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Abstract This chapter illustrates the application of principal component analysis
(PCA) plus statistical hypothesis testing to online damage detection in structures,
and to fault detection of an advanced wind turbine benchmark under actuators (pitch
and torque) and sensors (pitch angle measurement) faults. A baseline pattern or PCA
model is created with the healthy state of the structure using data from sensors.
Subsequently, when the structure is inspected or supervised, new measurements are
obtained and projected into the baseline PCA model. When both sets of data are
compared, both univariate and multivariate statistical hypothesis testing is used to
make a decision. In this work, both experimental results (with a small aluminum
plate) and numerical simulations (with a well-known benchmark wind turbine) show
that the proposed technique is a valuable tool to detect structural changes or faults.

1 Introduction

Principal component analysis (PCA) is a statistical technique that transforms a num-
ber of possibly correlated variables into a smaller number of uncorrelated variables
called principal components. It is well-known that the basic idea behind the PCA is
to reduce the dimension of the data, while retaining as much as possible the variation
present in these data, see [1]. Applications of PCA can be found in a vast variety
of fields from neuroscience to image processing. This chapter provides a thorough
review to the application of PCA to detect structural changes (damages, structural
health monitoring) or faults (in the sensors or in the actuators, condition monitor-

F. Pozo (B) · Y. Vidal
CoDAlab, Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE),
Universitat Politècnica de Catalunya (UPC), Eduard Maristany 10-14, 08019 Barcelona, Spain
e-mail: francesc.pozo@upc.edu

Y. Vidal
e-mail: yolanda.vidal@upc.edu

© Springer Nature Singapore Pte Ltd. 2018
G. R. Naik (ed.), Advances in Principal Component Analysis,
https://doi.org/10.1007/978-981-10-6704-4_7

137



138 F. Pozo and Y. Vidal

ing). First reviewing how data (from sensors) is usually represented, second showing
how in this work is represented in a different manner, then reviewing the group-
scaling processing of the data, and finally showing that PCA plus (univariate and
multivariate) statistical hypothesis testing is a valuable tool to detect structural
changes or faults.

In a standard application of the principal component analysis strategy in the field
of structural health monitoring or condition monitoring, the projections onto the
vectorial space spanned by the principal components (scores) allow a visual grouping
or separation. In some other cases, two classical indices can be used for damage or
fault detection, such as the Q index and the Hotelling’s T 2 index, see [2]. However,
when a visual grouping, clustering or separation cannot be performed with the scores
a more powerful and reliable tool is needed to be able to detect a damage or a fault.
The approaches proposed in this chapter for the damage or fault detection are based
on a group scaling of the data and multiway principal component analysis (MPCA)
combined with both univariate and multivariate statistical hypothesis testing [3–5].

On one hand, the basic premise of vibration based structural health monitoring
feature selection is that damage will significantly alter the stiffness, mass or energy
dissipation properties of a system, which, in turn, alter the measured dynamic re-
sponse of that system. Subsequently, the structure to be diagnosed is excited by the
same signal and the dynamic response is compared with the pattern, see [6]. In this
chapter, these techniques will be applied to an experimental set-up with a smooth-raw
aluminium plate.

On the other hand, in the fault detection case (condition monitoring), this chapter
applies the techniques to an advanced wind turbine benchmark (numerical simula-
tions). In this case, the only available excitation is the wind. Therefore, guided waves
in wind turbines cannot be considered as a realistic scenario. In spite of that, the new
paradigm described is based on the fact that, even with a different wind field, the
fault detection strategy based on PCA and statistical hypothesis testing will be able
to detect faults. A growing interest is being shown in offshore wind turbines, because
they have enormous advantages compared to their onshore version including higher
and steadier wind speed, and less restrictions due to remoteness to urban areas, see
[7]. The main disadvantages of offshore wind energy farms are high construction
costs, and operation and maintenance (O&M) costs because they must withstand
rough weather conditions. The field of wind turbine O&M represents a growing re-
search topic as they are the critical elements affecting profitability in the offshore
wind turbine sector. We believe that PCA plus statistical hypothesis testing has a
tremendous potential in this area. In fact, the work described in this chapter is only
the beginning of a large venture. Future work will develop complete fault detection,
isolation, and reconfigurable control strategies in response to faults based on efficient
fault feature extraction by means of PCA.

This chapter is divided into five main sections. In Sect. 1 we introduce the scope
of the chapter. Section 2 poses the experimental set-up and the reference wind turbine
where the techniques will be applied and tested. The methodology is stated in Sect. 3.
The obtained results are discussed and analyzed in Sect. 4. Finally, Sect. 5 draws the
conclusions.
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2 Experimental Set-Up and Reference Wind Turbine

The damage and fault detection strategies reviewed in this chapter will be applied to
both an experimental set-up and a simulated wind turbine, as described in Sects. 2.1
and 2.2. On one hand, with respect to the experimental set-up, the analysis of changes
in the vibrational properties of a small aluminum plate is used to explain, validate and
test the damage detection strategies. As the aluminum plate will be always excited
by the same signal, this experiment corresponds to guided waves in structures for
structural health monitoring. On the other hand, we will address the problem of online
fault detection of an advanced wind turbine benchmark under actuators (pitch and
torque) and sensors (pitch angle measurements) faults of different type. In this case,
the excitation signal is never the same, as it is given by the wind. Even in this case,
with a different wind signal, the fault detection strategy will be able to detect the
faults. More precisely, the key idea behind the detection strategy is the assumption
that a change in the behavior of the overall system, even with a different excitation,
has to be detected.

2.1 Experimental Set-Up

The small aluminium plate (25 cm × 25 cm × 0.2 cm) in Fig. 1 (top) is used to
experimentally validate the proposed approach in this work. The plate is suspended
by two elastic ropes in a metallic frame in order to isolate the environmental noise and
remove boundary conditions (Fig. 2). Four piezoelectric transducer discs (PZT’s) are
attached on the surface, as can be seen in Fig. 1 (bottom). Each PZT is able to produce
a mechanical vibration (Lamb waves in a thin plate) if some electrical excitation is
applied (actuator mode). Besides, PZT’s are able to detect time varying mechanical
response data (sensor mode). In every phase of the experimental stage, just one
PZT is used as actuator (exciting the plate) and the rest are used as sensors (and
thus recording the dynamical response). A total number of 100 experiments were
performed using the healthy structure: 50 for the baseline (BL) and 50 for testing
(Un, which stands for undamaged, is an abbreviation used throughout the chapter).
Additionally, nine damages (D1, D2, …, D9) were simulated adding different masses
at different locations, see Fig. 1 (bottom). For each damage, 50 experiments were
implemented, resulting in a total number of 450 experiments. The excitation is a
sinusoidal signal of 112 KHz modulated by a Hamming window, as illustrated in
Fig. 3 (top). An example of the signal collected by PZT2 is shown in Fig. 3 (bottom).
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Fig. 1 Aluminium plate
(top). Dimensions and
piezoelectric transducers
location (bottom)
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2.2 Reference Wind Turbine

The National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind
turbine [8] is used in the simulations of the fault detection strategy. This model is
used as a reference by research teams throughout the world to standardize baseline
offshore wind turbine specifications and to quantify the benefits of advanced land-
and sea-based wind energy technologies. In this work, the wind turbine is operated
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Fig. 2 The plate is
suspended by two elastic
ropes in a metallic frame.

in its onshore version and in the above-rated wind-speed range. The main properties
of this turbine are listed in Table 1.

In this chapter, the proposed fault detection method is SCADA-data based, that
is, it uses data already collected at the wind turbine controller. In particular, Table 2
presents assumed available data on a MW-scale commercial wind turbine that is used
in this work by the fault detection method.

The reference wind turbine has a conventional variable-speed, variable blade-
pitch-to-feather configuration. In such wind turbines, the conventional approach for
controlling power-production operation relies on the design of two basic control
systems: a generator-torque controller and a rotor-collective blade-pitch controller.
In this work, the baseline torque and pitch controllers are utilized, but the generator-
converter and the pitch actuators are modeled and implemented externally; i.e., apart
from the embedded FAST code. This will facilitate to model different type of faults
on the generator and the pitch actuator. The next subsections recall these models and
also the wind model used to generate the wind data.
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Fig. 3 Excitation signal
(top) and, dynamic response
recorded by PZT 2 (bottom)
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Table 1 Gross properties of the wind turbine [8]

Reference wind turbine

Rated power 5 MW

Number of blades 3

Rotor/Hub diameter 126, 3 m

Hub Height 90 m

Cut-In, Rated, Cut-Out Wind Speed 3, 11.4, 25 m/s

Rated generator speed 1173.7 rpm

Gearbox ratio 97

2.2.1 Wind Modeling

The TurbSim stochastic inflow turbulence tool (National Wind Technology Center,
Boulder, Colorado, USA) [9] has been used. It provides the ability to drive design
code (e.g., FAST) simulations of advanced turbine designs with simulated inflow tur-
bulence environments that incorporate many of the important fluid dynamic features
known to adversely affect turbine aeroelastic response and loading.

The generated wind data has the following characteristics: Kaimal turbulence
model with intensity set to 10%, logarithmic profile wind type, mean speed is set to
18.2 m/s and simulated at hub height, and the roughness factor is set to 0.01 m.

In this work, every simulation is ran with a different wind data set.
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Table 2 Assumed available measurements. These sensors are representative of the types of sensors
that are available on a MW-scale commercial wind turbine

Number Sensor type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 First pitch angle β1,m deg

6 Second pitch angle β2,m deg

7 Third pitch angle β3,m deg

8 Fore-aft acceleration at tower bottom abfa,m m/s2

9 Side-to-side acceleration at tower bottom abss,m m/s2

10 Fore-aft acceleration at mid-tower amfa,m m/s2

11 Side-to-side acceleration at mid-tower amss,m m/s2

12 Fore-aft acceleration at tower top atfa,m m/s2

13 Side-to-side acceleration at tower top atss,m m/s2

2.2.2 Generator-Converter Actuator Model and Pitch Actuator Model

The generator-converter and the pitch actuators are modeled apart from the embedded
FAST code, with the objective to ease the model of different type of faults on these
parts of the wind turbine.

On one hand, the generator-converter can be modeled by a first-order differential
system [10]:

τr(s)

τc(s)
= αgc

s + αgc

where τr and τc are the real generator torque and its reference (given by the controller),
respectively, and we set αgc = 50 [8]. The power produced by the generator, Pe(t),
can be modeled by [10]:

Pe(t) = ηgωg(t)τr(t)

where ηg is the efficiency of the generator and ωg is the generator speed. In the
numerical experiments, ηg = 0.98 is used [10].

On the other hand, the three pitch actuators are modeled as a second-order linear
differential equation, pitch angle βi(t), and its reference u(t) (given by the collective-
pitch controller) [10]:

βi(s)

u(s)
= ω2

n

s2 + 2ξωns + ω2
n

, i = 1, 2, 3 (1)
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where ωn and ξ are the natural frequency and the damping ratio, respectively. In the
fault free case, these values are set to ωn = 11.11 rad/s, and ξ = 0.6.

2.2.3 Fault Description

In this chapter, the different faults proposed in the fault tolerant control bench-
mark [11] will be considered, as gathered in Table 3. These faults selected by the
benchmark cover different parts of the wind turbine, different fault types and classes,
and different levels of severity.

Usually, pitch systems use either an electric or a fluid power actuator. However,
the fluid power subsystem has lower failure rates and better capability of handling
extreme loads than the electrical systems. Therefore, fluid power pitch systems are
preferred on multi-MW size and offshore turbines. However, general issues such as
leakage, contamination, component malfunction and electrical faults make current
systems work sub-optimal [12]. In this work, faults in the pitch actuator are considered
in the hydraulic system, which result in changed dynamics due to either a high air
content in oil (fault 1) or a drop in pressure in the hydraulic supply system due to
pump wear (fault 2) or hydraulic leakage (fault 3) [13], as well as pitch position
sensor faults (faults 5–7).

Pump wear (fault 2) is an irreversible slow process over the years that results in low
pump pressure. As this wear is irreversible, the only possibility to fix it is to replace
the pump, which will happen after pump wear reaches certain level. Meanwhile,
the pump will still be operating and the system dynamics is slowly changing, while
the turbine structure should be able to withstand the effects of this fault. Pump wear
after approximately 20 years of operation might result in pressure reduction to 75% of
the rated pressure, which is reflected by the faulty natural frequency ωn = 7.27 rad/s
and a fault damping ratio of ξ = 0.75.

Table 3 Fault scenarios

Fault Type Description

1 Pitch actuator Change in dynamics: high air content in oil
(ωn = 5.73 rad/s, ξ = 0.45)

2 Pitch actuator Change in dynamics: pump wear (ωn = 7.27 rad/s,
ξ = 0.75)

3 Pitch actuator Change in dynamics: hydraulic leakage (ωn = 3.42 rad/s,
ξ = 0.9)

4 Generator speed sensor Scaling (gain factor equal to 1.2)

5 Pitch angle sensor Stuck (fixed value equal to 5 deg)

6 Pitch angle sensor Stuck (fixed value equal to 10 deg)

7 Pitch angle sensor Scaling (gain factor equal to 1.2)

8 Torque actuator Offset (offset value equal to 2000 Nm)
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Hydraulic leakage (fault 3) is another irreversible incipient fault but is introduced
considerably faster than the pump wear. Leakage of pitch cylinders can be internal or
external [12]. When this fault reaches a certain level, system repair is necessary, and
if the leakage is too fast (normally due to external leakage), it will lead to a pressure
drop and the preventive procedure is deployed to shut down the turbine before the
blade is stuck in undesired position (if the hydraulic pressure is too low, the hydraulic
system will not be able to move the blades that will cause the actuator to be stuck in its
current position resulting in blade seize). The fast pressure drop is easy to detect (even
visually as it is normally related to external leakage) and requires immediate reaction;
however, the slow hydraulic leakage reduces the dynamics of the pitch system, and
for a reduction of 50% of the nominal pressure the natural frequency under this
fault condition is reduced to ωn = 3.42 rad/s and the corresponding damping ratio is
ξ = 0.9. In this work, the slow (internal) hydraulic leakage is studied.

On the contrary to pump wear and hydraulic leakage, high air content in the oil
(fault 1) is an incipient reversible process, which means that the air content in the oil
may disappear without any necessary repair to the system. The nominal value of the
air content in the oil is 7%, whereas the high air content in the oil corresponds to 15%.
The effect of such a fault is expressed by the new natural frequency ωn = 5.73 rad/s
and the damping ratio of ξ = 0.45 (corresponding to the high air content in the oil).

The generator speed measurement is done using encoders. The gain factor fault
(fault 4) is introduced when the encoder reads more marks on the rotating part than
actually present, which can happen as a result of dirt or other false markings on the
rotating part.

Faults in the pitch position measurement (pitch position sensor fault) are also
advised. This is one of the most important failure modes found on actual systems
[12, 14]. The origin of these faults is either electrical or mechanical, and it can
result in either a fixed value (faults 5 and 6) or a changed gain factor (fault 7) on
the measurements. In particular, the fixed value fault should be easy to detect, and,
therefore, it is important that a fault detection, isolation, and accommodation scheme
be able to deal with this fault. If not handled correctly, these faults will influence the
pitch reference position because the pitch controller is based on these pitch position
measurements.

Finally, a converter torque offset fault is considered (fault 8). It is difficult to detect
this fault internally (by the electronics of the converter controller). However, from a
wind turbine level, it is possible to be detected, isolated, and accommodated because
it changes the torque balance in the wind turbine power train.

3 Fault Detection Strategy

The overall fault detection strategy is based on principal component analysis and
statistical hypothesis testing. A baseline pattern or PCA model is created with the
healthy state of the structure (plate or wind turbine) to study. When the current state
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has to be diagnosed, the collected data is projected using the PCA model. The final
diagnosis is performed using statistical hypothesis testing.

The main paradigm of vibration based structural health monitoring is based on the
basic idea that a change in physical properties due to structural changes or damage
will cause detectable changes in dynamical responses. This idea is illustrated in Fig. 4,
where the healthy structure is excited by a signal to create a pattern. Subsequently,
the structure to be diagnosed is excited by the same signal and the dynamic response
is compared with the pattern. The scheme in Fig. 4 is also know as guided waves in
structures for structural health monitoring [6].

However, in the case of wind turbines, the only available excitation is the wind.
Therefore, guided waves in wind turbines for SHM as in Fig. 4 cannot be considered
as a realistic scenario. In spite of that, the new paradigm described in Fig. 5 is based
on the fact that, even with a different wind field, the fault detection strategy based
on PCA and statistical hypothesis testing will be able to detect some damage, fault
or misbehavior. More precisely, the key idea behind the detection strategy is the

excitation

excitation healthy structure dynamic response

pattern

new 
measurements

Fig. 4 Guided waves in structures for structural health monitoring. The healthy structure is excited
by a signal and the dynamic response is measured to create a baseline pattern. Then, the structure
to diagnose is excited by the same signal and the dynamic response is also measured and compared
with the baseline pattern. A significant difference in the pattern would imply the existence of a fault

wind

wind healthy structure dynamic response

pattern

new 
measurements

Fig. 5 Even with a different wind field, the fault detection strategy is able to detect some damage,
fault or misbehavior
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assumption that a change in the behavior of the overall system, even with a different
excitation, has to be detected. The results presented in Sects. 4.3 and 4.4 confirm this
hypothesis.

3.1 Data Driven Baseline Modeling Based on PCA

Classical approaches to the application of principal component analysis can be sum-
marized in the following example. Let us assume that we have N sensors or variables
that are measuring during (L − 1)Δ seconds, where Δ is the sampling time and
L ∈ N. The discretized measures of each sensor can be arranged as a column vector
xi = (xi1, x

i
2, . . . , x

i
L)

T , i = 1, . . . ,N so we can build up a L × N matrix as follows:

X = (
x1 x2 · · · xN

) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

x1
1 x2

1 · · · xN1
x1

2 x2
2 · · · xN2

...
...

. . .
...

x1
i x2

i · · · xNi
...

...
. . .

...

x1
L x2

L · · · xNL

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

∈ ML×N (R) (2)

It is worth noting that each column in matrix X in Eq. (2) represents the measures
of a single sensor or variable.

However, when multiway principal component analysis is applied to data coming
from N sensors at L discretization instants and n experimental trials, the information
can be stored in an unfolded n× (N × L) matrix as follows:

X =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN11 · · · xN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xNi1 · · · xNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xNn1 · · · xNnL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

(3)

In this case, a column in matrix X in Eq. (3) no longer represents the values
of a variable at different time instants but the measurements of a variable at one
particular time instant in the whole set of experimental trials. The work by Mujica
et al. [2] presents one of the first applications of multiway principal component
analysis (MPCA) for damage assessment in structures using two different measures
or distances (Q and T indices). One of the advantages of the classical approach of
principal component analysis is that the largest components (in absolute value) of the
unit eigenvector related to the largest eigenvalue gives direct information on the most
important sensors installed in the structure [15, 16]. This information is no longer
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available when multiway principal component analysis is applied to the collected
data [16]. Another important difference between the classical approach and MPCA
lies on normalization. On one hand, to apply the PCA in its classical version, each
column vector is normalized to have zero mean and unit variance. On the other hand
(MPCA), the normalization has to take into account that several columns contain the
information of the same sensor. In this case, several strategies can be applied, such
as autoscaling or group scaling. In this work we use the so-called group scaling, that
it is detailed in Sect. 3.1.3.

3.1.1 Guides Waves in Structures for Structural Health Monitoring:
Data Collection

Let us address the PCA modeling by measuring, from a healthy structure, N sensors
at L discretization instants and n experimental trials. In this case, since we consider
guided waves, the structure is excited by the same signal at each experimental trial.
This way, the collected data can be arranged in matrix form as follows:

XGW =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN11 · · · xN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xNi1 · · · xNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xNn1 · · · xNnL

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(4)

In this way, each row vector represents, for a particular experimental trial, the mea-
surements from all the sensors at every specific time instant. Similarly, each column
vector represents measurements from one sensor at one specific time instant in the
whole set of experimental trials. The number of rows of matrix XGW in Eq. (4),
n, is defined by the number of experimental trials. The number of columns of ma-
trix XGW, N · L, is the number of sensors (N) times the number of discretization
instants (L).

3.1.2 Condition Monitoring of Wind Turbines: Data Collection

In the case of wind turbines, the excitation comes from different wind fields. There-
fore, instead of considering different experimental trials as in Sect. 3.1.1, we will first
measure, from a healthy wind turbine, a sensor during (nL − 1)Δ seconds, where Δ

is the sampling time and n,L ∈ N. The discretized measures of the sensor are a real
vector

(
x11 x12 · · · x1L x21 x22 · · · x2L · · · xn1 xn2 · · · xnL

) ∈ R
nL (5)
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where the real number xij, i = 1, . . . , n, j = 1, . . . ,L corresponds to the measure
of the sensor at time ((i − 1)L + (j − 1)) Δ seconds. This collected data can be
arranged in matrix form as follows:

⎛

⎜⎜⎜
⎜⎜⎜
⎝

x11 x12 · · · x1L
...

...
. . .

...

xi1 xi2 · · · xiL
...

...
. . .

...

xn1 xn2 · · · xnL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∈ Mn× L(R) (6)

where Mn× L(R) is the vector space of n×L matrices over R. When the measures
are obtained from N ∈ N sensors also during (nL − 1)Δ seconds, the collected data,
for each sensor, can be arranged in a matrix as in Eq. (6). Finally, all the collected
data coming from the N sensors is disposed in a matrix XWT ∈ Mn× (N ·L) as follows:

XWT =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN11 · · · xN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xNi1 · · · xNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xNn1 · · · xNnL

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(7)

= (
X1

WT X2
WT · · · XN

WT

)

where the superindex k = 1, . . . ,N of each element xkij in the matrix represents the
number of sensor.

It is worth noting that in both approaches —guided waves for structural health
monitoring and condition monitoring of wind turbines— the structure of matrices
XGW and XWT in Eqs. (4) and (7), respectively, are completely equivalent. Therefore,
in the rest of the chapter, we will simply refer to these matrices as X.

The objective of the principal component analysis, as a pattern recognition tech-
nique, is to find a linear transformation orthogonal matrix P ∈ M(N ·L)× (N ·L)(R) that
will be used to transform or project the original data matrix X according to the
subsequent matrix product:

T = XP ∈ Mn× (N ·L)(R) (8)

where T is a matrix having a diagonal covariance matrix.

3.1.3 Group Scaling

Since the data in matrix X come from several sensors and could have different scales
and magnitudes, it is required to apply a preprocessing step to rescale the data using
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the mean of all measurements of the sensor at the same column and the standard
deviation of all measurements of a sensor [17].

More precisely, for k = 1, 2, . . . ,N we define

μk
j = 1

n

n∑

i=1

xkij, j = 1, . . . ,L, (9)

μk = 1

nL

n∑

i=1

L∑

j=1

xkij, (10)

σ k =
√√√√ 1

nL

n∑

i=1

L∑

j=1

(xkij − μk)2 (11)

where μk
j is the mean of the measures placed at the same column, that is, the mean

of the n measures of sensor k in matrix Xk —that corresponds to the n measures
of sensor k at the j-th discretization instant for the whole set of experimental trials
(guided waves) or the measures of sensor k at time instants ((i − 1)L + (j − 1))Δ

seconds, i = 1, . . . , n (wind turbine)—; μk is the mean of all the elements in matrix
Xk , that is, the mean of all the measures of sensor k; and σ k is the standard deviation
of all the measures of sensor k. Therefore, the elements xkij of matrix X are scaled to

define a new matrix X̌ as

x̌kij := xkij − μk
j

σ k
, i = 1, . . . , n, j = 1, . . . ,L, k = 1, . . . ,N . (12)

When the data are normalized using Eq. (12), the scaling procedure is called
variable scaling or group scaling [18].

For the sake of clarity, and throughout the rest of the chapter, the scaled matrix
X̌ is renamed as simply X. The mean of each column vector in the scaled matrix X
can be computed as

1

n

n∑

i=1

x̌kij = 1

n

n∑

i=1

xkij − μk
j

σ k
= 1

nσ k

n∑

i=1

(
xkij − μk

j

)
(13)

= 1

nσ k

[(
n∑

i=1

xkij

)

− nμk
j

]

(14)

= 1

nσ k

(
nμk

j − nμk
j

) = 0 (15)

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate its
covariance matrix as follows:

CX = 1

n − 1
XTX ∈ M(N ·L)× (N ·L)(R) (16)
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The covariance matrix CX is a (N · L)× (N · L) symmetric matrix that measures
the degree of linear relationship within the data set between all possible pairs of
columns. At this point it is worth noting that each column can be viewed as a virtual
sensor and, therefore, each column vector X(:, j) ∈ R

n, j = 1, . . . ,N · L, represents
a set of measurements from one virtual sensor.

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the
covariance matrix as follows:

CXP = PΛ (17)

where the columns of P ∈ M(N ·L)× (N ·L)(R) are the eigenvectors of CX. The diagonal
terms of matrix Λ ∈ M(N ·L)× (N ·L)(R) are the eigenvalues λi, i = 1, . . . ,N · L, of
CX whereas the off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . ,N · L (18)

Λij = 0, i, j = 1, . . . ,N · L, i �= j (19)

The eigenvectors pj, j = 1, . . . ,N · L, representing the columns of the transfor-
mation matrix P are classified according to the eigenvalues in descending order and
they are called the principal components or the loading vectors of the data set. The
eigenvector with the highest eigenvalue, called the first principal component, repre-
sents the most important pattern in the data with the largest quantity of information.

Matrix P is usually called the principal components of the data set or loading
matrix and matrix T is the transformed or projected matrix to the principal component
space, also called score matrix. Using all the N · L principal components, that is, in
the full dimensional case, the orthogonality of P implies PPT = I, where I is the
(N · L)× (N · L) identity matrix. Therefore, the projection can be inverted to recover
the original data as

X = TPT (20)

However, the objective of PCA is, as said before, to reduce the dimensionality of
the data set X by selecting only a limited number � < N · L of principal components,
that is, only the eigenvectors related to the � highest eigenvalues. Thus, given the
reduced matrix

P̂ = (p1|p2| · · · |p�) ∈ MN ·L× �(R) (21)

matrix T̂ is defined as

T̂ = XP̂ ∈ Mn× �(R) (22)

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to
fully recover X although T̂ can be projected back onto the originalN · L−dimensional
space to get a data matrix X̂ as follows:
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X̂ = T̂P̂
T ∈ Mn× (N ·L)(R) (23)

The difference between the original data matrix X and X̂ is defined as the residual
error matrix E or X̃ as follows:

E = X − X̂ (24)

or, equivalenty,

X = X̂ + E = T̂P̂
T + E (25)

The residual error matrix E describes the variability not represented by the data
matrix X̂, and can also be expressed as

E = X(I − P̂P̂T ) (26)

Even though the real measures obtained from the sensors as a function of time
represent physical magnitudes, when these measures are projected and the scores
are obtained, these scores no longer represent any physical magnitude [3]. The key
aspect in this approach is that the scores from different experiments can be compared
with the reference pattern to try to detect a different behavior.

3.2 Fault Detection Based on Univariate Hypothesis Testing

The current structure to diagnose—in Sects. 3.2 and 3.3 we will refer to a structure
as a generic noun for both the aluminium plate, the wind turbine or more complex
mechanical systems—is subjected to the same excitation (guided waves) or to a wind
field (wind turbines) as described in Sects. 3.1.1 and 3.1.2. When the measures are
obtained from N ∈ N sensors at L discretization instants and ν experimental trials
(guides waves) or during (νL − 1)Δ seconds (wind turbines), a new data matrix Y
is constructed as in Eqs. (4) and (7), respectively:

Y =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

y1
11 y1

12 · · · y1
1L y2

11 · · · y2
1L · · · yN11 · · · yN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
i1 y1

i2 · · · y1
iL y2

i1 · · · y2
iL · · · yNi1 · · · yNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
ν1 y1

ν2 · · · y1
νL y2

ν1 · · · y2
νL · · · yNν1 · · · yNνL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∈ Mν × (N ·L)(R) (27)

It is worth remarking that the natural number ν (the number of rows of matrix Y)
is not necessarily equal to n (the number of rows of X), but the number of columns
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of Y must agree with that of X; that is, in both cases the number N of sensors and
the number of samples per row must be equal.

Before the collected data arranged in matrix Y is projected into the new space
spanned by the eigenvectors in matrix P in Eq. (17), the matrix has to be scaled to
define a new matrix Y̌ as in Eq. (12):

y̌kij := ykij − μk
j

σ k
, i = 1, . . . , ν, j = 1, . . . ,L, k = 1, . . . ,N, (28)

where μk
j and σ k are defined in Eqs. (9) and (11), respectively.

The projection of each row vector

ri = Y̌(i, :) ∈ R
N ·L, i = 1, . . . , ν (29)

of matrix Y̌ into the space spanned by the eigenvectors in P̂ is performed through
the following vector to matrix multiplication:

ti = ri · P̂ ∈ R
�. (30)

For each row vector ri, i = 1, . . . , ν, the first component of vector ti is called the
first score or score 1; similarly, the second component of vector ti is called the second
score or score 2, and so on.

In a standard application of the principal component analysis strategy in the field
of structural health monitoring, the scores allow a visual grouping or separation
[2]. In some other cases, as in [19], two classical indices can be used for damage
detection, such as the Q index (also known as SPE, square prediction error) and the
Hotelling’s T 2 index. The Q index of the ith row yTi of matrix Y̌ is defined as follows:

Qi = yTi (I − P̂P̂T )yi. (31)

The T 2 index of the ith row yTi of matrix Y̌ is defined as follows:

T 2
i = yTi (P̂Λ−1P̂T )yi (32)

In this case, however, it can be observed in Fig. 6—where the projection onto
the two first principal components of samples coming from the healthy and faulty
wind turbines are plotted—that a visual grouping, clustering or separation cannot
be performed. A similar conclusion is deducted from Fig. 7. In this case, the plot
of the natural logarithm of indices Q and T 2—defined in Eqs. (31) and (32)—of
samples coming from the healthy and faulty wind turbines does not allow any visual
grouping. A visual separation is neither possible from Fig. 8, where the first score for
baseline experiments of the healthy aluminium plate are plotted together with testing
experiments with several damages. Some strategies can be found in the literature
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Fig. 6 Projection onto the
two first principal
components of samples
coming from the healthy
wind turbine (red, circle) and
from the faulty wind turbine
(blue, diamond)
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Fig. 7 Natural logarithm of
indices Q and T2 of samples
coming from the healthy
wind turbine (red, circle) and
from the faulty wind turbine
(blue, diamond)
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with the objective to overcome these difficulties. For instance, principal component
analysis together with self-organizing maps SOM [20], a robust version of principal
component analysis (RPCA) in the presence of outliers [21] or even nonlinear PCA
(NPCA) or hierarchical PCA (HPCA) [22]. Some of these approaches have a high
computational cost that can lead to delays in the damage or fault diagnosis [16].
Therefore, the methodologies reviewed in this work can be seen as a powerful and
reliable tool with less computational cost with the aim of online damage and fault
detection of structures using principal component analysis.
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Fig. 8 First score for baseline experiments (diamonds) and testing experiments (circles)

3.2.1 The Random Nature of the Scores

Since the dynamic response of a structure (guided waves) and the turbulent wind
(wind turbine) can be considered as a random process, the dynamic response of
the structure (aluminium plate and wind turbine) can be considered as a stochastic
process and the measurements in ri are also stochastic. Therefore, each component
of ti in Eq. (30) acquires this stochastic nature and it will be regarded as a random
variable to construct the stochastic approach in this chapter.

3.2.2 Test for the Equality of Means

The objective of the present work is to examine whether the current structure to
diagnosed is healthy or subjected to a damage (aluminium plate) or to a fault as
those described in Table 3 (wind turbine). To achieve this end, we have a PCA model
(matrix P̂ in Eq. (21)) built as in Sect. 3.1.3 with data coming from a structure or
a wind turbine in a full healthy state. For each principal component j = 1, . . . , �,
the baseline sample is defined as the set of n real numbers computed as the j−th
component of the vector to matrix multiplication X(i, :) · P̂. Note that n is the number
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of rows of matrix X in Eq. (7). That is, we define the baseline sample as the set of
numbers {τ i

j }i=1,...,n given by

τ i
j := (X(i, :) · P̂)(j) = X(i, :) · P̂ · ej, i = 1, . . . , n, (33)

where ej is the j−th vector of the canonical basis.
Similarly, and for each principal component j = 1, . . . , �, the sample of the current

structure to diagnose is defined as the set of ν real numbers computed as the j−th
component of the vector ti in Eq. (30). Note that ν is the number of rows of matrix Y
in Eq. (27). That is, we define the sample to diagnose as the set of numbers {tij}i=1,...,ν

given by

tij := ti · ej, i = 1, . . . , ν. (34)

As said before, the goal of this chapter is to obtain a damage and fault detection
method such that when the distribution of the current sample is related to the dis-
tribution of the baseline sample a healthy state is predicted and otherwise a damage
or fault is detected. To that end, a test for the equality of means will be performed.
Let us consider that, for a given principal component, (a) the baseline sample is a
random sample of a random variable having a normal distribution with unknown
mean μX and unknown standard deviation σX ; and (b) the random sample of the
current structure is also normally distributed with unknown mean μY and unknown
standard deviation σY . Let us finally consider that the variances of these two sam-
ples are not necessarily equal. As said previously, the problem that we will consider
is to determine whether these means are equal, that is, μX = μY , or equivalently,
μX − μY = 0. This statement leads immediately to a test of the hypotheses

H0 : μX − μY = 0 versus (35)

H1 : μX − μY �= 0 (36)

that is, the null hypothesis is “the sample of the structure to be diagnosed is distributed
as the baseline sample” and the alternative hypothesis is “the sample of the structure
to be diagnosed is not distributed as the baseline sample”. In other words, if the result
of the test is that the null hypothesis is not rejected, the current structure is categorized
as healthy. Otherwise, if the null hypothesis is rejected in favor of the alternative,
this would indicate the presence of some damage or faults in the structure.

The test is based on the Welch-Satterthwaite method [23], which is outlined below.
When random samples of size n and ν, respectively, are taken from two normal
distributions N (μX , σX) and N (μY , σY ) and the population variances are unknown,
the random variable
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W =
(
X̄ − Ȳ

) + (μX − μY )
√(

S2
X

n
+ S2

Y

ν

) (37)

can be approximated with a t-distribution with ρ degrees of freedom, that is

W ↪→ tρ, (38)

where

ρ =

⎢⎢⎢⎢⎢
⎢
⎣

(
s2
X

n
+ s2

Y

ν

)2

(s2
X/n)2

n − 1
+ (s2

Y/ν)2

ν − 1

⎥⎥⎥⎥⎥
⎥
⎦

(39)

and where X̄, Ȳ is the sample mean as a random variable; S2 is the sample variance
as a random variable; s2 is the variance of a sample; and �·� is the floor function.

The value of the standardized test statistic using this method is defined as

tobs = x̄ − ȳ
√(

s2
X

n
+ s2

Y

ν

) (40)

where x̄, ȳ is the mean of a particular sample. The quantity tobs is the damage or fault
indicator. We can then construct the following test:

|tobs| ≤ t� =⇒ Fail to reject H0 (41)

|tobs| > t� =⇒ Reject H0, (42)

where t� is such that

P
(
tρ < t�

) = 1 − α

2
(43)

where P is a probability measure and α is the chosen risk (significance) level for the
test. More precisely, the null hypothesis is rejected if |tobs| > t� (this would indicate
the existence of a damage or fault in the structure). Otherwise, if |tobs| ≤ t� there is
no statistical evidence to suggest that both samples are normally distributed but with
different means, thus indicating that no damage or fault in the structure has been
found. This idea is represented in Fig. 9.
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Fig. 9 Fault detection will
be based on testing for
significant changes in the
distributions of the baseline
sample and the sample
coming from the wind
turbine to diagnose

hypothesis test

faultyhealthy

yes no

group
scaling

PCA

X Y

P̂

{τ ij} {tij}

|tobs| ≤t

3.3 Fault Detection Based on Multivariate Hypothesis Testing

In this section, the projections onto the first components —the so-called scores—
are used for the construction of the multivariate random samples to be compared and
consequently to obtain the structural damage or fault indicator, as it is illustrated in
Figs. 10 (guided waves) and 11 (wind turbine).

3.3.1 Multivariate Random Variables and Multivariate Random
Samples

As in Sect. 3.2, the current structure to diagnose is subjected to the same excitation
(guided waves) or to a wind field (wind turbines). The time responses recorded by
the sensors are arranged in a matrix Y ∈ Mν × (N ·L)(R) as in Eq. (27). The rows of
matrix Y are called ri ∈ R

N ·L, i = 1, . . . , ν, as in Eq. (29), where N is the number of
sensors,L is the number of discretization instants and ν is the number of experimental
trials (guides waves) or the number of rows of matrix Y in Eq. (27). Selecting the jth
principal component, vj, j = 1, . . . , �, the projection of the recorded data onto this
principal component is the dot product
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Fig. 10 The structure to be
diagnosed is subjected to a
predefined number of
experiments and a data
matrix XGW is constructed.
This matrix is projected onto
the baseline PCA model P to
obtain the projections onto
the first components T

sensor 1
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sensor 2
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tij = ri · vj ∈ R, i = 1, . . . , ν, j = 1, . . . , � (44)

as in Eq. (34).
Since the dynamic behaviour of a structure depends on some indeterminacy, its

dynamic response can be considered as a stochastic process and the measurements
in ri are also stochastic. On the one hand, tij acquires this stochastic nature and it will
be regarded as a random variable to construct the stochastic approach in this section.
On the other hand, an s-dimensional random vector can be defined by considering
the projections onto several principal components as follows

tij1,...,js = [
tij1 t

i
j2

· · · tijs
]T ∈ R

s, (45)

i = 1, . . . , ν, s ∈ N, j1, . . . , js ∈ {1, . . . , �}, jα �= jβ if α �= β.

The set of s-dimensional vectors
{

tij1,...,js

}

i=1,...,ν
can be seen as a realization of a

multivariate random sample of the variable tj1,...,js . When the realization is performed
on the healthy structure, the baseline sample is denoted as the set of s-dimensional
vectors

{
τ i
j1,...,js

}
i=1,...,n

,
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Fig. 11 The current wind turbine to diagnose is subjected to a wind field. Then the collected data
is projected into the new space spanned by the eigenvectors in matrix P

where n is the number of rows of matrix X in Eqs. (4) (guides waves) and (7) (wind
turbine). As an example, in the case of the aluminium plate experimental set-up, in
Fig. 12 two three-dimensional samples are represented; one is the three-dimensional
baseline sample (left) and the other is referred to damages 1 to 3 (right). This illus-
trating example refers to actuator phase 1 and the first, second and third principal
components. More precisely, Fig. 12 (right) depicts the values of the multivariate
random variable t1,2,3. The diagnosis sample is formed by 20 experiments and the
baseline sample is made by 100 experiments.

3.3.2 Detection Phase and Testing for Multivariate Normality

In this work, the framework of multivariate statistical inference is used with the
objective of the classification of structures in healthy or damaged. With this goal, a
test for multivariate normality is first performed. A test for the plausibility of a value
for a normal population mean vector is then performed.

Many statistical tests and graphical approaches are available to check the multi-
variate normality assumption [24]. But there is no a single most powerful test and it
is recommended to perform several tests to assess the multivariate normality. Let us
consider the three most widely used multivariate normality tests. That is: (i) Mardia’s;
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Fig. 12 Baseline sample (left) and sample from the structure to be diagnosed (right)

(ii) Henze-Zirkler’s; and (iii) Royston’s multivariate normality tests. We include a
brief explanation of these methods for the sake of completeness.

Mardia’s test
Mardia’s test is based on multivariate extensions of skewness (γ̂1,s) and kurtosis (γ̂2,s)
measures [24, 25]:

γ̂1,s = 1

ν2

ν∑

i=1

ν∑

j=1

m3
ij,

γ̂2,s = 1

ν

ν∑

i=1

m2
ij,

where mij = (xi − x̄)T S−1
(
xj − x̄

)
, i, j = 1, . . . , ν is the squared Mahalanobis dis-

tance, S is the variance-covariance matrix, s is the number of variables and ν is
the sample size. The test statistic for skewness, (ν/6) γ̂1,s, is approximately χ2 dis-
tributed with s (s + 1) (s + 2) /6 degrees of freedom. Similarly, the test statistic for
kurtosis, γ̂2,s, is approximately normally distributed with mean s (s + 2) and vari-
ance 8s (s + 2) /ν. For multivariate normality, both p-values of skewness and kurtosis
statistics should be greater than 0.05.

For small samples, the power and the type I error could be violated. Therefore,
Mardia introduced a correction term into the skewness test statistic [26], usually
when ν < 20, in order to control type I errors. The corrected skewness statistic for
small samples is (νk/6) γ̂1,s, where

k = (s + 1) (ν + 1) (ν + 3) / (ν (ν + 1) (s + 1) − 6) .



162 F. Pozo and Y. Vidal

This statistic is also χ2 distributed with s (s + 1) (s + 2) /6 degrees of freedom.

Henze-Zirkler’s test
The Henze-Zirkler’s test is based on a non-negative functional distance that measures
the distance between two distribution functions [25, 27]. If the data is multivariate
normal distributed, the test statistic HZ in Eq. (46) is approximately lognormally
distributed. It proceeds to calculate the mean, variance and smoothness parameter.
Then, mean and variance are lognormalized and the p-value is estimated. The test
statistic of Henze-Zirkler’s multivariate normality test is

HZ = 1

ν

ν∑

i=1

ν∑

j=1

e− β2

2 Dij − 2
(
1 + β2

)− s
2

ν∑

i=1

e
− β2

2(1+β2)
Di + ν

(
1 + β2

)− s
2 , (46)

where s is the number of variables,

β = 1√
2

(
ν(2s + 1)

4

) 1
s+4

,

Dij = (
xi − xj

)T
S−1

(
xi − xj

)
, i, j = 1, . . . , ν,

Di = (xi − x̄)T S−1 (xi − x̄) = mii, i = 1, . . . , ν.

Di gives the squared Mahalanobis distance of the ith observation to the centroid
and Dij gives the Mahalanobis distance between the ith and the jth observations.
If data are multivariate normal distributed, the test statistic (HZ) is approximately
lognormally distributed with mean μ and variance σ 2 as given below:

μ = 1 −
a− s

2

(
1 + sβ

2
a + s(s + 2)β4

)

2a2
,

σ 2 = 2
(
1 + 4β2

)− s
2 + 2a−s

(
1 + 2sβ4

)

a2
+ 3s(s + 2)β8

4a4

− 4w
− s

2
β

(

1 + 3sβ4

2wβ

+ s(s + 2)β8

2w2
β

)

,

where a = 1 + 2β2 and wβ = (
1 + β2

) (
a + 3β2

)
. Hence, the lognormalized mean

and variance of the HZ statistic can be defined as follows:

μlog = ln

⎛

⎝

√
μ4

σ 2 + μ2

⎞

⎠ ,

σ 2
log = ln

(
σ 2 + μ2

σ 2

)
.
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By using the lognormal distribution parameters, μlog and σ 2
log, we can test the signif-

icance of multivariate normality. The Wald test statistic for multivariate normality is
given in the following equation:

z = ln (HZ) − μlog√
σ 2

log

. (47)

Royston’s test
Royston’s test uses the Shapiro-Wilk/Shapiro-Francia statistic to test multivariate
normality [25]. If kurtosis of the data is greater than 3, then it uses the Shapiro-
Francia test for leptokurtic distributions. Otherwise, it uses the Shapiro-Wilk test for
platykurtic distributions. The Shapiro-Wilk test statistic is:

W =
(∑ν

i=1

(
ai · x(i)

))2

∑ν
i=1 (xi − μ)2 ,

where x(i) is the ith order statistic, that is, the ith-smallest number in the sample, μ

is the mean, a = mT V−1√
mT V−1V−1m

, V is the covariance matrix of the order statistics of a
sample of s standard normal random variables with expectation vector m. Let Wj be
the Shapiro-Wilk/Shapiro-Francia test statistic for the jth variable, j = 1, . . . , s, and
Zj be the values obtained from the normality transformation proposed by [28]:

if 4 ≤ ν ≤ 11 then x = ν and wj = − ln
(
γ − ln

(
1 − Wj

))

if 12 ≤ ν ≤ 2000 then x = ln(ν) and wj = ln
(
1 − Wj

)
.

Then transformed values of each random variable can be obtained from the following
equation:

Zj = wj − μ

σ
, (48)

where γ , μ and σ are derived from the polynomial approximations given in equations
[28]:

if 4 ≤ ν ≤ 11 γ = −2.273 + 0.459x,

μ = 0.544 − 0.39978x + 0.025054x2 − 0.0006714x3,

ln(σ ) = 1.3822 − 0.77857x + 0.062767x2 − 0.0020322x3,

if 12 ≤ ν ≤ 2000 μ = −1.5861 − 0.31082x − 0.083751x2 + 0.0038915x3,

ln(σ ) = −0.4803 − 0.082676x + 0.0030302x2.
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The Royston’s test statistic for multivariate normality is then defined as follows:

H = ε
∑s

j=1 ψj

s
∼ χ2

ε ,

where ε is the equivalent degrees of freedom (edf) and Φ(·) is the cumulative distri-
bution function for standard normal distribution such that,

ε = s/ (1 + (s − 1) c̄) ,

ψj = (
Φ−1 (Φ

(−Zj
)
/2
))2

, j = 1, 2, ..., s.

Another extra term c̄ has to be calculated in order to continue with the statistical
significance of Royston’s test statistic. Let R be the correlation matrix and rij be the
correlation between ith and jth variables. Then, the extra term can be found by using
equation:

c̄ =
s∑

i=1

∑

j �=i

cij
s (s − 1)

, (49)

where

cij = g
(
rij, ν

)
(50)

with the boundaries of g(·) as g(0, ν) = 0 and g(1, ν) = 1. The function g(·) is
defined as follows:

g(r, ν) = rλ

(
1 − μ

ξ(ν)
(1 − r)μ

)
. (51)

The unknown parameters μ, λ and ξ were estimated from a simulation study con-
ducted by [28]. He found μ = 0.715 and λ = 5 for sample size 10 ≤ ν ≤ 2000 and
ξ is a cubic function which can be obtained as follows:

ξ(ν) = 0.21364 + 0.015124 ln2(ν) − 0.0018034 ln3(ν). (52)

Quantile-quantile plot
Apart from the multivariate normality tests, some visual representations can also be
used to test for multivariate normality. The quantile–quantile (Q–Q) plot is a widely
used graphical approach to evaluate the agreement between two probability distribu-
tions [24, 25]. Each axis refers to the quantiles of probability distributions to be com-
pared, where one of the axes indicates theoretical quantiles (hypothesized quantiles)
and the other indicates the observed quantiles. If the observed data fit hypothesized
distribution, the points in the Q–Q plot will approximately lie on the bisectrix y = x.
The sample quantiles for the Q–Q plot are obtained as follows. First we rank the
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observations y1, y2, . . . , yν and denote the ordered values by y(1), y(2), . . . , y(ν); thus
y(1) ≤ y(2) ≤ · · · ≤ y(ν). Then the point y(i) is the i/ν sample quantile. The fraction
i/ν is often changed to (i − 0.5)/ν as a continuity correction. With this convention,
y(i) is designated as the (i − 0.5)/ν sample quantile. The population quantiles for
the Q–Q plot are similarly defined corresponding to (i − 0.5)/ν. If we denote these
by q1, q2, . . . , qν , then qi is the value below which a proportion (i − 0.5) /ν of the
observations in the population lie; that is, (i − 0.5) /ν is the probability of getting
an observation less than or equal to qi. Formally, qi can be found for the standard
normal random variable Y with distribution N(0, 1) by solving

Φ(qi) = P(Y < qi) = i − 0.5

ν
(53)

which would require numerical integration or tables of the cumulative standard nor-
mal distribution, Φ(x). Another benefit of using (i − 0.5) /ν instead of i/ν is that
ν/ν = 1 would make qν = +∞. The population need not have the same mean and
variance as the sample, since changes in mean and variance merely change the slope
and intercept of the plotted lie in the Q–Q plot. Therefore, we use the standard normal
distribution, and the qi values can easily be found from a table of cumulative standard
normal probabilities. We then plot the pairs (qi, y(i)) and examine the resulting Q–Q
plot for linearity.

Contour plot
In addition to Q–Q plots, creating perspective and contour plots can be also useful
[24, 25]. The perspective plot is an extension of the univariate probability distribution
curve into a three-dimensional probability distribution surface related with bivariate
distributions. It also gives information about where data are gathered and how two
variables are correlated with each other. It consists of three dimensions where two
dimensions refer to the values of the two variables and the third dimension, which
is likely in univariate cases, is the value of the multivariate normal probability den-
sity function. Another alternative graph, which is called the contour plot, involves
the projection of the perspective plot into a two-dimensional space and this can be
used for checking multivariate normality assumption. Figure 13 shows the contour
plot for bivariate normal distribution with mean

(
0 0

)T ∈ R
2 and covariance matrix(

0.250 0.375
0.375 1.000

)
∈ M2 × 2(R). For bivariate normally distributed data, we expect to

obtain a three-dimensional bell-shaped graph from the perspective plot. Similarly, in
the contour plot, we can observe a similar pattern.

3.3.3 Testing a Multivariate Mean Vector

The objective of this section is to determine whether the distribution of the multivari-
ate random samples that are obtained from the structure to be diagnosed (undamaged
or not, faulty or not) is connected to the distribution of the baseline. To this end, a
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Fig. 13 Contour plot for a
bivariate normal distribution.
The ellipses denote places of
equal probability for the
distribution and provide
confidence regions with
different probabilities
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test for the plausibility of a value for a normal population mean vector will be per-
formed. Let s ∈ N be the number of principal components that will be considered
jointly. We will also consider that: (a) the baseline projection is a multivariate random
sample of a multivariate random variable following a multivariate normal distribu-
tion with known population mean vector μh ∈ R

s and known variance-covariance
matrix Σ ∈ Ms× s(R); and (b) the multivariate random sample of the structure to be
diagnosed also follows a multivariate normal distribution with unknown multivariate
mean vector μc ∈ R

s and known variance-covariance matrix Σ ∈ Ms× s(R).
As said previously, the problem that we will consider is to determine whether a

given s-dimensional vector μc is a plausible value for the mean of a multivariate
normal distribution Ns(μh,Σ). This statement leads immediately to a test of the
hypothesis

H0 : μc = μh versus

H1 : μc �= μh,

that is, the null hypothesis is ‘the multivariate random sample of the structure to be
diagnosed is distributed as the baseline projection’ and the alternative hypothesis is
‘the multivariate random sample of the structure to be diagnosed is not distributed
as the baseline projection’. In other words, if the result of the test is that the null
hypothesis is not rejected, the current structure is categorized as healthy. Otherwise,
if the null hypothesis is rejected in favor of the alternative, this would indicate the
presence of some structural changes or faults in the structure.

The test is based on the statistic T 2—also called Hotelling’s T 2—and it is sum-
marized below. When a multivariate random sample of size ν ∈ N is taken from a
multivariate normal distribution Ns(μh,Σ), the random variable



Damage and Fault Detection of Structures … 167

T 2 = ν
(
X̄ − μh

)T
S−1 (X̄ − μh

)

is distributed as

T 2 ↪→ (ν − 1)s

ν − s
Fs,ν−s,

where Fs,ν−s denotes a random variable with an F-distribution with s and ν − s
degrees of freedom, X̄ is the sample vector mean as a multivariate random variable;
and 1

nS ∈ Ms× s(R) is the estimated covariance matrix of X̄.
At the α level of significance, we reject H0 in favor of H1 if the observed

t2obs = ν (x̄ − μh)
T S−1 (x̄ − μh)

is greater than (ν−1)s
ν−s Fs,ν−s(α), where Fs,ν−s(α) is the upper (100α)th percentile of

theFs,ν−s distribution. In other words, the quantity t2obs is the damage or fault indicator
and the test is summarized as follows:

t2obs ≤ (ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Fail to reject H0, (54)

t2obs >
(ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Reject H0, (55)

where Fs,ν−s(α) is such that

P
(
Fs,ν−s > Fs,ν−s(α)

) = α,

where P is a probability measure. More precisely, we fail to reject the null hypothesis
if t2obs ≤ (ν−1)s

ν−s Fs,ν−s(α), thus indicating that no structural changes or faults in the
structure have been found. Otherwise, the null hypothesis is rejected in favor of the
alternative hypothesis if t2obs > (ν−1)s

ν−s Fs,ν−s(α), thus indicating the existence of some
structural changes or faults in the structure.

4 Results

In this section, the damage and fault detection strategies described in Sects. 3.2
and 3.3 are applied to both an aluminium plate and a simulated wind turbine. The
experimental results of the damage detection strategy applied to the aluminium plate
using the univariate and multivariate hypothesis testing are presented in Sects. 4.1
and 4.2, respectively. Similarly, the simulation results of the fault detection strategy
applied to the wind turbine using the univariate and multivariate hypothesis testing
are presented in Sects. 4.3 and 4.4, respectively.
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4.1 Aluminum Plate and Univariate HT

Some experiments were performed in order to test the methods presented in Sect. 3.2.
In these experiments, four piezoelectric transducer discs (PZTs) were attached to the
surface of a thin aluminum plate, with dimensions 25 cm × 25 cm × 0.2 cm. Those
PZTs formed a square with 144 mm per side. The plate was suspended by two elastic
ropes, being isolated from environmental influences. Figures 1 (left) and 2 shows the
plate hanging on the elastic ropes.

The experiments are performed in 4 independent phases: (i) piezoelectric trans-
ducer 1 (PZT1) is configured as actuator and the rest of PZTs as sensors; (ii) PZT2
as actuator; (iii) PZT3 as actuator; and (iv) PZT4 as actuator. In order to analyze the
influence of each projection to the PCA model (score), the results of the first three
scores have been considered. In this way, a total of 12 scenarios were examined. For
each scenario, a total of 50 samples of 10 experiments each one (5 for the undamaged
structure and 5 for the damaged structure with respect to each of the 9 different types
of damages) plus the baseline are used to test for the equality of means, with a level
of significance α = 0.30 (the choice of this level of significance will be later on).
Each set of 50 testing samples are categorized as follows: (i) number of samples from
the healthy structure (undamaged sample) which were classified by the hypothesis
test as ‘healthy’ (fail to reject H0); (ii) undamaged sample classified by the test as
‘damaged’ (reject H0); (iii) samples from the damaged structure (damaged sample)
classified as ‘healthy’; and (iv) damaged sample classified as ‘damaged’. The results
for the 12 different scenarios presented in Table 5 are organized according to the
scheme in Table 4. It can be stressed from each scenario in Table 5 that the sum of
the columns is constant: 5 samples in the first column (undamaged structure) and 45
samples in the second column (damaged structure).

In this table, it is worth noting that two kinds of misclassification are presented
which are denoted as follows:

1. Type I error (or false positive), when the structure is healthy but the null hypothe-
sis is rejected and therefore classified as damaged. The probability of committing
a type I error is α, the level of significance.

2. Type II error (or false negative), when the structure is damaged but the null
hypothesis is not rejected and therefore classified as healthy. The probability of
committing a type II error is called β.

Table 4 Scheme for the presentation of the results in Table 5

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)

Reject H0 Type I error (false alarm) Correct decision
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Table 5 Categorization of the samples with respect to presence or absence of damage and the result
of the test, for each of the four phases and the three scores

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 4 15 3 0 2 4 3 23

Reject H0 1 30 2 45 3 41 2 22

Score 2

Fail to reject H0 4 0 1 4 4 5 5 7

Reject H0 1 45 4 41 1 40 0 38

Score 3

Fail to reject H0 4 2 4 1 4 6 3 6

Reject H0 1 43 1 44 1 39 2 39

4.1.1 Sensitivity and Specificity

Two statistical measures can be employed here to study the performance of the test:
the sensitivity and the specificity. The sensitivity, also called as the power of the
test, is defined, in the context of this work, as the proportion of samples from the
damaged structure which are correctly identified as such. Thus, the sensitivity can
be computed as 1 − β. The specificity of the test is defined, also in this context, as
the proportion of samples from the undamaged structure that are correctly identified
and can be expressed as 1 − α.

The sensitivity and the specificity of the test with respect the 50 samples in each
scenario have been included in Table 7. For each scenario in this table, the results
are organized as shown in Table 6.

It is worth noting that type I errors are frequently considered to be more serious
than type II errors. However, in this application a type II error is related to a missing
fault whereas a type I error is related to a false alarm. In consequence, type II errors
should be minimized. Therefore a small level of significance of 1, 5% or even 10%
would lead to a reduced number of false alarms but to a higher rate of missing faults.
That is the reason of the choice of a level of significance of 30% in the hypothesis
test.

The results show that the sensitivity of the test 1 − β is close to 100%, as desired,
with an average value of 86.58%. The sensitivity with respect to the projection onto

Table 6 Relationship between type I and type II errors

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 Specificity (1 − α) False negative rate (β)

Reject H0 False positive rate (α) Sensitivity (1 − β)
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Table 7 Sensitivity and specificity of the test for each scenario

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.80 0.33 0.60 0.00 0.40 0.09 0.60 0.51

Reject H0 0.20 0.67 0.40 1.00 0.60 0.91 0.40 0.49

Score 2

Fail to reject H0 0.80 0.00 0.20 0.09 0.80 0.11 1.00 0.16

Reject H0 0.20 1.00 0.80 0.91 0.20 0.89 0.00 0.84

Score 3

Fail to reject H0 0.80 0.04 0.80 0.02 0.80 0.13 0.60 0.13

Reject H0 0.20 0.96 0.20 0.98 0.20 0.87 0.40 0.87

the second and third component (second and third score) is increased, in mean, to a
91.50%. The average value of the specificity is 68.33%, which is very close to the
expected value of 1 − α = 70%.

4.1.2 Reliability of the Results

The results in Table 9 are computed using the scheme in Table 8. This table is based
on the Bayes’ theorem [29], where P(H1|accept H0) is the proportion of samples
from the damaged structure that have been incorrectly classified as healthy (true
rate of false negatives) and P(H0|accept H1) is the proportion of samples from the
undamaged structure that have been incorrectly classified as damaged (true rate of
false positives).

Since these two true rates are not a function of the accuracy of the test alone, but
also a function of the actual rate or frequency of occurrence within the test population,
some of the results are not as good as desired. The results in Table 9 can be improved
without affecting the results in Table 7 by considering an equal number of samples
from the healthy structure and from the damaged structure.

Table 8 Relationship between proportion of false negative and false positives

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 P(H0|acceptH0)
True rate of false negatives

P(H1|accept H0)

Reject H0
True rate of false positives

P(H0|accept H1)
P(H1|acceptH1)
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Table 9 True rate of false positives and false negatives

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.21 0.79 1.00 0.00 0.33 0.67 0.12 0.88

Reject H0 0.03 0.97 0.04 0.96 0.07 0.93 0.08 0.92

Score 2

Fail to reject H0 1.00 0.00 0.20 0.80 0.44 0.56 0.42 0.58

Reject H0 0.02 0.98 0.09 0.91 0.02 0.98 0.00 1.00

Score 3

Fail to reject H0 0.67 0.33 0.80 0.20 0.40 0.60 0.33 0.67

Reject H0 0.02 0.98 0.02 0.98 0.03 0.97 0.05 0.95

4.1.3 The Receiver Operating Curves (ROC)

An additional study has been developed based on the ROC curves to determine
the overall accuracy of the proposed method. These curves represent the trade-off
between the false positive rate and the sensitivity in Table 6 for different values of
the level of significance that is used in the statistical hypothesis testing. Note that the
false positive rate is defined as the complementary of the specificity, and therefore
these curves can also be used to visualize the close relationship between specificity
and sensitivity. It can also be remarked that the sensitivity is also called true positive
rate or probability of detection [30]. More precisely, for each scenario and for a given
level of significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1] × [0, 1] ⊂ R
2 (56)

is plotted. We have considered 49 levels of significance within the range [0.2, 0.98]
and with a difference of 0.02. Therefore, for each scenario 49 connected points are
depicted, as can be seen in Fig. 14.

The placement of these points can be interpreted as follows. Since we are interested
in minimizing the number of false positives while we maximize the number of true
positives, these points must be placed in the upper-left corner as much as possible.
However, this is impossible because there is also a relationship between the level
of significance and the false positive rate. Therefore, a method can be considered
acceptable if those points lie within the upper-left half-plane.

As said before, the ROC curves for all possible scenarios are depicted in Fig. 14.
On one hand, in phase 1 (PZT1 as actuator) and phase 4 (PZT4 as actuator), the
first score (diamonds) presents the worst performance because some points are very
close to the diagonal or even below it. However, in the same phases, second and third
scores present better results. It may be surprising that the results related to the first
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Fig. 14 The ROC curves for the three scores for each phase

score are not as good as those related to the rest of scores, but in Sect. 4.1.4 this
will be justified. On the other hand, all scores in phases 2 and 3 present a very good
performance to detect damages.

The curves are similar to stepped functions because we have considered 5 samples
from the undamaged structure and therefore the possible values for the false positive
rate (the values in the x-axis) are 0, 0.2, 0.4, 0.6, 0.8 and 1. Finally, we can say that
the ROC curves provide a statistical assessment of the efficacy of a method and can
be used to visualize and compare the performance of multiple scenarios.
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4.1.4 Analysis and Discussion

Although the first score has the highest proportion of variance, it is not possible to
visually separate between the baseline and the test. Each of the subfigures in Fig. 8
shows the comparison between the first score of the baseline experiments and the test
experiment for each damage. A similar comparison can be found in Fig. 15 where all
the observation points (first score of each experiment) are depicted in a single chart.
The rest of the scores neither allow a visual grouping.

One of the scenarios with the worst results is the one that considers the PZT1 as
actuator and the first score, because the false negative rate is 33%, the false positive
rate is 20% and the true rate of false negatives is 79% (see Tables 7 and 9). These
results, which are extracted from Table 5, are illustrated for each state of the structure
separately in Fig. 15. Just one of the five samples of the healthy structure has been
wrongly rejected (false alarm) whereas all the samples of the structure with damage
D1 have been wrongly not rejected (missing fault). Only one of the five samples of
the structure with damage D2 has been correctly rejected (correct decision). In this
case, however, the bad result can be due to the lack of normality (Fig. 16). This lack
of normality leads to results that cannot be reliable. In fact, these samples should not
have been used for a hypothesis test. The samples of the structure with damage D7
are not normally distributed, although in this case the results are right. This problem
can be solved by repeating the test excluding experiments with those damages (D2
and D7) or eliminating the outliers.

Contrary to what may seem reasonable, the projection on the first component
(which represents the larger variance of the original data) is not always the best
option to detect and distinguish damages. This fact can be explained because the
PCA model is built using the data from the healthy structure and, therefore, the first
component captures the maximal variance of these data. However, when new data
are projected in this model, there is no longer guarantee of the existence of maximal
variance in these new data.

Fig. 15 Results of the
hypothesis test considering
the first score and PZT1 as
actuator
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Fig. 16 Results of the chi-square goodness-of-fit test applied to the samples described Sect. 4.1.
‘BL’ stands for baseline projection, ‘Un’ for the sample obtained from the undamaged structure and
‘Di’ for the damage number i, where i = 1, 2, . . . , 9. It can be shown by observing the upper-left
barplot diagram that all the samples are normally distributed except those corresponding to damages
D2 and D7

4.2 Aluminum Plate and Multivariate HT

As in Sect. 4.1, some experiments were performed in order to test the method pre-
sented in Sect. 3.3.

In this case, 500 experiments were performed over the healthy structure, and
another 500 experiments were performed over the damaged structure with 5 damage
types (100 experiments per damage type). Figure 17 shows the position of damages
1 to 5 (D1 to D5). As excitation, a 50 kHz sinusoidal signal modulated by a hamming
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Fig. 17 Dimensions and piezoelectric transducers location

0 1 2 3 4

x 10
−4

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04
0.06
0.08

0.1

Time [sec]

A
m

pl
itu

de
 [

V
ol

ts
]

0 1 2 3 4

x 10
−4

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

Time [sec]

A
m

pl
itu

de
 [

V
ol

ts
]

Fig. 18 Excitation signal (left) and dynamic response recorded by PZT 1 (right)

window were used. Figure 18 shows the excitation signal and an example of the
signal collected by PZT 1.

4.2.1 Multivariate Normality

As said in Sect. 4.1, the experiments are performed in 4 independent phases: (i)
piezoelectric transducer 1 (PZT1) is configured as actuator and the rest of PZTs as
sensors; (ii) PZT2 as actuator; (iii) PZT3 as actuator; and (iv) PZT4 as actuator. In
order to analyze the influence of each set of projections to the PCA model (score),
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Table 10 Results of the multivariate normality tests when considering the first three principal
components (PC1–PC3) in the four actuator phases. “−” means that all the tests rejected multivariate
normality, “+” means that at least one test indicated multivariate normality while the subindex shows
the tests that indicated normality: 1 (Mardia’s test), 2 (Henze-Zirkler’s test) or 3 (Royston’s test)

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) − +2 +2 −
Undamaged (first set to test) − +1,2,3 +2 −
Undamaged (second set to test) +1 +1,2 − −
Undamaged (third set to test) − +2 − +2,3

Undamaged (fourth set to test) − − − +1,2,3

Undamaged (fifth set to test) − − +1 +1,3

D1 +1,2,3 +2 +1,2 +3

D2 +1,2,3 +1,2,3 +1 +1,3

D3 +1,2,3 +2 +1,2 −
D4 +2 +2,3 − +3

D5 +1,2,3 − +1 −

the results of scores 1 to 3 (jointly), scores 1 to 5 (jointly) and scores 1 to 10 (jointly)
have been considered. In this way, a total of 12 scenarios were examined.

The multivariate normality tests described in Sect. 3.3.2 were performed for all
the data. We summarize in Table 10 the results of the multivariate normality test
when considering the first three principal components (PC1–PC3) for all the actuator
phases.

Some examples of Q–Q plots for the data we consider in this paper are shown
on Fig. 19. It can be observed that the points are distributed closely following the
bisectrix, thus indicating the multivariate normality of the data as stated in Table 10.

Moreover, some other examples of contour plots for the data we consider in this
Section are given in Figs. 20 and 21. These plots are similar to the contour plot of
the bivariate normal distribution in Fig. 13.

Finally, the univariate normality for each principal component and for each actu-
ator phase is also tested. The results are presented in Table 11. As it can be observed,
the univariate data is normally distributed in most of the cases. However, this does
not imply multivariate normality.

4.2.2 Type I and Type II Errors

For each scenario, a total of 50 samples of 20 experiments each one (25 for the
undamaged structure and 5 for the damaged structure with respect to each of the 5
different types of damages) plus the baseline are used to test for the plausibility of
a value for a normal population mean vector, with a level of significance α = 0.60.
Each set of 50 testing samples are categorized as follows: (i) number of samples from
the healthy structure (undamaged sample) which were classified by the hypothesis
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Fig. 19 Q–Q plots corresponding to: (i) fourth set of undamaged data to test, using the first three
principal components (PC1–PC3) in the actuator phase 4 (left) and (ii) damage 2 data, using the
first three principal components (PC1–PC3) in the actuator phase 1 (right). The points of these Q–Q
plots are close to the line y = x thus indicating the multivariate normality of the data

Fig. 20 Contour plot for
undamaged case (fourth set
to test), PZT4 act.,
PC1–PC2. The contour lines
are similar to ellipses of
normal bivariate distribution
from Fig. 13 that means that
the distribution in this case is
normal
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test as ‘healthy’ (fail to reject H0); (ii) undamaged sample classified by the test as
‘damaged’ (reject H0); (iii) samples from the damaged structure (damaged sample)
classified as ‘healthy’; and (iv) damaged sample classified as ‘damaged’. The results
for the 12 different scenarios presented in Table 12 are organized according to the
scheme in Table 4. It can be stressed from each scenario in Table 12 that the sum of
the columns is constant: 25 samples in the first column (undamaged structure) and
25 more samples in the second column (damaged structure).
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Fig. 21 Contour plot for
case D3, PZT1 act.,
PC1–PC2. The contour lines
are similar to ellipses of
normal bivariate distribution
from Fig. 13 that means that
the distribution in this case is
normal
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Table 11 Results of univariate normality tests when considering the first five principal components
separately in the four actuator phases. “−” means lack of normality while “+” means normality

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) −+−++ −+ + ++ − + + + + −++−+
Undamaged (first set to test) −−−+− −+ + +− −++−+ +−+ + +
Undamaged (second set to test) −++ + + −+ + ++ −+ + ++ −++−+
Undamaged (third set to test) −−+ + + −+ + ++ −+ + ++ −+ + ++
Undamaged (fourth set to test) −+−++ −+ + ++ −+ + +− −++−+
Undamaged (fifth set to test) −+−++ −+ + ++ −+ + ++ + + + + +
D1 −+ + ++ −++−+ −++−− + + + + +
D2 −+ + ++ −+ + ++ −+ + +− + + + + +
D3 + + + + + −+ + ++ −+ + ++ + + + + +
D4 −+ + ++ + + +−+ −+ + ++ −+ + ++
D5 + + ++− −+ + ++ −+−+− −+ + ++

As in Sect. 4.1, in Table 12 two kinds of misclassification are presented: (i) type
I errors (or false positive), when the structure is healthy but the null hypothesis is
rejected and therefore classified as damaged; and (ii) type II errors (or false negative),
when the structure is damaged but the null hypothesis is not rejected and therefore
classified as healthy.

It can be observed from Table 12 that Type I errors (false alarms) appear only
when we consider scores 1 to 3 (jointly) and scores 1 to 5 (jointly), while in the last
case (scores 1 to 10), all the decisions are correct.
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Table 12 Categorization of the samples with respect to presence or absence of damage and the
result of the test, for each of the four phases and considering the first score, the second score, scores
1 to 3 (jointly), scores 1 to 5 (jointly) and scores 1 to 10 (jointly)

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 22 13 21 7 18 13 22 12

Reject H0 3 12 4 18 7 12 3 13

Score 2

Fail to reject H0 21 2 24 18 18 5 22 14

Reject H0 4 23 1 7 7 20 3 11

Scores 1–3

Fail to reject H0 24 0 24 13 25 9 24 4

Reject H0 1 25 1 12 0 16 1 21

Scores 1–5

Fail to reject H0 21 0 23 0 21 0 20 0

Reject H0 4 25 2 25 4 25 5 25

Scores 1–10

Fail to reject H0 25 0 25 0 25 0 25 0

Reject H0 0 25 0 25 0 25 0 25

4.2.3 Sensitivity and Specificity

The sensitivity and the specificity of the test with respect to the 50 samples in each
scenario have been included in Table 13. For each scenario in this table, the results
are organized as shown in Table 6.

It is worth noting that type I errors are frequently considered to be more serious
than type II errors. However, in this application a type II error is related to a missing
fault whereas a type I error is related to a false alarm. In consequence, type II errors
should be minimized. Therefore a small level of significance of 1, 5% or even 10%
would lead to a reduced number of false alarms but to a higher rate of missing faults.
That is the reason of the choice of a level of significance of 60% in the hypothesis
test.

The results show that the sensitivity of the test 1 − β is close to 100%, as desired,
with an average value of 78%. The sensitivity with respect to Score 1 to 5 and Score
1 to 10 is increased, in mean, to a 100%. The average value of the specificity is 90%.

4.2.4 Reliability of the Results

The results in Table 14 are computed using the scheme in Table 8. As in Sect. 4.1.2,
Table 14 is based on the Bayes’ theorem [29], where P(H1|accept H0) is the propor-
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Table 13 Sensitivity and specificity of the test for each scenario

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.88 0.52 0.84 0.28 0.72 0.52 0.88 0.48

Reject H0 0.12 0.48 0.16 0.72 0.28 0.48 0.12 0.52

Score 2

Fail to reject H0 0.84 0.08 0.96 0.72 0.72 0.20 0.88 0.56

Reject H0 0.16 0.92 0.04 0.28 0.28 0.80 0.12 0.44

Scores 1–3

Fail to reject H0 0.96 0.00 0.96 0.52 1.00 0.36 0.96 0.16

Reject H0 0.04 1.00 0.04 0.48 0.00 0.64 0.04 0.84

Scores 1–5

Fail to reject H0 0.84 0.00 0.92 0.00 0.84 0.00 0.80 0.00

Reject H0 0.16 1.00 0.08 1.00 0.16 1.00 0.20 1.00

Scores 1–10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Table 14 True rate of false positives and false negatives

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score
1

Fail to reject H0 0.63 0.37 0.75 0.25 0.58 0.42 0.65 0.35

Reject H0 0.20 0.80 0.18 0.82 0.37 0.63 0.19 0.81

Score
2

Fail to reject H0 0.91 0.09 0.57 0.43 0.78 0.22 0.61 0.39

Reject H0 0.15 0.85 0.13 0.88 0.26 0.74 0.21 0.79

Scores 1–3

Fail to reject H0 1.00 0.00 0.65 0.35 0.74 0.26 0.86 0.14

Reject H0 0.04 0.96 0.08 0.92 0.00 1.00 0.05 0.95

Scores 1–5

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.14 0.86 0.07 0.93 0.14 0.86 0.17 0.83

Scores 1–10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
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tion of samples from the damaged structure that have been incorrectly classified as
healthy (true rate of false negatives) and P(H0|accept H1) is the proportion of sam-
ples from the undamaged structure that have been incorrectly classified as damaged
(true rate of false positives).

4.2.5 The Receiver Operating Characteristic (ROC) Curves

An additional study has been developed based on the ROC curves to determine the
overall accuracy of the proposed method. More precisely, for each scenario and for
a given level of significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1] × [0, 1] ⊂ R
2 (57)

is plotted. We have considered 99 levels of significance within the range [0.01, 0.99]
and with a difference of 0.01. Therefore, for each scenario 99 connected points are
depicted, as can be seen in Figs. 22, 23 and 24 when we consider scores 1 to 3
(jointly), scores 1 to 5 (jointly) and scores 1 to 10 (respectively).

As said before, the ROC curves for the 12 possible scenarios are depicted in
Figs. 22, 23 and 24. The best performance is achieved for the case of scores 1 to
3 in phase 1 (Fig. 22) because all of the points are placed in the upper-left corner.
In phases 2–4, the points lie in the upper left half-plain but not in the corner, which
represents a very good behavior of the proposed method. When we consider the case
of scores 1 to 5 (jointly) in Fig. 23 and the case of scores 1 to 10 (jointly) in Fig. 24 it

Fig. 22 The receiver
operating characteristic
(ROC) curves for the scores
1 to 3 (jointly) in the four
actuator phases
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Fig. 23 The receiver
operating characteristic
(ROC) curves for the scores
1 to 5 (jointly) in the four
actuator phases
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Fig. 24 The receiver
operating characteristic
(ROC) curves for the scores
1 to 10 (jointly) in the four
actuator phases
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can be observed that the area under the ROC curves is close to 1 in all of the actuator
phases thus representing an excellent test.

4.2.6 Analysis and Discussion

Multivariate tests allow to get better results in damage detection than univariate
tests. This is perfectly illustrated in Fig. 25 where a correct or wrong detections is
represented as a function of the level of significance α used in the test. We can clearly
characterize four different regions:

• 0 < α ≤ 0.13. In this region, all the five univariate tests and the multivariate
statistical inference pass (correct decision).

• 0.13 < α ≤ 0.62. In this region, some of the five univariate tests fail (wrong de-
cision) while the multivariate statistical inference pass (correct decision).

• 0.62 < α ≤ 0.71. In this region, all the five univariate tests fail (wrong decision)
while the multivariate statistical inference pass (correct decision).

• 0.71 < α < 1. In this region, all the five univariate tests and the multivariate
statistical inference fail (wrong decision).

It is worth noting that in the region 0.62 < α ≤ 0.71, that is, when the level of
significance lies within the range (0.62, 0.71] the multivariate statistical inference
using scores 1 to 5 (jointly) is able to offer a correct decision even though all of the
univariate tests make a wrong decision.

The scenarios with the best results are those that considers scores 1 to 10, because
the false negative rate is 0% and the false positive rate is 0% for all the actuator phases.
The results for scores 1 to 5 (jointly) are quite good, because the false negative rate
is 0% for all actuators and the false positive rate is 7–17%.

Score 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Level of significance

Scores 1−5
(multivariable)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Wrong detection

Correct detection

In this region, the five univariate test fail,
while the multivariate statistical inference passes.

In this region, both the five univariate tests
and the multivariate statistical inference pass.

00
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Fig. 25 Multivariate tests allow to get better results in damage detection that univariate tests. A
correct or wrong detection is represented as a function of the level of significance where four regions
can be identified
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4.3 Wind Turbine and Univariate HT

To validate the fault detection strategy presented in Sect. 3.2 using a simulated wind
turbine, we first consider a total of 24 samples of ν = 50 elements each, according
to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine with respect to each of the eight different fault

scenarios described in Table 3.

In the numerical simulations in this section, each sample of ν = 50 elements is
composed by the measures obtained from the N = 13 sensors detailed in Table 2
during (ν · L − 1)Δ = 312.4875 seconds, where L = 500 and the sampling time
Δ = 0.0125 s. The measures of each sample are then arranged in a ν × (N · L) matrix
as in Eq. (27).

4.3.1 Type I and Type II Errors

For the first three principal components (score 1 to score 3), these 24 samples plus the
baseline sample of n = 50 elements are used to test for the equality of means, with a
level of significance α = 0.36 (the choice of this level of significance will be justified
in Sect. 4.3.2). Each sample of ν = 50 elements is categorized as follows: (i) number
of samples from the healthy wind turbine (healthy sample) which were classified by
the hypothesis test as ‘healthy’ (fail to reject H0); (ii) faulty sample classified by the
test as “faulty” (reject H0); (iii) samples from the faulty structure (faulty sample)
classified as “healthy”; and (iv) faulty sample classified as “faulty”. The results for
the first four principal components presented in Table 15 are organized according to
the scheme in Table 4. It can be stressed from each principal component in Table 15
that the sum of the columns is constant: 16 samples in the first column (healthy wind
turbine) and 8 more samples in the second column (faulty wind turbine).

It can be observed from Table 15 that, in the numerical simulations, Type I errors
(false alarms) and Type II errors (missing faults) appear only when scores 2, 3 or 4
are considered, while when the first score is used all the decisions are correct. The
better performance of the first score is an expected result in the sense that the first
principal component is the component that accounts for the largest possible variance.

Table 15 Categorization of the samples with respect to the presence or absence of damage and the
result of the test for each of the four scores when the size of the samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 12 1 11 5 9 1

Reject H0 0 8 4 7 5 3 7 7
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4.3.2 Sensitivity and Specificity

The sensitivity and the specificity of the test with respect to the 24 samples and for
each of the first four principal components have been included in Table 16. For each
principal component in this table, the results are organized as shown in Table 6.

The results in Table 16 show that the sensitivity of the test 1 − γ is close to
100%, as desired, with an average value of 78.00%. The sensitivity with respect to
the first, second and fourth principal component is increased, in mean, to a 91.33%.
The average value of the specificity is 75.00%, which is very close to the expected
value of 1 − α = 64%.

4.3.3 Reliability of the Results

The results in Table 17 are computed using the scheme in Table 8. This table is based
on the Bayes’ theorem [29], where P(H1|accept H0) is the proportion of samples
from the faulty wind turbine that have been incorrectly classified as healthy (true
rate of false negatives) and P(H0|accept H1) is the proportion of samples from the
healthy wind turbine that have been incorrectly classified as faulty (true rate of false
positives).

4.3.4 The Receiver Operating Curves (ROC)

The ROC curves are also used in this section to determine the overall accuracy of
the proposed method for the fault detection in wind turbines. We have considered
49 levels of significance within the range [0.02, 0.98] and with a difference of 0.02.

Table 16 Sensitivity and specificity of the test for each of the four scores when the size of the
samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.75 0.13 0.69 0.62 0.56 0.13

Reject H0 0.00 1.00 0.25 0.87 0.31 0.38 0.44 0.87

Table 17 True rate of false positives and false negatives for each of the four scores when the size
of the samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.92 0.08 0.69 0.31 0.90 0.10

Reject H0 0.00 1.00 0.36 0.64 0.62 0.38 0.50 0.50
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Therefore, for each of the first four principal components, 49 connected points are
depicted, as can be seen in Fig. 26.

The results presented in Fig. 26, particularly with respect to score 1, are quite
remarkable. The overall behavior of scores 2 and 4 are also acceptable, while the
results of score 3 cannot be considered, in this case, as satisfactory.

In Figs. 27 and 28 a further study is performed. While in Fig. 26 we present the
ROCs when the size of the samples to diagnose is ν = 50, in Fig. 27 the reliability of
the method is analyzed in terms of 48 samples of ν = 25 elements each and in Fig. 28
the reliability of the method is analyzed in terms of 120 samples of ν = 10 elements
each. The effect of reducing the number of elements in each sample is the reduction
in the total time needed for a diagnostic. More precisely, if we keep L = 500, when
the size of the samples is reduced from ν = 50 to ν = 25 and ν = 10, the total time
needed for a diagnostic is reduced from about 312 s to 156 and 62 s, respectively.
Another effect of the reduction in the number of elements in each sample is a slight
deterioration of the overall accuracy of the detection method. However, the results
of scores 1 and 2 in Figs. 27 and 28 are perfectly acceptable.

A very interesting alternative to keep a very good performance of the method
without almost no degradation in its accuracy is by reducing L –the number of time
instants per row per sensor— instead of reducing the number of elements per sample
ν. This way, if we keep ν = 50, when L is reduced from 500 to 50, the total time
needed for a diagnostic is reduced from about 312 s to 31 s. Finally, with the goal
to reduce the computational effort of the fault detection method, a sensor selection
algorithm can be applied [16].

Fig. 26 The Receiver
Operating Curves (ROCs)
for the four scores when the
size of the samples to
diagnose is ν = 50
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Fig. 27 The ROCs for the
four scores when the size of
the samples to diagnose is
ν = 25
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Fig. 28 The ROCs for the
four scores when the size of
the samples to diagnose is
ν = 10
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4.4 Wind Turbine and Multivariate HT

To validate the fault detection strategy presented in Sect. 3.3 using a simulated wind
turbine, we consider —as in Sect. 4.3— a total of 24 samples of ν = 50 elements
each, according to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine with respect to each of the eight different fault

scenarios described in Table 3.

In the numerical simulations in this section, each sample of ν = 50 elements is
composed by the measures obtained from the N = 13 sensors detailed in Table 2
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during (ν · L − 1)Δ = 312.4875 seconds, where L = 500 and the sampling time
Δ = 0.0125 seconds. The measures of each sample are then arranged in a ν × (N · L)

matrix as in Eq. (27).
For the sake of comparison, univariate and multivariate hypothesis testing are

performed, as described in Sects. 3.2 and 3.3, respectively. On one hand, and with
respect to the univariate HT, and for the first three principal components (score
1 to score 3), these 24 samples plus the baseline sample of n = 50 elements are
used to test for the equality of means, with a level of significance α = 0.10. On the
other hand, the same 24 samples plus the baseline sample are used to test for the
plausibility of a value for a normal population mean vector, with the same level of
significance, considering scores 1 to 2 (jointly), scores 1 to 7 (jointly) and scores 1 to
12 (jointly). Each sample of ν = 50 elements is categorized as follows: (i) number
of samples from the healthy wind turbine (healthy sample) which were classified by
the hypothesis test as ‘healthy’ (fail to reject H0); (ii) faulty sample classified by the
test as “faulty” (reject H0); (iii) samples from the faulty structure (faulty sample)
classified as “healthy”; and (iv) faulty sample classified as “faulty”. The results for
the univariate HT for the first three principal components are described in Table 18.
Similarly, the results for the multivariate HT for scores 1 to 2 (jointly), scores 1 to 7
(jointly) and scores 1 to 12 (jointly) are detailed in Table 19. In both tables, the results
are organized according to the scheme in Table 4. It can be stressed from these tables
that the sum of the columns is constant: 16 samples in the first column (healthy wind
turbine) and 8 more samples in the second column (faulty wind turbine).

By examining Tables 18 and 19, it is worth noting that, for a fixed level of sig-
nificance α = 10%, all decisions are correct only when the first twelve scores are
considered jointly. Although the results for the score 1 in Table 18 are quite accept-

Table 18 Categorization of the samples with respect to the presence or absence of a fault and the
result of the test considering the first score, the second score and the third score, when the size of
the samples to diagnose is ν = 50 and the level of significance is α = 10%

Score 1 Score 2 Score 3

H0 H1 H0 H1 H0 H1

Fail to reject H0 16 1 13 7 16 8

Reject H0 0 7 3 1 0 0

Table 19 Categorization of the samples with respect to the presence or absence of a fault and the
result of the test considering scores 1–2 (jointly), scores 1–7 (jointly), and scores 1–12 (jointly),
when the size of the samples to diagnose is ν = 50 and the level of significance is α = 10%

Scores 1–2 Scores 1–7 Scores 1–12

H0 H1 H0 H1 H0 H1

Fail to
reject H0

12 0 13 0 16 0

Reject H0 4 8 3 8 0 8
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Fig. 29 Percentage of
correct decisions using the
multivariate hypothesis
testing fault detection
strategy (scores 1 to 12,
jointly) and the univariate
hypothesis testing (for the
first, second and third score),
as a function of the level of
significance α
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able and it can be improved by increasing the level of significance, it is also important
to try to keep α as small as possible since it is related to the probability of committing
a type I error. In this sense, it can be observed from Fig. 29 that for very small values
of the level of significance α, the percentage of correct decisions in the multivariate
HT—considering scores 1 to 12 jointly—is 100%, while in the rest of the univariate
HT cases, the correct decisions are about to 65–75%.

5 Concluding Remarks

Two different problems have been addressed in this chapter: early detection of dam-
age in structures, and detection of faults in a wind turbine. In both cases, the proposed
methodology, based on PCA plus hypothesis testing, proved to be effective.

In particular, for the experimental set-up, the univariate test showed that the results
related to the first score are not as good as those related to the rest of scores. Thus,
it is important to note that the projection on the first component is not always the
best option to detect damage. Finally, it is shown that multivariate tests improve
significantly the results with respect to univariate HT.

On the other hand, for the numerical simulations of the benchmark wind turbine,
the univariate HT results using the first score has an excellent performance as all
decisions are correct when the used level of significance is α = 0.36. However,
recall that it is advisable to use small values of significance as this will reduce the
number of type I errors. In this case, for α ∈ (0, 0.12], the multivariate HT obtains
the best results with a 100% of correct decisions (while in the univariate HT cases
the correct decisions are about 65–75%).
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