
Continuous Prediction of Joint Angle
of Lower Limbs from sEMG Signals

Yihao Du, Hao Wang, Shi Qiu, Jinming Zhang and Ping Xie

Abstract In order to realize the rehabilitation training of mirror movement in
stroke patients, a new motion analysis method of EMG signal is proposed. First,
surface electromyography (sEMG), hip joint and knee joint angles of 6 lower limb
muscles are collected synchronously. Then, by introducing the coherence analysis
and calculating the significant area index, the coupling relationship between the
sEMG and the joint angle is quantitatively described, and the muscles of the most
coupling relationship are set to the input channels of the model. Next, we introduce
the least squares extreme learning machine algorithm based on golden section
(GS-LSELM), and establish a nonlinear prediction model between sEMG and joint
angle. Finally, the experimental results show that the proposed method can quickly
build the model under different motion periods, and it could be used in the tracking
control of the rehabilitation robot.
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1 Introduction

According to WHO, stroke has become the leading cause of premature death after
coronary heart disease and lower respiratory tract infection, and 75% of the patients
show varying degrees of limb motor dysfunction, which seriously affected the
quality of patients’ life. In recent years, rehabilitation robot technology has
developed rapidly, and has been widely used in clinical rehabilitation [1]. Studies
have shown that the active training mode based on human-computer interaction can
improve the participation of patients and accelerate the recovery of motor function
[2].

One of the major sequelae of stroke patients is unilateral motor dysfunction.
Therefore, according to the motion analysis of sEMG, injured limb can achieve
active rehabilitation exercises by mirroring healthy limb [3]. However, there are still
some problems in the motion analysis of sEMG, such as poor real-time and low
accuracy, which restricts the development of human-computer interaction tech-
nology on rehabilitation exercises.

In this paper, we select the muscle channel based on the analysis of the coupling
relationship between the joint angle of the lower limb and the EMG signal, which
can reduce the time-consuming and instability of model caused by data redundancy.
We propose the least squares extreme learning machine algorithm based on golden
section(GS-LSELM), and establish a prediction model between the sEMG and joint
angle, which is used to predict the hip angle and knee angle, and achieve the motion
analysis finally. The experimental results show that, compared with the BP neural
network, the model establishment time is reduced by 99.85% and the prediction
error is also reduced, which satisfy real-time and accuracy requirements of the
sEMG motion analysis and can be used to active rehabilitation robot tracking
control.

2 Joint Motion Analysis Algorithm Based on GS-LSELM

2.1 Algorithm Principle

The principle of sEMG motion analysis algorithm is shown in Fig. 1. The whole
process is divided into three parts: synchronizing data acquisition, data processing
and analysis, model training and angle prediction.

2.2 Data Acquisition

In this paper, we make the lower limb flexion and extension as experimental mode
of operation, and simultaneously collect sEMG, hip and knee angle of seven
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healthy subjects (5 boys, 2 girls, (25 ± 2) years old). Before the experiment, the
subjects were asked to have no muscle fatigue and had a good mental state, and
were familiar with the experimental process. With the EMG acquisition equipment
of the US Delsys company, we recorded vastus rectus (VR), vastus lateralis (VL),
vastus medialis (VM), semitendinosus muscle (SM), biceps muscle(BM), and
tibialisa-nterior (TA) of the subjects.

The experimental procedure is as follows: Before experiment, a subject lies on
the experimental platform with the feet fixed on the slideway and pedal, as shown in
Fig. 2, and does continuous motion in three cycles (5 s, 3.5 s, 2 s). To avoid
muscle fatigue, the subject rest 3–5 min before the start of each experiment. The
data of the seven subjects are recorded and repeated three times according to the
above procedure.

Fig. 1 The principle of joint
motion analysis algorithm
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Fig. 2 Data acquisition equipment and mark point location
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2.3 Data Processing and Feature Extraction

The EMG signal has the characteristics of strong non-linearity, non-stationarity and
being susceptible to interference, so it is necessary to preprocess the EMG signal
before the feature extraction. The specific process is shown in Fig. 3:

The wavelet packet decomposition and reconstruction technique is used to
remove the baseline drift [4], and the 4 order band-pass filter is used to remove the
signals outside of 10–200 Hz. Combined with sliding window technology, we
propose adaptive ICA algorithm to automatically detect power frequency noise.
Based on the window width and noise frequency, we construct signals:

aðtÞ= a1ðtÞ,⋯, a6ðtÞ½ �T ð1Þ

A new set of data is formed by the combination of the structural signal and the
original sEMG, and its power frequency noise and harmonic signal is separated by
traditional ICA method. After preprocessing, the EMG is expressed by ξ, and its
characteristics WL(wave length) is abstracted, which represents the accumulated
wavelength of ξ over a period.

WL= ∑
N − 1

i=1
ξi+1 − ξij j ð2Þ

where, N is the sampling number within a period of time, and 13 sampling points
are selected as a data segment in this paper.

As shown in Fig. 4, with the change of joint angle, sEMG of vastus rectus
muscle (VR) shows a strong periodicity, and the biceps muscle (BM) has poor
periodicity and robustness, which has a small change in 0 ∼ 5 s and a big change in
10 ∼ 15 s. At the same time, too many input channels will increase the complexity
of the model, reduce the stability of the model and increase the training time, so it is
necessary to select the muscle channels.

Fig. 3 Original sEMG preprocessing
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2.4 Muscle Optimal Selection

In this paper, the local frequency coherence analysis method [5] is used to calculate
the coherence value between the EMG feature signal v and the joint angle signal θ.
Taking hip for example, the hip angle frequency spectrum is mainly concentrated in
the 0∼2 Hz. We record the frequency channel as ω, and have a coherence analysis
of v and θh in the frequency channel ω by the following formula.

cvωθhðf Þ=
< Svωθhðf Þ>j j2

< Svωvωðf Þ>j j* < Sθhθhðf Þ>j j ð3Þ

where Sθhθhðf Þ and Sθhθhðf Þ are separately the self spectral density function of v and
θh in ω, and Svωθðf Þ is the cross spectral density function of v and θh in ω. cvωθhðf Þ is
used to describe the linear correlation of the two signals in ω, whose span is from 0
(no correlation) to 1(perfect correlation).

The significant coherence threshold CL is used to describe the coherence degree
between v and θh.

CLðαÞ=1− ð1− αÞ 1
n− 1 ð4Þ

where n is the number of data segments involved in spectral estimation, α is the
confidence level.

The significant coherence area index AcohðωÞ is used to describe the coherence of
v and θh in ω.

AcohðωÞ = ∑
f
Δf ⋅ ðCvωθhðf Þ−CLÞ ð5Þ

0 5 10 15
0
5

10
15

0 5 10 15
0
4
8

12

0 5 10

1

5
0
2
4
6

0 5 10 15
0

20
40
60

0 5 10 15
80

130
180

(    )

(    )

VRv

BMv

0 5 10 15
0
4
8

12

TAv

0 5 10 15
0
2
4
6

VLv

0 5 10 15
0
4
8

12

VMv
hθ

kθ

Hip
Joint

Knee
JointSMv

Fig. 4 Characteristic signal and joint angle signal of sEMG
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where Δf is the frequency resolution. The larger the AcohðωÞ, the greater the
coherence of v and θh is in ω.

As shown in Fig. 5, in the frequency channel ω, the coherence between the
anterior tibial muscle and the hip joint is the largest, followed by the vastus rectus
muscle and semitendinosus muscle. The same conclusion is found in the analysis of
the knee joint. So the anterior tibial muscle and vastus rectus are used as the input
channel to predict the hip and knee angles.

2.5 Joint Angle Prediction Based on GS-LSELM

In this paper, we use the least squares method [6] to optimize the input weight and
bias of the limit learning machine, and combine the golden segmentation algorithm
to optimize the number of hidden layer nodes and simplify the network structure to
obtain the optimal prediction accuracy.

Network input of the predicted model are the tibial anterior muscle signal uAT
and vastus rectus muscle signal uVR, and the difference signals
ΔuAT = uATði+1Þ− uATðiÞ, ΔuVR = uVRði+1Þ− uVRðiÞ, and network output are hip
and knee joint angles. Taking hip angle prediction for example,
U = fuj, 1, uj, 2, . . . , uj, ng(j = 1,2,3,4) and θh = fθ1, θ2, . . . , θng are the input and
output of the network respectively, the number of samples and hidden layer nodes
are n and L respectively, and the implicit layer excitation function is Gð ⋅ Þ. We
chooses the sigmode function as an excitation function:

GðzÞ= 1
1+ e− z ð6Þ

Expected mathematical model is
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θh = ∑
L

i=1
βiGiðαi × ui + biÞ ð7Þ

where αi = ½αi1, αi1, . . . , αin�T is the weight of the i-th hidden layer node and the
input node, bi is the i-th hidden layer node threshold, βi = ½βi1, βi2, . . . , βiL, �T is the
connection weight of the output layer node and the i-th hidden layer node. Formula
(8) can be simplified as: θh =H ⋅ β.

H =G
α1 ⋅ u1 + b1 ⋯ αL ⋅ u1 + bL

⋮ ⋱ ⋮
α1 ⋅ un + b1 ⋯ αL ⋅ un + bL

2
4

3
5=Gðu ⋅ αÞ ð8Þ

where H is the hidden layer output matrix,

u=
u1
1

u2
1

⋯
⋯

un
1

� �T
ð9Þ

α=
α1
b1

α2
b2

⋯
⋯

αL
bL

� �
ð10Þ

According to the Mohr-Penrose inverse matrix theory u ⋅ α= θhθ
+
h G− 1ðθhβ+ Þ,

assuming Z = θ+
h G− 1ðθhβ+ Þ, then we can obtain the linear relationship between

the input weight and the output value: u ⋅ α= θhZ. By the principle of least squares
solution, when Z is randomly generated, the input weights u and the bias α can be
obtained and can be substituted into the formula (7) and (8) to calculate the hidden
layer output matrix H and output weight β, so as to obtain the parameters of the
model.

3 Results

According to the description of Sect. 2.2, 7 subjects (S1 ∼ S7) carried out lower
limb flexion and extension with three cycles (5 s, 3.5 s, 2 s). sEMG, hip and knee
angle were collected synchronously, which were used to calculate the character-
istics uAT , uVR and the difference signal ΔuAT , ΔuVR of tibialis anterior muscle and
vastus rectus muscle. The root mean square error RMSE and training time T are
selected as the performance verification indexes. The smaller the RMSE, the higher
the prediction accuracy of the model; and the less the training time T, the faster the
model is established and the better the real-time.

Taking S2 as an example, when the motion cycle is 5 s, the RMSE of the hip
joint angle is 8◦, and it is 2.9◦ when the motion cycle is about 2 s, which shows that
motion velocity has a great influence on prediction error. So, it is necessary to
choose the right speed in the rehabilitation training of mirror image motion to avoid
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large prediction error and patient fatigue. The prediction results of the three kinds of
motion cycle are shown in Fig. 6. It can be seen that the deviation between the
predicted value and the actual value is larger at low speed, and is mainly con-
centrated at the inflection point.

Table 1 shows the comparison results of the two algorithms on the training time
and the verification time. From Table 1, we can know that, on the same training set,
the training time of GS-LSELM is 0.0013 s, which is only 0.15% of BP, and its
prediction time is only 1.2 ms, which shows that the GS-LSELM algorithm is better
than traditional BP neural network in real-time.
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Fig. 6 Practical angle and forecast angle of hip joint and knee joint

Table 1 Comparisons of real-time between BP and GS-LSELM

Training
sample
number

Estimated
number of
groups

Forecast
sample
number

Average
training
time (s)

Average
prediction
time (s)

BP 1200 7 2960 0.863 0.0895
GS-ELM 1200 7 2960 0.0013 0.0012
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4 Conclusion

In this paper, we studied the coupling relationship between the EMG signals of
lower limbs and the joint angles by the method of coherence analysis, and filtered
the model input channel and used a first order recursive filter to realize the data
synchronization. On this basis, we proposed GS-LSELM algorithm and establish-
ed the prediction model of joint angles based on the EMG signals, and the per-
formance of the model was verified by experiment. In future studies, the proposed
method can be used in the rehabilitation training system, making the rehabilitation
robot tracking the joint angle so as to achieve the active movement of patients.
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