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Abstract. This paper presents the design approach of Multirate Output Feed-
back (MROF) based Discrete Integral Sliding Mode Control (DISMC) for
system with uncertainties. Firstly, the state representing the MROF has to be
identified. The discrete integral sliding surface were selected in order to design
the controller. The MROF that used output feedback with two different sampling
times which are slow and fast rate is then combined with the DISMC to control
the uncertain system. The reachability condition and stability are also considered
and presented. Through extensive computer simulation, it shows that the pro-
posed controller’s capable to track the reference input even though uncertainties
present in the system. The findings demonstrated that the MROF based DISMC
provided better system response as compared to the Discrete Linear Quadratic
Regulator (DLQR) and discrete Proportional Integral Derivative (PID).

Keywords: Multirate Output Feedback � Sliding Mode Control � Discrete
integral � Inverted pendulum system

1 Introduction

In practical applications, systems are commonly operated under uncertain conditions
for examples modelling error, measurement error and external disturbance. The exis-
tence of uncertainties will affect the performances, responses of the system and may
lead the system to be unstable. An uncertainty that exists in the system is difficult to
track and control. Sliding Mode Control (SMC) was proposed in the 1960’s is a special
nonlinear control strategy with discontinuous property [1]. SMC is a robust nonlinear
control technique which has been applied widely for many applications that are
involved with uncertainties [2–6]. The advantages of SMC among other controllers are
external disturbance rejection, guarantee stability and insensitivity to system
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parameters variation especially after the system is driven to sliding surface as discussed
by Edwards and Spurgeon [7]. These characteristics have made the SMC a suitable
controller to control an uncertain system.

Nowadays the trend has been changed to discrete, as well as the SMC. That is due
to the rapid development of digital computer and digital equipment. In general, digital
control systems have many advantages over analog control system. Some of the
advantages include low power consumption, high accuracy and high reliability and
ease of making software and design changes [8]. For that reason, the discrete-time
system representation is more justifiable for controller design compared to
continuous-time. The brief idea of Discrete Sliding Mode Control (DSMC) was firstly
appeared in the control literature during mid-80s by Milosavljevi´c followed by
increasing list of publications [9, 10]. The new discrete integral sliding surface that can
eliminate the reaching law was designed in [11]. Then a combination of equivalent
control and integral control replacing the switching control was implemented by [12].
The matched and unmatched uncertainties were considered when designing the DISMC
[13]. Normally, most of the SMC strategies are based on state feedback. But not all of
the system states are available in practical, this situations would demand the need for
some observers or dynamic compensators. However the used of observer would make
the overall system more complex.

Meanwhile, the output feedback is always available all the time, so output feedback
can be used to design the controller. In [14, 15] a concept known as Multirate Output
Feedback (MROF) was introduced. The algorithm makes use of only the output
samples for designing the controller. In MROF two sampling time were used, the
system output sampled at faster rate and the control input is sampled at the slower rate.
Several researchers have successfully implemented the concept of MROF to control
various nonlinear plant [16–18].

In this paper, the controller is designed by combining MROF and DISMC in order
to deal with the uncertain system. Then, the designed controller is implemented to
inverted pendulum system. Inverted pendulum is selected because it is known as a
highly nonlinear and unstable system.

2 Controller Designed

The system in continuous time can be represented as follows:

_xðtÞ ¼ ðAþDAÞxðtÞþ ðBþDBÞuðtÞþBeðtÞ ð1Þ

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rn is the control input, yðtÞ 2 Rn is the output
vector, A and B are the nominal constant matrices, DA is the uncertainties present in the
system, DB denote the uncertainties that exist in the input matrices and e(t) is the
external disturbance. The output of the inverted pendulum system in continuous time
can be described as
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yðtÞ ¼ CxðtÞ ¼ C1

C2

� �
xðtÞ ¼ 1 0 0 0

0 1 0 0

� �
xðtÞ ð2Þ

In order to have the reference tracking in the system, a new error state variable,
z has to be added, where z(t) = r(t) − C1x(t) and r(t) is the desired reference. The C1 is
chosen because the system only consider the first state as a desired reference. By using
Eqs. (1) and (2) with the reference tracking, the continuous time system can be

_xpðtÞ ¼ ðAp þDApÞxpðtÞþ ðBp þDBpÞuðtÞþBpeðtÞþRprðtÞ
ypðtÞ ¼ CpxpðtÞ

ð3Þ

where

xp ¼
z

x

� �
Ap ¼

0 �C1

0n�1 A

� �
DAp ¼

0 0

0n�1 DA

� �

Bp ¼
0

B

� �
DBp ¼

0

DB

� �
Cp ¼

1 01�n

0 C

� �
Rp ¼

1

0n�1

� � ð4Þ

The xðtÞ 2 Rn is the state vector, uðtÞ 2 Rn is the control input, yðtÞ 2 Rn is the
output vector, Ap and Bp are the nominal constant matrices, DAp is the uncertainties
present in the system, DBp denote the uncertainties that exist in the input matrices and
Rp is the reference. If the condition in Eq. (3) is satisfied, then the matching condition
holds, where:

rankð½Bp
..
.
DAp

..

.
DBp

..

.
Bp�Þ ¼ rankðBpÞ ð5Þ

The pair (Ap, Bp) is controllable and the following match conditions are satisfied
[19].

DAp ¼ BpDApðDAp is a vectorÞ and DBp ¼ BpDBp ðDBp is a scalarÞ ð6Þ

The system in Eq. (7) is obtained by substituting (6) into (3). It can be rewritten in
the following equation:

_xpðtÞ ¼ ApxpðtÞþBpuðtÞþBpðDAp þDBp þ eðtÞÞþRprðtÞ
¼ ApxpðtÞþBpuðtÞþBpdðtÞþRprðtÞ

ð7Þ

where

dðtÞ ¼ DAp þDBp þ eðtÞ ð8Þ

Since the controller is in discrete time, the continuous time system in Eq. (7) is
sampled using zero order hold (ZOH) at a slow rate as s = 0.004 s. Then discrete time
of the system is given as
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xðkþ 1Þ ¼ UxðkÞþCuðkÞþCf ðkÞþHrðkÞ
yðkÞ ¼ CpxðkÞ

ð9Þ

where U ¼ eAps; C ¼ Rs
0
eApsBpds; f ¼

Rs
0
eApsBp ðkþ 1Þs� sð Þds:

The discretization of Eq. (8) is obtained by applying ZOH sampling over time
interval (ks,(k + 1) s) where s is a sampling period [20]. The fast output sampling time,
η can be obtained by dividing s with N, where N is an integer and the value of N must
be larger or the same as the observability index of (U, C). Using the fact that u(k) is
unchanged in the interval s� t�ðkþ 1Þs. The previous N fast sampled outputs be
denoted as the N-element column as

yk ¼

yðk � 1Þs
yðk � 1Þsþ g
yðk � 1Þsþ 2g

:
yðks� gÞ

2
66664

3
77775 ð10Þ

The system in Eq. (9) can be represented in a faster sampling time of η = 0.001 s as

xðkþ 1Þ ¼ UgxðkÞþCguðkÞþCgf ðkÞþHgrðkÞ
ykþ 1 ¼ C0xðkÞþCuuðkÞþCuf ðkÞþCrrðkÞ

ð11Þ

where the value of C0,Cu and Cr can be expressed as

C0 ¼

Cp

CpUg

CpU2
g

..

.

..

.

CpU
N�1
g

2
666666666664

3
777777777775

; Cu ¼

0

CpCg

CpðUgCg þCgÞ
..
.

..

.

Cp
PN�2

i¼0
Ui

gCg

2
66666666666664

3
77777777777775

; Cr ¼

0

CpHg

CpðUgHg þHgÞ
..
.

..

.

Cp
PN�2

i¼0
Ui

gHg

2
66666666666664

3
77777777777775

ð12Þ

By considering Eqs. (11) and (12), the state x(k) can be expressed as

xðkÞ
f ðkÞ

� �
¼ C0 Cu½ �T C0 Cu½ �� ��1

C0 Cu½ �T ykþ 1 � CuuðkÞ � CrrðkÞð Þ

¼ W ykþ 1 � CuuðkÞ � CrrðkÞð Þ
ð13Þ

where

W ¼ C0 Cu½ �T C0 Cu½ �� ��1
C0 Cu½ �T ð14Þ
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Substituting Eqs. (12) and (13) into Eq. (11), will gives

xðkþ 1Þ
f ðkÞ

� �
¼ Ug Cg

0 I

� �
Wykþ 1 �WCuuðkÞ �WCrrðkÞð Þþ Cg

0

� �
uðkÞþ Hg

0

� �
rðkÞ

ð15Þ

Then, the state xðkþ 1Þ can be represented as in Eq. (16)

xðkþ 1Þ ¼ Ug Cg½ �Wykþ 1 þ Cg � Ug Cg½ �WCu
� �

uðkÞ
þ Hg � Ug Cg½ �WCr
� �

rðkÞÞ ð16Þ

If Q = [Uη Cη] then the state x(k) can be expressed using the output yk as

xðkÞ ¼ QWyk þ Cg � QWCu
� �

uðk � 1Þþ Hg � QWCr
� �

rðk � 1Þ ð17Þ

The discrete integral sliding surface is defined as

rimrof ðkÞ ¼ Gimrof xðkÞ � Gimrof xð0Þþ hðkÞ ð18Þ

where h(k) is computed as

hðkÞ ¼ hðk � 1Þ � ðGimrofU� GimrofCKÞxðk � 1Þ ð19Þ

where rimrof 2 Rn is the sliding surface for MROF based DISMC, h 2 Rn is the integral
vectors, x(0) is the initial condition, Gimrof 2 Rm�n and K 2 Rm�n are the constant
matrices. The matrix K is chosen such that U + C(Gimrof U)

−1Gimrof + CK is lie within
unit circle. The forward expression of the integral sliding surface can be simplified
when considering Eqs. (18), (19) and (9) such that:

rimrof ðkþ 1Þ ¼ Gimrof ½CuðkÞþCf ðkÞþHrðkÞ � xð0ÞþCKxðkÞ� þ eðkÞ ð20Þ

By consider Eqs. (9), (17) and (20), the control input of the system can be repre-
sented in the output feedback as follows

uimrof ðkÞ ¼ � GCð Þ�1ðGimrofCK � Gimrof Þ½QWyk þ Cg � QWCu
� �

uðk � 1Þ
þ Hg � QWCr
� �

rðk � 1Þ� � GCð Þ�1½Gimrof Ff ðkÞþGimrof HrðkÞ
þ q rimrof ðkÞ

�� ��sign ðrimrof ðkÞÞ�
ð21Þ

Different from the continuous time system where the disturbance can be taken
directly, in discrete time system the Eq. (21) cannot be implemented because the
current value of disturbance f(k) is unknown. To overcome this problem, according to
[21], if the updated value is not available, the estimation value can be used in which the
last value of a disturbance signal can be taken as the estimate of its current value. Then
f(k) will be replaced by the estimated disturbance �f ðkÞ ¼ f ðk � 1Þ. Therefore, the
control input in output feedback is given as:
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uimrof ðkÞ ¼ � ðGimrofC Þ�1ðGimrofCK � Gimrof Þ½QWyk þðCg � QWCuÞuðk � 1Þ
þ ðHg � QWCrÞrðk � 1Þ� � ðGimrofCÞ�1½GimrofC�f ðkÞþGimrof HrðkÞ
þ qjrimrof ðkÞjsignðrimrof ðkÞÞ�

ð22Þ

2.1 Stability Analysis

The stability condition for the designed controller in Eq. (22) is necessary to be proven
to make sure that it is reachable and stable. The stability condition can be proven by
using the Sarpturk stability condition as in Eqs. (23) and (24). The first part of Sarptuk
stability condition can be described as

ðrimrof ðkþ 1Þ � rimrof ðkÞÞsgnðrimrof ðkÞÞ
¼ �q rimrof ðkÞ

�� ��\0
ð23Þ

The condition above is only true if the value of q > 0. Meanwhile the second part
of Sarpturk stability condition can be expressed as:

ðrimrof ðkþ 1Þþ rimrof ðkÞÞsgnðrimrof ðkÞÞ[ 0

¼ 2� qð Þ rimrof ðkÞ
�� ��[ 0

ð24Þ

Equation (24) is only true if the value of 2 − q > 0. From both conditions as stated
in Eqs. (23) and (24), which q > 0 and 2 − q > 0, it can be concluded that the
designed controller is stable when the value of q is in the range of 0 < q < 2.

3 Result and Discussion

The designed controller as Eq. (22) is implemented to inverted pendulum system. An
inverted pendulum model is selected due to its characteristics which is under actuated
nonlinear system, unstable and owns more than one degree of freedom. Therefore, it is
a challenge to stabilize the unstable inverted pendulum system. The inverted pendulum
consists of a single rod mounted on a linear cart in which the axis of rotation is right
angles to the direction of the cart motion. The cart is constrained to only move in the
horizontal direction, while the pendulum can only rotate in the x–y plane. The system
state for inverted pendulum system as in Eq. (1) is fourth order system. Thus the
observability index of the system is 4, hence the value of N is chosen as 4. In this work,
the output is sampled at slow rate of s = 0.004 s. The inverted pendulum system that
discretized in fast sampling time with η = 0.001 s as in Eq. (11) is shown as below:
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Ug ¼

1 �0:001 0 0 0
0 1 0 0:0010 0
0 0 1:000 �0:0000 0:0010
0 0 0:0009 0:9881 0
0 0 0:0462 �0:0513 0:9995

2
66664

3
77775 Cg ¼

0
0

0:0000
0:0016
0:0067

2
66664

3
77775

Fg ¼

0
0

0:0000
0:0016
0:0067

2
66664

3
77775; Hg ¼

0:001
0
0
0
0

2
66664

3
77775

Cf ¼ 1:0e� 004 � 0 0 0 0 0 0 0 0:0160 0:0670 0 0:0478 0:2002½ �T
Cr ¼ 0 0 0 0:0010 0 0 0:0020 0 0 0:0030 0 0½ �T

The MROF based DISMC has been simulated to demonstrate the ability of cart to
move to desired position and at the same time maintain the inverted pendulum in
upright position. In this condition, the initial cart position is zero meter and the mea-
sured pendulum angle is also zero radian. The cart position then is forced to move to
reference tracking which is the unit step input. The switching surface is designed as
Gimrof = [0.6819 0.1779 0.5724 −0.4204 −0.4950] and the matrix K is defined as
K = [− 35.9282 −22.6932 −8.3910 12.8303 35.7651]. The selection of switching
surface is via Particle Swarm Optimization (PSO). Based on stability analysis, the value
of q must be between 0 < q < 2, therefore q is selected as 1.995. For the comparison
purpose, the performance of the MROF were compared with the discrete linear
quadratic regulator (DLQR) and discrete Proportional-Integral-Derivative (PID). The
value of DLQR control gain, Kdlqr is set as Kdlqr = [945.9 1415.5 −560.1 1530.3].
Meanwhile, there are two PID controllers used in the investigation to control the
inverted pendulum system. PID controller 1 is used to control the position and PID
controller 2 controls the angle of the inverted pendulum system. The parameter values
of Kp, Ki and Kd for PID controller 1 and the PID controller 2 are −20, −0.1, −25 and
100, 4, 12 respectively.

The simulation results of the inverted pendulum’s cart position for MROF based
DISMC, DLQR and PID is displayed in Fig. 1. Meanwhile, details of the comparison is
shown in Table 1. Based on this comparison, the MROF based DISMC gives the
lowest settling time and lowest overshoot among the rest. Although the difference in
settling time for the DLQR is only 0.7 s from the MROF based DISMC, the maximum
voltage for the control input is very high which is near to 4 V compared to DISMC
which is less than 2 V. Meanwhile the PID controller provides the highest overshoot
and slowest settling time compared to the MROF based DISMC and DLQR controllers.
The simulation result for the angle of the inverted pendulum system for all controllers
are shown in Fig. 2. The angle of the inverted pendulum for MROF based DISMC is
moved to −0.56 rad, then it moves to positive 0.18 rad before maintaining at 0 rad
when the steady state is achieved. The result of control input for three difference types
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of controller is shown in Fig. 3. Meanwhile Fig. 4 shows the sliding surface for the
MROF based DISMC. The system state slides onto sliding surface and remains on that
surface thereafter at rimrof(k + 1) = 0.
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Fig. 1. Position of the cart.

Table 1. Comparison of the cart position with different types of controller.

Characteristic MROF (DISMC) DLQR PID

Rise time (s) 0.6489 0.7493 0.7202
Settling time (s) 2.6682 3.3545 3.5971
Percentage of overshoot (%) 0.3572 1.1322 3.1241
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Fig. 2. Angle of the inverted pendulum.
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4 Conclusion

The performance of the designed controller was demonstrated to prove that the MROF
based DISMC is invariant to the uncertainties that are present in the system and
guarantee the stability. Only by the usage of output state, the system is able to be
controlled, follow the reference tacking and not depending on the state feedback. The
comparison between the PID, DLQR and MROF based DISMC shows that the
designed controller has achieved the best capability in providing desired functional and
better system response in term of its fast settling time and less overshoot when com-
pared to the others.
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Fig. 3. Control input.
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Fig. 4. Sliding surface.
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