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Abstract A singularity-free nonlinear controller is presented for the miniature

unmanned helicopter to follow a reference path described by implicit expressions.

Based on the time-scale separation principle, the controller is designed with hierar-

chical inner-outer loop structure. The outer-loop position controller is constructed

with hyperbolic tangent function, and temporary-path generation method is devel-

oped to keep the control matrix invertible and obviate large control energy. The

desired command attitude can be derived from position controller without singular-

ity by choosing appropriate controller parameters. The inner-loop attitude controller

is designed with the unit-quaternion attitude representation and backstepping tech-

nique to achieve attitude tracking. Numerical simulation is provided to verify the

theoretical results.

Keywords Miniature unmanned helicopter ⋅ Path following ⋅ Singularity-free

control ⋅ Quaternion

1 Introduction

Tracking tasks for aircrafts can be classified as two categories [1]: trajectory tracking

and path following. In the first case, the aircraft is required to track a time-varying

reference trajectory at every transient. While in the second case it is required to

fly along a reference path at a desired speed. Unlike trajectory tracking, there is no

temporal requirements on path following. Besides the path following has some con-

trol performances that can not be obtained from trajectory tracking in some specific

cases [2].
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Various linear and nonlinear controllers have been proposed for path following

control of miniature helicopters. The linear control methods are simple and reliable,

such as PID [3] and LQ control [4, 5], but have the limitation to realize full envelope

flight. To this end, some nonlinear control methods such as backstepping approach

[6], feedback linearization technique [7] or hybrid control methods [8, 9] have been

applied. Due to the under-actuated property, the helicopter model is always simpli-

fied to position outer-loop and attitude inner-loop structure [10, 11]. However, the

controller designed based on the hierarchical structure may suffer from singularity

when deriving the desired attitude from position controller. So far, only a few litera-

tures [6] take into account this problem, and most reference paths are parameterized

curves.

The parameterized path following [6, 8, 9] is the most commonly used problem

formulation. The path is described with a time-varying parameter, and the task is

to design control law and parameter timing law such that helicopter can keep up

with the moving point determined by the parameter. Another problem formulation

is based on implicit expressions [1, 7]. The path is given by the intersection of two

manifolds. Unlike parameterized path following which turns path following problem

to point-tracking problem, the task for implicit path following is to follow the entire

path and the helicopter will enter an invariant set around the reference path. However,

controller design for implicit path following always relates to control matrix of the

closed-loop system, and it suffers from singularity when the matrix is not invertible.

In this paper a singularity-free implicit path following controller for miniature

helicopters is presented. The control design is based on the hierarchical structure.

The outer-loop position controller is constructed with the hyperbolic tangent func-

tion to realize path following, and a temporary path is planned to guarantee the con-

trol matrix invertible. From the position controller, the desired command attitude can

be derived without singularity by choosing appropriate controller parameters. The

inner-loop attitude controller is designed with the unit-quaternion representation to

realize tracking for the command attitude.

2 Preliminaries

In following sections, c(⋅) and s(⋅) are shorts of cos(⋅) and sin(⋅). | ⋅ |denotes absolute

value of a real number, ‖ ⋅ ‖ denotes Euclidean norm for a vector or induced Euclid-

ean norm for a matrix. ̄

𝜆(⋅) and 𝜆(⋅) denote the maximum and minimum eigen-

values, respectively. For x = [x1,… , xn]T ∈ ℝn
, define hyperbolic tangent function

vector tanh(x) = [tanh(x1),… , tanh(xn)]T and hyperbolic tangent function matrix

Tanh(x) = diag{tanh(x1),… , tanh(xn)}. For a continuously differentiable scalar

function f (x), define 𝜕xi f =
𝜕f
𝜕xi
(i = 1,… n) and 𝜕xf = [ 𝜕f

𝜕x1
,… ,

𝜕f
𝜕xn

]T . For
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continuously differentiable vector function f (x) = [f1(x),… , fm(x)]T , define 𝜕xf =
⎡
⎢
⎢
⎢
⎣

𝜕f1
𝜕x1

⋯ 𝜕f1
𝜕xn

⋮ ⋱ ⋮
𝜕fm
𝜕x1

⋯ 𝜕fm
𝜕xn

⎤
⎥
⎥
⎥
⎦

and 𝜕

2
x f = 𝜕x(𝜕xf ).

Lemma 1 ([12]) For x ∈ ℝn, if ‖x‖ < x < ∞, then there exists a constant 𝜒(x) ∈
(0, 1) satisfying 𝜒‖x‖ ≤ ‖tanh(x)‖ ≤ ‖x‖.

Lemma 2 ([13]) For x ∈ ℝ and 𝜀 > 0, 0 ≤ |x| − xtanh(x∕𝜀) ≤ kq𝜀, where kq =
0.2785 satisfies kq = e−(kq+1).

Lemma 3 ([14]) Given a smooth function 𝛽(t) ∶ ℝ+ → ℝ, its derivatives can be
estimated by the command filter ẍ = −2𝜉𝜔nẋ − 𝜔

2
n(x − 𝛽) such that ̇

𝛽 ≈ ẋ, ̈𝛽 ≈ ẍ,
where 𝜔n > 0 is chosen large enough to ensure estimation accuracy.

3 Problem Statement

Mathematical modeling Figure 1 shows the helicopter configuration, it is modeled

in two frames: the earth frame  = {𝑂𝑥𝑦𝑧} and fuselage frame  = {𝑂
𝑏

𝑥

𝑏

𝑦

𝑏

𝑧

𝑏

}.

Frame  is fixed to the earth and its origin locates on the ground. Frame  is fixed

to the helicopter body and its origin locates at the helicopter center of gravity (c.g.).

The rotation matrix R [1], which defines the rotation from  to  around an unit

vector ̂k ∈ ℝ3
by an angle 𝜑, is mostly used to describe attitude of the helicopter.

The unit-quaternion Q = [𝜇, qT ]T = {Q ∈ ℝ ×ℝ3|𝜇2 + qTq = 1} [15] can also be

used to describe attitude, where 𝜇 = cos 𝜑

2
and q = [q1, q2, q3]T = sin 𝜑

2
̂k. R and Q

satisfy following relation

R(Q) = (𝜇2 − qTq)I3 + 2qqT + 2𝜇S(q) (1)

Fig. 1 Helicopter model

and frames
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where I3 is 3 × 3 identity matrix, S(q) =
⎡
⎢
⎢
⎣

0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤
⎥
⎥
⎦

. Given Q1 =
[
𝜇1
q𝟏

]

and

Q2 =
[
𝜇2
q𝟐

]

, the quaternion multiplication Q1 ⊗ Q2 =
[

𝜇1𝜇2 − q𝟏Tq𝟐
𝜇1q𝟐 + 𝜇2q𝟏 + S(q𝟏)q𝟐

]

. The

inverse of Q is defined as Q−1 = [𝜇,−qT ]T and satisfies Q−1
⊗ Q =

[1, 0, 0, 0]T .

Based on the Newton–Euler equations, the dynamic model of the helicopter can

be derived as follows [1]

ṗ = v, mv̇ = −mg𝟑 + R(Q)f (2)

̇Q = 1
2
Θ(Q)𝝎, J�̇� = −𝝎 × J𝝎 + 𝝉 (3)

where p = [x, y, z]T and v = [u, v,w]T are position and velocity of helicopter denoted

in , m is the helicopter mass, g𝟑 = [0, 0, g]T and g is gravitational acceleration, 𝝎 =
[𝜔x, 𝜔y, 𝜔z]T is angular velocity denoted in , Θ(Q) =

[
−qT

𝜇I3+S(q)

]

is attitude transition

matrix, J =
[ Jx 0 −Jxz

0 Jy 0
−Jxz 0 Jz

]

is the inertial matrix denoted in . The applied force f and

torque 𝝉 denoted in  are given by [1]

f =
⎡
⎢
⎢
⎣

Tmsascbs
−Tmsbscas + Tt

Tmcascbs

⎤
⎥
⎥
⎦

, 𝝉 =
⎡
⎢
⎢
⎣

Tmhmsbs + Lbbs + Ttht + 𝜏msas
Tmlm + Tmhmsas +Maas + 𝜏t − 𝜏msbs

−Tmlmsbs − Ttlt + 𝜏mcascbs

⎤
⎥
⎥
⎦

(4)

where Tm, 𝜏m,Tt, 𝜏t are thrust and anti-torque generated by the main and tail rotors,

respectively; Ma,Lb are stiffness coefficients of main rotor; hm, ht, lm, lt denote ver-

tical and horizontal distances between the rotor centers and helicopter c.g.; as, bs
denote longitudinal and lateral flapping angles of the main rotor. The relationship

between thrusts Ti and anti-torque 𝜏i (i = m or t) is given by [12]

𝜏i = Ai|Ti|1.5 + Bi (5)

where Ai and Bi are aerodynamic constants.

Due to the limitation of helicopter physical structure, as, bs,Tt and 𝜏t are fairly

small, thus it is reasonable to express (4) as [11]:

f = [0, 0,Tm]T + f
𝛥

, 𝝉 = QA𝝆 + 𝝉B + 𝜟

𝜏

= 𝝉1 + 𝜟

𝜏

(6)

where 𝝆 =
[
Ttas
bs

]

, 𝝉B =
[ 0
Tmlm
𝜏m

]

, QA =
[

ht 𝜏m Tmhm+Lb
0 Tmhm+Ma −𝜏m
−lt 0 −Tmlm

]

and det(QA) ≠ 0 [1]; f
𝛥

and 𝜟

𝜏

are bounded and small [12]. The real input 𝝆 = Q−1
A (𝝉1 − 𝝉B). Equation (2)

can be rewritten as
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v̇ = −g𝟑 + (Tm∕m)r3 + ̄f
𝛥

(7)

where r𝟑 = Re𝟑, e3 = [0, 0, 1]T , ̄f
𝛥

= 1
m
Rf

𝛥

.

Control objective The reference path r is a regular curve described by implicit

expressions, i.e. r = {[x, y, z]T |f1(x, y, z) = 0, f2(x, y, z) = 0}, and 𝜕pf1 × 𝜕pf2|p∈r
≠

0, where f1, f2 ∈ C∞
; ‖𝜕pf1‖, ‖𝜕pf2‖ are bounded on r. In this paper the manifold

f1 = 0 is specified as a plane f1 = ax + by + cz + d = 0.

Remark 1 From f1, f2 ∈ C∞
it follows that 𝜕pf1 × 𝜕pf2 ∈ C∞

and 𝜕pf1 × 𝜕pf2 ≠ 0 in

neighbourhood of r.

The control object is: (i) designing control inputs Tm,Tt, as, bs such that the heli-

copter trajectory converges to the reference path ultimately and the magnitude of its

velocity projection on reference path tends to desired speed vr > 0, i.e. there exit

small positive constants o1, o2, o3 such that

limt→∞|f1(x, y, z)| < o1, limt→∞|f2(x, y, z)| < o2

limt→∞

|
|
|
|
|

(
𝜕pf1 × 𝜕pf2

‖𝜕pf1 × 𝜕pf2‖

)T

v − vr
|
|
|
|
|

< o3
(8)

(ii) No singularity occurs in control process.

4 Controller Design

Define the path-following and velocity errors

𝜍1 = f1(x, y, z), 𝜍2 = f2(x, y, z), 𝜍3 = 𝜼

Tv − vr (9)

where 𝜼 = 𝜕pf1×𝜕pf2
‖𝜕pf1×𝜕pf2‖

, we can derive

[�̇�1, �̇�2, 𝜍3]T = Gv − [0, 0, vr]T , [�̈�1, �̈�2, �̇�3]T = h + Gv̇ (10)

where h = [0, vT (𝜕2p f2)v, v
T (𝜕p𝜼)v − v̇r]T , G = [𝜕pf1, 𝜕pf2, 𝜼]T is the control matrix.

From (10) and (7) we know

[�̈�1, �̈�2, �̇�3]T = h + G[−g𝟑 + (Tm∕m)r𝟑] + 𝜟f (11)

where 𝜟f = Ḡf
𝛥

. Define the position loop controller uc = Tmr𝟑 and design

uc = [ucx, ucy, ucz]T = m(g𝟑 + G−1(−h + 𝝂c)) (12)
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Fig. 2 Temporary path

generator

where 𝝂c is a new control input to be determined. The singularity occurs when

det(G) = (𝜕pf1 × 𝜕pf2)T𝜼 = ‖𝜕pf1 × 𝜕pf2‖ = 0. From Remark 1, G is invertible in

neighborhood of r. When helicopter initial position is far from r, G cannot be

guaranteed to be invertible. Besides, when helicopter is far from the path, the con-

trol energy will be large. A solution for the two problems is to plan a temporary path

̄r from initial position to r such that corresponding control matrix ̄G is invertible

on ̄r. In this paper defineP0 to be the initial position, when

√
|f1(P0)|2 + |f2(P0)|2 >

10, it is need to plan a temporary-path.

Assumption 1 𝜟f = [𝛥fx, 𝛥fy, 𝛥fz]T and 𝜟

𝜏

= [𝛥
𝜏x, 𝛥𝜏y, 𝛥𝜏z]T are bounded and sat-

isfy |𝛥fi| ≤ 𝛿i, |𝛥𝜏i| ≤ 𝛾i (i = x, y, z), where 𝜹 = [𝛿x, 𝛿y, 𝛿z]T and 𝜸 = [𝛾x, 𝛾y, 𝛾z]T are

known upper bounds; The coefficient c in f1 = 0 satisfies |c| > 𝛿x∕g for avoiding sin-

gularity in deriving desired unit-quaternion. The physical meaning is that f1 = 0 is

not perpendicular to x − y plane of .

Path planning As illustrated in Fig. 2, the initial position P0 = [x0, y0, z0]T . Choose

a point Pd = [xr, yr, zr]T on r and compute tangent vector pd = [x̄, ȳ, z̄]T = 𝜕pf1 ×
𝜕pf2|Pd

. Define p0 = ⃖⃖⃖⃖⃖⃖⃖⃖⃗P0Pd and compute p0 × pd = [x̄1, ȳ1, z̄1]T . If Pd are chosen such

that z̄1 ≠ 0 and p0 is not collinear with pd, a temporary path can be planned with

following steps:

Firstly, passing through p0 and pd we can define a plane ̄f1 = a1x + b1y + c1z +
d1 = 0. Since Pd lies on ̄f1 = 0 and its normal vector is p0 × pd, we know d1 =
−a1xr − b1yr − c1zr and [a1, b1, c1] = k[x̄1, ȳ1, z̄1], where k is a constant. Consider-

ing z̄1 ≠ 0, choosing |k| > 𝛿x

|z̄1|g
can guarantee that c1 > 𝛿x∕g.

Then, define ̄f2 = 0 to be a sphere, its center ̄O = [a2, b2, c2]T , p1 = ⃖⃖⃖⃖⃖⃖⃗

̄OP0 and p2 =
⃖⃖⃖⃖⃖⃖⃗

̄OPd. Since p2 ⟂ pd, ̄f1( ̄O) = 0 and ‖p1‖ = ‖p2‖, ̄O can be determined by

⎡
⎢
⎢
⎣

a2
b2
c2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

x̄ ȳ z̄
a1 b1 c1

xr − x0 yr − y0 zr − z0

⎤
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎣

x̄xr + ȳyr + z̄zr
−d1

x2r−x
2
0+y

2
r−y

2
0+z

2
r−z

2
0

2

⎤
⎥
⎥
⎦
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Since p0 is not collinear to pd, above inverse matrix is well defined and [a2, b2, c2]T
can be determined uniquely. Define ‖p1‖ = r, we have ̄f2 =

1
k1
((x − a2)2 +

(y − b2)2 + (z − c2)2 − r2) = 0, where k1 ≠ 0 is a constant.

Finally, temporary path ̄r is the intersection of ̄f1 = 0 and ̄f2 = 0. Since two paths

are generated (bold line and normal one in Fig. 2), the one with smaller angle from

its tangent line at P0 to helicopter head direction should be selected.

Remark 2 ̄r satisfies that 1) 𝜕p ̄f1 × 𝜕p ̄f2 is collinear with 𝜕pf1 × 𝜕pf2 at Pd. 2) 𝜕p ̄f1 ⟂
𝜕p ̄f2 on ̄r, i.e. 𝜕p ̄f1 × 𝜕p ̄f2 ≠ 0 on ̄r. Since ̄f1, ̄f2 ∈ C∞

, it holds near ̄r, i.e. control

matrix ̄G invertible near ̄r.

̄r followingThe position loop controller design is divided to two steps: ̄r following

and then r following. Firstly define errors for the temporary path ̄r

�̄�1 = a1x + b1y + c1z + d1, �̄�2 =
1
k1
((x − a2)2 + (y − b2)2 + (z − c2)2 − r2)

�̄�3 = �̄�

Tv − v̄r
(13)

where �̄� = �̄�1×�̄�2
‖�̄�1×�̄�2‖

, �̄�1 = [a1, b1, c1]T , �̄�2 =
2
k1
[x − a2, y − b2, z − c2]T . It yields

[ ̇�̄�1, ̇�̄�2, �̄�3]T = ̄Gv − [0, 0, v̄r]T (14)

[ ̈�̄�1, ̈�̄�2, ̇�̄�3]T = ̄h + ̄G[−g𝟑 + (Tm∕m)r𝟑] + 𝜟f (15)

where ̄G = [�̄�1, �̄�2, �̄�]T is control matrix, ̄h = [ ̄h1, ̄h2, ̄h3]T = [0, 2
k1
vTv, vT (𝜕p�̄�)v −

̇v̄r]T . Define ūc = Tmr3 and design it as

ūc = [ūcx, ūcy, ūcz]T = m(g3 + ̄G−1(− ̄h + �̄�c)) (16)

�̄�c =
⎡
⎢
⎢
⎣

�̄�1
�̄�2
�̄�3

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−̄k11(tanh(�̄�k1) + tanh( ̇�̄�1)) − tanh(
̄

𝜗1
�̄�1
)𝛿x

−̄k21(tanh(�̄�k2) + tanh( ̇�̄�2)) − tanh(
̄

𝜗2
�̄�2
)𝛿y

−̄k31tanh(�̄�3) − tanh( �̄�3
�̄�3
)𝛿z

⎤
⎥
⎥
⎥
⎥
⎦

(17)

where �̄�k1 = ̄k12�̄�1 + ̇

�̄�1, �̄�k2 = ̄k22�̄�2 + ̇

�̄�2, ̄

𝜗1 = tanh(�̄�k1) + tanh( ̇�̄�1) +
̄k12
̄k11

̇

�̄�1, ̄

𝜗2 =

tanh(�̄�k2) + tanh( ̇�̄�2) +
̄k22
̄k21

̇

�̄�2; ̄k11, ̄k12, ̄k21, ̄k22, ̄k31, �̄�1, �̄�2, �̄�3 are positive constants.

Since ‖r3‖ = 1, Tm = ‖ūc‖. If ūc ∉  = {[0, 0, u]T , u ≤ 0}, then the desired unit-

quaternion Qc = [𝜇c, qTc ]
T

can be derived from ūc [12]

qc =
1

2‖ūc‖𝜇c

⎡
⎢
⎢
⎣

ūcy
−ūcx
0

⎤
⎥
⎥
⎦

, 𝜇c =

√
‖ūc‖ + ūcz
2‖ūc‖

(18)
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Theorem 1 If initial velocity v(0) = 𝟎 and the parameters in (17) satisfy

̄k12 ≤ ̄k11 <
|c1|g − 𝛿x

2
,

̄k22 ≤ ̄k21, �̄�1 <
0.382̄k12
kq𝛿x

, �̄�2 <
0.382̄k22
kq𝛿y

(19)

Then control law (16) guarantees: (i) �̄�1, ̇�̄�1, �̄�2, ̇�̄�2, �̄�3 are bounded and converge to a
small neighbourhood of origin. (ii) ̄G is invertible during control and no singularity
occurs in deriving desired unit-quaternion with (18).

Proof (i) Define 𝝇 = [�̄�k1, ̇�̄�1], choose Lyapunov function

V =
∫

�̄�k1

0
tanh(s)ds +

∫

̇

�̄�1

0
tanh(s)ds +

̄k12
2̄k11

̇

�̄�

2
1 (20)

̇V = −̄k11[tanh(�̄�k1) + tanh( ̇�̄�1)]2 − ̄k12 ̇�̄�1tanh( ̇�̄�1) − ̄

𝜗1[tanh(
̄

𝜗1

�̄�1
)𝛿x − 𝛥fx]

≤ −tanhT (𝝇)
[
̄k11 ̄k11
̄k11 ̄k11 + ̄k12

]

tanh(𝝇) − ̄

𝜗1tanh(
̄

𝜗1

�̄�1
)𝛿x + ̄

𝜗1𝛥fx

(21)

Based on Lemma 2, we know ̄

𝜗1𝛥fx ≤ | ̄𝜗1|𝛿x ≤ [ ̄𝜗1tanh(
̄

𝜗1
�̄�1
) + kq�̄�1]𝛿x. Consider-

ing

[
̄k11 ̄k11
̄k11 ̄k11 + ̄k12

]

= 𝛬

T
[
̄k11 0
0 ̄k12

]

𝛬, where 𝛬 =
[
1 1
0 1

]

, (21) yields ̇V ≤ kq�̄�1𝛿x −

𝜆(𝛬T
𝛬)min{̄k11, ̄k12}‖tanh(�̄�)‖2 = kq�̄�1𝛿x − 0.382̄k12‖tanh(�̄�)‖2. From (19) we

know
kq�̄�1𝛿x
0.382̄k12

< 1. When ‖tanh(�̄�)‖ >

√
kq�̄�1𝛿x
0.382̄k12

, ̇V < 0, which means �̄� is bounded.

Then from Lemma 1 we have 𝜒‖�̄�‖ ≤ ‖tanh(�̄�)‖, where 0 < 𝜒 < 1, it follows

̇V ≤ −0.382̄k12𝜒2‖�̄�‖2 + kq�̄�1𝛿x (22)

Besides, from (20) we have
𝜒

2
‖�̄�‖2 ≤ V ≤ 𝜒2‖�̄�‖

2
, where𝜒2 =

1
2
(1 +

̄k12
̄k11
). Then ̇V ≤

−0.382̄k12𝜒2

𝜒2
V + kq�̄�1𝛿x. Integrating it yields

𝜒

2
‖�̄�‖2 ≤ V ≤ [V(0) −

kq�̄�1𝛿x𝜒2

0.382̄k12𝜒2
]e

−0.382̄k12𝜒
2

𝜒2
t +

kq�̄�1𝛿x𝜒2

0.382̄k12𝜒2
(23)

So �̄� exponentially converges to the set ℤv1 = {�̄�|‖�̄�‖ ≤

√
0.73�̄�1𝛿x

𝜒

3 ( 1
̄k12

+ 1
̄k11
)}. Due

that | ̇�̄�1| ≤ ‖�̄�‖, ̇�̄�1 also converges to ℤv1. Considering ̇

�̄�1 = −̄k12�̄�1 + �̄�k1 and |�̄�k1| ≤

‖�̄�‖, integrating ̇

�̄�1 yields
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|�̄�1| ≤ e−̄k12t(|�̄�1(0)| −

√
2kq�̄�1𝛿x𝜒2

0.382̄k312𝜒3
) +

√
2kq�̄�1𝛿x𝜒2

0.382̄k312𝜒3
(24)

Thus �̄�1 converges to set ℤp1 = {|�̄�1| ≤
1
̄k12

√
0.73�̄�1𝛿x

𝜒

3 ( 1
̄k12

+ 1
̄k11
)}. Similarly, �̄�2 and ̇

�̄�2

exponentially converge to sets ℤp2 = {�̄�2||�̄�2| ≤
1
̄k22

√
0.73�̄�2𝛿y

𝜒

3 ( 1
̄k22

+ 1
̄k21
)} and ℤv2 =

{ ̇�̄�2|| ̇�̄�2| ≤
√

0.73�̄�2𝛿y
𝜒

3 ( 1
̄k22

+ 1
̄k21
)}, respectively.

For �̄�3, choose Lyapunov function V1 =
1
2
�̄�

2
3 , its derivative is

̇V1 = −̄k31�̄�3tanh(�̄�3) − �̄�3tanh
(
�̄�3

�̄�3

)

𝛿z + �̄�3𝛥fz (25)

From Lemma 2, �̄�3𝛥fz ≤ |�̄�3|𝛿z ≤ (�̄�3tanh(
�̄�3
�̄�3
) + kq�̄�3)𝛿z, thus ̇V1 ≤ −̄k31�̄�3tanh(�̄�3) +

kq�̄�3𝛿z. Based on Lemma 1 we have ̇V1 ≤ −̄k31𝜒�̄�23 + kq�̄�3𝛿z = −2̄k31𝜒V1 + kq�̄�3𝛿z.
Integrating it yields

1
2
�̄�

2
3 = V1(t) ≤ [V1(0) −

kq�̄�3𝛿z
2̄k31𝜒

]e−2̄k31𝜒 t +
kq�̄�3𝛿z
2̄k31𝜒

(26)

Thus �̄�3 exponentially converges to the set ℤ3 = {�̄�3||�̄�3| ≤
√

0.2785�̄�3𝛿z
̄k31𝜒

}.

Above sets can be made small by increasing ̄k21, ̄k22, ̄k31 and decreasing �̄�1, �̄�2, �̄�3.

Since p(0) ∈ ̄r and v(0) = 𝟎, we have �̄�1(0) = ̇

�̄�1(0) = �̄�2(0) = ̇

�̄�2(0) = 0. So under

the control law helicopter keeps in the neighbourhood of ̄r.

(ii) From Remark 2 and proof of (i) it yields that ̄G keeps invertible. When ūcx ≠ 0
or ūcy ≠ 0, ūc ∉ , which means no singularity occurs in deriving the desired unit-

quaternion. So we only need to consider the singularity when ūc = [0, 0, ūcz]T . Left-

multiplying (16) by [a1, b1, c1] yields ūcz = m(g + �̄�1
c1
). From (17) |

�̄�1
c1
| ≤

2̄k11+𝛿x
|c1|

, it

follows ūcz ≥ m(g − 2̄k11+𝛿x
|c1|

). Since ̄k11 <
|c1|g−𝛿x

2
, we get ūcz > 0 and ūc ∉ , which

means no singularity occurs in deriving the desired unit-quaternion with (18).

r following Define P to be helicopter position and �̄� to be a small positive constant,

when ‖P − Pd‖ ≤ �̄�, control uc is given by (12) and 𝝂c is designed as

𝝂c =
⎡
⎢
⎢
⎢
⎣

−k11(tanh(𝜍k1) + tanh(�̇�1)) − tanh( 𝜗1
𝜀1
)𝛿x

−k21(tanh(𝜍k2) + tanh(�̇�2)) − tanh( 𝜗2
𝜀2
)𝛿y

−k31tanh(𝜍3) − tanh( 𝜍3
𝜀3
)𝛿z

⎤
⎥
⎥
⎥
⎦

(27)
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where 𝜍k1 = k12𝜍1 + �̇�1, 𝜍k2 = k22𝜍2 + �̇�2, 𝜗1 = tanh(𝜍k1) + tanh(�̇�1) +
k12
k11
�̇�1, 𝜗2 =

tanh(𝜍k2) + tanh(�̇�2) +
k22
k21
�̇�2. k11, k12, k21, k22, k31, 𝜀1, 𝜀2 and 𝜀3 are positive constants

satisfying

k12 ≤ k11 <
|c|g − 𝛿x

2
, k22 ≤ k21, 𝜀1 <

0.382k12
kq𝛿x

, 𝜀2 <
0.382k22
kq𝛿y

(28)

From Remark 2, v is approximately tangent to r at switching instant. So under the

control law helicopter keeps in the neighbourhood ofr. Based on Remark 1 it yields

that G keeps invertible. The constraint for k11 in (28) guarantees that no singularity

occurs in deriving desired unit-quaternion.

Attitude controller designDefine attitude tracking errorQe = [𝜇e, qTe ]
T = Q−1

c ⊗ Q
[15], its derivative is

�̇�e = −1
2
qTe𝝎e, q̇e =

1
2
(𝜇eI3 + S(qe))𝝎e (29)

where 𝝎e = 𝝎 − RT (Qe)𝝎c is the angular velocity error and 𝝎c is the desired angular

velocity. From (3) 𝝎c and its derivative �̇�c can be derived as

𝝎c = 2ΘT (Qc) ̇Qc (30)

�̇�c = 2ΘT (Qc) ̈Qc + 2 ̇ΘT (Qc) ̇Qc = 2ΘT (Qc)[ ̈Qc − ̇Θc𝝎c] (31)

where ̇Θc = Θ( ̇Qc). From Lemma 3, ̇Qc and ̈Qc can be obtained by a command filter

instead of calculating them accurately. Assign Lyapunov function

L = kQ[(1 − k
𝜇

𝜇e)2 + qTe qe] = 2kQ(1 − k
𝜇

𝜇e) (32)

where kQ > 0, k
𝜇

= 1 when 𝜇e ≥ 0 and k
𝜇

= −1 when 𝜇e < 0. From (29), ̇L =
kQk𝜇qTe𝝎e. Define �̄�e = [�̄�ex, �̄�ey, �̄�ez]T = 𝝎e + k

𝜔

k
𝜇

qe, where k
𝜔

> 0. Choose a Lya-

punov function

L1 = L + 1
2
�̄�

T
e J�̄�e (33)

̇L1 = �̄�

T
e [−𝝎 × J𝝎 + 𝝉1 + J(S(𝝎e)RT (Qe)𝝎c − RT (Qe)�̇�c

+ k
𝜔

k
𝜇

q̇e) + 𝜟

𝜏

] − kQk𝜔qTe qe + kQk𝜇qTe �̄�e
(34)

Design the control torque

𝝉1 = −k
𝜏

�̄�e + 𝝎 × J𝝎 − JS(𝝎e)RT (Qe)𝝎c + JRT (Qe)�̇�c

− k
𝜔

k
𝜇

Jq̇e − Tanh(
�̄�

T
e

𝜀4
)𝜸 − kQk𝜇qe

(35)
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where k
𝜏

> 0 and 𝜀4 is a small positive constant. Substituting 𝝉1 into (34) yields

̇L1 = −kQk𝜔qTe qe − k
𝜏

�̄�

T
e �̄�e − �̄�

T
eTanh(

�̄�

T
e

𝜀4
)𝜸 + �̄�

T
e𝜟𝜏

(36)

Theorem 2 Take k
𝜔

≤
4k

𝜏

̄

𝜆(J)
, the attitude controller (35) guarantees that the attitude

tracking error qe and angular velocity error𝝎e are bounded and ultimately converge
to neighbourhoods of the origin.

Proof From Lemma 2, �̄�

T
e𝜟𝜏

≤
∑

i=x,y,z |�̄�ei|𝛾i ≤
∑

i=x,y,z[�̄�eitanh(
�̄�ei

𝜀4
) + kq𝜀4]𝛾i =

�̄�

T
eTanh(

�̄�e

𝜀4
)𝜸 + d

𝜏

, where d
𝜏

=
∑

i=x,y,z kq𝜀4𝛾i. Substituting it into (36) yields

̇L1 ≤ −kQk𝜔qTe qe − k
𝜏

�̄�

T
e �̄�e + d

𝜏

≤ −kQk𝜔(1 − k
𝜇

𝜇e) −
k
𝜏

̄

𝜆(J)
�̄�

T
e J�̄�e + d

𝜏

(37)

From (33), ̇L1 ≤ −min{ k
𝜔

2
,

2k
𝜏

̄

𝜆(J)
}L1 + d

𝜏

= − k
𝜔

2
L1 + d

𝜏

. Integrating it gives

L1 ≤ (L1(0) −
2d

𝜏

k
𝜔

)e−
k
𝜔

2 t +
2d

𝜏

k
𝜔

≤ L1(0)e
− k

𝜔

2 t +
2d

𝜏

k
𝜔

(38)

Also from (33) we know that KQqTe qe ≤ L1 and
𝜆(J)
2
�̄�

T
e �̄�e ≤ L1. Thus qe and �̄�e

are bounded and ultimately converge to the compact sets ℂq = {qe|‖qe‖ ≤

√
2d

𝜏

kQk𝜔
}

and ℂ̄
𝜔

= {�̄�e|‖�̄�e‖ ≤

√
4d

𝜏

𝜆(J)k
𝜔

}. Since 𝝎e = �̄�e − k
𝜔

k
𝜇

qe, we have ‖𝝎e‖ ≤ ‖�̄�e‖ +

k
𝜔

‖qe‖, so 𝝎e converges to the set ℂ
𝜔

= {𝝎e|‖𝝎e‖ ≤

√
2k

𝜔

d
𝜏

kQ
+
√

4d
𝜏

𝜆(J)k
𝜔

}.

Remark 3 By taking kQ>>k𝜔, increasing kQ, kw and decreasing 𝜀4, the sets ℂq and

ℂ
𝜔

can be made small.

5 Simulation

A simulation is performed to verify the proposed controller. The helicopter parame-

ters are as follows [12]:m = 7.4 kg, Ix = 0.16 kgm2
, Iy = 0.30 kgm2

, Iz = 0.32 kgm2
,

Ixz = 0.05 kgm2
, lm = 0.01m, hm = 0.14m, lt = 0.95m, ht = 0.05m,Ma = Lb =

110,Am = 0.00452,Bm = 0.63,At = 0.005066,Bt = 0.008488 and g = 9.81m∕s2.

The desired reference path r is a circular curve determined by

f1(x, y, z) = z − 8 = 0, f2(x, y, z) =
1
5
(x2 + y2) − 5 = 0
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Define P0 = [11, 10, 0]T and choose Pd = [5, 0, 8]T , we can obtain the sphere center

̄O = [11, 0, 0]T and the temporary path ̄r is planned by

̄f1(x, y, z) = 4x + 3z − 44 = 0, ̄f2(x, y, z) =
1
20

((x − 11)2 + y2 + z2) − 5 = 0

where 𝜹 = [1, 1, 1]T , 𝜸 = [0.5, 0.5, 0.5]T . The controller parameters are chosen as fol-

lows: ̄k11 = ̄k12 = 1, ̄k21 = ̄k22 = 3.5, ̄k31 = 1, �̄�1 = 0.3, �̄�2 = 0.5, �̄�3 = 0.1; k11 =
k12 = 2, k21 = k22 = 3.5, k31 = 3, 𝜀1 = 0.3, 𝜀2 = 0.8, 𝜀3 = 0.08; kQ = 500, k

𝜔

= k
𝜏

=
16, 𝜀4 = 0.05; 𝜉 = 0.707, 𝜔n = 10, �̄� = 0.01, and they satisfy the conditions in theo-

rems. Choose v̄r = vr = 2.5m∕s.
Figure 3 shows the 3-D path following result. Figures 4, 5 and 6 illustrate the path

following, attitude and angular velocity errors respectively, which are bounded and

converge to neighborhoods of origin. Figure 7 shows that the speed converges to

vr. Figure 8 illustrate ucz(or ūcz before switch) is greater than zero, implying that no

singularity occurs in deriving command attitude.

Fig. 3 3-D path following
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Fig. 5 Attitude tracking

errors
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Fig. 6 Angular velocity

tracking errors
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Fig. 7 Actual speed ‖v‖
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Figures 9 and 10 show comparisons of spatial distance ds, which defines the short-

est distance from actual position to the path, and thrust Tm using the proposed control

law and ds1, Tm1 using the control law [1] without temporary-path generation. Obvi-

ously, Tm1 is large in convergence process, and it would result in control saturation

if further increasing parameters to reduce the error.
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Fig. 8 Control ūcz and ucz
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6 Conclusion

This paper presents a singularity-free path following controller for miniature

unmanned helicopters. The reference path is defined by implicit expression.

Numerical simulation demonstrates the effectiveness of proposed controller. In future

research we will extend the controller to more general manifolds and consider the

disturbances and parametric uncertainties.
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