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Abstract Finding frequent itemsets in the large transactional database is consid-
ered as one of the most and significant issues in data mining. Apriori is one of the
popular algorithms that widely used as a solution of addressing the same issue.
However, it has computing power shortage to deal with large data sets. Various
modified Apriori-like algorithms have been proposed to enhance the performance
of traditional Apriori algorithm that works on distributed platform. Developing
efficient and fast computing algorithm to handle large data sets becomes a chal-
lenging task due to load balancing, synchronisation and fault-tolerance issue. In
order to overcome these problems, MapReduce model comes into existence,
originally introduced by Google. MapReduce model-based parallel Apriori algo-
rithm finds the frequent itemsets from large data sets using a large number of
computers in distributed computational environment. In this paper, we mainly
focused on parallel Apriori algorithm and its different versions based on approaches
used to implement them. We also explored on current major open issues and
extensions of MapReduce framework along with future research directions.
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1 Introduction

We are living in Big Data era where data is growing exponentially with time and
size of data is moving from terabytes to petabytes [1]. This trend brings out
challenges to store this vast amount of data effectively and demands for analytical
technology. Analysis of Big Data helps the organizations as well as government in
decision-making and setting polices to provide better services to people. Various
data mining tools are available from last decades to extract useful information, but
they failed to process the large data sets because of time and space complexity.
Association rules mining (ARM) technique [2] is used to find out the interesting
patterns, sequences or itemsets from large database [3]. Apriori algorithm is used to
implement ARM, but effectiveness of this algorithm reduces as the size of the data
sets increases to compute, because of its iterative fashion of working which leads to
further increment in the value of time complexity. Lots of work has been done to
make Apriori algorithm run parallel to reduce the time complexity of traditional
Apriori, originally proposed by R. Agarwal. As a result, several parallel Apriori
algorithms come into existence such as count distribution (CD), candidate distri-
bution (CaD) and data distribution (DD). These algorithms provide some key
features such as dynamic itemset counting [4], data and task parallelism [5].
However, these algorithms come with some major weakness of synchronisation of
data, communication issues due to message passing interface (MPI) framework
which mainly support for homogeneous environment rather than heterogeneous
environment and only work with low-level language like C and FORTRAN [6, 7].
Further, workload balancing [8] and fault-tolerance issue make them incapable to
handle Big Data in distributed environments. Above problems lead to the devel-
opment of MapReduce programming model, introduced by Google [9] for pro-
cessing large database which enables the programmer to write programming code
using map and reduce functions to run parallel applications. Google’s MapReduce
framework [10] is one of the current approaches which are available to process the
Big Data using commodity machines or nodes in distributed computational envi-
ronment. Hadoop provides platform to run the MapReduce programming model
[11, 12] and enables the developers to code analytical applications under the hood
of strong fault tolerance where guarantee is offered by Hadoop. Despite of various
advantages of MapReduce model, it has also been criticised in terms of its limi-
tation and complexity [13]. This leads to extensive research on MapReduce char-
acteristics, to identify various issues in terms of performance and complexity of the
model and current implementations [14—16]. To overcome these difficulties, various
extensions are proposed where each one of the extensions fix one or more limita-
tions and drawbacks of MapReduce framework. The scope of this paper is strictly
limited to open issues and extensions of MapReduce model to enhance it, not to
discuss generalised data-flow systems such as Spark, Dryad and Stratosphere.
This paper is organised as follows. Section 2 presents an overview of Big Data
and MapReduce as a programming model under the title background study.
Section 3 presents the parallel Apriori algorithm and its implementation on
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MapReduce framework. Section 4 presents the open issues as limitations of
MapReduce model and various extensions of MapReduce to improve it. We con-
clude in Sect. 5 with possible future research direction.

2 Background Study

2.1 Big Data and Its Characteristics

Generally, Big Data term is used to describe the data that is very large in size and yet
growing exponentially with time. It can be characterised by using following four
parameters, commonly known in terms of “4 V”’ parameters: (i) volume: refers to the
size of data, (ii) velocity: refers to the speed of generation of data, (iii) variety: refers
to the nature of data whether it is structured or unstructured data and (iv) variability:
refers to inconsistency in the data. In current scenario, Big Data and its analysis are at
the centre point of current science and business.

2.2 MapReduce as a Programming Model

MapReduce intends to perform flexible information processing in the cloud [9].
Many Programming models have been proposed under the name process models
such as generic processing model, graph processing model and stream processing
model to solve domain-specific applications. These models are used to improve the
performance of NoSQL databases. MapReduce programming model comes under
generic processing model that used to address the general application problems.
MapReduce programs can be seen in two phases, map phase and reduce phase
which consist of map function and reduce function, respectively, and input to each

Table 1 Classification of MapReduce algorithms

Class Description Example

First Algorithms which are fundamentally based on single | Factoring integers
execution of MapReduce model

Second | Algorithms which are adapted as a sequential Clustering LARge
execution of a constant number of MapReduce model Application (CLARA)

[28]

Third Algorithms which are iterative in nature and where Partitioning around
each iteration requires execution of single medoids (PAM) [28]
MapReduce model only

Fourth Algorithms which are iterative in nature and content Conjugate gradient
of single iteration is significantly denoted as an (CG) [29]

execution of multiple MapReduce models
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function are key-value pairs. MapReduce algorithms can be categorised into four
classes, as shown in Table 1.

3 Parallel Apriori Algorithm
3.1 Parallel Apriori Algorithm on MapReduce

First and foremost, it is required to write parallel Apriori algorithm code in terms of
map and reduce functions to run the application on MapReduce model. These two
main functions of MapReduce model get the inputs in key-value pairs and generate
the output in the key-value form also. The key step in parallel Apriori algorithm is
to find out the frequent itemsets. Figure 1 shows the work flow of generation of
frequent 1-itemsets.

First, HDFS divides the transactional database into data-chunks (default size of
data-chunk is 64 MB) and distributes them among different machines in key-value
form where key represents the Transactional ID (TID) and value denotes the list of
items. Each mapper running on different machines fed by this key-value pairs and
generates the output (key-value) pairs after reading one transaction at a time where
key is further refined to represent each item and value is frequency of occurrence of
item in the database. These outputs of mapper functions also are known as inter-
mediate values, because these values are fed to combiner before to submit to
reducers. Combiner has the task to shuffle and exchange the values using shuffle
sort algorithm and consequently prepares a list having values linked with the same
key. Here, key represents the item and value represents the support
count > minimum support of that item.

Reducer function has the main task to aggregate all key-value pairs and gen-
erates final output [17]. Here, frequent 1-itemsets are generated at the end into
HDEFS (storage unit) as output. Frequent k-itemsets are generated by each mapper
after reading frequent itemsets from previous iteration and generate candidate
itemsets on that basis. This process is done in iterative fashion to get frequent
k-itemsets where each iterative step is same as generation of frequent 1-itemsets
[7, 18].

3.2 Various Proposed Implementations of Parallel Apriori
Algorithm on MapReduce

To reduce the time and space complexity of parallel Apriori algorithm, various
Apriori-like algorithms have been proposed which execute on MapReduce frame-
work. Broadly, these algorithms can be further classified based on 1-phase of
MapReduce and combiner and k-phase of MapReduce approach which is used to
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TID List of Items

T1 11,12,13,14

T2 11,13

T3 12,13

T4 11,1214

T5 12,14

T6 11,12, 13

T7 12,13

TS 11,12, 14
Database LiJ 11,13

(T1, {11,12,13,14) | (14, (1.2, 13D | (17, {12, 13])
(12,411, 13}) (T5, {12, 13} (TS, {11, 12, 13})
(T3, {12,13}) (T6,{11,12.13}) | (19, {11, 13})

(D ) o)
NN N

Intermediate values (11,2).(2.2).(13.3). [ A1, 2). (2. 3). (13, (11, 2), (12, 2). (13. 2),

(14, 1) 1), (14,2) (14,1)
Shuffle and Exchange N
R {1, {2.2.2}). 1z, {2.3.2}), 13, {3.1.2})
(14.{1.2.1}
Output [@Leds (@) [(5.6 J

Fig. 1 Finding of frequent l-itemsets

develop them. Algorithms having 1-phase of MapReduce approach execute single
iteration of MapReduce job to extract all frequent itemsets. On the other hand,
algorithms having k-phase of MapReduce approach execute multiple iterations of
MapReduce job [19]. As a result of continuous research, an improved Apriori
algorithm [20] comes into existence which further minimises the time complexity of
parallel Apriori algorithm from O(|L[*) to O (|Vkey|2/q) where L, is the set of large
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k-itemsets, Vi, is the value list of ith key and g is the number of reducers. Further,
pruning step of this algorithm is improved that leads to Improved Pruning Apriori
(IP-Apriori) [21].

4 MapReduce Open Issues and Extensions

4.1 Performance Issues

MapReduce platform provides some key features such as scalability, fault tolerance
to handle the data at large scale, but overall performance of this platform highly
depends on the nature of application that is executed in distributed computational
environment. To make MapReduce framework more suitable for Big Data handling
and to improve the performance, various Hadoop extensions are suggested over the
period such as index creation [22], data co-location, reuse the previously computed
results and mechanisms dealing with computational skew.

4.2 Programming Model and Query Processing Issues

To code MapReduce applications, understanding of both system architecture and
programming skills is required. The programming model of MapReduce has the
limitation under its “batch” nature where data is needed to upload into the file
system even when the same data set needs to be analysed many times. This pro-
gramming model is also inappropriate for many classes of algorithm where results
of one MapReduce job serving as the input for the next in case of complex queries
analysis process. Consequently, a set of domain-specific systems have been
emerged to extend the MapReduce programming model where high-level languages
such as Java, Ruby, Python and various abstractions have been built to support
MapReduce application development environment. Researchers proposed some
model to implement iterative algorithms using MapReduce framework such as
Hadoop, iHadoop [23], iMapReduce [24], Twister [25] and CloudClustering [26].
Apart from that, users have to spend more time in writing programs in the absence
of expressiveness just like SQL. Therefore, it is required to enhance the MapReduce
query capabilities [27].

4.3 MapReduce Extensions

To eliminate the limitations of MapReduce framework, researchers try to integrate
the key features of parallel database and database to MapReduce programming
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Table 2 MapReduce extensions and advantages

MapReduce
extensions

Advantages

Hadoop++ [30]

Enhanced performance by injecting joining and indexing capabilities into
Hadoop

Manimal [31]

Enables the MapReduce to analyse MapReduce programs automatically

CoHadoop [32]

Supports data storage of linked data at the same compute nodes

SkewReduce [33]

Handles workload by equally dividing input data to mitigate
computational skew

SkewTune [34]

Reduces skew using both map and reduce phases at run-time

MapReduce Helps in online aggregation and stream processing to improve resource

Online [35] utilisation

EARL [36] Allows incremental computations for early results using bootstrapping
technique that is used to estimate the error in sampling data [36]

HAIL [37] Binary PAX representation [38] is used in HAIL to maintain each

physical block copy in a different sort order and preserves Hadoop’s
fault-tolerance properties

MRShare [39]
ReStore [40]

Provides the optimal grouping of queries to support sharing opportunities

Stores and reuses intermediate results of script after completion of tasks
or sub-tasks

model which results in MapReduce extensions. Various MapReduce extensions
with key advantages are listed in Table 2.

5 Conclusion and Future Research Direction

Based on our survey, both Apriori (traditional Apriori) and parallel Apriori algorithm
versions are suffering from the problem of scanning the database multiple times, spe-
cially those based on k-phase of MapReduce approach which incurs high processing
cost and generation of candidate itemsets that needs more memory space. We also
focused on MapReduce capabilities, limitations as open issues and various proposed
extensions. Open issues lead to various extensions or enhancements, and major
enhancements are the result of integration of database with MapReduce, integration
of indexing capabilities to MapReduce, integration of MapReduce with data warehouse
capabilities and adding skew management in MapReduce.

Future research can be carried out in two dimensions to enhance the performance
of parallel Apriori algorithm. One dimension leads to modification in joining and
pruning steps of existing algorithm to enable it to support pipelining or use of
alternative Apriori-like algorithms which are free from the problem of multiple
times scanning of database. Second dimension of research leads to use of advanced
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MapReduce framework such as i* MapReduce model which supports incremental
problem-based algorithm or hybrid algorithms also to enhance the overall
throughput of system.
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