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Abstract. This paper proposes a fuzzy finite element procedure for dynamic
analysis of planar steel frame structures with fuzzy input parameters. The fixity
factors of beam – column and column – base connections, loads, mass per unit
volume and damping ratio are modeled as triangular fuzzy numbers. The
Newmark-b numerical integration method is applied to determine the dis-
placement of the linear dynamic equilibrium equation system. The a-level
optimization using the Differential Evolution (DE) involving integrated finite
element modeling is proposed to apply in the fuzzy structural dynamic analysis.
The efficiency of proposed methodology is demonstrated through example
problem relating to for the twenty-story, four-bay portal steel frame.

Keywords: Steel frame � Fuzzy connection � Fuzzy structural dynamic �
Differential evolution algorithm

1 Introduction

In the dynamic analysis of steel frame structures with semi-rigid connections, rigidity
of the connection (or fixity factor of the connection), loads, mass per unit volume, and
damping ratio have a significant influence on the time-history response of steel frame
structure [3, 8, 10, 11]. In practice, however, many parameters like worker skill, quality
of welds, properties of material and type of the connecting elements affect the behavior
of a connection, and this fixity factor is difficult to determine exactly. Therefore, in a
practical analysis of structures, a systematic approach is needed to include the uncer-
tainty in the joints behavior and the fixity factor of a connection modeled as the fuzzy
number is reasonable [7]. In addition, the uncertainty of input parameters such as the
external forces, mass per unit volume and damping ratio are also described in form of
the fuzzy numbers.

In recent years, the fuzzy static analysis, and the fuzzy stability analysis for planar
steel frame structures with the fuzzy connections have been reported [5–7, 14].
However, the fuzzy dynamic analysis for determining the fuzzy time-history response
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by using exact approach has been limited. For the rigid frame, Tuan et al.
(2015) presented an approach by using Response Surface Method (RSM) for fuzzy free
vibration analysis of linear elastic structure in which response surfaces (surrogate
functions) in terms of complete quadratic polynomials are presented for model quan-
tities and all fuzzy variables are standardized [13]. The usage of the RSM shows that
this approach has effectiveness for the complex structural problems with a large number
of fuzzy variables. However, the RSM is only suitable for problems which all fuzzy
variables are modeled as symmetric triangular fuzzy numbers. For the problems with
non-symmetric triangular fuzzy numbers, the fuzzy structural analysis must use another
approach. Anh et al. presented an optimization algorithm for fuzzy analysis by com-
bining the Differential Evolution (DE) with the a-level optimization [1]. DE is a global
optimization technique, which combines the evolution strategy and the Monte Carlo
simulation, and is simple and easy to use [4, 12].

In this paper, the fuzzy displacement - time dependency of planar steel frame
structure is determined in which the fixity factor, loads, and mass per unit volume are
described in the form of triangular fuzzy numbers. A procedure is based on finite
element model by combining the a-level optimization with the Differential Evolution
algorithm (DEa). The Newmark-b average acceleration numerical integration method is
applied to determine the displacements from the linear dynamic equilibrium equation
system of the finite element model. A twenty-floor, four-bay portal steel frame structure
is considered. The deterministic results of the proposed algorithms are also compared
with ones of the SAP2000 software.

2 Finite Element with Linear Semi-rigid Connection

The linear dynamic equilibrium equation system is given as following

M½ � €uf gþ C½ � _uf gþ K½ � uf g ¼ P tð Þf g ð1Þ

where €uf g, _uf g, and uf g are the vectors of acceleration, velocity, and displacement
respectively; [M], [C], and [K] are the mass, damping, and stiffness matrices respec-
tively; {P(t)} is the external load vector. The viscous damping matrix [C] can be
defined as

C½ � ¼ aM M½ � þ bK K½ � ð2Þ

where aM and bK are the proportional damping factors which defined as

aM ¼ n
2x1x2

x1 þx2
; bK ¼ n

2
x1 þx2

ð3Þ

where n is the damping ratio; x1 and x2 are the natural radian frequencies of the first
and second modes of the considered frame, respectively.

In this study, a the frame element with linear semi-rigid connection is shown in
Fig. 1, with E - the elastic modulus, A - the section area, I - the inertia moment, m - the
mass per unit volume, k1 and k2 - rotation resistance stiffness at connections.
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The element stiffness matrix - [Kel] and the mass matrix - [Mel] of the frame are
given as following [2]:

Kel
� � ¼

EA
L
0 k22 symmetric
0 k32 k33

� EA
L 0 0 EA

L
0 k52 k53 0 k55
0 k62 k63 0 k65 k66

2

6666664

3

7777775

ð4Þ

where

k22 ¼ k55 ¼ �k52 ¼ 12EI
L3

s1 þ s2 þ s1s2ð Þ
4� s1s2ð Þ ; k32 ¼ �k53 ¼ 6EI

L2
s1 s2 þ 2ð Þ
4� s1s2ð Þ ð5aÞ

k33 ¼ 2k63 ¼ 12EI
L

s1
4� s1s2ð Þ ; k62 ¼ �k65 ¼ 6EI

L2
s2 s1 þ 2ð Þ
4� s1s2ð Þ ; k66 ¼

12EI
L

s2
4� s1s2ð Þ

ð5bÞ

and

Mel
� � ¼ mAL

420 4� s1s2ð Þ2

140 4� s1s2ð Þ2
0 m22 symmetric
0 m32 m33

70 4� s1s2ð Þ2 0 0 140 4� s1s2ð Þ2
0 m52 m53 0 m55

0 m62 m63 0 m65 m66

2

6666664

3

7777775

ð6Þ

where

m22 ¼ 16 140� 49s2 þ 8s22
� �þ 4s21 32� 55s2 þ 32s22

� �þ 4s1 224� 328s2 þ 50s22
� �

;

m33 ¼ 4L2s21 32� 31s2 þ 8s22
� � ð6aÞ

m55 ¼ 64 35þ 14s2 þ 2s22
� �þ 4s21 32� 50s2 þ 32s22

� �� 4s1 196� 328s2 þ 55s22
� �

;

m66 ¼ 4L2s22 32� 31s2 þ 8s21
� � ð6bÞ

1
L

k2

E, A, I, m1
k

2

Fig. 1. Frame element with linear semi-rigid connection
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m32 ¼ 2Ls1 32 7� 5s2 þ s22
� �þ s1 64� 86s2 þ 25s22

� �� � ð6cÞ

m52 ¼ 1120� 56s2 � 128s22 þ 2s1 �28� 184s2 þ 5s22
� �þ 2s21 �64þ 5s2 þ 41s22

� �

ð6dÞ

m53 ¼ Ls1 4 98� 25s2 � 16s22
� �� s1 128þ 38s2 � 55s22

� �� �
;

m63 ¼ L2s1s2 64s2 � 124þ s1 64� 31s2ð Þð Þ ð6eÞ

m65 ¼ �2Ls2 224þ 64s2 þ s21 32þ 25s2ð Þ � 2s1 80þ 43s2ð Þ� � ð6fÞ

where si = Lki/(3EI + Lki) denote the fixity factor of semi-rigid connection at the
boundaries (i = 1, 2).

In Eq. (1), when fixity factors of connections, external loads, mass per unit volume
and damping ratio are given by fuzzy numbers, the displacements of joints are also the
fuzzy numbers. In steel structures, the common fuzzy connections can be defined by
linguistic terms as shown in Fig. 2. Eleven linguistic terms are assigned numbers from
0 to 10 (~si ¼ 0; 1; . . .10) [7].

In the classical finite element method (FEM), in Eq. (1), the displacement-time
dependency of the joints is determined by solving the linear dynamic equilibrium
equation system. The Newmark-b method has been chosen for the numerical inte-
gration of this equation system because of its simplicity [9]. The fuzzy displacement
is determined by the fuzzy finite element method (FFEM) using the a-cut strategy
with the optimization approaches. FFEM is an extension of FEM in the case that the
input quantities in the FEM are modeled as fuzzy numbers. In this study, an opti-
mization approach is presented in the next sections: the differential evolution algo-
rithm (DEa).
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Fig. 2. Membership functions of fuzzy fixity factors.
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3 Procedure for Fuzzy Structural Analysis

3.1 Linear Elastic Dynamic Analysis Algorithm

The Newmark-b average acceleration method is based on the solution of an incre-
mental form of the equations of motion. For the equations of motion (1), the incre-
mental equilibrium equation is:

M½ � D€uf gþ C½ � D _uf gþ K½ � Duf g ¼ DPf g ð7Þ

where D€uf g, D _uf g, and Duf g are the vectors of incremental acceleration, velocity, and
displacement respectively; DPf g is the external load increment vector. The displace-
ment of the joint at each time step is determined by this algorithm of linear elastic
dynamic analysis.

3.2 a-Level Optimization Using Differential Evolution Algorithm (DEa)

For fuzzy structural analysis, the a-level optimization is known as a general approach
in which all the fuzzy inputs are discretized by the intervals that are equal a-levels. The
output intervals are then searched by the optimization algorithms. The optimization
process is implemented directly by the finite element model and the goal function is
evaluated many times in order to reach to an acceptable value. In this study, the output
intervals are the displacement intervals at each time step, and the solution procedure is
proposed by combining the Differential Evolution algorithm (DEa) with the a-level
optimization. DEa which is a population-based optimizer, which is suggested by Storn
and Price [12]. The DEa has shown better than the genetic algorithm (GA) and is
simple and easy to use.

4 Numerical Illustration

The example is considered by fuzzy elastic dynamic analysis a twenty-story, four-bay
linear semi-rigid portal steel frame subjected to fuzzy loads ~P tð Þ concentrated at joints as
shown in Fig. 3. The elastic modulus is E = 210 � 106 kN/m2, damping ratio n = 0.05.
Fuzzy terms were considered to be triangular fuzzy numbers with 20% absolute spread
[15]. The fuzzy mass per unit volume of the columns and the beams are ~m1 ¼
7:85; 0:785; 0:785ð Þ and ~m2 ¼ ð50; 5; 5Þ (included load dead from slab), respectively.
The fuzzy fixity factor at column base is ~s1 ¼ 9. The fuzzy fixity factor at the ends of
beams from story 1 to story 4 is ~s2 ¼ 8, from story 5 to story 8 is ~s3 ¼ 7, from story 9 to
story 14 is ~s4 ¼ 6, and from story 9 to story 14 is ~s5 ¼ 5. The fuzzy loads are: ~P tð Þ ¼
~P sinðptÞ (0 � t � 2 s), and ~P tð Þ ¼ 0 (t > 2 s), in which ~P ¼ ð40; 4; 4Þ. The section
properties used for analysis of the frame are shown in Table 1.

A time step Dt of 0.05 s is chosen in the dynamic analysis. Since the fuzzy fixity
factor at column base is the non-symmetric triangular fuzzy number, the fuzzy dis-
placement is determined by using the a-level optimization in combination with the DEa
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which is programmed in MATLAB. The parameters for DE are: the NP = 50, F = 0.5,
Cr = 0.9. The optimization process is stopped after 40 iterations.

The time dependency of the displacement (at the central input values) in x direction
at joint 21 of this frame up to t = 20 s is plotted in Fig. 4, and match well with that of
the SAP2000 software. With the fuzzy result for the displacement-time dependency up
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Fig. 3. Portal steel frame with fuzzy input parameters.

Table 1. Section properties used for analysis of the portal steel frame

Member Section Cross-section area, A (m2) Moment of inertia, I (m4)

Column (1st to 4th story) W30x391 7.35E−02 8.616E−03
Column (5th to 8th story) W30x326 6.17E−02 6.993E−03
Column (9th to 14th story) W27x307 5.82E−02 5.453E−03
Column (15th to 20th story) W24x306 5.79E−02 4.454E−03
Beam (1st to 20th story) W24x250 4.74E−02 3.534E−03
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to t = 6.0 s of the joint 21 in x direction of that frame, Fig. 5 shows the fuzzy
displacement-time response and the membership function of fuzzy displacement at
different times in 3D-axis; Fig. 6 shows the envelope of fuzzy displacement and the
values: inf(u21,0 min) = −0.1938 m at t = 2.05 s and sup(u21,0 max) = 0.1651 m at
t = 3.05 s; and Fig. 7 shows the membership function of fuzzy displacement and the
displacement (at central value) from the SAP2000 software, with t = 1.00, 2.05, 3.05,
4.00, 5.00, and 6.00 s. This Fig. 7 shows a significant difference between the shape of
the fuzzy displacement membership functions at the different times.

Fig. 4. Time-displacement response at joint 21 in x direction of the twenty-story frame in
MATLAB and SAP2000.

Fig. 5. Fuzzy displacement-time response at joint 21 in x direction of the twenty-story frame.
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5 Conclusions

A fuzzy dynamic analysis procedure is proposed for the linear elastic semi-rigid steel
frame dynamic analysis with the input triangular fuzzy numbers. The fuzzy finite
element analysis based on the Differential Evolution (DE) in combination with the
a-level optimization, in which the Newmark-b average acceleration method is applied
to determine the deterministic displacement. The fuzzy input parameters such as fixity
factors of connections, external forces, mass per unit volume, and damping ratio have
significant influence on the time dependency of the fuzzy displacement. The numerical
examples illustrated that this procedure is applied efficiently. The deterministic results
are also compared with ones of the SAP2000 software. However, using simple linear

Fig. 6. Envelope of Fuzzy displacement at joint 21 in x direction of the twenty-story frame.

Fig. 7. The membership function of Fuzzy displacement at joint 21 in x direction at different
times of the twenty-story frame.
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elastic semi-rigid connection model is suitable for the structural system assumed that its
displacement is small. As the displacement is large, it is necessary to include geometric
nonlinearity and fuzzy initial geometric imperfections into advanced fuzzy dynamic
analysis of steel frames, this may be subject of studies in the future.
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