
Leveraging MapReduce
with Column-Oriented Stores: Study
of Solutions and Benefits

Narinder K. Seera and S. Taruna

Abstract The MapReduce framework is a powerful tool to process large volume
of data. It is becoming ubiquitous and is generally used with column-oriented
stores. It offers high scalability and fault tolerance in large-scale data processing,
but still there are certain issues when it comes to access data from columnar stores.
In this paper, first, we compare the features of column stores with row stores in
terms of storing and accessing the data. The paper is focused on studying the main
challenges that arise when column stores are used with MapReduce, such as data
co-location, distribution, serialization, and data compression. Effective solutions to
overcome these challenges are also discussed.

Keywords MapReduce � Data Co-location � Column stores � Data distribution �
Serialization

1 Introduction

In the digital era, there is an emerging discrepancy between the volume of data
being generated by a variety of applications and the ability to analyze this huge
data. As the size of data is growing day by day, it is getting challenging both to
store and process this large-scale data so as to analyze and derive meaning out of it.
All recent database systems use B-tree indexes or hashing to speed up the process
of data access. These data structures keep data sorted and allow very fast and
efficient searching, sequential accessing of data and even insertion and deletion of
data from the underlying storage. Modern DBMS also incorporate a query opti-
mizer that optimizes query before execution and may use either an index file or may
execute a sequential search for accessing data.

N.K. Seera (&) � S. Taruna
Banasthali Vidyapeeth, Jaipur, India
e-mail: sk.narinder@gmail.com

S. Taruna
e-mail: staruna71@yahoo.com

© Springer Nature Singapore Pte Ltd. 2018
V.B. Aggarwal et al. (eds.), Big Data Analytics, Advances in Intelligent
Systems and Computing 654, https://doi.org/10.1007/978-981-10-6620-7_5

39



The problem of processing and analyzing huge data sets has been answered by
MapReduce, a programming model where users write their programs while con-
centrating only on program details ignoring the internal architecture of MR.
MapReduce has no indexing feature and hence it always performs brute force
sequential search. However, most of the column-oriented data storage systems that
use MapReduce use index mechanisms in their underlying data storage units. Apart
from this, sometimes MapReduce also suffer from a serious performance drawback
due to large number of disk seeks. This can be illustrated with the following
example.

In MapReduce model, M output files are produced by N map instances. Each of
the M output files is received by a different reduce instance. These files are stored
on the local machine running the map instance. If N is 500 and M is 100, the map
phase will generate 50,000 local files. When the reduce phase begins, each of the
100 reduce instances reads its 500 input files by using FTP protocol to “pull” each
of its input files from map nodes. With 100 of reducers operating concurrently, it is
expected that multiple reducers will try to access their input files from the same
mapper (map nodes) in parallel—producing huge number of disk seeks and
bringing down the effective data transfer rate of disk by a factor of 20 or more. Due
to this reason, parallel database systems do not materialize their split files and use
“push” rather than “pull”.

Below, we discuss the motivation behind using column-oriented stores and
employing MapReduce techniques with such systems. The rest of the paper is
organized as follows: Sect. 3 introduces how the data is stored and read from
column-oriented stores. In Sect. 4, we explore the main issues related to the use of
column-oriented stores with MapReduce. Finally, in Sect. 5, we conclude the paper
(Fig. 1).

2 Motivation

The main features provided by row oriented stores are:

1. The speed at which data is loaded in HDFS blocks is very fast and no additional
processing overhead is incurred.

Fig. 1 Parallel DBMS versus
MapReduce

40 N.K. Seera and S. Taruna



2. All columns of the same tuple or row can be accessed from the same HDFS
block.

Besides these features, row stores suffer from few serious drawbacks, which are
listed below:

1. All columns of the same row are rarely accessed at the same time.
2. Additional processing overhead is added due to compression of different types

of columnar data (as data types of different columns are generally different).

Figure 2 depicts how read operations are performed in row stores. The read
operation is a two-step process. First, the rows from data nodes are read locally at
the same time. Second, the undesired columns are discarded.

To overcome the limitations of row stores, column stores are generally gaining
popularity and are believed to be best compatible with MapReduce. In the next
section, we discuss how the data is managed in column stores and is used by
MapReduce. We also discuss the challenges and solutions of adhering column
stores with MapReduce.

3 MapReduce with Column Stores

Compared with row stores, I/O cost in column stores can be reduced to a great
extent. The reason for this is that only desired columns are loaded and these
columns can be easily compressed individually. Figure 3 illustrates the read
operations in column stores. As an example, to access columns A and C, which are
available at data node 1 and 3, respectively, first the columns from both the data

Fig. 2 Read operation in row stores

Leveraging MapReduce with Column-Oriented Stores … 41



nodes are fetched at one common place, and then projection is performed over
attributes A and C.

The only drawback of column stores is that—accessing columns from different
data nodes entail additional data transfers in network.

The biggest motivation behind using column stores is to increase the perfor-
mance of I/O in two ways [1]:

1. Minimize the data transfer in network by eliminating the need to access
unwanted columns

2. Reducing the processing overhead to compress all the columns individually.

Distributed systems and programming model such as MapReduce also prefer
column data stores due to the features they offer. HadoopDB [2] also adheres to
columnar data store—Cstore [3] as its underlying data storage unit. Dremel [4]—an
interactive ad hoc query system also use nested columnar data storage, for pro-
cessing large data sets of data. It employs column-striped data storage for reading
data from large storage space and reducing I/O costs due to inexpensive com-
pression. Bigtable offered column family store for grouping multiple columns as a
single basic unit of data access. Hadoop—an open source implementation of Java,
also gained popularity because of its underlying column-wise storage, called HFile.

Fig. 3 Read operation in column stores

42 N.K. Seera and S. Taruna



4 Challenges and Solutions

In the above section, we see how the data is stored and accessed in column-oriented
stores. In this section, we throw a light on the main issues in concern with the
problems of using MapReduce with column-oriented stores and few possible
solutions.

a. Generating equal size splits—The problem is—in order to parallelize the job
effectively over the nodes of a cluster, the data set must be partitioned into
almost equal size splits. This can be done by partitioning the dataset horizontally
and placing all partitions in separate sub-directories in Hadoop; where each
sub-directory will serve as a separate split.

b. Data Co-location [5]—The default data placement policy of Hadoop randomly
allocates the data among nodes for load balancing and simplicity. This data
placement policy is fine for those applications which need to access data from a
single node. But if any application wants to access data from different nodes
concurrently, then this policy shows performance degradation, as:

• It raises the cost of data shuffling
• It increases network overhead due to data transfer
• It decreases the efficiency of data partitioning.

The problem here is that this data placement policy does not give any data
co-location guarantee. So how can we improve the data co-location on the nodes
so that the related values among different columns in the dataset are available on
the same node executing the map task (or mapper).
Babu [6] proposed an algorithm to resolve this issue, named dynamic
co-location algorithm. This algorithm decreases the average number of nodes
which are engaged in processing a query by placing the frequently accessed data
sets on the same node, thereby reducing the data transfer cost. This algorithm
dynamically verifies the relation between data sets and reshuffles the data sets
accordingly. This algorithm has shown significant improvements in the execu-
tion time of MapReduce jobs.
Figure 3 illustrates how two files A and B can be co-located using a locator
table. File A has two blocks and file B has three blocks. All the blocks of both
the files A and B are replicated on the same data nodes. A locator table is used to
keep track of all the co-located files. It stores locator’s information along with a
list of files on the locator (Fig. 4).

c. Data Distribution [7]—In Hadoop, all the nodes store input and output files
related to job currently executing on them. These nodes manage the distribution
of file blocks over other nodes of the cluster, as required. When any node needs
a file, available on any other node, only the desired file block is copied on it to
avoid unnecessary traffic. The method of dividing the data for the map tasks can
be defined by the user.

Leveraging MapReduce with Column-Oriented Stores … 43



Hadoop always try to schedule the job execution on the map instance that
requires minimal amount of data transfers. In other words, a map instance is
provided with a task which can be performed on the files already available on it.
In case where a node has all of the required data blocks but is busy in running
another task, Hadoop will allot the task to some other node. This may increase
file transfer, but it is still more feasible than waiting for the previous job to
finish.

d. Serialization and Lazy record Construction [8]—Serialization is the technique of
converting structured objects into a byte stream. There are two main objectives
of serialization:

• To transmit an object from one node to another over a network for the
purpose of inter-process communication.

• To write an object to a persistent storage.

In Hadoop, the inter-process communication among multiple nodes is achieved
by means of RPC (Remote Procedure Calls). RPC also uses serialization to
convert the original message (to be sent over the network) into a byte stream.
The receiver node receives the bye stream and again converts it into the original
message. This reverse process is called deserialization.
In Hadoop, the main advantage of this technique is that only those columns are
deserialized which are actually retrieved by the map nodes. Hence, it reduces the
deserialization overhead as well as unnecessary disk I/O.

e. Columnar Compression [9]—Generally, columnar formats are likely to show
fine compression ratios due to the fact that data within a column is expected
similar than data across different columns. There are various compression
methods which are adopted by column-oriented stores such as ZLIB, LZO, etc.
All these methods have some advantages and certain limitations. For example,

Fig. 4 Data co-location using a common locator table

44 N.K. Seera and S. Taruna



ZLIB provides superior compression ratios but puts extra CPU overhead while
decompression. LZO is generally employed in Hadoop to give better com-
pression rates with lesser decompression overhead. It is usually adopted in cases
where low decompression overhead is more required rather than the compres-
sion ratio. These compression methods use a special compression approach
called block compression algorithm.
Block Compression: This approach compresses a block of columnar data at
once. After compressing multiple blocks of the same column, they are loaded
into a single HDFS block. The rate of compression and the overhead of
decompression both are affected by using this strategy. Further, the size of
compressed blocks, which can be defined at load time, also influences these
factors. Each compressed block contains a header that gives information about
the number of values in the block and the size of the block. By looking at the
header, the system comes to know whether any value has been accessed in it. If
there is no value in the block, then it can be skipped easily. And if, the header
shows the presence of some values in it, the whole block is accessed and then
decompressed.

f. Joins [5]—To easily and efficiently implement the join strategy, the schema and
expected workload must be known in advance, as it helps in co-partitioning the
data at the loading phase. The fundamental idea is—for given two input data
sets, better performance can be achieved by:

• applying the similar partitioning function on join compatible attributes of
both the data sets at loading phase and

• storing the co-group pairs with same join key on the same node would result
in better performance.

As a result, join operations can be performed locally within each node at query
time. Executing joins with this idea do not need any modifications to be made in
the current implementation of Hadoop framework. The modifications need to be
made only at the internal process of the data splitting.

5 Conclusion

MapReduce programming model was devised by Google to process large data sets.
In this paper, we introduced column stores with row stores in terms of reading and
accessing data. The paper also explored the features of parallel database systems in
contrast with MapReduce systems. The main challenges of using column stores
with MapReduce such as data co-location, data distribution, serialization, com-
pression, joins, etc., have been discussed along with some feasible solutions.

Leveraging MapReduce with Column-Oriented Stores … 45



References

1. Lin, Y., Agrawal, D., Chen, C., Ooi, B.C., Wu, S.: Llama: leveraging columnar storage for
scalable join processing in the MapReduce framework. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pp. 961–972 (2011)

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.: Hadoopdb: an
architectural hybrid of mapreduce and Dbms technologies for analytical workloads. PVLDB
2, 922–933 (2009)

3. Stonebraker, M., Abadi, D.J.. Batkin, D.J., Chen, X., Cherniack, M., Ferreira, M., Lau, E.,
Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., Zdonik, S.: C-store: a
column-oriented dbms. In: VLDB (2005)

4. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.:
Dremel: interactive analysis of web-scale datasets. PVLDB 3(1), 330–339 (2010)

5. Kaldewey, T., Shekita, E., Tata, S.: Clydesdale: structured data processing on map-reduce.
ACM (2012) (978-1-4503-0790-1/12/03)

6. Babu, S.: Dynamic colocation algorithm for Hadoop. In: Advances in Computing
Commmunication and Informatics ICACCI (2014)

7. Peitsa: Map-reduce with columnar storage. Seminar on columnar databases
8. Floratou, A., et al.: Column oriented storage techniques for Map-Reduce. Proc. VLDB

Endowment 4(7) (2011)
9. Chen, S.: Cheetah: a high performance, custom data warehouse on top of MapReduce. Proc.

Endowment (PVLDB) 3(2), 1459–1468 (2010)
10. He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: a fast and

space-e_cient data placement structure in MapReduce-based warehouse systems. In:
Proceedings of International Conference on Data Engineering (ICDE), pp. 1199–1208 (2011)

11. Dittrich, J., Quian_e-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++:
making a yellow elephant run like a cheetah (without it even noticing). Proc. VLDB
Endowment (PVLDB) 3(1), 518–529 (2010)

12. Dittrich, J., Quian_e-Ruiz, J.-A., Richter, S., Schuh, S., Jindal, A., Schad, J.: Only aggressive
elephants are fast elephants. Proc. VLDB Endowment 5(11), 1591–1602 (2012)

13. Eltabakh, M.Y., Tian, Y., Ozcan, F., Gemulla, R., Krettek, A., McPherson, J.: CoHadoop:
exible data placement and its exploitation in Hadoop. Proc. VLDB Endowment (PVLDB) 4
(9), 575–585 (2011)

14. Pavlo, A., et al.: A comparison of approaches to large scale data analysis. In: SIGMOD 2009,
June 29–July 2, 2009, USA

15. Dean, J., Ghemawat, S.: Map-reduce: simplified data processing on large clusters. In: OSDI
2004, p. 10 (2004)

16. Dittrich, J., Quian_e-Ruiz, J.-A.: Efficient big data processing in Hadoop MapReduce. Proc.
VLDB Endowment (PVLDB), 5(12), 2014–2015 (2012)

17. Jindal, A., et al.: Trojan data layouts: right shoes for a running elephant. In: SOCC 2011,
Portugal (2011)

18. Apache Software Foundation: Hadoop Distributed File System: Architecture and Design
(2007)

46 N.K. Seera and S. Taruna


	5 Leveraging MapReduce with Column-Oriented Stores: Study of Solutions and Benefits
	Abstract
	1 Introduction
	2 Motivation
	3 MapReduce with Column Stores
	4 Challenges and Solutions
	5 Conclusion
	References


