
A Particle Swarm Optimization Based
Predictive Controller for Delay Compensation

in Networked Control Systems

Abdin Yousif Elamin, Nurul Adilla Mohd Subha(&),
Norikhwan Hamzah, and Anita Ahmad

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai,
Johor, Malaysia

nuruladilla@utm.my

Abstract. This paper addresses transmission delays problem in network control
systems. Network-induced delay is an inherent constraint in NCS implementa-
tion that could lead to system degradation and destabilization. A particle swarm
optimization (PSO) tuning algorithm was adopted to optimally tune the
parameters of Generalized Predictive Controller (GPC) to solve networked-
induced delay problem. Furthermore, a modified PSO-GPC was designed by
replacing the standard GPC objective function with an Integral Time Squared
Error (ITSE) performance index in the GPC controller design. A particle swarm
optimization based PI controller in the Smith predictor structure is designed to
compare the performances of the original PSO-GPC and the modified
PSO-GPC. The results show that the modified PSO-GPC performed better than
the PSO-GPC in terms of transient response and enhanced NCS performance in
the occurrence of network delays.

Keywords: Network control systems � Delay compensation � Particle swarm
optimization � Generalized predictive control � Smith predictor

1 Introduction

NCS are started to be utilized in various industrial applications such as automotive [1],
human surveillance [2], and process control [3] due to several clear advantages. When
control system is designed using communication network, it is known as a networked
control system (NCS). In NCS, the control signals are shared among the system’s
elements in form of information packets through wireless or hard wired connections.
Utilization of networks communication allow for efficient centralized control systems
with minimal wiring across the system, hence reducing initial cost of a system [4].
Furthermore, NCS is a flexible structure that allows the addition or reduction of system
components without any significant change to the hardware of the system [5].

In general, there are two common problems with NCS application. NCS prone to
problem of network delay and data dropout. These problems may lead to system
performance degradation or even system destabilization. Current progress in data
dropout management can be review in [5–7]. Network-induced delay occurred due to

© Springer Nature Singapore Pte Ltd. 2017
M.S. Mohamed Ali et al. (Eds.): AsiaSim 2017, Part II, CCIS 752, pp. 417–431, 2017.
DOI: 10.1007/978-981-10-6502-6_37



number of factor, such as limited bandwidth, network congestion, and network trans-
mission protocols. Short time delays delay effect on the NCS is studied using Markov
model shows that network-induced delays can lead to uncontrollable or unobservable
system [8, 9]. In case of network-induced delay, system stability depends on the upper
and lower bounds of the time delay [10]. Several control methodologies have been
formulated to compensate the negative effects of network delays in NCS based on
different network configurations, constraints, and behaviors.

The event-based control methodology is introduced to control robotic manipulators
over the Internet. For example, in [11, 12] the optimal stochastic control methodology
is used, which treat the network delays as a Linear–Quadratic–Gaussian (LQG) prob-
lem. There is time-based methodology such as Model Predictive Control (MPC) which
predict future plant output to compensate network delay problem. The main difference
between event-based and time-based control methodology is that the event-based
control treats a system motion as a system reference [8]. Other than that, robust control
theory which doesn’t need any prior knowledge about the network delays have been
studied in [13]. Combination of these methodology has also been explored by other
researchers [14–16].

There is a growing interest in MPC-based approach due to its ability to predict
future plant outputs, hence effectively compensate the network induced constraints
such has network delay and packets dropouts [17, 18] even within system with state
and input constraints [19, 20]. In model predictive control, there is no unique method to
determine the control algorithm, but rather a wide variety of methods to predict future
plant outputs from current plant outputs along a specific prediction horizon at each
sampling interval [21]. In a study conducted in [17], a novel generalized predictive
control (GPC) algorithm is proposed to design the control signals which include the
employment of buffer in order to compensate both the control-to-actuator (C-A) and
sensor-to-controller (S-C) delays. In [18], to solve for random time delays and packet
dropouts, the delays are modeled using Markov chains, a modified GPC algorithm is
proposed and the stability analysis is established.

The study of MPC for nonlinear NCSs is more practical than linear NCSs. However
nonlinear NCS is more technically challenging due to increased computational com-
plexities. In literature, several promising results of networked nonlinear MPC have
been proposed such as Lyapunov based MPC (LMPC) strategy which able to control a
nonlinear system subjected to constraints [22] and LMPC strategy for nonlinear NCSs
with time-varying network-induced delays [23].

Many studies have been conducted in MPC tuning, both heuristic and deterministic
[24–26]. However, most previous research focused on improving performance for
systems without consideration of communication networks-induced problems. A sum-
mary of tuning methods for GPC and Dynamical matrix control (DMC) based on the
Integral Square Error (ISE) as a performance criterion is illustrated in [27]. Some
methods suggest heuristics while others are based on stability criteria, closed loop
analysis, analysis of variance [28], optimization-based algorithms [29]. Most studies
agree on the influence of these parameters in improving the system performance but
which parameter has the highest influence is still debatable. While some suggest that
the weighting factor is the most significant parameter, others suggest the prediction
horizon having the most effect on system performance [30]. In this paper, a particle
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swarm optimization (PSO) is adopted to optimally tune the parameters of the gener-
alized predictive control (GPC) algorithm. PSO effects on NCS performance is
investigated with focus on constant network-induced delay. The main aim of the
algorithm is to compensate the network-induced delays through the generated output
and control input prediction sequences.

This paper is structured as follows: Sect. 2 introduces the generalized predictive
control algorithm and its parameters; Sect. 3 introduces the particle swarm optimization
algorithm and its formulation to solve the GPC cost function; Sect. 4 presents results
from MATLAB simulation; the conclusion is presented in Sect. 5.

2 Generalized Predictive Control in Delay Compensation

Characteristic of network delay depends on the network and transmission protocol
which can be constant or time variant [31]. In this paper, Fig. 1 represents the basic
structure of the considered NCS consisting of a sensor that sends information through a
network to a controller, which then produced control signals to an actuator.

2.1 NCS with Network-Induced Delays

Network-induced delay exist in the controller to actuator channel (feed forward delay)
and the sensor to controller channel (feedback delay), denoted by sca and ssc

respectively.
From Fig. 1, ssc is the first delay which represents the time taken to generate a

control signal from the sensor. The controller to actuator delay sca indicates the time
taken for a control signal to reach the actuator. Another delay called the computation
delay sc also exists in the system and is defined as the time taken to generate a control
signal from the sensor feedback signal. However, for simplification the computation
delay sc is considered to be embedded within the overall network-induced delays s [7].

Fig. 1. A NCS with time delays
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Assumption 1. The clock-driven sensor samples the plant outputs periodically at
specific sampling instant TS.

Assumption 2. The event-driven controller and actuator act as soon as the sensor data
and control data become available.

Assumption 3. The network-induced delays in the system are time varying but

bounded. Moreover, let amaxk , bmax
k , amink and bmink symbolize the maximum and mini-

mum delays in the feedforward channel and in the feedback channel. Number of
sampling periods is a positive integer.

Remark 1. The delay considered in the feed forward and feedback channels have
maximum and minimum value, therefore we can treat the network delays as dead time
denoted by d.

Since the delays present in the system are time varying but bounded by maximum and
minimum values,

dm � d� dM : ð1Þ

Where dm is the minimum delay and dM is the maximum delay which determined by
the following equations,

dm ¼ amink þ bmink : ð2Þ

dM ¼ amaxk þ bmaxk : ð3Þ

Based on (2) and (3), the delay d is calculated using the mean value of the delays
present in the communication network which is described by the following relation
[23],

d ¼ dm þ dM
2

: ð4Þ

2.2 Generalized Predictive Control Algorithm

Generalized predictive control uses the following CARIMA model to describe the
controlled object

Aðz�1ÞyðtÞ ¼ z�dBðz�1Þu ðt � 1Þþ e ðtÞCðz�1Þ
D ðz�1Þ : ð5Þ

Where ðtÞ, u ðt � 1Þ and e ðtÞ are the plant output, control signal, and white noise
with zero mean value. It is assumed that there is no disturbance acting on the system,
therefore eðtÞ will be zero. Aðz�1Þ and Bðz�1Þ are the plant polynomials while Cðz�1Þ
and Dðz�1Þ are the disturbance polynomials having the following expressions,

420 A.Y. Elamin et al.



Aðz�1Þ ¼ 1þ a1z
�1 þ � � � þ anAz

�nA : ð6Þ

Bðz�1Þ ¼ b0 þ b1z�1 þ � � � þ bnAz
�nB : ð7Þ

C ðz�1Þ ¼ 1: ð8Þ

D ðz�1Þ ¼ 1� z�1: ð9Þ

Where nA and nA represent the polynomial degrees.
The control algorithm for a generalized predictive controller (GPC) consists of two

steps, first is the prediction model which predicts the future plant outputs, based on past
and current input values. The prediction model has the form below

ŷ tþNjTSð Þ ¼ Gðz�1ÞDðz�1Þz�d�1u tþNjTSð Þþ
Hðz�1ÞDðz�1Þ

Cðz�1Þ u t � 1jTSð Þþ Fðz�1Þ
Cðz�1Þ yðtjTSÞ:

ð10Þ

Where N is the prediction horizon, ŷ tþNjTSð Þ are the predicted plant outputs a
computed at time k and u tþNjTSð Þ are the future control signals computed at every
sampling time TS. To determine the polynomial Gðz�1Þ, Hðz�1Þ and Fðz�1Þ two
Diophantine equations are used,

Cðz�1Þ
Aðz�1ÞDðz�1Þ ¼ Eðz�1Þþ z�ðN�dÞ Fðz�1Þ

Aðz�1ÞDðz�1Þ : ð11Þ

Eðz�1ÞBðz�1Þ ¼ Cðz�1ÞGðz�1Þþ z�ðN�dÞHðz�1Þ: ð12Þ

Where

Eðz�1Þ ¼ 1þ e1z
�1 þ � � � þ anE z

�nE : ð13Þ

Fðz�1Þ ¼ f0 þ f1z
�1 þ � � � þ fnF z

�nF : ð14Þ

Gðz�1Þ ¼ g0 þ g1z�1 þ � � � þ gnGz
�nG : ð15Þ

Hðz�1Þ ¼ h0 þ h1z
�1 þ � � � þ hnH z

�nH : ð16Þ

With

nE ¼ N � d � 1: ð17Þ

nF ¼ max nA þ nD � 1; nc � ðN � dÞð Þ: ð18Þ
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nG ¼ N � d � 1: ð19Þ
nH ¼ max nC; nB þ dð Þ � 1: ð20Þ

After determining the values of the previous polynomials and collecting the N step
predictions, the prediction model can be written in a matrix notation as,

ŷ ¼ Gud þ ŷ0: ð21Þ

Where ŷ is predicted plant output vector, ud is the vector of future control
sequences, G is the system dynamic matrix and ŷ0 represents the predicted free
response vector.

ŷ ¼ ½ŷ tþ dþ 1jTSð Þ ŷ tþ dþ 2jTSð Þ . . . ŷ tþ dþNjTSð Þ�T : ð22Þ

ud ¼ ½Du tjTSð Þ Du tþ 1jTSð Þ . . .Du kþN � 1jTSð Þ�T : ð23Þ

ŷ0 ¼ ½ŷ0 tþ dþ 1jTSð Þ ŷ0 tþ dþ 1jTSð Þ . . . ŷ0 tþ dþ 1jTSð Þ�T : ð24Þ

G ¼
g0 0 . . . 0
g1 g0 . . . 0
..
. ..

. . .
. ..

.

gN�1 gN�2 . . . g0

2
6664

3
7775: ð25Þ

The second step in the GPC controller design consists on determining the optimal
control sequence. The optimizer calculates these signals by taking into consideration
the objective function J. The objective function is based on the minimization of both
the controller output and tracking error, the control weighting factor k is introduced to
make a trade-off between these objectives.

J ¼ Gud þ ŷ0 � wð ÞT Gud þ ŷ0 � wð Þþ kuTd ud: ð26Þ

Where w is the reference trajectory vector, by minimizing the above objective

function @J
@ud

¼ 0
� �

the optimal control signal is expressed as,

u�d ¼ GTGþ kI
� ��1

GT w� ŷ0½ �: ð27Þ

The control algorithm is calculated in a recursive (off-line) manner, which has the
advantage of very fast computation.

2.3 GPC Parameter Tuning

The objective function from (26) can be rewritten as
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j ¼
XN

k¼1
ŷðtþ kÞ � wðtþ kÞð Þþ k

XNu

k¼1
Duðtþ k� 1Þ: ð28Þ

Equation (28) shows there are three parameters that affect the control signal gen-
erated in (27); N, NU, and k. Prediction horizon N and control horizon NU are related to
each other. Prediction horizon is selected early in the controller design and then holds it
constant while tuning other controller settings. The control horizon is used to reduce
computational processes by minimizing computational variables at each control
interval. The value of the control horizon is in between 1 and the value of the prediction
horizon. To deal with network-induced delays, its recommended that the difference
between the prediction horizon and the control horizon must be larger than delay
introduced by the communication network at each sampling instant, which is denoted
by d [32]. The control weighting factor k is present in (26) to restrict the control signal.
The aggressiveness of the control signal is inversely proportional to k. If k has a small
value, the controller will minimize the error between the reference and the output,
forgetting about the control effort. Thus, the response of the system will tend to be
faster but this might also result in an increase in overshoot and response oscillation.

3 Particle Swarm Optimization Based Approach for GPC
Tuning

In this section, an overview on particle swarm optimization will be presented. The
particle swarm optimization algorithm will then be implemented to tune the parameters
of the GPC controller based on two objective functions. Finally, the PSO-GPC con-
troller performance will be compared with the performance of a Smith predictor-PI
controller in which the PSO will be applied to tune Kp and Ki.

3.1 Particle Swarm Optimization

The term optimization refers to the process of selecting the best element from a group
of alternative elements based on a defined goal called the objective function. Mathe-
matically, this is achieved by finding the values of the parameters that will maximize or
minimize the objective function. Solving optimization problems analytically is quite
tedious because the objective function might be non-linear, multidimensional, con-
strained or have many local optimums. Heuristic optimization method is an efficient
alternative to solve the problem [29–31].

Particle swarm optimization is meta-heuristic optimization method developed by
Kennedy and Eberhart to imitate the seeking behavior in bird flocks or fish schools
[33]. In PSO, the solution for the optimization problem is represented by a vector called
a particle which contains a set of parameters and every particle has the same number of
parameters. Initially, a population containing a number of particles is initialized with
random parameters and then enters an iterative process to search for the optimum
solution. After each iteration, particles are compared and evaluated by substituting the
values of their parameters in the objective function. In one iteration it might occur that
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one of the particles comes out with the best solution, called the globally best solution.
In the succeeding iteration, another particle might be the globally best solution. Hence,
at the end of each iteration, a velocity estimate for each particle is calculated based on
its best solution called the personal best and the globally best. Furthermore, the velocity
is used to update the particle following these equations,

vKþ 1
i ¼ Wvki þC1R1 Pi � xki

� �þC2R2 Pg � xki
� �

: ð29Þ

xkþ 1
i ¼ xki þ vKþ 1

i : ð30Þ

Where vki represents the current velocity for particle i at iteration k while v
Kþ 1
i is the

velocity at iteration K þ 1. xki represents the current position for particle i at iteration
k while xkþ 1

i is the updated position at iteration K þ 1. C1 and C2 are the cognitive
coefficient and social coefficient which help modulate the steps taken by a particle in
the direction of its personal best and global best. R1 and R2 are random values between
0 and 1. Pi represents the personal best of the particle i, Pg is the global best and W is
the inertia weighting coefficient. As iterations continue, the particles are updated and
they all move from different directions towards the global best which results in the best
solution.

3.2 PSO Based Generalized Predictive Control Design

As mentioned in the previous section, the main parts of the GPC are (10) and (26).
Other equations are used to get the optimal control input in (27) to minimize the
objective function found in (26). However, the objective function relies on three GPC
parameters which are the prediction horizon N, control horizon NU and the weighting
factor k. Hence, a particle swarm optimization method can be implemented to tune
these parameters and minimize the objective function as shown in Fig. 2. The particles
are represented by P ¼ N;Nu; k½ �T and formulated as follows:

Fig. 2. PSO-GPC block diagram
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(1) Identify the number of particles, the upper and the lower boundary of each tunable
parameter, number of iterations and search parameters: cognitive coefficient ðC1Þ,
social coefficient ðC2Þ and inertia weighting coefficient (W).

(2) The particle position and velocity are initialized randomly.
(3) Simulate the GPC with the tuning parameters (N, NU and k) for each particle.
(4) Evaluate the objective function for each particle.
(5) Update, if any, the personal best Pi and global best Pg.
(6) Update the particle positions and velocities with values of step 5.
(7) Repeat step 3 to 6 until the last iteration count or the desired precision is achieved.

The particle that produces the latest global best is the optimal value.

Equation 26 reveals the objective function as a summation of two terms. The first
term is

PN
k¼1 ŷðtþ kÞ � wðtþ kÞð Þ which ensures fast transient response, settling time,

and minimizes overshoot. The other term is k
PNu

k¼1 Duðtþ k� 1Þ that prevents the
control signal from increasing indefinitely as it can lead to actuator saturation. Fur-
thermore, to achieve better performance and tracking accuracy, the objective function
in (28) will be replaced by one of the time domain integral performance indices called
the Integral Time Square Error (ITSE) which will be solved by the particle swarm
optimization.

eðtÞ ¼ wðtÞ � yðtÞ: ð31Þ

ISE ¼
Z tss

0
eðtÞ2dt: ð32Þ

IAE ¼
Z tss

0
eðtÞj jdt: ð33Þ

ITSE ¼
Z tss

0
teðtÞ2dt: ð34Þ

Where eðtÞ is the error signal and tss is the time it takes to reach steady state. The
goal behind this replacement is to formulate the tuning selection to account for the time
domain performance goals such as settling time, rise time, and overshoot. The control
systems based on these indices has fast response speed, large oscillation, relatively
weak stability. In addition, control system based on ITSE force the error to be small at
future instants with minimal oscillation compared to other performance indices such as
Integral Absolute Error (IAE) and Integral Squared Error (ISE) [34].

3.3 PSO Implemented on a Smith Predictor Controller

The Smith predictor is one of the most used control strategies for time delay com-
pensation. Smith predictor introduces an internal feedback into a controller to coun-
terbalance the effects of delays on the main controller. Figure 3 illustrates the basic
structure of a smith predictor controller in NCS [35].
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In Fig. 2, u, y, ym, yp and ep are the control signal, actual output, predicted output,
estimated output and output error, respectively. The controller shown above is selected
to be a PI controller, which is described by the discrete form,

GPIðzÞ ¼ KpTsz
Kiz� Ki

: ð35Þ

Kp and Ki represent the proportional gain and the integral gain respectively and are
the controller parameters that will be tuned offline with the particle swarm optimization
algorithm. The Integral Square Error (ISE) is used as the objective function to ensure
the error signal approach zero while achieving faster transient response and minimum
overshoot.

4 Results and Discussion

Simulation is carried out using MATLAB/Simulink 2016a, and it is assumed that both
feedback and feedforward channel exhibit constant network-induced delays of 2 s
ðsca ¼ ssc ¼ 2Þ. The controlled plant is a liquid level tank with the following discrete
transfer function,

Gðz�1Þ ¼ 0:001703z�1 þ 0:005419z�2

1� 0:9718z�1 � 0:025z�2 ¼ Aðz�1Þ
Bðz�1Þ

The particle swarm optimization method is then used to tune the parameters of the
GPC over a predefined search region such that the objective functions in (28) is
minimized. The upper and lower value of the search regions are specified as listed in
Table 1. The lower values of the prediction horizon and control horizon are selected
based on the works in [24] to address the network-induced delays. The upper bound of
the prediction horizon and control horizon are set at 40 and 10 respectively to minimize
computational time. The lower search region for the Smith Predictor parameters are

Fig. 3. Smith predictor structure in NCS
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chosen to be 0.0001 for both, while the upper values have a value of 200 to prevent
destabilizing the plant by introducing high value gains. In PSO, the number of particles
crucial in ensuring accurate results. The number of particles is set to 20 based on the
work in [33] which illustrate that a suitable number of particles is in between 20 to 50.
The number of iterations and the PSO search parameters used in the simulation is
presented in Table 2.

To compare with GPC, the PSO procedure is repeated on a Smith predictor to
obtain the optimal parameter values as tabulated in Table 3. In Table 4, the control
performance in terms of transient response of each controller is presented. It is clear
that the PSO-Smith predictor outperformed the PSO-GPC in terms of transient
response.

Table 1. Search region of the tunable parameters

Parameters Lower values Upper values

Prediction horizon (N) 30 40
Control horizon (NU) 5 10
Weighting factor (k) 0.001 1
Proportional gain (KP) 0.0001 200
Integral gain (KI) 0.0001 200

Table 2. Parameters of the PSO algorithm

Parameters Values

Particle dimensions 3
Number of particles 20
Number of iterations 30
Cognitive coefficient (C1) 1.5
Social coefficient (C2) 1.5
Inertia weighting coefficient (w) .4–.9

Table 3. Tuning parameters obtained through PSO

Controllers Prediction
horizon (N)

Control
horizon (NU)

Weighting
factor (k)

Proportional
gain (KP)

Integral
gain (KI)

PSO-GPC 40 6 0.1329 – –

Modified
PSO-GPC

40 9 0.0094 – –

PSO-Smith
predictor

– – – 93.75 3.906
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In Fig. 4, it is obvious that the PSO-Smith predictor produces larger undershoot
compared to the PSO-GPC when the water level is reduced. This indicates that the
PSO-GPC is more efficient in dealing with non-minimum phase systems compared to
PSO-Smith Predictor. However, the PSO-GPC resulted with a small overshoot and
slower transient response toward the set point. Thus, a modified PSO-GPC is proposed
through the replacement of the cost function in (28) by the ITSE objective function
shown in (34). With a modified PSO-GPC, faster settling time and rise time can be
achieved. Plus, GPC algorithm also allows for incorporation of output constraint in the
optimization to tackle the overshoot problem. This is a clear advantage of GPC
compared to the other control algorithm.

From Fig. 5, it can be seen that the modified PSO-GPC produced a better transient
response than the original PSO-GPC. When compared with PSO-Smith predictor, the
modified controller was slightly outperformed in terms of settling time and rise time as
illustrated in Table 4, but produced a smaller undershoot. Thus, it can be concluded
that GPC is a preferable controller in NCS applications because it is capable to deal
with non-minimum systems, ability to handle constraints and its clear potential for
other types of network-induced delays such as random time delay.

Table 4. Transient response analysis for step input signal

Controllers Rise time(s) Settling time (s) Overshoot (%)

PSO-GPC 2.038 11.171 2.6%
Modified PSO-GPC 0.458 4.9 –

PSO-Smith predictor 0.251 4.56 –

Fig. 4. Comparison of closed-loop step response
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5 Conclusion

In this paper, a standard GPC objective function and an ITSE performance index were
applied in the generalized predictive controller design by using a particle swarm
optimization to compensate the network-induced delays occurring between the com-
ponents of a networked control system. The aim of the particle swarm optimization is
to optimally tune the GPC parameters based on the above objective functions. The
simulations result in MATLAB/SIMULINK show significant improvement of the
controllers using the proposed techniques compared to PSO-Smith predictor. Although
both predictive controllers can compensate the effects of network delays, the modified
PSO-GPC, which is based on the ITSE performance index, achieved better transient
response when compared with the original PSO-GPC.
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