
Test Case Prioritization Based on Dissimilarity
Clustering Using Historical Data Analysis

Md. Abu Hasan1(&) , Md. Abdur Rahman2, and Md. Saeed Siddik1

1 Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh
hasandubits@gmail.com, siddik.saeed@gmail.com
2 Centre for Advanced Research in Sciences, University of Dhaka,

Dhaka, Bangladesh
mukul.arahman@gmail.com

Abstract. Test case prioritization reorders test cases based on their fault
detection capability. In regression testing when new version is released, previous
versions’ test cases are also executed to cross check the desired functionality.
Historical data ensures the previous fault information, which would lead the
potential faults in new version. Faults are not uniformed in all software versions,
where similar test cases may stack in same faults. Most of the prioritization
techniques are either similar coverage based or requirements clustering, where
some used historical data. However, no one incorporate dissimilarity and his-
torical data together, which ensure the coverage of various un-uniformed faults.
This paper presents a prioritization approach based on dissimilarity test case
clustering using historical data analysis to detect various faults in minimum test
case execution. Proposed scheme is evaluated using well established Defects4j
dataset, and it has reported that dissimilarity algorithm performs better than
untreated, random and similarity based prioritization.

Keywords: Software testing � Test case prioritization � Historical data �
Similarity � Dissimilarity

1 Introduction

Test case prioritization reorders test case execution sequence to enhance fault detecting
rate. In regression testing earlier versions of test cases are considered for testing new
functionalities. Regression testing involves revalidating the software when new com-
ponent is included to meet the modified requirements which may badly impact on
existing software system [1]. This revalidating process executes both existing and
newly added test cases, which is very expensive and time consuming [2].

It has been experimented that more than 50 days are required to test 20,000 lines of
code [1].

Hence, diverse techniques are proposed in order to improve regression testing per-
formance on the basis of cost effectiveness [1, 3, 4], which are categorized into three
different techniques namely test suite reduction, test case selection, and test case priori-
tization [3]. Test case prioritization reorders test cases in such a way so that it meets testing
objectives, for example fault detection rate and code coverage or quick feedback [4].

© Springer Nature Singapore Pte Ltd. 2017
S. Kaushik et al. (Eds.): ICICCT 2017, CCIS 750, pp. 269–281, 2017.
https://doi.org/10.1007/978-981-10-6544-6_25

http://orcid.org/0000-0002-2162-4598


Faults are not uniformed in previous version of software, which is difficult to detect in
regression testing [5].

Researchers introduced several prioritization methods of test cases to increase the
rate of fault detection, which are categorized in several domains, such as code coverage
[4, 6, 7], requirement coverage [8, 9], historical data analysis based [10, 11], etc. Based
on historical execution data, dynamic regression test case prioritization using
requirement priority was proposed by Wang et al. [10]. While, Rothermel et al.
described several code coverage based prioritization strategies to improve the rate of
fault detection [3]. A modified genetic algorithm for prioritizing test cases to improve
code coverage was proposed by Patipat et al. [6]. Xiaobin et al. proposed Bayesian
Network based test case prioritization technique, where test cases are clustered depend
on their method level coverage [12].

On the other hand, Clustering based test case prioritization introduced by [8, 9],
where test cases are clustered based on their code coverage to improve earlier fault
detection in testing phase. However, clustering test cases based on their coverage
information contain threat to detect similar fault consecutively as each cluster contains
similar type of test cases. Accordingly, those test cases in each cluster share similar
attribute have similar fault detection ability and consequently get similar precedence
which may lead to reduce the effectiveness of fault detection rate.

This problem can be illustrated with the following example, where nine test cases
cover nine faults of a program as shown in following Table.

F/T F1 F2 F3 F4 F5 F6 F7 F8 F9

TC1 1 0 0 1 1 1 1 0 0
TC2 0 1 1 1 1 1 0 0 0
TC3 0 1 1 1 0 0 1 1 0
TC4 0 1 1 0 0 0 1 1 1
TC5 1 0 0 0 0 1 1 0 1
TC6 1 0 0 0 1 1 1 0 1
TC7 1 1 1 1 0 0 0 1 0
TC8 1 0 0 0 0 1 0 0 0
TC9 1 1 1 1 0 1 0 0 0

Cluster-1: TC1, TC5, TC6, TC8
Cluster-2: TC2, TC3, TC4
Cluster-3: TC7, TC9

Most of the test cases of cluster-1 cover faults F1, F6 and F7 where none of the test
case covers F2, F3 and F8 faults. In case of cluster-2, faults F2 and F3 covered by all
test cases but no one covers fault F1. In cluster-3, both test cases cover faults F1, F3, F4
and F9, however, faults F5 and F7 do not covered by any single test case. In this
scenario, any single cluster can’t cover all or maximum faults, which is the problem of
clustered based test case prioritization which shares same properties.

To overcome those limitations, dissimilarity based test case prioritization scheme is
proposed in this research, where test case’s similarity and historical failure data are
incorporated. In this proposed scheme, all the previous and new versions test cases are
considered to detect the similar function call graph. Several clusters are formed from

270 Md. Abu Hasan et al.



this graph based on their degree of connectivity. Inter cluster test cases are ordered
based on the preceding version failure history. Finally, the top test cases of each similar
cluster are picked to generate the dissimilar test suite to cover maximum varieties of
un-uniformed faults.

Proposed method has been experimented with Defects4j dataset [13], and results
are compared to several prominent prioritization techniques. It has been discovered that
the dissimilarity based test suite using historical data performs better than untreated,
random and similarity based prioritization approaches.

The rest of this paper is organized as follows, where Sect. 2 denotes the literature
review. Sections 3 and 4 described the proposed method and result analysis respec-
tively. Finally Sect. 5 concludes this paper with future research direction.

2 Literature Review

Test case prioritization technique rearranges test case execution sequence to maximize
testing objective functions, like fault detection rate improvement, reducing execution
time etc. Because of significance in practice, many academicians, researchers and testers
have demonstrated varieties methods of test case prioritization, which are categorized in
several domains, such as code coverage [4, 6, 7], requirement coverage [8, 9], historical
data analysis based [10, 11], etc. Some of the most prominent prioritization approaches
are discussed in this section.

Rothermel et al. demonstrated a number of prioritization strategies to improve fault
detection rate [4]. The proposed method uses most advantageous prioritization for
finest test case orders to increase fault detection rate. They performed empirical studies
to evaluate quality, importance and quantity of the rate of fault detection of different
techniques. Empirical studies and results indicate that their proposed approach can
efficiently detect the fault early of the execution.

To improve testing efficiency, history based dynamic regression test case prioriti-
zation using requirement priority was proposed by Wang et al. [10]. In this research
work, test cases are prioritized with the priority of requirements assigned by customers
and developers. The initially prioritized test cases are executed and numbers of faults
detected by test cases are recorded to be used for next version requirement priority. The
differences of requirement priority between two adjacent test cases reorder the exe-
cution sequence dynamically. An industrial experimentation has been performed in
order to evaluate the technique, and result analysis shows that the proposed history
based prioritization method improves testing effectiveness and fault detection ability
than random and other methods. However, the efficiency of this technique depends on
how accurately requirement priority has been assigned by customers and developers.
Biased requirement priority assignment may affect the deserved prioritization
effectiveness.

Patipat et al. implemented a modified genetic algorithm for prioritizing test cases to
improve code coverage [6]. A control flow graph has been generated based on the
selected program, which was derived to get decision graph. Test cases are randomly
generated from the decision graph according to the population size (number of test
cases). Test cases are preprocessed before feed as chromosome in genetic algorithm, to

Test Case Prioritization Based on Dissimilarity Clustering 271



overcome the unwanted and dislocated desired path. Test suites are formed using
selected test cases measuring conditions covered by each test case. The fitness value of
every test case has been determined based on the coverage information, which are used
to rank the suites. Finally, using fitness value, test suites have been ranked which is
measured counting total coverage. After applying the genetic algorithm on test suite,
the experimental result shows that modified genetic algorithm performs better than Bee
Colony and random approach. However, generating complex decision graph for large
scale software may overhead of this approach.

A Bayesian Network (BN) based novel prioritization framework has been proposed
to improve fault detection rate by Siavash et al. [7]. The framework takes program
modification, tendency of fault occurrence and test case coverage information as a
single input and produces the probability of test case as output. The different evidence
sets have been extracted from the source code, which are integrated to single BN
model. The experimental result shows that proposed method performs better than other
implemented techniques, if the available faults are remarkable. However, in this pro-
posed approach, several test cases may indicate similar faults in execution.

Xiaobin et al. proposed an enhanced Bayesian Network (BN) based technique for
prioritization, where test cases are clustered using method level coverage matrix [12].
Inter cluster test cases are prioritized based on their fault detection probability by BN
approach. Source code change information, and class level coverage matrix are fed as
input of BN model to get failure probability as output. The result shows that the
improved BN scheme is more effective than normal BN model for test case prioriti-
zation. However, failure history which is effective to detect fault in regression testing
[5], has not been considered for test case prioritization in the proposed strategy. Fur-
thermore, clustering based on similar code coverage has similar fault detection capa-
bility, which may detect similar faults by multiple test cases.

Arafeen et al. introduced prioritization approach using requirement similarity
clustering to investigate regression testing efficiency [8]. Distinct terms from software
requirements are identified to generate term-document matrix, which lead to k-means
cluster. Clusters of test cases have been formed using requirements-test case mapping
traceability matrix. Inter cluster test cases has been prioritized based the source code
coverage information. Execution sequence of clusters is ordered using code modifi-
cation information and client’s requirement priority. Results denoted that the applied
strategy which incorporates requirement information to prioritization improves the
effectiveness of prioritization process. However, previous version test case failure
history has not been considered for prioritization, which may affect the effectiveness of
proposed technique.

Saeed et al. presented test case prioritization technique named as RDCC, which
collaborates different software artifacts such as requirements, design diagrams and
source code [9]. Their scheme overcomes the limitation of traditional single SDLC
phase consideration in software testing. In RDCC approach, requirements connectivity,
design inter-dependency and code metrics are collected, and multiplied by their weight
for measuring final priority of test case. An academic case study has been used as the
experimental analysis and results figure out that use of collaborative information in test
case prioritization was significant. However, significant direction was undeclared for

272 Md. Abu Hasan et al.



assigning weight to SDLC phases, and the result would be more effective by incor-
porating historical failure data.

Yiting et al. proposed a prioritization approach on the basis of fault severity to
overcome random selection problem when multiple test cases have same coverage rate
[14]. In this approach, test cases are selected based on the measurement of fault severity
of each test case. The detected fault history of selected test cases has been recorded to
update the test case priority for next execution. Considering consistent coverage rate,
experimental result shows that the proposed technique improves the efficiency of
regression testing. However, the fault severity has been assigned based on assumption
rather than analysis of faults failed in previous testing execution, which may lead a
biased prioritization. Consideration of consistent code coverage may have negative
impact on their proposed approach.

Dusica et al. proposed a multi-perspective test case prioritization framework in
time-constrained environments for faster fault detection [15]. This scheme considers test
execution time, inter dependence functionality, failure impact and frequency factors for
selecting the multi-perspective values. When time is limited for test suite execution, this
technique selects test cases which are cost effective to execute. This approach prioritizes
test cases to detect fault early and maximizes test cases having maximum inter depen-
dence functional coverage, failure impact and frequency. Even though, this strategy
used multiple factors for prioritizing test cases, dissimilar based test suite selection has
not been considered to detect different types of fault at early execution.

Tanzeem et al. implemented a similarity based prioritization approach using his-
torical failure data to rank new test cases matching with the failed test cases of previous
execution [5]. Sequence of method call by previously failed and new test cases are
generated to measure distance value from each other, which are used to form similarity
matrix in descending order. The new test cases ranked higher whose distance value is
less in the matrix. The experimental result shows that this similarity based approach is
more effective in test case prioritization compared to other traditional strategies.

Regression test case selection approach has been evaluated in order to investigate
the effect of time and resource constraint in testing process by [11]. In this strategy,
based on historical data an empirical study has been conducted to prioritize test case in
a time limit environment. The cost-benefit analysis of this strategy has been conducted
under different software evaluation models to provide directions for further research on
this field. The experimentation shows that regression testing for constrained environ-
ment has to be conducted differently from non-constraint environment and historical
data has significant impact on regression testing. However, dissimilar test cases based
on historical data is not considered for prioritization in order to detect various types of
fault at the early of testing execution.

The analysis of existing approaches shows different prioritization strategies have
been implemented for regression testing such as code coverage, requirement clustering,
historical data analysis etc. Very few researchers incorporate the historical data and
similarity clusters, where similar test cases are pointing the uniform faults together,
which are imperfect in varieties of fault detection. However, no direction has been
found yet to detect dissimilar faults using historical data analysis, which may increase
fault detection rate in regression testing.

Test Case Prioritization Based on Dissimilarity Clustering 273



3 Proposed Methodology

Based on historical data, dissimilar based clustering framework is proposed to
implement test case prioritization with intent to cover different region of code to detect
variance faults at early. In this technique functions between two subsequent test suites
version have been listed based on the function call similarity among them. Figure 1
presents the activity flow of proposed prioritization framework. A dependency matrix
or graph has been generated based on the similar function of all test cases version. Test
cases are clustered considering their function call similarities which are denoted by
several circle in Fig. 1. Inter cluster test cases are ordered using the previous version
fault detection matrix and degree of connectivity. Finally, the top test cases are picked
from every cluster to form a dissimilar test suite, is iterated until all the test cases are
picked. This order is the desired prioritization sequence of this proposed approach. The
whole proposed method can be divided into five distinct steps which are described
below.

Fig. 1. Activity flow of dissimilar test case prioritization

274 Md. Abu Hasan et al.



Step 1: Generating Test Cases Dependency Graph
In this approach one old version and one new version of test suite are taken as input to
generate similar functions list. Similarity between old version functions with new
version is measured, based on the number of function called. Total number of called
function by old and new version program function is calculated to generate similarity
score [16]. An example of function called by old and new test cases is given below.

In the above example, function testCaseOld() called m1(), m2(), m3(), and m4(),
where function testCaseNew() of new Test Case called m2(), m4(), and m5(). Even
though, the name of old and new test cases is not same. However, m2() and m4() are
called by both functions. In this example, similarity score is 2, which is calculated by
the number of same called functions. Execution function call graph G (V, E) has been
generated, where test cases are the vertex (V), and the similarity scores are the edges (E)
between two vertices. Degree of connection for each test case is computed on the basis
of dependency graph. The square root ceiling value of total test cases is used to find the
number of clusters.

Step 2: Forming Similar Test Case Clusters
In this step, the distance among cluster headers and test cases degree of connections
calculated from dependency graph. The measuring score is used to assign test cases to
the cluster with whose distance is less. The test cases those are not connected with any
cluster header (whose similarity score is zero) have been assigned in a cluster named as
an orphan cluster.

To assign the members of orphan cluster, first degree of connection of each member
inside orphan cluster is measured. This is then compared with each cluster header value
and their member’s value. If any comparison value found closest to any cluster header,
the member is assigned to that cluster. The remaining test cases whose connectivity
degree with cluster header or members is zero are assigned to a cluster named as
isolated cluster. Also test case pairs those are connected only with each other are
assigned to isolated cluster.

Step 3: Prioritizing Inter Cluster Test Cases
In this step, total number of faults detected by similar test cases in previous execution
and degree of connection is calculated in order to assign priority. Test cases failed in
previous execution are listed in descending order based on the number of faults
detected. Degree of connection is considered to assign priority for test cases those are
shared same number of fault detection score. The remaining test cases those have only
connection degree will be prioritized in a descending ordering based on their degree of
connectivity. Total number of faults detected by similar test cases and degree of

Test Case Prioritization Based on Dissimilarity Clustering 275



connection is measured for each clusters test cases. After then, clusters are prioritized
based on their previously calculated total score.

Step 4: Dissimilar Test Suite Formation
Top test cases from each cluster have been picked one by one to form dissimilar test
suites. This dissimilar test case cluster process is continued until all the test case is
picked.

Step 5: Prioritizing and Executing Test Cases
The internal prioritization of dissimilar test suite has been given based on total number
of faults detected by similar test cases in previous execution and degree of connectivity
of each test case.

4 Result Analysis and Discussion

The implementation of proposed dissimilarity based prioritization approach with their
comparative prominent test case prioritization is presented in this section. The result
analysis with experimental setup and dataset are also described here.

Dataset
Two versions of three different projects named as JodaTime, Closure, and Chart from
well reputed Defects4j datasets are used for experimental analysis in this paper [13].
Defects4j dataset contains 20,109 tests and 357 bugs in each individual projects. Each
version of project contains buggy and fixed code segments with corresponding test
cases. All the test cases are written in Junit test method. Projects which are used as
dataset for this paper experimentation from Defects4j are shown in below Table 1.

Environment Setup
The research work evaluation has been performed on a single personal computer
having 2.5 GHz core i5 CPU and 4 GB memory running the Ubuntu 14.04 LTS
version operating system. To run Defects4j java 1.7, perl 5.0.10, git 2.10.1, and SVN
1.9.5 have been installed. LAMPP server has been installed in order to execute php
scripts, which are used to generate dissimilar test suites.

Table 1. Dataset details

Identifier Project name Number of bugs Number of test cases

Chart Jfreechart 26 2,205
Closure Closure compiler 133 7,927
Time Joda-Time 27 2,245

276 Md. Abu Hasan et al.



Measurement Metric
In test case prioritization technique, standard measurement metric named as APFD
(Average Percentage of Faults Detection) is used to calculate the average fault
detection percentage for the test suite [17]. The limit of APFD result is 0 to 100, where
higher number indicates faster fault detection rate. Let a test suite T containing n test
cases; F denotes a set having m faults which is revealed by test suite T. TFi is the
position number of earliest test case of test suite T which detects fault i. The APFD is
calculated using the following Eq. (1).

APFD ¼ 1� TF1 þ TF2 þ TF3 þ . . .þ TFm

n � m þ 1
2n

ð1Þ

Experimental Prioritization Method
Four different test case prioritization schemes are experimented to validate the result of
proposed technique on same Defects4j datasets, which are explained below.

1. Untreated Test Case Prioritization (UTP)
In UTP method, executions of test cases are performed on the basis of normal test
case ordering without any prioritization. APFD of UTP method was measured by
considering normal ordering of whole test suite and the position of test case that
detect the faults at first.

2. Random Test Case Prioritization (RTP)
In RTP method, APFD is measured using random test case ordering of a test suite.
In this approach random execution sequence of test case is generated twenty
(20) times, and APFD is calculated based on the average of all execution.

3. Similar Test Case Prioritization (STP)
In STP, test cases are clustered on the basis of similar function call. Internal
ordering of a single test cluster is calculated based on the faults detection of pre-
vious version. The connection degrees of test cases are considered for internal test
case ordering, when fault detection is absent.

4. Dissimilar Test Case Prioritization (DTP)
In DTP method, test cases are prioritized as dissimilar test suite, which is formed by
picking up the top test case of each ordered test similarity cluster. Internal ordering
of each test case within a dissimilar test suite is calculated based on their connection
degree, and total number of faults they detected.

Results Analysis
The comparative results of proposed Dissimilar Test case Prioritization (DTP) with
three prominent prioritization methods named as UTP, RTP and STP are listed below.

i. UTP vs DTP:
In the experiment, for every project of two versions, DTP performs better than UTP
which is shown in the above Table 2. For example in Chart v3 dataset DTP APFD
values for different input size are 79%, 79%, 79%, 96% &100% where UTP APFD

Test Case Prioritization Based on Dissimilarity Clustering 277



values are 0%, 0%, 29.16%, 83%, 100% respectively. The various APFD results
for UTP and DTP are averaged and figured out at Fig. 2(a) and (d) subsequently.
According to Fig. 2(a) and (d) the area under the curve represents the APFD, and it
shows that our DTP method APFD 88.54%, which is higher than UTP APFD
40.77%.

ii. RTP vs DTP:
According to the Table 2 RTP APFD is lower than proposed method DTP. In the
experimental analysis for dataset Jodatime v3 the DTP APFD values for different
input sizes are 80%, 90%, 100%, 100% and 100% which are always higher than
RTP APFD values 17%, 45.60%, 63%, 91% and 100% respectively. The various
APFD results for RTP and DTP are averaged and figured out at Fig. 2(b) and
(d) correspondingly. According to Fig. 2(b) and (d) the area under the curve
represents the APFD, and it shows that our DTP method APFD is 88.54%, which
is higher than RTP APFD 51.50%.

Table 2. APFD based on various percentage of test execution

Project Prioritization technique APFD based on various percentage of test
execution
20% 40% 60% 80% 100%

Closure v2 UTP 36.53% 36.53% 42.30% 100% 100%
RTP 19.61% 45.38% 57.69% 78.07% 100%
STP 98.07% 98.07% 98.07% 100% 100%
DTP 100% 100% 100% 100% 100%

Closure v3 UTP 34.61% 40.38% 46.15% 100% 100%
RTP 28.84% 56.92% 68.07% 97.69% 100%
STP 86.53% 96.15% 100% 100% 100%
DTP 94% 100% 100% 100% 100%

Chart v2 UTP 10.52% 10.52% 42.10% 100% 100%
RTP 13.68% 32.63% 64.21% 88.37% 100%
STP 26.31% 26.31% 57.89% 100% 100%
DTP 100% 100% 100% 100% 100%

Chart v3 UTP 0% 0% 29.16% 83% 100%
RTP 20% 36.65% 62.50% 73.32% 100%
STP 54.16% 87.50% 100% 100% 100%
DTP 79% 79% 79% 96% 100%

Joda time v2 UTP 0% 20% 20% 100% 100%
RTP 10% 18% 64% 94% 100%
STP 80% 90% 100% 100% 100%
DTP 80% 100% 100% 100% 100%

Joda time v3 UTP 0% 28% 28% 100% 100%
RTP 17% 45.60% 63% 91% 100%
STP 72% 88% 92% 100% 100%
DTP 80% 90% 100% 100% 100%

278 Md. Abu Hasan et al.



iii. STP vs DTP:
In this paper the proposed method DTP detects faults earlier than STP in 66.67%
cases which is measure according to the APFD metric. According to the Table 2
for dataset Jodatime v3, the calculative APFD for proposed DTP method for
various input size are 80%, 90%, 100%, 100%, 100% where STP APFD is 72%,
88%, 92%, 100% and 100% respectively. The various APFD results for STP and
DTP are averaged and figured out at Fig. 2(c) and (d) respectively. According to
Fig. 2(c) and (d) the area under the curve represents the APFD, and it shows that
our DTP method APFD is 88.54%, which is higher than STP APFD 82.34%.

5 Result Discussion

Table 3 and Fig. 3 show the experimental results of three Dataset JodaTime, Closure
and Chart. Table 3 shows that the performance ranking of four different test case
prioritization technique is UTP < RTP < STP < DTP in terms of APFD metric cal-
culation. According to Table 3, UTP and RTP test case prioritization techniques APFD
value is always lower than our proposed DTP technique where 66.67% cases DTP has
higher APFD value than STP. The box-plot of Fig. 3 represents the average APFD
value of each test case prioritization method of three projects where DTP has higher
value 88.54% compare to UTP, RTP and STP 40.77%, 51.50%, 82.34% value
respectively. That means the dissimilar test suite selection can reduce the test execution
time and maximize the fault detection rate.

0% 
20% 
40% 
60% 
80% 

100% 

40.77%

0% 
20% 
40% 
60% 
80% 

100% 

51.50%

0% 
20% 
40% 
60% 
80% 

100% 

82.34%

0% 
20% 
40% 
60% 
80% 

100% 

88.54%

(a): APFD of UTP (b): APFD of RTP 

(c): APFD of STP (d): APFD of DTP 

Fig. 2. Average APFD of various prioritization schemes

Test Case Prioritization Based on Dissimilarity Clustering 279



6 Conclusion

This paper presents a dissimilarity based test case prioritization based on historical
failure data analysis. This method considers both old and new version of test cases for
prioritization. It calculates the similarity between two test cases and generates several
clusters based on those similarity values. Inter cluster test cases ordered using the
failure information form old version of test cases. Finally, test cases selected from
every distinct cluster create the new dissimilar test suite. This technique has been
experimented on Defects4j dataset, and it performs better than untreated, random ad
similarity based approaches in terms of early fault detection. Incorporating time con-
straints or requirement prioritization would be the future direction of this research.

Table 3. APFD comparison of various test case prioritization techniques

Project Version APFD
UTP RTP STP DTP

Chart v2 36.91% 49.00% 52.98% 87.74%
v3 28.24% 45.90% 84.43% 81.19%

Closure v2 46.73% 54.46% 95.55% 95.10%
v3 47.91% 59.77% 87.23% 90.32%

JodaTime v2 41.32% 49.61% 90.84% 92.12%
v3 43.52% 50.26% 83.02% 84.79%

Average 40.77% 51.50% 82.34% 88.54%

Fig. 3. Box plot of several test case prioritization techniques

280 Md. Abu Hasan et al.



References

1. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression
testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

2. Nguyen, C.D., Marchetto, A., Tonella, P.: Test case prioritization for audit testing of
evolving web services using information retrieval techniques. In: 2011 IEEE International
Conference on Web Services (ICWS). IEEE (2011)

3. Catal, C.: The ten best practices for test case prioritization. In: Skersys, T., Butleris, R.,
Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 452–459. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33308-8_37

4. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Test case prioritization: an empirical
study. In: Proceedings of IEEE International Conference on Software Maintenance (ICSM
1999), 30 Aug – 3 Sept 1999 (1999)

5. Noor, T.B., Hemmati, H.: Test Case analytics: mining test case traces to improve risk-driven
testing. In: SWAN 2015, Montréal, Canada, IEEE (2015)

6. Konsaard, P., Ramingwong L.: Total coverage based regression test case prioritization using
genetic algorithm, IEEE (2015)

7. Mirarab, S., Tahvildari, L.: A prioritization approach for software test cases based on
Bayesian networks. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 276–290. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71289-3_22

8. Arafeen, M.J., Do, H.: Test case prioritization using requirements-based clustering, In: 2013
IEEE Sixth International Conference (2013)

9. Siddik, M.S., Sakib, K.: RDCC: an effective test case prioritization framework using
software requirements, design and source code collaboration. In: 17th International
Conference on Computer and Information Technology (ICCIT), pp. 75–80. IEEE, (2014)

10. Wang, X., Zeng, H.: History-based dynamic test case prioritization for requirement
properties in regression testing. In: IEEE/ACM International Workshop on Continuous
Software Evolution and Delivery (CSED), pp. 41–47, 14 May 2016. IEEE (2016)

11. Kim, J.-M., Porter, A.: A history-based test prioritization technique for regression testing in
resource constrained environments. In: International Conference of Software Engineering,
ICSE (2002)

12. Zhao, X., Wang, Z., Fan, X., Wang, Z.: A clustering – Bayesian network based approach for
test case prioritization, In: 2015 IEEE 39th Annual International Computers, Software and
Applications Conference (2015)

13. Just, R., Jalali, D., Ernst, M.D.: Defects4J: a database of existing faults to enable controlled
testing studies for Java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, (2014)

14. Wang Y., Zhao X., Ding X.: An effective test case prioritization method based on fault
severity. In: IEEE (2015)

15. Marijan, D.: Multi-perspective regression test prioritization for time-constrained environ-
ments, In: IEEE International Conference on Software Quality, Reliability and Security
(2015)

16. Siddik, S., Gias, A.U., Khaled, S.M.: Optimizing software design migration from structured
programming to object oriented paradigm. In: 16th International Conference on Computer
and Information Technology (ICCIT), pp. 1–6. IEEE (2013)

17. Gao, D., Guo, X., Zhao, L.: Test case prioritization for regression testing based on ant colony
optimization. In: 2015 6th IEEE International Conference on Software Engineering and
Service Science (ICSESS). IEEE (2015)

Test Case Prioritization Based on Dissimilarity Clustering 281

http://dx.doi.org/10.1007/978-3-642-33308-8_37
http://dx.doi.org/10.1007/978-3-540-71289-3_22

	Test Case Prioritization Based on Dissimilarity Clustering Using Historical Data Analysis
	Abstract
	1 Introduction
	2 Literature Review
	3 Proposed Methodology
	4 Result Analysis and Discussion
	5 Result Discussion
	6 Conclusion
	References




