
Parallel Compression of Weighted Graphs

Elena En, Aftab Alam, Kifayat Ullah Khan, and Young-Koo Lee(&)

Department of Computer Science and Engineering, Kyung Hee University,
Yongin-si 446-701, Republic of Korea

yklee@khu.ac.kr

http://www.khu.ac.kr

Abstract. Large graphs such as social network, web graph, biological network,
are complex and facing the challenges of processing and visualization. Moti-
vated by such issues, Taivonen et al. [1] proposed models and sequential
algorithms for weighted graph with the intentions to generate a candidate
compress graph. The proposed compression algorithm is expensive in terms of
computation time because of the sequential process. The weighted graph com-
pression algorithms can be made faster while adopting parallel processing
technique. In this paper, we adopt parallel processing technique for weighted
graph compression problem while using multi-selection nodes to perform
merge-able technique with various graph clustering algorithms to avoid over-
lapping between nodes from different threads. For the performance evaluation
purposes of the proposed method, we carry out series of tests on the real net-
works. We perform extensive experiments on parallel graph summarization
while using different graph clustering algorithms. Our results demonstrate their
effectiveness for parallel graph compression on real networks.

Keywords: Weighted graph � Network � Graph compression � Graph
clustering � Parallel processing � Graph mining

1 Introduction

Real-world data are transformed to graph structure with the intention to extract hidden
knowledge while exploiting the linked structure. This linked structure is playing a vital
role in various domains ranging from Web structure to the data generated by scientists.
In the graph structure, the node represents the entities e.g. person, Web page, module
etc., and the link is the relationship between entities such as a friend link, hyperlink etc.
Below, we look at some of these application domains:

World Wide Web. The web-graph describes the directed links between webpages of the
World Wide Web. The link structure of Web has been playing a significant role in the
search engine such as aGoogle, where quality of search has been improved.Web-graph is
a prime example of large-scale graph. Google estimates the total number of Webpages
exceeds one trillion; experimental graphs of the World Wide Web contain more than
twenty billion nodes (pages) and one hundred and sixty billion edges (hyperlinks) [2].

Social Networking Graph. In the context of the internet, social graph signifies relations of
internet users where node and edge represent users and relations among them respectively.

© Springer Nature Singapore Pte Ltd. 2018
W. Lee et al. (eds.), Proceedings of the 7th International Conference
on Emerging Databases, Lecture Notes in Electrical Engineering 461,
https://doi.org/10.1007/978-981-10-6520-0_8



Best known examples of social graphs are the Twitter graph and the Facebook graph, with
millions of users. The social networks give birth to various groups and communities of
interests, for example, music, car, school, work andmuchmore. Communications between
users of such associations are quite strong that allows identifying them easily [3].

Biological Network. In the biological domain, the nodes represent entities such as
genes, proteins, and enzymes, whereas the edges encode the relationships, such as
control of the reaction and the correlation, between these objects [4]. The graph gen-
erated in such domains consists of million and billions of nodes and edges. Performing
various data mining operations on such huge graph are quite challenging and expensive
in terms of memory, processing and time.

Contributing in the area of graph summarization Toivonen et al. [1] proposed the
randomized semi-greedy method [1] that computes possibility of all pairwise merges
and then recursively performs the best merge until the required compression ratio is
reached. To understand this approach, we remind that graph is contained many pairs of
nodes that gives reduction in cost by merging operation. However, this algorithm is
expansive in terms of execution time, because of sequential selection of nodes during
graph compression. Therefore, the algorithm [1] can be made more efficient in terms of
execution of time adopting the concept of parallelism. To achieve better performance,
we use different clustering algorithms to cluster a large graph in to small independent
graphs so that to be executed independently.

In this paper, we exploit different clustering algorithms to create independent small
graph and then we apply the algorithm of [1] for compression. Then, we compare the
performance of each clustering algorithms in the context of graph compression.

2 Related Work

Graph Compression. The problem of graph compression is relevant in the study of
graphs. Most of the works have been done based on common ideas and theories of
graph analysis. In fact, those researchers are proposing to utilize similar connections to
merge graph nodes. Navlakva et al. [5] and Tian et al. [6] made a fundamental con-
tribution to the graph compression research. They have proposed a compact graph as a
major summary model, where nodes represents a set of nodes and edges are the
relationships among of the nodes. Moreover, the original graph can be recreated from
summary graph by employing the set of edge corrections. The sum of size of the edge
correction set and size of the summary graph is minimized by the principle of the
Minimum Description Length (MDL) [7]. The most related methods to our work have
been proposed by Toivonen et al. [1]. They apply several methods to determine the
efficiency of compressing large graphs such as co-authorship graphs. According to the
experiments, the randomized semi-greedy method, that is a generalized version of the
randomized algorithm of [5] can efficiently compress a weighted graph with a little
effect on the node clustering. The authors present notions of supernodes and superedges
by 2-hops optimization. The selected node merges a suitable nodes with minimized
mean weight in its 2-hop neighborhood to produce a smaller graph [1].

Parallel Compression of Weighted Graphs 69



The above-mentioned works have been focused on sequential data processing for graph
representation, therefore we have explored parallel data processing and graph parti-
tioning for better performance.

Parallelization. Parallel algorithms on graphs [8] are used in various scientific and
practical applications. Multi-core systems, provide good localization of data and pro-
vide good acceleration with an increase in the number of cores. Acceleration of
application processing strongly correlates with the used memory bandwidth. Therefore,
parallel processing plays a significant role in many areas of scientific computing. The
graph represents the vertex-centric view in the case of parallel processing. Parallel
processing of graphs occurs by partitioning the graph data through processing resources
and resolving dependencies along edges through iterative computation and
communication.

Graph Clustering Algorithms. We mainly reviewed the clustering algorithms such as
MCODE, Graph entropy, IPCA, and COACH that have performed well in previous
surveys [9].

Molecular complex detection (MCODE) is well studied method for finding dense
regions of the network. Dense regions are determined based on the connectivity data in
the network. This algorithm works in three ways: (1) node scoring; (2) cluster finding;
and (3) post processing is repeated and clusters that do not contain the maximum
connected subgraph are filtered out in the resulting subgraphs.

Proposed by Li et al., Identification of protein complexes (IPCA) algorithm is
focused on vertex distance and density subgraphs. The algorithm can be managed by
two equations the shortest path between a pair of vertices, and the vertex interaction
probability, both in subgraph level. There are four dominant divisions in the algorithm:
(1) weighting vertex and computing the weight for every edge and vertex; (2) selecting
seed, where the highest weighted vertex is selected as the seed; (3) extending cluster,
working on extension of some cluster K; and (4) extending judgment. The IPCA
algorithm requires more time to process the data, since it is related to the number, as
well as the size of the created clusters.

Core-attachment based method (COACH) operates in two phases; detection a
strongly connected area, which calls the “preliminary cores” of the network, and the
expansion of regions by highly connected neighbors. The COACH algorithm begins
from discovering cores and end with formation complexes from the graph. If the core
graph is not dense enough, core nodes will be removed from the core graph. The
extended graph can contain a number of connected elements and recursively perform
this process to obtain strongly connected sub-graphs in each connected elements. The
deleted cores are recursively added back into resulting sub-graph. Then, applying the
post-processing of the discovered cores, the maximal dense form can be obtained.

Kenley and Cho presented a novel theoretical term, “Graph entropy” that measures the
structural complexity of the given graph. The algorithm includes the method of seed
increment. Moreover, this method not requires threshold, due to it searches through
examination, representing advantageous solution by reducing graph entropy. This tech-
nique based on searching locally themost favorable clusters,which have aminimal value of
a graph entropy. Parallelization and clustering algorithms is related to each other because
they have the same properties of data partitioning for solving the time complexities.

70 E. En et al.



However, the task of clustering is expensive, since many of algorithms require iterative or
recursive procedure, and most of real-world networks are huge. Consequently, the paral-
lelization of clustering algorithms should not be avoid.

3 Preliminary

We denote some basic graph notations, which can be useful for understanding this
paper. Let G = (V, E, w) be a directed weighted graph, where V is the set of vertices,
E � V � V is the set of edges, and w: E ! R+ assigns positive weight to each edge e2
E. S ¼ ðV 0;E0;w0Þ is defined as a compressed weighted graph of G if V 0 is a partition of
V, where nodes v0 2 V 0 are grouped to supernodes, and edges e0 2 E0 are grouped to
superedges. A supernode is a node v 2 VS, correspond to a set of Av nodes in G, and
each edge (u, v) 2 ES is called a superedge, which represents the edges between all
pairs of nodes in Au and Av [5].

4 Parallel Compression of Graphs Using Clustering
Algorithms

In this section, we introduce a parallel graph compression approach to improve the
existing work [1].

4.1 Using Graph Clustering Towards Summarization

Graph clustering is the clustering of data in the form of graphs. The graph clustering
algorithms are focused on summarization graph nodes by their similarities. The main
purpose of clustering is the division of the graph into two or more partitions based on
the similarity of objects. Clustering affects the simplification of extracting the mean-
ingful information from the graph. The clustering algorithm generates clustering for
any input data taking into account the fact that not all graphs have natural clusters. The
discovery of clusters makes it possible to identify certain hidden structures in the graph.

4.2 Proposed System Overview

The task of our parallel algorithm is to divide the problem into sub-problems and
executed in parallel to obtain outputs independently. For our implementation, we use
more than one processor cores to run a program for processing computational intensive
jobs. The program is split and executed by several CPUs at the same time, where
processed results are then recombined.

The parallel compression on a single system can be achieved by using two different
approaches. In the first approach, parallel processing can be performed on a single large
graph. The idea is to select multiple nodes according to the available CPU cores and
then merge it with a suitable node in its 2-hop neighborhood. In the second approach,
the large graph can be partitioned into independent subgraphs and then can be executed
in parallel by compressing each sub-graph independently. In this paper, we use the

Parallel Compression of Weighted Graphs 71



graph partitioning technique for parallel graph compression while leaving the former
one for future work.

In order, to avoid the node’s overlap among the nodes in the procedure of 2-hop
optimization in parallel processing and generating independent sub-graphs, we use
available graph clustering algorithms which we mentioned in above section. Once we
generate independent sub-graphs, then we randomly choose subgraphs accordingly to
the number of CPU cores and process them in parallel.

The architecture of the proposed parallel graph compression is shown in Fig. 1. In
the first stage, we partation a large graph into small independent subgraphs. Then we
apply above algorithms. There are well-known methods attempt to detect highly
interconnected subgraphs within the datasets. It can be applied to various datasets such
as social networks, literature and other interaction network.

After this step, we select randomly different number of subgraph according to the
number of available CPU cores and execute for compression independently.

4.3 The Proposed Algorithm

Algorithm 1 is the proposed algorithm for parallel compression of the weighted graph.
The input to the algorithm is G where the output is S. The proposed algorithm consists
of four main parts. In the part first part, we set the main required variables i.e.
graphPartitioner (select the algorithm to partition the graph), cpuCount (get the
numbers of processes), and executeService (create a thread pool according to the
available CPUs). In the second part of the algorithm, we call a function called
graphPartition which is responsible to partition the graph according to the
graphPartitioner parameter (being set in step 1) while returning the numbers of par-
titions numOfPartitions.

One of the challenges in parallel processing is load balancing. In our algorithm,
step 5 solves the problem of load balancing with the aim to utilize the resources
efficiently. Step 1 gives us the number of processors (cpuCount) while step 4 returns
the number of graph partitions (numOfPartations). We divide the numOfPartations by
cpuCount and get the partationSlab which means that how many numbers of partitions
should be executed per CPU. Finally, the submit function is used to assign the number
of partitioned graphs to each processor and execute in parallel.

Fig. 1. Architecture of the proposed solution.

72 E. En et al.



5 Experiments

In this section, we describe the experimental setup being used for the evaluation of the
proposed algorithm. Furthermore, we present results showing favorable performance
for weighted graph compression in parallel processing.

5.1 Experimental Setup

The purpose of our experimental study is to show the effectiveness and compare the
scalability of various methods. For the evaluation purpose we have implemented our
approach as an extension to the compression graph. We used four different clustering
algorithms that are intended for partitioning the huge amount of data that is needed for
parallel processing.

All the algorithms have been implemented framework program by using Java (JDK
1.7) by using NetBeans IDE 8.2 and Python 27, and all experiments were run on a
standard PC with 8 GB of main memory and Intel Core i3-4130 3.40 GHz CPU
processor.

12084
19784

7687 10690

0 

10000

20000

30000

CoAch IPCA MCODE Graph entropy

Number of clusters of dataset with 50.000 nodes &764032 edges

Fig. 2. The number of clusters generated by different algorithms

Algorithm 1 Parallel Compression of Weighted Graph

S (V', E', w') ← G (V, E, w)
Requires: 

1: graphPartitioner = {CoAch, IPCA, MCODE, GraphEntropy} 

2: cpuCount ← Runtime.getNumOfProcessors ()
3: executorService ← Executors.newFixedThreadPool (cpuCount)

Partition Selector: 
4: numOfPartitions ← graphPartition (graphG, graphPartitioner) 

Load Balancing:
5: partitionSlab ← numOfSubGraphs/ cpuCount

Parallel Execution: 
6: for i=0 to cpuCount

executorService.submit (start, partitionSlab,randSemiGreedyAlgo) 
start ← start + slab

end for

Parallel Compression of Weighted Graphs 73



5.2 Datasets

The following Table 1 introduces the datasets for our experiments. We used four
real-world networks i.e., Web graph, Social Networking graph and Biological graphs
[10]. The size of graph increases from 1000 to 50000 nodes. The dataset of 1 K consist
of 1000 nodes and 7692 edges. The dataset of 10 K has 10000 nodes and 153308
edges, whereas 20 K dataset has 20000 nodes and 164586 edges. The biggest dataset
consist of 50000 nodes with 764032 edges. Each edge of graphs has an associated
numerical value as a weight. The weighted graphs are used to represent structures,
where pairwise connections have some numerical value.

5.3 Results

In this section, we present experimental results of our proposed data cauterization
techniques for parallel processing of compression of weighted graphs with real data
sets.

Depending on algorithms properties number of generated clusters might be dif-
ferent. In our proposed algorithm, each thread store almost equal number of clusters.
The Fig. 2 illustrates the number of clusters from datasets with 50000 nodes and
764032 edges generated by various algorithms. It can be seen that MCODE algorithm
produced only 7687 number of clusters, whereas IPCA has comparable number of
clusters with 19784. By contrast, the algorithms of CoAch and Graph entropy produce
approximately the same amount of clusters 12084 and 10690 respectively.

In Fig. 3, we compared the results of supernodes obtained by the sequential method
and our parallel cluster approach for compressing the weighted graph. It can be
observed that the outperforming results for graph compression are from MCODE and
Graph entropy clustering algorithms. There are less number of supernodes than existing
work. The minimum number of supernodes leads to the fact that the compressed graph
will be small. A small size of graph allows users to better understand and analyze the
graph. Whereas, the MCODE algorithm has a directed node that allows fine-tuning of
clusters of interest without considering the rest of the network and allows examination
of cluster interconnectivity. The graph entropy produce a high quality clusters that can
be evaluated by connectivity. A cluster has a higher quality if it has denser
intra-connections within the cluster and sparser interconnections to vertices outside of
the cluster. The graph entropy definition is formulated to measure the cluster quality
effectively. A graph with lower entropy indicates that the vertices in the cluster have
more inner links and less outer links. The IPCA and CoAch methods detect the clusters
from each node and it has high probability of overlapping. In comparison with the

Table 1. Datasets.

S# Name Nodes Edges

1 1 K 1000 7692
2 10 K 10000 153308
3 20 K 20000 164586
4 50 K 50000 764032

74 E. En et al.



previous listed algorithms, they produce more number of clusters due to the fact that
some predicted clusters are similar and match the same benchmark clusters. However,
MCODE and CoAch algorithms lost many nodes by reducing nodes, which do not
have any relations. IPCA and CoAch clustering algorithm have higher number of
supernodes from existing work in every dataset. Based on the given results, we can
conclude, that MCODE and Graph entropy algorithms is more suitable for our
approach of parallel graph partitioning and show the improvement for graph com-
pression method of existing work.

In Fig. 4, we have been illustrated the comparison of running time (sec) of existing
work with sequential compression and parallel compression. There is significant dif-
ference of computational time between sequential and four threads in parallel pro-
cessing, so it is clearly seen the efficiency of parallel compression method.

Fig. 3. Comparison of existing results of supernodes with our approach parallel graph clustering
method

94.945

45.297
23.527 17.82

0 

100

Sequential compression Thread 2 Thread 3 Thread 4

Full Sized Graph

Fig. 4. Comparison of running time (in sec) between sequential compression and parallel
compression

Parallel Compression of Weighted Graphs 75



Additional scalability experiments were run with different dataset size and different
number of threads from one to four. As our system has four threads for each clustering
algorithm, it have been a maximum number of threads in our experiments in Fig. 5.

A comparative experiment conducted between a parallel processes with opti-
mization of cluster algorithms shows that the running time decreases by more than two
times compared to a sequential process with the same clustering algorithms.

6 Conclusion

In this paper, we compared the methods of sequential data processing and parallel data
processing, as well as comparison of four clustering methods in a parallel process, to
analyze a large-scale of real graph dataset. We have presented the problem of parallel
compression graph and gave the solution by means of graph clustering algorithms and
experimental results on multiple graph datasets. In this work, we have expanded the
existing work by parallel processing, which shows significant difference between
sequential and parallel processing for graph compression. Our experiments illustrates
that MCODE clustering method processed 764032 edges graph in 15 s in parallel, and
Graph entropy method processed same size of data in 22 s, which are suitable for our
approach.

Our proposed method has several advantages such as, notable results in saving the
memory space and reducing the computational time. However, during multiple
selection nodes in parallel, it is possible, that same nodes can be selected and for some
of the query node, all CPU cycles will be wasted, but, the probability of this scenario is
very low.

Fig. 5. Running time of parallel graph clustering algorithm for graph compression

76 E. En et al.



Acknowledgment. This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MEST) (No. 2015R1A2A2A01008209).

References

1. Toivonen, H., et al.: Compression of weighted graphs. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
(2011)

2. Sakr, S.: Processing large-scale graph data: a guide to current technology. IBM
Developerworks, p. 15 (2013)

3. Baruah, T.D.: Effectiveness of Social Media as a tool of communication and its potential for
technology enabled connections: a micro-level study. Int. J. Sci. Res. Publ. 2(5), 1–10 (2012)

4. Cline, M.S., et al.: Integration of biological networks and gene expression data using
Cytoscape. Nat. Protoc. 2(10), 2366 (2007)

5. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.
ACM (2008)

6. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.
ACM (2008)

7. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)
8. Nielsen, F.: Introduction to HPC with MPI for Data Science. Springer, Switzerland (2016)
9. Price, T., Peña, F.I., Cho, Y.-R.: Survey: Enhancing protein complex prediction in PPI

networks with GO similarity weighting. Interdisc. Sci. Comput. Life Sci. 5(3), 196–210
(2013)

10. Stanford Large Network Dataset Collection.html. http://snap.stanford.edu/data/

Parallel Compression of Weighted Graphs 77

http://snap.stanford.edu/data/

	Parallel Compression of Weighted Graphs
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Parallel Compression of Graphs Using Clustering Algorithms
	4.1 Using Graph Clustering Towards Summarization
	4.2 Proposed System Overview
	4.3 The Proposed Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Datasets
	5.3 Results

	6 Conclusion
	Acknowledgment
	References




