustain the ongoing paracrine inflammatory process between the tumor microenvironment and 
tumor cells and the autocrine loop between tumor cells. Hyperactive NF-κB in tumor cells pro-
motes expression of diverse NF-κB target genes, including cytokines, chemokines, and growth 
factors, as well as genes that are associated with metastasis, such as those promoting proliferation, 
migration, angiogenesis, adhesion, and invasion of tumor cells [3, 60]
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[11]. Proteasome inhibitors have also yielded some success as they act by blocking 
the degradation of IκB to enhance cytoplasmic retention of NF-κB heterodimers. 
However, very few documented reports exist to support their efficacy in triggering 
apoptosis when used as a monotherapy and may be more useful when employed in 
combination with either chemotherapeutic drugs or other death-inducing cytokines 
[55]. Other broad-acting agents such as sulfasalazine, methotrexate, and nonsteroi-
dal anti-inflammatory drugs (NSAIDs) are also widely used to treat acute states of 
IBD and may lower the overall risk for colitis-associated CRC development [56, 
57]. Finally, dexamethasone, a glucocorticoid, has been proven to be a potent NF-κB 
inhibitor [58]. Clinical trials have already been conducted to investigate the efficacy 
of this agent when used in combination with other therapeutics.

Taken together, these data implicate inhibition of the NF-κB pathway as a potent 
therapeutic approach for CRC [59]. Because NF-κB is involved in many physiologi-
cal processes, not surprisingly, some adverse side effects have been noted upon 
systemic NF-κB inhibition. With the aid of nanoparticles however, the utility of 
NF-κB inhibitors may be significantly improved. This technology facilitates the use 
of drugs at minimal doses that can be delivered to restricted areas of the body [54]. 
While these efforts are promising, a concerted approach is required to develop the 
ideal NF-κB inhibitors, such that they target specific regions of the colon as well as 
the surrounding tumor microenvironment, with maximum efficacy and minimal 
systemic adverse effects for CRC patients.
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18Curcumin Suppresses Colorectal Cancer 
Growth and Metastasis by Inhibiting 
NF-κB Activity
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Abstract
The third most malignant disease diagnosed worldwide is colorectal cancer (CRC). 
CRC treatment by chemo- and radiotherapy is challenging due to the cancer’s abil-
ity to activate major transcription factors such as NF-κB. Curcumin, a phytochemi-
cal, is known to downregulate NF-κB signaling in CRC cell lines and to exhibit 
anticarcinogenic properties. Therefore, curcumin and its analogues are novel thera-
peutic agents that could be used in the treatment of CRC growth and metastasis.

Keywords
Colorectal cancer · Curcumin · NF-κB · Growth

18.1  Introduction

Colorectal cancer (CRC) is a prominent cause of cancer-associated deaths. 
Approximately 40,000 CRC patients are diagnosed per year in the USA with a 
40–50% death rate [1]. The standard of care for patients with locally progressive 
diseases (T≥T3 or N≥N1) is concurrent fluoropyrimidine and external beam 
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radiation followed by surgical resection. The level of complete pathologic response 
with this treatment is 8–16% [2]. Attempts at improving the outcome of CRC by 
incorporating cytotoxic agents such as oxaliplatin or irinotecan have been disap-
pointing [3]. These results indicate that in the majority of patients, the main chal-
lenge remains the primary resistance of CRC cells to cytotoxic chemotherapy. Due 
to the limited effectiveness of chemotherapy and radiation, other approaches have 
been sought to treat CRCs. Improvement in the outcomes of CRC is dependent on 
the introduction of agents that can modulate the intrinsic mechanisms of resistance.

18.2  Mechanism

The mechanisms of resistance to chemotherapy in CRC include the activation of 
nuclear factor kappa B (NF-κB) and hypoxia inducible factor (HIF-1α). NF-κB is a 
transcriptional factor that controls the expression of several oncogenes involved in 
tumor growth, angiogenesis, and inflammation [4–7]. NF-κB is normally activated 
in CRC [6]. Therefore, NF-κB is an important target for CRC therapy. In addition, 
epigenetic silencing of gene expression is another commonly known pathway that 
contributes to carcinogenesis and resistance in CRC [8].

18.3  Curcumin

Phytochemicals are compounds that come from natural resources. Many of these 
chemicals have anticancer properties, with curcumin being one of the more promis-
ing molecules. Curcumin is a phyto-phenolic molecule found in turmeric root [9]. 
These plants are native to certain parts of Asia and have been used for centuries for 
treating various diseases as learned from Indian Ayurvedic medicine [10]. Curcumin 
has been explored as an anticancer agent due to lower cancer rates found in coun-
tries where turmeric is a common ingredient in food. Curcumin displays extensive 
biological actions against metabolic diseases and cancer [11]. Extensive study over 
the last five decades has shown that curcumin can suppress various cancer cell activ-
ities [12]. The tumor growth process consists of multiple stages encompassing ini-
tiation, advancement, and development [13]. Excitingly, curcumin successfully acts 
at all three phases by targeting critical processes involved in cancer development 
and progression [14]. Curcumin stimulates chemopreventive and chemotherapeutic 
effects in different types of cancer cell lines [15]. The anticarcinogenic nature of 
curcumin has been reported in preclinical models of lymphomas, multiple myeloma, 
leukemia, and brain, pancreatic, gastric, and colorectal cancers [16].

Despite its anticancer properties, curcumin has low solubility in water and 
degrades easily, affording it low bioavailability in the body, where about 75% of the 
natural compound is excreted through the feces [17]. Due to these drawbacks, cur-
cumin has limited efficacy as a cancer therapeutic. In preclinical studies, curcumin 
suppresses the development and progression of CRC cell lines (Fig.  18.1). 
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Combination of curcumin and its analogues EF31 or UBS109 with 5-FU and oxali-
platin potentiates the decrease of spheroid migration and invasion (Figs. 18.2 and 
18.3). The mode of action for curcumin or its analogues involves the downregula-
tion of inflammatory signaling pathways, for example, NF-κB/cycloxygenase-2 
(COX-2), inhibition of heat shock protein 90 (HSP90), and epigenetic regulation. 
The assessment of curcumin in clinical trials for cancer prognosis and prevention 
has yielded disappointing outcomes. Potential explanations for the lack of clinical 
activity of curcumin include its low potency and poor solubility [18].

Fig. 18.1 Antiproliferative 
properties of curcumin in 
CRC cell lines (HCT116 
and HT-29). Proliferation 
was evaluated by MTT 
viability assay. Cell lines 
were exposed to different 
doses of curcumin 
(5–20 μM) for 48 h 
***P < 0.001

Fig. 18.2 Curcumin and its analogues EF31 and UBS109 increased the efficacy of oxaliplatin and 
5-FU in both HCT116 and HT-29 cell line spheroid migration. For making spheroids, CRC cell 
lines were plated on agar-coated 96-well plate. After 48 h spheroids moved to 12-well plates and 
grown for 24 h with or without treatments. The outward distance of migration was shown in per-
centage as compared to controls. Combination of oxaliplatin+5-FU+curcumin or analogues sig-
nificantly (*** P  <  0.001) decreased the migration compared to the untreated or individual 
treatments. Each value denotes the mean ± standard deviation (N = 5)
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18.4  Conclusion

CRC is one of the deadliest forms of cancer due to the often late onset of symptoms 
and the propensity of CRC cells to metastasize. In addition to the substantial ongo-
ing efforts to improve early detection for this cancer type, death rates may be 
reduced by the development of treatment approaches that destroy cancer cells but do 
not affect healthy cells. Current treatments in CRC have not been effective at killing 
cancer cells; unfortunately, healthy cells have been harmed due to the low bioavail-
ability and low water solubility of curcumin.
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Abstract
Colorectal cancer is the cancer of the colon, located at the lower part of the diges-
tive system. Although the role of STAT3 in cancer is known, its role particularly 
in colon cancer is largely unknown. STAT3 is a cytoplasmic transcription factor 
that involves extracellular signaling to the nucleus regulating fundamental func-
tions, like cell proliferation, apoptosis, differentiation, and angiogenesis. STAT3 
is a key regulator; abrogated activation leads to several diseases, including can-
cer. Aberrant interleukin (IL)-6-mediated JAK/STAT3 signaling pathway is 
closely related to the advancement of several human solid tumors including 
colorectal cancer. With other upstream regulators, IL-6/JAK signaling can acti-
vate STAT3, and its role appears to be critical in various types of cancer. STAT3 
has been traditionally recognized as an oncogene; more recently the dual role of 
STAT3 in cancer, either tumor inductive or suppressive, has been appreciated. 
This chapter describes the potential role of STAT3  in colon cancer based on 
in vitro, in vivo, and patient studies. Furthermore, we will discuss the mechanism 
of action and roles of the IL-6/JAK/STAT3 pathway in colorectal cancer and 
exploit current therapeutic strategies, to treat colorectal cancer. Understanding 
the complexity of STAT3 function in colorectal cancer has the potential to 
 elucidate important molecular aspects of colorectal cancer with significant thera-
peutic implications.
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19.1  Introduction

Colorectal cancer is the cancer of the large intestine (colon), positioned at the 
lower part of the digestive system. Colorectal cancer is the third most common 
cancer in the world, with nearly 95,270 new cases diagnosed and 49,190 deaths 
reported in 2017 ([113], Cancer statistics). Some of the known symptoms of 
colorectal cancer are change in bowel movements like diarrhea, constipation, 
change in the consistency of stool, rectal bleeding, and blood in stool; persistent 
abdominal discomfort, such as cramps, gas, or pain; weakness; fatigue; and unex-
plained weight loss. Many people with colorectal cancer experience no symptoms 
in the early stages of the disease, and gradually symptoms appear depending on 
size of the tumor and location in the large intestine. Colorectal cancer occurs when 
healthy cells in the colon undergo errors in their DNA mismatch repair mechanism. 
This leads to continuous division and accumulation of cells to form a tumor, which 
then migrates and destroys normal tissue of other parts of the body. Colorectal 
cancers occur due to gene mutations linked to increase the risk of cancer passed 
through families in small percentage. The genes responsible for chromosomal 
instability at the DNA level have been identified in colorectal cancer. Tumor cells 
typically have bizarrely abnormal karyotypes, with many losses, gains, and rear-
rangements of chromosomes which seem to be causally connected with the cancer. 
Inherited gene mutations do not make cancer inevitable, but they can increase an 
individual’s risk of cancer significantly.

19.1.1  Types of Colorectal Cancer

Most common forms of inherited colorectal cancer are:

• Familial adenomatous polyposis (FAP or APC) is an autosomal dominant condi-
tion with hundreds or thousands of polyps that cause to develop cancer in the 
lining of the colon and rectum. The condition has been mapped to 5q21, and the 
gene responsible for APC was identified. Untreated FAP with patient’s age 
around 40 years has enhanced risk of developing colorectal cancer.

• Hereditary nonpolyposis (HNPCC), also called Lynch syndrome, increases the 
risk of colorectal cancer and other cancers. It is autosomal dominant and highly 
penetrates, but, unlike FAP, there is no preceding phase of polyposis. HNPCC 
genes were mapped to two locations, 2p15-p22 and 3p21.3. People aged around 
50 with HNPCC develop colorectal cancer. Patients with HNPCC are constitu-
tionally heterozygous for a loss-of-function mutation. Loss of  heterozygosity 
(LOH) studies on HNPCC using microsatellite markers show lacking alleles 
present in the constitutional DNA. Some tumor specimens appeared to contain 
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extra, novel alleles. Microsatellite instability (MIN) generally in tumors could be 
classified into MIN+ and MIN− in colorectal FAP and HNPCC, and other rare 
inherited colorectal cancer syndromes can be detected through genetic testing. 
Increased risk of colorectal cancer is associated with a typical western diet con-
taining high fat and low fiber. In colorectal cancer malignant carcinomas develop 
from benign epithelial growths called adenomas which are classified into early 
(>1  cm in size), intermediate (<1  cm but without foci of carcinoma), or late 
(<1 cm with foci of carcinoma). The most common sequence of/in the develop-
ment of colorectal carcinoma is as follows [42].

• Constitutional loss of one copy of the APC gene on 5q21 is sufficient to carpet 
the colon with adenomatous polyps, which suggest loss or mutation of APC, 
probably an early event in the development of sporadic cancers.

• In about 50% of intermediate and late adenomas, only 10% of early adenomas 
have mutations in KRAS oncogenes. KRAS mutations mediate in the progres-
sion from early to intermediate adenomas.

• About 50% of late adenomas and carcinomas have shown to exhibit loss of het-
erozygosity on 18q. This is relatively uncommon in early and intermediate ade-
nomas. Characterized putative TS gene DCC (deleted in colorectal cancer) 
encodes a protein with homologies to cell surface glycoproteins involved in cell 
adhesion.

19.1.2  Risk Factors

Older age: Majority of people with colorectal cancer is older than 50, and colorectal 
cancers in younger people are generally less frequent.

African-American race: African-Americans have a greater risk of colorectal cancer 
compared to other races.

Inflammatory intestinal conditions: Chronic inflammatory diseases of the colon, 
i.e., ulcerative colitis and Crohn’s disease increase the risk of colorectal cancer.

Inherited syndromes: Genetic syndromes such as familial adenomatous polyposis 
and hereditary nonpolyposis (Lynch syndrome) passed through generations of 
family increase the risk of colorectal cancer.

Family history: If the parent, a sibling, or child in the family has colorectal cancer 
or rectal cancer, the risk to develop colorectal cancer is greater.

Low-fiber, high-fat diet: Colorectal cancer and rectal cancer may be related to diet; 
low in fiber and high in fat and high in red meat and processed meat cause more 
risk of colorectal cancer.

Diabetes: People with diabetes and insulin resistance may have an enhanced risk of 
colorectal cancer.

Obesity: People with obesity have increased risk of colorectal cancer when com-
pared to people with normal weight.

Smoking: People who smoke have an increased risk of colorectal cancer.
Alcohol: Heavy use of alcohol increases risk of colorectal cancer.
Radiation therapy: Radiation therapy directed at the abdomen to treat previous can-

cers can increase the risk of colorectal cancer.
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19.1.3  Stages of Colorectal Cancer

Four stages of colorectal cancer are described as shown in Fig. 19.1.

Stage I: Cancer has grown through the superficial lining (mucosa) of the colon or 
rectum and has not spread beyond the colon wall or rectum.

Stage II: Cancer has grown into or through the wall of the colon or rectum and has 
not spread to nearby lymph nodes.

Stage III: Cancer has invaded nearby lymph nodes and has not affected other parts 
of the body.

Stage IV: Cancer has spread to distant sites and organs such as the liver or lung.

19.2  Signal Transducer and Activator of Transcription 3 
(STAT3)

It is a transcription factor with oncogenic potential, initially found in interferon (IFN)-
regulated gene transcription as a transducer of signal from cell surface to nucleus [2]. 
STAT3 belongs to a highly conserved family of protein, composed of seven members 

Fig. 19.1 Colon epithelium showing different progressive stages in colorectal cancer (Adopted 
from Colorectal cancer and Mistletoe-A review by Dr. Becky Lee ND Naturopathic Doctor)
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and activated by several cytokines, growth factors, and oncogenic proteins. STAT3 
constitutively phosphorylates in several cancer cell lines and directs cell transforma-
tion and tumorigenesis by transducing signals from extracellular stimuli to different 
interferon’s (IFN-α, IFN-β, and IFN-ɣ) cytokine families, such as gp130 cytokines 
like IL-6, IL-12, and IL-23 and also ɣC cytokines such as IL-2, IL-15, and IL-21.

STAT3, located on chromosome 12, ranges between 750 and 850 amino acids. 
STAT3 phosphorylation allows nuclear translocation, and STAT3 dimer binds to 
DNA and directs upregulation of many genes involved in the cell cycle and survival 
such as CCND1, MYC, or BCL2L1. STATs have structurally and functionally con-
served domains like amino-terminal domain (NH2), coiled-coil domain, DNA- 
binding domain (DBD), linker domain (Lk), SH2 domain, tyrosine activation 
domain (Y), and transactivation domain (TAD). Constitutive activation of STAT3 
along with STAT5 have been observed in majority of human cancer cell lines and 
tumor tissues [17]. STAT3 and NF-κB in the colon are the main factors controlling 
the ability of preneoplastic and malignant cells to antagonize apoptosis-based tumor 
surveillance, which allocate tumor angiogenesis and invasiveness. The communica-
tion between cancer cells and inflammatory cells is due to the significant role in 
regulation of the interaction between STAT3 and NF-κB.

19.2.1  Mechanism of STAT3 Activation

Phosphorylation of tyrosine residue is crucial for STAT3 activation which later 
dimerizes to other STATs by reciprocal SH2 phosphotyrosine interaction important 
to its translocation into the nucleus, resulting in binding specific enhancer elements 
for initiation of transcription [31] as described in Fig. 19.2. Activation of STAT3 is 
highly regulated and important for normal biological functions like embryonic 
development, organogenesis, cell differentiation, and immune response [77]. STAT3 
is persistently activated in many cancers and plays a central role in tumor growth 
and metastasis. STAT3 controls cellular proliferation, invasion, migration, and 
angiogenesis, suggesting STAT3 integrally participates in tumor initiation, progres-
sion, and maintenance.

Cell survival and cell cycle progression direct by STAT3-mediated transcription 
in cells. Three major mechanisms explain the STAT3 activation:

• Receptor associated tyrosine kinases (JAKs)
• Cytokine stimulation of membrane receptors with innate kinase activity (EGFR 

and PDGFR)
• Cytoplasmic kinases (Src and Abl) family [14]

STAT3 is activated by phosphorylation of tyrosine residue at position 705, cata-
lyzed by JAK family tyrosine kinases, like epidermal growth factor (EGFR), vascu-
lar endothelial growth factor receptor (VEGFR), platelet-derived growth factor 
receptor (PDGFR), and colony-stimulating factor-1 (CSF-1). Conformational 
changes occurred due to receptor and ligand binding which bring JAKs into 
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proximity with each other, enabling activation by transphosphorylation [104]. 
Phosphorylated JAKs provide as docking sites for STAT molecules. Phosphorylation 
results STAT dimerization followed by binding on the SH2 domain of one molecule 
containing phosphotyrosine of another STAT molecule and represents dimers stabi-
lized by bivalent bonds. Activated STATs detach from the receptor, dimerize and 
translocate into the nucleus, and bind to members of the GAS (gamma-activated 
site) family of enhancers. The non-receptor tyrosine kinases like Src and Abl and 
cytokine receptors (IL6R) in association with JAKs catalyze tyrosine phosphoryla-
tion [148]. In canonical activation of IL-6-mediated STAT3, activation directs tyro-
sine phosphorylation of STAT3 and basically activates many genes. Maximal 
transcription activity of STAT3 is mediated by serine phosphorylation at position 

Fig. 19.2 Mechanism of IL-6/ JAK/STAT3 signaling pathway. Different ligands, usually cyto-
kines, like interleukins (IL-6) bind to the IL-6R on target cells in association with gp130 complex, 
and growth factors bind to cell surface receptors and activate associated JAKs, enhancing kinase 
activity. Activated JAKs phosphorylate tyrosine residues on the receptors to form STAT3 homodi-
mers and translocate into the nucleus and bind to members of ISRE/GAS family of enhancers to 
induce transcription of target genes (like Cyclin D1,Bcl-xl,c-myc Mcl1, and VEGF) by combining 
with consensus DNA elements. STAT3 tyrosine phosphorylation by membrane receptors with 
innate kinases like EGFR and by nonreceptor (cytoplasmic) tyrosine kinases like c-Src, ABL, and 
cytokine receptors (IL-6R). Serine kinases like mTOR phosphorylate STAT3 at serine position727 
to increase kinase activity. STAT3 mediates in cancer cell proliferation, differentiation, invasion, 
inflammation and immune function, and angiogenesis. The protein inhibitors of activated STATs 
(PIAS) family of proteins are negative regulators of STAT3-involved gene transcription. In addi-
tion, the suppressors of cytokine signaling (SOCS) protein family affect the JAKs, and inhibit the 
phosphorylation of gp130, STATs, and the JAKs themselves. (Adobe photoshopCS version 8.0)
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727 by serine kinases such as MAPK (p38MAPK, JNK, ERK), PKCδ, mTOR, and 
NLK [72]. Acetylation of STAT3 regulates transcriptional activity and homodimer 
ability [151].

Other factors including UV radiation, sunlight, carcinogens, stress, smoke, and 
infection play a significant role in STAT3 activation. Blocking JAK/STAT3 signal-
ing with inhibitors causes low viability of colorectal cancer cells due to apoptosis 
and cell cycle inhibition via downregulation of Bcl-2, Bcl-xL, Mcl-1, and cyclin D2 
and upregulation of p21waf1/cip1 and p27kip1. Histological analysis of colorectal cancer 
tissues revealed several STAT3- and JAK3-activated forms in oncogenesis of 
colorectal cancer malignant neoplasms. In tumor microenvironment, STAT3 nega-
tively controls the activity of helper T cells and dendritic cells by partial differentia-
tion and absence of MHC class II molecules mediated in antitumor activity [132]. 
STAT3 activation via acetylation directs protein–protein interactions and transcrip-
tional activity in noncanonical signaling pathway. The CD44  in association with 
acetylated STAT3 translocate into the nucleus and controls cyclin D transcription 
which leads to increased cell proliferation [146]. It has been demonstrated that 
STAT3 and JAK3 are continuously activated in two human colon carcinoma cell 
lines SW480 and HT29.

19.2.2  STAT3 in Colon Cancer

In normal cells STAT3 phosphorylation is temporary and transient which is essen-
tial for maintenance of gastrointestinal (GI) homeostasis. However, in different pri-
mary cancers and tumor cell lines, continuous activation of STAT3 has been 
observed [78]. STAT3 signaling acts as a molecular link between chronic intestinal 
inflammatory diseases and CRCs [85]. Activated STAT3 by phosphorylation trans-
locate into the nucleus and bind to DNA, to upregulate several genes involved in the 
cell cycle and survival like CCND1, MYC, and BCL2L1 and control innate immu-
nity activation in colorectal cancer oncogenesis due to inhibition of ligands [9, 12]. 
Cytoplasmic transcription factor STAT3 translocate into the nucleus after growth 
factor stimulation which intricate both in metastatic CRC oncogenesis and EGFR 
signaling. Different mechanisms driven by the transcriptional activity of STAT3 
might involve cancer progression.

Wnt, Notch, TGF-b, and Hedgehog signaling pathways are aided with STAT3 
and crucial for self-renewal of the intestine stem cell maintenance. Toll-like recep-
tor (TLR) signaling directs tolerance across the intestinal microbiota and growth 
factor signaling pathways such as MAPK or Akt/PKB which contribute mitogenic 
and survival signals. STAT3 overexpression is correlated with higher CRC-specific 
mortality with a direct role in metastatic CRC prognosis. The functional role of 
STAT3 in mCRC might be the activation of molecular networks governing chemo-
therapy resistance and Eme1 endonuclease to diminish DNA damage [52, 133]. 
EGFR and different other signaling pathways like interleukin-6/Src kinases stimu-
late STAT3 activation in cancer cells and control the ability of anti-EGFR to hinder 
STAT3-related oncogenesis [52]. Presence of KRAS mutations is a biomarker for 
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lack of anti-EGFR monoclonal antibody efficacy. Activated STAT3 (pSTAT3) is 
combined with KRAS mutations correlated to high nuclear expression of pSTAT3 in 
metastatic CRC. The negative regulation of pSTAT3 has a central role in STAT3 
involved in angiogenesis [89].

Cyclin D1 and VEGF (vascular endothelial growth factor) transcription in tumor 
cells is stimulated by STAT3 directly, resulting in proliferation and angiogenesis in 
mCRC [3, 110]. BCL2L1and MCL1expression elevates STAT3 transcriptional 
activity and advances to drug resistance by preventing the cell death pathways aided 
with genotoxicity treatment.

19.2.3  STAT3 Negative Regulation Mechanism

STAT3 is known to be constitutively activated in many cancers including colon 
cancer. Hence, inhibiting its activity would be a therapeutic approach for treating 
cancer. Some of the negative regulators for STAT3 activity are given below.

19.2.3.1  Tyrosine Phosphatases
Tyrosine phosphatase enzymes play an important role in STAT3 deactivation. These 
enzymes are divided into classical protein tyrosine phosphatases (PTPs), dual- 
specificity phosphatases, and low molecular weight phosphatases [21]. PTPs dis-
play homology with signature motif VHCSXGXGR [T/S] G and also with tertiary 
structure [5, 86]. These PTP enzymes are divided into two groups: the transmem-
brane tyrosine phosphatases CD45 and non-transmembrane PTPs, such as SH2 
domain comprising SHP1 and SHP2, phosphotyrosine phosphatases 1B (PTP1B), 
and T-cell-protein tyrosine phosphatases (TC-PTP). It has been shown that enhanced 
JAK2 and STAT3 phosphorylation was observed in the absence of CD45 gene [66]. 
Dual-specificity PTPs dephosphorylate both phosphotyrosine and phosphoserine/
phosphothreonine. PP2B, a dual-specificity phosphatase, dephosphorylates STAT3 
tyrosine phosphorylation, and protein phosphatase 2A (PP2A) dephosphorylates 
STAT3 serine phosphorylation [21].

19.2.3.2  Protein Inhibitors of Activated STATs (PIAS)
The PIAS family is composed of five members of proteins, PIAS1, PIAS3, PIASy, 
PIASxa, and PIASxb. These PIAS regulates the activity of STATs and also other tran-
scription factors [6, 112]. PIAS proteins have conserved LXXLL signature motif rep-
resented by amino-terminal region [111]. PIAS proteins have zinc-binding domain, 
acidic domain, and serine/threonine-rich regions. PIAS involved in gene regulation 
directly blocking the DNA-binding activity of transcription factors result in anchoring 
of transcriptional corepressors or co-activators and promote protein sumoylation 
[112]. PIAS3 interact with STAT3 to suppress transcriptional activity of STAT3 [23].

19.2.3.3  Suppressors of Cytokine Signaling (SOCS) Proteins
SOCS protein family is composed of eight protein members; CIS along with SOCS1 
to SOCS7 are inducible and interact with SH2 domain containing JAK2 kinase 
inhibitors of cytokine signaling [37]. SOCS proteins hinder signaling in three ways: 
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either by binding their SH2 domain to JAKs (SOCS1), by binding to receptor cyto-
plasmic domain (SOCS3), or by competing with STAT–SH2 domains for the 
recruitment to the receptor complex (CIS, SOCS2) [27]. Activation of SOCS box by 
SOCS proteins is involved in proteasomal degradation pathway [88].

19.3  STAT3 Crosstalk with Other Pathways in Cancer

19.3.1  IL-6 Family Cytokines

Tumor progression in solid tumors significantly correlated with stimulation of IL-6 
signaling family members. Continuous JAK–STAT3 stimulation by IL-6 and IL-11 
results in a chronic inflammatory state in the intestine and influences intestinal epi-
thelial cell turnover, contributing to increased incidence of gastric tumorigenesis 
[38, 68]. Abrogated LIF corresponds to the activation of the JAK–STAT3 pathway 
throughout stem cell-induced tumor progression. LIF expression levels are con-
trolled highly by transforming growth factor-β (TGF-β) defends crosstalk between 
TGF and LIF–JAK–STAT3 is crucial for tumor development [97] and encompass-
ing contribution of IL-11 and LIF to tumor development. IL-6 is a significant driver 
of JAK–STAT3 activation in different tumors, and its expression can be stimulated 
by oncogenes. Upregulation of IL-6 expression stimulates JAK–STAT3, suggesting 
that STAT3 can contribute as an important target to prevent the cancer-promoting 
effect of oncogenes. JAK–STAT3 signaling in epithelial cells and immune cells is 
directed by IL-6 inflammation and contributes to oncogenesis [53]. IL-6 acts as an 
activator of STAT3, binds to IL-6 receptor (IL-6Rα) on the cell surface, and is 
involved in conformational changes; results in the formation of a hexameric signal-
ing complex consist a gp130 homodimer and two IL-6 (IL-6Rα) heterodimers. 
Continuous activation of JAKs along with a proline-rich, membrane-proximal cyto-
plasmic domain of gp130 and activated JAKs controls phosphorylation of gp130, 
interferes in docking and stimulation of cytosolic STAT3, and leads translocation 
into the nucleus. IL-6 family members, like IL-11, leukemia inhibitory factor (LIF), 
ciliary neurotrophic factor (CNTF), oncostatin M (OSM), and IL-31, activate recep-
tors involved in signal transduction via JAK–STAT3. Myeloid cells produce IL-6 
family cytokines like IL-6 and IL-11 [54, 99], and these cytokines control different 
inflammatory processes, which play a pivotal role in the homeostasis of pro- 
inflammatory and anti-inflammatory responses [115].

19.3.2  GPCRs

GPCRs upregulate the inflammatory mediator release and directs the stimulation of 
STAT3 leading to cancer progression, but GPCR-mediated STAT3 activation is 
essential for JAKs. Stimulation of STAT3 by adrenoreceptors results in the activa-
tion of IL-6 production, and receptor activation in signaling cascade suggest that 
GPCR signaling can crosstalk with IL-6 signaling [122]. Sphingosine-1-phosphate 
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receptor 1 (S1PR1) is a GPCR responsible for the signaling of lipid metabolite S1P 
[105]. Nuclear factor-κB (NF-κB) stimulation by S1P is involved in an increased 
production of IL-6, STAT3 activation, and CAC tendency in  vivo. S1P–S1PR1 
extends STAT3 activation on an inflammation-associated tumor development, and 
S1P–S1PR1 signaling plays a significant role in T-cell and B-cell development [24]. 
S1PR1–STAT3 signaling mediates in the formation of a pre-metastatic niche in 
myeloid cells and causes increased metastasis [33]. S1PR1–STAT3 intrinsic path-
way modulates regulatory T cells and tumor regulatory T-cell migration and accu-
mulation in tumors, resulting in inhibition of antitumor CD8+ effector cells [60]. 
S1PR1 inhibits migration of regulatory T-cells in the mouse and thus facilitates with 
S1PR1 regulatory T-cell accumulation in tumors [60]. S1P–S1PR1 pathway plays a 
significant role in the physiology of cancer cells and link between JAK–STAT3 and 
S1P–S1PR1, leading cancer cells through disrupted lipid signaling pathways. 
GPCRs, like S1PR1, activate JAK–STAT3, SRC–STAT3, and NF-κB and interpret 
to block the effects of the drugs against the GPCRs.

19.4  STAT3 Role in Tumorigenesis of Colorectal Cancer

19.4.1  Cellular Proliferation

STAT3 plays an important role in cellular proliferation and cell survival by enhanc-
ing the expression of growth-promoting genes such as c-Myc, Pim-1, and cyclin 
D1 [30]. Additionally, constitutive activation of STAT3 promotes elevated cell 
cycle progression by upregulating cyclin D1 and c-Myc expression. Shirogane 
et al. demonstrated that STAT3 upregulated the expression of growth-promoting 
gene Pim-1 in tumor cells [110]. In cancerous cells, STAT3 promoted survival sig-
nals and suppressed the apoptosis by inhibiting the expression of Bcl2, Bcl-xL, 
Mcl1, survivin, and cIAP2 [102]. Further, it was shown that the expression of p53 
is negatively regulated by STAT3, a well-known inhibitor of cellular proliferation 
and inducer of apoptosis [90]. C-Myc protein is an important regulator of the tran-
sition from G1 to S and behaves as stimulator of cdc25A gene, which controls the 
activity of cyclin dependent kinases [47]. Docking of STAT3 to the c-Myc pro-
moter is crucial for stimulation of c-Myc transcription upon IL-6 and Src activa-
tion. STAT3-dependent cell cycle progression controlled by Pim-1 cooperates with 
c-Myc [110]. Upregulation of cyclin D1 and c-Myc expression at transcriptional 
level by persistently activated form of STAT3 contributes to increased cell cycle 
progression.

19.4.2  Cellular Invasion

Rate of cellular invasion directed by STAT3 actively in extracellular matrix is an 
important process in tumor progression and formation of metastasis. STAT3 plays a 
significant role in complex metastasis multistep process by controlling the 
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expression of matrix metalloproteinases (MMPs). Elevated invasion and metastasis 
processes are associated with overactivation of STAT3 by phosphorylation [120]. 
Further silencing of STAT3 by shRNA decreases cancer cell invasiveness and 
MMP-7 expression in pancreatic cancer cells. These data showed that STAT3 plays 
an important role in regulation of tumor growth, invasion, and angiogenesis, which 
was due to reduced expression of MMP-7 in pancreatic cancer cells. Constitutively 
activated STAT3 regulates MMP-2 gene expression directly by binding to the pro-
moter region of MMP-2 gene and the expression of matrix metalloproteinase’s 
MMP-9 and MMP-1 controlled by STAT3 activation [141].

19.4.3  Cellular Migration

STAT3 plays a significant role in cellular migration and cell motility in vitro during 
the progression of cancer. The evidence was obtained with the depletion of STAT3 
using siRNA resulting in decreased rate of cellular migration [114]. Stathmin is 
shown to be an oncoprotein 18, anchors 𝛼/𝛽-tubulin heterodimers, and is involved in 
microtubule depolymerization. STAT3 specifically interacts with stathmin for con-
trolling cell migration and microtubule dynamics. STAT3 inactivation leads to a 
random mode of migration and thus altering Rac1 activity to balance directional 
persistence during migration [124]. Studies from Debidda et al. demonstrated that 
STAT3 activation increases Rho GTPase-regulated cell migration and proliferation 
[32]. Constitutive activation of STAT3 enhanced migratory potential of epithelial 
cells via integrin 𝛽6 [8].

19.4.4  Tumor Cell Adhesion

Tumor cells damage the basement membrane by decreasing cell–cell and cell–
matrix adhesion. These tumor cells travel in the circulatory or lymphatic system 
(intravasation), extravagate into the other vital organs, and adhere to form metasta-
sis. Metastatic tumor cells’ circulation in the blood vessels is controlled by different 
nonspecific forces including mechanical stress, hemodynamic turbulence, loss of 
adhesion-induced cell death, and cell-mediated cytotoxicity [50]. Hence, very low 
percentage of tumor cells survive during circulation due to mechanical stress and 
shear flow in the blood vessels to form metastasis in distal organs. In protecting the 
tumor cells from the body’s immune surveillance, STAT3 plays a crucial role during 
their transportation through circulation. STAT3 activation in tumor cells causes 
increase in the probability of survival of tumor cells by secretion of different inflam-
matory factors that act as immune suppressors such as IL-6 and TNF alpha [87]. 
Wang et al. showed that constitutive activation of STAT3 in tumor cells suppresses 
the tumor expression of pro-inflammatory mediators [135]. The results obtained by 
McCarty et al. suggest that in association with platelets, tumor cells shielded from 
the stresses of shear flow [82].
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19.4.5  Angiogenesis

Angiogenesis is an important process in tumor growth and metastasis. Vascular 
endothelial growth factor (VEGF) is one of the downstream target genes of STAT3. 
VEGF is a significant angiogenic molecule which mediates neovascularization dur-
ing tumor growth [58]. As mentioned above, STAT3 gene directs transcriptional 
activation of VEGF [22]. VEGF expression in melanoma cells of tumor angiogen-
esis is controlled by continuous stimulation of STAT3 [89]. VEGF expression is 
regulated by STAT3 activation in human cancer cells and inhibition of both HIF-1 
and VEGF expression by targeting to STAT3 activation [143]. VEGF receptor sig-
naling is controlled by STAT3 activation in endothelial cells [10]. Hindrance of 
endothelial cell migration and blood vessel formation is achieved by blocking 
STAT3 signaling [144]. Hypoxia-inducible factor-1𝛼 (HIF1𝛼) is a significant medi-
ator of angiogenesis controlled by STAT3 expression. Under hypoxic conditions, 
STAT3 and HIF1𝛼 bind simultaneously to the VEGF promoter resulting in maxi-
mum transcriptional activation which leads to angiogenesis [107].

19.4.6  Metastasis

Metastasis is a complex and multistep process of cancer, initially advances sur-
rounding tissue and gradually basement membrane of intestine and then enters into 
the blood circulation. STAT3 targets the genes associated with invasion, cell sur-
vival, self- renewal, angiogenesis, and tumor cell immune evasion leading to the 
promotion of metastasis. Hence inhibiting the STAT3 activation would be an excel-
lent therapeutic approach for controlling tumor metastases.

19.4.7  Cell Transformation

Bromberg et  al. elegantly demonstrated that STAT3 activation controls cellular 
transformation [15]. Activated STAT3 controls interleukin- 6-directed transforma-
tion in mouse skin epithelial cells [149]. Furthermore, TRK oncogenic transforma-
tion in vitro is induced by STAT3 [83]. Hwang et al. showed that STAT3 activation 
regulates transformation of the NIH3T3 fibroblasts via RET/PTC tyrosine kinases 
[64]. Malignant transformation susceptibility was sustained by targeting STAT3 in 
different cell types [44] and enhances the significance of STAT3  in malignant 
transformation.

19.5  Role of STAT3 in Intestinal Epithelial Cells and Immune 
Cells

Induced IL-6 signaling controls the translocation of STAT3 into the nucleus of 
intraepithelial lymphocytes (IELs) and subsequently activates pro-survival genes in 
IELs which increases inflammation [7]. Immune-regulatory signals in intestinal 
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epithelial cells (IECs) controlled by IEL–STAT3 activation in myeloid progenitor 
cells contribute to decreased inflammation [63]. IEC–STAT3 signaling is crucial for 
the prevention of intestinal epithelium from inflammation-induced damage and 
serves IEC-mediated barrier function. Continuous activation of STAT3 in intestinal 
environment increases the generation of cytokines simultaneously in chronic inflam-
mation. Cell-autonomous stimulation of oncogenic gene expression causes increased 
cell proliferation due to deregulated STAT3 activity in IECs [12]. Malignant trans-
formation of IECs was controlled by STAT3 by decreasing the development of anti- 
tumorigenic gut inflammation [98]. A significant biomarker for determining 
therapeutic response in human cancer cells is Let-7–IL-6–STAT3 signaling. miR-
NAs derived from tumor cells are wrapped into microvesicles and delivered to the 
adjoining endothelial cells. miR-9 produced by tumor cells potentially stimulates 
endothelial cell migration and tumor angiogenesis by blocking suppressor of cyto-
kine signaling 5 (SOCS5) via JAK–STAT3 activation [153].

In colon epithelial cells, IL-6–STAT3 signaling is important for the development 
of obesity-associated colorectal cancer [43]. Increased tumor cell proliferation, sur-
vival, invasion, and stimulation of antitumor immune suppression in cancer are 
observed due to STAT3 signaling. In the tumor microenvironment, continuously 
activated JAK–STAT3 facilitates a proliferative chance to immune cells and directs 
pro-oncogenic inflammation. Formation of pre-metastatic niche at distal metastatic 
sites causes the increased myeloid cell survival. In human cancers induced JAK–
STAT3 signaling directs cancer stem cells self-renewal.

19.6  Role of STAT3 in Development of CRC: Evidence 
from In Vivo Studies Using Mouse Models

STAT3 induced epithelial expression of inflammatory mediator, Toll-like receptor 
(TLR) 2 in gastric tumors. Inhibition of TLR2 regulated gastric tumorigenesis but 
not inflammation illustrating the significance of STAT3 in oncogenesis of gastric 
cancer [131]. STAT3 and NF-κB controlled each other in paracrine cell-autonomous 
mechanisms. Human intestinal mouse model gp130757F/F exhibits the features of 
tumor development stimulated by STAT3 transcription factor overexpression. 
Diminished STAT3 activity is observed in gp130Y757F/Y757FSTAT3+/− mice. Loss of one 
STAT3 allele in gp130757F/F mice affects the reduced frequency and rate of tumor 
development due to hindrance of proliferation-induced glandular hyperplasia. 
gp130757F/F mice treated with antimicrobials show reduced tumor growth and macro-
phage production with neutrophils penetration. gp130 chain (the signal-transducing 
subunit of the IL-6 type cytokine receptor) mutant form is expressed in mice, 
enhances IL-11–induced stimulation of STAT3, and leads to the formation of gastric 
polyps [69]. CAC-associated mutations in p130 direct STAT3 activation by IL-6 and 
IL-11, prevent epithelial damage and inflammation from dextran sodium sulfate, but 
increases tumorigenesis in mice [12]. Induced STAT3 in progenitor cells interferes 
in proliferation and survival of epithelial cells and regulates the expression of 
inflammatory cytokines and elevated secretion of immunosuppressive factors pre-
venting dendritic cell (DC) maturation [135]. In immune cells STAT3 activation 
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infiltrates tumor cells and leads to the formation of the tumors. STAT3 activates 
transcription of IL-23 in TAMs and dendritic cells (DCs) and also blocks NF-κB- 
dependent expression of the antitumor cytokine IL-12 [74]. Macrophages produce 
IL-23, activate STAT3 in IL-23R expressing Treg cells, direct upregulation of the 
immunosuppressive cytokine IL-10, and involve immune evasion. Generation and 
expansion of the tumorigenic Th17 cells and secretion of IL-17 are controlled by 
IL-23 and STAT3 [56]. Non-phosphorylated STAT3 with NF-κB enhances tran-
scription of genes by involving acetylation of RelA and possesses NF-κB in the 
nucleus [145]. Activated STAT3 involves transcription of the TGF-b signaling 
antagonist Smad7 [69].

In the intestinal STAT3 signaling, TLRs are expressed through MAPK and 
NF-κB with several adaptor proteins like MyD88. The production of chemokines, 
inflammatory cytokines, and antimicrobial peptides is controlled by the activation 
of MAPK and NF-κB pathways [71]. Decreased tumor growth and tumor number in 
ApcMinþ/_ mice due to removal of the adaptor protein MyD88 alters TLR signaling 
[100]. Mice develop increased inflammation and colitis-induced tumor growth due 
to MyD88 deficiency [106]. In inflammation-induced intestinal tumorigenesis and 
sporadic or familial cancers, MyD88 signaling plays a significant role. In inflamma-
tion, for efficient tissue repair, MyD88 signaling is necessary, and the absence of 
Myd88 signaling contributes to increased inflammation and tumor development. 
MyD88 mediates tumor growth of sporadic or familial CRC, by stimulating an 
unsuitable tissue repair response, directing tumor cell proliferation, and expanding 
tumor growth. Mice lacking IL-18 signaling requires inflammasome alike Myd88-
deficient mice adaptable to CAC [106]. Reducing inflammasome components like 
Nlrp3, Nlrp6, caspase-1, and ASC decreases levels of IL-18 and inflammation-asso-
ciated tumorigenesis and produces observed phenotype in IL-18- deficient mice 
[152]. IL22BP (IL-22 binding protein) is a soluble, high-affinity receptor for IL-22 
and requires IL-18 for down regulation, ultimately decreasing the availability of 
IL-22 under steady-state conditions.

In gastric tumor initiation and development of microbial environment play sig-
nificant role due to STAT3 activation in CRC of gp130757F/F mouse. STAT3 involves 
in signaling via gp130 receptor subunit for the interleukin (IL)-6 family of cyto-
kines and results both in embryologic and adult tissue regulatory processes [17]. 
STAT3 aberrantly overexpressed in many human cancers acts as an oncogene. T 
cells show impaired IL-6-induced proliferation and anticipate apoptosis and prolif-
eration due to characteristic disruption of STAT3.

Intrinsic TK receptor activity like EGF and PDGF directly phosphorylates STAT 
proteins through cytokine receptor signaling which activates growth factor recep-
tors. Cytoplasmic kinases like Src and Abl activate growth factor receptors, JAKs 
and TKs, and phosphorylate STATs directly. C-Src along with IL-3 receptor is 
involved in STAT3 activation through EGF and PDGF receptors [94]. TKs partici-
pate in initiation of STAT signaling through cytokine and growth factor receptors 
called “TK–STAT” pathways.

In oncogenesis, cell cycle progression, apoptosis prevention, tumor angiogene-
sis, and immune escape responses, STAT3 plays a significant role to enhance the 
expression of a sequence of cancer-associated genes like cyclin D1, c-Myc, VEGF, 
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and survivin [76]. In CRCs and noncancerous lesions, nuclear translocation of 
STAT3 was detected. CRC formation and expression of the genes are closely cor-
related with Wnt and NF-κB signaling mechanisms. In CRC formation, Wnta/
NF-κBa, VEGF, c-Myc, survivin, MMP-7 and cyclin D1 expression detected by 
STAT3 activation. Wnt signaling is uncommonly stimulated in noncancerous lesions 
and exhibits decreased effect in tissues at gene transcription level and in chronic 
gastric anomalies; Stat3 and NF-κB mechanisms are functional.

19.6.1  GPCRs/Rho GTPase Family/Cadherin Engagement

Angiotensin II and S1PR1/2 GPCRs manipulate STAT3 activation by JAKs. In 
STAT3 tyrosine phosphorylation Rho GTPase family member, Rac1 plays a crucial 
role by binding at the DNA-binding region of STAT3. STAT3 phosphorylation is 
triggered by interleukin-6 regulated by the male germ cell RacGAP–STAT3 associ-
ated with the interleukin-6R/gp130 complex [81, 130]. The Rac1/male germ cell 
RacGAP complex activates STAT3 by tyr705 phosphorylation and translocates into 
the nucleus. Cadherin augmentation directs to activate STAT3 phosphorylation, 
resulting in the rapid enhancement of cell density in tumor microenvironment and 
also normal cells. Rac1-Cdc42 (Rho GTPase family) is stimulated by cadherin addi-
tion and activates NF-κB to promote the increased levels of IL-6, which corresponds 
to STAT3 activation [101].

19.6.2  Toll-Like Receptors

In tumor tissue, Toll-like receptors like TLR-2 elevated expression levels corre-
lated with the STAT3 activation [131]. Classical stimulation of STAT3 by TLR4 
ligation associated with Notch, NF-κB, and MAP kinase mechanisms [92]. STAT3 
directly activates TLR function by IgG generating human B cells and TLR-
mediated antibody and IL-10 production [80]. Lipopolysaccharide (LPS) 
increases the level of phosphorylated STAT3 and exploits the activation of TLR4 
signaling [147].

TLR3 activated by STAT3 during injury hinders photoreceptor survival and 
visual function throughout oxidative stress. Activation of STAT3 is within minutes 
through TLR9 directly by cytokines, growth factors, and CpG.  STAT3 prevents 
immunosuppression by acting as an inhibitor of antitumor immunity. JAK2 is placed 
by Frizzled 4 (FZD4) and activated through TLR9 engagement with CpG oligode-
oxynucleotides (ODNs) and finally connects CpG–TLR9–FZD4 signaling cascade 
for subsequent STAT3 tyrosine phosphorylation [150].

19.6.3  MicroRNAs

MicroRNAs act as potential biomarkers for colorectal cancer diagnosis, prognosis, 
and drug-response prediction. There is a controversy in the literature for using 
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microRNA as biomarkers in colorectal cancer. This controversy could partially be 
due to heterogeneity between the different series associated with tumor stage, 
tumor location, genetic background of the tumors, and technical issues. More prog-
ress is needed before microRNAs can be used in clinical practice. Accumulation of 
further data will allow to determine the most relevant microRNAs as biomarkers 
and also to better understand their role in colorectal carcinogenesis [26]. In STAT3 
signaling, miRNAs act as critical regulators during the progression of cancer. In the 
case of breast cancer, MiR-519d acts as a tumor suppressor by inhibiting STAT3 
expression [34]. miR-20a is considered as an important therapeutic target, bio-
marker, and negative regulator of STAT3 expression, and its activation at low 
expression levels increases proliferation in the survival of hepatocellular cancer 
patients [39].

Let-7 is a tumor suppressor miRNA family member, promotes the cytoplasmic 
expression of the suppressor of cytokine signaling 3 (SOCS3), and blocks STAT3 
activation by JAK2 downstream signaling events, leading to the decrease in growth 
and migration of poorly differentiated PDAC cell lines [95]. Activated Src stimu-
lates NF-κB-mediated inflammatory response and initiates LIN28 transcription 
resulting in let-7 inhibition and causes an elevated level of IL-6 associated with 
STAT3 activation. The results from this study showed that let-7, IL-6, and STAT3 
create a negative feedback loop for the transformation of cells by epigenetic control 
during the progression of inflammation and cancer [65].

19.6.4  Tyrosine Phosphatases Combine with Negative 
Regulatory Mechanism

STAT3is activated by tyrosine phosphorylation through protein tyrosine kinases in 
colorectal cancer [62]. STAT3 activation is controlled by dephosphorylation by pro-
tein tyrosine phosphatases [79]. In skin and brain cancer cells, STAT3-negative con-
trol mechanism by SHP2 and prevention of STAT3 tyrosine 705 phosphorylation 
due to activation of protein tyrosine phosphatase SHP1 by morin in tumor cells are 
observed [59]. In esophageal cancer cells, leptin-induced JAK2 activation con-
trolled by adiponectin and PTP1B protein increases transcriptional activity of 
STAT3 [11].

19.6.5  PIAS Protein Family Combines with Negative Regulatory 
Mechanism

PIAS are protein inhibitor family in association with activated STAT proteins rang-
ing from 507 (PIASy) and 650 (PIAS1) amino acid residues having four genes, 
PIAS1, PIASx (PIAS2), PIAS3, and PIASy (PIAS4). These proteins control STAT 
family members with PIAS1 expression in colon cancer [25]. PIAS proteins, through 
different mechanisms, control transcription by inhibiting the DNA-binding activity 
of transcription factors and anchor transcriptional corepressors, which lead to 
enhanced protein sumoylation. STAT3 activity is degraded by PIAS3 proteins [29].
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19.6.6  SOCS Protein Family Combines with Negative Regulatory 
Mechanism

Suppressor of cytokine signaling in short SOCS comprises eight members: CIS and 
from SOC1 to SOC7 [138]. JAK–STAT3 signaling mechanism is negatively pre-
vented by these SOCS proteins by three different mechanisms:

• Hindering JAK activity or degrading JAKs with proteasome
• Concealing the binding sites of STAT3 on cytokine receptor
• Proteasome degradation of targeting proteins through ubiquitination

Enhanced myelogenic differentiation was observed through restriction of JAK1 
and gp130 by SOCS1 and SOCS3 [36]. IL-17/STAT3 mechanism is controlled by 
Platelet factor 4 (PF4) by changing the expression of SOCS3 [41].

19.7  Different Control Mechanisms of STAT3

In skin and prostate cancers, STAT3 is crucial for the constitutive NF-κB activity and 
exploits a STAT3 → NF-κB → IL-6 signaling loop links inflammation to carcinogen-
esis [40]. STAT3 phosphorylation at Tyr705, initiated through Ser727 phosphoryla-
tion by several serine kinases such as MAPK, PKC, mTOR, NLK, etc., to phosphorylate 
STAT3 at serine 727, is needed for enhanced STAT3 transcriptional activity [118]. 
Induced STAT3 activation is directed by NF-κB by increasing IL-6 secretion [67].

19.7.1  Epigenetic Modifications

In various cancers, the constitutive activation of STAT3 leads to increased prolifera-
tion of cells, prevention of programmed cell death, tumor angiogenesis, invasion, 
and migration. In cancer cells, epigenetic effect of gene promoter region interferes 
through the CpG methylation by DNA methyltransferase 1 (DNMT1) enzyme and 
regulates tumor-suppressor gene expression. STAT3 acetylation serves to control 
DNMT1 anchoring on different tumor-suppressor gene promoters which leads to 
enhanced methylation of relevant genes and progression of cancer. In response to 
cytokine treatment like IL-6 and LIF, OSM–STAT3 acetylates on a single lysine 
residue, Lys685, and its coactivator p300/CREB-binding protein (CBP) [93, 134, 
151]. In cancer cell lines, other tumor-suppressor genes, like CDKN2 cell A, 
DLEC1, STAT1, and PTPN6, enhance promoter methylation by STAT3 acetylation 
[75]. The mechanism of unphosphorylated STAT3 target DNA binding is by regu-
lating chromatin organization and binding to AT-rich DNA sequences, which plays 
a significant role in control of gene expression and/or chromatin organization, 
because of their special structure with a narrow minor groove that can be detected 
by proteins [127]. Unphosphorylated STAT92E proteins can manage heterochroma-
tin through the regulation of histone H3 Lys-9trimethylation (H3K9me3) in 
Drosophila [108]. Olga A. Timofeeva et al. demonstrate epigenetic modification in 
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cancer cells by unphosphorylated STAT3 function detected in DU145, and MCF-7 
cells are more accessible chromatin conformation than the non-transformed MCF- 
10A cells, which facilitate for unphosphorylated STAT3 binding, suppression of 
CHOP expression, and successive prevention of the apoptosis of cancer cells with 
the involvement of the N-terminal domain of STAT3 [128].

19.8  Colon Tumor Microenvironment

Tumor microenvironment is a complex network of cells consisting of tumor- 
associated macrophages (TAMs), neutrophils, granulocytes, myeloid-derived sup-
pressor cells (MDSCs), immature myeloid cells (iMCs), mast cells (MCs), and 
dendritic cells (DCs) in the T and B cells [55]. Galon et al. demonstrated that the 
density, location, and type of tumor-infiltrating immune cells within colon tumors 
would provide a valuable prognostic tool in the treatment of colorectal cancer [48]. 
Tumor biology is influenced by a complex network of immune cells in the tumor 
stroma. Increase in innate immune cells, like TAMs, MCs, neutrophils, and MDSCs, 
T-helper (Th) 17 and Th2 subsets of adaptive immune cells controls enhanced tumor 
development direct tumorigenesis of colorectal cancer [96].

Formulation of humoral factors: The IL-6 activates the STAT3, both in autocrine 
and paracrine origin of IL-6 from cancer-related fibroblasts, adipocytes, or myeloid 
cells on the edge of the tumors. In the generation and progression of colorectal can-
cer, pSTAT3 plays a crucial role and successively enhances the expression of IL-6, 
leads the formation of amplification loops, and activates the elevated expression of 
autocrine and paracrine cytokines and growth factors, like IL-8, CCL5, CCL2, 
CCL3, IL1-β, GM–CSF, VEGF, and MCP-1.

• Role of fibroblasts, adipocytes, and macrophages in tumor microenvironment: 
Cancer-associated fibroblasts (CAFs) increase cancer progression via remodel-
ing the ECM and mediate initiation of angiogenesis and anchoring of 
 inflammatory cells and directly activate cancer cell proliferation through produc-
tion of growth factors. IL-6–STAT3–Twist signaling pathway controls mesen-
chymal–epithelial cell interactions and the expression of CXCL1260, associated 
with the regulation of the CAF phenotype. Coculturing cancer-related adipocytes 
with cell lines can inverse an immature and proliferative phenotype which leads 
to elevated cancer cell migration via increased expression of IL-6 and MCP1 
[45]. Triterpenoid compounds prevent STAT3 activation and depletion of macro-
phage polarization to M2 phenotype, which mediates in tumor development and 
lacks clinical diagnosis [46]. Cancer cells suppress immunological environment, 
docking immune cells, invert functions advantageously, and anticipate them 
from mounting direct immune response instead of alternating cancer progres-
sion. Molecular hub of immune suppression is STAT3 and controls VEGF and 
IL- 10- mediated crosstalk between cancer cells and immune cells [143]. In can-
cer, STAT3 promotes myeloid-derived suppressor cell (MDSC) expansion and 
immune suppression [139]. Exosomal Hsp70 in association with pSTAT3 medi-
ates immune suppression activity of MDSCs [35]. Sun et al. showed that inhibit-
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ing STAT3 activity to extricate the hepatocellular carcinoma-activated immune 
suppression causes elevated levels of the NK cell functions [121].

• Linking inflammation to cancer: In cancer progression and inflammation, STAT3 
and NF-κB are crucial active transcription regulators that interfere communica-
tion between cancer cells and inflammatory cells. In tumor progression and 
inflammation, STAT3 and NF-κB uniformly bind to gene promoters and stimu-
late pro-inflammatory cytokine secretion which leads to enhancement in target 
gene expression and function by positive feedback mechanism [125].

Tumor angiogenesis: Activated STAT3 plays a significant role in angiogenesis 
regulation involved in VEGF and bFGF endothelial cell proliferation, extracellular 
matrix degradation, and endothelial cell migration, and alteration of junction adhe-
sion molecules directs mediators of angiogenesis by stimulated STAT3 and increases 
the formation of new blood vessels and progression of cancer [16]. Targeting STAT3 
is a suitable method to weaken the promoting function of tumor microenvironment 
and evolves the therapeutic consequence for cancer.

19.9  Biomarkers of Colorectal Cancer

• Elevated levels of circulating cell-free DNA (cfDNA) in cancer patients are a 
potential biomarker of the colorectal cancer. Quantitative real-time PCR detects 
ALU repeats in the plasma or serum of operated and nonoperated CRC patients 
and compares the levels of detected circulating cfDNA with normal healthy con-
trols [28]. Initial wild-type KRAS status with epidermal growth factor receptor 
(EGFR) inhibitors to develop KRAS mutations detectable in cfDNA in the serum 
of CRC patients [84].

• Intestinal-specific transcription factors CK20 and CDX2 are generally expressed 
frequently in cells and negative for CK7. The mismatch repair proteins are 
 candidate markers like, MLH1 and MSH2 with many other molecules mediating 
various cellular processes, such as matrix degradation, oxidative metabolism, or 
protein folding [91].

• Circulating tumor cells (CTCs) are malignant cells derived from a primary tumor 
or its metastases and enters into the bloodstream. For targeted therapy in molecu-
lar genetics, characterization of CTCs has potential implications. Identification 
of CTCs in metastatic CRC patient’s peripheral blood is correlated with progno-
sis [57].

• MicroRNAs (miRNAs) are small noncoding RNA strands that can posttranscrip-
tionally control the expression of multiple target genes, implicated in several 
steps in carcinogenesis. miRNA levels in serum of CRC patients have shown 
early disease detection and monitoring of cancer recurrence after surgery [4]. 
miRNA-29 is to suppress tumorigenesis by inhibiting cell proliferation and 
migration. The oncogenic miRNA and miRNA-21 negatively control tumor- 
suppressor genes depending on manageable diagnostic and prognostic marker in 
CRC. Elevated levels of miRNA are significantly found in CRC patients with 
colonic adenomas compared with controls. Increased levels of miRNA detected 
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in both tumor tissue and patients serum are correlated with tumor size, presence 
of metastasis, and reduced survival [129].

• Analysis of serum samples using Multiplex protein array from adenoma-bearing 
patients and healthy control, showed that combinations of CEA and IL-8/CEA 
and C-reactive protein are best screening for early CRC/adenoma detection [18]. 
Combinations of serum CEA, cytokines, and CA19.9 are used to differentiate 
adenoma from healthy controls. Combinations of tumor markers like CEA and 
CA19.9 are indicative of the disease processes such as inflammation, immune 
response, angiogenesis, and metastasis [61, 109].

19.10  Therapeutics

Given the pivotal role of constitutive STAT3 activation in colon cancer, targeting to 
inhibit its activity would be a therapeutic approach for treating cancer. For blocking 
aberrant STAT3 activation and for drug development, growth factor receptor Tyr 
kinases and non-receptor Tyr kinases (NRTKs) are targeted. Different types of Tyr 
kinase inhibitors are developed against aberrant STAT3 activity and tumor growth 
in animal models. Downregulating the Tyr phosphorylation is an alternative 
approach which targets directly the STAT3 protein, mimicking the physiological 
negative modulators.

19.10.1  STAT3 Inhibitors

In cancer therapy, STAT3 is a good molecular target due to its crucial role in tumori-
genesis and cancer cell biology. Two types of STAT3 inhibitors are classified based 
on the activity of STAT3 inhibition.

19.10.1.1  Indirect Inhibitors
In STAT3 activation, indirect inhibitors mediate in blocking of upstream effectors, 
like cytokine and kinases. JAK2 inhibitor, WP1066, conceals cancer growth, migra-
tion, and invasion which leads to enhanced chemosensitivity of ovarian cancer cells 
and reduce the rate of STAT3 phosphorylation [123].

19.10.1.2  Direct Inhibitors
Direct inhibitors block the domains of SH2, DNA-binding, and N-terminal of STAT3 
by interrupting protein dimerization, DNA binding, and to prevent nuclear translo-
cation, respectively. Direct inhibitors target the SH2 domains treated as the most 
commonly studied sites because of its significant participation in STAT3 activation.

Inhibitors are classified into three groups of compounds on the basis of 
structure:

One of these classes comprises peptides and peptidomimetics. Both Peptides and 
peptidomimetics can directly afflict the dimerization of STAT3 inhibits effectively 
transcriptional activity associated to low cell permeability and stability.

Another class of compounds, novel, synthetic STAT3 small-molecule inhibitors, 
are used in several approaches, such as medicinal chemistry and structural 
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applications based on high-throughput virtual screening in preclinical models. Site-
directed computational fragment-based STAT3 small-molecule inhibitors alter prob-
lems correlated with cell permeability and feasibility to suppress the STAT3 activity. 
A novel non-peptide, cell-permeable small-molecule inhibitor LY5 has great bind-
ing affinity with the SH2 domain of STAT3 and disrupts dimerization leading to 
abrogated STAT3 activation with low IC50 values (0.5–1.4 M). Selective inhibition 
of persistent STAT3 activation by LY5 stimulates the apoptosis, and it is a promising 
therapeutic drug candidate approach for human medulloblastoma [140]. In clinical 
trials, OPB-31121 inhibitor actively interacts and shows a high affinity to the SH2 
domain of STAT3 [51] and evolves a significant antitumor effect on gastric cancer. 
A natural polyphenolic flavonoid compound silibinin is isolated from the seeds of 
milk thistle (Silybum marianum), and it shows moderate inhibition on pSTAT3 in 
preclinical studies and clinical trials of gastric [136] and prostate cancers [1]. In 
cancer patients therapeutic effects remain unsatisfactory, due to low bioavailability 
of its flavonolignan structure [13]. Homoharringtonine (HHT) is a natural com-
pound isolated from Cephalotaxus harringtonia, which effectively inhibits the 
STAT3 activity by interrupting the IL-6/JAK1/STAT3 signaling pathway and 
 stimulates the apoptosis of gefitinib-resistant lung cancer cells. HHT remarkably 
suppresses the tumor growth in vivo, but gefitinib does not show a similar effect in 
nude mice injected with H1975 cells and in NSCLC in an EGFR-independent 
 manner [19].

19.10.2  Oligonucleotides

Oligonucleotide inhibitors selectively target STAT3 and control viable STAT3 activ-
ity. Decoy oligonucleotide (ODN) is a double-stranded 10–20 base pair DNA which 
comprises a TF’s consensus and particularly inhibits STAT3 activity by binding 
competitively to the DNA-binding domain of STAT3 which leads to competent 
attenuation of specific gene expression. G-quartet oligonucleotides are G-rich oli-
godeoxynucleotides having four-stranded potassium-dependent intramolecular 
G-quartet structures and engage sites within the SH2 domains of STAT3. These 
oligonucleotides strongly block STAT3 activation and tumor growth in NSCLC 
[137] and prostate cancer [103], and their large size and potassium dependence limit 
their cellular delivery and possibility to be determined in clinical trials and to turn 
off unwanted genes.

Small interfering RNA (siRNA) is a natural posttranscriptional gene-silencing 
mechanism targeting STAT3 which is considered as a useful method for the treat-
ment of breast cancer [73] and lung adenocarcinoma [119].

19.10.3  Receptor Antagonists

In many human tumors, aberrant activation of Tyr kinases induces continuous acti-
vation of STAT3 and other signaling molecules mediated in tumorigenesis. 
Attractive therapeutic targets for controlling the malignant phenotype are cell sur-
face receptors. Growth factor receptors, such as EGFR family, and receptors for 
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cytokines, such as gp130/IL-6 receptor family, are targets for improving effective 
therapeutic models to control cancer. Receptors either have intrinsic Tyr kinase 
activity, with growth factor receptors, or associated cytoplasmic Tyr kinases. In 
experimental models, to modulate cell surface receptors, antibodies or other molec-
ular entities could be designed that specifically compete against the physiological 
ligands for binding to the receptor [70, 142]. EGFR family of receptors are overex-
pressed in breast, pancreatic, ovarian, colon, and lung cancers, as well as HNSCC 
and other tumors [142]. Monoclonal antibodies are more extensively used to inhibit 
the EGFR family, and the first human anti-mouse EGFR antibody had low efficacy 
and directs the improvement of chimeric human mouse MAb 225 (monoclonal 
antibody, IM-C225, Cetuximab) and proved to be an effective therapy, used in com-
bination with chemotherapy or radiation therapy in the treatment of HNSCC, 
colorectal cancer, and NSCLC [70]. Preventing the binding of IL-6 ligands to its 
receptor results in the decrease in STAT3 activation and alters the malignant pheno-
type. In U266 MM cell line, blocking of the IL-6 receptor by the IL-6 “super antag-
onist” Sant7 suppressed aberrant STAT3 activation and the viability of cells [20].

19.10.4  Tyrosine or Serine Kinase Inhibitors

STAT3 is a downstream receptor and non-receptor for Tyr kinases (RTKs and 
NRTKs). The abundant aberrant TK activity was observed in human tumors, such 
as breast, lung, prostate, colon, pancreatic cancer, glioblastoma, and other cancers 
[126]. The aberrant Tyr kinase of RTK or NRTK activity was inhibited by persistent 
activation of STAT3. Decreased levels of persistently activated STAT3 lead to the 
inhibition of the intracellular Tyr kinase activities of RTKs and exploits stimulation 
of apoptosis and tumor growth modifications [116]. The NRTKs, Src, and JAKs are 
involved in STAT3 activation [116], for developing small-molecule inhibitors as 
novel therapeutic agents, PD166285, SU6656, and PD180970, and regulate cell 
cycle arrest and apoptosis of tumor cells by the prevention of aberrant STAT3 and 
downregulation of STAT3 target genes, such as for Bcl-xL and Mcl-1 anti-apoptotic 
proteins [49]. AG490 blocked STAT3 activation [117] that inhibits Bcl-xL expres-
sion and induced apoptosis of malignant cells [20].

19.11  Summary

STAT proteins transmit signals from the cell surface to the nucleus and directly par-
ticipate in the regulation of genes. STAT proteins are activated by many cytokines, 
such as IL-6 family cytokines and numerous growth factors, including EGF and 
PDGF in mammalian cells. STAT3 activation by tyrosine/serine residue phosphory-
lation in the transactivation domain results in maximal transcriptional activity.

Cytokine receptors such as interferons or IL-6 receptors lack intrinsic TK activ-
ity and recruit members of the Janus kinase (JAK) family of cytoplasmic TKs to act 
as intermediaries for activation of STAT.  Cytokine receptor signaling activates 
growth factor receptors with intrinsic TK activity such as EGF receptor and PDGF 
receptor directly phosphorylates STAT proteins. Growth factor receptors, JAKs and 
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TKs directly phosphorylate STATs are cytoplasmic kinases including Src and Abl. 
C-Src is involved in STAT activation by the IL-3 receptor, EGF, and PDGF recep-
tors. TKs are involved in activation of STAT signaling by both cytokine and growth 
factor receptors called TK–STAT pathways. STAT activation controls normal bio-
logical processes which results in expression of genes that control critical cellular 
functions such as cell proliferation, survival, differentiation, and development.

In the case of cancer, STAT activation is rapid yet transient, and constitutive 
signaling of STATs is increasingly associated with malignant progression. STAT 
protein activation requires tyrosine phosphorylation and serine phosphorylation of 
the kinases that are responsible for catalyzing molecular mechanisms involved in 
the activation of human tumors. STAT3 plays an active role in oncogenesis, cell 
cycle progression, apoptosis prevention, tumor angiogenesis, and immune escape 
by promoting the expression of a panel of cancer-associated genes such as cyclin 
D1, c-Myc, VEGF, and survivin. Nuclear translocation of STAT3 was observed in 
CRCs and noncancerous lesions. In addition to STAT3 signaling, Wnt and NF-κB 
signaling pathways are also closely associated with CRCs formation and expression 
of the genes. STAT3 and Wnta/NF-κBa activation results in gene expression of 
VEGF, c-Myc, survivin, MMP-7, and cyclin D1. Wnt signaling was rarely activated 
in noncancerous lesions and shows less effect on the gene transcription in tissues. 
STAT3 and NF-κB pathways are active in chronic gastric abnormalities.

STAT3 controls the expression of genes resulting in tumor progression, cell prolif-
eration, and survival by epigenetic mechanisms, like DNA methylation and chromatin 
modulation. Many biological functions of activators of STAT3 play a crucial role in 
cancer by inhibiting mitochondrion functions, leading to tumor cell proliferation, sur-
vival, tumor invasion, angiogenesis, and immune suppression. Targeting STAT3 for 
cancer therapy has a pivotal role in stromal cells and immune cells, which are recruited 
to the tumor microenvironment to promote tumor progression. STAT3 activation is a 
potent immune checkpoint for multiple antitumor immune responses. JAK–STAT3 
signaling has a pivotal role in inflammation-mediated cancer, obesity, metabolism, 
cancer stem cells (CSCs), and pre-metastatic niche formation. In JAK–STAT path-
way, interferon-α (IFN-α), IFN-γ, and intereukin-6 (IL-6)-mediated downstream sig-
naling are crucial for transducing signals from various receptor and non-receptor 
tyrosine kinases activated in cancer cells. Toll-like receptors (TLRs), such as TLR9 
and TLR4, are activators of the JAK–STAT3 pathway. STAT3 upregulates the expres-
sion of TLRs in malignant cells and promote tumor progression. MicroRNAs (miR-
NAs) play a major role in cancer and regulate the JAK–STAT3 pathway. 
G-protein-coupled receptors (GPCRs) control STAT3 through JAK and Src family 
kinases. Upstream activators of JAK–STAT3 pathway and the biological functions in 
cancer are crucial for designing novel and more effective cancer therapeutics.

19.12  Conclusions and Future Directions

STAT3 is a significant transcription factor in the pathogenesis of several human 
cancers, constitutively active in the large majority of human colorectal cancer tis-
sues. Cell cycle promoting the effect of STAT3 may contribute to oncogenesis in the 
colon epithelium. In colon carcinoma cell lines, cell proliferation is triggered by 
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STAT3 heterologous overexpression or cytokine-mediated activation endogenously. 
In colon carcinoma cells, STAT3 function may contribute to an improper anti- 
apoptotic signaling. In cancer, overexpression of growth factor receptors and inhibi-
tion of negative regulators occur as a result of STAT3 activation. In colon carcinoma 
tumor cell lines, due to the absence of cytokine stimulation for negative regulation 
of STAT3 mechanism, this leads formation of the tumors. One of the future direc-
tions is to recognize the factors corresponding to activation of STAT3 in CRC and 
illustrate their possible suitability as diagnostic markers or therapeutic targets.

Several significant STAT3 gene pathways are variously upregulated in CRC and 
contribute to the formation of a pro-inflammatory feedback loop that is significant 
for malignant transformation. Downstream cytokines and chemokines are mediated 
at every step of tumorigenesis, such as initiation, transformation, proliferation, can-
cer cell survival, invasion angiogenesis, and metastasis. Pharmacological com-
pounds targetting the inflammatory signaling pathways are currently being tested in 
the laboratory and clinical setting. There is a demand for the development of promi-
nent immunocompetent CRC mouse models for more accurate in vivo testing and 
thus for development of drugs to treat CRC. Proteomic analysis of CRC offers the 
opportunity to conduct a quantitative and functional evaluation of protein activity in 
different signaling networks involved and allows assessment of posttranslational 
modifications, complementing gene expression studies in CRC. New approaches 
like high-throughput screening may help to recognize novel agents that block key 
signaling pathways. Further research might shed more light on the clinical role of 
targeting inflammation during the progression of CRC.
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Abstract
E2F family of transcription factor acts as central modulator for important cellular 
events including cell cycle progression, apoptosis, and DNA damage response. 
E2F1 regulates G1/S-phase transition of cell cycle transactivating a variety of 
genes involved in chromosomal DNA replication, including its own promoter. 
E2F1 is regulated in a cell cycle-dependent manner, principally through its tem-
poral association with pocket protein family member, retinoblastoma. Pocket 
proteins, in turn, regulated through phosphorylation by cyclin-dependent kinase 
(CDK). Different E2F family exhibits distinct cell cycle and apoptotic activities. 
This review focuses on E2F1 function and its putative role in colon cancer.
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20.1  Introduction

Colon cancer is the second leading cause of cancer mortality in the United States, and 
worldwide estimates are at least half a million. Genetic mutations are reported as one 
of the causes of inherited cancer risks in colon cancer. Nevertheless these mutations 
are expected to account for only 5–6% of CRC cases overall [1]. The expediency of 
premalignant stages, hereditary disorder recognition, and high occurrence of cancer 
disease allowed comprehensive genetic studies that have established colorectal cancer 
as an exemplar for understanding the tumorigenesis. Some of the recent studies shed 
a new light and emphasized on transcription factor E2F1 as a prospective driving 
force in metastasis. The E2F transcription factors are downstream targets of retino-
blastoma (RB), which mainly regulates G1/S cell cycle and influences the cell prolif-
eration in several mechanisms. However previously it was believed that E2F regulates 
the genes which were also involved in DNA synthesis. Interestingly, the diverse role 
of E2F in the cell cycle was established by modern techniques, viz., DNA microarray, 
CHIP (chromatin immunoprecipitation), as well as computational tools [7].

According to Dimova and Dyson the E2F families of transcription factors are of 
two groups: traditional or well-studied group (E2F1 to E2F5) and the novel discov-
ered group (E2F6, E2F7, and E2F3b). The traditional group was divided based on 
their transcription properties, cell cycle properties, interaction with pRB, and related 
pocket proteins (p107, p130). E2F1, E2F2, and E2F3a are expressed during the cell 
cycle act as transcription activators through interaction with pRB. E2F4 and E2F5 
are poor transcription activators which seem to act as poor repressors by recruiting 
pocket proteins. E2F3b function as a transcription repressor. However the novel 
discovered groups E2F6 and E2F7 lack transactivation, and pocket-binding domain 
thereby represses the transcription in pocket protein-independent manner. E2F1-6 
forms heterodimers with DP proteins to attain high-affinity DNA binding. Notably, 
E2F7-8 has no cofactors to bind E2F target genes. The E2F proteins are downstream 
targets of growth factor signaling cascade and eventually regulate genes involved in 
cell cycle progression.E2F1 function as both transcriptional repressors and activa-
tors depending on their association with pocket proteins. Thus, E2F family proteins 
are also critical in regulating oncogenic transformation [4]. Six E2F family mem-
bers are divided into three groups based on their oncogenic ability in fibroblasts: 
strong oncogenes (E2F2 and E2F3a), weak oncogenes (E2F1 and E2F6), and 
antioncogenes (E2F4 and E2F5).

20.2  Role of E2F1 in Cancer

E2F1 is an important downstream target of tumor suppressor pRB. The retinoblas-
toma (RB) pathway is inactivated in human tumors, which affect E2F activity. This 
leads to increased proliferation and inhibition of apoptosis resulting in 
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tumorigenesis. E2F-induced apoptosis occurs via both p53-dependent and p53-inde-
pendent pathways. Several E2F-regulated genes, viz., CDKN2A, p73, Apaf-1, and 
caspases, contribute to E2F-induced apoptosis [12]. Hyperphosphorylated pRB 
interacts with E2F1 at specific site in the C-terminal domain of pRB. At S-phase 
checkpoint, pRB gets dephosphorylated and frees the bound E2Fs to initiate the 
expression of genes necessary for S-phase progression. Notably, a single substitu-
tion (valine to proline) in RB-binding factor alters E2F1 ability to interact with 
hyperphosphorylated pRB. Additionally interaction between E2F1 and pRB1 regu-
lates the transcription activation of E2F1 target genes [3].

20.3  Role of E2F1 in Cell Cycle

E2F1 and the tumor suppressor RB genes are the central modules of cell prolifera-
tion. Specifically, the G1 cyclins with their associated kinases, CDK4 and CDK6, 
phosphorylate RB, p130, and p107. This inactivates their capacity to interact with 
the E2F transcription factors. Phosphorylation accumulates E2F1, E2F2, and E2F3a 
that activates the transcription of genes essential for DNA replication and cell cycle 
progression. Moreover the phosphorylation of RB and p130 disrupts complexes 
with E2F3b, E2F4, and E2F5 found in quiescent cells that function as transcrip-
tional repressors of S-phase genes (Figs. 20.1, 20.2, and 20.3) [19].

Fig. 20.1 Domain structure of E2F transcription factor family. E2F1-6 has one DNA-binding 
domain and one dimerization domain (DIM). E2F1-5 has pocket protein-binding sequences and 
transactivation domains. Nuclear localization signal is present in E2F1-3 genes and the nuclear 
export signal (NES) in E2F4-E2F5. E2F7 gene has two DNA-binding domains and lacks dimeriza-
tion domain [7]
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In addition to the role of E2F1 in cell cycle progression, overexpression has been 
reported in various types of tumors, including GC (gastric cancer). Plethora of studies 
reported that the knockdown of LINC00668 could perhaps abrogate E2F1- induced 
cell cycle acceleration and proliferation. LINC00668 may be key downstream effec-
tors of E2F1 in gastric cancer [20]. Interestingly the knockdown of UHRF1 inhibits 
cellular proliferation in colon cancer cell lines. Knockdown of E2F1 was also reported 
to decrease UHRF1 expression. Notably UHRF1 may be used as a potential therapeu-
tic target for colorectal cancer patients with high UHRF1 expression [16].

Fig. 20.2  Rb pathway. G1 cyclins hyperphosphorylate retinoblastoma (RB), which accumulates 
E2F1 and promotes the phase transition of cell from G1 to S. In G1 arrest of cell cycle, Rb is the down-
stream target for growth inhibitory signals. Interestingly the pRB is expressed throughout the cell 
cycle, but its antiproliferative activity is counteracted by phosphorylation during the G1/S transition

Fig. 20.3  Role of E2F1 in apoptosis via p53 dependent and independent. E2F1 promotes apop-
tosis via tumor suppressor p53 and independent of p53. E2F1 activates ARF, which stabilizes p53 
by alleviating its proteosomal degradation through MDM2. In response to DNA damage, ATM/
ATR and CHK2 kinase phosphorylates E2F1 and increases its stability. E2F1 also interacts directly 
with p53 via the cyclin A binding domain, thereby inducing p53-mediated apoptosis. E2F1 acts via 
direct upregulation of genes including p73 and APAF-1 Srt [13]
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20.4  Role of E2F1 in Metastasis

E2F1 promote CRC migration, invasion, and metastasis by controlling RRM2 trans-
activation. Fang et al. [10] validated that both E2F1 and RRM2 were elevated in 
most CRC tissues compared to normal tissues. Protein expression levels of E2F1 
and RRM2 were comparable and positively correlated with tumor stage and lymph 
node metastasis (LNM). Constantly, patients with low E2F1 and RRM2 levels were 
demonstrated with a better prognosis as compared to high levels [10]. Several 
reports in colorectal carcinogenesis depicted that overexpression of E2F1 is associ-
ated with the progression of adenomas to adenocarcinomas and metastasis. Banerjee 
et al. [2] demonstrated that high levels of thymidylate synthase (TS) and E2F1 in 
colorectal cancers lead to lung metastasis and even higher levels to pulmonary 
metastasis. Iwamoto et al. [14] in their study stated that the high expression of E2F1 
is due to amplification of E2F1 gene. However increased levels of E2F1 enriched 
with an advantage of proliferation in tumor cells could lead to tumor progression. 
Despite that it was previously demonstrated that E2F1 expression levels may be 
more informative than TS in order to determine prognosis of colorectal cancers and 
also lead to selection of personalized therapy.

20.4.1  Adhesion

Chen et al. [5] reported that E2F1 downregulates expression of cell adhesion mol-
ecules, viz., VCAM-1, ICAM-1, and E-selectin in TNF-alpha pretreated (sublethal 
concentrations) human aortic endothelial cells (HAECs). This inhibition correlates 
with suppressed NF-κB activity and hypophosphorylation of IκB-alpha. The expres-
sion levels of TNF-alpha and IκB-alpha are stabilized in E2F1overexpressing 
HAECs. Remarkably, experimental evidence on endothelial cells depicted that 
diminished adhesion molecule expression in the E2F1-transduced endothelial cells 
markedly reduces adhesion of a monocytic cell line (U937) to transduced endothe-
lial cells. Accordingly, E2F1 plays an unexpected role in regulating NF-κB- 
dependent cell adhesion in cytokine-stimulated cells.

20.4.2  Invasion and Migration

Ribonucleotide reductase small subunit M2 (RRM2) contributes to tumor growth 
and invasion in several cancers including colorectal cancer (CRC). Silencing RRM2 
a downstream target of E2F1 abrogated migration and invasion in CRC cell lines 
[10]. Increased expression or amplification of E2F1 along with RB1 loss is associ-
ated with metastasis and resistance to chemotherapy. Thus, high levels E2F1 in sev-
eral tumors are marker for unfavorable for patient survival and prognosis [18].
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20.4.3  Angiogenesis

RTKs (receptor tyrosine kinases) like VEGFR3 are overexpressed in cancer cells 
and play an important role in tumor progression, interacting with corresponding 
ligands. Upregulation of receptor and ligand concentration depend on E2F1 interac-
tion with their promoters. Parallel regulation of VEGF-C and VEGFR-3 by E2F1 
stimulates cultured cells to new blood vessels in vivo [9]. RB-E2F1 pathway pro-
motes expression of VEGF receptors facilitating angiogenesis, tumor growth, and 
progression in response to aberrant signaling events. Cooperation between mutant 
p53 and E2F1 leads to ID4 transcriptional activation, which in turn promotes angio-
genesis through pro-angiogenic soluble mediator induction [17]. New transcrip-
tional axis E2F1/p53/ID4 revealed the existence of undefined mechanism underlying 
tumor neo-angiogenesis [11].

20.5  Role of E2F1 in Apoptosis

Apoptosis is a vital process in various pathways, viz., normal cell turnover, proper 
development, immune system functioning, hormone-dependent atrophy, chemical- 
induced cell death, and embryonic development. Deregulated apoptotic signaling is 
the significant cause for many diseases including neurodegenerative, autoimmune dis-
orders and cancers. Deregulated retinoblastoma protein pathway is one of the cancers 
hallmarks. However, tumors harboring genetic alterations in the pRB pathway also 
affect apoptotic pathway [15]. The hypophosphorylated RB binds to E2F and nega-
tively regulates E2Fs activation, leads to increased expression of E2F- regulated genes. 
Strikingly, overexpression of E2F results in apoptosis in vivo and in vitro [6]. E2F1 
overexpression causes G2/M arrest followed by increased protein levels of c-Myc and 
p14ARF. It also initiates apoptosis and suppresses the growth of colon adenocarci-
noma cells. Overexpression of E2F1 is associated with downregulation of Mcl1 and 
upregulation of c-Myc and p14ARF proteins. Therefore, E2F1 is a potential target for 
gene therapy in treatment of colon cancer [8].

20.5.1  p53 and Apoptosis

In p53-dependent pathway, E2F1 activates ARF, which stabilizes p53 by alleviating 
its proteosomal degradation through MDM2. ARF negatively regulates E2F1  in 
feedback mechanism. In response to DNA damage, ATM/ATR and CHK2 kinase 
phosphorylates E2F1 and increases its stability (CHK2 also stabilizes p53 by phos-
phorylation). Subsequently, E2F1 directly interacts with p53 via the cyclin A bind-
ing domain, thereby inducing p53-mediated apoptosis. Interestingly p53- independent 
apoptosis by E2F1 occurs via direct upregulation of p73 and Apaf-1 genes. The 
assembly of cytochrome C and Apaf1 released from the mitochondria leads to for-
mation of apoptosome that catalyzes caspase-9 and initiates the proapoptotic effec-
tor caspases including caspase-30 [18].
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20.6  Conclusion and Future Perspectives

E2F1 functions in tissue-specific manner as an oncogene and tumor suppressor. 
E2F1 targets genes involved in angiogenesis, invasion, and metastasis. This sup-
ports a vision that E2F1 play an ambiguous role in many aspects of cancer develop-
ment. Present review provides a new insight on E2F1 role in tumorigenesis and for 
development of novel therapeutics. E2F transcriptional activity is regulated at dif-
ferent levels, through association with RB proteins. Beyond their role in cell cycle, 
E2F1 is implicated in regulation of apoptosis, development, and differentiation. 
Despite the fact that the role of RB and E2Fs in cell proliferation is a well-proven 
hypothesis, however their role in regulation of apoptosis, invasion, and angiogenesis 
that contribute to tumor growth is not well characterized. The role of E2F family 
members in colorectal malignancies is yet unclear. Hence there is need to investi-
gate the underlying mechanisms of E2F1  in diagnosis, prognosis, and cancer 
therapy.
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Abstract
Notch signaling is a simple pathway in its mechanism and complex because it 
activates many genes at transcriptional level. Notch plays an imperative role in 
embryogenesis and progenitor/stem cell maintenance and critically preserves the 
balance between a cell proliferation, differentiation, and apoptosis. Mutation and 
deregulation of Notch will be a reason for many diseases including cancer. 
Aberrantly expressed Notch involves in the carcinogenesis of many cancers such 
as colorectal cancer (CRC), breast cancer, pancreatic cancer, prostate cancer, 
liver cancer, cervical cancer, Ewing sarcoma, Kaposi’s sarcoma, lung cancer, 
ovarian cancer, and lymphoma. Among these, Notch plays a major role in CRC 
from development to metastasis. CRC occurs when the lining of colon epithelial 
cells becomes neoplasm, and this happens when the poise is missing between the 
normal and cancerous condition due to the overexpression of Notch. In CRC 
Notch promotes the stemness and epithelial to mesenchymal transition (EMT) 
which are requiring in aberrant crypt formation, invasion, and metastasis, respec-
tively. Moreover, overexpression of Notch in CRC is connected with poor prog-
nosis and chemoresistance. Notch counteracts with Hippo/YAP, WNT, NFkB, 
PI3K/Akt, and EGFR pathways for tumor initiation and development. Tumors 
are dependent on angiogenic switch for development and invasion which is acti-
vated by Notch ligand Dll-4 by overexpressing vascular endothelial growth fac-
tor (VEGF). This review will be focusing on the uniqueness of Notch in CRC.

Keywords
Notch · CRC · Chemoresistance · Transcription factor and EMT pathway

The original version of this chapter was revised. The book was inadvertently published without 
Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can 
be found at https://doi.org/10.1007/978-981-10-6728-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6728-0_21&domain=pdf
mailto:mathan_cell@yahoo.com
mailto:mathan@bdu.ac.in


308

21.1  Introduction

Colorectal cancer (CRC) is the third most common cancer and reason for 610,000 
deaths per year worldwide. The death in CRC is mostly due to liver metastasis, 
tumor recurrence, chemoresistance, and cancer stem cells (CSCs). Besides, the 
deregulated signaling pathways include WNT, Notch, EGFR, and TGF-β acting a 
key role in CRC development [26]. Among these, Notch pathways poise a pivotal 
role in CRC tumor initiation, tumor recurrence, metastasis, poor prognosis, chemo-
resistance, and maintains of CSCs [8]. Notch is a single transmembrane receptors 
composed of four receptors Notch 1–4, along with five canonical ligands, Jagged 
(Jag)1, Jag2, Delta like (DII) 1, Dll3, and Dll4. Notch plays an imperative role in 
embryogenesis and progenitor/stem cell maintenance and critically preserves the 
balance between a cell proliferation, differentiation, and apoptosis [8]. Mutation or 
deregulation of Notch signaling pathway leads to many diseases including cancer. 
Aberrantly expressed Notch involves in the carcinogenesis of many cancers such as 
CRC, breast cancer, pancreatic cancer, prostate cancer, liver cancer, cervical cancer, 
Ewing sarcoma, Kaposi’s sarcoma, lung cancer, ovarian cancer, and lymphoma 
[23]. Among these, Notch role in CRC is crucial from its initiation to metastasis. So 
understanding the role of Notch in CRC will pave a way to find new therapeutic 
targets for the treatment of CRC.

21.2  Notch Structure

Notch is a single transmembrane juxtacrine-mediated signaling pathway. Notch 
family consists of four type-1 transmembrane receptors, Notch 1–4. These are syn-
thesized in precursor form and undergo subsequent cleavages to form mature active 
Notch receptor. The first cleavage is by furin-like convertase at trans-Golgi appara-
tus and forms extracellular domain, intracellular domain, and transmembrane 
domain. The extracellular domain is made up of 36 EGF-like repeats. The C-terminal 
of the EGF repeats consists of three cysteine-rich lineage defective-12 (LIN-12) and 
Notch repeats (LNR) which prevents receptor activation in the absence of ligand. 
Following this, it consists of heterodimerization domain and transactivation domain. 
Intracellular domain consists of RBPJ-associated molecule (RAM) domain, two 
nuclear localization signals, 6 ankyrin (ANK) repeats, and a PEST (proline- 
glutamine- serine-threonine) sequences which are collectively called as Notch intra-
cellular domain (NICD) (Fig. 21.1) [3, 11, 15]. The sequence of proteolytic cleavage, 
cleavage site, and enzymes involved in cleavage are given in Table 21.1.

21.3  Notch Mechanism

Notch is a single transmembrane receptor with extracellular, transmembrane, and 
intracellular regions, and it is activated by sequence of proteolytic cleavages. The 
pathway activation is initiated by binding of one of the five (Jag1 and Jag2, DLL-1, 
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DLL-3, and DLL-4) ligands which leads to the conformational changes in Notch 
receptors. Subsequently, S2 cleavage site is exposed for ADAM to remove the extra-
cellular region. Following this, S3 cleavage occurs by γ-secretase (complex of nica-
strin and presenilin-1) which removes the transmembrane region and releases Notch 
intracellular domain (NICD). The NICD is accumulated in cytoplasm and then 
translocated to the nucleus by concentration gradient where it binds with transcrip-
tional regulator termed as C-protein binding factor 1 [(CBF1) also known as RBP-Jk 
or CSL for CBF1/Su(H)/Lag1)] leading to the displacement of corepressor and 
brings coactivators such as MAML-1 to activate the expression of hairy and enhance 
of split (Hes) and Hes-related repressor protein (Hey) families [1, 6, 7] (Fig. 21.2).

21.4  Notch and Transcription Factors

Once ligand binds to the Notch receptor, it can activate proteolytic cleavage medi-
ated by gamma-secretase lead to release NICD. NICD is acting as a transcription 
coactivator, but it can’t bind to DNA, because it doesn’t have a zinc finger domain. 
Consequently, they can recruit RBP-J and MAML1–3 to activate transcription 
genes through binding with DNA. Once they are formed, it can recruit chromatin 
remodeling complex, which consists of histone deacetylase or histone acetylase 
proteins. In the absence of ligand or transcription coactivator of NICD, the RBP-J 
acts as a repressor. Notch activates many transcription factors directly and indirectly 
such as HES1, HEY1, TGFβ, NF-κB, snail, slug, PTEN, and cyclin D3 [14].

Fig. 21.1 Notch structure: EGF, epidermal growth factor: LNR, Lin12 Notch repeats; HD, het-
erodimerization domain: TMD, transmembrane domain:, ANK, ankyrin repeats: TAD, transactiva-
tion domain: and PEST, proline-glutamic acid-serine-threonine

Table 21.1 Notch cleavage site and enzymes

Cleavage Cleavage site Enzyme References
S1 cleavage 1664/1665 Furin-like convertase [3]
S2 cleavage 1710/ 1711 A disintegrin and metalloprotease (ADAM) [3]
S3 cleavage 1743/1744 γ-secretase [3]
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21.5  Notch in Colorectal Cancer

Colon is the part of digestive system is lining with absorptive and secretory epithe-
lial cells interspersed with deep crypts which consists of 2000 cells with 5–10 stem 
cells [19]. CRC is identified with aberrant crypt formation intervened by Notch 
pathway. Notch signaling regulates the cell proliferation and differentiation of epi-
thelial cells to absorptive or secretory cells, maintaining apoptosis in the colon. The 
deregulated Notch will fail to spot the poise and leads to the formation of cancer 
[26]. Notch-mediated tumor initiation mechanism in CRC is not well understood, 
but the possible reason will be overexpression of mutated Notch receptors, ligands, 
and Notch signaling interplay between other signaling pathways. Notch is highly 
expressed in the primary stage of CRC relatively than the later stage. Notch1 and 
Hes1 are highly expressed in primary and metastatic CRC than colonic mucosa 
[19]. The other reasons could be (i) mutation of E3 ubiquitin ligase which is respon-
sible for NICD degradation; (ii) mutation in APC leads to the overexpression of 
NICD [28]; (iii) the decreased expression of atonal homolog1 (ATOH1) which is 
essential for intestinal secretory cell commitment; and (iv) Hes1, the direct target of 
Notch, is repressor for KLF4 which inhibits CRC cell proliferation when overex-
pressed [2]. Other than this Notch interplays with many signaling pathways in CRC 
such as WNT, NF-κB, EGFR, and TGFβ. Notch signaling can be an oncogenic or 
tumor suppressor; it depends on the context of cells in where cancer occurs [24].

Fig. 21.2 Notch signaling pathway. 1. Notch receptor is cleaved by furin-like convertase in trans- 
Golgi to produce mature Notch receptor. 2. One of the five (Jag1, Jag2, Dll-1, Dll-3, and Dll-4) 
binds from instructing cell to activate signaling pathway. 3. Exposure of S2 cleavage site and 
cleaved by ADAM enzyme to extracellular region. 4. S3 cleavage carried out by γ-secretase to 
release Notch intracellular domain (NICD). 5. NICD is then translocated to nucleus and activates 
target gene expression
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21.5.1  Notch Interplay with Signaling Pathways in CRC

Wnt/β-catenin signaling is the essential pathway which is highly articulated in 80% 
of sporadic CRC, and it is the main reason for inherited familial adenomatous pol-
yposis (FAP)-related CRC [23]. Wnt/β-catenin signaling is the key pathway involved 
in the transformation of epithelial cells into self-renewing CSCs for CRC develop-
ment. Wnt/β-catenin signaling activates its target Jag1 that trigger the Notch and 
increase its expression in CRC. Most of the CRC carries the mutation of APC which 
is the component of Wnt signaling pathway. In Apc-mutated condition, Notch sig-
naling is requisite for consequent development of CRC [4, 26, 27]. PI3/AKT path-
way is upregulated in 40% of human CRC, and it is important for cell survival and 
growth. Notch activates its target HES1 which inhibits PTEN leading to the activa-
tion and overexpression of PI3/AKT pathway in CRC. Notch involves in colonic 
carcinogenesis by stimulating EGFR pathway. Notch signaling arbitrated activation 
of transcription factor NF-κB in CRC results in chemoresistance of CRC cells [10]. 
Notch also inhibits the activity of transcription factor TGF-β pathway which is 
important for tumor suppressor and cell growth inhibition. In CRC, TGF-β-mediated 
induction of Jag1 results in the overexpression of Notch [30]. Angiogenesis is the 
formation of new blood vessels which is an important characteristic of growing 
tumor. Inhibiting or disrupting angiogenesis will be the great therapeutic way to 
inhibit or treat cancer [13]. Jag1 Notch ligand activates the Notch-dependent angio-
genesis by activating VEGF in CRC [21]. Notch signaling upregulates the expres-
sion of anti-apoptotic genes including Bcl2 and BclXL.  With these Notch also 
upregulates the expression of cyclin D1 and p21/WAF1 which are involved in cell 
cycle regulation and cell proliferation [23].

21.5.2  Notch Interaction with EMT Pathway

An epithelial mesenchymal transition (EMT) pathway plays an important role in 
key biological process of embryogenesis and metastatic cancer development [31]. 
The basement-degraded epithelial cells migrate to form new types of mesenchymal 
cells in order to increase the motility and invasion [16]. During this EMT process, 
the epithelial cell loses the cell junction followed by the reorganization of the actin 
cytoskeleton to initiate the transition by the relocation of epithelial markers such as 
E-cadherins and integrins from cell membrane to the nucleus. These could gain the 
expression mesenchymal markers such as N-cadherins, vimentin, and fibronectin 
[30]. Moreover, the growing report indicates that cancer stemness and chemoresis-
tant mechanism are achieved by high rates of EMT signaling pathway [8], espe-
cially its interaction with oncogenic signaling pathways like MMP-3, BCL9-2, 
EGFR, met, goosecoid, kaiso, TGF-β, FOXC2, GSK-3β, Smad-3, Pez, Snail1, 
Snail2, ILK, and Notch [30]. Interestingly, the recent report revealed that the grow-
ing incidence of colon cancer is due to overexpression of Notch and its regulation 
of EMT pathway [9]. Notch signaling can regulate Snail1 expression through the 
induction of hypoxia inducible factor 1α (HIF-1α). Subsequently the HIF-1α binds 
the promoter region of LOX (lysyl oxidase) for stabilization of Snail1 and its 
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transcription. Likewise Notch interact Snail2 leads to repression of E-cadherin and 
β-catenin activation [25]. Moreover, targeting of Notch signal leads to downregula-
tion of EMT and induction of p21 in human colon cancer cells [5].

21.5.3  Targeting Notch Signal for CRC Treatment

The gamma-secretase inhibitors (GSI) compounds treated CRC showed inhibition 
of the γ-secretase, which is a mandatory enzyme to activate Notch internal signal-
ing, but it induces extracellular signal-regulated kinases (Erk) for continued cell 
proliferation. However, the GSI combined with cisplatin drug-treated cells exhib-
ited the downregulation of Erk and activation of cell death [2]. The combined treat-
ment of biphenolic compound and ionizing radiation (IR) treated in CRC results 
revealed the downregulation of the Notch, CRC stem cell protein marker DCLK1, 
and downstream target gene of Hes1. These downregulation genes can activate the 
apoptosis pathway. A similar result has observed in tumor xenograft animal model 
[22]. Interestingly the flavonoid compound epigallocatechin-3-gallate-treated cells 
has showed promising activity toward the inhibition of β-catenin, but quercetin 
showed weak inducer for downstream target genes reported in human colon carci-
noma cell line HT29 [20]. The report of [12] indicates that the bioactive compound 
of Withaferin-A isolated from Withania somnifera-treated colon cancer cells exhib-
ited downregulation of Notch signal by induction of c-Jun-NH2-kinase-dependent 
apoptosis. These mechanisms can reduce the expression of Akt/NF-κB/Bcl-2 and 
mammalian target of rapamycin signaling components (pS6K and p4E-BP1). 
Likewise, a Ƴ-secretase inhibitor can induce the differentiation of goblet cell from 
the proliferative crypt in mice carrying mutated gene for an Apc tumor suppressor. 
Similar result has seen in blocking of Notch signal with Ƴ-secretase inhibitor [29]. 
These reports further support the interaction of Wnt and Notch signaling pathways. 
Moreover, the Jagged1 was silenced by lentiviral Jagged1-shRNA resulted in 
decrease of cell viability. Besides, the knockdown studies showed the induction 
induced cell cycle arrest at G0/G1 phase with reduced expression of cyclin D1, 
cyclin E, and c-Myc in vitro colon cancer cell. However, the knockdown studies of 
xenograft mouse model have reflected the same results of in vitro [6]. The small 
molecular inhibitor FLLL32-treated colon cancer stem cell has seen the inhibition 
of STAT3 through the downregulation of survivin, Bcl-XL, and Notch signal. 
Moreover, the significant inhibition of tumorsphere formation and induction of 
cleaved caspase-3-mediated apoptosis observed in small molecule-treated cells are 
compared to curcumin-treated cells [17].

Curcumin analogue GO-Y030 treatment has shown the inhibition of activated 
STAT3 followed by reduction of cyclin D1, survivin, Bcl2, Notch, and p-RP in 
colon cancer cells. These reductions can facilitate the cleaved caspase-3-mediated 
apoptosis. Moreover, GO-Y030 treatment reduces the tumor growth in mouse xeno-
grafts with SW480 and HCT-116 colon cancer stem cells in dose-dependent studies 
[17]. However, Meng et al. [18] reported that the oxaliplatin, 5- fluorouracil (5-FU), 
and SN-38 compound-treated cell revealed the induction of the Notch-1 
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intracellular domain (NICD)-mediated chemoresistance toward cancer cell progres-
sion through the activation of Ƴ-secretase. Subsequently, silencing of Ƴ-secretase 
subunit nicastrin by small interfering RNA (siRNA) prevented activation of NICD 
after the treatment of oxaliplatin. Concurrently, the silencing or blocking of NICD 
by sulfonamide GSI (GSI34)-treated colon cancer cells sensitizes to chemotherapy 
compounds through downregulation of phosphoinositide kinase-3/Akt. The inhibi-
tion of Notch signaling leads to suppression of tumor invasion and intravasation in 
genetic depletion Aes in ApcD716 mice. These reports further confirm the inhibition 
of Notch potential target for control and treatment of metastasis colon cancer [28].

21.6  Conclusion

Notch plays a major role in normal development and cancer condition. Its role in 
CRC cancer is very important from cancer progression to metastasis. This review 
explained about Notch and its transcription factor role in CRC mainly in metastasis 
and targeting Notch pathway in CRC. Targeting Notch will be a great therapeutic 
source to treat the CRC.
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Abstract
Many advances have been made in understanding the role of transcription factors 
in different types of cancer. With colorectal cancer being the third most com-
monly diagnosed cancer, studying critical transcription factors such as the lym-
phoid enhancer factor/T-cell factor (LEF/TCF) transcription factor family may 
assist in understanding its growth and progression but also serve as a therapeutic 
target in hopes for better patient outcomes. This chapter will discuss the pathway 
LEF/TCF transcription factors are known to be involved in, their regulation, and 
current studies that have investigated their role and function in colorectal cancer 
and normal cell maintenance.

Keywords
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22.1  Introduction

The Wnt/wingless pathway is associated with several roles including but not limited 
to cell fate in embryonic development and adult organ maintenance. When there is 
improper cell maintenance, abnormal cell growth occurs and a tumor develops. 
Proteins of the canonical Wnt pathway are conserved among diverse organisms from 
slime mold and nematodes to mammals and are notably known for its central media-
tor β-catenin [1–4]. Mutations in the stabilization of β-catenin and the constitutive 
activation of Wnt signaling occur in more than 80% of sporadic colon tumors [5].

This constant activation of Wnt signaling causes an accumulation of β-catenin 
levels in the nucleus where it then interacts with the N-terminus of the family 

The original version of this chapter was revised. The book was inadvertently published without 
Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can 
be found at https://doi.org/10.1007/978-981-10-6728-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6728-0_22&domain=pdf
mailto:amanda.j.bastien.med@dartmouth.edu


316

transcription factors lymphoid enhancer factor/T-cell factor (LEF/TCF) to promote 
cell growth and/or tumor development [6].

In knockout studies of LEF/TCF, the family of transcription factors has been 
implicated in regulatory roles in nearly all body tissues [7–11]. With colorectal can-
cer being the third most commonly diagnosed cancer and the third leading cause of 
cancer-related deaths in both men and women in the United States [12], inhibiting 
parts of the Wnt pathway such as the end point mediators LEF/TCF family tran-
scription factors may be useful targets in treating many cancers including colon 
cancer. This chapter will discuss the LEF/TCF transcription factors, focusing on 
LEF-1 and TCF-4 and their role in colon cancer.

22.2  LEF/TCF Proteins: Structure and Signaling Pathway

Since the discovery of LEF/TCF family transcription factors, founding members 
being TCF-1 and LEF-1, the family of proteins has been extensively studied in the 
field of cancer biology [13–15]. Interestingly, the majority of invertebrates have a 
LEF/TCF ortholog, and it seems to have expanded to a family of four in most 
vertebrates [16]. The four proteins being TCF-1, LEF-1, TCF-3, and TCF-4, [also 
known as TCF7, LEF1, TCF7L1, and TCF7L2, respectively]. The class is charac-
terized by a high-mobility group [HMG] domain. Its role is to bind DNA. Many 
studies have shown that the HMG domains among LEF/TCF are highly similar; 
for example, LEF-1 and TCF-1 HMG domains are almost identical, differing by 
only three amino acids [17, 18] and bind the same DNA sequence, [A/T][A/T]
CAAAG [7, 19].

In the nucleus, any of the four mammalian LEF/TCF proteins can bind β-catenin 
through its N-terminal binding domain. This interaction was found using a yeast 
two-hybrid screen [20]. The interaction between β-catenin and its N-terminus bind-
ing region replaces transcriptional repressors and recruits other transcriptional 
coactivators [21]. When the LEF/TCF transcription factors are activated, down-
stream targets which include proto-oncogenes such as cyclin D1 [22, 23] and c-myc 
can be turned on [24]. Regardless, this pathway is highly studied, and the β-catenin- 
LEF/TCF complex regulates at least 50 genes [25–29].

The isoforms of LEF/TCF family transcription factors play important roles as 
well. In both in vivo and in vitro studies, TCF naturally occurring N-terminal dele-
tion negatively regulates Wnt signaling [30]. This trend is not just prevalent for TCF 
N-terminus deletions but for LEF as well [31]. When overexpressed in HT29 cells, 
full-length LEF-1 increases cellular proliferation in vitro, but its truncated isoform, 
lacking the β-catenin interaction domain, inhibits cellular growth [30–33]. In fact, 
these dominant-negative isoforms have been found to occur naturally for TCF-1, 
LEF-1, and TCF-4 and are all believed to be involved in negative feedback of the 
Wnt pathway. Complicated, but critical, the LEF/TCF family and their isoforms 
play an important role in several processes such as the cell cycle, tumor formation, 
and apoptosis. For basic structure of LEF/TCF family proteins and their common 
isoforms, see Fig. 22.1.
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Once LEF/TCF is bound to β-catenin, many post-translational modifications can 
take place. Phosphorylation, sumoylation, ubiquitination, and acetylation can effect 
whether LEF/TCF interact with coactivators, repressors, or DNA [34]. For example, 
when NLK/Nemo phosphorylates TCF/LEF, the modification seems to destroy the 
DNA-binding affinity of the β-catenin/TCF/LEF complex and as a result negatively 
regulates later Wnt target genes [35, 36].

In contrast, when there is an absence of Wnt, then TCF/LEF binds to Wnt 
response elements (WRE) and corepressors such as Groucho, CtBP, and HDACs. 
Many studies have shown that the absence of Wnt signaling in the nucleus, TCF acts 
as a repressor of Wnt target genes [37]. TCF negatively regulates gene expression 
by interacting with Groucho (human TLE1); this TCF/Groucho interaction increases 
histone deacetylation and chromatin compaction, leading to transcription deactiva-
tion. However, it has been shown that the presence of β-catenin in the nucleus dis-
places Groucho for gene activation [38]. See Fig. 22.2.

LEF/TCF full-length expression and their isoforms vary between normal cells 
and colon cancer cells. In the normal colon, TCF-1 and TCF-4 are expressed, and 
LEF-1 and TCF-3 are silenced [14, 32]. Moreover, they also have different biologi-
cal roles. In general LEF-1 is viewed as an activator and TCF-3 as mostly a repres-
sor but can be an activator [39, 40]. Both TCF-1 and TCF-4 act as both inhibitors 
and activators, but TCF-4 is the dominant interactor of β-catenin in the colon. TCF-4 
mediates the transformative process of colon epithelial cells when tumor- suppressor 
protein adenomatous polyposis coli (APC) is loss. The family of proteins has also 

Fig. 22.1 Schematic of the LEF/TCF transcription family members. On the N-terminus, LEF/
TCFs have a β-catenin-binding domain. The binding of β-catenin is required for LEF/TCF func-
tion. On the C-terminus is a high-mobility group [HMG] domain mediating sequence-specific 
DNA binding. Many common isoforms occur naturally due to activation at different promotors 
such as the dominant-negative isoforms above or due to alternative splicing at the C-terminus [30] 
(Figure adapted from [39])
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been found to regulate one another. For example, transcription of LEF-1 can be 
directly regulated by TCF4-β-catenin [31]. This shift may be a pivotal role during 
initial cancer formation as expression of LEF-1 is found only in colon cancer cells.

22.3  LEF/TCF: Role in Cell Cycle and Cellular Proliferation

The cell cycle is highly complex with many regulatory proteins involved in the tim-
ing and frequency of DNA replication and cell division. It is important for cells to 
have proper cell cycle checkpoints and regulation in order to remain healthy and for 
the prevention of cancer.

The cell progresses through the following stages: G1, S, G2, and then mitosis 
during the cell cycle. Levels of the β-catenin-TCF/LEF complex are thought to be at 
its peak during the S-G2 phase and during G2 binds to the promoter of its down-
stream targets [41], a notable target being cyclin D1.

The central role of cyclin D1 is the regulation of G1 to S phase transition during 
the cell cycle [42, 43]. It complexes with cdk4 and cdk6 and incorporates incoming 
signals and other mitogens into the cell cycle [44]. In colon cancer, 44% of tumors 

Fig. 22.2 Schematic of the LEF/TCF activation and repression. When there is an absence of Wnt 
signaling and thus no nuclear β-catenin, TCF/LEF binds to Wnt response elements (WRE) and 
corepressors such as Groucho, CtBP, and HDACs. When there is Wnt signaling and β-catenin is 
located into the nucleus, it binds to the TCF/LEF N-terminus binding region displacing transcrip-
tional repressors and recruits other transcriptional coactivators [21]. When the LEF/TCF transcrip-
tion factors are activated, downstream targets include proto-oncogenes such as cyclin D1 and other 
genes [22, 23] (Figure adapted from [38])
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overexpress cyclin D1 [45], and its overall high expression has been highly charac-
terized in multiple studies [46–48]. Cyclin D1 expression in colon cancer is proba-
bly linked to its cell cycle-promoting activity since lessening the expression of 
cyclin d1 slows growth of human colon cancer cells [49]. It also has been shown that 
cyclin D1 is a downstream target of the β-catenin-TCF complex and therefore when 
continually activated allows cells to proceed through  the cell cycle and continue 
tumor growth. In support of this, expression of the dominant-negative form of TCF, 
lacking the β-catenin-binding domain, in colon cancer cells strongly inhibits expres-
sion of cyclin D1 causing cells to arrest in the G1 phase of the cell cycle due to the 
lack cyclin D1 activation [23].

The β-catenin/LEF-1 pathway also shows cyclin D1 as a direct target; LEF-1 
binds directly in the cyclin D1 promoter [22]. In addition, antisense cyclin D1 
cDNA inhibits growth of SW480 colon cancer cells in nude mice; this suggests a 
critical role for cyclin D1 in tumorigenesis and that targeting the TCF/LEF family 
can downregulate its specific activity [49].

The end point of the cell cycle is mitosis; this is when one cell becomes two. 
Several studies have shown that TCF-4 maintains the crypt stem cells of the gut, and 
its continuous activation causes uncontrolled cell proliferation [50]. In support of 
this finding, another lab determined the disruption of β-catenin/TCF-4 complex 
resulted in decreasing the expression of c-MYC and downstream targets causing G1 
arrest [9]. TCF-4 may be an important switch in cell cycle regulation and prolifera-
tion and when constitutively activated a monumental event in colon cancer 
tumorigenesis.

22.4  Role of TCF/LEF in Metastasis

22.4.1  Adhesion

The ability of cells to adhere to each other is essential for the makeup of multicellular 
organisms. When cell-cell disruption occurs, tumor cells can migrate and proliferate, 
leading to metastasis. Disruption is common when expression of cadherin/catenin 
family members becomes low or by improper assembly of adherens junctions [51].

Studies previously discussed have implicated both cyclin D1 and LEF/TCF in 
the cell cycle but also in cell-cell interaction maintenance. In a study, both cyclin D1 
and β-catenin were silenced by siRNA transfections. Using SW80 cells, they looked 
at the formation of E-cadherin-mediated adherens junctions by staining with a Cy3- 
coupled anti-E-cadherin antibody and imaged using a fluorescence microscope. 
They concluded that there was an increase in the number of adherens junctions after 
the depletion of cyclin D1 and β-catenin [52].

Furthermore if there is constitutive activation of β-catenin and the β-catenin- 
LEF/TCF complex and its target cyclin D1, then there may be less cell-cell adhesion 
allowing colon tumor cells to detach and enter the circulatory system allowing can-
cer to spread throughout the body.
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22.4.2  Invasion

Once cancer cells move into tissues surrounding the tumor, the first stage of metas-
tasis has occurred: invasion. Often invasion is accompanied by epithelial-to- 
mesenchymal transition (EMT) where epithelial cells are transformed into migrant 
mesenchymal cells. Transcription factor, ZEB1, is the key inducer of EMT, and its 
levels are affected by endogenous β-catenin or TCF4 knocked down in SW480 cells 
[53]. Furthermore, β-catenin/TCF-4 complex actually binds directly to the ZEB1 
promoter activating its transcription and thus the EMT process. Also shown in vitro, 
LEF-1 increases the invasiveness of cancer cells when upregulated [54, 55].

In general, many studies show upregulation of the LEF/TCF transcription family 
levels and its downstream targets increases the invasiveness of colon cancer.

22.4.3  Migration

Metastasis occurs when cells migrate from the initial site of disease into the circula-
tory system invading a new site [56]. Approximately 50% of patients with advanced 
local colon cancer will also have metastasis into the liver. When this occurs, life 
expectancy is predicted to be less than 1 year [57, 58]. Recently HEF1, a multi- 
domain scaffolding protein of the Cas family has been identified as a novel target of 
TCF/β-catenin signaling. In ten colorectal cancer cell lines, high expression of 
HEF1 was observed. Furthermore, when comparing colon primary tissues, 94% had 
high HEF1 levels, whereas the control tissue only had 8% [59]. Moreover, many 
targets of TCF/β-catenin complex have important roles in proliferation and migra-
tion. Preventing their interaction with one another may be useful in preventing or 
controlling the spread of colon cancer.

Furthering this reasoning, FOXN3 and other proteins upstream of the β-catenin/
TCF interaction may be potential therapeutic targets. In several colon cancer tis-
sues, it was found that FOXN3 (Forkhead box N3) was downregulated. This was 
further investigated with in vitro studies. When stably knocked down in colon can-
cer cell lines SW480 and SW620, FOXN3 increased the activity of β-catenin/
TCF. When overexpressed, the opposite was found. Using a Boyden chamber assay, 
a tool to measure cellular migration, it was found that overexpression of FOXN3 
also inhibited migration of colon cancer cells [60]. Taken together, targeting 
β-catenin/TCF complex and down regulating it, like FOXN3 has shown to do, may 
restore normal biological function in colon cancerous cells.

22.5  Angiogenesis

First approved in the United States in February 2004, Avastin became a widely used 
treatment for colon cancer in conjecture with a chemotherapy regimen; Avastin is often 
used in parallel with chemotherapeutic 5-fluorouracil [5-FU] [61]. Avastin (bevaci-
zumab) and similar drugs have been extensively used as a treatment option for patients 
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with metastatic colorectal cancer. Avastin was the first product approved in the United 
States that prevents angiogenesis, formation of new blood vessels, in cancer treatment.

Avastin works by inhibiting the protein “vascular endothelial growth factor” 
(VEGF). VEGF is secreted by tumor cells and acts on endothelial cells of existing 
blood vessels to promote new blood vessel formation [62]. Many studies have shown 
that VEGF is an important angiogenic factor in both colon cancer and metastatic 
colon cancer [63]. In fact its overexpression correlates with the development of metas-
tases in colon cancer [64]. However, when VEGF is targeted and bound to Avastin, it 
cannot stimulate the growth of blood vessels. When blocked, the tumor cannot receive 
blood, oxygen, and other needed nutrients. This limits the tumor’s ability to replicate 
and grow. Overall VEGF inhibitors like Avastin have shown to be significant in cancer 
treatments in both in vivo and in vitro studies, but challenges still persist. It remains 
elusive why some cancers have little response to VEGF- specific inhibitors, and many 
patients experience relapse. In search of other therapeutics, inhibition of the LEF/TCF 
transcription family proteins remains another hopeful option.

Interestingly, TCF-4 binds directly with VEGF and also has a critical role in 
regulating downstream targets of the Wnt signaling pathway. Mutation of TCF sites 
and expression of the dominant-negative TCF-4 isoform abolished transforming 
growth factor-β-induced VEGF promoter activity [65]. Furthermore, depleting the 
TCF-4 and VEGF interaction may decrease levels of angiogenesis and metastasis 
since high levels of both are seen in many cancers, and the two proteins directly 
interact with one another.

22.6  Apoptosis

A cell’s inability to undergo apoptosis is a hallmark of cancer. Apoptosis is the biologi-
cal process where a cell commits programmed cell death; a process that is a double-
edged sword: too much is harmful permitting growth and renewal and too little allowing 
unhealthy cells to propagate and spread. Initially described by Kerr et al. in 1972, apop-
tosis has continued to be a highly studied biological process into today’s world [66].

A common laboratory test for live cell apoptosis is annexin V staining. In healthy 
cells phosphatidylserine (PS) is localized on cell membrane’s cytoplasmic side. In 
apoptosis, PS is translocated to the outer cell membrane, thus allowing it to be 
stained for in annexin V. In a study using SW480 and HT29, colon cancer cell lines, 
the cells were made to stably express LEF full length or dominant-negative LEF-1 
[lacking the β-catenin-binding terminal]. The level of cells undergoing apoptosis 
and therefore staining annexin V positive were approximately twice of the controls 
in both cell lines for the dominant-negative LEF-1 isoform, but not for full-length 
LEF-1.The authors concluded that the shorter isoform, lacking the β-catenin- 
binding domain, is likely to lower survivability of colon cancer cells, and the iso-
form variant is likely to be involved in apoptosis [67].

TCF-4 knockdown in SW80 and HCT116 cells inhibited proliferation and increased 
apoptosis even more so than β-catenin knockdown. Knockdown also increased cyto-
toxicity sensitivity to many chemotherapeutics such as 5-FU and oxaliplatin [68].
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Furthermore, these studies support that isoforms of LEF may induce apoptosis 
taking part in a negative feedback loop in Wnt signaling preventing cell cycle pro-
gression and cellular proliferation, and in contrast its full length, expressed in colon 
cancers, having no significant impact on inducing apoptosis. Taken together with 
TCF-4 knockdown inducing apoptosis perhaps higher levels of isoform LEF-1 and 
downregulation of TCF-4 and full-length LEF-1 may help impede colon cancer cel-
lular progression.

22.7  Conclusion and Future Perspectives

The upregulated transactivation of β-catenin/TCF target genes is a major event in 
the progression of colon cancer. Constitutive activation of the complex and its target 
genes promotes and enables colon tumorigenesis and causes defect in a cell’s ability 
to regulate its cell cycle, proliferation, and the ability to commit to apoptosis.

Given the important roles of the TCF/LEF transcription protein family and its 
complexity with being an activator but also an inhibitor, this makes them a potential 
therapeutic target. Potential inhibitors used today in cancer treatment include anti-
bodies, small molecules, antisense RNA, and dsRNA for use in RNAi. The use of 
these targeted therapies has significantly improved the treatment of cancer over the 
past 10 years. However, the use of monoclonal antibodies in targeting TCF/LEF 
would be deemed useless as the complex occurs in the cell nucleus, but small mol-
ecule inhibitors (molecular weight approximately 500 Da) can enter thereby block-
ing receptor signaling and interfering with downstream intracellular molecules.

Many efforts are already under way to target the LEF/TCF transcription factor fam-
ily. Using the crystal structure of the β-catenin-TCF complex (PDB ID:1JPW), a deriva-
tive of coumarin called esculetin (6,7-dihydroxy-2-chromenone) has been identified as 
a potential inhibitor of the complex. Coumarin is found in several medicinal plants [69, 
70], and its ability to inhibit cancer proliferation has been reported previously in the rat 
colon [71]. In efforts to target human colon cancer cells, Sung-Young Lee investigated 
the molecular mechanism by which esculetin works. His findings show that esculetin 
binds directly to β-catenin, leading to the disruption of the β-catenin-TCF complex and 
its downstream targets. Other potentially useful small molecule inhibitors include 
PKF118-310, CGP049090, PKF115- 584, PKF222-815, and PKF118-744 [72].

Although promising, the majority of Wnt inhibitors are still in laboratory testing 
and have not reached the clinical testing stage. The β-catenin/TCF interaction plays 
such an important role in regulating homeostasis that its interference may have some 
serious adverse effects. Studies have shown when Wnt is inhibited, it negatively 
affects hematopoietic stem cell homeostasis in vitro and in vivo [68]. In addition, 
many small compounds identified as potential inhibitors of the N-terminus of the 
β-catenin-TCF binding region may be very similar to other important binding part-
ners including E-cadherin and APC [73, 74]. Future studies need to determine if 
these small inhibitor molecules like esculetin are specific to the β-catenin complex or 
if it also disrupts other interactions such as E-cadherin. Effecting E-cadherin could 
cause harmful consequences such as affecting cell-cell adhesion and other biological 
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processes. Although further testing and investigation are required, targeting the TCF/
LEF family still remains a hopeful target in colon cancer treatment.
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Abstract
Nuclear factor κB (NF-κB) is one of the transcription factors involved in the 
progression of pancreatic cancer. Pancreatic cancer (PC) is a deadly cancer in 
today’s world, and treatment approaches become critical due to poor prognosis 
and chemoresistance of the cancer. The NF-κB signaling pathway is known to 
induce cell proliferation and metastasis, including migration and angiogenesis. 
Furthermore, the NF-κB pathway is also involved in the prevention of apoptosis 
in PC. In this present chapter, we discuss the role of NF-κB in the progression of 
PC, resistance to chemo drugs such as gemcitabine, and the influence of down-
stream targets on the metastatic characteristics of cancer. Therefore, targeting the 
NF-κB signaling pathway stands as a rational approach for future treatment of 
pancreatic cancer.
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23.1  Introduction

Nuclear factor κB (NF-κB) is an important transcription factor in the cell signaling 
pathway of an inflammatory response to any stimulus such as a pathogen, stress, or 
cytokine. NF-κB also plays a crucial role in cell proliferation and cancer. The tran-
scription factor is activated through two pathways: the classical pathway and the 

The original version of this chapter was revised. The book was inadvertently published without 
Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can 
be found at https://doi.org/10.1007/978-981-10-6728-0_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-6728-0_23&domain=pdf
mailto:pganji@emory.edu


328

nonclassical pathway. Its activation is regulated by a class of proteins known as 
inhibitors of κB (IκB). The degradation of these inhibitor proteins results in the 
movement of NF-κB into the nucleus for transcription of a target gene. Five pro-
teins, sharing a common Rel homology domain, constitute the family of NF-κB 
[72]. The major component in the family of NF-κB is Rel 1A (p65) protein [60], and 
its expression levels are varied through different species [52]. Rel A plays a major 
part in the proliferation of different cancers. One study showed that p65 was 
involved in the proliferation of ovarian cancer cells [69]. Other proteins include Rel 
1B, p52/p100, p50/p105, and c-Rel [16, 26, 54]. In the classical pathway, the stimuli 
that trigger a NF-κB response are extracellular signals such as cytokines. In this 
signaling cascade, the IκB kinase degrades the IκB protein that reduces the p65 in 
the cytoplasm. Rel 1A is translocated into the nucleus to start the transcription of the 
target DNA sequence [31]. The activation of the nonclassical or noncanoncial path-
way occurs through receptors such as lymphotoxin β receptor (LTβR), which is 
known to activate the inflammation process in various cancers [20, 63, 87] and 
thereby stimulating the NF-κB-inducing kinase (NIK). NIK degrades the IκB pro-
teins in the heterodimer complexes to allow translocation of the NF-κB transcrip-
tion factors into the nucleus [54] (Fig. 23.1).

NF-κB transcription factors are constitutively activated in cancers, and they are 
invariably involved in inflammation-associated carcinomas [15, 21, 61]. NF-κB fac-
tors are essential contributors in the progression and invasion of any cancer [36]. 

Classical Pathway Non-Classical Pathway
Cytokine/  

stress

IKK

IkB

p65
IkB

p65

Receptors

NIK

p100p52

p100

p52

Rel
1B Rel

1B

Fig. 23.1 Activation of NF-κB through different pathways. In the classical pathway, cytokines or 
stress induces the translocation of p65 from the cytoplasm into the nucleus, whereas the receptors 
in the nonclassical pathway induce the translocation of the p52 and Rel1B complex from the cyto-
plasm into the nucleus. Ubiquitination of certain proteins also occurs in both pathways: IkB in the 
classical pathway and p100 in the nonclassical pathway
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The development of drug resistance has been a concern in prostate cancer, due to 
NF-κB [14]. Moreover, the induction of angiogenesis and the downregulation of 
tumor suppressor maspin [29] are evidence of a major role of NF-κB in cancer pro-
gression [49].

Less than 5-year survival rates, bad prognosis, and chemoresistance make pan-
creatic cancer one of the deadliest cancers worldwide [19, 68]. The cases of pancre-
atic cancer have been steadily increasing every year in Caucasian men as the Western 
lifestyle increases susceptibility to the cancer [45, 57]. The mortality of people 
depends on race as observed in the case of pancreatic cancer where the mortality in 
African-Americans is higher than the rate in Caucasians [45]. Having high mortality 
rates in its advanced stages, pancreatic cancer has emerged as a critical area of 
research for the identification of any biomarkers in blood or the recognition of any 
signaling pathways during the initial stages of the cancer.

In this review, we discuss the measures by which NF-κB could be used as an 
efficient biomarker in the progression of pancreatic cancer.

23.2  Role of NF-κB in Cell Proliferation

Cell proliferation is the signature characteristic of a cell, and many cytokines aid in 
this process. Unfortunately, cytokines cannot regulate the cell proliferation of a can-
cer cell as they recognize the cancer cell as a normal cell in our bodies. Identifying 
novel regulators in the proliferation of pancreatic cancer is important as silent 
symptoms continue until the latter stages of the cancer. One such protein is carboxy-
peptidase E (CPE) from the family of pro-protein convertases, which regulate cell 
proliferation when CPE is downregulated [43]. FAM21, a part of WASH complex 
(Wiskott–Aldrich syndrome protein and Scar homologue), is another protein that 
could act as a target as its reduction has made pancreatic cancer cells sensitive to 
gemcitabine [18]. The major role, however, is played by the master cytokine NF-κB 
in the regulation of the other cytokines and receptors in cell proliferation. NF-κB is 
mediated in all cancers by various proteins, such as p21-activated kinase (PAK4) 
[76], Th17-type cytokines [17], and MAP3K7 [88]. The downregulation of NF-κB 
with its inhibitors maintained the growth of pancreatic cancer, indicating a critical 
part played by NF-κB [38, 91].

In vitro studies have shown that NF-κB is inhibited by a nonsteroidal drug tolfen-
amic acid (TA) [59] through its translocation to the nucleus to promote transcription 
of cell proliferative protein BCL-2 [6, 86]. BCL-2 is also inhibited by the knock-
down of a multifunctional protein, clusterin (CLU), through the NF-κB signaling 
pathway in order to sensitize the pancreatic cells to gemcitabine [86]. Expression of 
clusterin in pancreatic cancer was significantly higher than normal in patients who 
were on gemcitabine, indicating that clusterin induces resistance to the drug [11].

NF-κB is constitutively activated in pancreatic cancer by KRAS mutations. The 
KRAS oncogene is a protein from the RAS family and is well known to initiate 
pancreatic cancer [33, 54]. Regulation of the mutant KRAS gene has been a chal-
lenge; therefore, the focus has now been diverted to downstream targets of 
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KRAS. Membrane-bound mucin MUC4 is an early downstream target in pancreatic 
cancer. MUC4 transcription is mediated by NF-κB and AP-1 [78]; thus, regulation 
of NF-κB expression is involved with the expression of MUC4 and thereby reduces 
the KRAS mutations. MUC4 has two splice variants out of which MUC4/Y induces 
cell proliferation in pancreatic cancer cells: either through the JNK or the AKT 
signaling pathway [85]. TAK-1 (transforming growth factor beta-activated kinase 1) 
and GSK-3 (glycogen synthase kinase) are also downstream targets of KRAS that 
promote pancreatic cancer through the noncanonical pathway of NF-κB [5].

23.3  Role of NF-κB in Apoptosis

Programmed cell death, also known as apoptosis, is the natural way for a cell to 
cease existence. Its dysregulation, however, is one of the hallmarks of cancer [13]. 
NF-κB, a protein that helps in the survival of a cell, plays a huge role in the dysregu-
lation of apoptosis during cancer [72]. Papademetrio et al. [53] showed that inhibi-
tion of the NF-κB pathway leads to apoptosis in pancreatic cancer. Tenascin-C, a 
glycol-protein located in extracellular matrix (ECM), is highly expressed in pancre-
atic cancer as opposed to its absence in noncancerous cases [64]. This glycol–pro-
tein induces resistance of pancreatic carcinogenesis and allows apoptosis through 
the NF-κB pathway by translocating the p65 to the nucleus through phosphorylation 
of ERK1/ERK2 [64]. Radiation therapy with nafamostat mesilate enhances cell 
apoptosis, and the combination with the inhibition of NF-κB increases the effect of 
the therapeutic approach [66]. In order to reduce chemoresistance due to the 
gemcitabine- induced nuclear factor κB (NF-κB) activation, another therapeutic 
approach includes the combination of nafamostat mesilate and gemcitabine, which 
was shown to reduce the progression of pancreatic cancer [77]. TRAIL-induced 
(tumor necrosis factor-related apoptosis-inducing ligand) apoptosis is an effective 
way to eliminate cancer cells as it selectively induces cell death in carcinogenic 
cells [25]. PDAC, however, has the ability to develop resistance to TRAIL, and 
TRAIL-resistant cells have a high amount of NF-κB activity in the cells [37, 75]. 
C-Rel is the main contributor to TRAIL resistance in PDAC [25]. Regulating c-Rel 
along with GSK-3α—glycogen synthase kinase-3—could control the TRAIL resis-
tance to induce apoptosis in pancreatic carcinogenesis [92]. Targeting the NF-κB 
also reduced the TRAIL resistance and enhanced apoptosis [74].

23.4  Role of NF-κB in Cell Cycle

NF-κB mediates a lot of proteins and proteases from escaping the cell cycle arrest 
at various stages. P65, from the NF-κB family, promotes pancreatic cancer through 
activation of stathmin. Stathmin is a protein regulated by p53, and it dysregulates 
the microtubules in the malignancies and, therefore, leads to chronic hypoxia [44]. 
Inhibition of dysregulated stathmin arrested cells at the G2/M stages in the cell 
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cycle [44]. NF-κB also silences protease inhibitors such as the histone deacetylase 
inhibitor belinostat in order to enhance pancreatic cancer [12].

The effect of NF-κB could be reduced by inhibiting its translocation to the 
nucleus to transcript survival proteins. Drugs specific to the target translocation of 
NF-κB have become increasingly available nowadays. Chen et al. [9] showed that 
dihydroartemisinin (DHA), derived from an anti-malaria drug artemisinin, inhibited 
the NF-κB translocation and decreased the expression of cdk2 (cyclin-dependent 
kinase), cdk4, and cyclin E. Pristimerin, a triterpenoid [40], caused cell cycle arrest 
at the G1 stage, and a significant decrease in the expression of the aforementioned 
cell cycle proteins was observed [82]. This triterpenoid also cleaves caspase 3 and 
sensitizes the pancreatic cancer cells to gemcitabine by inhibiting the localization of 
NF-κB to the nucleus [82]. Similarly, gemcitabine-induced NF-κB could also be 
reduced by another medicinal drug, honokiol, thereby increasing the effects of gem-
citabine and arresting the cell cycle at the G1 phase [2]. Benzyl isothiocyanate 
(BITC), another plant drug [34], arrested the cell cycle at the G(2)/M phases by 
targeting the nuclear localization of NF-κB transcription factor and lowering the 
expression of cyclin D1, cyclin B1, and cyclin-dependent kinase 1 [70].

β-adrenoceptors are cell membrane receptors whose inhibitors are epinephrine, 
and these receptors increase the uptake of glucose by the muscle in the pancreas. 
β-adrenoceptors are considered to be a part of cancer cell invasion, and therefore 
Zhang et al. [89] reviewed the inhibition of these receptors. It was observed that the 
β2-adrenoceptor antagonist, ICI118,551, significantly decreased the expression of 
cell cycle kinases such as cyclin D1, cyclin E, and Akt but increased pro-apoptotic 
proteins. ICI118,551 also significantly reduced the activation of NF-κB through 
inactivation of the cAMP/PKA pathway and the MAPK pathway [90], marking 
reduced cell invasion and cell proliferation in pancreatic cancer [75].

23.5  Role of NF-κB in Migration

Caused by TGF-β signaling, epithelial–mesenchymal transition (EMT) as a charac-
teristic of metastasis TGF-β also activates NF-κB (p65) through TAK1, which is 
involved in cell proliferation, migration, and cell invasion [24, 27]. TGF-β, when 
overexpressed in malignancies, promotes the cell to migrate from one area to 
another. Maier et al. [46] also covers how defective TGF-β signaling could act as an 
inducer of EMT and a promoter of pancreatic cancer progression.

Targeting NF-κB for EMT reduction is a way of decreasing the migration of pan-
creatic cancer cells to other areas [57]. CARD-containing MAGUK protein 3 
(CARMA3) affects the NF-κB pathway through Bcl10; overexpressed CARMA3 is 
silenced in pancreatic carcinoma, and the NF-κB signaling is also significantly 
decreased in the cancer along with migration, cell invasion, and cell proliferation 
[22]. Blocking the NF-κB through the aforementioned various drugs reduces the 
EMT of a pancreatic cancer cell. Resveratrol, a natural polyphenolic compound 
detected in grapes, inhibits the EMT of PC cells through suppression of the NF-κB 
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pathway [42]. Similarly, grape-seed proanthocyanidins inhibit the metastasis of pan-
creatic cancer through reversal of EMT, promotion of mesenchymal to epithelial 
transition, and targeting NF-κB [55]. Metastasis of pancreatic cancer is observed by 
significant changes in the expressions of E-cadherins, N-cadherin, and vimentin [55].

Superoxide dismutase (SOD) enhances the production of reactive oxygen species 
(ROS) that aids in the invasiveness of the carcinogenesis. SOD aids in this process by 
activating the ERK/NF-κB pathway and promotes expressions of EMT- related pro-
teins such as E-cadherins, N-cadherin, and vimentin [41]. Further research is required 
on the role of NF-κB in the invasion and migration of pancreatic cancer.

23.6  Role of NF-κB in Angiogenesis

Overexpression of the vascular endothelial growth factors (VEGF), interleukin 8 
(IL-8), matrix metallo-protein (MMP) 9, and cyclooxygenase (COX)-2, are observed 
during angiogenesis of any type of cancer. All these proteins are transcript products 
of NF-κB, so inhibition of NF-κB would reduce the formation of angiogenesis in 
malignancies [47]. There are various drugs identified to block NF-κB in angiogen-
esis. In 2011, dihydroartemisinin (DHA) was found to have an anti-angiogenic 
effect by targeting the NF-κB pathway and inhibiting the DNA-binding activity of 
NF-κB [80]. Initiation of transcription by NF-κB through DNA binding was also 
reduced by a proteasome inhibitor MG132 and thus decreasing the expression levels 
of VEGF and IL-8 [47]. A more recent study has shown that zerumbone, a compo-
nent of subtropical ginger, inhibits the expression of pro-angiogenic proteins by 
blocking the activity of NF-κB [62]. Another vegetative compound, oxymatrine, 
from Chinese herbs has decreased the expression of VEGF in addition to the expres-
sion of NF-κB in an anti-angiogenic effect [10]. Blocking NF-κB to reduce angio-
genesis may be a vital strategy because all pro-angiogenic proteins are gene products 
of NF-κB; therefore, the dysregulation of NF-κB has to be targeted in order to stop 
angiogenesis and cell invasion.

23.7  Epigenetics of NF-κB in Pancreatic Cancer

NF-κB is critical to the invasiveness of pancreatic cancer [71]. Two inhibitors of 
NF-κB, namely, JSH-23 and SM-7368 [39, 65], were identified to block the inva-
siveness of pancreatic cancer cells and the migration of cancer [71]. SOX9 is an 
essential transcription factor in the development of pancreatic cancer [67]. 
Epigenetic changes in this biomarker significantly inhibit the invasiveness of pan-
creatic cancer cell lines, PANC-1 and HPAC [71]. Expression of SOX9 is regulated 
by the p65 subunit of the NF-κB family [71]. Regulated by NF-κB, another bio-
marker is MMAC/PTEN, which is involved in the PI3K/Akt signaling pathway [3]. 
Decreased expression of MMAC/PTEN activates the PI3K/Akt pathway, which 
subsequently activates NF-κB in pancreatic cancer [3]. The introduction of NF-κB 
inhibitors has shown improved results in both cases. Benzyl isothiocyanate inhibits 
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histone deacetylases, resulting in a significantly reduced expression of NF-κB [7]. 
Therefore, identification of upstream biomarkers in the NF-κB signaling pathway 
carries significance in diagnosing pancreatic cancer in its early stages.

23.8  Molecular Mechanism of NF-κB in Pancreatic Cancer

Alteration in the NF-κB signaling pathway mediates carcinogenesis through VEGF 
and MAPK [30]. Dysregulation of the NF-κB pathway is accompanied by alterations 
in the expressions of proteins such as Bcl2, survivin, and XIAP [1]. A previous study 
showed that the activation of the NF-κB pathway may be prolonged by the use of 
eicosapentaenoic acid (EPA) in pancreatic cancer [58]. The usage of fatty acids in com-
bination with gemcitabine resulted in the proliferation of pancreatic cancer through the 
NF-κB pathway [32]. This indicates the usage of fatty acids and other novel proteins to 
regulate the signaling pathway of NF-κB in pancreatic tumorigenesis [23].

The nuclear localization of NF-κB in pancreatic cancer in order to initiate the 
transcription of anti-apoptotic proteins is regulated by pro-inflammatory proteins 
such as angiotensin II [8]. Angiotensin activates the extracellular signal-regulated 
kinase 1/2 (ERK1/2), which induces monocyte chemoattractant protein 1 (MCP-1). 
This initiates the process of inflammation and thereby induces nuclear localization 
of NF-κB [8]. Wang et al. [84] showed that there is cross talk between Notch-1 sig-
naling and NF-κB signaling in pancreatic cancer, which could be inhibited by an 
isoflavonoid known as genistein found in soy products [4]. NF-κB is also activated 
by the nuclear localization of glycogen synthase kinase 3 (GSK3β) in pancreatic 
cancer [51]. One of the downstream targets of NF-κB in pancreatic cancer is the 
urokinase-type plasminogen activator, and the gene transcript was shown to be 
inhibited by neutralization of interleukin-1 [50]. The urokinase-type plasminogen 
activator is expressed along with VEGF and IL-8 through IL-1 alpha-activated 
NF-κB transcription, which is observed in metastatic pancreatic cancer [48]. CCN1 
or CYR61 (cysteine-rich angiogenic inducer 61) activates the NF-κB pathway in 
pancreatic cancer through the activation of the Ras-related c3 botulinum toxin sub-
strate 1 (Rac3) and the V-akt murine thymoma viral oncogene homologue (Akt) 
signaling pathway [81]. All the identified proteins until now only represent a small 
number of activators in the activation mechanism of NF-κB. Further understanding 
of the complete mechanism by which the NF-κB and its target genes are activated 
in pancreatic cancer cells is essential for identifying a better biomarker in the early 
stages of cancer progression.

23.9  Conclusion

Pancreatic carcinoma (PC) is one of the deadliest cancers in the world with reduced 
time after diagnosis due to the silent progression of the disease. Thus, a therapeutic 
agent that can identify PC before migration to other parts of the body is essential. 
NF-κB is a target that participates in all the hallmarks of a cancer from cell 
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progression to angiogenesis [30, 47]. Hence, upstream or downstream targets in the 
NF-κB pathway may stand as suitable factors to diagnose pancreatic cancer. One of 
the major problems in PC is the intrinsic ability of the cells to develop resistance to 
gemcitabine, the most widely used drug to target PC [73]. Gemcitabine resistance is 
reduced by inhibiting the NF-κB pathway and other proteins, making the drug much 
more effective on the cancer cells [84]. Other drugs are used in combination with 
gemcitabine in order to enhance the effect of the drug. Dihydroartemisinin, a drug 
used to treat malaria, enhances the effect of gemcitabine by inactivating NF-κB and 
its downstream targets, c-myc, Bcl-2, etc. [79], similar to vitamin E δ-tocotrienol 
[35]. A compound found in a Chinese plant, escin, sensitizes pancreatic cancer cells 
to gemcitabine [56, 83]. A more effective way to target PC is to target a combination 
of proteins such as Stat3, NF-κB, Cox-2, and EP4 [28].
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Abstract
STAT3 is a member of the signal transducer and activator of transcription (STAT) 
family of proteins. Activation of the STAT3 signaling cascade results in the tran-
scription of several pro-proliferative and anti-apoptotic proteins. STAT3 is also a 
potent modulator of the immune system, and its activation results in the suppres-
sion of the immune response. Dysregulation of STAT3 is implicated in the devel-
opment and progression of a number of malignancies, including pancreatic 
ductal adenocarcinoma. Because of its involvement in tumorigenesis and the 
evasion of the immune response, STAT3 is emerging as a potential therapeutic 
target for pancreatic cancer, with several therapies currently under 
development.

Keywords
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24.1  Introduction

Pancreatic cancer is one of the most fatal malignancies worldwide. It is the fourth 
leading cause of cancer-related deaths in the United States [1]. Pancreatic ductal 
adenocarcinoma (PDAC) is both the most common and lethal form of pancreatic 
cancer, making up 85% of all pancreatic cancer diagnoses. This malignancy has a 
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close association with inflammation; it often arises from a chronic inflammatory 
state, such as chronic pancreatitis. Like most other forms of cancer, PDAC enables 
its growth by cloaking itself from the body’s immune system [2]. Despite the many 
advances made in the field of oncology and the increase in life expectancy following 
the diagnosis of many forms of cancer, the prognosis of PDAC remains poor. This 
is partially attributable to both late-stage diagnosis and resistance to current treat-
ment. Because of treatment resistance, researchers continue to search for new and 
more effective therapies. Recently, among other promising pursuits, the search has 
turned to transcription factors as potential therapeutic targets.

The signal transducer and activator of transcription (STAT) proteins are a family 
of seven transcription factors with well-established roles in a diverse array of vital 
cellular functions including the immune response, cell cycle, cell growth, and apop-
tosis. Because these proteins activate gene expression, dysregulation of any step 
along the STAT activation cascade can incite tumorigenesis. There are seven cur-
rently identified members of the STAT family of proteins: STAT1, STAT2, STAT3, 
STAT4, STAT5A, STAT5B, and STAT6 (Fig. 24.1) [3–5]. All STATs share a similar 
structural organization with six functionally conserved domains including the DNA- 
binding domain, the SH2 domain, and the transactivation domain (TAD) [6, 7]. 
STATs are cytoplasmic proteins that are activated following the binding of ligands, 
including cytokines and growth factors, to cell membrane-associated receptors. 
Receptor-associated tyrosine kinases such as Janus kinase (JAK) then phosphory-
late a conserved tyrosine residue in the TAD (Fig. 24.1). Phosphorylation of this 

Fig. 24.1 A structural organization of STAT family proteins. The STATs have six common 
domains. While all domains are well conserved, their transactivation domain varies in size and 
existence of important residues. Tyrosine (Y), a phosphorable residue, exists in TAD domain of all 
STATs, while serine (S), another phosphorable residue, is not present in STAT2 and STAT6 TAD
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tyrosine residue results in dimerization through SH2 domain interactions, which 
activates the STAT protein (Fig. 24.2). Ultimately [8], the activated STAT protein 
will translocate to the nucleus. The DNA-binding domain is involved in the direct 
binding of STATs to their corresponding gene promoter sites within the cell’s 
DNA.  The TAD also regulates transcriptional activation of target genes through 
interaction with other transcriptional regulators. In addition to the tyrosine phos-
phorylation mentioned above, STATs can be phosphorylated at a serine located in 
the TAD. Serine phosphorylation at this site has been shown to enhance transcrip-
tional activity and DNA binding [9].

Specifically, STAT3 has well-established links to numerous cancers, including 
PDAC. STAT3 has been shown to be constitutively activated in PDAC and is thought 
to contribute to tumorigenesis through its pro-proliferative and anti-apoptotic effects 
[10]. STAT3 also plays an important role in modulating the immune response to 

Fig. 24.2 Schematic description of STAT3 activation pathways and contribution to pancreatic 
cancer. Red boxes depict inhibitors currently under investigation for therapeutic use in pancreatic 
cancer and their sites of action
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malignancy. While an increase in STAT1 activity has been shown to cause a more 
robust antitumor immune response, an increase in STAT3 decreases the immune 
response to cancer [11, 12]. Both in vitro [13] and in vivo [14, 15] studies have 
demonstrated that blocking STAT3 inhibits cancer cell growth and induces cell 
death. Not surprisingly, overexpression of STAT3 has been shown to be a poor prog-
nostic factor in pancreatic cancer [16]. This chapter will focus on STAT3 and its role 
in pancreatic tumorigenesis and progression and in immune response modulation. 
Furthermore, the chapter discusses STAT3 as a potential therapeutic target in the 
treatment of patients with pancreatic cancer.

24.2  The Role of STAT3 in Transcription

Cell-cell signaling pathways are critical processes that allow cells to communicate 
information to one another and thereby elicit a response. Such responses are com-
monly mediated through transcription factors, which are regulators of gene expres-
sion. Dysregulation of cell-cell signaling pathways and of transcription factors is 
known to contribute to many diseases, including cancer.

In the canonical JAK-STAT pathway, STAT3 activation is promoted by the bind-
ing of cytokines and growth factors to their receptors. Cytokines and growth factors 
that have known involvement in this pathway include IL-6, IL-11, LIF, IFNs, EGF, 
IL5, IL6, HGF, LIF, and BMP2. Their corresponding receptors include cytokine 
receptors such as the IL-6 receptor, G-protein-coupled receptors such as adrenocep-
tors and S1PR1, and Toll-like receptors such as TLR9 and TLR4 [17, 18]. The bind-
ing of these ligands activates the receptors which, in turn, activate receptor-associated 
tyrosine kinases. Among the most well studied of these receptor-associated kinases 
are the Janus kinase (JAK) proteins, which phosphorylate and activate STAT3 [19]. 
In addition to JAK, alternative kinases within the cell, including MAPK and Src, 
can phosphorylate STAT3. When the JAK-STAT signaling pathway is inactive, 
STAT proteins are normally located in the cytoplasm of the cell. Phosphorylation of 
STAT proteins at Tyr705 results in dimerization. Following dimerization, STAT 
translocates to the nucleus. Once in the nucleus, STAT proteins will bind directly to 
DNA at the promoter regions of their target genes, directly regulating the transcrip-
tion of these target genes.

STAT3 is known to regulate the transcription of a broad range of target genes 
and, consequently, a number of cellular processes. Key target genes of STAT3 
include genes involved in promoting hallmark properties of cancer, including pro-
liferation (cyclin D1, HSP-70, HSP-90), apoptosis (BCL-2, BCL-XL, MCL-1, sur-
vivin), angiogenesis (VEGF-A, HGF), inflammation and immunosuppression 
(IL-10, IL-23, TGF-β, COX-2), and metastasis (MMP proteins, fascin, Vimentin, 
I-CAM-1). STAT3 also promotes the transcription of other transcription factors that 
are implicated in tumor promotion (c-Fos, HIF1-a, c-Myc, Sox2, p53, Twist, 
FOXO1). Thus, STAT3 promotes tumor formation and progression through a num-
ber of mechanisms [20].
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STAT3 signaling can be switched off by regulatory events including inactivation 
of JAK-STAT signaling receptors, disruption of the binding interface between JAK 
proteins and STAT3, and through STAT3 dephosphorylation mediated by protein 
tyrosine phosphatases such as SHP-1, SHP-2, PTP1B, PTPεC, and TC45. In par-
ticular, TC45 is a phosphatase that localizes to the nucleus, where it dephosphory-
lates STAT3, thus inhibiting its role in transcription. Dephosphorylated STAT3 
inhibits its dimer formation, which promotes nuclear export and rapid termination 
of STAT3 signaling [21].

24.3  The Role of STATs in Proliferation and Apoptosis

STAT3 has been implicated in cellular proliferation and resistance to apoptosis, 
both hallmarks of cancer. Overexpression of STAT3  in mouse models activates 
genes known to directly promote proliferation, which increases the risk of develop-
ing spontaneous cancers [22]. STAT3 is also known for its role in promoting the 
proliferation of immune cells. In murine models, T-cell-specific depletion of STAT3 
impairs IL-6-mediated induction of cellular proliferation and prevents proapoptotic 
signaling independent of BCL-2 [23]. Similarly, STAT3 activity mediated through 
Gp130-like receptors is known to activate genes including those promoting prolif-
eration in B lymphocytes [24, 25].

Disruption of JAK/STAT3 signaling promotes cell cycle arrest in G1 phase, 
revealing a role for STAT3 in the G1/S phase transition [26, 27]. In detail, STAT3 
promotes cell proliferation through its transcriptional activity by upregulating 
expression of target genes such as cyclin D1, c-Myc, and pim-1, thus indirectly 
accelerating cell cycle progression [28, 29]. Interestingly, when constitutively 
expressed together, pim-1 and c-Myc can compensate for STAT3-mediated cell 
cycle arrest [28].

STAT3 also regulates the transcription of anti-apoptotic target genes including 
MCL-1, survivin, BCL-XL, and BCL-2 [20]. Additionally, STAT3 can promote cell 
survival by downregulation of p53, a gene which is well established for its role in slow-
ing cell cycle progression and inducing apoptosis [29]. Downregulation of STAT3 has 
been shown to induce apoptosis, including in pancreatic cancer cell lines [30–32].

24.4  The Role of STAT3 in Pancreatic Cancer

It has recently been reported that STAT3 plays a critical role in tumorigenesis and 
metastasis in a variety of malignancies, including pancreatic cancer (Fig. 24.2). In 
KrasG12D-driven mouse models of pancreatic neoplasia, myeloid cells found in the 
tumor stroma showed enhanced secretion of IL-6, which activates the JAK-STAT 
pathway in pancreatic epithelial cells. This promotes the progression of pancreatic 
intraepithelial neoplasia (PanIN) and ultimately leads to the development of pancre-
atic ductal adenocarcinoma [33]. Additionally, there is often a complex cross talk 
between pancreatic tumors and their stroma that can lead to progression of the 
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malignancy. Pancreatic stellate cells (PSCs) are a type of pancreatic cancer- 
associated fibroblasts. PSCs promote the activity of myeloid-derived suppressor 
cells (MDSCs) via the IL-6/STAT3 signaling pathway. This results in an immuno-
suppressive and tumor-promoting environment [34].

In metastasis, STAT3 is implicated primarily through the functions of its target 
genes. STAT3 target genes have roles in many of the steps of the metastatic cascade 
such as cell survival, invasion, angiogenesis, and evasion of the immune system. 
Angiogenesis describes the formation of new blood vessels, which helps increase 
blood flow to a tumor. Recently, STAT3 has been implicated in angiogenesis by 
promoting the transcription of vascular endothelial growth factor (VEGF). VEGF is 
a key molecule that, when overexpressed, promotes angiogenesis. VEGF is fre-
quently overexpressed in PDAC and other highly metastatic cancers. One group 
recently reported that overexpression of STAT3 correlates with overexpression of 
VEGF in pancreatic cancer. This corresponds with the evidence that VEGF is a 
direct transcriptional target of STAT3 [35].

STAT3 is also known to influence metastasis through the regulation of expres-
sion of matrix metalloproteinase (MMP) proteins. Several MMP proteins are pre-
dicted to have a STAT3-binding site in their promoter, and, in some cases, it was 
found that their transcription is positively regulated by STAT3 binding [6]. MMPs 
play a role in the metastasis of cancers, including pancreatic cancer, as MMP pro-
teins are frequently overexpressed in PDAC.

In addition to its role in cancerous cells, STAT3 and its associated signaling path-
way can play critical roles in tumor stromal cells, including cells of the innate and 
adaptive immune systems. The intricate cross talk between tumor cells and immune 
cells can greatly influence cancer progression. It has been reported that STAT3 is a 
negative regulator of the immune inflammatory response. Recent reports have shown 
that depletion of STAT3 in macrophages and neutrophils enhances the inflammatory 
response to toxins in mice [36]. The adaptive immune response is also affected by 
modulation of STAT3. Hyperactivation of STAT3 in APCs results in the mitigation of 
T-cell activation and leads to T-cell tolerance of antigens. Conversely, the inhibition 
of STAT3 in APCs results in increased activation of anergic T cells, both in vitro and 
in vivo [37]. T cells with constitutive expression of the protein demonstrate an inabil-
ity to infiltrate tumor stroma [38]. STAT3 signaling inhibition in hematopoietic cells 
improves T-cell and natural killer cell antitumor responses [11].

In metastasis, before tumor cells colonize a secondary site, the site of colonization 
is first infiltrated by immune cells, including tumor-associated macrophages and 
other hematopoietic precursors. These cells provide a homing signal for metastatic 
tumor cells, which is known as the premetastatic niche [39]. The JAK-STAT pathway 
has been implicated in the formation of the premetastatic niche, where STAT3 pro-
motes proliferation and survival of myeloid cells at these secondary sites. Furthermore, 
inhibition of STAT3 prevented the number of premetastatic niches as well as metas-
tasis in mouse models [40]. Clinical studies have also identified a correlation between 
STAT3 activity and the number of premetastatic niches in the lymph nodes of patients 
with varying tumor types [41]. Therefore, targeting STAT3 could provide a potential 
anti-metastatic therapeutic strategy across multiple cancer types.
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24.5  Current and Developing Therapies Targeting STAT3

To date, the outcomes associated with pancreatic cancer remain poor. The only cur-
rent potentially curative treatment for pancreatic ductal adenocarcinoma is the sur-
gical removal of the tumor and its surrounding structures. However, many patients 
are not candidates for this operation and must instead receive chemotherapy and/or 
radiation therapy. Additionally, many surgical candidates receive adjuvant or neoad-
juvant chemotherapy to enhance their chance of survival. Thus, chemotherapy 
remains an important treatment modality for patients with PDAC.  The standard 
first-line chemotherapeutic regimen for pancreatic ductal adenocarcinoma is the 
combination of fluorouracil, leucovorin, irinotecan, and oxaliplatin, often abbrevi-
ated as FOLFIRINOX. Alternatively, a gemcitabine-based treatment can be used as 
first-line chemotherapy in addition to, or independent from, 
FOLFIRINOX. Unfortunately, many patients have a poor response to standard che-
motherapy, and developing improved chemotherapeutic or targeted therapeutic 
approaches is an area of active research.

Immunotherapy, the stimulation of the body’s immune system to target and fight 
disease, is a rapidly emerging strategy for targeting cancers that are difficult to treat 
or of an advanced stage. Given the role of STAT3  in suppressing the immune 
response to tumors, targeting STAT3 presents a promising strategy for sensitizing 
the immune system to identify and destroy cancer cells, thereby driving immune- 
mediated termination of the malignancy.

Several therapies currently under development specifically target STAT activity 
through inhibition of its phosphorylation and its subsequent dimerization. FLLL31 
and FLLL32, both derived from curcumin, are novel small molecule therapies that 
bind to JAK2 and the SH2 domain of STAT3. In vitro, they inhibit STAT phosphory-
lation, dimerization, and activation (Fig.  24.2). Through this mechanism, they 
induce apoptosis in pancreatic cell lines. FLLL32 also demonstrated the ability to 
inhibit vascularity and tumor growth in vivo in chicken embryo xenografts [42]. 
Stattic and LLL12, also small molecule STAT3 inhibitors, prevent STAT3 phos-
phorylation and thereby decrease the expression of genes involved in angiogenesis, 
cell survival, and proliferation known to be upregulated by STAT3  in pancreatic 
stemlike cancer cell lines (Fig.  24.2). These agents subsequently decreased cell 
viability in these stemlike cancer cell lines, and LLL12 and FLLL32 diminished 
tumor sphere formation [43]. HO-3867, another derivative of curcumin, has demon-
strated the ability to induce apoptosis in pancreatic cancer cell lines. This potential 
therapy was found to act via two independent mechanisms. It induces endoplasmic 
reticulum stress by increasing cellular levels of reactive oxygen species, and it 
inhibits the phosphorylation of STAT3 (Fig. 24.2) [44].

In addition to inhibition of STAT3 via interruption of dimerization, STAT3 inhi-
bition can occur further down the activation pathway. For example, agents can exert 
their antineoplastic effects on PDAC by modulating STAT interaction with 
DNA. IS3-295 is a novel platinum compound that exerts its antineoplastic effect 
through this mechanism. In vitro, IS3-295 selectively disrupts the binding of STAT3/
STAT3 homodimers and STAT3/STAT1 heterodimers to DNA (Fig. 24.2). Aphanin 
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is a triterpenoid derived from the Amoora rohituka plant. It has been shown to 
inhibit STAT3 in two ways: (1) by preventing its phosphorylation and dimerization 
and (2) inhibiting its transcription (Fig. 24.2). The effects of this inhibition are con-
sistent with the effects of STAT3 inhibition caused by the abovementioned agents. 
It caused G0–G1 cell cycle arrest and induced apoptosis in pancreatic cancer 
HPAF-II (ΔKRASG12D) cells [45].

24.6  Conclusion

In summary, this chapter has discussed the role of STAT3 as a transcription factor in 
the JAK-STAT signaling pathway and how this signaling is linked to a number of 
biological outcomes, including proliferation, evasion of apoptosis, tumorigenesis, 
immune evasion, and metastasis. In detail, we have highlighted the importance of 
STAT3 as a key signaling molecule that promotes cancers, focusing on pancreatic 
cancer, and have discussed the potential for developing STAT3 inhibitors as an 
emerging therapeutic strategy for pancreatic cancer. Moving forward, it will be 
important to deepen our understanding of the basic mechanistic roles of STAT3 in 
JAK-STAT signaling and other biological processes. Ultimately, we must discern 
the efficacy and adverse consequences of targeting STAT3 in in vivo models and in 
patients with the goal of moving these therapies forward toward clinical use.
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Abstract
Pancreatic cancer is one of the leading causes of mortality associated with can-
cer. Signal transducer and activator of transcription (STAT)3 is implicated in 
metastasis of pancreatic cancer. Various cytokines, growth factors and environ-
mental stimuli have been identified to activate STAT3. Attenuation of malignant 
transformation susceptibility of different cell types was noted on inhibition of 
STAT3 activation; thus, STAT3 has been put forward as a possible drug target for 
pancreatic cancer therapy. Several inhibitors have been proposed to regulate the 
upstream positive or negative control elements of STAT3 activation and target 
STAT3 directly. However, it is imperative to explore further for the effective 
STAT3 inhibitors that could improve the clinical outcome in patients with pan-
creatic cancer.
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25.1  Introduction

Pancreatic cancer is extremely aggressive fatal human disease and multifactorial in 
evolution. Inflammation and repeated acute pancreatic injury are important factors 
that contribute to the development of pancreatic cancer [10]. This disease is the 
fourth leading cause of cancer-related mortality, with a 5-year survival rate after 
diagnosis of less than 5%, and is most commonly found in those of above 65 years 
of age [35]. The prognosis for patients with later stage of pancreatic cancer is poor 
with a median survival of only 6  months. Difficulties in the disease prognosis 
include a limited understanding of the biology of metastasis, weak early diagnosis 
tools and lack of effective chemotherapeutics [23, 31].

Inflammation has been considered as an important factor of pancreatic cancer 
[47]. Immune cells at the pancreas secrete some growth factors and cytokines that 
create a favourable microenvironment for pancreatic cancer [13, 41] by activation of 
transcription factors such as STAT (signal transducer and activator of transcrip-
tion)3 which is found to play a key role in causing the inflammation [15]. 
Constitutively active STAT3 has been noted in majority of human pancreatic carci-
noma samples [36]. This chapter attempts to comprehend the role of STAT3 in the 
biology of pancreatic carcinoma and as a potential molecular target for the cancer 
therapy.

STAT transcription factors are acute-phase response factors and were discovered 
for the first time in 1994 [1]. The members of the STAT family (STAT1 to STAT4, 
STAT5a, STAT5b and STAT6) are conserved in nature [8]. The STAT proteins were 
found to be latent in the quiescent cell cytoplasm, and the phosphorylation of its 
specific tyrosine residue leads to activation of the protein [21]. Further, STAT pro-
teins dimerize by reciprocal interaction of src homology (SH)2 phospho-tyrosine 
residues. The translocation of dimerized STATs into the nucleus leads to initiation 
of transcription by binding of the proteins to specific enhancer elements [8].

STAT proteins were found to have functional role in various physiological, pro-
liferative, anti-apoptotic and inflammatory pathways. The STAT proteins are of 
750–850 amino acids in length and are encoded by genes that are found on 3 chro-
mosomes, chromosome 2 (STAT1 and STAT4), chromosome 17 (STAT2 and 
STAT6) and chromosome 12 (STAT3, STAT5a and STAT5b) [19, 21]. The con-
served regions of STAT proteins were identified to be the NH2-terminal, coiled-coil, 
DNA binding, linker, SH2, C-terminal and transactivation domains [21]. These 
domains were found to be helpful in binding to cytokine or growth factor receptor 
and to further activate the STAT proteins by phosphorylation of specific residues, 
dimerization and nuclear translocation. In majority of pancreatic tumour tissues, 
STAT3 was found to be activated followed by STAT5 [21]. Though STAT3 pathway 
is noted to be inactive during normal pancreatic development [27], an atypical acti-
vation of STAT3 was found in pancreatic tumour cells, in association with cell pro-
liferation, survival, invasion, angiogenesis and metastasis [18] (Fig. 25.1). STAT3 
has been demonstrated to be obligatory for an early event in pathogenesis of pancre-
atic cancer, i.e. the acinar-to-ductal metaplasia process that is mediated by Pdx1 
transcription factor [30].
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25.2  Molecular Mechanism of STAT3 Activation

STAT3 is found to be activated in pancreatic carcinoma by phosphorylation of a 
tyrosine residue at position 705. The upstream signalling components of STAT3 
include cytokines such as interleukin (IL)-6, IL-9, IL-10 and IL-27, tumour necrosis 
factor (TNF) α and monocyte chemoattractant protein (MCP)-1 and activated tyro-
sine kinases [35]. The IL-6 secreted by pancreatic myeloid cells was noted to acti-
vate STAT3 protein which promotes the progression of pancreatic intra- epithelial 
neoplasia (PanIN) and further development of pancreatic carcinoma [28, 35]. 
Various receptors that were found to activate STAT3 are the receptors with intrinsic 
tyrosine kinase activity, activated cytokine receptors and non-receptor tyrosine 

Fig. 25.1 Various ligands (cytokine or growth factor) bind to their cognate cell surface receptors 
and cause phosphorylation of STAT3 that further dimerize, translocate to the nucleus, and activate 
target gene transcription by binding to their promoters
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kinases [26, 42]. Several serine kinases have been also noted to activate STAT3 
through serine phosphorylation at position 727 [22, 42]. Histone acetyltransferase 
p300 was found to cause acetylation of STAT3 on a single lysine residue at position 
685 which leads to regulation of its transcriptional activity and homodimer stability 
[42, 51]. Ultraviolet radiation or sunlight, carcinogen, stress, smoke and infection 
are the other factors that are also known to play a significant role in STAT3 activa-
tion [42]. Different STAT3 forms with mutations in their SH2 domain have been 
detected in the pancreatic tumours [25, 34, 42].

25.3  Role of STAT3 in Metastasis

STAT3 activation has a critical role in each step of the cancer metastasis [21] 
(Table 25.1) [35] (Fig. 25.1) and is as follows.

25.3.1  Role of STAT3 in Cell Proliferation and Cell Cycle

STAT3 plays an important role in cellular proliferation. Activated STAT3 was 
noticed to stimulate proliferation of cells and cause cell malignancy through various 
tyrosine kinases, oncogenes and viruses [3, 21]. The activated STAT3 accelerates 
cell-cycle (G1/S phase) progression through upregulation of cyclin D1 and c-Myc 
expression [7]. In addition, the expression of growth-promoting gene pim-1 has 
been shown to be upregulated by STAT3 [38]. Malignant transformation and tumor-
igenesis in a number of cell types were noted to be decreased on inhibition of STAT3 
activation; thus, STAT3 could be a possible target for therapy of pancreatic cancer 
[12, 35].

Table 25.1 Critical roles of activated STAT3

Role of STAT3 Facilitate through
Inflammation Interleukin (IL)-6 and cyclooxygenase 2 enzyme
Cell proliferation Transcription of cyclin D1 and cyclin B1
Apoptosis inhibition Expression of B-cell lymphoma (Bcl)-2, Bcl-xL and myeloid 

leukaemia cell differentiation protein (Mcl)-1
Metabolism Expression of heat shock protein (Hsp)70, Hsp90 and cell division 

cycle protein (Cdc)2
Several aspects  
of tumorigenesis
  Angiogenesis Transcription of vascular endothelial growth factor (VEGF), fibroblast 

growth factor (FGF) and hypoxia-inducible factor (HIF)1α
  Invasion and 

metastasis
Expression of matrix metalloproteinase (MMP)2, MMP9, twist- related 
protein (TWIST) and intercellular adhesion molecule (ICAM)1
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25.3.2  Role of STAT3 in Cellular Invasion and Migration

Invasion of extracellular matrix and cellular migration are vital steps in metastasis 
formation. Several reports strongly implicate that STAT3 plays a crucial role in this 
process through regulation of the expression of matrix metalloproteinase (MMP)1 
and MMP9 [9, 20, 35]. The role of STAT3 has been also indicated in cellular migra-
tion under normal and pathological conditions [35].

25.3.3  Role of STAT3 in Tumour Cell Intravasation and Survival 
During Circulation

Tumour cells degrade basement membrane, intravasate the lymphatic system, sur-
vive in circulation, extravasate to potent new organs and adhere to form metastasis 
[35]. Various non-specific forces such as mechanical stress, haemodynamic turbu-
lence, cellular cytotoxicity and loss of adhesion-induced cell death influence the 
tumour cells that enter blood vessels [14, 21]. Consequently, a less percentage of 
tumour cells survive during circulation which leads to micrometastasis in distant 
organs. The protection of tumour cells from host immune surveillance during circu-
lation has been noted on STAT3 activation which increases the number of surviving 
tumour cells [21].

25.3.4  Role of STAT3 in Angiogenesis

Angiogenesis is formation of fresh blood vessels from the vasculature that is pre- 
existent. This step is necessary for tumour development and metastasis. The tumour 
cells are known to secrete angiogenic molecule, vascular endothelial growth factor 
(VEGF) [17]. VEGF has been found to bind to transmembrane tyrosine kinase 
receptors that are present on endothelial cells and effectively contributes to neovas-
cularization. The expression of VEGF has been found in association with pancreatic 
cancer progression. The presence of STAT3-responsive element on the VEGF pro-
moter may indicate that STAT3 directly enhances VEGF expression and further 
angiogenesis, growth and metastasis of pancreatic cancer [21]. The coincidence of 
overexpression of VEGF with constitutive STAT3 activation has been also noted in 
several human pancreatic cancer specimens [21, 46].

The vessel formation was prohibited by inhibition of STAT3 signalling in 
endothelial cells [48]. Hypoxia-inducible factor (HIF)1 is one more important 
mediator of angiogenesis that has also been reported to be regulated by STAT3 
[21, 37]. The binding of both STAT3 and HIF1 to the VEGF promoter, during 
hypoxic conditions, enhances transcription of VEGF gene and subsequently 
angiogenesis [33].
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25.3.5  STAT3 and Tumour Microenvironment

Tumour cells modify their microenvironment during the adaption process. STAT3 
signalling in the tumour cells was found to subvert the function of immune cells for 
the self-benefit [16]. STAT3 causes increase in synthesis of immunosuppressive 
agents [21] and negatively regulates immune activation signals such as pro- 
inflammatory cytokines [50]. Dendritic cells are known to have antitumour activ-
ity; however, the dendritic cells surrounding the tumour cells were found to be 
nonfunctional as they lack MHC class II molecules [21, 43]. These partially dif-
ferentiated dendritic cells are generated as a consequence of the tumour-secreted 
factors such as VEGF, IL-6 and IL-10 and have reduced antigen-presenting ability 
[45]. Thus, STAT3 deactivation in tumour cells could cause efficient production of 
the immune factors that promote the maturation of dendritic cells. Other immune 
cells such as natural killer cells, regulatory T cells, neutrophils and macrophages 
also show STAT3 activation and limit their ability of immune surveillance in 
response to the tumour-secreted factors [21, 49]. The tumour cell secretions that 
cause infiltration of endothelial progenitor cells also cause the metastatic spread of 
stromal tumour cells by enhanced upregulation of stromal cell-derived factor 
(SDF)-1/C-X-C motif chemokine ligand (CXCL) 12 receptors [16, 21]. In view of 
the above, STAT3 has been considered as an important target to surmount immu-
nosuppression, and the utilization of STAT inhibitors could improve the antitu-
mour ability of immune cells [21].

25.3.6  Role of STAT3 in Apoptosis

STAT3 signalling has been demonstrated to suppress the cancerous cell apoptosis 
and promote cell proliferation and malignant transformation. The expression of 
tumour protein p53 gene was found to be negatively regulated by STAT3 and hence 
induces cellular proliferation and inhibits apoptosis [32]. However, STAT3 has been 
found to be a pro-apoptotic factor in mammary glands [4].

25.4  Regulation of STAT3 Activity

Negative regulation of STAT3 activation is through numerous mechanisms which 
involves the following:

25.4.1  Protein Tyrosine Phosphatases (PTPs)

PTPs, low molecular weight tyrosine phosphatases and dual-specificity phospha-
tases, have been found to play a key role in inactivation of STAT3 [5, 21]. These 
proteins have a conserved signature motif VHCSXGXGR [T/S] and similar tertiary 
structure [2, 21].
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25.4.2  Protein Inhibitors of Activated STATs (PIAS)

PIAS family proteins (PIAS1, PIAS3, PIASy, PIASxa and PIASxb) with a con-
served signature motif (LXXLL) at its amino terminal region have been found to 
regulate the activity of STAT protein [21, 39]. Zinc-binding domain and acidic 
domain are the other conserved elements in PIAS proteins. PIAS proteins mediate 
gene regulation by blocking the binding of transcription factors to DNA, recruiting 
transcriptional corepressors and promoting the protein sumoylation [21, 39]. PIAS3 
has been reported to interact with STAT3 and repress its transcriptional activity.

25.4.3  Suppressors of Cytokine Signalling (SOCS) Proteins

SOCS proteins (SOCS1–SOCS7, cytokine-inducible SH2-containing protein (CIS)) 
are a family of proteins that have been found to be inducible and inhibit cytokine 
signalling [21, 40]. The STAT signalling is inhibited by binding of SH2 domain of 
SOCS1 to Janus kinase (JAKs), CIS and SOCS2 to receptor complex and SOCS3 to 
receptor cytoplasmic domain [6, 21]. Proteasome degradation pathway has been 
also found to be induced by SOCS proteins through SOCS box.

25.5  STAT3 Inhibitors

Excessive activation of STAT3 plays a key role in tumorigenesis. The complex 
STAT signalling pathways may contribute to the resistance to chemotherapy of pan-
creatic tumour. Aberrant STAT3 activation causes dysregulated cancer cell growth 
and survival, and hence, STAT3 serves as a potential therapeutic target to inhibit 
tumorigenesis [35]. In view of the noted association with multidrug resistance pro-
tein (MRP) expression in pancreatic tumours, the downregulation of MRPs is essen-
tial for restoration of chemosensitivity in pancreatic tumours [24, 29].

Some inhibitors and antisense oligonucleotides are implicated in inhibition of 
STAT3 (Table 25.2) [21, 35, 42] with further attenuation of proliferation and sur-
vival of cancer cells and reversal of malignancy with little or no influence on normal 
cells [21]. Direct targeting of STAT3 has been proposed as a strategy for antitumour 
therapy apart from the regulation of upstream positive or negative control elements 
of STAT3 [11, 21, 44].
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25.6  Conclusions and Future Perspectives

STAT3 plays a pivotal role in normal tissues as well as in the cancer initiation and 
progression. Pancreatic carcinoma is an aggressive cancer disease due to its asymp-
tomatic and rapid early metastasis nature. Most of the tumour specimens have been 
found to show persistent activation of STAT3, while its expression is stringently 
regulated in normal tissues. The abnormal activation of STAT3 provides favourable 
conditions to the tumorigenesis and metastasis. On the other hand, blocking of 
STAT3 signalling pathway in tumour cells inhibits tumour growth, invasion, anti- 
apoptosis, angiogenesis and metastasis. Hence, inhibition of STAT3 has been found 
to be a useful approach in cancer therapy. High resistance to conventional therapy 
and aberrant STAT3 activation in pancreatic cancer have led to studies to discover 
small molecules that effectively inhibit STAT3 signalling. However, it is imperative 
to use interdisciplinary approaches to explore effective STAT3 inhibitors that 
improve the clinical outcome in patients with pancreatic cancer in addition to alter-
native combinational therapies that also include inhibitors of other signalling com-
ponents that are often upregulated in pancreatic cancer.

Table 25.2 STAT3 inhibitors, identified both in vivo and in vitro

STAT3 inhibitor Mechanism of inhibition
Curcumin Inhibition of activation and DNA binding of STAT3
Resveratrol Inhibition of activation and regulation of signalling pathway  

of STAT3
Cucurbitacin I Inhibition of STAT3 binding to DNA and gene transcription
Cucurbitacin B Inhibition of activation and DNA binding of STAT3
Cucurbitacin E Inhibition of activation and gene expression of STAT3
Cucurbitacin Q Inhibition of activation without inhibition of STAT3 in JAK2
Flavopiridol Disruption of STAT3-DNA interactions and inhibition of 

STAT3 gene transcription and translation
Deoxytetrangomycin Abrogates dimerization, nuclear translocation and DNA binding 

of STAT3
Cyclopentenone derivatives Inhibits tyrosine phosphorylation and serine phosphorylation  

of STAT3
N-acyl homoserine lactone Inhibition of STAT3 activation
Indirubin derivative E804 Inhibition of activation and gene expression of STAT3
6-bromoindirubin-3- oxime Inhibition of activation and gene expression of STAT3
Tyrphostin/AG490 Inhibition of activation and DNA binding of STAT3
Cisplatin Dephosphorylation of JAK2-STAT3
Platinum (IV) inhibitor 
CPA-1

Inhibition of activation and DNA binding of STAT3

Platinum (IV) inhibitor 
CPA-7

Inhibition of activation and DNA binding of STAT3

Atiprimod Inhibition of activation of STAT3
Pentoxifylline Inhibition of activation, nuclear translocation and DNA binding 

of STAT3
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Abstract
Pancreatic cancer is the world’s fourth leading vulnerable cancerous disease with 
poor diagnosis and low survival rate. Intratumoral hypoxia is the characteristic 
feature of pancreatic cancer. Hypoxia-inducible factor 1α (HIF1α) is a well- 
known transcriptional molecule which is associated with aggravation of the pan-
creatic cell proliferation, invasion, metastasis, and apoptosis. HIF1α belongs to a 
family of Per-ARNT-Sim (PAS) with heterodimeric basic helix-loop-helix 
(bHLH) transcriptional proteins. Under oxygen depletion conditions, catalytic 
function of prolyl hydroxylases is downregulated, thereby inhibiting the binding 
to von Hippel-Lindau protein (pVHL); thus HIF1α does not undergo ubiquitin- 
proteasomal degradation and gets accumulated in the cancerous tissue. It may also 
stimulate many signaling molecules and lead to lymph node metastasis. HIF1α 
may induce invadopodia formation through reactive oxygen species mediated by 
NADPH oxidases involving the stimulation of Notch signaling, thus leading to 
pancreatic cancer cell invasiveness. HIF1α also stimulates the production of anti-
angiogenic factors which might be one of the probable reasons for poor therapeu-
tic response toward pancreatic cancer. Future studies may focus on the development 
of new therapeutic pathway toward inhibition of hypoxia- induced HIF1α signal-
ing to reduce the risk for the incidence of pancreatic cancer.
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26.1  Introduction

Pancreatic cancer is one of the noncommunicable lethal diseases with least survival 
chances in the world population. Its prevalence is increasing at an alarming rate over 
the recent decades. It has a rapid progression capacity to the surrounding tissues 
through invasion as well as metastasis [26]. Many types of pancreatic cancerous 
tumors exist in both the cells of the pancreas, i.e., in exocrine and in endocrine cells, 
as pancreatic ductal adenocarcinoma (PDAC), adenosquamous carcinomas, signet 
ring cell carcinomas, undifferentiated carcinomas, squamous cell carcinomas, and 
neuroendocrine tumors (NETs) also known as islet cell tumors. Of these, pancreatic 
ductal adenocarcinoma is the most common malignant disease that contributes to 
the increased mortality (95%) of pancreatic cancer with poor response to various 
therapies [25]. Although many advanced medical technologies have been intro-
duced to reduce the occurrence of this dreadful disease, the incidence of pancreatic 
cancer still remains increasing. Probably the reason for the least survival chances of 
this cancer could be due to poor and late diagnosis and lack of early molecular 
detection markers. Many risk factors such as modifiable smoking, alcohol con-
sumption, obesity, physical inactivity, age, gender, family history, and inherited 
genetic mutations have also played a vital role in increasing the susceptibility of this 
disease. Various transcriptional molecules like NF-κB, STAT-3, HIF1α, SP1, and 
TWIST modulate the genes responsible for tumor development in the pancreas. 
Nevertheless, hypoxia-inducible factor 1α (HIF1α) takes the leading role in aggra-
vating the pancreatic cancer [20]. However the underlying and associated molecular 
mechanisms in the development and progression of PDAC are not well understood. 
Thus this chapter briefs about the pivotal role of HIF1α, a key regulator in PDAC 
cell proliferation, invasion, metastasis, and finally apoptosis which may be targeted 
as an early diagnostic marker and suitable therapy by understanding the deep insight 
of molecular mechanisms associated with PDAC to cure this aggressive disease.

26.2  Hypoxia Condition in Pancreatic Cancers

A common and prominent feature observed in malignant cell microenvironment is 
hypoxia, where oxygen tensions are depleted. Many studies on oncology emphasize 
on intratumoral hypoxia, which is the consequent effect of rapid tumor growth and 
development, metastasis, and therapeutic resistance resulting in pancreatic cancer 
[29]. The occurrence of hypoxia was evidenced by avascular appearance through 
computed tomography and also by intratumoral oxygen tension measurements [17] 
in pancreatic tumor cells. This was also supported by another study where decreased 
oxygen tension was reported in the human pancreatic tumors with reference to their 
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surrounding normal cells [15]. Indeed this was also in line with other studies con-
ducted on experimental animals indicating an intratumoral hypoxia status in PDAC 
microenvironment. Tissue hypoxia was also associated with epithelial-to- 
mesenchymal transition (EMT) in cancer cells of the pancreas, where these cells get 
adapted to hypoxia condition and acquire and promote tumor invasion and meta-
static properties with therapeutic resistance. One of the possible mechanisms under-
lying the depleted tumor oxygenation is the lack of sufficient blood supply to all the 
sites of tumor cells due to abnormal vasculature. Evidence from the available litera-
ture also suggests that angiogenesis promoted by the growing tumor is leaky and 
ineffective as these sites cannot tolerate depleted O2 levels. PDAC cells also pro-
duce anti-angiogenic factors like angiostatin, endostatin, and pigment epithelium- 
derived factor resulting in reduced O2 delivery and intratumoral hypoxia. The 
stromal cells of PDAC might be one of the contributing factors to this hypoxia 
through the amplification of the production of anti-angiogenic substances or physi-
cally by the constriction of the capillaries through extracellular matrix deposition in 
the periacinar spaces [19]. In addition intratumoral hypoxia is an important inducer 
of pancreatic stellate cells (PSCs), the major fibroblastic cells of the pancreas, which 
enables the vicious cycle of hypoxia and fibrosis [3], thus the probable reason for 
the resistance toward anti-angiogenic therapies in pancreatic cancer. Adaptation of 
tumor cells to hypoxia signaling triggers a large transcriptional program primarily 
coordinated by hypoxia-inducible genes.

26.3  Role of HIF1α in the Malignancy of Pancreatic Cancer

Hypoxia condition is stimulated by inducible genes accommodated by hypoxia 
response elements (HREs). These HREs constitute 50 base pairs approximately, 
thereby combining with hypoxia-stimulating transcriptional proteins [23]. Several 
of these transcriptional factors have been participated in the tumor progression; 
however research has been focused much and better studied on hypoxia-inducible 
factors (HIFs). HIFs are the members of Per-ARNT-Sim (PAS) family which con-
tain heterodimeric basic helix-loop-helix (bHLH) motif [28]. HIFs act as an impor-
tant target for antineoplastic therapy as they enhance the HREs–HIFs complex 
formation and regulate the gene expression. This triggers the maintenance of tumor, 
aggressiveness, as well as angiogenesis. HIFs exist in three isoforms, i.e., HIF 1, 
HIF 2, and HIF3, and each form is constituted by two subunits such as α-subunit and 
β-subunit [21]. The regulatory action of these HIFs is stimulated by the dimerization 
of their respective α-subunit and β-subunit [22]. HIF1 and HIF2 transregulate a 
wide range of genes participating in the metabolism, angiogenesis, erythropoiesis, 
tumor cell maintenance and inflammation, pH homeostasis and finally targets the 
tumor cell to adapt to hypoxia [12]. Although HIF1α and HIF2α form complex with 
common HREs, they perform differential activity in hypoxic environment. HIFs, in 
addition to HREs, also form complex with other transcriptional molecules like 
Notch, p53, and myc11, thereby regulating the consequent signaling pathways [10]. 
HIF1 was first isolated as nuclear protein factor from Hep3B cells in 1992 by the 
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stimulation of hypoxic condition. The two subunits of HIF1 have distinct expression 
in normoxic conditions as HIF1β protein has continuous expression in mammalian 
cells, whereas HIF1α has unstable expression due to its rapid degradation by 
ubiquitin- proteasome pathway leaving its half-life for around 5 min [4]. An oxygen- 
sensitive prolyl hydroxylase plays an important role in the degradation of HIF1α as 
it catalyzes the hydroxylation of proline molecules which enhances the complex 
formation to von Hippel-Lindau protein (pVHL), thereby triggering them for pro-
teasome degradation. As the catalytic activity of prolyl hydroxylases is dependent 
on oxygen status, its activity is reduced in hypoxic state, thereby inhibiting the bind-
ing of HIF-α to pVHL, thus accumulating HIF1α [5]. Ample evidence from the lit-
erature suggests the association of upregulated expression of HIF1α with 
intratumoral hypoxic pancreatic cancer. Its expression was significantly induced in 
regional lymph node metastasis, tumor mass, and advanced TNM condition [13]. 
Indeed the expression of HIF1α was positively correlated with increased cellular 
number and microvessel density/neoangiogenesis. It showed positive staining in 
human PDAC subjects and correlated with increased transition and migration, 
higher tumor pathologic stage, bad prognosis, and higher AJCC condition associ-
ated with higher hepatic metastasis [18]. It indirectly enhances the function of other 
epithelial-to-mesenchymal transition-promoting transcription factors like TWIST, 
ZEB, and Snail through TGF-β signaling [24]. Thus HIF1α can be given identity as 
molecular marker specifically for intratumoral hypoxic condition.

26.4  Molecular Mechanisms Associated with Pancreatic 
Cancer Through HIF1α

In general cellular invasiveness is the crucial stage of metastatic cascade and 
involves a series of events such as epithelial-to-mesenchymal transition (EMT) and 
migration to secondary sites. These events can further be triggered by several cell- 
to- cell communications along with hypoxia [1]. The cancer cells may also choose 
either protease-dependent or protease-independent mode of invasion keeping in 
view of multiple parameters like the cancerous tumor origin, migration, invasive 
dissemination, and metastatic area. Various molecular mechanisms have been eluci-
dated in the development of pancreatic cancer cells through HIF1α regulation.

Studies on different cancerous tumors indicate that hypoxia induces invadopodia 
formation through reactive oxygen species (ROS) generated by NADPH oxidases 
(NOX), which represents an additional mechanism for cancer cell invasiveness [7]. 
The same scenario was observed in human pancreatic cancer cells showing 
increased invadopodia formation under hypoxia through HIF1α-dependent stimula-
tion of Notch signaling pathway [8]. Under hypoxic condition, metalloprotease 
activity is induced through Notch signaling, thereby leading to epidermal growth 
factor (EGF) receptor ligand heparin-binding (HB) complex release, thus enhanc-
ing invadopodia formation [2]. Thus EGF receptor pathway through paracrine sig-
naling could be one of the mechanisms associated with PDAC invasion and 
metastasis (Fig.  26.1). Similarly hypoxia-stimulated HIF1α was positively 
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correlated with angioinvasion which is crucial for metastasis. In this mechanism 
HIF1α enhanced the transcriptional expression of urokinase-type plasminogen acti-
vator receptor (uPAR) leading to angioinvasion [6]. HIF1α also stimulated fascin 
gene overexpression by complex formation of HIF1α-HRE on fascin promoter 
region. This in turn elevated the expression of matrix metalloproteinase-2 (MMP-2) 
resulting in the promotion of PDAC [30]. Furthermore, hypoxia-induced pancreatic 
stellate cells (PSCs) stimulate the production of some proteins such as fibronectin, 
type I and III collagen, and periostin, resulting in elevated fibrosis and desmoplastic 
reaction, a prominent feature of pancreatic cancer [9, 16]. Hypoxia-induced pancre-
atic stellate cells are associated with pancreatic tumor cells to enhance tumor 
growth and metastasis. Cultural stem cells of pancreas under hypoxia showed 
increased HIF1α expression, induced their motility [11], upregulated the expres-
sion of alpha-smooth muscle actin (SMA), and stimulated the angiostatic factor 
endostatin, which may reduce angiogenesis (Fig. 26.1). Hypoxia-induced HIF1α 
molecule extends its role in facilitating lymphatic invasion (Fig. 26.1) which is a 
characteristic event of lymph node metastasis [27]. In fact studies from human pan-
creatic cancer cell line reported increased HIF1α activity even at invasive migration 
to surrounding organs. It was also reported that hypoxic HIF1α regulates its poten-
tial action on various organs in PDAC by stimulating high levels of VEGF in the 
ascites. PDAC also reflects invasion in nervous tissue along with lymphatic nodes, 
the liver, and lungs [14]. Thus the abovementioned studies focused the action of 
HIF1α through multiple mechanisms associated with the development of  pancreatic 
tumors.

Fig. 26.1 Consequences of HIF1α accumulation under hypoxia in pancreatic cancerous cell
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26.5  Conclusions and Future Perspectives

Several studies from the literature have stressed that HIF1α programming under 
hypoxia results in pancreatic tumor invasion and metastasis. This signaling enhances 
the EMT and invadopodia formation enhancing the tumorous cells to overcome the 
stromal barrier and promote invasive migration. Keeping in view the hypoxia- 
induced anti-angiogenesis, these cancer cells show poor response to therapy, hence 
resulting in rapid mortality rate of this malignancy. It can be concluded that 
hypoxia- induced HIF1α can be recognized as molecular marker for pancreatic 
malignancy. Considering the importance of hypoxia-induced HIF1α in pancreatic 
tumor development, future research should focus on identifying alternate pathways 
and mechanisms associated with hypoxia condition and early diagnostic marker 
and develop new therapeutic approach toward inhibition of hypoxia-induced HIF1α 
signaling to reduce or at least delay the onset of the lethal pancreatic malignant 
disease.
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Abstract
Pancreatic malignancy is a highly metastatic disease with a poor prognosis and 
extremely low overall survival rates. Despite recent advancements in the tradi-
tional chemopreventive approaches for pancreatic cancer (PC), there has been 
very little improvement in the overall survival rates for patients (Guilford JM, 
Pezzuto JM, Expert Opin Investig Drugs 17:1341–1352, 2008). Therefore, novel 
phytochemicals such as curcumin and genistein have emerged as promising tar-
gets in developing treatment options for patients with PC. Curcumin is a natural 
compound found in turmeric (Kunnumakkara AB, Guha S, Krishnan S et  al, 
Cancer Res 67:3853–3861, 2007), and genistein is an isoflavone found in soy-
beans (Banerjee S, Zhang Y, Ali S et al, Cancer Res 65:9064–9072, 2005). Both 
compounds are known to possess outstanding anti-inflammatory, antioxidant, 
and anticancer properties.
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27.1  Introduction

Pancreatic cancer (PC) is the 3rd leading cause of cancer-related deaths and the 11th 
most common malignancy diagnosed in the USA [43]. PC has a very poor prognosis 
due to common clinical presentations with minor symptoms and the lack of initial 
detection markers. Hypoxia is a condition of low oxygen availability in tumor cells, 
which is a vital emerging marker in PC progression since PC tumors are highly 
hypoxic [1]. Hypoxic conditions activate signaling pathways that directly affect the 
stimulation of pro-invasive properties of PC cell lines and facilitate the invasiveness 
via hypoxic environment [24]. Hypoxic conditions in the tumor could arise due to 
elevated metabolic activities and the consumption of oxygen by rapid tumor cell 
proliferation [34]. These activities lead to altered pH levels that result in oxidative 
stress in the tumor microenvironment. Hypoxia-inducible factor 1 (HIF-1), a tran-
scription factor, is the key regulator of hypoxic condition in PC cell lines [19]. 
HIF-1α is a member of the HIF-1 family of basic helix-loop-helix-Per-Arnt-Sim 
transcription factors, and it is the most persistently expressed modulator of oxygen 
homeostasis in PC cell lines.

Regulation of HIF-1α involves the control of mRNA expression, protein stabil-
ity, and activity [17]. Generally, HIF-1α regulation occurs at the level of protein 
stability. Under normal conditions, oxygen facilitates posttranslational hydroxyl-
ation of two proline residues in the oxygen-dependent degradation (ODD) domain 
of HIF-1α [57]. Under hypoxic conditions, HIF-1α escapes degradation and enables 
heterodimerization with HIF-1β, followed by the binding to hypoxic-responsive 
elements (HREs) within the promoter regions of target genes [9]. A series of such 
activities lead to elevated levels of HIF-1α protein expression and its messengers 
under such hypoxic conditions. At the mRNA levels, HIF-1α is regulated via PI3K/
AKT signal transduction pathway [7]. Dysregulation of growth factors and their 
corresponding receptor tyrosine kinases lead to the stimulation of PI3K pathway 
and modulated tumor cell growth. HIF-1α activity is induced by the activation of 
PI3K/AKT signaling by growth factors and the stimulation of downstream PI3K/
AKT signaling molecules [7]. The inactivation of PTEN, a tumor suppressor gene 
and an inhibitor of AKT activation by PI3K, is associated with elevated levels of 
HIF-1α expression [60]. Insulin-like growth factor 1 (IGF-1) is also linked with 
induced HIF-1α activity via stimulation of the PI3K/AKT signaling pathway [61].

27.2  HIF: Hypoxia-Inducible Factor

HIF is a heterodimeric transcription factor containing an alpha and beta subunit [51, 
52], which each contains a Per/Arnt/Sim (PAS) domain and a basic helix-loop-helix 
(bHLX) domain [51] needed for DNA binding and dimerization. HIF-1α is rapidly 
degraded under normoxia and undergoes posttranslational regulation. Expression of 
HIF-1β is constitutive and is not regulated by hypoxia [23]. Once translocated into 
the nucleus, HIF-1 binds to promoters of hypoxia response element (HRE) genes 
and thereby enhances their transcription [42].
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There are three isoforms of alpha subunits, namely, HIF-1α, HIF-2α, and HIF-3α. 
HIF-1α plays the main role in cellular response due to hypoxia [23]. The HIF-2α 
subunit, also known as the HIF-related factor (HRF) or endothelial PAS1, is induced 
by hypoxia and then binds to HREs [11, 13, 48, 53]. Although HIF-1α and HIF-2α 
share some functional and structural resemblances, they are induced by different 
stimuli [5] and have diverse tissue expression patterns [54]. The third isoform, 
HIF-3α, is also known as inhibitory PAS (IPAS) and is subjected to alternative splic-
ing that can remove the transactivation domain and functions in a dominant negative 
manner when it binds to HIF-1α in place of HIF-1β.

27.3  HIF-1α Regulation by Hypoxia

The most prominent feature of HIF biology is the induction of the alpha subunit 
during hypoxia. HIF-1 levels are very low when oxygen conditions are normal and 
no stimulation occurs by growth factors, due to the continuous proteasomal degra-
dation in the presence of oxygen. The process of degradation is very rapid during 
normoxia, and the half-life is predicted to be less than 5 min [22, 51]. As the oxygen 
level lowers, proteasomal degradation ceases and thereby HIF-1 protein is accumu-
lated. In this way, HIF-1 efficiently responds to fluctuations in oxygen concentra-
tions without depending on changes in transcription and translation which are 
lengthy processes.

HIF-1 degradation is mediated by an oncogenic suppressor such as VHL (von 
Hippel-Lindau). It was demonstrated that VHL binds to HIF-1 in a region called the 
oxygen-dependent degradation (ODD) domain, thereby arbitrating its ubiquitination 
and proteasomal degradation. Moreover, the interaction of VHL and HIF-1 occurred 
in the presence of oxygen and was disrupted in hypoxia conditions or by treatment 
with CoCl2 (iron chelators). Delineating the oxygen-sensing mechanism became 
possible with the discovery of the interaction between VHL and HIF-1 that only 
occurred when conserved proline molecules in the ODD known as residues 402 and 
564 existed in a hydroxylated form [26, 38, 56]. The enzymes mediating proline 
hydroxylation belong to the prolyl hydroxylase domain (PHD) family. Three non-
heme-containing PHD enzymes were found to hydroxylate HIF-1α [35]. When the 
levels of oxygen decrease, the hydroxylation of proline also reduces, and the interac-
tion of VHL and HIF is attenuated. In such a way, the degradation rate of HIF-1α is 
controlled by PHD enzymes in response to changes in oxygen availability.

HIF-1 transcriptional activity was reported to be elevated under hypoxia condi-
tions [27, 39]. Transcriptional activity is dependent on the hydroxylation state of 
asparagine residue 803 in the HIF-1α transcription domain. In normal oxygen con-
ditions, the asparagine residue is hydroxylated by asparaginyl hydroxylase, thereby 
disrupting the interaction of CBP/p300 (transcriptional coactivator) with HIF-1α [3, 
10, 21, 30, 31]. Under hypoxia conditions, asparaginyl hydroxylation is disrupted, 
and the interaction of HIF-1α with CBP/p300 is enhanced. In such a way, the expres-
sion levels of HIF-1α protein and its messengers are increased under hypoxia 
conditions.
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27.4  HIF-1α Regulation by Growth Signaling

In addition to its regulation by variations in the level of oxygen, HIF-1α is also regu-
lated by the activity of receptor and non-receptor tyrosine kinases. Growth factors, 
cytokines, and hormones that can induce HIF-1α include IGF-1 [59], insulin, PDGF 
[45, 49, 59], IGF-2 [12], TNFα [20], HGF [46], EGF [60], IL-β [20, 45, 47], thrombin 
[16, 58], and angiotensin-2 [58]. HIF-1α stabilization occurs during conditions like 
hypoxia. Growth signals induce HIF-1α by increasing the amount of HIF-1α synthe-
sis, as shown by experiments using cycloheximide (inhibitor of translation) and pulse 
labeling [14, 32, 49]. These studies have shown that the kinase cascade involving 
PI3K, AKT (protein kinase B), and FRAP (also called mTOR) is crucial for the 
increased rate of synthesis. The role of these kinases was determined using dominant 
negative versions and through the use of chemical inhibitors [14, 45, 49, 60].

The ability of the AKT/FRAP/PI3K kinase cascade to enhance HIF-1α synthesis is 
mainly determined by the ability of FRAP kinase to phosphorylate two molecules of 
the translational machinery, i.e., p70 S6 kinase (S6K) and eIF-4E-binding protein [4]. 
Subsequently, 4E-BP1 inhibits eIF-4E, leading to increased 40S ribosomal subunit 
recruitment to the 5′ mRNA (11). FRAP phosphorylation activates S6K, which facili-
tates the activation of the 40S ribosomal S6 protein and leads to increased mRNA 
transcription with 5′polypyrimidine tract [15, 50]. In addition to the regulation of HIF-1 
by the AKT/PI3K signaling pathway, MAPK signaling is also reported to be involved 
in receptor-facilitated HIF-1 activation [14]. Even though its role in HIF-1α regulation 
is not well studied, it is likely that p42/p44 MAPK activation results in HIF-1 transcrip-
tional activation [37, 40, 44]. Furthermore, studies have shown that in many cell lines, 
the activation of MAPK was observed in response to hypoxia [8, 36, 37].

27.5  Phytochemicals

The involvement of phytochemicals in the treatment of PC has increased tremen-
dously in order to understand the beneficial properties of these compounds in the 
inhibition of tumor progression. Increasing evidence suggests that natural com-
pounds such as curcumin and genistein possess the ability to prevent pancreatic 
tumor progression by modulating cellular signaling, miRNAs, and epigenetics [25]. 
Curcumin is a naturally occurring polyphenolic compound in turmeric and pos-
sesses key antitumorous properties. It is known to inhibit the expression of HIF-1α 
transcription, COX-2, EGFR, NF-κB, ERK1/2, LOX, and iNOS, preventing the 
progression of PC cell lines [28]. Curcumin is known to inhibit the survival pathway 
activation, which leads to increased apoptosis and inhibition of PC cell growth 
(Fig. 27.1) and angiogenesis (low VEGF secretion Fig. 27.2). Genistein is an isofla-
vone found in soy and upregulates the expression levels of tumor suppressor genes 
and miRNAs by controlling DNA methylation and chromatin configuration, which 
ultimately results in the inhibition of PC cell growth (Fig. 27.1) and metastasis [6]. 
The anti-angiogenic property of genistein is known to be controlled by the inhibi-
tion of HIF-1α, an important modulator of VEGF protein homeostasis under mainly 
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hypoxic conditions (Fig. 27.2) [55]. Therefore, this makes genistein an important 
compound in the treatment of patients with pancreatic tumors. Genistein has also 
been known to guard the β-cells at specific concentrations via epigenetic regulation 
of cAMP/PKA pathways, which reveal the inhibitory properties of genistein on PC 
cell lines by epigenetic modulation [41]. Moreover, genistein inhibits the activities 
of EGFR, AKT2, DNA ligase III, and NF-κB in PC patients [33]. It represses cel-
lular growth, induces apoptosis, and inhibits the invasion of PC cell lines via inhibi-
tion of many survival pathways. Since these phytochemicals reveal excellent 

Fig. 27.1 Knockdown of HIF-1α sensitizes to curcumin and genistein and potentiates the inhibi-
tion of proliferation in pancreatic cancer cell lines

Fig. 27.2 Knockdown of HIF-1α sensitizes to curcumin and genistein and potentiates the inhibi-
tion of VEGF secretion in conditioned medium contained pancreatic cancer cell lines
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anticarcinogenic properties via the regulation of cell signaling, miRNAs, and epi-
genetics, these compounds could serve as important agents for the prevention or 
combination treatment of pancreatic malignancies.
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Abstract
Pancreatic cancer is the deadliest of human cancers to date. The hostile nature of 
pancreatic cancer, mostly due to its tendency for early local and distant spread, is 
in due course responsible for poor diagnosis and reduced survival. Most of the 
pancreatic cancers are originated in exocrine glands. About 95% of these exo-
crine cancers are adenocarcinomas that affect the pancreatic ducts. Other types 
of pancreatic cancers include neuroendocrine cancers that arise in endocrine 
cells. But these provide extensive capillary networks for metastasis of tumor 
cells. Several computational approaches are employed to couple the gene expres-
sion measurements with a network of known relationships between gene prod-
ucts, like the NetRank algorithm similar to Google’s PageRank algorithm, to 
determine the marker genes that are better involved in clinical outcome predic-
tion. One such marker genes are those that encode transcription factors. One 
important group is E2F transcription factor family. These regulate a varied range 
of cellular functions, which include cell differentiation, cell proliferation, and 
cell death. The current chapter focuses on the E2F1 transcription factor, its 
mechanism of regulating the cell cycle, and its role in apoptosis and metastasis 
in context with the devastating pancreatic cancer. The insights into the molecular 
mechanisms with further investigation and research may provide improved diag-
nostic and treatment options for this type of cancer.
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28.1  Introduction

The pancreas is an organ positioned behind the stomach and comprises of two main 
cell types: exocrine and endocrine cells. Majority of cells are exocrine that form 
exocrine glands and ducts whose secretions are released into tiny ducts that merge 
to form large pancreatic duct. This duct along with common bile duct empties its 
contents into the duodenum at ampulla of Vater. Small percentage of cells in the 
pancreas are endocrine in nature that form small clusters called islets of Langerhans. 
These groups of cells make hormones such as insulin and glucagon that regulate 
blood sugar levels in our body. These contents are directly released into the blood. 
When this organ gets damaged, it may lead to cancer, which is the uncontrolled 
proliferation of cells that topples the normal functions of the organ. Pancreatic can-
cer is the deadliest among human cancers to date. The hostile nature of pancreatic 
cancer, mostly due to its tendency for early local and distant spread, is in due course 
responsible for poor diagnosis and reduced survival. According to global scenario in 
2012, pancreatic cancer was the seventh most frequent origin of death from cancer, 
constituting 4% of all cancers diagnosed (www.cdc.gov/cancer/international/statis-
tics.htm). [1] About 80% of patients have fatal disease at the time of diagnosis, and 
the larger part live for less than 12 months [2]. Up to 10% of pancreatic cancer cases 
are known to be transmitted by autosomal dominant pattern of inheritance [3]. Most 
of the pancreatic cancers are originated in exocrine glands. About 95% of these 
exocrine cancers are adenocarcinomas that affect the pancreatic ducts. Other types 
of pancreatic cancer include neuroendocrine cancers that arise in endocrine cells. 
But these provide extensive capillary networks for metastasis of tumor cells.

Genome-wide association studies of pancreatic cancer are being carried out 
worldwide, giving insights into the cancer susceptibility loci on chromosomes. 
Several computational approaches are employed to couple the gene expression mea-
surements with a network of known relationships between gene products, like the 
NetRank algorithm similar to Google’s PageRank algorithm, to determine the 
marker genes that are better involved in clinical outcome prediction. One such 
marker genes are those that encode transcription factors. Transcription factors are 
proteins that exclusively bind at specific DNA sequences, regulating the transcrip-
tion of genes and thereby the expression of the genome. One important group is E2F 
family of transcription factors, initially named due to their ability to bind to the 
adenovirus E2 gene promoter [4]. These regulate a diverse range of cellular func-
tions that includes cell proliferation, differentiation, and death. As depicted in 
Fig. 28.1, E2F includes activators (E2F1, E2F2, E2F3a, and E2F3b) and repressors 
(E2F4, E2F5, E2F6, E2F7, and E2F8) [5, 6]. These factors control the expression of 
key cell cycle regulators, thereby deciding as to whether a cell should divide or not. 
E2F activation is adequate to irrevocably committing the cells to DNA replication; 
therefore E2Fs play a major role in the control of cell proliferation both in normal 
and tumor cells. The E2F activity is influenced by interactions with members of the 
retinoblastoma (Rb) protein family, primarily involved in inhibition of transcription 
activation and active repression of E2F-responsive genes. The activation of signal 
transduction pathways that drive cell cycle converges on E2F/Rb molecular switch.
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This chapter focuses on the E2F1 transcription factor, its mechanism of regulat-
ing the cell cycle, and its importance in devastating pancreatic cancer. The insights 
into the molecular mechanisms with further investigation and research may provide 
improved diagnostic and treatment options for this type of cancer. One study showed 
that the analysis of different proteins expressed in patients with pancreatic ductal 
adenocarcinoma (PDAC) provides clues for personalized medicine. The proteins 
detected in short-term surviving patients (STS, survival <14 months) were mark-
edly different from those in very long-term surviving patients (VLTS, survival 
≥10 years). In STS-associated patients, the cytoskeletal proteins which are dynamic 
structures involved in cell movement, cell division, and endocytosis were most sig-
nificantly enriched, whereas in case of VLTS, copine proteins involved in mem-
brane trafficking were enhanced [7]. Tissue culture and animal experiments have 
indicated the role of E2F1 overexpression in several types of cancer, making it a 
potential anticancer therapeutic.

A marked feature of this family is the presence of DNA-binding domains (DBD). 
The E2F family members (E2F1–E2F6) form heterodimers with dimerization part-
ner (DP) proteins (TFDP1–TFDP3) which are mediated by leucine zipper (LZ) and 
marked box (MB) domains. Transcriptionally active forms of the heterodimers are 
localized into the nucleus by amino terminal nuclear localization sequence (NLS), 
located adjacent to cyclin A (Cyc A) binding site [8]. The binding of Rb protein 
family takes place at transactivation domain (RB) of E2F1–E2F3. The export of 
E2F4 and E2F5 is mediated by their bipartite nuclear export signals (NES) [9]. 
E2F3a and E2F3b are two highly related isoforms whose expression is driven by 
alternative promoters at E2F3 locus [10]. E2F7a and E2F7b are isoforms generated 
by alternate splicing of the primary transcript [11].

Fig. 28.1 E2F transcription factor family in mammals
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28.2  Role of E2F1 in Cell Proliferation

Cell proliferation is an essential phenomenon during development, as the formation 
of a tissue and organ requires cells to divide exponentially so as to form large num-
ber of cells. After attaining maturity, the proliferative ability is utilized less fre-
quently. The external signals combined with intracellular signaling molecules 
involving the cell cycle machinery decide the proliferative potential of a cell. The 
cell cycle machinery consisting of diverse group of molecular components controls 
the progression through the cell cycle. Disruption of this network leads to spreading 
out of cancer cells. Understanding how this machinery works in connection with the 
signal transduction pathways at the molecular level will give insights into the mech-
anism of development and progression of pancreatic cancer. Cells have the ability to 
divide only for a definite number of times after which they enter into replicative 
senescence, where growth is terminally arrested. For transformation of cells, it is 
essential for them to become resistant to both apoptosis and senescence instigation. 
The activation of tumor suppressor p53 leads to direct induction of its transcrip-
tional target p21, leading to inhibition of CDK2/cyclin E complex and RB-mediated 
E2F1 inhibition [12]. p21 plays a pivotal role in senescence induction even in 
p53-defective cancer cell lines [13]. There exists a positive feedback loop between 
E2F1 and its target gene encoding CIP2A (human oncoprotein). CIP2A inhibit 
phosphatase activity of phosphatase complex PP2A [14]. This leads to the stability 
of E2F1  in phosphorylated form at Ser 364 and prevents its downregulation by 
p53-mediated regulators, enhancing proliferation. More than a dozen of human can-
cer types have been implicated with high levels of CIP2A levels envisaging poor 
survival rate, as it plays a crucial role in senescence resistance.

Cell cycle is a theoretical construct based on experimental approaches which 
describes the stages through which a cell passes in a sequential fashion to generate 
an accurate copy of itself. The cell cycle consists of two basic phases comprising 
interphase and M phase (mitosis phase). The interphase further comprises of G1, S, 
and G2 phases. The G1 and G2 phases part DNA replication (in S phase) from chro-
mosome segregation (in M phase). Restriction point or commitment point is a clear 
transition in G1 phase, wherein cells take the decision as to divide or withdraw from 
the cell cycle. The progression through this point is highly regulated by signaling 
cascades providing a novel link between E2F1 activity and Ras/Raf/MEK/ERK sig-
naling pathway. Once the restriction point is crossed, the cells are committed to 
divide and undertake proliferative cycle (Figs. 28.2 and 28.3).

Studies carried out on human diploid fibroblasts demonstrate a cross talk between 
Ras/Raf/MEK/ERK pathway and E2F1. It was seen that PDGF-induced phosphory-
lation of ERK reduced considerably with reduced E2F1 protein expression. When 
E2F1 expression is enhanced, ERK phosphorylation was increased. Even at low 
levels of growth factor, presence of E2F1 at notable levels induced ERK phosphory-
lation. E2F1 carries out phosphorylation of ERK comparable with MEK. But block-
ing MEK activity diminishes ERK phosphorylation even in the presence of E2F, 
further providing clues for E2F1 transcriptional targets of MEK/ERK pathway to be 
acting upstream to MEK [15].
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Fig. 28.2 Mechanism regulating senescence sensitivity in human cancer cells. The components 
and mechanisms regulating senescence in normal cells are shown in green color and those in tumor 
cells are shown in brown

Fig. 28.3 Bidirectional crosstalk between Ras/Raf/MEK/ERK pathway and E2F1
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Several research groups have confirmed K-Ras mutations to be majorly involved 
in about 90% of pancreatic cancer cases [16–18]. Ras is a small GTPase protein 
recruited to the membrane by Grb2-SOS complex, on activation of receptor tyrosine 
kinases by mitogens. This complex activates the GTPase family member Ras by 
converting into GTP-bound active form that further activates downstream MAP 
kinases, regulating gene expression and modulating cell growth, differentiation, and 
survival. The activation of G1-CDK causes phosphorylation of retinoblastoma pro-
tein family and activates E2F1. The active E2F1 now drives the expression of genes 
that leads to succession from G1 phase into S phase of cell cycle. E2F1 directly 
regulates two target genes: RasGEF1B (Ras guanine exchange factor 1B) and 
RasGRP1(Ras guanyl-releasing protein 1) [15]. RasGRP1 drives conversion of 
inactive Ras-GDP into active Ras-GTP, subsequently affecting activation of 
ERK. Levels of RasGEF1B are also elevated on activation of E2F1. Hence there is 
a two-way interaction between activation of E2F1 by MAP kinase pathway and 
positive feedback regulation of E2F1 in activating ERK. This mechanism indicates 
E2F1 to be playing a pivotal role, thereby being a possible drug target in the pres-
ence of Ras mutations.

28.3  Role of E2F1 in Pancreatic Cancer Metastasis

E2F transcription factor and its implications in vivo vary in different organs; it acts 
as tumor promoter in pancreatic cancer although it has been shown to be a tumor 
suppressor in other organs. Although studies on E2F family members show complex 
involvement of E2F in activation of cancer-promoting and cancer-regulating genes, 
extensive studies on E2F in cancer prognosis are needed to draw precise conclusion. 
In several pancreatic cancers, src (protein tyrosine kinase) is shown to be overex-
pressed. Immediate downstream regulator of src is E2F1. Overexpression of ribo-
nucleotide reductase small subunit 2 (RRM2), a procarcinogenic enzyme, leads to 
proliferation and metastasis of cells. E2F1 acts as a promoter for this enzyme [19]. 
Duxbury et  al. in 2004 found that in pancreatic adenocarcinoma (PANC1GemRes) 
cells, overexpression of src directly enhanced RRM2 and metastasis of the cells 
[20]. The role of E2F1 in angiogenesis increasing adhesion properties of pancreatic 
carcinoma cells is not reported; however it directs toward a need to study these car-
cinogenic properties in depth. In vivo significance of study in order to properly 
understand the role of E2F1 is also lagging behind in this field.

28.4  Role of E2F1 in Apoptosis

Multiple pathways are involved in E2F1-induced apoptosis (Fig.  28.4). The 
pro- apoptotic activity of E2F1 indicates that its deregulation prevents tumor devel-
opment by targeting premalignant cells to undergo apoptosis. Several studies have 
demonstrated a role of E2F1 in promoting apoptosis in various systems independent 
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Fig. 28.4 Pathways of E2F1-induced apoptosis
E2F1-induced apoptosis is mediated by both p53-dependent [23–25] and p53-independent [26, 27] 
pathways. A number of pathways are further involved in p53-dependent apoptosis induced by 
E2F1, one of which involves activation of ARF, another is caffeine-sensitive, while yet another 
utilizes physical interaction with p53. Transcriptional activity of E2F is modulated via multiple 
mechanisms; negative regulation by pRb, a product of Rb tumor suppressor gene; and direct acti-
vation of p73 transcription by E2F1 resulting in activation of p53-responsive target genes and 
apoptosis [28] and triggering of apoptosis and sensitizing the cells to pro-apoptotic stimuli via 
disruption of NF-κB signaling by deregulated E2F1 [29, 30]

of the endogenous p53 status [21, 22]. This suggests E2F1 to be a potent tumor sup-
pressor engaging in apoptotic pathways, thereby protecting organisms from tumor 
development.

In case of PDAC, E2F1 might serve as a tumor promoter. Histological analysis 
by Yamazaki et al. demonstrated a direct correlation of E2F1 expression with cell 
proliferation index and an inverse relationship between immunopositivity of E2F1 
and disease-associated survival as well as histological grade [31]. Pancreatic cancer 
has antineoplastic resistance to apoptosis, which is partially associated to the 
absence of functional p53. Decreased pRb expression and E2F1 overexpression 
were found to increase chemotherapy-induced apoptosis in pancreatic cancer [32]. 
In addition, increased gemcitabine-, etoposide-, or roscovitine-induced apoptosis in 
pancreatic cancer cell lines has been reported using E2F1-expressing adenoviral 
vector infection [33, 34].
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28.5  Treatment Strategies Based E2F1

Chemotherapy is the only therapeutic option for patients with metastatic cancer and 
may fail frequently due to change in E2F1’s function from a tumor suppressor to an 
oncogene, promoting survival. E2F1 has a dichotomous role. Drugs can be designed 
effectively by repressing E2F1-based survival pathways and reactivation of those 
involved in apoptosis. E2F1 overexpression sensitizes various cell types to apopto-
sis upon treatment with ionizing radiation or chemotherapeutic drugs such as etopo-
side and adriamycin, topoisomerase II inhibitors [35, 36]. Gene therapy studies 
have demonstrated that overexpression of E2F1 effectively induces apoptosis in 
various cancers both in vitro and in vivo [37–42]. Apoptosis and cell cycle arrest can 
be triggered by arresting DNA replication in the presence of E2F1 by utilizing its 
regulatory role in a specific S-phase checkpoint [43–45]. This theory is additionally 
supported by studies that have demonstrated that exposure to DNA-damaging 
agents initiates E2F1 upregulation which in turn arrests the cell cycle and induces 
apoptosis subsequently [46, 47]. These studies suggest that E2F1 “chemogen” 
therapy might be a promising treatment strategy. Moreover, E2F1 gene therapy has 
a significant potential advantage due to the fact that E2F1-mediated apoptosis can 
proceed independent of the pRb or p53 status of tumors [37–40]. Elliot et al. have 
shown that adenoviral vector system-mediated E2F1 overexpression effectively 
induces apoptosis in pancreatic cancer cells expressing mutant p53 [33]. This 
proteolytic caspase cascade has been implicated as a mediator of E2F1-induced 
apoptotic cell death in a number of cell lines [37–42].

Recently, a novel miR-34a delivery-based therapeutic strategy has shown prom-
ising success in PDAC. This strategy comprises of nanocomplexes consisting of 
CC9 peptide which acts as a bifunctional molecule, tumor targeting and tumor pen-
etrating. Treatment with these nanocomplexes elevated the levels of miR-34a, 
thereby downregulating its target genes, viz., Bcl-2, E2F3, cyclin D1, and c-MYC, 
which ultimately brings about the cell cycle arrest, migration suppression, and 
apoptosis. Hu et al. have further shown that nanocomplexes when used in vivo sig-
nificantly repressed tumor growth and prompted apoptosis of cancer cells [48].

28.6  Future Perspectives

E2F transcription factor family plays crucial role in cell differentiation, cell cycle 
progression, apoptosis, and stress responses. It has the ability to control numerous 
signaling pathways directly or indirectly through its interactions and crosstalk 
between these pathways. This property can be utilized in development of treatment 
strategies involving E2F agonists that would promote apoptosis and E2F antagonists 
that would suppress cell proliferation. The use of apoptotic E2F1 targets as molecu-
lar therapeutics alone or in combination with established chemotherapeutic agents 
needs consideration as a potential treatment for cancer.
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Abstract
It is increasingly being recognized that in gastrointestinal malignancies, includ-
ing pancreatic cancer, transcription factors get activated and alter the gene 
expression in the tumor cells to metastasize and develop. Pancreatic cancer is 
associated with a relatively very poor prognosis and survival outcomes. Currently, 
there are significant barriers to effective therapeutic interventions for this dis-
ease; hence timely diagnosis and clinical decision-making leading to appropriate 
treatment strategies for patients with metastatic pancreatic cancer are essential. 
This chapter summarizes some of the selected peer-reviewed translational and 
clinical research findings in the area of a transcription factor [specificity protein 
1 (Sp1)] as it relates to the tumorigenesis and mechanistic role(s) for the poten-
tial of improving therapeutic targets/responses in pancreatic cancer. Particular 
emphasis has been given on the mechanistic roles of Sp1 in the cell cycle, metas-
tasis (cellular adhesion, invasion, migration, angiogenesis), and apoptosis. Based 
on the available information and several ongoing clinical studies, it is implicated 
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that Sp1 can well serve as an important prognostic marker for pancreatic tumor. 
Several drugs targeting Sp1 for pancreatic tumor therapy have also been studied 
and discussed in this chapter. These drugs work by downregulating the expres-
sion and activity of Sp1 in tumor cells in pancreatic cancer. Taken together, these 
molecular and cellular mechanisms/targets can have a very significant impact on 
the prognosis and overall quality-of-life and clinical outcomes for patients with 
pancreatic tumor.

Keywords
Pancreatic cancer · Specificity proteins · Sp1 · Transcription factors · Cellular 
and molecular mechanisms · Tumorigenesis · Anticancer drugs · Clinical 
outcomes

29.1  Introduction

Gastrointestinal malignancies are broadly covered with the colon, esophagus, gas-
tric, liver, and pancreatic cancers. Pancreatic tumor continues to be a leading cause 
of carcinoma-related deaths globally. Pancreatic ductal adenocarcinoma (PDAC) is 
the fourth most lethal cancer in the USA with an estimated 53,670 new cases and 
43,090 deaths in the year 2017 [25]. It has a very poor prognosis and an increasing 
impact on cancer-related mortality with a 5-year survival rate of less than 5%, and 
its median survival is about 6 months [25]. In fact, one of the recent estimates sug-
gests that by the year 2030, the disease may become the second leading cause of 
cancer-related deaths in the USA [20]. The risk factors for pancreatic cancer include 
smoking, obesity, diabetes, heavy alcohol use, and chronic pancreatitis. Preclinical 
and clinical outcome studies have demonstrated that PDAC is a systematic disease 
wherein its clinical course is generally aggressive leading to a remarkable decrease 
in the patients’ quality of life (QOL) and/or survival. Most recently, the American 
Society of Clinical Oncology (ASCO) has updated potentially curable pancreatic 
cancer guideline [16].

In this chapter, we summarize some of the experimental (translational) and clini-
cal research findings in the investigational area of a key transcription factor [i.e., 
specificity protein 1 (Sp1)] as it relates to the tumorigenesis and signaling mecha-
nistic role(s) in pancreatic cancer.

29.2  Tumorigenesis and Clinical Scenario in Pancreatic 
Cancer

Tumor microenvironment in pancreatic cancer plays important role(s) in the cancer 
cell progression with a relatively poor therapeutic response to the cytotoxic agents. 
Currently, the clinical efficacy of anticancer pharmacotherapies is rather limited due 
to the fibrotic stromal component of pancreatic cancer, which forms a mechanical 
barrier around the tumor. Plasma circulating tumor DNA (ctDNA), also known as 
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“cell-free DNA,” are now being proposed as one of the potential biomarkers in 
advanced pancreatic cancer [18]. There is a greater interplay between the tumor 
stroma and pancreatic cancer; hence for the practicing oncologists, it is critical to 
have a better understanding of the impacts of stromal microenvironment on tumor 
progression as it relates to the drug delivery and drug resistance in this setting.

In patients with pancreatic cancer, the main symptoms often include abdominal 
pain and loss of appetite, weight, and functional activities. Additionally, there 
could be other related symptoms, which include biliary tract obstruction issues 
and pancreatic insufficiency that may also affect the nutritional depletion. The 
development of PDAC is primarily influenced by the genetic mutations at some key 
genes (such as the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, popu-
larly known as the KRAS gene). This gene accounts for about 90% of the PDAC 
cases, which defines their malignant growth, invasiveness, lymphatic spread, as well 
as therapeutic resistance.

Recently, the US Food and Drug Administration (FDA) has approved phase I 
clinical trial of MVT-1075 (a novel, fully human antibody radio-immunotherapy), 
as a therapeutic treatment for pancreatic cancer. There has been evolving trend in 
the standard of care for resected pancreatic cancer, especially the clinical trials in 
which the adjuvant therapies with chemotherapy or chemoradiation have prolonged 
patients’ survival postoperatively [27]. A recent elegant report on the therapeutic 
implications of molecular subtyping for pancreatic cancer has reviewed seminal 
articles which evaluated the molecular architecture of the disease thereby providing 
a better understanding of the therapies that may potentially improve the patient 
outcomes [19].

Despite the enormous literature available worldwide about the pathobiology and 
clinical management of patients with pancreatic cancer, the disease remains one of the 
leading causes of cancer-related deaths. Resistance to chemotherapy and/or radiation 
therapy contributes to a relatively higher recurrence rate with this disease. Also, serum 
biomarkers for the diagnostic and curative treatment of pancreatic cancer are gen-
erally good for early-stage disease only, which often lack assay standardization [6]. 
Therefore, it is important for developing effective therapeutic strategies for treating 
and managing pancreatic cancer at a relatively early stage of the disease.

29.3  Targeting Specificity Proteins as Transcription Factors

Transcription factors are now increasingly being recognized as one of the novel 
targets for the developments of anticancer drugs. Specificity protein families (mainly 
Sp1, Sp3, and Sp4) are “sequence-specific” transcription factors that are associated 
with the poor prognosis and survival of patients with different types of cancers, 
including pancreatic cancer [21]. These agents regulate a number of genes involved 
in the critical cellular processes required for the tumor cell growth and progression 
(i.e., cell cycle, proliferation, differentiation, and/or apoptosis).

These key sequence-specific Sp transcription factors bind to GC-rich promoter 
sites (a sequence of contiguous guanine, guanine, guanine, cytosine, and guanine, in 
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that order, along with a DNA strand) and regulate a set of genes associated with dif-
ferent cancers. Importantly, Sp1 expression correlates with the aggressive disease 
and poor prognosis. Sp proteins also regulate vascular endothelial growth. While 
multiple candidates are involved in the aggressive disease and poor prognosis, Sp1 
and Sp3 transcription factors mediate the expression of both c-Met and survivin. 
Preclinical studies have demonstrated that both c-Met and survivin along with spe-
cific Sp proteins (e.g., Sp1 and Sp3) mediate their expression in different malignan-
cies [5, 7, 17, 22, 29]. Understanding the key players associated with the aggressive 
disease and inducing resistance to therapy is critical in treating pancreatic cancer.

29.4  Role of Sp1 as Transcription Factor

The Sp1 transcription factor is a DNA binding protein belonging to the Krüppel-like 
factor family that is important for the transcription of many regulatory genes that con-
tain GC boxes in their promoters. It is a sequence-specific zinc finger transcription 
factor. The zinc fingers in the C-terminal domains bind to the GC/GT box 
(GGGGTGGGG) of target genes. The genes whose transcription is regulated by Sp1 in 
turn regulate tumor cell growth, differentiation, survival, angiogenesis, invasion, and 
metastasis [9]. The abnormal activation and expression of this transcription factor 
hence result in the development and progression of many tumors including pancreatic 
cancer. Sp1 overexpression is related to the increase in development, growth, angio-
genesis, survival, and metastasis and eventually to a relatively poor prognosis of 
pancreatic cancer [14]. The target genes on which Sp1 transcription factor acts are 
involved in cell cycle regulation, progression, and angiogenesis. The effect of Sp1 on 
pancreatic cancer is due to the regulation of the expression of these target genes by Sp1.

29.5  Role of Sp1 in Cell Cycle

There are genes that encode proteins, which play major roles in the cell cycle. The 
abnormal expression of these genes relates to the cancer development and progres-
sion. The proteins encoded by these genes regulate cell cycle at various stages. 
Evidence suggest that Sp1 increases expression of some of these genes [23]. The 
promoters of these genes have enrichment sites that are specific binding sites for 
Sp1 transcription factor. This suggests that the Sp1 transcription factor regulates the 
expression of these genes that are involved in cell cycle and increased expression of 
these is the cause of pancreatic cancer development.

Some of these genes are LMNB1 (lamin B1), CENPF (centromere protein F), 
DDIT3 (DNA damage-inducible transcript 3), MYB (MYB proto-oncogene), SKP2 
(S-phase kinase-associated protein 2), KIF20A (kinesin family member 20A), and 
CCNE2 (cyclin E2) [23]. Below we summarize some of the key functional properties 
of these genes:
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LMNB1 is a component of the nuclear lamina and plays a key role in nuclear 
structural integrity by providing a framework for the nuclear envelope and chromo-
somal stability through its interaction with chromatin. CENPF helps in chromo-
some segregation during mitosis. In the G2 phase of interphase, the nuclear matrix 
is composed of many proteins, and CENPF is one of its components. Its expression 
is also correlated with poor prognosis in prostate cancer patients. DDIT3 is 
activated by the endoplasmic reticulum stress and mediates apoptosis by causing 
cell cycle arrest. MYB is a transcriptional regulator and is involved in the tumori-
genesis. SKP2 forms a complex with the cyclin A-CDK2 S-phase kinase, and its 
expression correlates with the metastasis and poor outcomes in pancreatic cancer 
patients. KIF20A is a microtubulin-associated mitotic kinesin required for chromo-
some passenger complex (CPC)-mediated cytokinesis. It is involved in the 
migration and invasion of pancreatic cancer cells. CCNE2 encodes a protein which 
is a cyclin and plays a central role in G1/S transition, its expression peaking at this 
phase of the cell cycle. It has been found that the expression of this gene is upregu-
lated in the tumor-derived cells.

The promoters of the above-noted genes have binding sites for various transcrip-
tion factors including Sp1. Sp1 binds to its binding sites on promoters of these genes 
and regulates its expression thus leading to their increased activity and cancer.

29.6  Role of Sp1 in Pancreatic Cancer Metastasis

Metastasis is a complex process that consists of many steps/pathways. It is a major 
factor in determining the morbidity and mortality of patients with pancreatic cancer. 
Metastasis basically involves various sequential steps that include primary tumor 
cells invading the local tissue, transport of tumor cells in blood or lymphatic ves-
sels to target tissues, and proliferation of tumor cells at the secondary sites. Sp1 
transcription factor is involved in the regulation of each step of the metastasis of 
pancreatic cancer by different mechanisms – and some of the critically important 
ones are described below.

29.6.1  Role of Sp1 in Invasion

Sp1 has been positively correlated with increased vascular invasion by pancreatic 
tumor cells [12]. The molecular mechanisms involved are not absolutely clear, but 
it has been suggested that Sp1 collaborates somehow synergistically with an enzyme 
phospholipase D1 (PLD1) and increases the invasion of pancreatic tumor cells. 
Abnormal metabolism is a factor in tumor initiation and growth, and PLD1 is a key 
enzyme that hydrolyzes phosphatidylcholine and is involved in lipid metabolism. 
PLD1 is elevated in pancreatic tumors and is positively correlated with Sp1. 
Combined overexpression of both Sp1 and PLD1 promotes pancreatic tumor 
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invasion, and their simultaneous expression is considered as an independent factor 
in pancreatic tumor invasion, metastasis, and poor prognosis [12].

There has been some evidence to support that Sp1 also regulates the expression 
of proteolysis-related genes [13]. The synthesis and secretion of proteases formed 
by the expression of these genes are involved in the degradation of basement mem-
brane components and extracellular matrix, which plays a major role in pancreatic 
cancer invasion and metastasis.

29.6.2  Role of Sp1 in Migration

Epithelial-mesenchymal transition (EMT) is an important step in the metastasis of 
tumor cells. It is a biological process in which sessile epithelial cell phenotype 
undergoes a developmental switch in a migrating mesenchymal phenotype by bio-
chemical changes with increased migratory capacity, invasiveness, resistance to 
apoptosis, dissolution of tight epithelial junctions, loss of cell adhesion, downregu-
lated expression of some epithelial markers, and increased production of the extra-
cellular matrix components. Pancreatic cancer cell migration and invasion depend 
on epithelial-mesenchymal transition.

Sp1 regulates metastasis of pancreatic cancer cells as it is required for transform-
ing growth factor-beta (TGF-ß)-induced EMT and migration of pancreatic cancer 
cells [15]. TGF-ß itself induces vimentin expression, a type III intermediate fila-
ment. Its transcriptional induction of vimentin is carried out through the increased 
transcription of vimentin from its proximal promoter site. Vimentin is important in 
cell migration and subsequent metastasis. The prevention of transcriptional induc-
tion of vimentin by Sp1 through TGF-ß results in a relatively decreased pancreatic 
carcinoma cell migration.

29.6.3  Role of Sp1 in Angiogenesis

In the initial phases of pancreatic cancer metastasis due to the increased metabolic 
activity and increased nutritional demands of cancer, angiogenesis is required to 
supply nutrients to the tumor cells. Spread and proliferation of the tumor cells in the 
target organs also require angiogenesis. Thus, angiogenesis is important for the 
pancreatic cancer metastasis. Many direct and indirect angiogenic factors play key 
role(s) during angiogenesis. Some of the angiogenic factors with direct actions are 
endothelial growth factor, placental growth factor, and angiopoietins. Whereas, 
angiogenic factors with indirect actions are: fibroblast growth factor (FGF), platelet- 
derived endothelial growth factor (PDEGF), and interleukins (ILs). Transcription 
factors regulate expression of these direct and indirect angiogenic factors. These 
angiogenic factors affect the angiogenic phenotype. Sp1 is one of the central tran-
scription factors in that it regulates angiogenic gene expression and subsequently 
regulates the tumor angiogenesis.
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Vascular endothelial growth factor (VEGF) is one of the direct angiogenic factors 
that plays central role(s) in angiogenesis, growth, and metastasis of tumors [24]. 
Sp1 promotes angiogenesis and metastasis by transcriptional regulation of VEGF [2]. 
It induces VEGF expression by directly binding to its promoter site. Overexpression 
of Sp1 causes increased VEGF expression and tumor microvessel formation in the 
pancreas [2]. The importance of this mechanism can be described by the fact that 
the tumor suppression genes like p53, p75, and von Hippel-Lindau suppress 
the expression of VEGF by binding and forming the complexes with Sp1, which 
inhibits binding of Sp1 to the promoter region of VEGF and hence interferes with 
its transcription.

Vascular endothelial growth factor receptor 2 (VEGFR2), also known as kinase 
insert domain receptor (KDR), has also been found to be involved in the pancreatic 
tumor angiogenesis. Sp1 also binds the promoter region of the VEGFR2/KDR and 
increases its expression, hence mediating the angiogenesis process in pancreatic 
tumors [10].

29.6.4  Metastasis to Lymph Nodes

Sp1 overexpression is directly related to the lymph node metastasis in tumors. 
Increased gene expression and posttranslational modification of Sp1 protein leading 
to the enhanced Sp1 action have a 100% specificity for the presence of lymph node 
metastasis [14].

29.7  Role of Sp1 in the Decreased Apoptosis of Tumor Cells

Pancreatic tumor cells have a great ability to evade cell death. This ability is due to 
the survival proteins. Heat shock proteins (HSP) are a class of survival proteins that 
are important in pancreatic tumor cell survival. HSP1 and HSP70 are the two such 
key heat shock proteins that are regulated by the Sp1 transcription factor [3].

Posttranscriptional modification of Sp1 is important in the regulation of tran-
scriptional activity of Sp1. Hexosamine biosynthetic pathway (HBP) is a shunt 
pathway that plays major role(s) in the cellular signaling cascades and regulation 
of the transcription factors involved in cancers. Sp1 transcription factor is also 
modified through HBP pathway through O-GlcNAcylation at Ser-484. O-GlcNAc 
transferase (OGT) is the enzyme that catalyzes this reaction. It modifies many 
cellular proteins and is overexpressed in a number of cancers. This glycosylation 
helps in the translocation of the Sp1 transcription factor to the nucleus and subse-
quently to its binding with its promoters on their target genes. These target genes 
include NFk- b and HSP1. Eventually, the increased expression of heat shock sur-
vival proteins results in the increased ability of pancreatic tumor cell survival 
(Fig. 29.1).
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29.8  Anticancer Drugs Affecting Sp1

In recent years, several drugs have been shown to inhibit the proliferation of pancre-
atic cancer cells and tumors. The mechanisms of anticancer activity of these drugs 
have also been associated with the decreased activity of Sp1 transcription factor. 
Some of the main drugs that affect the Sp1 transcription factor are detailed below:

Triptolide is a diterpenoid epoxide obtained from the plant Tripterygium wilfordii. 
It inhibits the glycosylation of Sp1 by decreased expression and activity of OGT, 
hence leading to the decreased survival proteins and cell death.

Minnelide, a water-soluble prodrug of triptolide, is effective against pancreatic cancer 
at doses which have been shown to be safe in phase I clinical trial. Oral Minnelide 
has great potential to emerge as a novel therapy for pancreatic cancer [4].

Tolfenamic acid is a novel small molecule nonsteroidal anti-inflammatory drug 
(NSAID), which belongs to the class “fenamates,” and has been implicated in 
several cancer models [22]. This agent has long been used for treating migraine 
headaches in many parts of the world. Its therapy causes apoptosis and cell cycle 
arrest in pancreatic tumor cells mainly by the degradation of Sp1. The degrada-
tion of Sp1 leads to decreased expression of VEGF and other downstream targets 
like survivin and c-Met, which eventually leads to the decreased growth and 
metastasis of pancreatic tumors [1, 23].

Fig. 29.1 Schematic representation of the cross talk between the Sp1 transcription factor and 
O-GlcNAc transferase (OGT) in the tumor cell/gene responses through the expression of heat 
shock survival proteins
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Fig. 29.2 Schematic representation of some of the key mechanisms (pathways) of anticancer 
activity of the drugs that have been associated with the decreased activity of Sp1 transcription 
factor

Cycylooxygenase-2 (COX-2) inhibitors are correlated with the increased angiogen-
esis in the pancreatic tumor in a process which is dependent on Sp1 and VEGF. It 
is overexpressed in many tumors of the body including pancreatic tumors. Its 
expression is correlated with a poor prognosis in PDAC [8]. The overexpression 
of COX-2 is correlated with an increased Sp1 activity [26]. Sp1 binds to COX-2 
promoter sequence position around −25/−240 and causes the increased tran-
scription of COX-2. Sp1 also can transcriptionally activate COX-2 expression 
through another mechanism. Evidence suggest that in pancreatic tumors, there is 
an alteration of activated epidermal growth factor receptor (EGFR) and its down-
stream p38 mitogen-activated protein kinase (p38-MAPK). This EGFR/p38- 
MAPK signaling pathway could be used by Sp1 to transcriptionally activate 
COX-2 expression. Overactive EGFR phosphorylates Sp1 via a p38-MAPK sig-
naling pathway [11]. The highly activated Sp1 subsequently activates COX-2 
transcription, leading to the elevated levels of COX-2 expression, which finally 
promotes the secretion of VEGF (Figs. 29.2 and 29.3). Thus, besides expression 
of VEGF by Sp1 directly, Sp1 can also upregulate the expression of VEGF by 
increasing the expression of COX-2.
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Celecoxib is a selective COX-2 inhibitor that inhibits tumor growth and metastasis, 
mainly by inhibiting the angiogenesis and tumor microvessel formation. It 
suppresses the VEGF expression at the mRNA and protein levels by reducing 
the Sp1 DNA binding activity and trans-activating activity. This decreased 
activity of Sp1 is due to the reduced Sp1 phosphorylation. Phosphorylation of 
Sp1, which occurs during the posttranslational modification of Sp1, increases its 
DNA binding activity.

Mithramycin, an antibiotic, decreases the expression of Sp1 and its downstream 
molecules such as VEGF, EDF, and PDGF.  It inhibits Sp1 by binding to the 
genes with GC-rich promoter sequences, thus regulating the transcription of 
these genes [28].

29.9  Conclusions and Future Prospectives

Pancreatic tumors are a leading cause of carcinoma-related deaths globally. Given 
the relatively poor outcomes after surgery (i.e., survival rate) of patients with pancre-
atic cancer, molecular markers/targets can potentially serve as therapeutic targets 
for this lethal disease. Identifying Sp1 as an important molecular marker for pancreatic 
tumors may have a very significant prognostic value. Surgery is the main treatment 
of pancreatic cancer as chemotherapy and/or radiotherapy have rather limited role(s) 
in the disease treatment and management. Early recurrence and metastasis are quite 
common as pancreatic cancer has a high propensity for early distant metastasis. As 
overexpression of Sp1 correlates with poor prognosis, advanced stage of the tumor, 
lymph node metastasis, decreased survival, and aggressiveness of the pancreatic 
cancer, therapeutic strategy directed at Sp1 can be very significant for controlling 
pancreatic tumors. Also, Sp1 can serve as an important prognostic marker for pan-
creatic cancer. Several drugs targeting Sp1 for pancreatic tumor therapy have been 
studied. Most of these drugs work by downregulating the expression and activity of 
Sp1 in tumor cells. This can have a very significant effect on the overall clinical 
outcomes and prognosis of patients with pancreatic cancer.

Fig. 29.3 Schematic representation of some of the key interactions of Sp1 transcription factor 
with cycylooxygenase-2 (COX-2) and/or vascular endothelial growth factor (VEGF) during the 
angiogenesis process
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Abstract
Pancreatic cancer is one of the foremost causes of cancer-related death in the 
United States and worldwide. Nuclear factor-kappa B (NF-κB) is a transcription 
factor which plays a pivotal involvement in pancreatic cancer owing to its con-
nection at the downstream stage of many signaling cascades including arachi-
donic acid (AA) pathway. AA cascade is an upstream pathway and regulator of 
NF-κB pathway. Moreover, NF-κB can bind to the cis-acting elements in the 
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promoter of phospholipase A2s, cyclooxygenases, and lipoxygenases, and these 
pathways are upregulated in a variety of cancers. Several investigators have 
proved that AA pathway-associated NF-κB has key role in pathophysiology of 
pancreatic cancer and has been considered as a vital therapeutic target. Several 
phytochemicals have been explored as novel therapeutic and preventive agents 
by targeting AA cascade-associated NF-κB pathway. In this chapter, the role of 
AA cascade-associated NF-κB pathway in pancreatic cancer has been reviewed 
and discussed about plant-derived inhibitors of this pathway for the prevention 
and the therapy of pancreatic cancer.

Keywords
NF-κB · Arachidonic acid pathway · Pancreatic cancer · Natural products

30.1  Introduction

Pancreatic cancer is the fourth-leading cause of cancer-related morbidity, with 
39,590 deaths and 46,420 estimated new cases in 2014  in the United States [1]. 
Mutations are considered to be the genetic event occurring at the beginning of the 
development process of pancreatic cancer, leading to cellular proliferation due to 
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constitutive activation of intracellular pathways [2]. The latter is related to numer-
ous alterations in growth factors and their receptors, involved in the control of 
growth and differentiation during transduction pathways [2]. There are several 
molecular signaling pathways that play a vital role in cell survival, proliferation, 
angiogenesis, metastasis, and promotion of pancreatic cancer, as well as in chemo-
resistance, including epidermal growth factor receptor (EGFR), nuclear factor- 
kappa B (NF-κB), signal transducer and activator of transcription factor 3 (STAT3), 
and arachidonic acid (AA) pathway [3].

30.2  Arachidonic Acid Pathway-Associated NF-κB Signaling 
in Pancreatic Cancer

The transcription factor NF-κB plays a critical role in pancreatic cancer as involv-
ing at the downstream stage of many signaling cascades including AA pathway. 
AA is an upstream mediator and regulator of NF-κB pathway. NF-κB and activa-
tion protein 1 (AP-1) can bind to the cis-acting elements in the promoter of phos-
pholipase A2 (PLA2), cyclooxygenase (COX-2), and lipoxygenases (LOXs), and 
these pathways are upregulated in several cancers. The active form of PLA2 stimu-
lates the proliferation of MIAPaCa-2 pancreatic cancer cells by the activation of 
mitogen- activated protein kinases (MAPKs)/NF-κB [4]. PLA2s gene knockout and 
transgenic studies demonstrated the pro-tumorigenic role of PLA2 in pancreatic 
cancer [5].

A chemical compound bromoenol lactone (BEL) caused decrease in agonist- 
induced activation of EGFR in pancreatic cancer cells [6]. The NF-κB inhibition has 
become a major target in natural drug discovery, and it is necessary for survival and 
immunity of cell because it regulates the immune, inflammatory, and carcinogenic 
responses [7]. Compared to normal pancreatic tissues, NF-κB, which is linked with 
COX-2, is constitutively expressed in 67% of human pancreatic cancers. Zhang 
et al. [5] reported the acute pancreatitis induced by PLA2 by the activation of tran-
scription factor NF-κB. Gong et  al. [8] reported combinatorial target of COX-2/
NF-κB/STAT3/prostaglandin receptor E-prostanoid 4 pathway for effective treat-
ment of pancreatic cancer [8, 9] reported the TLR4-/NF-κB-/COX-2-mediated 
inflammatory pathway involved in tumorigenesis of pancreatic cancer.

Although COX-2 expression along with NF-κB is incremented in several types 
of malignancies including pancreatic, esophagus, colon, and breast cancers [10–
12], the molecular mechanism is still unclear. It has been reported that COX-2 has 
inherent role in pancreatic ductal adenocarcinomas initiation and progression by the 
activation of the PI3K/AKT pathway [13]. In cancer, prostaglandin E2 (PGE2) the 
metabolite of COX-2 is overexpressed in the majority of epithelial malignancies 
[14, 15]. Approximately 80% of human pancreatic ductal adenocarcinomas (PDA) 
overexpress the tumor form of mucin 1 (tMUC1), a heavily glycosylated membrane- 
tethered glycoprotein generally expressed on glandular epithelial cells [16]. tMUC1 
is overexpressed and aberrantly hypoglycosylated in malignant cells [16].
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In a study, it has been shown that, in addition to the overexpression of tMUC1, 
the tumors have high levels of COX-2 and PGE2 [17]. Mucin 1 (PDA.MUC1) mice 
are highly resistant to celecoxib (a COX-2 inhibitor) and gemcitabine when each 
drug is administered independently; however, a clinical relevant antitumor response 
was observed after treatment with a blend of MUC1 vaccine, celecoxib, and gem-
citabine [18]. Previous reports suggested that the transmembrane mucin glycopro-
tein mucin 1 (MUC1) is overexpressed in pancreatic ductal adenocarcinomas along 
with COX-2. Molecular studies by Nath et al. [17] demonstrated the MUC1 associ-
ated with the same gene locus where NF-κB/p65 binds with the COX-2 promoter. 
The study suggests that MUC1 regulates pancreatic ductal adenocarcinomas through 
COX-2/NF-κB pathway [17]. Animal LOXs were classified into five different 
types—5-LOX, 8-LOX, 11-LOX, 12-LOX, and 15-LOX [19]. LOXs also involved 
in various human cancers including colon, pancreatic, lung, breast, and prostate 
[10]; however, comparatively diminutive efforts have been made to explicate its role 
in cancer development.

Recently, it has been shown that treatment with omega-6 fatty acids increases 
leukotrienes B4 (a LOX metabolite) levels in human pancreatic ductal epithelial 
(HPDE and HPDE-Kras) and cancer (AsPC1 and Panc1) cells, in  vitro [20]. 
Compared to EL-Kras/5LO+/+ mice, EL-Kras mice lacking 5LO (EL-Kras/5LO−/−) 
had decreased mast cell infiltration and developed fewer pancreatic lesions [20]. 
These results suggest the LOXs involvement in pancreatic cancer. Previously, the 
progression of human pancreatic cancer cells by leukotrienes B4 (LTB4) via MAPK 
and PI-3 kinase pathways was reported, although it did not affect the activity of 
JNK/SAPK [21]. In fact, different LOXs exhibit tumor response in a tissue-specific 
manner either pro-tumorigenic or antitumorigenic activities [22]. Inhibitors of 
lipoxygenases have been found to be very effective in the suppression of pancreatic 
cancer cell lines as well as pancreatic adenocarcinoma. In a study, the inhibition of 
5-lipoxygenase by zileuton (5-LOX inhibitor) in pancreatic cancer cells by inducing 
apoptosis, SW1990, has been demonstrated [23].

30.3  Targeting Arachidonic Acid Pathway-Associated NF-κB 
by Phytochemical Compounds for Prevention 
and Therapy of Pancreatic Cancer

Phytochemical agents and their derivatives act as anticancer drugs by inhibiting the 
migration, invasion, growth, survival, and metastasis of cancer cell during the carci-
nogenesis process by multiple pathways [24]. Cannabinoid (1), lupeol (2), plumba-
gin (3), quercetin (4), sulforaphane (5), triptolide (6), ץ-tocotrienol (7), boswellic 
acid (8), curcumin (9), and garcinol (10) are different phytochemicals exhibiting 
anticancer activities against various cancers, including pancreatic, by targeting AA 
pathway and NF-κB-mediated signaling pathways (Table 30.1).

Moreover, paclitaxel, etoposide and teniposide, vinblastine and vincristine, and 
camptothecin derivatives are reported anticancer agents [25, 26]. These compounds 
act by inhibiting the expression of NF-κB and associated genes by modulating 
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various signal transduction pathways [25, 26]. Researchers reported that individual 
phytochemicals and in combination with chemotherapeutics can prevent pancreatic 
cancer by inhibiting several signaling pathways [27]. Phenolics can inhibit the pro-
motion and progression of cancerous cell by modulating the activities of NF-κB and 
AP-1 [28]. Curcumin downregulates the expression of NF-κB, COX2, and phos-
phorylated STAT3 in peripheral blood mononuclear cells in some pancreatic cancer 
patients [29] (Fig. 30.1). Lev-Ari et al. [30] reported that combination of curcumin 
and gemcitabine enhanced cytotoxic effect against pancreatic adenocarcinoma 
in vitro, decreasing the COX-2 and p-ERK1/2 levels.

Table 30.1 Phytochemicals targeting AA pathway associated transcriptional factros for cancer 
prevention and therapy

Phytochemical Mechanism References
Cannabinoid (1) Upregulation of CB2 receptor [37]

Upregulation of p8, ATF-4, and TRB3 genes
Lupeol (2) Reduced activation of NF-κB [38]

Reduced protein expression of PKCa/ODC, PI3K/Akt, and 
MAPK pathways

Plumbagin (3) Decrease in NF-κB/p65 phosphorylation [39]
Inhibition of STAT3 phosphorylation
Upregulates the expression of IL-6
Inhibited expression of Cdc25A, cyclin D1, and MMP9
Decreased expression of proliferative markers such as PCNA 
and ki67

Quercetin (4) Diminished ALDH1 [40]
Inhibition of NF-κB
Reduced proliferation, angiogenesis, cancer stem cell-marker 
expression
Induction of apoptosis

Sulforaphane (5) Diminished NF-κB binding, induction of apoptosis [41]
Blockage of tumor growth and angiogenesis

Triptolide (6) Downregulates NF-κB [42]
Inhibition of HSF1 and HSP70
Inhibition of glycosylation of Sp1
Inhibition of hexosamine biosynthesis
Inhibition of O-GlcNAc transferase

Tocotrienol (7)-ץ Inhibition of NF-κB activity [43]
Inhibition of cell growth and cell survival
Decreased p65 (ReIA) binding
Inhibition of proliferation, angiogenesis, invasion

Boswellic acid (8) Downregulate the expression of COX-2, MMP-9, CXCR4, 
and VEGF and inhibit the expression level of c-Myc

[44]

Curcumin (9) Downregulation of iNOS, COX-2, and 5-LOX expression [45]
Upregulation of p21 expression

Garcinol (10) Reduction in PGE2 expression [46]
Downregulation of NF-κB and COX-2
O2, nitric oxide (NO), iNOS, and COX2
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Cascinu et  al. [31] conducted a clinical trial in pancreatic cancer, by using 
 celecoxib (COX-2 inhibitor) associated to oxaliplatin and gemcitabine. The expres-
sion of COX-2 was found in 30 tumors as well as NF-κB expression was found in 
16 tumors. Authors reveal that COX-2 inhibitor does not enhance the efficacy of 
gemcitabine/oxaliplatin. Nafamostat mesilate inhibits induced apoptosis in pancre-
atic cancer cells, but its maximum concentration (1.8 × 10−7 M) is not effective to 
inhibit NF-κB [33]. The recommended dose of regional arterial infusion of nafamo-
stat mesilate (1.8 × 10−6 M), used to target gemcitabine-induced NF-κB activation, 

Fig. 30.1 Chemical structures of some of the important anticancer phytochemicals by targeting 
AA cascade-associated NF-κB pathway
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in combination with gemcitabine is found to be safe in pancreatic cancer patients 
[32]. The inhibition of gemcitabine-induced NF-κB activation enhances the antitu-
mor activity of gemcitabine against pancreatic cancer [34].

Pristimerin, a quinonemethide triterpenoid, exhibited antiproliferative and pro- 
apoptotic activities in pancreatic cancer cells by inhibiting multiple signaling path-
ways NF-κB/COX-2 [35]. Nordihydroguaiaretic acid (NDGA), a 5-LOX inhibitor, 
prevented the progression of acute pancreatitis by inhibiting multiple pathways, 
including NF-κB [36]. Nexrutine®, an anti-inflammatory nutraceutical, inhibited 
growth of pancreatic cancer cells and reduced levels and activity of NF-κB, expres-
sion of COX-2, and subsequent decreased levels of PGE2 and PGF2 [8]. 6-Shogaol 
(a phenol extracted from ginger) alone and in combination with gemcitabine sup-
pressed the growth of pancreatic tumors, by suppressing the TLR4-/NF-κB-/COX- 
2- mediated pathway [9].

30.4  Conclusions and Future Directions

NF-κB is an important transcription factor and has a crucial role in pancreatic can-
cer as it is involved at the downstream stage of many signaling cascades including 
AA pathway. Metabolic enzymes and products of AA pathway are also involved in 
activation of NF-κB. Cross talk between eicosanoids and NF-κB plays a key role in 
pathophysiology of pancreatic cancer. Therefore, researchers have considered AA 
cascade-associated NF-κB pathway as novel therapeutic target in pancreatic cancer. 
Moreover, several AA cascade-associated NF-κB pathways are targeted by natural 
products. Therefore, these compounds have been suggested as novel preventive and 
therapeutic agents against pancreatic cancer.
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31Pancreatic Cancer: Role of STAT-3 
and Intervention of STAT-3 by Genistein
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Abstract
Pancreatic cancer (PC) is a cancer that is initiated in the pancreas and spreads 
rapidly to other organs. Pancreatic cancer is the third most leading cause of 
 cancer-related deaths in the United States (US) and is often regarded as one of 
the deadliest cancers with 95% mortality within 5 years of detection, which is the 
highest compared to the rest of any cancer-related deaths. Pancreatic cancer is 
tough to diagnose at early stages, and by the time the patient is hospitalized and 
detected with pancreatic cancer, it is already in advanced stages. Apart from 
surgical procedures, inhibition of many key proteins that are tumorigenic path-
ways has been tested in several model systems including mouse and are further 
corroborated in various clinical studies. Included in that group of several tumori-
genic proteins is the signal transducer and activator of transcription 3 protein, 
namely, STAT-3. STATs were identified in the year 1994 that traffic signals from 
the activated cell surface receptors internally to the nucleus and act as potent 
transcription factor (TF) that regulates several key aspects of intracellular func-
tioning, namely, cell proliferation, cell differentiation, apoptotic cell death, and 
angiogenesis. In normal cells, STATs are in non-phosphorylated, inactive form, 
but upon external stimuli, they are phosphorylated and activated that leads to 
translocation to the nucleus and act as transcription factors. In the STAT family, 
STAT-3 functions are most important as STAT-3 knockout are lethal and mice are 
reported to die at day 7.5. STAT-3 inhibition by RNAi or chemical compound 
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in vivo in model systems such as mice led to a block in ductal adenocarcinomas 
and PanIN formation. Mouse models expressing endogenous mutant Kras muta-
tion, STAT-3 found to phosphorylated and significantly activated. Due to STAT-3 
established role in angiogenesis, several chemical and natural compounds have 
been developed and tested over the last two decades. STAT-3 inhibitors such as 
nexrutine, crizotinib, and miR-216a overexpression have shown to inhibit pan-
creatic cancer growth by reducing the STAT-3 activity levels. Chemical com-
pounds such as thiosemicarbazone treatment in vitro and in vivo (model systems) 
inhibited interleukin-6 (IL-6)-induced activation of STAT-3 by the decrease in 
phosphorylation at Tyr705. Metformin along with aspirin doses significantly 
reduced the phosphorylation of STAT-3 and mechanistic target of rapamycin 
(mTOR). Apart from several chemicals mentioned above, there are various natu-
ral products such as genistein derivatives used as STAT-3 inhibitors. Genistein 
was used and tested in treatment of pancreatic, breast, and prostate cancer (PC). 
Genistein is shown to prevent p-STAT-3 binding to DNA in a concentration-
dependent manner. Pretreatment of human pancreatic cancer cell lines such as 
COLO 357 and L3.6pl, by genistein for 24 h followed by gemcitabine, resulted 
in inhibition of growth up to 80% compared to only 30% in gemcitabine alone 
condition. In 2016, promising results were published from the clinical study con-
ducted at Karolinska where patients who received genistein lived 6 months lon-
ger than their counterparts. A crystalline formulation of genistein, namely, 
AXP107-11, has been shown to have improved physiochemical properties and 
oral bioavailability in comparison to other universal forms of genistein. Pancreatic 
cancer (PC) patients treated with AXP107-11 along with gemcitabine resulted in 
improved survival. Forty-four percent of the total 16 patients in the study sur-
vived longer than 6 months, and half of them even survived longer than a year.

31.1  Overview of Pancreatic Cancer (PC)

Pancreatic cancer [1] is a widespread disease that initiates in the pancreatic tissue 
and spreads rapidly to nearby organs. Pancreatic cancer is difficult to treat with 95% 
mortality rate within the first 5 years of detection [2, 3]; in rare cases it is detected 
in its early stages, hence making it difficult to treat patients longitudinally admitted 
to the hospital; and thereby disease prognosis starts mostly in the advanced stages 
of cancer.

Pancreatic cancers are the third most leading human cancer death cause in the 
United States (US) and have surpassed breast cancer in European (EU) population 
in 2016 [4]. It is currently estimated that in 2016 alone, 53,070 Americans are diag-
nosed with pancreatic cancer and 41,780 will die from pancreatic cancers and fur-
thermore 71% of the patients will die in the first year of diagnosis [5]. In comparison 
African-Americans have the highest incidence rate of pancreatic cancer, i.e., 
between 28% and 59% higher than other racial/ethnic groups.

With advanced surgical procedure and with the help of latest medical intervention 
techniques, the overall general cancer appearance and death rates are decreasing; on 
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the contrary the prevalence and death rates for pancreatic and lung  
cancer (LC) are exponentially increasing. A 5-year relative survival is estimated as 
18% for lung cancer (LC) and 8% for pancreatic cancer, thus making pancreatic 
cancer the most fatal form of cancer. Although accurate early diagnosis of pancreatic 
cancer is underway, the tendency is higher for the people with pancreatic cysts or 
familial cases of pancreatic cancer. Hence, one way to increase the pancreatic cancer 
early diagnosis is robust increase in cancer screening steps that might help in detec-
tion of early-stage pancreatic cancer. It is previously observed that diabetic patients 
experiencing weight loss, jaundice, and pain in the upper abdominal region that 
spreads to the back are positive indications of pancreatic cancers. The pancreatic 
cancers are mainly distinguished into two major tumor types, namely, adenocarci-
noma constituting about 85% of pancreatic cancer cases and the pancreatic endo-
crine tumor (PET) that has a prevalence rate less than 5% of all pancreatic cancer 
cases [6]. According to recent study published by Torre et al., death incidents caused 
by pancreatic cancer are expected to surpass colorectal cancer and become the sec-
ond leading cause of cancer-related death in the United States around 2020 [7].

Pancreatic carcinoma (PC) is broadly classified into “exocrine and endocrine 
pancreatic neoplasms” [8]. Exocrine pancreatic neoplasms (EPN) are the most prev-
alent form of pancreatic cancers that comprise up to 95% of pancreatic cancer. 
Exocrine pancreatic neoplasms (EPN) comprise tumors that originate at several 
pancreatic regions, namely, the pancreatic duct, acinar cells, and related pancreatic 
somatic stem cells, while on the other side, endocrine pancreatic neoplasms occur 
at pancreatic ductal adenocarcinoma, intraductal papillary mucinous tumors, and 
mucinous cystic tumors. Apart from these abovementioned adenocarcinomas, 5% 
of the neoplasms are from the islet cell tumors. Among all the adenocarcinomas, 
pancreatic ductal adenocarcinoma is the most prevalent and destructive type of pan-
creatic cancers. Previous, studies have identified three different ductal precursor 
lesions that lead to invasive pancreatic ductal adenocarcinoma: pancreatic intraepi-
thelial neoplasia (PIN), intraductal papillary mucinous neoplasia (PMN), and muci-
nous cystic neoplasia (MCN).

31.2  Signal Transducer and Activator of Transcription (STAT) 
in Cellular Metabolism

The signal transducer and activator of transcription (STAT) is a family of seven mem-
bers (namely, STAT-1 to STAT-6, including two forms of STAT-5A and STAT-5B) 
first identified in 1994 transducing signals from activated cell surface receptors 
through intracellular kinases to the nucleus and acts as transcription factors that regu-
late variety of cellular processes such as cell proliferation, cellular differentiation, 
apoptotic cell death and the inflammatory immune reaction, and angiogenesis [9]. At 
a molecular level, these STAT proteins have conserved structural features and have 
molecular weights ranging from 750 to 847 amino acids (Fig. 31.1).

Each STAT transcription factor (TF) is composed of an N-terminal dimerization 
domain involved in activation upon dimerization: a coiled-coil domain which assists 
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in interaction with other proteins and a DNA-binding domain that specifically 
guides to bind DNA double helix. Apart from these domains, it consists of a linker 
domain called Src homology 2 that enables in receptor binding and dimerization 
and a conserved phosphorylation site in C-terminal region of the protein that upon 
phosphorylation acts as transcription activation domain (Fig. 31.1).

In normal cells the STATs are in non-phosphorylated form which upon phos-
phorylation through cytokine binding or through external stimuli transmigrates into 
the nucleus. STAT proteins specifically (STAT-2, STAT-4, and STAT-6) each play 
crucial and defined role in the T cell response and in IFN gamma (interferon gamma) 
signaling and are activated by some certain cytokines. STAT-3 and STAT-5 are most 
often implicated in human cancer progression, while STAT-1, STAT-3, and STAT-5 
are activated in various tissue types.

31.3  STAT-3 Activation and Signaling Pathway

Of all the proteins in STAT family, STAT-3 function is very essential and holds 
key in several developmental processes. STAT-3 knockout (KO) mice are lethal 
and are reported to die at day 7.5 [10]. Although STAT-3 was identified as media-
tor of IL-6 pathway activated by IL-6-type cytokines such as IL-6, IL-10, and 
IL-11, it is a converging point for several other pathways such as epidermal growth 
receptor pathway [11] (Fig. 31.2). Upon activation by IL-6, vascular endothelial 
growth factor receptor (VEGF-R), receptor tyrosine kinases (RTKs), and epider-
mal growth factors, the STAT-3 transcription factor exhibits its pro-transcription 
effects. For example, when IL-6 binds to its receptor, IL-6 receptor leads to Janus 
kinase (JAK) activation via complex formation involving GP130. In turn the acti-
vated JAKs are phosphorylated and activate STAT-3 by phosphorylation of a tyro-
sine residue (RTKs) within the Src homology 2 domain at Tyr705 (Fig. 31.2). In 
the end the phosphorylation of STAT-3 promotes homodimerization of the STAT-3 
itself and thus migrates into the nucleus, and there it interacts with other coactiva-
tors that guide the STAT-3 protein to specifically bind to enhancer DNA elements 
in the promoter regions of the target genes, thus regulating gene transcription. 
Phosphorylation on the serine S-727  in the C-terminal domain of STAT-3 pro-
motes association of STAT-3 with other transcription coactivators including p300/
CBP and specifically activates particular target genes. This specific STAT-3 gene 
activation response activates genes that are required for cancer growth and metas-
tasis, sustaining cell survival, cell proliferation/replication, angiogenesis, and 
immune evasion. STAT-3 also activates transcription regulator of a variety of 

Fig. 31.1 STAT3 structural domains and phosphorylation sites
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tumor-promoting gene targets like cyclin D1, cyclin D2, c-Myc, and p53 that are 
involved in cell growth and tumor progression. Additionally, STAT-3 acts on 
B-cell lymphoma-extra large (Bcl-xL), B-cell lymphoma 2 (Bcl-2), and myeloid 
leukemia cell differentiation protein (Mcl-1) (Fig. 31.3). STAT-3 is known to be 
involved in tumor development and progression [12–14]. Activated STAT-3 that is 
phosphorylated at Tyr705 has been reported up to 30–70% gastric cancer, where 
it has been shown to be transmigrated and localized in the nucleus [15]. The extent of  
phosphorylation of STAT-3 transcription factor is known to be directly co-related 
with differentiation, stage of the disease, and poor cell survival [16, 17].

31.4  STAT-3 Inhibitors

Over the years, several chemical compounds have been developed, screened, and 
tested for the use of cancer treatment [18]. The mechanism of action varies among 
them. They either block phosphorylation, dimerization, or nuclear translocation or 

Fig. 31.2 Schematic diagram of STAT3 pathway: STAT3 are activated as a downstream effect of 
external stimuli such as IL6 and EGF to their respective IL6, EGF receptors. IL6 receptor forms a 
complex with gp130 and phospho JAK. This in turn phosphorylates STAT3, and phosphorylated 
STAT3 forms dimers and translocated into the nucleus. Once STAT3 is phosphorylated and forms 
a dimer then STAT3 is in an active state and acts as transcription factor for several genes that are 
involved in tumor progression and metastasis (Adapted from Geiger JL et al., Oral Oncology 56 
(2016) 84–92
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DNA-binding ability of the STAT proteins [19]. Inhibitors such as Stattic, STA-21, 
LLL-3, and LLL-12 selectively inhibit the STAT-3 dimerization (IC50 = 5.1) (Fig. 
31.4). Stattic selectively inhibits STAT-3 over other STAT-s in the family. It also 
prevents STAT-3 from translocation in to the nucleus [20]. STA-21 is identified as 
STAT-3 SH2 domain inhibitor, demonstrated to block STAT-3 translocation. LLL-3 
and LLL-12 are improvised derivatives of STA-21. Both LLL-3 and LLL-12 are 
demonstrated to decrease tumor cell survival. These compounds were successfully 
tested in breast, pancreatic, and glioblastoma cell lines [21, 22]. S31-201 is another 
potent compound that has three times more affinity to STAT-3 over STAT-1 and thus 
blocked the formation of homodimers and inhibits proliferation of breast and hepa-
tocellular cancers in mice model system [23]. S31-1757 is another analogue of S31-
201 that is shown as equally potent inhibitor of STAT-3. Although most of these 
drugs targeted the Src homology 2 (SH-2) domain of the STAT-3, the others were 
developed to target the DNA-binding domain (DBD), thereby reducing the STAT-3 
DNA binding and its transcriptional functional ability. One such example is the 
platinum compounds known to form DNA adducts and therefore can disrupt the 
ability of STAT-3 to bind to DNA [24]. Platinum compounds proposed as STAT-3 
inhibitors are classified as platinum (IV) complexes and differ from chemotherapeu-
tics such as cisplatin, a platinum (II) that shows no inhibitory effect on STAT-3. The 
most widely known platinum-based STAT-3 inhibitors are CPA-1, CPA-7, and 

Fig. 31.3 Activated STAT3 involved in up-regulation of several proteins by acting as a transcrip-
tion factor. These proteins are involved variety of cellular processes that are part of tumor prolifera-
tion and metastasis. Cycin D1, D2, c-myc involved in cell growth, Bcl-XL, Bcl-2, Mcl-1, Survivin, 
p53, MAPK involved in survival, MMP-1,2,9 and 10 involved invasion and VEGF, HIF-1alpha 
involved in angiogenesis
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platinum (IV) tetrachloride. S3-54 displayed selective inhibition of activity of 
STAT-3 over STAT-1 and induced apoptosis in both breast and lung cancer cell lines 
[25]. InS3-54A18 and InS3-54A26 are improvised compound that is highly specific 
to STAT-3 compared to its parent compound, S3-54 [26], but due to their poor solu-
bility, further optimization is needed.

31.5  Potential Inhibitors of STAT-3 and Pancreatic Cancer

STAT-3 signaling is activated due to loss of SMAD-4. This loss of SMAD-4 switches 
TGF-alpha to tumor-promoting pathway from tumor suppressor pathway in pancre-
atic cancer [27]. Thus inhibitors of TGF-alpha and SMAD-4 could target STAT-3 

Fig. 31.4 Chemical compounds used as STAT3 inhibitors
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signaling and are actively considered as good therapeutic intervention to suppress 
the progression of pancreatic tumor. TGF-beta/SMAD4 regulates various cellular 
functions like embryonic development and immune function in normal cells, and 
thus SMAD-4/TGF-beta is inactivated in approximately 60% of the pancreatic can-
cer [1, 28]. About 50% pancreatic adenocarcinomas is known to have genomic dele-
tions and single point mutations of the tumor suppressor gene SMAD-4 [29]. 
SMAD-4 restoration by gene therapy reported to inverse the invasive phenotype and 
attenuated proliferation in pancreatic cancer cells [30, 31]. Whenever SMAD-4/
TGF-beta signaling is altered, STAT-3 signaling is activated. Hence, targeting 
STAT-3 inhibition will help to restore SMAD-4 pathway.

Even though several chemicals were tested, only few of them such as dasatinib, 
LLC, STA-21, and Stattic have shown promising results in cell culture experiments 
and preclinical trials. STAT-3 has shown to be activated by several important path-
ways such as mitogenic signaling, as well as tyrosine kinase receptors such as Src, 
implying the importance of targeting these pathways to inhibit pancreatic cancer. 
Previous studies have established p60-Src as an oncogene and overexpression of Src 
tyrosine kinase has been reported in human pancreatic adenocarcinomas.

Transcription factor STAT-3 represents a key signaling point in pancreatic ductal 
adenocarcinoma (PDAC) [32]. Pancreatitis induction in mouse models expressing 
endogenous mutant Kras is reported, and activated STAT-3 was significantly 
increased. On the other hand, RNAi and chemical inhibition of STAT-3 in the mice 
resulted in blocking of acinar-ductal metaplasia and PanIN formation which resulted 
in reduced infiltration and IL-6 expression.

There are a number of drugs tested in pancreatic cancer that target JAK/ STAT-3 
pathway. It is reported that pancreatic cancer has high Src activity, hence targeting 
Src activity by its inhibition by chemical compounds has been widely considered, 
one such chemical is dasatinib which showed to inhibit Src activity and promised to 
a key chemical compound in treating pancreatic cancer [33]. Dasatinib has also 
been shown to transiently inhibit STAT-3. Currently, a combination of dasatinib and 
another Src inhibitor, AZD0530, is underway in clinical trial for treatment of 
advanced PC.

There are several studies used targeting STAT-3 pathway which have been pub-
lished that reported to treat pancreatic cancer. Guggulsterone, an inhibitor of STAT-3 
pathway, in cell culture experiments has shown to decrease mucin expression in 
Capan1 and CD18/HPAF cell via transcription regulation by binding to JAK/STAT-3 
pathway [34]. Not only chemicals but also microRNA treatment found to be effec-
tive in treating pancreatic cancer targeting STAT-3 such as MiR-216a overexpres-
sion markedly inhibited the JAK/STAT-3 signaling and xenograft tumor growth 
[35]. Crizotinib and nexrutine suppressed the growth of pancreatic cells in a dose-
dependent manner by reduced activity of STAT-3 and NF-κB [36, 37]. Treatment 
with thiosemicarbazones in both in vivo and in vitro inhibited IL-6-induced activa-
tion of STAT-3 by decreasing phosphorylation at Tyr705 [38]. Some drugs were 
tested in combination such as metformin with aspirin which was found to signifi-
cantly decrease the phosphorylation of STAT-3 [39]. Apart from several chemicals 
mentioned above, there are various natural products such as genistein derivatives 
used as STAT-3 inhibitors.
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31.6  Structure of Genistein and Natural Sources

Genistein is a soy-derived isoflavanoid compound found to be a potent agent in treat-
ment of cancer [40–42]. Soy-derived phytoestrogen compounds have been part of tra-
ditional Chinese cuisine known to have beneficial health properties. Although it is 
highly concentrated (0.2–1 mg/g of total weight) and widely isolated from soybeans 
nowadays, genistein was first isolated in 1899, from the dyer’s broom, Genista tincto-
ria, hence, the chemical name derived from the source plant. Genistein is abundantly 
found in leguminous plant foods such as chickpeas, and it is moderately found in barley 
meal, broccoli, sunflower, cauliflower, clover sprouts, and clover seeds. It structurally 
resembles human endogenous estrogens with a diphenol structure (Fig. 31.5).

Intestinal cells, and not the liver cells, are the major site of metabolism for genis-
tein [43]. In Intestine, genistein is conjugated with glucuronic acid and to a lesser 
extent to the sulfate [44, 45]. These genistein conjugates especially their glycosides 
are carried to the target tissue and are associated with lower cardiovascular diseases 
[46], hormone-dependent breast and prostate cancer [47], and colon cancer [48]. In 
1999, the US Food and Drug Administration (FDA) approved a health claim for the 
cholesterol-lowering effect of soy protein, based on clinical trials that reported sig-
nificant decrease in total low-density lipoprotein (LDL) cholesterol with soy protein 
intake (25 g/day) compared to same amount of animal protein consumption [49]. It 
has been shown that people consuming large amounts of genistein-rich soy products 
are less likely to be affected by breast or prostate cancer [50].

31.7  Genistein Inhibits the DNA Binding of Pro-tumorigenic 
Transcription Factors

Studies have demonstrated that genistein inhibited the activation of NF-κB in mul-
tiple cell lines such as LNCaP and PN-3 prostate cancer cell lines [51] [52]. 
Genistein at 30 μM for 24 h pretreatment abrogated the activation of NF-κB in PC-3 
cells by the decrease in DNA-binding activity shown by EMSA [53].

Genistein inhibited NF-κB DNA binding, thus preventing nuclear translocation 
of the NF-κB. Genistein has been shown to increase p-STAT-3 and prevented DNA-
binding activity at 72  h of reperfusion in a dose-dependent manner, but didn’t 

Fig. 31.5 Chemical structure of genistein
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change the expression of STAT-3 [54]. Not only in prostate cancer cell lines, but the 
effect of genistein was also tested in pancreatic cancer cell lines.

Pretreatment of genistein for 24 h in human pancreatic cancer cell lines such as 
COLO 357 and L3.6pl followed by gemcitabine resulted in inhibition of growth up 
to 80% compared to only 30% in gemcitabine alone condition. In these pancreatic 
cell lines also, the study revealed that NF-κB activity was less [55]. Most interesting 
data shown by a study conducted at Karolinska Institute reported that patients who 
received genistein lived 6 months longer than their counterparts. Researchers at 
Karolinska developed genistein in a crystalline form with other components known 
as AXP107-11, shown to have better oral availability compared to its natural form 
of genistein and also have an improved physiochemical property. When patients 
were treated with gemcitabine in combination with AXP107-11, it resulted in a 
favorable pharmacokinetics and maximum tolerance dose. Forty-four percent of the 
total 16 patients in the study survived longer than 6 months, and half of them even 
survived longer than a year [56].
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Abstract
Pancreatic cancer (PC) is one of the most fatal malignant tumors across the 
world. STAT-3 is involved in PC growth and metastasis. STAT-3 is a transcription 
factor that regulates many oncogenic transduction pathways. In the current chap-
ter, we discuss the importance of STAT-3  in hypoxia and hypoxia-inducible 
genes. Further, we also explore the inhibition of STAT-3 by phytochemicals such 
as curcumin and genistein.
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32.1  Introduction

32.1.1  STAT (Signal Transducer and Activator of Transcription)

STATs are set of transcription factors that exist in unphosphorylated forms in the 
cytoplasm (during latent periods) [1]. STATs undergo tyrosine phosphorylation 
both by receptor and non-receptor tyrosine kinases. The function of Src and Abl 
leads to STAT phosphorylation.

The STAT family includes STAT-1 through STAT-6 proteins. Among these, STAT-
1, 3, and 5 are more often activated in various cancers [2]. STAT-1 is basically growth 
suppressive and is not implicated in oncogenesis [3]. Data demonstrates the role of 
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STAT-3 and STAT-5 in tumor progression. STAT-5 is more often activated in leuke-
mia [4]. STAT-3 is triggered in head and neck cancer [5], multiple myeloma [6], 
prostate cancer [7], and breast cancer [8, 9]. STAT-3 activation is required for the 
transformation of several oncogenic proteins. Furthermore, cytokines (PDGF, EGF, 
and IL-6) and growth factors are capable of inducing STAT-3 [5–7, 10]. Together, 
these data demonstrate that STAT-3 is a mediator for several oncogenic proteins.

32.2  Is STAT-3 Involved in Angiogenesis?

STAT-3 is a key mediator of tumor angiogenesis. In many cancer cell lines including 
pancreatic cancer cell lines, STAT-3 activation is linked with the production of cyto-
kine VEGF [11, 12]. Furthermore, the growth and oncogenic signaling pathways 
that enhance VEGF production are associated with STAT-3 activation. For example, 
results show that the activation of Src and EGFR signaling pathways lead to 
enhanced production of VEGF [8, 13–17]. This evidence shows that there is an 
interaction between the STAT-3 activation and VEGF expression in many cancers.

It was showed that STAT-3 is important for the production of VEGF due to tyro-
sine kinases and growth signals. In v-Src transformed cells, an elevated level of 
STAT-3 activity and VEGF expression was observed, and blocking STAT-3 consid-
erably lowers VEGF levels [11]. The induction of VEGF by glycoprotein (gp) 130 
or IL-6 relies on STAT-3 signaling [18, 19].

STAT-3 has also been shown to act as a mediator of angiogenesis through several 
other mechanisms. Recently, STAT-3 was demonstrated to control the expression of 
the angiogenesis and metastasis promoters MMP-2 and MMP-9 [20–22]. STAT-3 is 
required for the mitogenic role of PDGF [10]. Further, STAT-3 is also necessary for 
endothelial metastatic properties like cell migration and angiogenesis [23]. These 
results suggest that STAT-3 is a promoter of metastasis.

32.3  STAT-3 Is Necessary for Induction of HIF-1α by Hypoxia

HIF-1α induction by hypoxia is well characterized. Under normoxia, rapid degrada-
tion of HIF-1α takes place. When there is limited oxygen, HIF-1α is stabilized lead-
ing to rapid accumulation of protein. This mechanism appears to be independent of 
the increased rate of synthesis that occurs due to activation of the AKT/PI3K path-
way. Decreased degradation and increased synthesis can coordinately enhance the 
levels of HIF-1α. Contrary reports exist regarding the necessity for the PI3K/AKT 
pathway in HIF-1α induction by hypoxia. Studies indicate that PI3K inhibition by 
dominant negative forms or by using chemical inhibitors could prevent the hypoxic 
induction of HIF1-α [24–26]. However, other reports indicate that hypoxic induc-
tion of HIF1-α is not blocked by chemical inhibitors or by inhibiting the PI3K/AKT 
pathway [2, 27–29]. Chemical inhibition of PI3K prevented the activation of AKT, 
concurrently with no effect on HIF-1α induction [2]. Hypoxia induces AKT and 
activates phosphorylation of GSK-3 in PC12 cell lines. These studies indicate that 
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AKT is not necessary for the hypoxic stimulation of HIF-1α. When STAT-3 was 
silenced, expression of AKT was decreased. Reports indicate that decreased HIF-1α 
expression is observed following induction with growth signals or IL-6. Thus, if 
STAT-3 silencing also prevents the hypoxic stimulation of HIF-1α, it is possible that 
other mechanism may be involved.

Although the importance of STAT-3  in HIF-1α induction by hypoxia was 
observed in cell lines expressing v-Src or activated c-Src, this was not examined in 
other cell lines. Recent studies have indicated that both HIF-1α and STAT-3 are 
important for the expression of VEGF in response to hypoxia or Src activation [30]. 
This study suggests that STAT-3, HIF-1α, and Src supportively stimulate VEGF 
expression in hypoxic environment. These results are not new, since the hypoxia-
induced expression of both VEGF [31] and HIF-1α [30] requires Src. Overexpression 
of v-Src enhances HIF-1α levels [32, 33] and activates STAT-3 [17]. This data indi-
cates the role of Src in response to hypoxia and that Src cooperates with STAT-3 and 
HIF1-α to enable that process.

32.4  STAT-3 Is Important for Inducing Multiple Hypoxia- 
Inducible Genes

To define the function of STAT-3 in mediating angiogenesis, researchers determined 
if STAT-3 was important for inducing hypoxia-inducible genes. Studies show that 
STAT-3 is required for VEGF oncogenic expression [11, 19]. STAT-3 silencing pre-
vents the induction of VEGF by hypoxia. STAT-3 is important for the induction of 
MMP-2 and MMP-9 [20, 22]. MMP-2 and MMP-9 play a key role in degrading the 
extracellular matrix and are induced by hypoxia [34]. MMP-2 expression levels 
were decreased in dominant negative STAT-3D cells. Hypoxia also stimulated 
MMP-2 in MSCV control cells but is eliminated in STAT-3D-expressing cell lines. 
STAT-3 is necessary for the induction stimulation of MMP-2 and VEGF by hypoxia. 
STAT-3 regulates both genes at the transcriptional level, although both genes are 
under transcriptional control by HIF-1α.

32.5  STAT-3 Is Activated by Hypoxia

When oxygen levels are high, HIF-1 hydroxylation is mediated by PHD enzymes. 
Binding of VHL to the hydroxylated HIF-1α initiates degradation. During low lev-
els of oxygen, HIF-1α cannot be hydroxylated. Interaction of VHL with HIF-1α is 
disrupted and deprivation is terminated.

HIF-1α stimulation by hypoxia is well-known, but the initiation of growth sig-
naling due to hypoxia is not well defined. Reports indicate PI3K/AKT pathway 
activation was found in a few cell lines [2, 28, 35–37]. However, AKT activation by 
hypoxia is not common as HIF-1α and has not been detected in other cell lines 
including prostate and breast cancers [2, 26, 38].
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Researchers have investigated the hypoxic activation of STAT-3  in detail. In 
prostate cell line, there was considerable STAT-3 stimulation after 24-h culture in 
hypoxic conditions. The exact concentration of O2 cannot be measured in the 
hypoxia chamber, and as a substitute the hypoxia imitator CoCl2 was used. In fibro-
blasts (BALB/c), there was considerable STAT-3 stimulation in 1 h, and levels 
remained elevated up to 4 h. In prostate cancer cells (DU145), STAT-3 activation 
was perceptible within 2 h and was high at 24 h. STAT-3 activation ceased at 48 h, 
accompanied with substantial cell death. Whole and nuclear cell lysates were exam-
ined by Western blotting to assess the expression of VEGF and HIF-1α. In distinc-
tion to the stimulation of STAT-3, accretion of HIF-1α was very fast with protein 
measurable at the early time frame of 30 min. Levels of HIF-1α were improved up 
to 24 h. STAT-3 signaling ceased and levels of HIF-1α remained high at 48 h. These 
data show the correlation between STAT-3 activation and VEGF expression. 
However hypoxic STAT-3 activation was observed in many cancer cells and was not 
found in melanoma cells. So, activation of STAT-3 by hypoxia is likely to be cell-
type specific.

32.6  STAT-3 Is Necessary for Induction of HIF-1α 
by Oncogenic/Growth Signals

IL-6 stimulation has been shown to enhance HIF-1α expression. Even though induc-
tion of HIF-1α by IL-6 is limited in comparison to the hypoxia induction, it is ele-
vated when compared with reported growth signals [39]. Elevated levels of HIF-1α 
observed after IL-6 treatment did not result from enhanced transcription. Thus, IL-6 
is also capable of enhancing the expression of HIF-1α during normal conditions.

Because STAT-3 is the main effector for IL-6 signaling, researchers assessed 
whether it is also needed for HIF-1α induction. To accomplish this, STAT-3 knockout 
cancer cell lines were treated with IL-6 and examined by Western blotting. Compared 
with the control cells, the cells expressing STAT-3 siRNA showed limited HIF-1α 
induction in response to IL-6. Moreover, HIF-1α induction in DU145 cells (STAT-3 
antisense oilgonucleotide treated) due to EGF was prevented. Evidence indicates that 
STAT-3 is important for the initiation of HIF-1α by various growth signals.

32.7  Phytochemicals

Treatment of pancreatic malignancies through modern drug-targeted therapies has 
certainly improved the overall survival rate among patients suffering from all stages 
of PC. However, the treatment of advanced metastasized PC remains untreatable. 
Therefore, there is a constant need to search for safer and more effective alternative 
chemoprevention and treatment options for PC patients. PC chemoprevention using 
bioactive components from natural plants or phytochemical compounds is an emerg-
ing strategy to prevent and cure numerous metastatic cancers including PC.  Two 
most widespread and highly researched phytochemicals used in the treatment of PC 
are curcumin and genistein due to their low toxicity and increased efficacy.
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Curcumin is a polyphenol that is resultant from the plant Curcuma longa. 
Curcumin is known to decrease the expression levels of STAT-3-regulated cyclin 
D1, BCL-2, and Bcl-xL [40]. STAT-3 regulates essential biological progressions 
such as proliferation, survival, and development, and its activity is vital for malig-
nant transformation of cultured cells, which influence multiple oncogenic pathways. 
Survivin/BIRC5 are downstream targets of STAT-3 [41], and their elevated expres-
sion level is associated with apoptosis in PC cell lines as well in the advancement of 
pancreatic tumors [42]. Higher levels of STAT-3 and subsequent expression of sur-
vivin/BIRC5 are considered to be the most important factors in the promotion and 
survival of pancreatic tumor cells. Activated STAT-3 expression in tumor cells aids 
in modulating gene expression and is involved in regulating cell cycle progression, 
angiogenesis, as well as apoptosis. Therefore, inhibiting the STAT-3 signaling path-
way with antisense oligonucleotides also inhibits the activity of survivin/BIRC5. In 
addition, blocking the activity of STAT-3 also inhibits cell proliferation (Fig. 32.1) 
and induces apoptosis in PC cell lines. This indicates the importance of STAT-3- 
mediated survivin/BIRC5 expression in the survival of PC cell lines [43]. Many 
investigations have revealed that the activation of STAT-3 and increased expression 
levels of survivin/BIRC5 take place simultaneously in PC cell lines. Therefore, 
developing strategies that could downregulate STAT-3 pathways as well as survivin/
BIRC5 expression in PC cell lines could serve as significant breakthroughs in can-
cer treatment by inducing apoptosis and sensitizing tumor cells to chemo- and 
radiotherapies [44]. Phosphorylation of STAT-3 plays an important role in modifica-
tion and proliferation of pancreatic tumor cells [45]. Phytochemical such as cur-
cumin suppresses the phosphorylation of STAT-3 and downregulates the expression 
levels of antiapoptotic gene survivin/BIRC5 and leads to the apoptosis of PC cell 
lines [46]. Curcumin eliminates the constitutively phosphorylated form of STAT- 
3tyr705 in a concentration-dependent manner, which contributes toward pancreatic 

Fig. 32.1 Knockdown of STAT-3 sensitizes to curcumin and genistein and potentiates the inhibi-
tion of proliferation in pancreatic cancer cell lines
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oncogenesis by shielding tumor cells from apoptosis. Inactivation of STAT-3 in PC 
cell lines is shown to inhibit tumor proliferation (Fig. 32.1) and VEGF secretion 
(Fig. 32.2) [47]. Curcumin is known to increase tumor apoptosis through the cyto-
toxic properties of the natural killer (NK) cells and also block the phosphorylation 
STAT-3 [48]. These properties make curcumin a key therapeutic agent in facilitating 
apoptosis. In contrast to tumor cells, normal cells are relatively tolerant to interrup-
tion of the STAT-3 signaling, which makes STAT-3 an excellent target for molecular 
therapy of PC [49, 50].

Genistein, another important phytochemical that is an isoflavonoid found in soy 
products, is known to inhibit the activity of many tyrosine kinases including those 
that are responsible for phosphorylating STAT-3 [51]. Genistein also activates the 
physiological inhibitors, which are known to downregulate STAT-3 activation either 
directly or indirectly such as suppressors of cytokine signaling, STAT-induced 
STAT inhibitor, JAK-binding protein, and STAT-3-interacting protein [52]. 
Inhibition of STAT-3 signaling pathway via genistein is known to induce antiangio-
genesis and apoptosis [53]. Genistein can significantly increase the EGFR inhibitor 
erlotinib-induced growth inhibition and apoptosis in PC cell lines [54]. Genistein 
also induces the antiangiogenic properties through significantly inhibiting the 
STAT-3 activity and VEGF secretion (Fig. 32.2). Genistein initiates the antitumor 
effect of 5-FU by inducing apoptotic and autophagic cell death in human PC cell 
lines by downregulating bcl-2 and upregulating beclin-1 expression levels [55]. 
These studies indicate the potential of curcumin and genistein as a supplementary 
therapeutic agent. Future studies should focus on outlining the molecular events 
following tumor exposure to low toxicity and natural agents like curcumin and 
genistein in combination with traditional cancer therapies.

Fig. 32.2 Knockdown of STAT-3 sensitizes to curcumin and genistein and potentiates the inhibi-
tion of VEGF secretion in condition medium contained pancreatic cancer cell lines
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Abstract
Leading as the third cause of cancer-related deaths in the world, hepatocellular 
carcinoma (HCC) is an aggressive cancer that offers little to no treatment for 
patients in the advanced stages due to the frequency of recurrence. Moreover, the 
upregulation of the nuclear factor-kappaB (NF-κB) signaling pathway leads to 
uncontrolled cell growth, metastasis, and resistance in HCC. Curcumin, a poly-
phenol derived from turmeric, has been found to inhibit NF-κB activity in HCC 
and to present other antitumor properties such as anti-proliferation, anti- 
inflammation, and anti-angiogenic properties. Furthermore, curcumin also acts 
as a collaborative agent with available chemotherapy and radiotherapy. Working 
against the drawbacks of poor bioavailability and rapid metabolism, researchers 
are discovering new ways of encapsulating curcumin in order to exhibit its full 
efficacy against HCC metastasis.
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Abbreviations

Akt Protein kinase B
bFGF Basic fibroblast growth factors
COX-2 Cyclooxygenase-2
FLHCC Fibrolamellar hepatocellular carcinoma
HBx Protein X of the hepatitis B virus
HCC Hepatocellular Carcinoma
HHC Hexahydrocurcumin
IκBs Inhibitors of NF-κB
IKK IκB kinase
NF-κB Nuclear Factor-kappaB
PCD Programmed cell death
PEI Percutaneous ethanol injection
PPAR-γ Peroxisome proliferator-activated receptor-γ
THC Tetrahydrocurcumin
VEGF Vascular endothelial growth factor

33.1  Introduction

Caused by either hepatitis B or C, hepatocellular carcinoma (HCC) is a type of liver 
cancer that stands as the third most common cause of cancer-related deaths in the 
world [32]. Most cases of HCC range from less than ten patients per 100,000 people 
in North America and Europe to between 50 and 150 cases per 100,000 people in Asia 
and Africa [9]. When it comes to the treatment of HCC, surgical resection or liver 
transplant still stands as the primary approach for most optimal cases of patients in 
the initial stages of liver cancer [11]. Both resection and transplantation allow patients 
in the early phases of HCC to preserve any remaining liver functionality. Nonsurgical 
methods such as percutaneous ethanol injection (PEI), hormonal therapy, and sys-
temic chemotherapy also serve as treatment options [33]. These treatment approaches 
seek to prevent the progression and any metastatic migration of HCC. Despite the 
aforementioned treatment methods, HCC patients who are diagnosed at later or 
advanced stages of the cancer have no hope for impactful treatment [10].

HCC progression and metastasis can occur due to the several signaling pathways 
at the molecular level. For instance, the nuclear factor-kappaB (NF-κB) pathway (a 
set of transcription factors) has been known to induce tumor promotion in hepato-
cytes [26]. In this pathway, NF-κB proteins—p50, p52, c-Rel, RelB, and p65—are 
retained in the cytoplasm of the cell by inhibitors of NF-κB (IκBs) until the pathway 
receives an appropriate stimulus, which triggers the ubiquitination of the IκBs and 
induces the translocation of these proteins into the nucleus [6]. When these proteins 
accumulate in the nucleus of a hepatocyte, the cell undergoes specific expression of 
certain genes. These genes that are involved in cell growth control, immune, and 
inflammatory responses eventually lead to oncogenesis [6]. When NF-κB was 
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inactivated in later stages of cancer, it was found that tumor growth was suppressed; 
therefore, drugs that target signaling pathways such as NF-κB could serve as effi-
cient therapeutic approaches to the treatment of HCC [29]. Inhibition of the NF-κB 
pathway should be the focus of research as targeting molecular pathways can prompt 
the emergence of treatment that serves patients in the advanced stages of HCC.

Many investigations have chosen to look toward more natural agents in order to 
prevent the progression of tumors in several cancer malignancies. Inhibitors of 
NF-κB include the natural agent, curcumin, which exhibits anti-inflammatory, anti- 
necrotic, and anti-cancerous properties [26]. Curcumin is the primary polyphenol 
found in turmeric, an Asian herb that has been used for medicinal purposes since 
ancient times [31]. Throughout the decades, curcumin has been utilized by numer-
ous civilizations as it exhibits pro-health qualities against diseases and tumorous 
characteristics. For instance, in the field of cancer, curcumin works with several 
genes and proteins—vascular endothelial growth factor (VEGF), cyclin D1, NF-κB, 
cyclooxygenase-2 (COX-2), and more—in order to reduce the progression of tumor 
growth in carcinogenesis [31]. Despite its salubrious nature, curcumin in the human 
body retains a low bioavailability and poor absorption [18]. Thus, many clinical tri-
als involving curcumin are still undergoing as higher dosages of the compound are 
contemplated and researched.

33.2  Structure of Curcumin

Turmeric comprises of three primary curcuminoids in the following order from 
most to least: curcumin, demethoxycurcumin, and bisdemethoxycurcumin [39]. 
The structure of curcumin consists of the combination of methoxy groups on the 
phenyl rings [31]. Although this specific structure allows curcumin to exhibit anti- 
inflammatory and antioxidant qualities, it also prevents the stability of the com-
pound in aqueous solutions, such as water, except for highly acidic solvents [7, 31]. 
In addition to highly acidic conditions, curcumin was also found to have dissolved 
in organic solutions under the presence of light, resulting in the photodegradation of 
the compound [40]. Lowering the pH of the solvent retained the chemical stability 
of curcumin. The compound’s instability can be specifically attributed to a 
B-diketone moiety in the molecule’s diene structure, and deletion of this group can 
lead to a potential stabilized structure of curcumin [23, 43]. Therefore, modification 
of the structure of curcumin permits researchers to incorporate the molecule into 
treatment of the HCC via regular physiological conditions of the human body.

Not only does curcumin exhibit chemical instability in neutral or physiological 
conditions, but the natural agent also presents poor bioavailability. The human body 
absorbs curcumin at a low rate due to several factors: the placement of bodily tis-
sues, a decrease in plasma, and an elevation in metabolism [36]. Experiments con-
taining high dosages of curcumin—about 400  mg—only demonstrated 60% 
absorption in a rat model, and researchers found a large portion of curcumin exiting 
the body via feces, aligning with the discovery of most of the curcumin in the large 
intestine [36]. In addition to the large intestine, metabolized curcumin was also 
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found in the liver [30]. Fortunately, heating curcumin increased its solubility in 
neutral aqueous solutions and did not destroy its biological identity [21]. 
Furthermore, the administration of curcumin is also significant in the resulting level 
of bioavailability; for instance, nasal and intravenous administration of curcumin 
was followed by higher levels of absorption in rat-based model as compared to that 
of an oral administration of the natural compound [30]. A low concentration of cur-
cumin in the body prevents its full efficacy in the treatment of cancers such as HCC, 
often pushing research to implement either greater doses, ways to increase solubil-
ity, or modified versions of the golden compound.

A significant factor behind its poor bioavailability is curcumin’s rapid metabolism. 
Research has found curcumin to remain in the body after ingestion, primarily in three 
locations: the liver, intestine, and kidney [17, 41]. These tissues have a high rate of 
metabolism, and this aspect coupled with the body’s eradication of the natural com-
pound results in low concentrations of curcumin in the body after treatment [41]. The 
amount of curcumin used in treatment—whether a high or low dosage—did not carry 
much significance because the compound quickly metabolized after ingestion [41]. In 
the body, however, curcumin metabolites include curcumin glucuronide, curcumin 
sulfate, tetrahydrocurcumin (THC), and hexahydrocurcumin (HHC) via catalysis by 
enzymes located in the cytosol and microsomes [17]. Several investigations have 
found traces of the aforementioned metabolites in the liver and intestine. Some 
metabolites were found to have the same salubrious properties as curcumin itself 
[17]. Although curcumin and its metabolites exhibit antitumor properties, the delivery 
as a treatment approach has pushed researchers to investigate other forms of modifi-
cation of the natural agent such as curcumin nanoformulation, which has shown a 
decrease in the necessary dosage and in increase in the efficacy of the treatment [44]. 
Since the rapid metabolism of curcumin prevents its higher bioavailability in the 
body, further research is required into investigating the uses of curcumin metabolites 
and potential modifications—such as nanoparticles and other forms of encapsula-
tion—so that the full efficiency of curcumin can be utilized in HCC treatment.

33.3  The Nuclear Factor-kappaB Pathway in Hepatocellular 
Carcinoma

The NF-κB pathway, also known as a set of transcription factors, plays an important 
and progressive role in many cancers, including HCC. The NF-κB pathway drives 
the metastasis of cancer cells [14]. As stated before, this signaling pathway consists 
of the following five proteins known as p50, p52, c-Rel, RelB, and p65, and these 
proteins remain inactive in the cytoplasm [14]. What keeps these proteins is the 
cytoplasm are molecules known as IκBs, another set of proteins that latches onto the 
domains of the aforementioned NF-κB proteins [14]. When activated by stimuli or 
signal cascades, the IκBs result in ubiquitination and start to degrade [45]. Stimuli 
that active the pathway include stress promoters and cytokines associated with an 
inflammation response [6]. When the IκBs start to degrade due to the activation of 
the NF-κB pathway, the translocation of the NF-κB proteins, which have dimerized 
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at this point, into the nucleus results in gene expression and responses: inflamma-
tion, cell growth, and ultimately the progression of cancer [27, 45]. The activation 
of the NF-κB pathway ends in the binding of the DNA in the nucleus and the upreg-
ulation of genes associated with inflammatory responses and apoptotic properties, 
which aid in the progression and metastasis of cancer cells [6]. The goal of suspend-
ing and preventing further metastasis and progression of HCC can give researchers 
a specific pathway to target in hopes of creating a therapeutic approach with a drug 
that inactivates NF-κB.

Not only does the activation of the NF-κB pathway result in gene expression of 
cancerous properties, but it also results in the stimulation of other NF-κB subunits 
[6]. Within the NF-κB signaling pathway exists two specific pathways: canonical 
and noncanonical [27]; the IκB kinase (IKK) and its two components, IKKalpha 
and IKKbeta, comprise the canonical NF-κB pathway as these molecular aspects of 
the pathway result in the ubiquitination and degradation of the IκBs [35]; on the 
other hand, the phosphorylation of p100 results in the translocation of the p52/RelB 
complex into the nucleus [38]. Despite either the canonical or noncanonical path-
way, the NF-κB signaling cascade nonetheless plays a stimulating role in the pro-
gression of HCC tumorigenesis. For instance, Wang et al. [42] found that protein X 
of the hepatitis B virus (HBx) plays a potential role in the activation of the NF-κB 
pathway, leading to the promotion of tumor growth in cases of HCC. Furthermore, 
this investigation went on to find that a positive correlation existed between the 
amount of HBx and the amount of a NF-κB transcription factor known as p65, 
showing that HBx may indeed influence the activation of the NF-κB pathway [42]. 
Another investigation involving the technique of immunostaining and fibrolamellar 
hepatocellular carcinoma (FLHCC) tissue samples revealed that there were amounts 
of the NF-κB protein p65 found in FLHCC tissues as compared to little or none of 
the protein’s presence in normal tissue [22]. A sharp contrast exists between the 
expression levels of NF-κB proteins in tumorous liver tissue as compared to the lack 
of the NF-κB pathway’s influence in normal tissue; this shows that the NF-κB sig-
naling pathway definitely plays a role in the progression of HCC tumorigenesis as 
its presence marks an identification between cancerous and noncancerous tissue.

In tumorous tissue, NF-κB tends to express levels of inflammation and promotes 
cell growth to advance HCC tumorigenesis. The NF-κB pathway was found to have 
a heavy influence in the control of apoptosis or an amplified form of programmed 
cell death (PCD), which stands as an essential factor in the promotion of tumorigen-
esis in HCC [12]. High levels of the activation of the NF-κB pathway were found in 
carcinoma tissues as the pathway promoted cell proliferation in vitro by preventing 
apoptotic expression [19]. Although the NF-κB signaling pathway may play other 
beneficial roles in the immune system, the translocation of NF-κB proteins into the 
nucleus leads to a dysregulation that advances tumorigenesis [19]. The versatile 
uses of the NF-κB pathway have led researchers to determine a way to prevent the 
promotion of tumorigenesis but retain the continuation of other immune responses 
for the benefit of other bodily systems [19]. The NF-κB pathway has several func-
tions—advantageous and disadvantageous—in the human body’s immune system; 
this objective leads to the development of an exclusive drug in HCC treatment with 
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the goal to regulate a multifarious signaling cascade by preventing the HCC cell 
proliferation and metastasis.

33.4  Curcumin and the Nuclear Factor-kappaB Pathway 
in Hepatocellular Carcinoma

Research has found the natural golden agent of curcumin as a mechanism of the 
NF-κB pathway’s inactivation. The NF-κB signaling pathway is present in numer-
ous cancers as the pathway silences apoptotic activity [20]. Curcumin has been 
found to suppress the NF-κB pathway and its subunits and to increase apoptotic 
results in HCC cell lines by depending on the mediation of caspase-3, caspase-8, 
caspase-9, or other molecules [28]. In addition to the suppression of the NF-κB 
pathway, curcumin also suppressed the expression levels of COX-2, which appears 
in other cancers and diseases; furthermore, curcumin also reduced the expression of 
cytokines associated with an inflammatory response [18]. Liver inflammation has 
been designated as a marker of HCC progression in the initial stages, and the use of 
curcumin has reduced expression levels of HCC indicators, such as the VEGFs and 
oxidative stress [1]. Not only does curcumin have apoptotic and anti-inflammatory 
qualities, but the natural compound has also led to the designation of markers in 
HCC progression by identifying the receptors that promote the progression of HCC.

In addition to apoptotic and anti-inflammatory action, curcumin also decreases 
levels of cell proliferation. For instance, by decreasing the expression levels of 
cyclin D1 and the Wnt/beta-catenin signaling pathway, curcumin has restrained the 
growth of HCC tumors and cell proliferation [20]. The beta-catenin signaling path-
way regulates the expression of cell proliferation in numerous cancers and targets 
the protein known as cyclin D1 of which an increase can induce cell multiplication 
due to an uncontrolled cell cycle [37, 46]. An addition, however, must be made to 
the aforementioned statements; not only does curcumin exhibit anti-proliferative 
properties by inhibiting the Wnt/beta-catenin signaling pathway and cyclin D1, but 
the natural agent does the same job by activating a molecule known as peroxisome 
proliferator-activated receptor-γ (PPAR-γ). Through deactivation of the NF-κB 
pathway, the PPAR-γ molecule reduces inflammation and cell proliferation; in vivo 
models revealed that an increase in the expression levels of PPAR-γ occurred in the 
presence of curcumin [24]. The reduction of anti-apoptotic genes also decreased 
cell proliferation in several cancer cell lines, and curcumin had an impactful influ-
ence in this decline [34]. Overall, curcumin’s targets are molecules or pathways that 
increase cancer cell amplification; therefore, by allowing curcumin to enter the 
body and inhibit these proliferative molecular structures, cancer cell proliferation 
ceases to continue.

Another factor that promotes tumorigenesis is the formation of new blood ves-
sels, known as angiogenesis, which can be combatted by curcumin as this natural 
agent retains anti-angiogenic properties in addition to its aforementioned qualities: 
anti-inflammatory, anti-proliferative, and anti-apoptotic. Angiogenesis is the growth 
of new blood vessels from existing channels, and this formation aids in the 
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promotion of tumors [25]. Angiogenesis is one of the primary factors of tumor 
metastasis because it provides two functions: (1) providing nutrients to growing 
tumors and (2) allowing cancer cells to enter the body circulation [13]. Any dys-
regulation in oncogenes or tumor suppressor genes can result in the development of 
angiogenesis and the advancement of tumorigenesis [13]. By reducing the expres-
sion levels of proangiogenic receptors such as VEGF, correlated genes, and basic 
fibroblast growth factors (bFGF), curcumin exhibited anti-angiogenic expression 
and could prevent the progression of tumor growth [25]. In vivo study revealed a 
dichotomy of purpose in curcumin: first, the natural compound suppressed the pro-
angiogenic markers to inhibit tumor growth, but curcumin could also inhibit angio-
genesis in tumors that already expressed escalated levels of these proangiogenic 
indicators [5]. The upregulation of such proangiogenic markers—VEGFs, bFGFs, 
and oncogenes—is essential for tumor growth, yet curcumin suppresses these mark-
ers and even inhibits NF-κB activation; furthermore, the natural yellow compound 
also decreases the expression of cell adhesion molecules, which aid in the migration 
and metastasis of HCC tumors [8]. By inhibiting angiogenesis in HCC metastasis 
through the use of curcumin, researchers have been able to prevent the progression 
of tumorigenesis into advanced stages, where little to no treatment improves the 
patient’s survival rate; rather, the utilization of curcumin offers protection from the 
advancement of HCC metastasis.

Although curcumin retains properties associated with anti-inflammation, apop-
tosis, and anti-proliferation, researchers have taken the natural agent found in tur-
meric and have combined it with the current chemotherapy available to discover 
new treatment approaches for HCC. For example, a chemo drug known as paclitaxel 
has shown anti-proliferative effects in the treatment of cancers such as breast and 
lung; its combination with curcumin, however, shows promising results in HCC 
treatment [47]. When exhibited on HCC cell lines, the combination of curcumin and 
paclitaxel showed that the addition of the natural yellow compound enhanced the 
antitumor properties of the chemo drug, reducing cell proliferation and promoting 
cell apoptosis [47]. Furthermore, paclitaxel is known to induce other signaling path-
ways such as the NF-κB and protein kinase B (Akt) pathways, which curcumin 
suppresses; in this way, the combination of paclitaxel and curcumin allows chemo-
therapy to continue without any detrimental activations that could impel tumorigen-
esis [3]. Paclitaxel, however, is not the only chemo drug that has been intertwined 
with curcumin in HCC treatment; cisplatin and doxorubicin, additional drugs in 
chemotherapy, have also displayed several benefits when used in combination with 
curcumin. The integration of curcumin and cisplatin as a treatment approach showed 
that cells were sensitized to just cisplatin, whereas curcumin and doxorubicin 
revealed supplementary effects on the cells [28]. Overall, incorporating curcumin 
with either cisplatin or doxorubicin revealed that NF-κB expression levels were 
lower than those of a single chemo drug at work [28]. As an instrument of sensitiza-
tion and efficiency, curcumin enhances the effects of its complementary chemo 
drug, thus inhibiting the migration and invasion of HCC cells; this combination of 
curcumin and chemotherapy opens a new door of treatment options that offer a way 
to terminate, or potentially reduce the uncontrolled growth, HCC metastasis.
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Researchers have not only experimented with curcumin and chemotherapy, but 
they have also taken note of the effects of curcumin on radiotherapy. Radiotherapy 
is imperfect in HCC treatment because the frequent recurrence of the cancer calls 
for higher doses of chemo, but this escalation in chemotherapy prevents the patient 
from fully undergoing irradiation [16]. Curcumin, however, sensitizes targeted cells 
to radiation and even to the effects of other chemo drugs in vitro and in vivo [4, 16]. 
In more specificity, curcumin was found to enhance the antitumor effects of radio-
therapy by decreasing the expression levels of any NF-κB activity that radiation 
promoted initially; in this way, curcumin enhances the effects of radiation on the 
tumors while diminishing the activity of a signaling pathway that promotes tumor-
ous agents [16]. In vivo study reveals that curcumin not only increased the antican-
cer effects of radiation, but the natural compound also enhanced the antitumor 
effects of gemcitabine, a known chemo drug, when put into use as a treatment 
approach [15]. Hatcher et al. [15] also revealed that the activation of the NF-κB 
pathway occurs due to the radiotherapy, but curcumin inactivates this signaling 
pathway known for cell growth and other NF-κB subunits. In fact, radiative toxicity 
relates to an abnormal regulation of the NF-κB signaling pathway, but curcumin 
protects cells from this damage—known as radioprotection—by inhibiting the pro-
teins that stimulate this toxicity [2]. From its role in fighting cancer, researchers can 
see that not only does curcumin have anticancer properties, but the natural agent is 
a collaborative factor; curcumin works in several combinations with radiation and 
chemotherapy in order to enhance antitumor characteristics and lessen factors of 
tumor promotion.

33.5  Conclusion and Future Prospectus

HCC is an aggressive cancer that metastasizes very quickly; unfortunately, little to 
no treatment is available for patients undergoing advanced stages of this form of 
liver cancer. With the discovery and studies done on curcumin, however, research 
has allowed the possibility of offering treatment to patients at both initial and 
advanced stages of HCC. Curcumin, a natural golden compound found in turmeric, 
promises several salubrious effects: anti-inflammatory, anti-proliferative, and anti-
oxidant. Thus, this yellow agent has made its debut in HCC treatment and leads to 
a promising future with chemotherapy, radiotherapy, and possibly targeted molecu-
lar therapy.

Although curcumin promises many pro-health qualities, the natural agent does 
have its drawbacks in deliverance. For instance, curcumin exhibits chemical insta-
bility in physiological conditions; the solubility of the yellow compound is only 
limited to highly acidic or organic solvents. Furthermore, curcumin displays poor 
bioavailability due to its rapid metabolism; in fact, the compound’s fast metabolism 
has revealed that curcumin’s metabolites exhibit the same properties as the original 
agent itself. Faulty deliverance of this natural agent as a therapeutic target is what 
prevented curcumin from exhibiting its full efficacy in treating HCC tumorigenesis. 
Thus, further research—such as the ongoing investigations on curcumin 
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nanoformulation—is required so that proper modifications can be made to condone 
curcumin’s full efficiency.

Curcumin inhibits the NF-κB signaling pathway, also known as a set of tran-
scription factors, in HCC. The translocation of these NF-κB proteins into the nucleus 
leads to gene expression of inflammation and cell growth of which both exhibit 
escalated levels in tumorous tissue. By deactivating the NF-κB pathway, curcumin 
enhances levels of apoptosis and anti-inflammation. Furthermore, the yellow com-
pound also inhibits cyclin D1 and the beta-catenin pathway in accordance to enhanc-
ing expression of the PPAR-γ molecule in order to decrease cell proliferation and 
HCC metastasis. Curcumin does not stop at its anti-proliferative quality for the 
compound also reveals anti-angiogenic qualities: terminating formation of new 
blood vessels and inhibiting proangiogenic markers in developed HCC tumors. 
Lastly, curcumin pairs with chemotherapy and radiotherapy in order to inhibit the 
induced NF-κB activity and to sensitize cancer cells to the full exposure of the 
chemo drugs and radiation, which stand as complementary factors to the effects of 
curcumin. Alas, curcumin allows research to inhibit, or at least hinder, the aggres-
sive nature of HCC metastasis as this golden compound welcomes the scientific 
community to a range of new treatment approaches that apply to patients at all 
stages of HCC.
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Abstract
Worldwide, HCC is considered as one of the major cancer-related deaths. Tumor- 
derived exosomes play a potential role in HCC by mediating intracellular com-
munication, immune responses, and antigen presentation. Exosomes 
communicate between the cells using proteins, mRNA, miRNA, lipids, and DNA 
present in their cargo. Increased understanding of exosomes and their role in 
cancer could lead to a powerful strategy for the treatment of HCC. In this chap-
ter, we summarize the role of exosomes in cancer initiation, progression, and 
metastasis and in NF-κB through its miRNA. MiRNA derived from exosomes of 
HCC cells can enhance and modulate TAK1 and downstream signaling in recipi-
ent cells. Exosomes have a greater potential in the near future making it as 
 prognostic biomarkers; they can serve in anticancer drug resistance and immuno-
therapy in the near future.
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ESCRT Endosomal sorting complex required for transport
FAP Fibroblast activation protein
Flt-3 FMS-like tyrosine kinase-3
GPC1 Glypican I
GTPase Guanosine triphosphate
HCC Hepatocellular carcinoma
HCV Hepatocellular virus
HIF Hypoxia-inducing factor
IL-1 Interleukin 1
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
MMPs Matrix metalloproteinases
NF-κB Nuclear factor kappa B
PDGF Platelet-derived growth factor
PDGFR Platelet-derived growth factor receptor
PDK1 Phosphoinositide-dependent kinase I
TAK TGF-β-activated kinase
TGF Tumor growth factor
TLR Toll-like receptor
TNF Tumor necrosis factor
VEGF Vascular endothelial growth factor

34.1  Introduction

In adult men, liver cancer is considered the fifth most frequent cancer, and it is the 
second leading cause of death related to cancer [1]. Among adult women, liver can-
cer is considered as the seventh most common diagnosed cancer and sixth in caus-
ing cancer-related deaths. Nearly 70,000 people are diagnosed with liver cancer 
every year around the globe. It is considered as a leading cause of death among 
cancer patients that account for 6,000,000 every year [1]. The ACS estimates that in 
the United States, there are about 40,710 new cases of liver cancer (29,200 in men 
and 11,510 in women) that will be diagnosed and around 28,920 people will die of 
this cancer [1]. Among the population, liver cancer has occurred more than three 
times since 1980. The death rates of liver cancer patients have been increased by 3% 
per year since 2000. It is most commonly seen among women. It is most commonly 
observed in countries such as sub-Saharan Africa and Southeast Asia [1].

In the liver, stellate cells, hepatocyte, and immune cells secrete exosomes, and 
they play a vital role in liver homeostasis by mediating communication between 
cells. Exosomes are cell-derived vesicles with lipid bilayer, sizing from 30 to 
150  nm in diameter, with a cup-shaped morphology; the conserved lipid layer 
matches with the parental cells. They are secreted by a wide variety of mammalian 
cells and presented in many biological fluids [2–5]. The vesicle density ranges from 
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1.12 to 1.19 g/ml reported by density gradient separation studies [6, 7]. Exosomes 
are formed through the endolysosomal pathway; they are released upon fusion of 
the multivesicular bodies (MVBs) with plasma membrane to the outside of the cells 
[8]. The function of exosomes were initially considered as “garbage bags” to release 
the molecular fragments of cells to its extracellular environment in the 1990s, dur-
ing when exosomes were found to play a role in the presentation of B lymphocyte 
antigens; thus these exosomes were thought to relate with the functions of the 
immune system [9]. After that, immunology became a focus of exosomes research 
but mainly in its physiological roles, such as interaction between tumor and immune 
cells. After the year 2010, miRNA, mRNA, and DNA were discovered in exosomal 
vesicles by several research groups [10–16] reviewed in [17]. Now, exosomes are 
considered as messengers to communicate between cells and transfer information 
between them. The basic exosomal structure is depicted in Fig. 34.1.

Exosomes were reported in various pathophysiological processes such as tumor-
igenesis, inflammation, and drug resistance [17]. The lipid structure is important in 
cell-cell communication; exosomes regulate various signaling pathways that play a 
crucial role for any organism in both normal and disease states. To date, 92,897 
proteins, 27,642 mRNAs, 4934 miRNAs, and 584 lipids have been reported from a 
wide variety of tissues. The exosomal RNA was found to shuttle to distant sites and 
regulate the function of remote cells as a signaling messenger [19]. It was also 
found that exosomes can circulate in the blood and interact with platelets and 
endothelial cells in vivo [20]. Most importantly, exosomes can affect the biological 
behavior of remote cells and educate the target cells to respond accordingly, which 
play a major role in the development of disease [21, 22].

Fig. 34.1 Illustrate the 
basic structure of 
exosomes
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34.1.1  Exosomal Communication

It has been confirmed that exosomes can interact and communicate with the recipient 
cells by several studies [23, 24], but the direct interaction mechanism is largely 
unknown. Based on in vitro studies and some other evidence, mechanisms of uptake 
of exosomes have been proposed: [1] exosomes bind to the surface of recipient cells 
through adhesion molecules, [2] fusion of extracellular vesicles after adhesion with 
plasma membrane of target cells, or [3] through receptor-mediated endocytosis pro-
cess or phagocytosis by internalizing the exosomes into endocytic compartments. 
The interaction between target cells and exosomes occurs through transfer of mem-
brane receptors, growth factors that are expressed on the surface of vesicles, or deliv-
ery of specific proteins to target cells. Once exosomes are taken up by the recipient 
cells, exchange of internal genetic material could be the next level of communication 
through these vesicles [25]. Importantly, a well-known mechanism of intercellular 
communication is through signaling molecules such as proteins to interact with the 
receptors that are present on the surface of target cells. Exosomes can transfer a wide 
range of molecules such as proteins, RNA, DNA, and lipids and regulate various 
pathways in recipient cells at various sites. To a little extent, the exosomal secretion 
of cells may be considered as endocrine secretion and regulation of an organism.

34.1.2  Exosome Biogenesis

Exosomes contain a distinct set of proteins, which are endosomal/lysosomal related, 
without any protein of nuclear, mitochondrial, or endoplasmic reticulum origin. 
Exosomes, different from microvesicles which originated from the plasma mem-
brane [26], are derived from endosome origin. The initial step of exosome formation 
is when endocytic vesicles fuse together to form early endosomes, followed by 
maturation into late endosomes [3, 27, 28]. ILVs are then formed by invagination of 
the endosomal membrane, in which the vesicles are formed on the inner membrane 
of the endosome and internalized [3, 27, 28]. Endosomes containing multiple ILVs 
are referred as multivesicular bodies [28]. Spontaneous fusion of MVBs with the 
plasma membrane leads to the release of ILVs. The released small vesicles are 
termed as exosomes (Fig. 34.1). In addition to be released as exosomes, ILVs could 
also be degraded by fusion of MVBs with lysosome; they could also contribute 
to the biogenesis of other lysosome-related organelles, such as melanosomes, 
azurophilic granules, etc. [29]. Though the mechanisms of biogenesis and secretion 
of exosomes are still unknown, recent reports revealed that syndecan, heparan 
sulfate proteoglycans, and syntenin regulate the formation of exosomes [30, 31]. 
The secretion of exosomes is regulated by Rab GTPases pathway [32, 33]. The 
delivery and secretion of exosomes to their recipient cells are regulated by ESCRTs, 
Ca+2 channels, and cellular pH [34–39]. The recipient cells take up exosomes either 
by receptor- mediated endocytosis or receptor-ligand fusion or fusion process [40]. 
Exosomal cross talk between donor cells (secreting cells) and recipient cells is 
clearly shown in Fig. 34.2.
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34.1.3  Exosomes in Cancer Initiation and Progression

The tumor occurs with the incidence of one or multiple mutations within the cell(s), 
leading to the transformation of cells and other hallmarks of cancer [41]. During 
this initiation and progression of the tumor, intercellular communication occurs 
between cancer cells and neighboring cells, resulting in the substantial changes in 
proteomic and transcriptomic profiles of affected cells, while the exact cell-cell 
communication pathway is still unclear. The role of exosomes in tumor progression 
has gained enormous interest in the recent years. Tumor exosomes are thought to be 
taken up by neighboring cells and alter their physiological properties by transferring 
signals from donor cells. Exosomes are shown to play a role in immunosuppression, 
angiogenesis, cancer initiation, and progression. It has been shown that exosomes 
change the microenvironment and help in the occurrence of a niche for cancer initia-
tion and progression [42, 43]. Multiple studies indicated that exosomes released by 
tumor cells are taken up by various types of surrounding cells in the microenviron-
ment, including epithelial cells, endothelial cells, fibroblasts, and immune cells. 
Stimulation of cancer initiation and progression was observed [44–51]. Exosomes 
produced from stromal cells were also found taken up by the tumor cells resulting 
influence in both directions [52, 53]. Transformed tumor cells have been reported to 
carry oncoproteins such as EGFR and K-Ras to their neighboring cells lacking their 
expression and results in achieving unrestricted proliferation, which promotes can-
cer progression [54, 55]. Oncogenic viral proteins were also carried by exosomes, 

Fig. 34.2 The secretion of exosomes by donor cells and uptake by recipient target cells
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resulting in the transformation of normal epithelial cells to neoplastic cells [56]. 
Since exosomes carry materials from tumor cells, it could potentially serve as 
biomarkers for early cancer diagnosis; it was reported that exosomes harboring 
GPC1 proteins might serve as a tool for early diagnosis of pancreatic cancer [57].

Invasion of surrounding stromal tissue by cancer cells is an important patho-
logical step for malignancy. The transition of EMT, which is a phenomenon being 
studied extensively, supports this key step [58]. Exosomes derived from tumor cells 
have shown to carry pro-EMT proteins that are comprised of TNF-α, TGF-β, PDGF, 
and other MMPs (matrix metalloproteases) that plays vital role in remodeling of 
stoma adjacent to tumor [50, 56, 59]. This results in the transformation of stromal 
fibroblasts to CAFs that play an essential role in agonistic tumor progression [44, 
47, 60–62]. It has been shown that tumor exosomes can enhance TGF-β/Smad 
signaling pathway that initiates differentiation of mesenchymal stem cells, normal 
stromal fibroblasts, and myeloid-derived suppressor cells to pro-angiogenic 
myofibroblasts [47, 48, 63, 64]. Cytosolic redox state is also very important for 
exosomal signaling in tumor progression; exosomes released from tumor cells in 
hypoxic conditions are functionally different from the exosomes produced from the 
same tumor cells growing in normoxic conditions. Exosomes released from tumor 
cells in hypoxic conditions regulate the host angiogenesis which leads to the forma-
tion of new blood vessels for the tumor. Tumor exosomes release growth factors that 
stimulate pericytes through the activation of AKT pathway and affect surrounding 
endothelial cells [65].

34.2  Exosomes Cross Talk with Transcription Factors

The occurrence of transcription factors in the contents of exosomes derived from 
neoplastic cells may transfer signal to distant cell and results in cell alteration 
including transcription; it results in the transfer of signals from normal to cancer 
cells and vice versa. Transfer of transcription factors from cancer cells to distant 
normal cells may mediate malignant signaling pathways to transfer progression of 
the disease. Such type of examples mainly exists in nutrient deprived cancer micro-
environment, here the cancerous cells involves in upregulation of HIF1A, EGFR 
and VEGF that can transfer signals to nearby cells via exosomes. The signaling of 
transcription factors via exosomes will prime proximal cells for microenvironment 
toxicity.

34.2.1  Exosomal miRNA in Hepatocellular Carcinoma

Secretions of exosomes by cancer cells were explored by various scientific methods 
[66–69]. Among them, differential ultracentrifugation approach is considered as the 
best method of choice for purification of exosomes from cell culture supernatants. 
The cargo of exosomes containing miRNA plays a wide role in transmitting signal 
from donor to recipient cells. The content of RNA in Hep3b and PLC/PRF/5 cell 
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exosomes was investigated [70]. Interestingly, the miRNA size was found to be less 
than 200 bps in size with less fraction of internal control RNA [70]. In Hep3B cell- 
derived exosomes, the expression of 11 miRNAs was detected (miR-584, miR-451, 
miR-517c, miR-378, miR-520f, miR-142-5p, miR-376a, miR-133b, and miR-367). 
Identification of these miRNA predicts the selective enrichment of miRNA in 
exosomes derived from HCC [70]. With interesting facts, other miRNAs such as 
miR451 seem to enter into exosomes preferentially in various cell types [71].

Transfer of exosomes mediated miRNA is involved in the modulation of growth 
and progress of HCC [70]. Upon internalization, these exosomes release their 
miRNA into recipient cells to mediate the transfer of functional transgenes and 
modulate their cell activities. The transfer involves the regulation of gene expression, 
cell behavior, and signaling and the transformation of recipient cells. An analysis of 
108 genes in exosomes identified that they are involved in the TAK1 pathway, which 
could be a potential candidate pathway for these targeted miRNA [70]. The TAK1 
pathway was found to associate with the activation of signaling cascade mediated 
by TNF-α, TGF-β, and IL-1 [72]. TAK1 pathway is an upstream member of MAPK 
pathway, which is an important component of cell homeostasis, tumorigenesis, and 
intercellular communication in the liver. Downregulation or complete loss of TAK1 
expression in liver hepatocytes has considerable links for the progression of HCC 
[73]. Modulation of TAK1 expression and its association with signaling pathways 
in cells that uptake exosomal miRNA could represent tumor progression. Exosomes 
derived from HCC can transfer their miRNA into recipient cells and inhibit the 
continuous expression of TAK1 and affect its downstream signaling pathways 
that are involved in the development of metastasis. Hep3B-derived exosomes are 
capable of inducing anchorage-independent growth of transformed cells and 
decreasing cell viability in recipient cells [70].

Exosomal miRNA and long noncoding RNA (lncRNAs) are capable of HCC 
progression and lead to the failure of its treatment. It was reported that increased 
expression of miR-429 in liver tissue resulted in hypomethylation that can be used 
as a predictive factor in patients suffering from HCC [74]. HCC cells that are 
enriched with miR-429, results in (EPCAM)+- T-ICs can results in shedding of 
exosomes carrying miR-429, thus resulting in tumor formation. miR-429, which is 
released by exosomes into surrounding target cells, targets retinoblastoma binding 
protein 4 expression and results in increased transcriptional activity of E2F1, 
leading to increased expression of POU class 5 homeobox 1 proteins in target 
cells [74]. Due to this reason, exosomes play a significant role in self-renewal of 
hepatocytes, malignant proliferation, tumorigenicity, resistance to chemotherapy, 
and progression of the disease. Exosomal transfer of linc-RoR may result in the 
failure of anticancer therapy toward HCC [75]. In normal hepatocytes, if the levels 
of linc- RoR decrease, tumor progression and cell proliferation are inhibited by 
increasing the stability of mRNA that encodes c-myc [76]. There is a decreased 
expression of miR-145 with increased expression of linc-RoR in HCC; therefore, it 
increases the expression of HIF-1α and PDK1 expression and thus improves overall 
function of mitochondria in hypoxic conditions [78]. TUC339 is a highly expressed 
lncRNA in exosomes derived from HCC. There is a significant reduction of HCC 
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cell proliferation and adhesion with suppression of TUC339 using siRNA; these 
results suggested the role of TUC339 in HCC growth and metastasis [77].

Liver-specific miRNA miR-122 plays an important role in physiological func-
tions of the liver and promotes HCV replication [78]. MiR-122 can be transferred 
between Huh7 and HepG2 cell lines via exosomes and reduces cell proliferation and 
growth of recipient cells [79]. Exosomes can also involve the transfer of miRNA 
between different cells; exosomes derived from adipose-derived mesenchymal stem 
cells can transfer miR-122 to the other HepG2 cells [80]. Exosomes derived from 
colorectal cancer cells carry miR-221, miR-192, and miR-21 to HepG2 cells and 
A549 cells [81]. All these findings suggest that exosomal miR can shuttle between 
different cells and promote HCC invasion and progression. Exosomal miRNA 
transfer between the cells regulates gene expression. miR-122 that are effectively 
packaged into exosomes of HCC cells, resulted in the expression of their target 
genes such as insulin growth factor receptor 1 and cyclin G1 in hepatoma cells [80].

34.2.2  NF-κB and Its Regulation Through miRNA

Activating NF-κB signaling pathway via TLRs/NLRs following infections is a com-
mon response in a wide variety of epithelial cells. The transcription factor NF-κB 
contains five members: p50, p52, RelA (p65), RelB, and c-Rel. In many cells, the 
transcription factor NF-κB exists in the cytoplasm as latent state and is bound to 
inhibitory kBs which mask its nuclear localization signal. The activation of NF-κB 
helps to move into nucleus and results in the regulation of gene expression including 
miRNAs [82]. For positive gene regulation, the transcription domain of NF-κB is 
necessary, and it is present only in p65, RelB, and c-Rel; thus promoter binding is 
involved in activation of various gene expressions. As p50 and p52 lack transcription 
activation domain, they are mainly involved in transcription repression [70, 83, 84].

In THP-1 monocytes, TLR signaling is activated in NF-κB-dependent manner 
for the transcription of miR-146a gene [85]. Several studies were carried in non- 
epithelial cells and malignant cells to identify the transcription of miR genes in 
NF-κB-dependent manner [86]. MiR-155 that plays an important role in inflamma-
tion was found to be activated by NF-κB signaling pathway in several cell types in 
response to LMP1 and LPS [87, 88]. In a similar way, both miR-146a and miR-155 
genes are to be induced via NF-κB-dependent manner to several immune mediators 
such as LMP1, LPS, IL-1β, and TNF-α. NF-κB pathway also regulates miR-16 and 
miR-21 in gastric cancer cell line. NF-κB also involves the activation of miR-301a 
in several pancreatic cancer cells [89]. In human biliary epithelial cells, a subset 
of miRNA genes are expressed via NF-κB activation under the response of LPS 
stimuli [90]. A protozoan parasite, Cryptosporidium parvum upon infecting biliary 
epithelial cells results in the activation of a TLR4/NF-κB signaling pathway, also 
shown the expression of miRNA gene [91]. Inhibition of NF-κB pathway using 
IKK2 inhibitor (SC-514) blocked the increased expression of pri-miRNAs, including 
pri-miR-125b-1, pri-miR-30b, pri-miR-21, and pri-miR-23b-27b-24-1 [90, 91]. In relation 
to NF-κB pathway, miRNA is involved in both upregulation and downregulation. 
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In biliary epithelial cells, transcription of let-7i genes in response to stimulation of 
C. parvum and LPS has been suppressed by binding of p50 subunit of NF-κB pathway 
[92]. Along with that, NF-κB pathway negatively regulates the transcription of miR-
29b by interacting with another transcription factor in various cell lines [93, 94].

34.3  Treatment of HCC

Suitable markers for the identification and treatment of HCC are still lacking; pres-
ently resection, liver transplant, treatment with radiation, and chemoembolization 
remain to be major choices for the treatment of HCC. It has a high risk of recur-
rence, and the metastasis of HCC is strongly influenced by various environmental 
factors. Radiation is the major treatment for cancer treatment. The contributions of 
nontargeted effects of radiation for the initiation and development of secondary 
cancer are far less clear [95–101]. Recent studies on exosomes revealed that they are 
a very good source for identifying potential biomarkers for the treatment of 
HCC. Cancer cells are surrounded by numerous fibroblasts and inflammatory cells 
that release various exosomes, growth factors and cytokines, or enzymes related to 
matrix remodeling. In such environment, cancerous cells gain the ability to prolifer-
ate, invade, and grow; this made many researches to work on tumor microenviron-
ment [102]. Scientists follow different strategies to target tumor microenvironment 
by targeting extracellular matrix components or by blocking cross-talk signals 
between cancer or cancer and epithelial cells through their stroma [103, 104]. 
Treatment options for HCC are clearly shown in Table 34.1. Treatment of HCC has 
two major components such as targeting components of angiogenesis and inflam-
matory pathways. Many drugs have been designed to target these pathways [105]. 
One of the most efficacious drugs, sorafenib (a multi-kinase inhibitor), is capable of 
targeting VEGFR, Raf-kinase, and PDGFR and suppressing both angiogenesis 
and cell proliferation. Sorafenib successfully completed phase III trials to confirm 
its tolerability and safety [106]. Drugs such as brivanib (targets VEGFR and FGFR), 
sunitinib (VEGFR, PDGFR, FLT-3, C-KIT), linifanib (VEGFR, PDGFR), bevacizumab 

Table 34.1 Treatment of HCC with various drugs

Agent Target Clinical phase stage
Sibrotuzumab FAPs I [118]
Galunisertib TGF-β I [117]
PI-88 HPR II [109]
Bevacizumab VEGF II [119]
Erlotinib EGFR III [120, 121]
Cetuximab EGFR II [122]
Selumetinib MEK II [123]
Axitinib VEGFR II [124]
Linifanib VEGFR III [124]
Sorafenib VEGFR, PDGFR III [106]
Brivanib VEGFR, FGFR III [125]
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(targets VEGF), erlotinib (targets EGFR), axitinib (targets VEGFR), and cetuximab 
(targets EGFR) are presently being used in various clinical trials [107]. The PI-88 
suppresses HCC metastasis through inhibition of sulfatase and heparanase enzymes. 
This formulation can also negatively inhibit angiogenesis in tumor cells [108]. In a 
phase II clinical trial, a dose of 160 mg/day of PI-88 is considered safe for patients 
who have undergone surgery [109]. Inhibition of stromal cells that are actively 
involved in the development of neoplastic niche, among these cells, TAMs, HSCs, 
and CAFs are considered as good candidates. The drug sibrotuzumab actively 
targets HSCs with specificity [110]. Both HSCs and myofibroblasts express serine 
proteases on their membranes and act as FAP [111]. FAPs belong to prolyloligopep-
tidase gene family that plays an important role in the field of tumor biology, and 
they are well expressed on several solid cancers such as gastric breast [112], and 
HCC [113]. FAPs function as ECM remodeling enzymes that are capable in targeting 
collagen that are actively produced for the tumor invasion and growth [114]. Targeting 
TGF-β in HCC is another approach of targeting central signaling pathway. TGF-β is 
mainly produced by HSCs, and it is involved in the synthesis of ECM and helps in 
remodeling of cell proliferation and migration. Galunisertib is a well- known TGF-β 
inhibitor that specifically reduces neoangiogenesis, desmoplastic reaction, and 
intrastation in HCC [115, 116]. This drug is in the phase II stage of clinical trials for 
patients who failed response toward sorafenib therapy [117].
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35Role of Hypoxia-Inducible Factor (HIF) 
in Liver Cancer

Inho Choi, Saipriya Lammata, Neha Merchant, 
and Dongkyoo Park

Abstract
Liver cancer is one of the major causes of cancer-related deaths in the United 
States, accounting for 4.5% of the total estimated cancer deaths in 2016 and 
standing as the second leading cause of cancer-related deaths in men worldwide 
in 2012. There are two major types of primary liver cancers, including hepatocel-
lular carcinoma (HCC) and cholangiocarcinoma (CCA). The most common type 
of primary liver cancer is HCC, which begins in hepatocytes and accounts for 
approximately 75% of all liver cancers. Hypoxia, a condition of oxygen depriva-
tion in the tissue, is a common feature of the cancer microenvironment due to 
increased cell proliferation and limited blood supply. Hypoxia-inducible factor-1 
(HIF-1) was the first transcription factor discovered to regulate a wide range of 
target genes involved in many cellular processes in response to low oxygen lev-
els. HIF-1 is a heterodimeric protein complex composed of two different sub-
units, α and β. During a condition of hypoxia, HIF-1 heterodimer activates target 
genes that contain a hypoxia response element (HRE) in the promoter region. 
The overexpression of HIF-1 is frequently observed in many human solid tumors, 
including liver cancer, and is associated with tumor development, poor  prognosis, 
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and resistance to chemotherapy, suggesting that HIF-1 is a new therapeutic target 
in liver cancer treatment. In this chapter, we define the molecular mechanism that 
controls HIF-1 and how it maintains a variation of biological processes in 
hypoxic environments.

Keywords
Liver cancer · Hepatocellular carcinoma · Hypoxia-inducible factor ·  
Metastasis · Cell cycle

35.1  Introduction

The liver is a central organ that has many functions, including the metabolic change 
of excessive nutrients, the detoxification of toxic metabolites, the supply of energy- 
producing substrates, etc., all divided into eight functionally independent segments 
according to French surgeon Claude Couinaud’s classification system [1]. These eight 
segments are numbered in Roman numeral fashion (segment I to VIII) in a clockwise 
manner. Segment I is located posteriorly and is not visible anteriorly. Furthermore, 
according to Bismuth [2, 3], segment IV can diverge into segment IVa and IVb.

Liver cancer is one of the major causes of cancer-related deaths in the United 
States, accounting for 4.5% of the total estimated cancer deaths in 2016 and standing 
as the second leading cause of cancer deaths in men globally during 2012 [4, 5]. In 
cases of males aged over 55 years in the United States, the incidence rate of liver 
cancer has increased in contrast to the stable trends for incidences driven by the three 
major cancers such as lung, prostate, and colon cancer [4]. There are two major types 
of primary liver cancers, including hepatocellular carcinoma (HCC) and cholangio-
carcinoma (CCA). The most common type of primary liver cancer is HCC, also 
known as hepatoma, which begins in the hepatocytes and accounts for approximately 
75% of all liver cancers. Fortunately, well-recognized indicators in HCC give notifi-
cation to populations that need screen testing and monitoring [6]. The risk factors 
associated with HCC development are chronic hepatitis B virus (HBV) or the hepa-
titis C virus (HCV) along with aflatoxin B1 exposure, chronic alcohol consumption, 
cirrhosis, or diabetes [7–10]. HBV and HCV infect approximately 2 billion and 170 
million individuals worldwide, respectively [11, 12]. Bile duct cancer (CCA) 
accounts for 10–20% of all liver cancers [13]. Located in the small bile ducts of the 
liver, CCAs are best classified according to their anatomical location as intrahepatic 
(iCCA), perihilar (pCCA), or distal (dCCA) [14]. Overall survival rate for liver and 
intrahepatic bile duct in the United States was 18% from 2005 to 2011 [4]. Other 
types of liver cancer such as hepatoblastoma originated from immature liver precur-
sor cells and are much less common [15]. Common liver cancer symptoms include 
weight loss, decrease in appetite, nausea, vomiting, fatigue, enlarged liver (hepato-
megaly), enlarged spleen, abdominal swelling (ascites), or jaundice.

Hypoxic regions in HCC are marked by the indicators of increased cell prolifera-
tion and limited blood supply. Furthermore, hypoxic conditions can promote HCC 
tumorigenesis by promoting angiogenesis [6]. Hypoxia-inducible factor-1 (HIF-1), 
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a transcriptional factor responsible for regulating a wide range of target genes 
involved in many cellular processes such as cell proliferation, cell cycle, metastasis, 
angiogenesis, apoptosis, cell survival, energy metabolism, and more stands as an 
essential component in a hypoxic state [16–18]. At the current point in research, 
approximately 60 genes have been identified to be transcriptionally activated by 
HIF-1 in which the promoter regions of its target genes consist of a cis-acting tran-
scriptional regulatory sequence known as a hypoxia response element (HRE) [19]. 
The regulation of various genes and their transcription occurs through the binding 
of HIF-1 to the DNA regions of HRE [20].

HIF-1, first discovered as a transcription factor, regulates erythropoietin expres-
sion in response to low oxygen (O2) levels in the blood via de novo protein synthesis 
[21]. Erythropoietin stimulates bone marrow to produce more red blood cells (i.e., 
erythrocyte), resulting in the increase of the oxygen-carrying capacity in blood.

As a heterodimeric protein complex, HIF-1 is comprised of both subunits α and β. 
Both HIF-1α and HIF-1β subunits comprise of the basic helix-loop-helix (bHLH) 
and PER-ARNT-SIM (PAS) domains [22–24], which allow the heterodimerization 
to occur. DNA binding on HRE with the according sequence (5′-G/ACGTG-3′) in 
the promoter regions of target genes occurs due to the presence of the bHLH domain 
[19]. Aryl hydrocarbon receptor nuclear translocator (ARNT), also known as HIF-1β, 
is constitutively expressed and insensitive to O2; under normoxic conditions, HIF-1α 
is sensitive to O2 and is degraded through the ubiquitin-proteasome pathway [25, 26].

HIF-1α in normoxic conditions gets hydroxylated on proline residues at the 
oxygen- dependent degradation domain (ODDD) by prolyl hydroxylase domain 
enzymes (PHDs), which promote the binding to von Hippel-Lindau (VLH) proteins 
in the E3 ubiquitin ligase complex for ubiquitination and proteasome-mediated deg-
radation [27, 28]. During hypoxia, PHD activity is a frequent characteristic of the 
cancer microenvironment (generally at pO2 levels <2%) and leads to the unhydrox-
ylation of HIF-1α even under limitations of O2 availability. HIF-1α then translocates 
into the nucleus and binds with subunit HIF-1β. The HIF-1 heterodimer forms a 
complex with CREB-binding protein (CBP)/p300. Hypoxia prevents the hydroxyl-
ation of Asn803 and promotes the activity of CBP/p300 in the carboxyl-terminal 
transactivation domain of HIF-1α [29].

Many human cancers—liver, breast, pancreatic, etc.—contain the elevated 
expression levels of HIF-1 [30–34]. This elevation in HIF-1 expression in HCC cell 
lines is correlated with the advancement, poor diagnosis, and resistance of HCC cell 
lines, indicating that HIF-1 stands as a molecular target in HCC treatment [35–37]. 
Researchers also found HIF-1 as an indicator of HCC progression as higher levels 
of HIF-1 were found in the sera of HCC patients as compared to the lower levels in 
cases of benign disease [38, 39].

35.2  Role of HIF-1α in Cell Proliferation and Apoptosis

Hypoxia induces expression of several growth factors including vascular endothe-
lial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth 
factor B (PDGFB), transforming growth factor (TGF)-α or TGF-β, insulin-like 
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growth factor-2 (IGF-2), endothelin-1 (ET-1), and erythropoietin (EPO), which are 
known to promote cell proliferation in different cancer cells [40–43]. Cell prolifera-
tion stands as the primary concern in maintaining cell survival in the condition of 
hypoxia. An upregulation of cell survival genes including NK-ĸB, Mcl-1, Bcl-XL, 
and Bcl2 and the downregulation of pro-apoptotic genes—Bax and Bid—occur 
through the activation of HIF-1α in hypoxic conditions [44, 45]. Furthermore, the 
upregulation of Bcl2/adenovirus E1B 19  kDa interacting protein 3 (BNIP3) and 
BNIP3-like (BNIP3L) proteins in hypoxic conditions has been known to prevent 
malignant cells from cell death [46].

After cell proliferation, the malignant cells get involved in metastatic processes 
such as cell migration, adhesion, and invasion under low oxygen conditions. 
Extracellular growth factors prompt the p42/p44 mitogen-activated protein kinase 
pathway to phosphorylate HIF-1α, activate HIF-1α target genes transcription, and 
regulate cell proliferation. A strong correlation exists between elevated levels of HIF-1 
and HCC proliferation and apoptosis; the role of HIF-1, however, presents a contro-
versy even though several investigations indicate HIF-1 as an anti-apoptotic agent.

Xia et al. [47] reported that the transcription factor, Forkhead box M1 (FoxM1), 
induces HCC cell proliferation and resistance to apoptosis and its promoter binds to 
HIF-1α by the initiation of tumor necrosis factor-α (TNF-α). This observation 
revealed that TNF-α/HIF-1α stimulated the expression of FoxM1 [48]. Xu et  al. 
[49] reported that HIF-1 stimulated cell cycle progression and cell proliferation by 
enhancing the expression of cyclins A and D in HCC.  HIF-1 also decreases the 
apoptosis of HCC by increasing the levels of survivin and Bcl2 to prevent mitochon-
drial Omi/HtrA2 expression [49, 50]. Through several independent and HIF-1- 
dependent pathways, hypoxia induces the expression of downstream molecule 
VEGF, resulting in the increase of Bax/Bcl2 levels that leads to the survival of HCC 
[51]. Furthermore, hypoxia stimulates the levels of cAMP-responsive element- 
binding protein and is activated by extracellular signals [52].

Apoptosis, coined by Currie and colleagues in 1972, originated from Greek and 
means “to fall away from.” Stimulated by signaling pathways that result in the acti-
vation of caspase cascades and cell death, the apoptosis of a cell depolymerizes the 
cytoskeleton, condenses chromatin, and translocates nuclear fragments and phos-
phatidylserine to the surface of the cell. The increase in apoptotic activity stands as 
an indicator of several diseases, including AIDS, neurodegenerative disorders, 
insulin- dependent diabetes, myocardial infarction, and atherosclerosis. Two major 
pathways of apoptosis are responsible for processing stress signals and executing 
cellular demolition. Because of the importance and lethal nature of apoptosis, it is 
highly regulated by B-cell CLL/Lymphoma 2 (Bcl2) family proteins. Bcl2 proteins 
share one or more of four conserved Bcl2 homology (BH) domains (i.e., BH1, BH2, 
BH3, and BH4). Of these four domains, BH3 domain is found in all Bcl2 proteins, 
which interact with each other through the BH3 domain.

The Bcl2 protein family has either pro-apoptotic or anti-apoptotic activities. For 
example, Bcl2, B-cell lymphoma-extra large (Bcl-XL), and myeloid cell leukemia 
sequence 1 (Mcl-1) have anti-apoptotic activities, whereas Bcl2-associated x pro-
tein (Bax), Bcl2 antagonist/killer 1 (Bak), Bcl2-related ovarian killer protein (Bok), 
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and BH3-only proteins have pro-apoptotic functions. Among the BH3-only pro-
teins, activators such as Bax- and Bcl2-interacting mediator of cell death known as 
Bim interact with Bax and Bak to induce the mitochondrial outer membrane per-
meabilization (MOMP), whereas depressors neutralize the functions of anti- 
apoptotic proteins in response to various apoptotic stimuli such as hypoxia, ionizing 
radiation, cytotoxic agent, DNA damage, and growth factor withdrawal.

35.3  Role of HIF-1α in Cell Cycle

The inactivation of enzymes responsible for nucleotide synthesis causes hypoxi-
cally induced cell cycle arrest, and this arrest inhibits DNA replication [53, 54]. The 
inactivation of the nucleotide synthesis, however, only occurs under the condition of 
severe hypoxia known as anoxia, which is 0.01% oxygen [55]. On the other hand, 
relative changes to normoxia occur under moderate hypoxia, which is associated 
with the hypophosphorylation of retinoblastoma protein (Rb) and the inhibition of 
the cell cycle [55, 56]. While hypoxia may induce angiogenesis and glycolysis nec-
essary for cell growth, it can also lead to cell cycle arrest and apoptotic activity. 
Furthermore, HIF-1α upregulates genes under low oxygen tension and has been 
indicated as a required mechanism for hypoxia-induced growth arrest and for 
p21cip1, a key cyclin-dependent kinase inhibitor in control of the cell cycle; the spec-
ificity of the exact mechanism, however, still remains unclear. HIF-1α acts against 
the activation of Myc through the downregulation of Myc-activated genes—hTERT 
and BR—and, thus, induces cell cycle arrest, which leads to the suppression of 
p21cip1 activity. Thus, Myc is an essential part of the HIF-1α pathway, which regu-
lates Myc genes in hypoxic conditions. Hence, researchers have uncovered a diver-
gent role for HIF-1α as it is not required for cell cycle arrest.

Several investigations have revealed that hypoxia-stimulated cell cycle arrest is 
associated with the downregulation of cyclin-dependent kinase (CDK) activity and 
the expression of retinoblastoma (Rb). Although the induction of cyclin G2, a negative 
regulator of cell cycle progression, was reported under hypoxia via HIF-1 activation, 
very little information is available to clarify the role of HIF-1 in the regulation of cell 
cycle machinery [57]. Recent studies have demonstrated the critical role of HIF-1 in 
the regulation of cell cycle progression under hypoxia by showing that the activation 
of HIF-1 impedes G1/S transition via two diverse mechanisms [58]. The expression of 
two CDK inhibitors (CKIs), p21Cip1 and p27Kip1, was increased in a HIF-1-dependent 
manner. Conserved expression of these CKIs was not observed in HIF-1α null cells 
and suppressed cyclin/CDK2 activity, leading to the reduction of the ratio of phos-
phorylated/dephosphorylated Rb protein, resulting in cell cycle arrest at G1/S [58].

35.4  Role of HIF-1α in Metastasis

Tumor metastasis is the multistage process that includes the dissociation, arrest, 
adhesion, and extravasation. It is also one of the primary causes of poor HCC diag-
nosis [59]. Adhesive molecules on tumor cells including intercellular adhesive 
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molecule- 1 (ICAM-1) and vascular cellular adhesive molecule-1 (VCAM-1) conse-
quently rest the cells entirely and then extravasate from the blood vessels into other 
tissues or organs where metastatic tumor is formed. Throughout the metastatic sig-
naling cascade, cancer cells communicate with endothelial cells, platelets, lympho-
cytes, and the homotypic as well as the heterotypic cell clusters from a multicellular 
emboliform nucleus [60, 61]. The potential of metastasis is associated with the acti-
vation of surface adhesive fragments including selectin, ICAM-1, or VCAM-1 [61]. 
Recently, it was reported that a key role is played by ICAM-1  in the metastatic 
process. Intra- and extrahepatic metastasis can cause poor prognosis and HCC, and 
the invasion of such metastases can also consist of epithelial-mesenchymal transi-
tion (EMT), which refers to the attainment of motility by tumor cells. Further, EMT 
requires the loss of E-cadherin, which is a major factor in the maintenance of epi-
thelial polarity [62].

Hypoxia is clinically related to metastasis and poor prognosis [63]. Hypoxic 
stress speeds up the invasion of liver cancer cells by upregulating ETS-1 as well as 
the family of matrix metalloproteinases through HIF-1α-independent pathway [64]. 
The activity of HIF-1α is associated with VEGF [65]. The metastasis of HCC is 
inhibited by rapamycin and vitexin by downregulating the expression levels of 
VEGF and HIF-1α [66, 67]. The VEGF expression level in the plasma is elevated 
after transcatheter arterial chemoembolization (TACE) in patients with varied 
uptake of venous thrombosis. A 6-month follow-up revealed metastatic foci in 
almost 70% of the patients with elevated levels of plasma VEGF although patients 
with reduced plasma VEGF levels did not develop metastasis at all [66]. 
Consequently, in HCC, improved plasma VEGF level could be correlated with the 
advancement of metastasis after TACE. Furthermore, amplified plasma insulin-like 
growth factor II (IGF II) expression levels after TACE appear to be related to metas-
tasis [66, 67].

35.4.1  Adhesion

Hypoxic conditions include the regulation of the transcription factor known as 
hypoxia-inducible factor 1α (HIF-1α), which is a master regulator that has pro- 
angiogenic activities such as the regulation of vascular endothelial growth factor 
(VEGF). Hypoxia-induced angiogenesis prompts researchers to investigate the 
multistep process by analyzing aortic and coronary artery smooth muscle cells 
with the additional treatment of cobalt chloride. Results show that HIF-1α activa-
tion reduced migration of smooth muscle cells and adhesion to the extracellular 
matrix. The presence of HIF-1α and cobalt chloride reduces the expression levels 
of tyrosine phosphorylation of focal adhesion kinase (FAK). Through FAK activa-
tion, HIF-1α acts as a suppressor of adhesion and migration of these smooth mus-
cle cells by, but HIF-1α expression can also expand vessel growth by allowing 
smooth muscle cells to migrate and detach from the basement membrane and 
endothelial cells [68].
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35.4.2  Invasion

Invasion consists of multiple steps including initiation. Epithelial-mesenchymal 
transition (EMT) offers tumor cells with motility to initiate the invasion. EMT 
includes the loss of E-cadherin, which influences on the adhesion junctions, which 
aids in maintaining the epithelial polarity [69]. HIF-1 may act as a leading modula-
tor of EMT through upregulating the expression of various transcription repressors 
including transcription factor 3 (TCF3), E-cadherin, Snail, Twist1, Zfhx1a, and 
Zfhx1b [70]. It has been elucidated that HIF-1 enhances invasion as well as metas-
tasis of HCC by inducing EMT during hypoxic conditions. HIF-1 possibly com-
municates with two HREs in the promoter region of Snail and also upregulates its 
activities in order to indirectly influence the expression levels of vimentin, 
E-cadherin, and N-cadherin [71].

35.4.3  Migration

Caused potentially by hypoxic conditions, pathological characteristics such as inva-
sion and vascular proliferation can stand as indicators of malignant gliomas. 
Hypoxia-inducible factor-1 (HIF-1), which is a transcription factor derived from the 
HIF-1α subunit, forms the cellular response in hypoxic conditions. Though hypoxia 
has been correlated to the progression of angiogenesis, HIF-1 does not have a clear 
role in malignant gliomas. Therefore, investigations of the role of HIF-1α in the 
migration and invasion of human glioma cells in hypoxic conditions have been 
undertaken. Cell migration plays an essential role in expanding the breadth and 
growth of various cellular responses such as embryogenesis, inflammatory 
responses, and tumor metastasis [72].

35.4.4  Angiogenesis

Cells tend to undergo many biological and physiological responses to low oxygen 
levels known as hypoxia. One of the most studied responses to hypoxia is 
the expression of pro-angiogenic growth factors that activate their receptors and 
result in new blood vessel formation known as angiogenesis [73, 74]. Angiogenesis 
is an essential component of tumor cell migration and formation [75, 76]. HIF-1α 
upregulates the expression level of VEGF, an important pro-angiogenic factor [40, 
77, 78]. Growth factors activated by HIF-1α regulate endothelial cell proliferation 
and blood vessel formation. HIF-1α activates the transcription of VEGF, VEGF 
receptor 1, adrenomedullin, COX-2, angiopoietin-2, angiopoietin receptor Tie-2, 
endothelin- 1, endothelin-2, monocyte chemotactic protein-1, fibroblast growth fac-
tor-3, osteopontin, hepatocyte growth factor, transforming growth factor (TFG)-α, 
histone deacetylase, placental endothelial factor, nitric oxide synthase, TGF-β1, and 
TFG- β2. VEGF is one of the most critical angiogenic factors, which is secreted by 
normal as well as oncogenic cells in response to hypoxic conditions, and the 
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receptors are mainly expressed on the endothelial cells. Angiogenesis that is induced 
via hypoxia is inhibited by agents blocking RAS, EGFR, and the receptor tyrosine 
kinase ERBB2 indicating that carcinogenic and hypoxia response signaling path-
ways are overlapped. HIF-1 stimulation can also reduce the expression levels of 
anti- angiogenic genes such as thrombospondin-1 and thrombospondin-2.

Angiogenesis is essential for tumor growth and progression by supplying oxygen 
and nutrients through the newly created blood vessels. It is already proven that the 
effective way to treat HCC is through anti-angiogenic therapy [79]. Under hypoxic 
conditions, HIF-1 acts as a direct transcriptional activator of the VEGF pathway, 
which promotes the migration and proliferation of vascular endothelial cells. HIF-1 
directly activates the BEGF transcriptional pathway during hypoxic conditions as 
well. Sorafenib, an approved multi-kinase inhibitor and approved drug for advanced 
HCC patients, contains mechanisms that inhibit the expression levels of VEGF and 
HIF-1 proteins in order to result in the reduction of the expression of HCC vascular-
ization [80]. A study done by Wang et al. [81] reports that a rat model experienced 
elevated levels of HIF-1 and VEGF after 20 weeks of hepatocarcinogenesis induc-
tion, revealing pro-angiogenic roles. Other pro-angiogenic markers include angio-
poietin- 2 (ANGPT2), stromal-derived factor 1 (SDF1), platelet-derived growth 
factor-B (PDGF-B), placental growth factor (PGF), and stem cell factor (SCF) [82]. 
Further research is required in order to clarify the pro-angiogenic role of HIF-1 in 
hypoxic conditions and possibly placing HIF-1 as a therapeutic target in HCC 
treatment.

35.5  Molecular Mechanism of HIF-1α

Cells respond to decreased oxygen levels through HIF-1 that is a heterodimer com-
posed of the hypoxia response factor known as HIF-1α and the aryl hydrocarbon 
receptor nuclear translocator (ARNT) also identified as the HIF-1β. During the 
absence of oxygen, HIF-1 and hypoxia response elements (HREs) bind to each 
other in the promoter regions of the hypoxia response genes and as a result activate 
the expression of a number of genes such as VEGF, which is a pro-angiogenic 
growth factor. The redox active apurinic/apyrimidinic endonuclease-1 (APE1) has 
been shown to allow HIF-1α to function transcriptionally in a reduced state.

Under normoxic conditions, posttranslational HIF-1α is rapidly degraded by the 
proteasome. Prolyl hydroxylases (PHDs) hydroxylate the proline residues (402 and 
564) at the ODDD of HIF-1α (Fig. 35.1). Hydroxylation of these residues facilitates 
the binding of the von Hippel-Lindau tumor suppressor gene (pVHL), which is a 
key component recognized by the E3 ubiquitin ligase complex in targeting HIF-1α 
for ubiquitination and degradation by the 26S proteasome [83]. In this degradation 
process, three PHDs (PHD1, PHD2, and PHD3) are the oxygen sensors controlling 
HIF-1α. These homologs are recently identified in mammals that have an immense 
potential to hydroxylate HIF-1α in normoxia [22]. The expression of PHD2 is con-
trolled through the concentration of oxygen in the cell, and the conversion of 
hydroxyproline from proline involves ascorbate, iron, and 2-oxoglutarate. Under 
hypoxic environment, the inactivation of PHDs releases HIF-1α from hydroxylation 
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by inhibiting pVHL from binding to proline residues and leading to the stabilization 
of HIF-1α in the cytoplasm.

In reference to the oxygen-dependent pVHL pathway, arrest defective 1 (ARD1) 
acetylates HIF-1α in order to induce HIF-1α degradation by acetylation of Lys532, 
resulting in an enhanced interaction of HIF-1α with pVHL [84].

Due to hypoxic conditions, certain miRNAs become responsible for the regula-
tion of the HIF-α expression [85–87]. The miRNAs miR-424, miR-200b, and miR-
429 stabilize HIF-α expression, while other miRNAs such as miR-199a and miR-22 
reduce HIF-α activity. Endothelial cells in hypoxic conditions experience HIF-1α 
accumulation in the nucleus. Hypoxic conditions drive the upregulation of miR-
424, miR-200b, and miR-429 expression, which stabilizes HIF-1α isoforms 
through the inhibition of the pVHL scaffold protein Cullin 2 (CUL2) or PHD acti-
vation [86]. Further, miR-199a downregulates the HIF-1α activity of cardiomyo-
cytes [87]. Hypoxic conditions decrease miR-199a activity but enhance HIF-1α 
expression.

EMT is characterized by the loss of cell-cell adhesion and apical-basal polarity 
and important to tumor development as it promotes invasion and metastasis. During 
EMT, epithelial cells lose E-cadherin expression, a hallmark of EMT, and obtain 
mesenchymal markers such as vimentin and fibronectin. There are three types of 
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Fig. 35.1 Molecular mechanism of HIF-1α. HIF-1 consists of HIF-1α and HIF-1β. In hypoxia, 
HIF-1, a heterodimer, binds to DNA promoter regions of HRE and thereby activates the expression 
of numerous hypoxia response genes involved in cell proliferation, cell cycle, metastasis, angio-
genesis, and cell survival. In contrast, HIF-1α is hydroxylated by PHDs and rapidly degraded by 
the proteasome under normoxic conditions. HIF indicates hypoxia-inducible factor; HRE indicates 
hypoxia response element; PHD indicates prolyl hydroxylase domain enzyme
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EMT: type 1 appears in embryogenesis and organ development, type 2 is essential 
for tissue regeneration and organ fibrosis, and type 3 is associated with cancer stem 
cell properties. The EMT process involves master regulators, including SNAIL, 
TWIST, and ZEB transcription factors. By being activated earlier in the EMT pro-
cess, these transcription factors play a central role in the development, fibrosis, and 
cancer and depend on the type of cell or tissue involved in the initiation of the EMT 
process.

Hypoxia in the tumor environment can promote EMT through HIF-1α expres-
sion, which activates TWIST, SNAIL, and other EMT inducers. In epithelial cells 
undergoing EMT, the mammalian TOR complex 1 (mTORC1) and mTORC2 are 
activated due to the presence of the AKT activity. TWIST is a direct transcrip-
tional target of HIF-1α, whereas SNAIL is regulated by hypoxia at the posttran-
scriptional level. The upregulation of TWIST activity, stemness of cancer cells 
through the TWIST-BMI1 axis, members of the LOX/LOXL2 family, and other 
EMT inducers such as ZEB1/2 are crucial for the progression of the metastasis in 
a hypoxic environment. The hypoxic environment allows for the stability of 
HIF-1α, which leads to increased stemness and EMT of cancer cells and the acti-
vation of the following pathways: Wnt, Notch, and TGF-β. Furthermore, the 
activity of HIF-2α induces more stemness by increasing the expression levels of 
Oct-4. Under severe hypoxic conditions (0.1% O2), PERK, ATF4, and ATF6 
potentiate the EMT of cancer cells.

35.6  Conclusions and Future Perspective

Hypoxia in the liver regulates gene expression in physiological conditions and dis-
eases such as cirrhosis and cancer. Hypoxic conditions are known to promote the 
tumorigenic factors of proliferation, angiogenesis, invasion, and even resistance 
(chemo and radio) in the progression of HCC. Understanding hypoxic conditions in 
HCC can allow researchers to further investigate the progression of HCC malignan-
cies. However, only HCC patients suited to palliative treatment can benefit from 
therapeutic methods that induce hypoxic conditions. Both treatment methods TACE 
and TAE induce hypoxia and, thus, promote to HCC angiogenesis; thus combining 
the benefits of TACE and TAE along with anti-angiogenic targeted therapy can 
introduce new approaches for HCC treatment. Unfortunately, hypoxic conditions 
prevent HCC cells from the combination therapy featuring the benefits from TACE, 
TAE, and anti-angiogenic factors. As angiogenesis becomes a major factor in the 
frequency of HCC recurrence, anti-angiogenic therapy can stand as the solution for 
future prevention and even benefit those who have surgical resections. By favoring 
a therapeutic approach of agent-inducing hypoxia with agent-targeting hypoxia fac-
tors, researchers can provide new treatment approaches for HCC patients.

In conclusion, compelling evidence reveals that HIF-1 activity promotes HCC 
proliferation, invasion, and metastasis. Along with the promotion of angiogenesis, 
HIF-1 activity also increases resistance of HCC cells to both chemotherapy and 
radiotherapy. Furthermore, clinical data supports the correlation between an increase 
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in HIF-1 activity and the HCC’s poor prognosis. Thus, researchers have considered 
HIF-1 as targeted molecule in targeted therapy in HCC treatment, including inhibi-
tion of the HIF-1 pathway via small molecular targets. However, these molecular 
targets exhibited some disadvantages: detrimental side effects, low specificity, and 
the lack of evaluation in clinical trials. Therefore, further research is required to 
understand how to utilize the full efficacy of the therapeutic methods targeting 
HIF-1 in HCC treatment.
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36Role of STAT3 in Liver Cancer
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Abstract
Hepatocellular carcinoma (HCC) is a malignant cancer that shows heteroge-
neous etiology and the third leading of cancer-related deaths in the world. In 
spite of its severity, there is only one systemic chemotherapy drug known as 
sorafenib showing a valuable effect on a small number of HCC patients. Signal 
transducers and activators of transcription (STATs), a family of transcription fac-
tors, consist of seven members in mammalian cells: STATs 1, 2, 3, 4, 5a, 5b, and 
6. STAT transcription factors have a characteristic Src homology 2 (SH2) domain 
whose function is indispensable to the activation of STAT proteins triggered by 
Janus kinase (JAK) signaling. Among the STAT transcription factor family, 
STAT3 performs a vital function in advancement and tumorigenesis because it 
participates in replicating various proteins that are responsible for angiogenesis, 
proliferation, invasion, metastasis, and apoptosis. Although the activation of 
STAT3 is usually transient in normal cells, cancer cells show a positive feed- 
forward loop that results in the persistent activation of STAT3. The expression 
and activity of STAT3 are increased in a wide range of malignancies. Although 
several studies have reported the oncogenic functions, the antitumor effects of 
STAT3 should be considered carefully in the development of therapeutic  methods 
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that target STAT3 signaling. We believe that STAT3 signaling will be a promising 
target of treatment for HCC patients who need further research of adverse effects 
or personalized treatment via the modulation of STAT3 signaling.

Keywords
Hepatocellular carcinoma · Signal transducers and activators of transcription · 
Cell proliferation · Cell cycle · Metastasis

36.1  Introduction

Hepatocellular carcinoma (HCC) is a malignant cancer that shows heterogeneous 
etiology [82], and HCC is one of the most common cancers and stands as the third 
leading cause of cancer-related deaths in the world [85]. In spite of its severity, only 
a small portion of HCC patients (about 30%) can be treated with appropriate thera-
pies such as liver resection, transplantation, or local ablation, and there is only one 
systemic chemotherapy drug known as sorafenib that shows a valuable effect [56]. 
Moreover, not all HCC patients experience the optimal therapeutic effects of 
sorafenib. The overall survival prolongation period of patients in the SHARP 
(Sorafenib HCC Assessment Randomized Protocol) trial was only 2.8 months, and 
an objective tumor response was observed only in a small number of patients (0.6–
2%) [13]. Therefore, urgency arises to identify a molecular signaling specific for 
HCC in order to develop suitable chemotherapies.

Signal transducers and activators of transcription (STATs) are a family of tran-
scription factors, which were first discovered in the signaling context of 
interferon-α (INF-α), interferon-γ (INF-γ), and interleukin-6 (IL-6) in 1994 [19]. 
There are seven members in the STATs family in mammalian cells: STATs 1, 2, 3, 
4, 5a, 5b, and 6 [1]. STAT proteins have a characteristic Src homology 2 (SH2) 
domain whose function is indispensable to the activation of STAT proteins [29]. 
The activation of STAT proteins is triggered by Janus kinases (JAKs) signaling 
[37, 69, 79]. After activated by JAKs, phosphorylated STAT dimers are able to 
shuttle into the nucleus and bind to IFN-γ-activated site (GAS; 5′-TTN4–6AA-3′) 
[72]. Among the STAT transcription factor family, STAT3 performs a vital func-
tion in advancement and tumorigenesis because it participates in replicating vari-
ous proteins that are responsible for angiogenesis, proliferation, invasion, 
metastasis, and apoptosis [96]. Actually, the functions of STAT3 signaling in 
oncogenesis have been demonstrated in various tumor models and types [82]. 
Moreover, it has been reported that the expression and activity of STAT3 are 
increased in a wide range of malignancies [63]. Although the activation of STAT3 
is usually transient in normal cells even in the presence of stimuli such as cyto-
kines, cancer cells show a positive feed-forward loop that results in the persistent 
activation of STAT3 [103]. Here we review the STAT3 signaling pathway and 
highlight its significance in liver cancer.
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36.2  Role of STAT3 in Cell Proliferation and Apoptosis

STAT3 plays a key role in cellular proliferation, survival, and cell transformation. 
Accumulating evidence indicates that constitutive STAT3 signal is associated with 
the upregulation of transcriptional factors such as c-Fos, c-Myc, and Sox2, which 
are required for the regulation of the cell cycle [20, 26, 47]. STAT3 has also been 
shown to upregulate the expression of regulators such as Bcl-2, Bcl-xL, and cyclin-
 D1 that are responsible for apoptosis or proliferation [10, 15, 52]. In addition, 
STAT3 downregulates the expression of p53, the most common inhibitor of cellular 
proliferation and inducer of apoptosis [62]. It was reported that STAT3 can also act 
as an apoptotic factor, especially during post-lactation regression where a leukemia 
inhibitory factor (LIF) plays as the only activator of STAT3 in order to cause apop-
tosis in mammary glands [11]. In addition to the pro-apoptotic function of STAT3, 
it was reported that the loss of STAT3 promotes cellular proliferation and transfor-
mation [20].

36.2.1  Oncogenic Function of STAT3

STAT3 is usually considered an oncogene in HCC [82]. NSC 74859, a STAT3- 
specific inhibitor, promotes apoptosis and impairs proliferation of several hepato-
cellular cancers in vitro and in transplantation models [55]. Moreover, the nuclear 
Tyr705 phosphorylation, the activation marker of STAT3, was observed in 60% of 
HCC cases without the relation of tumor etiology [36]. A recent study showed that 
STAT3 activity in monocytes of the HCC tumor stroma accelerates cancer progres-
sion [94]. This investigation showed that IL-6/JAK/STAT3 signals in monocytes 
promote the proliferation of hepatocellular carcinoma cells, which indicates that the 
activation of STAT3  in the stromal part is essential for HCC progression. 
Interestingly, no naturally occurring mutations that produce constitutive activation 
of STAT3 have yet been reported despite the activated STAT3 that was detected in 
the majority of human cancers and tumor-derived cell lines [51]. Mutations in 
gp130 or IL-6, however, were reported to activate STAT3 signaling in the absence 
of ligands, which are considered to drive oncogenesis [71].

The oncogenic function of STAT3  in HCC has been demonstrated in various 
studies, showing the pro-oncogenic function of STAT3 driven by either cytokine 
IL-6- or IL-22. It was reported that the expression of IL-6 is elevated in human 
patients with liver disease and HCC [66]. It was also reported that HCC develop-
ment triggered by obesity is associated with the increased production of cytokines 
IL-6 and TNF-α, which is dependent on the activation of STAT3 [65]. The second 
major cytokine activating STAT3 expression in the liver is IL-22. It was reported 
that the expression of IL-22 is elevated in tumor-infiltrating lymphocytes of HCCs 
due to high expression of IL-22 receptors [45]. This study showed that HCC forma-
tion in the animal model was reduced in IL-22-deficient mice, which implicates the 
oncogenic function of STAT3 in HCC.
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The function of STAT3 was directly estimated in diethylnitrosamine (DEN)-
treated mice with the conditional inactivation of STAT3  in hepatocytes, which 
showed controversial results suggesting oncogenic [90] and anti-oncogenic activity 
[4]. The study showing the anti-oncogenic function of STAT3, however, also dem-
onstrated an oncogenic aspect of STAT3, depending on a negative regulator of 
STAT3 activity known as tyrosine phosphatase SHP2 (PTPN11). The tyrosine phos-
phatases SHP1/SHP2 may regulate STAT3 activity in HCCs [82]. The IKKβ- 
deficient hepatocytes showed an increase in the formation of HCCs, which were 
initially implausible because IKKβ deficiency downregulated the activity of 
NF-κB. However, IKKβ deficiency also increased the production of reactive oxygen 
species and downregulated the activity of SHP1/SHP2, resulting in the upregulation 
of STAT3 and the formation of HCC [36]. In addition, the deletion of SHP2 in hepa-
tocytes showed persistent STAT3 activation, resulting in the promotion of HCC by 
DEN [4]. Other regulators of STAT3 except SHP proteins have been identified as 
tumor suppressors in HCC, such as SOCS3 whose deficiency led to the activation of 
STAT3 and promoted formation of DEN-induced HCCs [73]. STAT3 promotes car-
cinogenesis in the liver through epigenetic regulation, which is involved with 
microRNAs (miRs) [35]. HNF4α, a hepatocyte differentiation factor and suppressor 
of HCC formation, was downregulated by miR-24 and miR-629, which are induced 
by IL-6/STAT3 signaling. Moreover, the expression of miR-124, another miR regu-
lated by HNF4α, is decreased. In consideration of negative regulation of IL-6R by 
miR-124, this epigenetic regulation induces the permanent suppression of HNF4α 
through an amplifying feedback mechanism of IL-6/STAT3/miR-24/miR-629 [77].

36.2.2  Anti-oncogenic Function of STAT3

On the contrary to the aforementioned oncogenic role of STAT3, there are several 
reports indicating the anti-oncogenic function of STAT3  in HCC formation. The 
study using hepatocytes genetically ablated in p19(ARF) gene clearly indicated the 
tumor-suppressive function of STAT3 [76]. STAT3-deficient hepatocytes, immortal-
ized by additional deletion of p19(ARF), the cyclin-dependent kinase inhibitor and 
mouse homolog of human p14(ARF), and transformed by Ras, showed increased 
tumor formation in xenografts, suggesting the anti-oncogenic function of STAT3. 
However, STAT3 itself induced the development of HCC in the presence of 
p19(ARF), indicating that p19(ARF) is a critical regulator of oncogenic and anti- 
oncogenic functions of the STAT3 protein in HCC.  Furthermore, a hypothetical 
ARF-X, a binding partner of p19(ARF)/p14(ARF), controls oncogenic or anti- 
oncogenic activity of STAT3 [76]. NF-κB was also found to interfere with the acti-
vation of STAT3 in HCC cells [36], but p19(ARF) is a negative regulator of NF-κB 
[74]. Therefore, downregulation of p19(ARF) might induce the increase of NF-κB 
activity, resulting in the downregulation of STAT3 activity. This molecular mecha-
nism could diminish the anti-oncogenic activity of activated STAT3 in p19(ARF)-
deficient HCCs [8]. However, the inactivation of p27Kip1, a cyclin-dependent kinase 
inhibitor, promoted hepatocarcinogenesis through increasing cytokine secretion and 
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STAT3 activation [33]. This study indicates that the loss of a distinct cyclin- 
dependent kinase inhibitor promotes anti-oncogenic activity of STAT3, whereas the 
loss of another promotes oncogenic activity [82]. The accurate function of STAT3 in 
liver tumorigenesis may be determined by the etiology because the oncogenic func-
tion of STAT3 was demonstrated in DEN-induced HCCs, whereas the anti- oncogenic 
activity was shown in HCCs developed by chronic damage and fibrosis through 
CCl4 induction [90]. Feng summarized conflicting roles of molecules—including 
STAT3—in hepatocarcinogenesis and proposed that excessive compensatory reac-
tion to the loss of a proliferative signal may also contribute to the unexpected tumor- 
promoting effect observed upon removal of a pro-tumorigenic molecule [25]. 
Overall, these reports reveal the anti-oncogenic function of STAT3 in HCC, depend-
ing on the expressional profiles of tumor suppressor genes and etiology.

36.3  Role of STAT3 in Metastasis

Metastasis of tumor cells is a multistep process in which cells invade the surround-
ing tissue and basal membrane, resulting in the entrance into blood vasculature. 
During this process, tumor cells move through vasculature, adhere into distant 
organs, and induce angiogenesis to form a secondary tumor [46]. Cumulative evi-
dence has indicated that STAT3 activation is critical for metastasis factors such as 
proliferation, invasion, migration, and angiogenesis.

36.3.1  STAT3 in Transformation

It was reported that the malignant transformation of cells can be mediated through 
the activation of STAT3, which is triggered by the activation of protein tyrosine 
kinases, the expression of oncogenes, and the presence of viral infection [7]. The 
activation of STAT3 is required for IL-6-induced transformation in tumor- promotion 
sensitive mouse skin epithelial cells [102]. Moreover, the activation of STAT3 is 
induced by Src signaling, which may contribute to cell transformation by preventing 
apoptosis, increasing cell numbers [87], and being triggered by an oncogene known 
as TRK [58]. Similarly, the transformation of fibroblasts was induced by the activa-
tion of RET/PTC tyrosine kinase, which was mediated through STAT3 activation 
[41]. Transformation triggered by viral infection is also induced through the activa-
tion of STAT3. For example, oncogenic proteins from the hepatitis C virus, the sim-
ian virus 40, and the herpes virus play key roles in cell transformation mediated by 
the activation of STAT3 [17, 89, 100]. Recent studies suggest that the inhibition of 
STAT3 activation may exert beneficial effects both as a direct and an indirect mech-
anism [27]. For example, rituximab, a monoclonal therapeutic antibody against 
CD20, decreases STAT3 activation in B cell non-Hodgkin’s lymphoma [2]. In addi-
tion, bacterial quorum sensing molecules of the N-acylhomoserine lactone class can 
induce apoptosis in breast carcinoma cells, which is correlated with the downregu-
lation of STAT3 signaling [53]. Furthermore, the synthetic triterpenoid 
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CDDO-imidazolide can induce growth arrest and apoptosis of myeloma and lung 
cancer cells by inhibiting the phosphorylation of STATs, including STAT3 [54]. 
Therefore, these reports emphasize the role of STAT3 in malignant transformation 
and as a target for anticancer therapy.

36.3.2  STAT3 in Invasion

Cumulative evidence suggests that STAT3 signaling plays an important role in can-
cer cell invasion. There was a report showing that the overexpression of phosphory-
lated STAT3 is associated with the invasion as well as metastasis of cutaneous 
squamous cell carcinoma [81]. In contrast, RNAi-mediated STAT3 gene silencing 
inhibited invasion and metastasis of pancreatic cancer cells [68]. STAT3 activation 
also regulates the expression of matrix metalloproteinase (MMP)-2, MMP-9, and 
MMP-1 and tumor invasion and metastasis [22, 43, 95]. Moreover, STAT3 knock-
down reduced pancreatic cancer cell invasiveness and MMP-7 expression in nude 
mice [23]. Invasion of cancer cells into the extracellular matrix is a key step in 
tumor metastasis and is able to be processed by regulating MMPs [46]. All these 
studies implicate that STAT3 plays a key role in the complex and multistep process 
of cell invasion by regulating MMPs.

36.3.3  STAT3 in Migration

The function of STAT3 activation in cell migration was first identified in keratino-
cytes [75] and then confirmed in ovarian cancer cells using siRNA [80]. It was 
reported that STAT3 can regulate microtubules by antagonizing the depolymeriza-
tion activity of an oncoprotein 18 known as stathmin that binds to α/β tubulin, 
resulting in the modulation of cell migration [59]. The role of STAT3 in cell migra-
tion was also indicated in the regulation of Rho GTPase [21]. Accordingly, consti-
tutively activated STAT3 induces cell motility of prostate epithelial cells through 
integrin β6 [3]. Recently, it was reported that STAT3 promotes directional cell 
migration by regulating Rac1 activity via its activator βPIX [84]. Therefore, these 
investigations implicate that activation of STAT3 plays a critical role in cellular 
migration under normal as well as pathological conditions.

36.3.4  STAT3 in Intravasation

Intravasation, the invading technique of entering into the blood or the lymphatic 
vessel, is an essential stage in the progression and metastasis of tumor cells [14]. 
Tumor cells enter the circulatory or lymphatic system (intravasation) after degrada-
tion of basal membrane and move out of the blood vessel into new distant organs 
[46]. In this process, tumor cells might get eliminated by the frictional force of the 
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blood (vascular wall shear stress) and the immune system, or it can get blocked in a 
distant capillary bed, where they might endure extravasation, the process of moving 
out of the blood vessel into the tissue during metastasis, and form a secondary can-
cer cell [6]. Actually, the metastatic progression is extremely incompetent because 
only a small number of circulating tumor cells (about 0.01%) are required to form 
cancers at the secondary site. However, it is very critical to study the procedure of 
intravasation since it is the rate-limiting step in metastasis because tumor cells that 
have access to the peripheral blood circulation could control the effectiveness of 
metastasis [14]. There are several reports indicating the key role of STAT3 activa-
tion in protecting the tumor cells from the immune system during their travel in 
vasculature. It was reported that colon carcinoma cells can be tethering, rolling, and 
forming firm adhesion under the dynamic flow condition by immobilizing platelets 
[57]. Moreover, the activation of STAT3 signaling in tumor cells or in inflammatory 
immune cells can regulate the secretion of various inflammatory cytokines such as 
IL-6 or TNF-α, which can affect the survival of tumor cells [60]. In addition, STAT3 
activation can reduce the activation of NK cells, which enhance the survival of 
tumor cells during circulation [91]. Therefore, STAT3 activation may increase the 
probability of tumor cell survival and intravasation into distant organs.

36.3.5  STAT3 in Angiogenesis

In tumor growth and metastasis, the neovascularization from existing blood vessels 
is an essential process, and vascular endothelial growth factor (VEGF) is known as 
tone of the most potent angiogenic factor [14, 32]. VEGF inhibition through a neu-
tralizing antibody is known to decrease microvessel density and the intravasation 
process of prostate carcinoma cells [18]. In addition, vascular permeability and 
intravasation process of breast cancer cells were stimulated by the secretion of 
VEGF from macrophages, which were inhibited by an anti-VEGF neutralizing anti-
body [34]. STAT3 is considered as one of the critical transcription activators in 
angiogenesis, especially for activating the VEGF gene [12]. It was found that VEGF 
expression in melanoma cells is enhanced by constitutive STAT3 activation, result-
ing in the upregulation of tumor angiogenesis [61]. In addition, it was reported that 
STAT3 activation regulates the expression of VEGF and human pancreatic cancer 
angiogenesis [93]. Nuclear translocation of the phosphorylated form is the process 
of STAT3 activation and is essential for VEGF-induced human dermal microvascu-
lar endothelial cell migration and tube formation [98]. Moreover, the activation of 
STAT3 plays a crucial role in endothelial VEGF receptor signaling [5]. Interestingly, 
targeting STAT3 results in the downregulation of both hypoxia-inducible factor-1 
(HIF-1) and VEGF expression [97]. On the other hand, however, it was reported that 
STAT3 can induce the expression of HIF-1α, an important angiogenic factor [78]. 
Recently, the angiogenic activity of HIF-1α was elucidated in human hepatoma 
cells. HIF-1α enhanced the expression of haptoglobin, which plays a role in angio-
genesis by improving the binding of STAT3 to the promoter [64].
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36.4  Molecular Mechanism of STAT3 Activation

STAT3 is activated by the phosphorylation of its tyrosine and serine residues, espe-
cially Tyr at 705th and Ser at 727th via signaling from upstream regulators [48, 70]. 
There are various tyrosine kinases catalyzing the phosphorylation including recep-
tors by means of fundamental tyrosine kinase activities like the vascular endothelial 
growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), and 
platelet-derived growth factor receptor (PDGFR) [28, 46, 50]. This phosphorylation 
is also catalyzed by cytokine receptors such as IL-6R associated with JAKs as well 
as non-receptor tyrosine kinases such as Src or P190 (ABL) [42, 101]. Serine 
kinases such as MAPK [16, 86], PKCδ [44], mTOR [99], and NLK [49] catalyze the 
phosphorylation along with tyrosine kinases, resulting in the activation of STAT3. 
In addition, STAT3 dimerization can be regulated by reversible acetylation of a 
single Lys residue at 685, which is catalyzed by a histone acetyltransferase known 
as p300 [104].

36.5  JAK/STAT Signal

The Janus kinase (JAK)/STAT pathway was discovered in the context of IFNα-, 
IFNγ-, and IL-6-mediated downstream signaling in T cells [19, 83, 103]. The JAK/
STAT3 signaling pathway has been known to be stimulated by numerous cytokines 
and growth factors and is one of the most well-studied intracellular signaling path-
ways [9]. Among them, IL-6 is one of the most widely researched STAT3 activators 
[10, 105]. The effects of IL-6 are mediated by its receptor (IL-6Rα), which induces 
conformational change of the receptor and results in the development of the hexa-
meric signal complex that consists of an IL-6Rβ (or gp130) homodimer and two 
IL-6-IL-6Rα heterodimers [38]. These processes trigger the stimulation of JAKs, 
which are fundamentally linked with a proline-rich membrane-proximal and cyto-
plasmic domain of gp130. After the activation of JAKs, these processes mediate the 
gp130 phosphorylation, which leads to the stimulation of cytosolic STAT3 that gets 
translocated to the nucleus (Fig. 36.1) [103]. Other members of the IL-6 domain 
such as IL-11, IL-31, leukemia inhibitory factor (LIF), ciliary neurotrophic factor 
(CNTF), and oncostatin M (OSM) are also able to trigger receptor-transducing sig-
nals via JAK/STAT3 [31, 67]. Recently, Toll-like receptors (TLRs) like TLR4, 
TLR2, and TLR9 have been identified as key modulators of the JAK/STAT3 path-
way [24, 40, 88]. Furthermore, TLR9 and STAT3 formulate a feed-forward loop that 
is critical for maintaining glioma stem cell, which means that STAT3 can upregulate 
the expression of TLR9 and thereby promote tumor progression [39]. In addition to 
its role in the nucleus, STAT3 is also observed in mitochondria and regulates the 
activity of electron transport system [92]. Moreover, mitochondrial STAT3 supports 
the malignant alteration of mouse embryonic fibroblasts through activating RAS 
[30]. Thus, mitochondrial STAT3 contributes to carcinogenesis, and future thera-
peutic trials that aim at blocking STAT3 might work as potential cancer therapy 
through modulating the activities of the mitochondrial STAT3 [103].
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36.6  Conclusions and Future Perspectives

Because of the heterogeneity and complexity of molecular signals in HCC, systemic 
anticancer therapy is still unsatisfactory. Actually, we have only one therapeutic 
reagent, sorafenib (Nexavar™), that inhibits tyrosine protein kinases, such as 
VEGFR, PDGFR, and Raf family kinases. Unfortunately, however, the overall sur-
vival prolongation of HCC patients is about 3  months by sorafenib treatment. 
Therefore, accumulative studies have identified molecular signals or oncogenes 
specific for HCC development and have also tried to find out the reagents blocking 
these molecular addictions. The persistent activation of STAT3 has been confirmed 
in the majority of tumor cells, despite the necessity of its regulated expression for 
normal cellular function. This persistent activation of STAT3 provides beneficial 
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Fig. 36.1 Molecular mechanism of STAT3 activation through JAK/STAT3 signaling. Ligands 
(e.g., IL-6) activate cytokine receptor tyrosine kinase (e.g., IL-6 receptor) and cytokine receptor- 
associated JAK. STAT3 in the cytoplasm is recruited to phosphotyrosine motif within receptors 
and then activated by the phosphorylation on a tyrosine residue by JAK. Phosphorylated Stat3 
dimerizes and translocates to the nucleus, where Stat3 homodimer binds to promoter of target 
genes and regulates gene transcription that promotes various cellular processes. JAK indicates 
Janus kinase; STATs indicates signal transducers and activators of transcription
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conditions to tumor cells in order to perform metastasis processes (proliferation, 
invasion, migration, and angiogenesis). Although several studies have reported the 
oncogenic functions of STAT3 and the anticancer effects of its inhibition, implica-
tions of the oncogenic mechanisms of STAT3 in the cellular protective function in 
the liver still remain to be clarified. Furthermore, the antitumor effects of STAT3 
should be considered carefully in the development of therapeutic methods that tar-
get STAT3 signaling. Therefore, further studies should be scrutinized to make the 
modulation of STAT3 signaling more effective for HCC treatment. We believe that 
STAT3 signaling will be a promising target of treatment for HCC patients who need 
further research of adverse effects or personalized treatment via the modulation of 
STAT3 signaling.
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Abstract
Liver cancer is one of the most serious public health concerns in the world with 
unhealthy lifestyle and infection with oncogenic viruses contributing to tumori-
genesis. Hepatocellular carcinoma (HCC) which originates from the hepatocytes 
is the most ubiquitous form of liver cancer and is the sixth most prevalent cancer 
globally. The specificity protein 1 (Sp1) transcription factor occupies an impor-
tant functional niche in varied cellular processes including cell division, differen-
tiation, cell adhesion, immune response, apoptosis, chromatin remodeling, and 
DNA damage response. Considering the central position of Sp1 in the life cycle 
of cells, it is conceivable that Sp1 could be intimately associated with the process 
of transformation. Some of the pharmacological agents exert their antineoplastic 
effects through the inhibition of Sp1 response, thereby underlining the impor-
tance of Sp1 in the process of carcinogenesis. Over the years, evidence has built 
up implicating the role of Sp1  in various features of tumorigenesis including 
proliferation of cancerous cells, cell cycle regulation, invasion and metastasis, 
angiogenesis, and apoptosis. This review evaluates the contributions of Sp1 to 
various aspects of HCC.
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37.1  Introduction

Cancer is one of the prominent causes of morbidity and mortality globally. Various 
types of cancers have amounted to 8.8 million global deaths in the year 2015; out of 
which liver cancer has accounted for 788,000 deaths (WHO fact sheet 2017). There 
are different types of liver cancer depending upon the type of cell it originates from, 
namely, hepatocellular carcinoma (HCC) which originates from hepatocytes, chol-
angiocarcinoma or the bile duct cancer, liver angiosarcoma which is the cancer of 
liver-supplying blood vessels, and hepatoblastoma. HCC is the most ubiquitous 
form of liver cancer and is the sixth most prevalent cancer in the world [8]. Infection 
by some hepatotropic viruses such as hepatitis C virus (HCV) and hepatitis B virus 
(HBV) significantly increases the predilection for liver cancers. Other predisposing 
factors for liver cancer include lifestyle disorders such as diabetes, obesity, chronic 
alcoholism, liver cirrhosis, hemochromatosis, and consumption of foods contami-
nated by fungal aflatoxin (CDC 2016).

Specificity protein 1 or Sp1 is a transcription factor which is the founding mem-
ber of Sp transcription family and is equipped with a zinc finger motif and binds to 
the GC-rich regions of several promoters ([22], 1989) and CACCC box (GT box) 
[23]. Sp1 regulates the growth, differentiation and apoptosis of cells, chromatin 
remodeling, DNA damage response, and immune response [6].

37.2  Role of Sp1 in Cell Proliferation

The first indications implicating Sp1 in cell proliferation were obtained when Sp1 
was shown to mediate the effects of serum stimulation at the rep3a promoter of 
quiescent cells in murine fibroblasts [72], at the dihydrofolate reductase (DHFR) 
promoter of the hamster cells [30, 54], and at the ornithine decarboxylase promoter 
in Rat2 fibroblasts [37]. Sp1 has also been shown to contribute to the growth- 
inducing actions of the genes coding for vascular endothelial growth factor (VEGF) 
[61], insulin-like growth factor (IGF)-binding protein 2 [39], serum response factor 
[78], and thymidine kinase [77]. The c-Myc gene [4, 76], which is an extremely 
potent oncogene, stimulating cell growth, proliferation, and oncogenesis, is a target 
of Sp1 [3, 56]. This indicates the potential of Sp1 to mediate tumorigenesis.

Sp1 was found to favor the growth of HCC. The liver-specific and liver-non- specific 
enzymes methionine adenosyltransferase (MAT) catalyze S-adenosylmethionine syn-
thesis. Sp1 was implicated in a transcriptional switch from MAT1A to MAT2A in 
human hepatocellular carcinoma (HCC) and facilitated the growth of transformed 
cells [95]. Improved prognosis in HCC cases is associated with the expression of 
RING1- and YY1-binding protein (RYBP) [90]. Sp1 was found to suppress the expres-
sion of RYBP transcriptionally; the reduced expression was associated with larger 
tumors, poorer differentiation status of tumors, and an increased propensity to metas-
tasis [102]. Sp1 was also found to be necessary for the expression of the long 
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noncoding RNA (lncRNA) highly upregulated in liver cancer (HULC) which is instru-
mental in the liver cancer cell proliferation in three transformed liver cell lines 
SK-Hep-1, SNU-449, and HepG2. Knockdown of Sp1 inhibited cell proliferation, 
induced apoptosis, and decreased cellular migration and invasion [20]. Sp1 also acti-
vated the transcription of another lncRNA ANRIL which is associated with larger 
tumor size and Barcelona Clinic Liver Cancer (BCLC) stage [48].

37.3  Role of Sp1 in Cell Cycle

In non-transformed eukaryotic cells, cell division is an ordered, tightly regulated 
cyclic process commonly termed as the cell cycle. Numerous checkpoints verify the 
extracellular signals, size, and genomic integrity of the dividing cells before allow-
ing the cell cycle progression. The cell cycle comprises of four phases: G1, S, G2, 
and M. DNA replication occurs in the S phase and mitosis in the M phase. The G1 
and G2 phases represent the gaps between S and M phases. During the G1 phase, 
the cells prepare for DNA replication, while during G2 phase, the cells prepare for 
mitosis. The G0 phase is used to represent quiescent non-cycling cells. Cyclins and 
their corresponding cyclin-dependent kinases (CdKs) regulate cell cycle progres-
sion. The cyclin-CdK complexes and their corresponding inhibitors control the 
action of proteins working at the G1-S, S-G2, and G2-M checkpoints. Abnormalities 
at these checkpoints lead to failure of cell cycle arrest and may lead to cells acquir-
ing a malignant phenotype [71].

Sp1 induces the transcription of D-type cyclins, cyclin E, Cdk2, E2F-1, and 
c-Myc, which are important intermediates required for regulating progression 
through G1 phase and entry into the S phase. Sp1 can be expected to promote G1/S 
transition since cyclin D/Cdk4 and cyclin E/Cdk2 cooperate to induce entry into the 
S phase [73, 74] and because c-Myc and E2F-1 are the only known transcription 
factors capable of inducing S-phase entry of quiescent cells [14, 56]. Accordingly, 
Sp1 overexpression leads to increased fraction of cells in the S phase, while Sp1 
knockdown decreased the S-phase cell population [1, 67]. A dominant-negative Sp1 
mutant was found to mediate G1 arrest of HeLa cervix carcinoma cells, thereby 
confirming a requirement of Sp1 for S-phase entry [24]. The role of Sp1 in cell cycle 
regulation is complex. Sp1 also activates the cyclin-dependent inhibitors of cell 
cycle, namely, p15INK4B, p16INK4A, p18INK4C, p19 INK4D, p21WAF1/CIP1, p27KIP1, and 
p57KIP. Thus, Sp1 also plays a role in inducing cell cycle arrest [93].

Sp1 was involved in dysregulated cell cycle progression in HCC. Aberrant Sp1- 
mediated regulation of cell cycle by histone deacetylase 2 (HDAC-2) contributed to 
development of HCC [55]. Poly (ADP-ribose) polymerase 1 (PARP-1) was found to 
inhibit Sp1 signaling pathway to promote cell proliferation. PARP inhibitors or 
PARP-1 knockdown induced G0/G1 cell cycle arrest leading to inhibition of prolif-
eration of hepatoma cells and elevated the expression levels of checkpoint proteins 
p21 and p27 [94].
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37.4  Role of Sp1 in Adhesion, Invasion, and Metastasis 
of Liver Cancer

Cell adhesion molecules (CAMs) are crucial for maintaining tissue integrity. CAMs 
also mediate interaction of the cells with their microenvironment. Cell adhesion 
molecules mainly belong to four families—immunoglobulin superfamily, the integ-
rins, the cadherins, and the selectins. In a normal tissue, the expression of the CAMs 
is under stringent regulation. Aberrant expression of CAMs warps normal cell- 
matrix and cell-cell interactions, thereby freeing the cells from their constraints 
ultimately leading to metastasis [88]. The extracellular matrix (ECM) is a term 
applied to a set of varied molecules secreted by cells that provide structural scaffold 
and biochemical assistance to the cells. Cellular adhesion and differentiation and 
cell-to-cell communication are the principal roles of the ECM [2]. Matrix metallo-
proteinases (MMPs) are members of zinc-dependent family of endopeptidases 
which play an important role in tumorigenesis metastasis, by mediating proteolytic 
degradation of ECM, modulating the cell-ECM and cell- cell interactions by induc-
ing angiogenesis. Overexpression of certain MMPs such as MMP-2, MMP-9, 
MMP-13, and MMP-14 was shown to induce epithelial- mesenchymal transition 
[21]. Sp1 was also essential to maintain the mesenchymal phenotype of the HCC 
cells [20].

Sp1 is known to induce MMP-2 secretion by itself [82] and also by interacting 
with Sp3 [63], Brg1 [47], and Src [38]. The interaction of Sp1 with MMP-2 pro-
moter is inhibited by the tumor suppressor p16 [91]. The interaction of Sp1 with 
MMP-2 promoter was shown to induce cell invasion and correlated with poor prog-
nosis in human glioma cases [25]. Thus, in the context of HCC, Sp1 induced MMP-2 
may lead to metastasis. S-phase kinase-associated protein 2 (SKp2), one of the 
components of E3 ubiquitin ligase, has been shown to mediate degradation of p21, 
the Sp1-MMP-2 promoter-binding inhibitor [7, 81], and enhance cell proliferation. 
As might be expected, SKp2 was also able to induce MMP-2 and MMP-9 expres-
sion in Sp1-dependent manner leading to increased invasiveness of tumor cells [28]. 
In addition, the expression of MMP-9 has been found to associate with vascular 
invasion and poor prognosis in the context of HCC [53]. Inhibitors of matrix metal-
loproteinase activity such as reversion-inducing cysteine-rich protein with kazal 
motifs (RECK) can inhibit tumor metastasis. RECK promoter has binding sites for 
Sp1 [69]. An oncogene Ras was shown to induce the binding of histone deacetylase 
to Sp1 binding sites in RECK promoter to repress the expression of RECK [10]. In 
another study, the oncogene CD340 was found to inhibit RECK expression by 
inducing the binding of Sp1 as well as HDAC1 to RECK promoter, thereby promot-
ing metastasis [27]. RECK expression has been detected at mRNA level in HCC 
tissues and is higher as compared to noncancerous tissue. Moreover, higher mRNA 
levels of RECK were correlated with better survival in HCC cases [19].

Studies on several HCC cell lines have implicated Sp1 in inducing the expression 
of several molecules such as CD151 [89] and Coxsackie and adenovirus receptor 
(CAR) [13] that can promote metastasis. Studies on HBV-induced hepatocellular 
carcinoma cells (SW398), gastric cancer cells (SW638), and human embryonic 
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kidney cells (HEK293E) revealed that zinc finger E-box-binding homeobox 2 
(ZEB2) can cooperate with Sp1 to induce the secretion of integrinα5 to facilitate 
metastasis. ZEB2 is also known to repress antimetastatic E-cadherin [52]. The neu-
ron-specific protein T-cell lymphoma invasion and metastasis 2 (TIAM2) is found to 
be ectopically expressed in hepatocellular carcinoma (HCC). The short form of 
TIAM2 (TIAM2S) plays a role of an oncogene in the context of hepatic tumorigen-
esis. Sp1 was reported to bind to the GC box of the TIAM2S core promoter. Sp1 
overexpression in HepaRG cells enhanced expression of TIAM2S, and Sp1 knock-
down caused considerable reduction in TIAM2S mRNA and protein levels in the 
HCC cell lines, HepG2, and PLC/PRF/5 [12]. Basigin-2 is an extracellular matrix 
metalloproteinase inducer. Binding sites of Sp1 are located in basigin-2 promoter 
[43]. Promoter hypomethylation was observed in basigin-2 promoter in HCC cells 
which led to enhanced binding of Sp1. This resulted in higher expression of basi-
gin-2 and poor outcome in HCC cases [34, 35]. However, the situation with basigin-2 
was found to be complicated with the discovery that other isoforms of basigin, basi-
gin-3 and basigin-2, in conjunction could inhibit invasion and proliferation of HCC 
cells [43]. Thus, the role of basigin-2 in HCC needs to be investigated further. Lin 
et al. have recently reported elevated Sp1 expression in HCC as compared to normal 
tissues. Moreover, higher Sp1 expression correlated with tumor differentiation, vas-
cular invasion, and metastasis. Sp1 was also associated with poor survival rates [44].

37.5  Role of Sp1 in Angiogenesis

Tumors require nutrients and oxygen for their growth and maintenance for which 
angiogenic pathways are activated. Vascular endothelial growth factor (VEGF) is a 
renowned positive regulator of angiogenesis [31, 75]. VEGF promoter has several 
Sp1 binding sites, which enhance the expression of VEGF [57, 85]. Binding of Sp1 
to these sites was shown to induce VEGF expression in response to platelet-derived 
growth factor [18]. Furthermore, Sp1 interacts with several other factors such as 
hepatocyte growth factor (HGF) [66], glucose [15], androgen receptor [16], estro-
gen [79], and relaxin [36] to upregulate the expression of VEGF. The intracellular 
signaling cascades such as ERK, RAS, RAF, and MEK mediate Sp1-dependent 
upregulation of VEGF [70]. Several signaling intermediates which are the compo-
nents of these signaling pathways such as protein kinase B, phosphoinositide 
3-kinase [61], and protein kinase C zeta [58] cooperate with Sp1 to enhance VEGF 
synthesis. The role of Sp1 in angiogenesis in the liver has not yet been elucidated. 
However, VEGF expression correlates with HCC in HCV-induced liver cirrhosis 
[50] and has been shown to be associated with metastasis [96] and pain [101] in 
liver cancer patients. Moreover, HCC is a highly angiogenic tumor [97]. Thus, it is 
conceivable that Sp1-induced VEGF may contribute to angiogenesis in liver cancer. 
The pro-angiogenic role of Sp1 in other gastric cancers has been well studied. Sp1 
expression was associated with microvascular density and the expression level of 
VEGF in human pancreatic cancer specimens [99]. Sp1 was expressed at lower 
levels in early stages of gastric cancer and increased as the stage of cancer advanced. 
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High Sp1 expression was accompanied by elevated VEGF expression in almost all 
the cases [98]. Expression levels of Sp1 were positively associated with microvessel 
density. Strong Sp1 expression also was found to correlate with poor survival in 
cases of gastric cancer [92]. One of the mechanisms suggested for stimulation of 
angiogenesis is that Sp1 in conjunction with human telomerase reverse transcriptase 
(hTERT) stimulates VEGF expression [46]. Sp1 thus appears to mediate angiogen-
esis in tumors through the induction of VEGF.

37.6  Role of Sp1 in Apoptosis

Apoptosis or programmed cell death is a vital aspect of normal cell turnover and is 
critical for the survival of an organism. Ability to evade apoptosis is a hallmark of 
cancerous cells [26]. The targets of Sp1 include both pro- and anti- apoptotic factors. 
In vitro studies hepatic cancer cells have shown TIGAR (TP53- induced glycolysis 
and apoptosis regulator) promoter as a target of Sp1 in. TIGAR is induced by p53 
and is involved in reduction of glycolysis as well as intracellular reactive oxygen 
species (ROS) levels and evasion of apoptosis. While Sp1 has been shown to be 
necessary for basal level transcription from TIGAR promoter, the conditions under 
which the expression of TIGAR is upregulated remain to be elucidated [104]. 
Estrogen receptor α (ESRα) while expressed in normal liver, chronic hepatitis, and 
benign liver tumors are downregulated in HCC. Overexpression of ER led to apop-
tosis in Hep3B, a human hepatoma cell line; apoptosis increased when estrogen plus 
ER treatment was given. Western blot analysis revealed high tumor necrosis factor 
α (TNF-α) expression and active caspase 3  in Hep3B cells. The authors further 
showed that ESRα induced Sp1- dependent transcription of TNF-α. The upregula-
tion of TNF-α would lead to activation of caspase 3 and consequently to apoptosis 
[87]. In case of cell death induced by radiation, Sp1 has a different role to play. Sp1 
appeared to be negatively regulated by miR1284, a micro-RNA that is a known 
mediator of radioresistance [100].

Majority of the evidence concerning the mechanisms by which the tumor cells 
manipulate Sp1 to evade apoptosis arose from the investigations on antitumor 
actions of pharmacological agents. One such example is mithramycin. Mithramycin 
is an antineoplastic antibiotic secreted by Streptomyces plicatus. It is DNA and 
RNA polymerase inhibitor which also suppresses Sp1 expression [99]. Acyclic reti-
noid (ACR), a synthetic retinoid, is known to prevent the recurrence of HCC in 
patients who have primary tumors surgically excised, by inducing cell death in HCC 
cells by apoptosis [51]. The mechanism of induction of apoptosis was revealed to be 
transglutaminase 2-mediated cross-linking and inactivation of Sp1 and activation of 
caspase 3 simultaneously. Sp1 inactivation also decreased epidermal growth factor 
expression in HCC cells thereby contributing to apoptosis. The results were also 
recapitulated in nude mice treated with ACR and transplanted with HCC cells and 
also in hepatocarcinogenesis model induced by N-diethylnitrosamine treatment in 
ACR-treated rats [84].

H. Tillu and P. V. Bramhachari



501

A combined treatment of quercetin (3, 3’, 4’, 5, 7-pentahydroxyflavone), a flavo-
noid contained in several vegetables and fruits, and tumor necrosis factor-related apop-
tosis-inducing ligand (TRAIL) was found to rapidly induce apoptosis in HCC cells 
which are resistant to TRAIL. The combined treatment was unaffected by Bcl-xl over-
expression which affords resistance to several chemotherapeutic agents. TRAIL-
mediated proteolytic processing of procaspase-3 was found to be inhibited partially in 
HCC cells. Simultaneous treatment with quercetin was able to efficiently recover 
TRAIL-induced caspase activation. Sp1 induced the upregulation of DR5, a death 
receptor of TRAIL upon quercetin treatment of HCC cells. Moreover, quercetin treat-
ment led to proteasomal degradation of c-FLIP, an inhibitor of caspase-8 [32]. Capsaicin 
is an anticancer agent which is known to cause cell death of TRAIL- induced death-
resistant cells. The mechanism of apoptosis induction of Capsaicin is similar to that of 
quercetin. Capsaicin also induces upregulation of DR5 through Ca2+ influx-dependent 
Sp1 activation, thereby sensitizing the HCC cells to TRAIL- mediated apoptosis [49].

Some pharmacological agents exert their antitumor actions through upregulation 
of inhibitory microRNAs. One such example is a berberine. It is an alkaloid widely 
distributed in medical plants used in traditional Chinese prescriptions [80]. Berberine 
treatment was found to upregulate microRNA-22-3p (miR-22-3p) which directly 
targeted Sp1 to suppress the proliferation of HepG2 cells [11]. Physicon, an active 
ingredient in several traditional medicinal plants, upregulated miR-370 through 
AMPK/Sp1/DNMT1 signaling pathway leading to apoptosis of HCC cell lines, 
SMMC7721 and HepG2 [59].

37.7  Interactions of Sp1 with HBV and HCV

Chronic HBV/HCV infection greatly increases the risk of HCC development. Sp1 
is a transcriptional regulator of some of the genes of HBV. HBV core promoter has 
two binding sites for Sp1, while the upstream ENII enhancer has one. While the 
upstream Sp1 site in the core promoter represses the transcription of HBV X and S 
genes, the binding site for Sp1 in the ENII enhancer activated the transcription of 
the same genes [42]. The promoter of HBV major surface antigen has four binding 
sites for Sp1 [65], and the synthesis of large surface antigen could be activated by 
exogenously expressed Sp1 [64]. Sp1 is directly involved in carcinogenic action of 
these viruses. The protein X of hepatitis B virus enhances insulin- like growth fac-
tor-II (IGF-II) transcription in Sp1-dependent fashion. IGF-II is implicated in 
tumorigenesis of liver cancer [41]. Elevated telomerase activity has been strongly 
associated with several types of cancers [33]. Hepatitis B virus X protein (HBx) 
increased Sp1 binding to the hTERT promoter and was found to mediate the activa-
tion of telomerase and increase the expression of human telomerase reverse tran-
scriptase (hTERT) in HBx-transfected HepG2 cells and also in human HCC cases 
positive for HBx [45]. Sp1 is also implicated in the metastatic action of Hbx. 
Dickkopf-1 protein was reported to enhance HCC invasion and metastasis [83]. Hbx 
protein of HBV was found to upregulate the expression of DKK1 through Sp1 [60].
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In the case of HBV, core protein of HCV mediates transactivation of IGF-II in 
Sp1- and Erg1-dependent manner [40]. HCV, through Sp1, enhances the expression 
of the 3β-hydroxysterol δ24-reductase which impairs p53-mediated cellular 
response and contributes to tumorigenesis [68, 86]. HCV-induced Sp1 binds to the 
promoter of TGF-β1 and activates TGF-β1 expression through the involvement of 
Src, p38, JNK, MAPK, and MEK1/2 kinases. Secreted TGF-β1 is implicated in 
proliferation, invasion, and activation of hepatic stellate cells (HSCs) [62]. 
Osteopontin (OPN), a secreted phosphoprotein, is strongly correlated with tumor 
metastasis in numerous cases including HCC in which it is highly expressed. Sp1 
was reported to bind to OPN promoter and mediate its upregulation synergistically 
with AP-1 [29].

37.8  Conclusions and Future Perspectives

Similar to most of the transcription factors, Sp1 regulates the transcription of numer-
ous genes which have an impact on cell proliferation, cell cycle regulation, angiogen-
esis, metastasis, and overall survival. Most of the studies indicate that a higher Sp1 
response favors a detrimental outcome in case of HCC (Fig. 37.1). There are a host of 
unanswered questions regarding the role Sp1 plays in the context of liver cancer. 
There is scarcity of data regarding the impact of Sp1 signaling in the context of other 
liver cancers excluding HCC, i.e., cholangiocarcinoma, liver angiosarcoma, and hepa-
toblastoma. Moreover, most of the studies have utilized transformed liver cell lines for 
the investigations and if the observations will hold true in vivo remains to be seen. One 
of the major hurdles in the study of HCC is the dynamic hepatic microenvironment, 
which the in vitro cell line systems cannot recapitulate. A significant advancement in 
the said direction would be the development of improved mice models and organoid 
systems. Organoid systems present several advantages. It is a near physiological sys-
tem which can be propagated for years without significant genomic alterations. 
Organoids can be generated to include various types of tissues and are an excellent 
model system for diseases which have poor animal models [17]. Several mice models 
were developed to assess various facets of liver tumors; HBV/HCV transgenic mice 
to study the impact of HBV/HCV infection on hepatic tumorigenesis, hepatic onco-
mice to profile individual genes, Mdr2 and Aox mice to understand metabolism of 
liver cancer cells, and tissue-specific and mosaic genetically engineered mice to assess 
the influence of genetics and tumor microenvironment on tumorigenesis to name a 
few. As is suggested previously, none of the currently existing mouse models can take 
into account all the complexities of HCC biology [5]. In addition, there are numerous 
lacunae in the literature regarding how Sp1 contributes to various hallmarks of cancer, 
especially aberrant cell cycle regulation, angiogenesis, and evasion of apoptosis. 
Filling these gaps would further our understanding of HCC biology and greatly aid us 
to develop new strategies of treatment.

Since Sp1 is upregulated in a majority of HCC cases, it could be an attractive 
candidate biomarker as a predictor of prognosis. Further clinical studies on biopsy 
samples of HCC could perhaps reveal a cutoff of expression levels. An expression 
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higher than the cutoff could perhaps predict a predilection for poor prognosis. The 
knowledge gleaned from these studies could then be translated to treatments. The 
main drug which is used to treat HCC is sorafenib tosylate which is a kinase inhibi-
tor. Several pharmacological agents have been shown to be able to suppress the 
expression of Sp1 and induce apoptosis of cancerous cells. The drugs targeting Sp1 
could be an attractive strategy for chemotherapy in addition to sorafenib (Fig. 37.2). 
Thus, Sp1 is a very attractive candidate for research, diagnostics, and therapy in the 
context of liver cancer with a wealth of information waiting to be tapped.

Fig. 37.1 Sp1 is a critical mediator of tumorigenesis in hepatocytes. Infection by HBV/HCV 
predisposes hepatocytes to undergo transformation. Sp1 mediates angiogenesis via the RAS/RAF/
MEK/ERK pathway. The MMPs, CAR, and integrinα5 mediate metastasis by manipulating Sp1 
activity. PARP and HDAC play an important role in dysregulating cell cycle to favor tumor growth
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Abstract
Transcription factors (TFs) are deregulated in the majority of human cancers and 
play a major role in tumor progression and metastasis. Targeting TFs could prove 
to be highly effective in the treatment of gastrointestinal (GI) malignancies, as 
highlighted by the clinical efficiency of target molecules aiming at the nuclear 
hormone receptors. In this chapter, we summarize the role of different TFs dis-
cussed in the previous chapters with a focus on the emerging chemical as well as 
phytochemical approaches to control their functions. The outstanding diversity 
and efficacy of TFs as the driving force of cell transformation demands a contin-
ued search of TFs as novel and therapeutic agents for anti-GI treatments.
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38.1  Introduction

Gastrointestinal (GI) cancers are the most common and fatal malignancies around 
the western world, with a mortality rate ranking second in the United States [1]. GI 
malignancies are characterized by a stepwise growth of various epigenetic and 
genetic modifications upon transformation of normal cells into tumor cells [2]. 
Treatment options for patients with GI malignancies are very limited since these 
tumors are diagnosed at an advanced stage; therefore, the surgical method is not 
normally recommended [3]. Moreover, results achieved through alternate treat-
ments like radio and chemotherapy are very uncertain [4]. GI tumors tend to respond 
poorly to chemotherapy due to various factors such as alteration of the molecular 
target of the anticancer drug, overexpression of the target molecule, or simultaneous 
activation of parallel signaling pathways. GI malignancies exhibit aberrant gene 
expressions, and transcription factors (TFs) serve as a junction for oncogenic sig-
naling [5]. Upregulation of TFs such as NF-κB, AP-1, HIF-1α, STAT-3, YY1, KLF4, 
LEF-TCF, and E2F-1 promote the expression of oncogenes and induce tumor pro-
gression. Therefore, targeting transcription factors would serve as an important hall-
mark for GI cancer therapy via both direct antitumor effects as well as 
immunomodulatory activities.

38.2  Nuclear Factor Kappa-Light-Chain-Enhancer 
of Activated B Cells (NF-κB)

NF-κB is a TF that plays an important role in inflammation and GI cancer. The 
NF-κB family includes proteins like NF-κB 1, NF-κB 2, c-Rel, p65, and RelB; all 
of these proteins share a Rel homology domain and also form active TFs via homo- 
and heterodimerization [6]. Factors such as stress, cytokines, and pathogen-related 
molecular patterns result in the IkB degradation and eventually the NF-κB translo-
cation into the nucleus, where it controls the protein transcription and promotes 
tumor cell proliferation, survival, invasion, and metastasis [7]. NF-κB also tran-
scriptionally modulates the pro-inflammatory protein and the monocyte chemotac-
tic protein-1 (MCP-1) [8]. GI cancer exhibits continuous activation of NF-κB, 
which is known to stimulate the tumor progression by triggering an inflammatory 
response [9]. Therefore, blocking the NF-κB signaling pathway could exhibit thera-
peutic benefits in GI malignancies. An important strategy for targeting the NF-κB 
signaling pathway is the direct inhibition of NF-κB DNA binding [10]. One such 
class of molecules is the Pyrrole–imidazole polyamides that specifically bind to the 
minor grooves of DNA at the NF-κB sites and block the activity of NF-κB in both 
in vitro and in vivo [11]. Phytochemicals such as curcumin inhibit GI cancer cell 
invasion through AMPK activation and consequent inhibition of NF-κB [12]. 
Curcumin downregulates the expression levels of several NF-κB-regulated genes 
such as B-cell lymphoma 2, COX-2, TNF, and adhesion molecules [13]. Curcumin 
also improves the effect of 5-FU in downregulating the NF-κB pathway and its 
downstream genes [14]. Another natural agent in GI malignancies is genistein, 
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which induces apoptosis in GI cancer cell lines via inhibition of NF-κB signaling 
pathway and through the downregulation of Bcl-2 and the upregulation of Bax [15].

38.3  Signal Transducer and Activator of Transcription-3 
(STAT-3)

STAT-3 is a member of the signal transducers and activators of transcription family, 
which exists in the cytoplasm until stimulated by tyrosine phosphorylation [16]. 
Upon activation, STAT-3 forms dimers that translocate into the nucleus and modu-
late tumor growth, proliferation, and survival [17]. GI cancer cell lines have persis-
tent STAT-3 activation either from the overexpression of tyrosine kinases or the loss 
of function—also known as hyperactivation—of negative modulators. Since STAT-3 
drives the protein expressions that are involved in tumor proliferation and survival, 
blocking STAT-3 activity could serve as an effective antitumor therapy in the treat-
ment of GI malignancies [18]. One such strategy that inhibits the activity of 
STAT-3  in GI cell lines is decreasing its expression through RNA interference 
(RNAi), which reduces the expression of genes that are specific to STAT-3 and also 
suppresses GI cancer cell growth in vivo [19]. Another efficient strategy of STAT-3 
inhibition is blocking its DNA binding by using oligodeoxynucleotide (ODN) 
decoys [20]. MicroRNAs that mediate protein silencing through translational 
repression or via target degradation exemplify another important strategy for over-
coming STAT-3-related immune resistance in GI cancer patients [21]. Curcumin in 
combination with 5-FU shows a synergistic inhibition of STAT3 and survivin 
expression levels, leading to increased cell death in GI malignancies [22]. 
Furthermore, genistein also causes tumor cell death in GI cancers [23].

38.4  Hypoxia-Inducible Factor-1α (HIF-1α)

Along with the expression levels of NF-κB and STAT-3, hypoxia-inducible factor-1α 
(HIF-1α) also exists in the cytoplasm until it is affected by an appropriate stimulus 
[24]. Under hypoxic situations, HIF-1α is not hydroxylated and is released from the 
von Hippel–Lindau protein and then translocated into the nucleus [25]. In the 
nucleus, HIF-1α associates with HIF-1β in order to form the HIF-1 dimer, which 
then binds to the DNA [26]. The activity of HIF-1α is also controlled by growth 
factors that regulate proliferation and survival in GI cell lines [27]. HIF-1α aids in 
tumorigenesis by initiating angiogenesis and modulating cell metabolism in order 
to enable cancer cells to survive hypoxic conditions as well as nutrient deprivation 
[28]. Small molecule and protein therapeutic strategies that target HIF-1α have been 
successfully able to inhibit the tumor development and metastasis in GI cancer 
patients. Curcumin aids in sensitizing gastrointestinal cell linings by targeting 
HIF-1α through RNAi or siRNA, thereby reducing chemoresistance [29, 30]. 
Genistein acts as an antiangiogenic agent by inhibiting the HIF-1α activities par-
ticularly under hypoxic conditions [31].
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38.5  Activating Protein-1 (AP-1)

The activating protein-1 (AP-1) family of TFs involves multiple Jun and Fos 
members in which Jun is the predominant partner to form the A P-1 complex; Jun 
members either homodimerize with Jun itself or heterodimerize with various Fos 
members, and Fos members heterodimerize only with Jun members [32]. The 
AP-1 complex converges several growth signals at the transcriptional level, 
which makes the AP-1 complex an important connecting node required by many 
signal transduction pathways [33]. AP-1 controls tumor proliferation, variation, 
apoptosis, and invasion in GI malignancies. Proliferation of GI cancer cell lines 
requires growth factor signals such as estrogen, EGF, TGFα, heregulin, and 
IGFs, which activate AP-1 signaling [34]. Thus, blocking the AP-1 signaling 
complex might arrest several growth signals that are important for GI cancer cell 
proliferation and metastasis. Curcumin reduces the variation agent-dependent 
increase in AP-1 expression level and DNA binding [35]. It is also known to 
effectively inhibit gastric activation of ERK1/2 and JNK MAPK pathways, AP-1 
genes, and EMT modifications as shown in in  vivo studies [36]. Genistein is 
known to promote anti-invasive and anti- metastatic properties in HCC cell lines 
via the downregulation of MMP-9 and EGFR activities and the consequent sup-
pression of AP-1 activation through the inhibition of MAPK, IκB, and PI3K/Akt 
pathways [37].

38.6  Yin Yang-1 (YY-1)

Yin Yang (YY)-1 is an abundant and multifaceted zinc finger TF member of the 
Polycomb group gene family, which acts as an activator or repressor of transcrip-
tional activity [38]. It can bind to DNA directly or indirectly via association with 
other TFs [39]. It can also control the epigenetic regulation through its association 
with genes that regulate chromatin organization [40]. YY1 changes its structure 
and DNA-binding activity according to temporal redox modifications in the cell. 
YY1 plays a key role as a suppressor mechanism and in the resistance of GI 
tumors to Fas-associated apoptosis. YY1 controls many GI cancer-related pro-
teins such as c-Myc, c-Fos, and p53 [41]. According to a study, YY1 is shown to 
serve as a potential biomarker for the sensitivity of hepatocellular carcinoma 
(HCC) cell lines to HDAC inhibitors [42]. YY1 also reduces the properties of 
HDAC inhibition on HCC carcinogenesis in vitro and in vivo [42]. These proper-
ties indicate the potential role of YY1 and HDAC1 in the clinical prognosis and 
treatment of HCC patients. Another study revealed that the knockdown of YY1 in 
gastric cancer cell lines suppressed tumor proliferation by inhibiting the Wnt/β-
catenin signaling pathway, while YY1 overexpression exerted oncogenic proper-
ties via initiation of the Wnt/β- catenin signaling pathway [43]. This study reveals 
that downregulated expression levels of YY1 via siYY1 would reduce its onco-
genic properties through tumor growth inhibition, elevated G1 phase accumula-
tion, and apoptosis.

G. P. Nagaraju et al.



513

38.7  Krüppel-Like Factor 4 (KLF4)

Krüppel-like factor 4 (KLF4) is a TF with three carboxyl C2H2 zinc fingers. KLF4 
is primarily expressed in epithelial cells of the GI tract, vascular endothelial cells, 
and the thymus. KLF4 is a key regulator of tumor proliferation [44]. This TF also 
inhibits amplification of redox-sensitive development and promotes the expression 
levels of numerous negative regulatory proteins such as p21, p27, p53, and retino-
blastoma [45]. These results indicate that KLF4 is a negative regulator of cell pro-
liferation. KLF4 has been known to serve as an important regulator in tissue 
differentiation [45]. Downregulated KLF4 expression in GI malignancies could 
possibly contribute to the transformation of normal cells to malignant cells and cel-
lular hyper proliferation [46]. These outcomes are consistent with KLF4’s role in 
tumor growth inhibition and cell cycle arrest. A study revealed that KLF4 gene 
expression was significantly reduced in gastric cancer samples as compared to nor-
mal tissues [47]. Another study revealed low expression levels of KLF4 as an inde-
pendent negative prognostic factor [48]. It also suggested that KLF4 might exert a 
suppressive effect on the tumor proliferation and metastasis in GI cancers. Moreover, 
the expression and activity of KLF4 in GI malignancies could serve as important 
biomarker in GI cancer research in the future. KLF4 and curcumin reveal synergis-
tic effects in promoting apoptosis as well as inhibiting tumor proliferation and inva-
sion in gastric cancer cell lines via the inhibition of the PI3K/Akt and JNK/MAPK 
signaling pathways [49].

38.8  T-Cell Factor/Lymphoid Enhancer-Binding Factor  
(TCF/LEF)

T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) proteins are the primary 
downstream effectors of the Wnt pathway [50]. TCF/LEFs are multifunctional 
genes, which use their sequence-specific DNA-binding and context-dependent 
interactions to identify which proteins will be modulated by Wnts. β-Catenin is 
known to control the transcriptional regulation through the formation of a complex 
with LEF/TCF TFs, resulting in the stimulation of downstream target genes [51]. A 
study revealed that retinoic acid (RA) reduces the expression of beta-catenin-LEF/
TCF signaling pathway [52], thereby inhibiting GI tumorigenesis. β-Catenin/TCF–
LEF increased the expression levels of AKT1 and revealed the link between abnor-
mal Wnt/β-catenin signaling and resistance to apoptosis [53]. This shows that 
β-catenin/TCF controls the transcriptional regulation of the AKT1 protein.

38.9  E2F-1

E2F-1 is a member of the E2F family of TFs. E2F-1 is linked specifically with pRb 
and its transcriptional activities, which are negatively regulated by pRb gene. The 
growth suppressive action of pRb relies on its capability of interacting with E2F 
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[54]. Cyclin-cdk-dependent phosphorylation of pRb eliminates this inhibition and 
releases E2F-1 transcriptional activity [55]. As a TF, E2F-1 stimulates many genes 
that aid in the synthesis of DNA, including repair, cell-cycle regulation, and apop-
tosis [56]. Moreover, E2F-1 also attracts many upstream signals in development of 
the cell via the cell cycle or death through apoptosis [57]. E2F-1 promotes cell 
proliferation by activating many genes that stimulate the transition from the G1 
phase to the S phase [58]. E2F-1 increases the proliferation of cells in GI malignan-
cies [59], and the overexpression of E2F-1 encourages inactive cells to enter into the 
S phase [60]. All these suggest that E2F-1 plays a key role in controlling cell growth. 
Moreover, E2F-1 overexpression is known to increase apoptosis in numerous cell 
types, indicating its critical role in synchronizing programmed cell death [61]. 
Recent in vivo studies have suggested that E2F-1 also functions as a tumor suppres-
sor [62]. Dysregulation of the E2F TFs is common in most human cancers, includ-
ing GI malignancies, and plays a critical role in cell growth survival. These properties 
make E2F-1 a novel target for new GI cancer treatments that are aimed at control-
ling the E2F-1 activity.

38.10  Conclusion

Although several potential molecular targets for the treatment of GI malignancies 
have been developed, TFs are particularly attractive. In the process of transducing a 
signal from the cell surface to the genome, TFs lay at the hinge. Moreover, TFs are 
controlled by several converging pathways, and they control multiple genes that 
could contribute toward tumor progression in return. Preclinical and clinical inves-
tigations have supported the idea of targeting TFs. Further research, however, must 
focus on more similar studies in order to develop a novel and potent anti-GI malig-
nancy treatment.
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