
Hidden Data Extraction Using URL
Templates Processing

Babita Ahuja, Anuradha and Dimple Juneja

Abstract A lot of work has been carried out in the deep web. Deep web is like a
golden apple in the eyes of the researchers. Most of the deep web search engines
extract the data from the deep web, store them in the database, and index them. So,
such kind of techniques have the disadvantage of less freshness, large repository
requirement and need of frequent updating of the deep web database to give
accurate and correct results. In order to overcome these drawbacks, we propose a
new technique “Hidden Data Extraction using URL Template processing” where
the fresh results from the website server database are fetched dynamically and are
served to the users.

Keywords Search engines � Surface web � Hidden web � Query interfaces

1 Introduction

Most of the websites store their data in the databases. These databases contain high
quality and a large amount of data [1]. The data in the databases are not accessible
directly by the traditional search engines. The user has to fill the query interfaces in
order to retrieve the data in the databases. These query interfaces act as a blockage

11th International Conference on Wirtschaftsinformatik, 27th February–01st March 2013,
Leipzig, Germany.

B. Ahuja (&)
MRU, Faridabad, India
e-mail: babitaspark@mru.edu.in

Anuradha
YMCAUST, Faridabad, India
e-mail: anuangra@yahoo.com

D. Juneja
DIMT Kurukshetra, Faridabad, India
e-mail: dimplejunejagupta@gmail.com

© Springer Nature Singapore Pte Ltd. 2018
V.B. Aggarwal et al. (eds.), Big Data Analytics, Advances in Intelligent
Systems and Computing 654, https://doi.org/10.1007/978-981-10-6620-7_13

111

in accessing the deep web data [2]. A major part of the hidden web data is behind
the query interfaces. Many researchers have worked on it. However, major of the
techniques suffer from the problem of freshness, bulk database requirement and
frequently crawling the web for hidden data. When users issue the query in these
techniques, the deep web data residing in the local database repository of search
engines are displayed to the user. The deep web local database loses its freshness in
a few minutes and even in few seconds.

1.1 Traditional Method to Uncover Deep Web

When user wants to access the deep web, he has to fill multiple query interfaces as
shown in Fig. 1. Steps taken by user to access deep web in traditional search
engines are:

Step 1. User fills the single search text field query interface of search engine.
Step 2. The result web pages from deep web and surface web are displayed to user.

The deep web data contains the stale web pages stored in search engine
local repository and the query interfaces which act as an entry point for
accessing deep web.

Step 3. In order to access the fresh data, user opens the query interfaces. User fills
all the text fields of the query interface and submits the page. The result is
displayed to user.

Fig. 1 Traditional way to see deep web

112 B. Ahuja et al.

Step 4. User recursively repeats the same step 3 until desired results are retrieved.
Filling the same values in thousands of query form is tedious and mono-
tonous. Therefore, user finally quits and is unsatisfied with the results.

1.2 Steps of Proposed Technique to Uncover Deep Web

In the proposed technique, the user is not required to fill all the query interfaces.
User will fill a single search text field for his query as shown in Fig. 2. The steps
taken by user in proposed technique to access deep web are:

Step 1. User fills the single search text field query interface of search engine.
Step 2. The user query is processed.
Step 3. User keywords are placed in the URL templates and dynamic URL is

generated.
Step 4. For post methods of form, the user keywords are embedded in the source

code of the page and are submitted.
Step 5. The results are fetched on the fly from the website servers. These fresh

results are displayed to the user.

Fig. 2 Steps taken by user in proposed technique to fetch deep web pages

Hidden Data Extraction Using URL Templates Processing 113

2 Related Work

Manuel Alvarez developed a hidden web crawler called DeepBot [4] to access Deep
web. DeepBot has a “mini-web browser” to handle client-side scripts and session.
Maintaining mechanism. Sriram has created a Hidden web crawler called HiWE
[5]. HiWE stands for Hidden Web Exposer. HiWE is a task-specific hidden web
crawler. HiWE extracts the data hidden behind the web query interfaces. Dr. Komal
Kumar Bhatia proposed an incremental web crawler [6]. The incremental web
crawler continuously refreshes the Web Repository. Ntaulas developed a search
engine called HiddenSeek [7]. HiddenSeek works on the single-attribute database.
It also detects the spam websites and ranks the pages also. Dr. Anuradha has created
a Hidden Web Search Engine [8]. The hidden web search engine auto-fills the web
query interfaces, extracts the result records, store them in a repository for later
searching. Mining data records (MDR) [9] proposed by Chen. MDR searches for
relevant data by looking for the form and the table tag in the web page. The
“Layout-Based Data Region Finding” is a wrapper technique proposed by Chen
[10]. The advantages and disadvantages of different techniques are given below in
Table 1.

Table 1 Comparison of different hidden web extraction tools

Type of tool Method Advantages Disadvantages

1 Hidden web
crawlers

DeepBot It deals with both client-side
scripting code and server
side deep web data

Domain definitions are
required, need mass
storage

2 Hidden web
crawlers

HIWE It extracts the data from
hidden databases

Need human assistance
to fill the forms, need
mass storage

3 Hidden web
crawlers

Incremental
web Crawler

It calculates the time to
revisit and hence no
unnecessary crawl is
required

The page repository
needs to be updated very
frequently for few pages

4 Hidden web
search engine

HiddenSeek Uses different query
selection policies, handles
spam websites

Work on single-attribute
databases, mass storage
required

5 Hidden web
search engine

Hidden web
search engine

It works on multi-attribute
interfaces, data is compiled
and service is given to user

Millions of queries and
Mass storage is required

6 Wrapper
technique

Mining data
records

It can mine the data records
in a table automatically

Some advertisement and
irrelevant records are
also fetched

7 Wrapper
technique

Layout-based
data region
finding

Constructs tree for getting
data

The tags like <div>,
 are not
considered

114 B. Ahuja et al.

3 Proposed Work

We propose a new technique “Hidden Data Extraction behind Query Interfaces”
shown in Fig. 3. In the proposed system on the system side, the query interfaces are
extracted and categorized on the basis of domain and the form submission method.
The URL of these query interfaces are analyzed thoroughly. After analyzing, the
query interfaces the URL templates are created and are stored in the URL templates
repository.

For query interfaces having the Post method of form submission, the source code
of the query interfaces is updated in order to fetch the fresh results from web
servers. On the end user side when user will issue the query. The user query will be
processed and keywords will be extracted. These keywords are placed in the URL
templates of query forms having GET method of submission. In the case of POST
method of submission, the keywords are placed in the source code of the query
forms. After that, the results behind the query interfaces are pulled out. These
results pages are then displaced to the user. Modules of the proposed.

Algorithm:

1. Query Interface Extraction.
2. URL Template Extraction of Query Interfaces having “GET” method of form

submission.

1. Query
Interfaces

2
.
C
L
U
S
T
E
R
I
N
G

Book
Domain

Laptop
Domain

3.
GET POST

URL+? URL+/ URL

URL Query
Template

Domain

4. Query Template Database

......

......

......

SYSTEM SIDE

Java Keyword
Extraction

Get

Post

URL + ?

URL + /

Dynamic
Query Processing

URL
Change in source code
of web page and query
processing

Result
Hidden web
pages

END USER SIDE

Fig. 3 Proposed architecture of hidden data extraction behind query interfaces

Hidden Data Extraction Using URL Templates Processing 115

3. For POST method of submission extract the result page URL.

3:1. Extract the query form of the page.
3:2. Change the source code of the page.

4. Process the user query.
5. Create the dynamic URL of GET method Query Interfaces and fetch the results.
6. Set the values of user query in the source code of the post query interface and

auto submit the page. Fetch the results.
7. Show 10 pages having maximum page rank. For these web pages and the other

web pages calculate the fresh page rank. The pages are then ordered on the basis
of the page rank and displayed to the users.

3.1 Query Interface Extraction

The data behind the query interfaces forms a lion’s share of the data on the hidden
web. The query interfaces act as a very significant channel to access the databases
residing on the server machines databases. These query interfaces are created on
computer machines but the irony is that the computer machines are not able to
understand them. So fetching the query interfaces is a major task. The query
interfaces can have two form processing techniques GET and POST. Most of the
techniques developed consider only the GET method of form submission. The
proposed technique works on both the GET and the POST. In the query interface
extraction module we will fetch the query interfaces of few sample domains. In
order to fetch the query interfaces, we will issue the query using the Google API.
Here we will consider two domains book and the car domains. When a query is
fired using google API ex: “book” then results of book domain are displayed. These
result pages contain static web pages as well as pages containing query interfaces.
The pages containing the query interfaces are filtered and are stored. The stored
query interfaces are further categorized on the basis of GET and POST.

Algorithm:
1. Initializing an array Domains which can be of n size i.e. Domains d[n]
2. for each di send request to google using API
3. for each result page pj returned from google API repeat 4 to 8
4. if (pj .contains(method=”GET”))
5. Add to Database db1: PageURL pj, Domain di, GET Method
6. else if (pj .contains(method=”POST”))
7. Add to Database db1: PageURL pj, Domain di, POST Method
8. else discard pj

116 B. Ahuja et al.

3.2 URL Template Creation

The URL filtered above contains the query interfaces. The query interfaces having
GET method of form submission will be handled in this module. When these query
interfaces are submitted to servers the result pages are shown. In GET as the input
field data changes so does the result page’s URL changes. The URL template of
these result pages will be fetched and will be stored in the database. In order to
accomplish this task the form tag of the query interfaces will be extracted.
A temporary web page will be created which will contain the code of form tag
extracted in the previous step. The websites provide the relative path of the result
pages. Therefore, these relative paths will be converted into the absolute path. The
initial input field will be filled with any value. The temporary web page will be
created in such a way that it will automatically be redirected to the result page.
The URL of the result page will be extracted. The URL will be analyzed and a
generic template of the URL will be created and stored in the URL template
database.

1. for each Pagei in DB1 where method= “GET” repeat 2 to 8
2. Extract the form tag in the web page
3. Get the action attribute of <form> tag
4. Change the relative URL to the absolute URL
5. Fill any value in the first input field of the form only.
6. write to updated form in a file “temp.html”
7. resultUrl=autosubmit(temp.html)
8. Analyze resultUrl and create Url Template
9. Add to DBTemplete : Url Template, domain, method

Algorithm:
URL Template Creation (DB_URL pages [])

// extracting the URL pattern of GET method web pages

3.3 Template Extraction

The query interfaces extracted in the first step contains web pages having both GET
and POST methods of form submission. In GET as the input field data changes so
does the result page’s URL changes. In GET URL template is stored. However, in
the POST method, the result page’s URL does not change on the change of the
input field data. For every query interface having POST method of form submis-
sion, a separate html page will be created. This html page contains only the form tag
data of the original query interface. The page will be created in such a way that the
input field values will be filled atomically by the value that is provided by the user
while issuing the query in a single search textbox. The values will be filled

Hidden Data Extraction Using URL Templates Processing 117

automatically and the submission too will be done automatically. The fresh results
from the actual website’s servers will be presented to the user.

Algorithm:
1. for each Pagei in DB where method= “POST” repeat 2 to 5
2. Extract the form tag in the page
3. The values of text field in the form are replaced by a dynamic value.
4. The updated form tag is written to a HTML file “formpagei .html“.
5. Add to DBTemplate: formpagei .html, domain, method.

3.4 User Query Processing

The user will issue the query in a single search text field. The user query will be
processed. The tokens or keywords will be extracted from the user query. The
punctuation symbols, etc., will be removed from the user query. The lemmatization
or stemming of user query will be done to formulate the final list of user query
keywords. The keywords will be processed to identify the domain of the user query.

Algorithm:
1. Keywords [] =split (“query”,” “)
2. Remove stop words from keywords
3. Stemming of keywords
4. Identify domain of user query

3.5 Query Interfaces Having GET Method of Submission

All the URL templates of user query domain will be picked from URL template
database. The user keywords will be placed in the URL templates and the form
input data fields. The URL’s will be created and will be displayed to the user. When
user will click on the URL then the result pages from the actual website will be
fetched and will be displayed to the user.

118 B. Ahuja et al.

Algorithm:
1. URLs extracted from URL template database
2. for every URLi repeat 3 to 6
3. if(URLi .method=”GET”)
4. { // Generate dynamic query string
5. add keywords in URL template
6. Result_set1= dynamic URL’s created }

3.6 Query Interfaces Having POST Method of Submission

The web pages having POST method of submission will be handled here. The web
pages created in module 3 template extraction, will be updated and the values from
the user query keywords will be placed in the text field of the web page.

Algorithm:
1. if (URLi .method=”POST”)
2. { // open the files created
3. open formpagei .html
4. formpagei.setValues(form_fields, keywords[])
5. autosubmit(formpagei.html)
6. Result_set2= fetch result pages
7. Display pages (result_set1, result_set2)}

4 Experimental Results

The admin on the system side will extract the URLs of the query interfaces of
particular domain. The generic query templates of these URL have been created and
are stored in the database as shown in Fig. 4. After the query interface extraction,
the generic templates of the result pages will be created as shown in Fig. 5. These
generic templates are stored in the local repository of the system. When user query
in the single search text field the query is processed and the results are displayed to
the user as shown in Figs. 6 and 7.

Hidden Data Extraction Using URL Templates Processing 119

5 Comparison with Other Search Engines

The parameters on which the comparison is done are relevancy and optimized
results. Relevancy means how much relevant result pages according to the user
query are fetched from deep web servers. The implementation results show that
deep web pages fetched by the proposed work are highly relevant as compared to
other search engines as shown in Figs. 8, 9 and 10.

Another factor taken into consideration for comparison is the optimum result.
The results shown by another search engine in terms of price of the book or any
other item are not optimum as shown in Figs. 11, 12, 13 and 14.

Fig. 4 Query interface extraction

120 B. Ahuja et al.

Fig. 5 Template extraction

Fig. 6 Result page displayed to user

Hidden Data Extraction Using URL Templates Processing 121

Fig. 7 Deep web data from the website presented to the user

Fig. 8 Query fired on other search engine

122 B. Ahuja et al.

Fig. 9 Irrelevant result shown by other search engine

Fig. 10 Relevant data shown when query issued by proposed work

Hidden Data Extraction Using URL Templates Processing 123

Fig. 11 Query fired on other search engine

Fig. 12 High price book shown by other search engine

124 B. Ahuja et al.

Fig. 13 The result shown by proposed work

Fig. 14 The low price book shown by proposed work

Hidden Data Extraction Using URL Templates Processing 125

References

1. BrightPlanet.com. The deep web: surfacing hidden value. Accessible at http://brightplanet.
com, July 2000

2. Sherman, C., Price, G.: Hidden Web. Uncovering Information Sources Search Engines Can’t
See. CyberAge Book (2001)

3. Bergman, M.K.: White paper. The deep web: surfacing hidden value. J. Electron. Publ. 7(1)
(2001)

4. Álvarez, M., Raposo, J., Cacheda, F., Pan, A.: A task-specific approach for crawling the deep
web. Eng. Lett. 13(2), EL_13_2_19 (Advance online publication: 4 Aug 2006)

5. Raghavan, S., Garcia-Molina, H.: Crawling the hidden web. VLDB, (2001)
6. Madaan, R., Dixit, A., Sharma, A.K., Bhatia, K.K.: A framework for incremental hidden web

crawler. Int. J. Comput. Sci. Eng. 02(03), 753–758 (2010)
7. Ntoulas A., Zerfos, P., Cho, J.: Downloading hidden web content. Technical Report, UCLA
8. Anuradha, Sharma, A.K.: Design of hidden web search engine. Int. J. Comput. Appl. 30(9)

(2011) (0975-8887)
9. Chen, H.-P., Fang, W., Yang, Z., Zhuo, L., Cui, Z.-M.: Automatic Data Records Extraction

from List Page in Deep Web Sources; 978–0-7695-3699-6/09 c, pp. 370–373. IEEE (2009)
10. Liu, B., Grossman, R., Zhai, Y.: Mining data records in web pages. In: KDD’03: Proceedings

of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 601–606, New York

126 B. Ahuja et al.

http://brightplanet.com
http://brightplanet.com

	13 Hidden Data Extraction Using URL Templates Processing
	Abstract
	1 Introduction
	1.1 Traditional Method to Uncover Deep Web
	1.2 Steps of Proposed Technique to Uncover Deep Web

	2 Related Work
	3 Proposed Work
	3.1 Query Interface Extraction
	3.2 URL Template Creation
	3.3 Template Extraction
	3.4 User Query Processing
	3.5 Query Interfaces Having GET Method of Submission
	3.6 Query Interfaces Having POST Method of Submission

	4 Experimental Results
	5 Comparison with Other Search Engines
	References

