Nonlinear Tracking Control
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Abstract This paper considers the problem of uncertain camera pose and camera
parameters for a 3-degree-of-freedom (DOF) robot manipulator in nonlinear visual
servoing tracking control. To solve this problem, the typical Kalman filter
(KF) algorithm is designed to estimate the image Jacobian matrix online, which can
reduce the system noises to improve the robustness of the control system. Visual
optimal feedback controller is developed to precisely track the desired position of
the robot manipulator. In addition, stereo cameras are incorporated into the robot
manipulator system such that the tracking errors in both camera image frame and
robot base frame can simultaneously converge to zero. Experimental results are
included to illustrate the effectiveness of the proposed approach.
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1 Introduction

Visual servoing has been generally used in robot manipulator nonlinear tracking
control. The traditional robot hand-eye coordination control theories rely on the
study of camera calibration technique. However, the calibration accuracy restricts
the accuracy of system in practice. The camera pose can be changed and sometimes
its working condition can be difficult to realize calibration. Compared with known
camera parameters, uncalibrated visual servo system performs higher flexibility and
adaptability.

Several visual servoing control methods have been developed to improve the
control performance of robot manipulator. Chaumette presented a summary of
visual servo control approaches [1]. Farrokh investigated the comparison of the
position-based and image-based robot visual servoing methods to improve the
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dynamics performance and robustness of visual servoing (RVS) system [2]. In [3],
it was mentioned that image-based visual servoing (IBVS) is a properer way under
the condition of unknown camera parameters. Cai presented a 2-1/2-D visual ser-
voing choosing orthogonal image features to enhance the behavior of tracking
system [4]. The image Jocabian matrix, first presented by Weiss, is universally
utilized to define the relationship between camera image frame and robot base
frame. Zergerogluprovided the analytic solution of the image Jacobian matrix under
the condition of ideal camera pose for the problem of position tracking control of a
planar robot manipulator with uncertain robot-camera parameters [5]. While in
practice, it is impossible to guarantee that the camera imaging plane is parallel to
the task plane, that is, the relationship between the two coordinate systems cannot
only be defined by one rotation angle. Hence, the control methods based on the
direct estimation for the numerical solution of the image Jacobian matrix are widely
used in robot hand-eye coordination research field. In [6], discrete-time estimator
was developed by using the least squares algorithm. Yoshimi utilized geometric
effect and rotational invariance to accomplish alignment [7]. Piepmeier performed
online estimation using a dynamic recursive least-squares algorithm [8], while the
work [9] addressed robust Jacobian estimation.

In this paper, the nonlinear visual servo controller is developed for a
3-degree-of-freedom (DOF) robot manipulator with fixed uncalibrated stereo
cameras configuration. Only one-step robot movement is used to estimate the
current image Jacobian matrix completely using Kalman filter (KF) algorithm.
Furthermore, the filtering process adopts recursive computing without storing his-
torical data. Then, a simple visual optimal feedback control is designed to achieve
nonlinear trajectory tracking.

2 Problem Formulation

The visual sensor is used to measure the information in robot task space, and
intuitively reflects the relationship between the robot end-effector and the target to
be tracked. According to [10], the mapping relation between camera image frame
and robot base frame is defined as follows:

s=Ji(p) b (1)

where p(r) = (x,(r) y,(¢))" denotes the end-effector position in robot base frame,
s(t) = (u(t) vi(t) u(t) v,(r))" represents the projected position of the end-effector
in stereo camera image frame. The image Jacobian matrix, expressed by
Ji(q) €R**2, is defined as
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where J;(p) is the interaction matrix involving the end-effector position and the
intrinsic and extrinsic parameters of cameras. Specifically, the corresponding spatial
position can be uniquely determined from the image feature, because the dimension
of image feature space is greater than the dimension of robot motion space, which
means that the tracking of image space is equivalent to the tracking of robot motion
space with stereo cameras configuration.

3 Online Estimation and Visual Optimal Feedback
Controller

3.1 Online Estimation

To estimate the image Jacobian matrix online via KF, transforming the image
Jacobian matrix into a state vector which can be expressed as the following form:

0s1 ()SQ 0S3 aS4 T
x=|— —
dp dp Op Op

3)
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of the image Jacobian matrix J;(p).
Based on the definition of J;(p) in (1), s can be written as

os; ds;  0s; \ T . .
L= ( ! —’) ,i=1,2,3,4,denotes the transposition of i th row vector

s(k+ Dms(k) +J1(k) - Ap(k) =s(k) + 7 (k) - u(k) 4)

We define x in (3) as the system state, and the image feature variation
As(k) =s(k+1) —s(k) as the system output z(k). Hence, the state equation can be
derived as follows:

x(k+1) =x(k) +n(k) (5)

2(k) = C(k) - x(k) + w(k) (6)
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where 7(k) € R® denotes the state noise and w(k) € R* is the observation noise,
which are both assumed to be white Gaussian noises shown in (7).

E(n(k)) =0, cov{n(k),n(j)} =Ry 5y
E(w(k))=0, cov{w(k),w(j)} =R, - (7)
cov{n(k), w(j)} =0--Vk,j
The system input of the state Egs. (5) and (6) is contained in C(k):
u' (k) 0
C(k)= (8)
0 u' (k)

Five steps of recursive estimation based on KF algorithm are listed as follows:
Step 1. Predict the next state based on current state

x(k) =x(k+1]k) =x(k|k) 9)
Step 2. Update the uncertainty with respect to the state estimate
P(k+1|k)=P(klk) + R, (10)
Step 3. The Kalman gain can be computed as
K(k+1)=P(k+1[k)- CT(k) - [C(k) - P(k+1]k) - CT (k) +R,] "' (11)
Step 4. The optimal state estimate value is given by
x(k+1)=x(k+1k+1)=x(k)+K(k+1)-[z(k+1)—C(k) - x(k)] (12)
Step 5. Update the state covariance matrix
Plk+1lk+1)=[I-K(k+1)-C(k)]-P(k+1|k) (13)

Given any two-step linearly independent test movement Ap;, Ap,, the corre-
sponding image feature variations As;, As, are gained. Thus, the initial value of
x(0) (i.e. J;(0)) can be obtained:

J1(0)=(As; Asy)-(Api Apy)~" (14)

where x(0) can be remodeled by J;(0) using the form in (3).
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3.2 Visual Optimal Feedback Controller Design

After online estimation of the image Jacobian matrix, the design of the direct visual
feedback controller can be easily established. Define the system error in camera
image frame as:

e(t)=s"(1) = s(1) (15)
where s (¢) =s,(t) denotes the desired image feature describing the image feature
of the moving target.

The control objective of this paper is to design a control signal u=p, which
minimize the following objective function

H=_¢c'e (16)
Discretizing the control signal u, the optimal control signal at time k is given by
(k) =Jy (k)" - (Eg(k+1)—s(k)) (17)

where J;(k)* is Moore-Penrose pseudoinverse of J;(k).When J; (k) is of full rank
2, its inverse can be expressed as

50 = (50T 0) kT (18)

The estimation of the target image feature at time k + 1, denoted by s5,(k+ 1),
can be obtained by

So(k+1) =5,(k) + (50 (k) = 5o (k= 1)) (19)

Theorem 1 With the configuration of stereo cameras, the control law (17) guar-
antees global asymptotic position tracking at any time k.

ep(k)=p" (k) =p(k) = 0 (20)

Proof Substituting (4), (17) and (19) into (16), the objective function is rewritten as
the following form:
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H(k) = % (5" () = s(k) T (5" () = s(4))
=3 (200 =508)) " (so0) =5 (0)) o1y
1 4

From (21), the difference between the target image feature and its estimation
tends to zero via KF algorithm. Under stereo cameras configuration, the conver-
gence of image space is equivalent to the convergence of robot motion space with
stereo cameras configuration. Hence, the conclusion of (20) is straightforward. In
Eye-to-hand system, the control signal u(k) is able to guarantee the asymptotic
convergence of tracking error.

4 Experimental Verification

In this section, a 3-DOF robot manipulator system is employed as the test-rig to test
the proposed control scheme. The configuration of the whole experimental setup is
depicted in Fig. 1. The experimental setup is composed of a YASKAWA 6-DOF
robot manipulator (rotation part is locked), two fixed pinhole cameras and an upper
computer. The control method is written by using Visual C 4+4 program. The
camera frame rate is set as 30 fps.

Fig. 1 A 3-DOF visual robot
manipulator test-rig
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The robot end-effector performs two-dimensional translation movement, track-
ing the curve track target on task plane, and uncalibrated stereo cameras are fixed
right above the task plane.

The linearly independent test movements lead to the initial state vector is given
by

T
~ 3.7608 0.0081 2.4344 —0.0035
J1(0)= ( —4.0446 —2.3378 —0.4403 —2.4993) (22)

The variance of the each noise in the state equation and the covariance matrix is
set to
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(a) Desired and real image-space trajectory in left camera
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(b) Desired and real image-space trajectory in right camera

Fig. 2 Desired trajectory and end-effector trajectory in camera image frame
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g. 3 Tracking errors in camera image frame

R,=02-Iy R,=02-1, P(0)=15-I (23)

Experimental results are shown in Figs. 2 and 3. Figure 2a describes the tracking
result of the left camera, Fig. 2b gives the tracking results of the right camera.
Figure 3 shows the tracking errors of the left camera and the right camera,
respectively. From Figs. 2 and 3, it is found that the output can precisely track the
desired trajectory and the tracking errors can converge to zero. Hence, one can
conclude that the aforementioned results successfully illustrate that effectiveness of
the proposed visual optimal feedback control method.
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5 Conclusions

In this paper, online estimation of the image Jacobian matrix has been investigated
using uncalibrated stereo cameras. This method, which combines KF algorithm and
visual optimal feedback control, is presented for a 3-DOF robot manipulator with
system noises. KF is utilized to estimate the image Jacobian matrix, and the visual
optimal feedback control is designed based on the estimate values. Stereo cameras
system is applied to guarantee tracking error converging to zero. Experimental
results verify the effectiveness and robustness of the proposed algorithm.
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