Impact Evaluation Approach of a Texture
Cross Section Shape on Hydrodynamic
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Abstract It has been confirmed that bionic surface texture can effectively improve
the lubricating and tribological performance of the sliding surface, and the texture
cross section shape and depth are important parameters affecting the lubrication
performance of the texture. However, there is a lack of effective optimization
method for a texture cross section shape and determining the texture depth of a
random texture cross section shape. Hydrodynamic lubrication performance model
of a single texture under the uncompressible Newtonian fluid lubrication conditions
was established based on the two dimensional steady-state Reynolds equation and
texture depth equation, and finite difference method was adopted to discrete and
solve the distribution of oil film pressure on the textured surface as well as analyzes
the impact of different texture cross section shapes and depth on oil film pressure
distribution and surface load capacity. The numerical simulation result shows that
the textured surface can obtain a better hydrodynamic lubrication performance by
guaranteeing that the average texture depth of a random shape of texture cross
section equals the initial thickness of oil film. In addition, the shape of a texture
cross section can be optimized based on the method of smaller a texture depth and
deviation of a texture depth so as to obtain the optimal hydrodynamic lubrication
performance of textured surface.
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1 Introduction

During the process of designing mechanical products, reliability, performance and
service life are the major factors that should be considered. Improving the perfor-
mance and service life of mechanical products has an important effect on increasing
their market competitiveness whereas the friction and wear on the matching surface
of various mechanical parts are also a significant factor affecting the performance
and service life of the mechanical system. In recent years, researchers have made
exploration and analysis [1-3] from various aspects on how to enhance the lubri-
cation performance on the surface of friction pair and reduce the friction and wear.
Considering the phenomenon that the epidermis of creatures in the nature has a
special structure but with a sound effect on reducing friction, the bionic surface
texture technology was put forward to be used in lubrication and friction reduction
of the mechanical system. Based on the experimental and theoretical methods for
solving the Reynolds equation [4-6] and CFD [7-9], the impact and its laws of
bionic surface texture on lubrication as well as friction and wear was studied. The
result indicates that, based on the influence mechanism under different lubrication
conditions: (1) Under the condition of dry friction, the bionic surface texture can
effectively capture abrasion dust and reduce the secondary wear caused by abrasion
dust [10]; (2) Under the condition of mixed lubrication or boundary lubrication, the
texture can store and provide lubrication medium for the surface of friction pair,
thus keeping such surfaces stay at the lubrication state for a long time [11];
(3) Under the lubrication state of full oil film, the micro fluid hydrodynamic
pressure produced by the texture can effectively enhance the load capacity of the
surface [12], bionic surface texture can effective increase the lubrication perfor-
mance on the friction pair surface and reduce friction and wear. At present, the
research outcomes from theories and experiments have promoted the application of
the bionic surface texture to the fields of piston-cylinder liner [13], sliding bearing
[14] and computer disc [15], etc.

However, although the lubrication and friction reduction effect of the bionic
surface texture has been confirmed by theoretical and experimental methods, and
the surface texture technologies have been well applied to some fields, not all
parameter for textures can play a positive role [16—18]. The type of texture, area
ratio and depth of texture and the texture cross section shape etc. are important
parameters affecting the lubrication and friction reduction performance of the tex-
ture [19-25]. Therefore, optimization of texture parameters is still a focus in the
study of texture. The differences in the impact of different texture cross section
shapes on the hydrodynamic lubrication performance have been analyzed based on
virtual texture and numerical simulation methods by Nanbu et al. [26]. The result
shows that compared with flat cross section texture, micro-wedge type and
micro-step type textures at the bottom can effectively improve the pressure of
lubrication oil film. Cui et al. [27] adopted grid method to carry out numerical study
on the impact of different cross section micro grooves on the micro-channel flow
drag reduction and pressure loss performance. The result indicates that different
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shapes of cross section have different effect on friction reduction with the drag
reduction coefficient of ridge-shape groove larger than V-shape groove, followed by
shield-squamous shape groove and rib groove. Based on the geometry model of
reciprocating sliding plane, geometry model of texture and Reynolds equation of
fluid hydrodynamic pressure, Ji et al. [28] established theoretical models on the
bearing of micro-groove textures of different cross section (parabolic cross section,
triangular cross section and rectangular cross section), and analyzed the impact of
texture on lubricating performance of the bearing. The result shows that angular
variation of groove texture of rectangular cross section has the greatest impact on
the average pressure of oil film while the triangular cross section has the least
impact. Shen and Khonsari [29] adopted Anton Paar’s multi-functional torsion
rheometer to carry out the lubricating performance experiment on laser processing
internal structures of rectangles, oblique triangle and dimple texture of isosceles
triangle textures under a full oil film lubrication state. The result shows that the
rectangular shape of cross section among three kinds of cross section textures has
the largest load capacity on the surface. In addition, according to a research on the
impact of texture depth on lubricating performance, Ronen et al. [30] studied the
impact of texture on the lubricating performance of piston/cylinder system based on
the Reynolds and motion equation, and topped out the dimple texture with the
depth-diameter ratio of 0.1-0.18. Qiu et al. [24] studied the impact of texture cross
section shape on the load capacity of parallel sliding bearing of lubricated gas. The
analysis result shows that the optimal texture depth-diameter ratio parameter range
is between 0.001 and 0.01, but the texture depth-diameter ratio has a smaller impact
on the load capacity of sliding bearing compared to the rest of texture parameters.
Based on N-S equation, Han et al. [31] established a three-dimensional hydrody-
namic lubrication performance model of a single spherical micro-pit texture under
uncompressible Newtonian fluid Iubrication and studied the relationship between
three-dimensional pressure field of surface lubricating oil film, velocity field and
texture. He pointed out that the optimal texture depth rendered the largest surface
load capacity and topped out the no-dimensional dimple at the depth variation range
of 0.8-2. Papadopulos et al. [32] adopted computational fluid dynamics
(CFD) software to analyze the impact of texture and its parameters on
thrust-bearing. The result indicated that the load capacity on the textured surface of
bearing was the largest when the depth of dimple approached the thickness of the
smallest oil film.

Although the above researches have pointed out that different shapes of cross
section have different impact on the hydrodynamic lubrication performance on the
textured surface, the mechanism of the impact on the shape of texture cross section
have not been analyzed and discussed. Besides, researches about the impact of
texture depth on lubrication performance showed that the optimal texture depth has
a certain relationship with the thickness of the smallest oil film. There is no relative
research on analyzing the impact and its mechanism of the shape of texture cross
section and texture depth on the lubricating performance by combining the average
depth of texture and the smallest thickness of lubricating oil film. Therefore, the
paper establishes a theoretical model of single texture hydrodynamic lubrication
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performance, based on Reynolds equation and different cross section texture depth
equation, adopts a finite difference method to discrete equation and solves the
pressure distribution of oil film on the textured surface, then figures out the surface
load capacity. Based on the relationship between the average depth of different
cross section texture and the smallest thickness of Iubricating oil film, the paper
analyzes the impact and its mechanism of the shape of texture cross section on the
surface load capacity under the same conditions and puts forward the optimization
method for the shape of different texture cross section and determining the better
texture depth among random shapes of cross section textures under the thickness of
the smallest lubricating oil film is ensured.

2 Models
2.1 Physical Model

In general, the size of friction pair is at meter or centimeter level whereas the
micro-pit texture with the friction increased on its surface is at micrometer level.
Hence, during the process of numerical analysis, friction pair can be roughly
simplified as the relative sliding plane of finite length and width with cyclical
distribution of texture. As is shown by Fig. 1, it is a cross section schematic
diagram of a texture friction pair. The top surface sliding speed on the surface is U
while the lower textured surface remains relatively static. The initial spacing
between the two planes of friction pair is Hy and the maximum depth of texture is
Hp. Micro-pit texture is cyclically distributed in the direction of X. As oil film
pressure on the cyclical distribution of texture surface also takes on a cyclical
change, this paper only selects a single texture unit (Fig. 2) as a research object with
the length as L, width as W and diameter as D. The value of each parameter is listed
in Table 1.

2.2 Mathematical Model

In this thesis, the lubricant between friction pairs is assumed to be the incom-
pressible Newtonian fluid and the viscosity and density of lubricant is constant.

Fig. 1 Schematic diagram of U

texture cross section
i | |
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Fig. 2 Schematic diagram of = L o
texture unit |

W

Y
Table 1 Parameter of texture unit
Parameters | U (m/s) |Hp (um) |Hp (um) L (um) |[W (um) |D (um)
Value 0.8 12 0.5;1;2;4;6;8; 10 |500 500 154.5

Moreover, the simulation analysis doesn’t take the influence of temperature
changing into consideration and the flow condition of lubricant is steady and
laminar. Therefore, the two dimensional steady-state Reynolds equation of solving
the film pressure distribution on the textured surface can be written as:

0 ( ;0p 0 ( 50p Oh
_ —_— —_— _— = —_ 1
O0x (h ax) + Oy (h Oy Gur Ox m)

where x and y are the coordinates along and across the sliding direction, respec-
tively; P is the local hydrodynamic pressure, h is the film thickness, u is the
velocity; i the viscosity of the lubricant.

The film thickness h between friction pairs is related to the initial film thickness
Hy and the texture depth Hp. the depth of each point in the dimple texture of
different cross sections is different. Expressions of film depth of six different cross
sections are listed in Table 2. Combining with the parameters in Table 1, we can
figure out the film depth of each point on the textured surface.

2.3 Simulating Calculation

In the length (L) direction of texture unit, textures are distributed periodically. Thus,
the periodically-distributed boundary condition of film pressure is used in the length
direction of texture unit. In addition, in the width (W) direction of texture unit, the
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Table 2 Parameters of film thickness of different cross section texture
Cross Film depth
section
shapes
Triangle L h— Hy (x,y) £Q
" \Ho+H,—Hpxr (x,y)eQ
D r=+y)% Q:R2+y <D?/4
p
VJ
Parabolic

I -

%)

T

h:{HO (x,y)%Q
Ho+Hp *cos(r+xn/D) (x,y) €Q

r=0+y)% Q:R2+y'<D?/4

(continued)
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Cross Film depth

section

shapes

Circular arc e L n Hy (x,y) ¢ Q
H0+HP*r (x7y)€Q

D r=(1-(2¢/D)* = (2y/D)*)*?
Q: 2 +y?<D*/4
W
u "

Second L Hy (x,y) € Qo

order type h= < Ho+Hp (x,y) €

ladder

W

D1

Hpl

L

D2

Hp2

Hy+Hp, (x,y)GQz
Q2 +y?2>D4 QX2 +y <D3/4
Qi 32 +y? > D2 /4and x* +y* <D3 /4

(continu

ed)
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Cross Film depth
section
shapes
Three order L Hy (x,y) € Qo
type ladder n— J Hot+Hpi (x,y) € Q
D1 Ho+Hpy (x,y) €D
Ho+Hps (x,y) € Qs
- Q: @+ >Di/4 Qi 4y <D3/4
Qi 2% +y? > D% /dand x* +y* <D3 /4
Qs 122 +)2 > D3 /dand x* +y* <D3 /4
| Hp2
fp3 | 3] Hp!
D2
Rectangle = L = h— Hy (x,y) £ Q
" | Ho+Hp (x,y) €Q
Q: 24 <D?/4
D
W
|
Hp

boundary film pressure in limited texture units is equal to the barometric pressure.
Accordingly, in the process of simulating analysis, the boundary condition of film
pressure, which is equal to barometric pressure, is used in the width direction of
texture unit. Therefore, the boundary condition of film pressure can be expressed as:

(2)
3)
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p(x=0,y) =p(x=1L,y) (4)

In the light of the time and accuracy of simulating calculation, the texture unit in
this thesis is consists of 256 x 256 grid nodes. On the basis of boundary Egs. (2),
(3) and (4), we adopt the finite difference method and Gauss-Seidel iteration to
solve the Reynolds equitation (1). Without regard to the influence of texture cav-
itation effect, the film pressure distribution on the texture unit has been got and the
iteration convergence criterion of film pressure is:

gl <1073 (5)

where P; j is the pressure value at the point (i, j), and K is the iterative time.

3 Results and Discussion

Figure 3 shows the changing curves that the load capacity of different cross section
textured surface varies with the change of maximum texture depth when the initial
film depth Hy is 1 and 2 pm. In Fig. 3a, we can find that when the initial film depth
is 1 pm and the maximum texture depth Hp is 0.5-10 pm, with the increasing of
maximum texture depth, the load capacity of different shaped cross-section texture
increases at first and then descends. However, because the shapes of cross sections
are different, the scope of increasing and descending of load capacity within 0.5—
10 pm maximum texture depth and the maximum texture depth corresponding to
the maximum load capacity are also different. Meanwhile, the load capacity of
rectangular cross section textured surface is very different from that of other cross
section textured surface. That is, within the scope that the load capacity increases
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a 0.20 g
= ¢ o 0.07 -
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Fig. 3 The change law between maximum texture depth and load capacity: a Hy =1 pm;
b Hy =2 pm
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with the increasing of maximum texture depth, the load capacity of rectangular
cross section textured surface is greater than that of other cross section textured
surface; within the scope that the load capacity descendants with the increasing of
maximum texture depth, the load capacity of rectangular cross section textured
surface descends faster than that of other cross section textured surface. When the
maximum texture depth is in the scope of 4—10 um, the load capacity of rectangular
cross section textured surface will be less than that of other cross sections texture.
Being similar to the change tendency in Fig. 3a, and b shows the same change law
when the initial film thickness Hy is 2 pm. But compared with the condition that the
initial film thickness Hj is 1 pum, when the texture depth is given, the maximum
texture depth corresponding to the largest load capacity of different shaped
cross-section texture is larger, which is similar to the study result of Papadopulos
et al. [32]. Namely, as the dimple depth gets closer to the minimum film thickness,
the load capacity will become greater and the optimum texture depth will be
increased with the increasing of initial film thickness.

Moreover, according to the different impact that different cross sections exerting
on the load capacity with the same initial film thickness Hy and texture depth Hp
showed in Fig. 3, Table 3 provides the relation between maximum texture depth
and average texture depth. According to Table 3, if the maximum texture depth Hp
remains the same, the average texture depth of rectangular cross section texture
ranks top, followed by second order ladder cross section texture, circular arc cross
section texture, parabolic cross section texture, three order ladder and triangle cross
section texture. Figure 4 describes the comparison between average texture depth
and the load capacity when the maximum texture depth Hp is 1 and 2 pm. From
Fig. 4a, we can find that if the maximum texture depth is 1 pm, the average texture
depth of different cross sections texture is similar to Table 3, the load capacity of
rectangular cross section is also the largest, followed by second order type ladder,
circular arc, parabolic, three order type ladder and triangle. That is, the average
texture depth gets closer to the initial film thickness 1 pum, the load capacity
becomes greater. Figure 4b shows when the initial film thickness Hy is 2 pm, the
cross section shape has the same impact on the load capacity with Fig. 4a. That is, if
the maximum texture depth Hp of different cross sections is 2 um, the average
texture depth gets closer to initial film thickness 2 pum, the load capacity becomes
greater. Therefore, for the given initial film thickness Hy and the related equal
texture depth, different cross section texture can make a better choice based on the
value of average texture depth and initial film thickness. The closer the average
texture depth gets to initial film thickness, the greater the hydrodynamic lubrication
performance of texture is.

Based on the comparison between load capacity and average texture depth with
the same maximum texture depth in Fig. 4 and combining with the data of the
maximum texture depth and average texture depth in Table 3, Fig. 5 shows the
changing curves of maximum texture depth and average texture depth, from which
we can solve the maximum texture depth Hp of different cross sections texture when
the average texture depth is 1 and 2 um. Figure 6 describes the comparison
between the load capacity and maximum texture depth when the average texture
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depth is 1 and 2 pm, from which we can find when the average texture depth is 1 or
2 pum, the maximum texture depth of different cross sections is contrary to the
average texture depth in Fig. 4 under the same maximum texture depth. However,
according to Figs. 4 and 6, although the load capacity of all cross sections but
rectangular is increased when the different cross sections is changed from the
maximum texture depth Hp is 1 or 2 pm to the average texture depth is 1 and 2 pum,
their load capacity is still smaller than that of the rectangular cross section textured
surface and the relation of the load capacity of each cross section textured surface
remains the same.

Figure 7a and b respectively shows the comparison of non-dimensionless film
pressure when the texture of different cross sections is changed from maximum
texture depth H, is 1 pm to the average texture depth is 1 um. According to Fig. 7,
with the same maximum texture depth and average texture depth, the film pressure
of different cross sections textured surface is the same as the load capacity. Namely,
the greater the film pressure is, the greater the load capacity becomes. This better
explains the relation of load capacity of different cross sections textured surface.
However, from Fig. 7, we can find that although the load capacity of all cross
sections textured surface but rectangular cross section is increased when the
maximum texture depth Hp is 1 pum changed to the average texture depth is 1 pum,
the relationship the film pressure of different cross sections textured surface still
remains the same, which can further explain the phenomenon that the load capacity
relationship of each cross section textured surface doesn’t change as the load
capacity is changed from Figs. 4, 5 and 6. Figure 8 shows the comparison of
non-dimensionless film pressure when the maximum texture depth is 2 pum and the
average texture depth is 2 um, which has the same effect law with the film pressure
of different cross section textured surface in Fig. 7.

In addition, so as to investigate the influence rules of texture cross-section shapes
on hydrodynamic lubrication performance, Fig. 9 exhibits the standard deviations
of texture depth as the average texture depths respectively are 1 and 2 pum. It can be

(a) 40 (b) 40

@ —_— Rcfla ngular - —— Rectangular

a Triangle E Triangle

@ Paabolic @ Paabolic

o - L
E 3 Cireular are 5 O Circular are
— Second order ladder Second order ladder

E — Three order ladder _E ~——Three order ladder

= ) =

w w

= i

= -

E g

= Wf = 10

= =

bl )

£ E

= ofF 2 of

L L L s L " L L L L
o S0 100 150 200 250 300 0 50 100 150 200 250 300
N N

Fig. 7 Comparison of dimensionless film pressure curves with maximum texture depth and the
average texture depth are 1 pm: a maximum texture depth as 1 um; b the average texture depth as
1 pm
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seen from Fig. 9 that the average texture depth of 1 or 2 um shares the same
relation to standard deviations for different cross section textures, that is, the
rectangular cross-section texture under these two condition both are the smallest,
followed by the second order type cross section texture, the three order
cross-section texture, circular-arch shaped cross-section texture, parabolic
cross-section texture and triangular cross-section texture. In accordance with the
definition of standard deviation, in spite of the same average depth for different
shaped cross-section textures, the rates of deviation on different points in the texture
differs from one another. Except for the rectangular cross section texture, textures of
other cross section shape are deviated to the average texture depth at different
degrees so long as they are not equal to the average depth. By the influence law of
texture depth of rectangular cross section textures on the load capacity, it can be
seen that the closer the texture depth is to the initial oil film thickness, the better the
hydrodynamic lubrication performance would be, thus for cross section texture of
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any type with the same average texture depth, the greater the corresponding stan-
dard deviation is, the greater the degree of texture depth deviates from the average
depth would be and the severer texture hydrodynamic performance would be
affected. Therefore, the larger the standard deviation of texture depth in different
shaped cross-section textures in Fig. 9 is, the smaller the hydrodynamic lubrication
effect would be and the worse the hydrodynamic lubrication performance would
become. It explains that in Fig. 6, although the average depth is identical in dif-
ferent shaped cross-section textures, the hydrodynamic lubrication performance of
different shaped cross section textured surface varies from one another.

Combined with the conclusion of selecting shapes of cross-section texture drawn
based on the relationship between the average texture depth and the initial oil film
thickness in Figs. 3 and 4, the optimization method of selecting shapes of
cross-section texture can be further developed. In order to obtain the optimum
hydrodynamic lubrication performance for any shaped cross-section texture, the
smaller the standard deviation of the corresponding depth of textures and the
maximum texture depth Hp, the better the hydrodynamic lubrication performance
would become so long as ensuring that the average texture depth is equal to the
initial oil film thickness. The mathematical expression of cross-sectional shapes is
preferred:

h= :i o;min(H,) /nm (6)
i=1,j=1
f = min :Z: (o jH, — n)?/(nm—1) |. (7)

i=1j=1

where 1, is the average texture depth, and i and j are respectively grid nodes along
the directions of X and Y. o;; is the coefficient of depths of different points on the
textured surface for determining the depth values, n and m are numbers of grid
nodes along the directions X and Y and H,, is the maximum texture depth.
Figure 10 depicts the comparison and contrast among surface load capacity,
maximum texture depth and standard deviation of texture depth at the selected point
of maximum load occurred and the average texture depth equivalent to the initial
film thickness for 0.5-10 pm deep textures. It can be seen from Fig. 10al that when
the initial oil film thickness Hj is equal to 1 pm, the load capacity on the textured
surface with two depths is almost the same, and even if the average texture depth is
equal to the initial oil film thickness, the surface load capacity of the triangular cross
section textured surface, the second and third order type ladder cross section tex-
tured surface are superior to that of the selected point. It also explains the rationality
of making the corresponding hydrodynamic lubrication performance where the
average texture depth is equal to the initial oil film thickness equivalent to the
optimal texture hydrodynamic lubrication performance from Figs. 6, 7, 8 and 9. In
addition to that, optimization method for texture cross section is further developed,
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Fig. 10 Comparison of standard deviation curves of texture depth with load capacity and
maximum texture depth: a Hy = 1 pm; b Hy = 2 pm

that is, any cross-sectional shaped texture is available to the optimal hydrodynamic
lubrication performance only if the minimum standard deviation of corresponding
depth of texture and texture depth Hp is ensured. However, it can be known from
Fig. 10a2 and 10a3 that it not always happen that the smaller the standard deviation
of corresponding depth of texture and maximum texture depth is, the greater the
surface load capacity would become, thus of different cross-sectional shape tex-
tures, there is a certain difference in selecting textured cross sections shape. While
for any shaped cross-section texture, the best hydrodynamic lubrication perfor-
mance is gained based on the optimization method upon the average texture depth
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is equal to the initial oil film thickness. Similarly, the initial oil film thickness Hj as
2 pm in Fig. 10b has the same function rule as in Fig. 10a.

4 Conclusions

Based on the two-dimensional steady-state Reynolds equation and the texture depth
equation, the theoretical model of single-structure hydrodynamic lubrication per-
formance is proposed. The finite difference is used to discretize and solve the
surface pressure distribution and then calculate the surface load capacity to analyze
effect of texture shapes and depths of hydrodynamic lubrication performance and its
influence law. The basic optimization method of texture cross section shapes and
depths is put forward. Simulation analysis can draw the following conclusions:

1. For any shaped cross-section texture, the closer the average texture depth of
different shaped cross-sectional texture is to the initial oil film thickness under
the given initial oil film thickness Hy and the same maximum texture depth Hp,
the greater the surface load capacity of would be and the better the hydrody-
namic lubrication performance would become. Hence, texture cross section
shape can be selected based on the relationship between the average texture
depth and the initial oil film thickness.

2. For any shaped cross-section texture, the textured surface can obtain better
hydrodynamic lubrication performance based on ensuring the average texture
depth is equal to the initial oil film thickness but not guarantee the optimal
hydrodynamic lubrication performance. The optimal texture depth is selected by
determining the average texture depth and the standard deviation of texture
depth, but there is no uniform rule.

3. Combined with the influence law of the average texture depth on selecting the
texture cross section shape and the texture depth, the smaller the standard
deviation of the depths corresponding to any shaped cross-section textures and
texture depth is, the better the hydrodynamic lubrication performance would
become, thus the optimal texture cross-sectional shape at any texture depth can
then be preferred.
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