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Abstract. Brain-Computer Interface (BCI) is a way to translate human
thoughts into computer commands. One of the most popular BCI type is
Electroencephalography (EEG)-based BCI, where motor imagery is considered
one of the most effective ways. Previously, to extract useful information, various
filters are introduced, such as spatial, temporal, and spectral filtering. A spatial
filtering algorithm called Common Spatial Pattern (CSP) was developed and
known to have excellent performance, especially in motor imagery for BCI
application. In general, there are several approaches in improving CSP such as
regularization approach, analytic approach, and frequency band selection. In
general, the existing techniques for band selection is either to select or reject the
band by ignoring the importance of the band. For example, Binary Particle
Search Optimization Common Spatial Pattern (BPSO-CSP) was proposed to
choose multiple possible best bands to be used in processing the data. In this
paper, we propose an algorithm called Feature Scaling Common Spatial Pattern
(FSc-CSP) to overcome the problem of feature selection. Instead of selecting
features, the proposed algorithm employs a feature scaling system to scale the
importance of each band by using Genetic Algorithm (GA) altogether with
Extreme Learning Machine (ELM) as classifier, with 1 signifying the most
important bands, declining until 0 for the unused bands, as opposed to the 1 and
0 selection system used in BPSO-CSP. Conducted experiments show that by
employing feature scaling, better results can be achieved especially compared to
vanilla CSP and feature selection with 100 hidden nodes in three from five BCI
Competition III datasets IVa, namely aa, aw and ay, with around 5–8% better
results compared to vanilla CSP and feature selection.
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1 Introduction

Brain-computer interface (BCI) is a system that translates human thoughts into com-
mands, which enables humans to interact with their surroundings, without the
involvement of peripheral muscles and nerves. BCI based on electroencephalography
(EEG) uses control signals from the EEG activity as input/commands. BCI creates an
alternative non-muscular pathway for relaying a person’s intentions to external devices
such as computers, neural prostheses, and other different assistive peripherals [1].
Generally, BCI could be divided into three types; invasive, partially invasive, and
non-invasive. Non-invasive BCI is the most risk-free, subject-wise, type of BCI,
because it doesn’t involve any surgery to be implemented to the subject. However, it
has one trade-off: intervention from the scalp and skull decreases the resolution and
provides noise to the brain signal, compared to the invasive and partially-invasive BCI.
Some of the most popular modalities are Magnetic Resonance Imaging (MRI),
Magnetoencephalography (MEG), and Electroencephalography (EEG).

Despite its worst spatial resolution compared to the other types of BCI, BCI
through EEG is one of the most modern modality and most studied field of BCI, mainly
because of its non-invasive, portable, and low-cost nature. But BCI through EEG is not
without its weakness; it is susceptible to noises and artifacts, mostly from unwanted
movements such as eye blinks, or poor contact surface [2]. This problem mostly solved
by trying to reduce artifacts and noises by utilizing reference electrodes placed in
locations where there is little cortical activity and attempting to filter out correlated
patterns [3, 4]. Other precautions are done by applying filtering and defining the right
information to the EEG signals [5].

EEG architecture basically can be divided into four blocks; signal acquisition,
preprocessing, feature extraction, and classification. One of the most proponent algo-
rithm of BCI feature extraction is Common Spatial Pattern (CSP) [6]. This algorithm
focuses in maximizing the variance ratio of two classes of an EEG data [8]. However,
CSP is not without its limitations; CSP needs a fine-tuning of its filtering band for each
subject because it can only process one band and solely designed for two-classes use.

Several approaches have been done to overcome the limitations of CSP, which can
be categorized into five approaches: Improvement of estimation robustness [6, 7],
regularization [9, 10], multi-subject implementation [10, 11], kernel-based algorithm
[13, 14], and frequency band selection [14, 15]. There is an algorithm proposed to
address the limitation of CSP which belongs to the frequency band selection approach
called Binary Particle Swarm Optimization Common Spatial Pattern (BPSO-CSP) [16].
BPSO-CSP can use features from multiple bands it deems important, through the usage
of feature selection. With this algorithm, the important band is defined as 1 and the
unimportant or unused band is defined as 0. The classifier will then only process the
bands marked as 1. However, despite its ability to solve the fine-tuning problem of
CSP, BPSO-CSP only uses the selected bands and rejects the rest, despite the proba-
bility of usable information within the rejected band.
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In this paper, we propose an alternative approach to BPSO-CSP, especially to
overcome the selection problem of both algorithms. Instead of selecting or rejecting the
feature, we scale the feature through importance of it between zero and one by using
Genetic Algorithm (GA). Through this approach, the bands with less significance will
have a chance to be processed due to the probability of having several usable infor-
mation within them.

This manuscript is divided into part 1 as introduction, part 2 to present works
related to this paper, part 3 to explain the research methodology, part 4 to present the
findings and discussion, and part 5 serves as conclusion. Introduction explains about
the issue of BCI through EEG, and more specifically, the potential of CSP-derived
algorithms for its significance. And then, the related works discusses about the pre-
viously done studies in CSP, especially those with the significance regarding the topics
of multi-band-related CSP. In the methodology part, the dataset used and the systematic
methodology is explained. In the findings and discussion part, the result of experiment
is presented, and by that result, opens a discussion on possible future improvements
and current milestone on improvements. Finally, the conclusion summarizes the point
of the whole proposal.

2 Related Works

2.1 Common Spatial Pattern

CSP produces a set of spatial filters that can be used to decompose multi-dimensional
data into a set of uncorrelated components [6]. CSP maximizes the variance-ratio of
two conditions or classes. In other words, CSP finds a transformation basis that
maximizes the variances of one multi-channel signal and simultaneously minimizes the
variances of the other multi-channel signal. For instance, CSP for BCI is employed to
distinguish between the variance or power of the associated left-hand and right-hand
motor imagery classification from brain signal. This features particularly useful tool for
the discrimination of EEG data obtained during different mental states in BCI system.
In general, CSP is considered among the best performing algorithm for BCI commu-
nity. CSP is categorized as supervised learning method as it requires not only the
training samples but also the information of the classes of the signal, e.g. left-hand
signal.

CSP is an algorithm that maximizes the variance of one class and minimize the
variance of other class to discriminate between two classes of EEG data. The multi-
channel EEG signal separated into two mental tasks (A and B) can be described as two
spatiotemporal signal matrices of XA and XB, with dimension (N � T), where N signi-
fies few number of channels and T signifies few number of samples. Then, the
covariance matrices of these signals are calculated by

Rn ¼ XnXt
n

trace XnXt
n

� � ð1Þ
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where n signifies the respective classes (A or B), Mt signifies the transpose of the matrix
M, and trace(M) signifies the sum of the diagonal elements of matrix M.

The matrices XA and XB contain different mental task records; however, they share
the same condition and therefore can be modeled as follows:

Xn ¼ CnCc½ � Sn
Sc

� �
ð2Þ

where Sn and Cn signifies the specific source component and corresponding spatial
pattern for each mental task, while Sc and Cc signifies the source component and spatial
pattern for the common condition.

CSP algorithm is created with the purpose of designing two spatial filters, so the
source component Sn can be extracted with

Sn ¼ FnXn ð3Þ

where Fn refers to the spatial filters corresponding to each task. From these information,
CSP applies principal component and spatial subspace analysis to the diagonalized
covariance matrices using training data to estimate the spatial filters. A more detailed
explanation and calculation of CSP can be found at its corresponding research [6].

CSP is known to be yielding bad results when applied to unfiltered EEG data or
EEG data filtered with poor frequency band [15], which, in turn, leads a different
problem of the need of fine-tuning in order to achieve optimum results. There are
several CSP derived methods which have been proposed in the literature to deal with
various limitations of CSP. It is generally divided into binary-class [11, 15, 17–19] and
multi-class [20, 21]. Binary-class, as its name states, solves the problem of CSP with its
own basic characteristics of maximizing and minimizing two covariance matrices for
two classes, meanwhile the multi-class tries to implement CSP to data with more than
two classes.

The binary-class method can then be divided into five means, which specifies the
solution. The first means is to enhance the estimation of the robustness [7], which also
faces the inherent fine-tuning problem of CSP; the second one is applying regular-
ization [9, 10], which has a susceptible selection of regularization parameter which may
result in underfitting or overfitting of the solution; the third one is through addressing a
multi-subject problem [11, 12], which causes differentiation of the acquired brain signal
from multiple subject may differ much, leading to irreproducible results; the fourth one
is through the kernel-based solution [13, 14], which subjects the result to the kernel
selection and the parameter; and the last category is a multi-band solution [15, 16],
which, mostly, suffers from information negligence due to the nature of band selection
methods.

2.2 Binary Particle Swarm Optimization Common Spatial Pattern

BPSO-CSP is an improvement of CSP algorithm proposed by [16]. This methodology
employs Binary Particle Swarm Optimization (BPSO) [22] to select the suitable bands
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to process the brain signals. This algorithm selects the bands to be used according to
acceptance and rejection of each band by BPSO.

The methodology of BPSO-CSP can be concluded into 4 steps: Initialization of
each particles which correspond with a vector of 1 s and 0 s, where 1 means accepted
band and 0 means rejected band; computing fitness values for each particle which is
derived from the classification accuracy of each sub-band; updating the velocity and
position of the iteration based on the previous best velocity and position (given that
there has been a previous iteration); and mutation, in which a mutation operator is
employed in order to get the optimal points out of the BPSO algorithm. The steps are
repeated from updating until a certain threshold of maximum iteration which is pre-
defined before is reached. In this paper, for comparison, we employ a similar algorithm,
which is called Feature Selection. The procedure is shown in Fig. 1.

3 Methodology

In brief, our proposed methodology of FSc-CSP is shown in Fig. 2. The data-set was
preprocessed with Butterworth filter with sliding windows of 17 bands, next processed
by CSP at respective bands, and then scaled by GA-ELM, which finally passed
onto classifier for testing. Extreme Learning Machine (ELM) will be used as the
classifier.

Fig. 1. BPSO-CSP framework [16].
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3.1 Preprocessing

The data were first preprocessed by using sliding window and Butterworth filters.
Sliding Window is a method of choosing/splitting a lengthy band into several small
bands. It works by splitting an individual length of bands, e.g. 4–40 Hz, into several
bands based on windows, determined by variables called width and step. Width means
the range of the band, e.g. width of 4 means the band is four values long, minus the
starting value (e.g. a window that starts from 4 Hz with a width of 4 will have a length
of 4–8 Hz). Step means the margin between the starting point of one window to the
other, e.g. with a step of 2 and width of 4, with the band ranging from 4–12 Hz, the
windows will consist of 4–8 Hz, 6–10 Hz, and 8–12 Hz. In this experiment, the actual
length of the band is 4–40 Hz, with the width of 4 and step of 2, and 17 bands in total.
This range encompasses the theta, alpha, mu and beta bands.

The Butterworth filter is a type of signal processing filter designed to have as flat
frequency response as possible in the passband. In this experiment, third-order band-
pass filter is used, meaning that the signal is filtered only at a certain range of length.
The value for the low pass (lowest threshold of the length) and high pass (highest
threshold of the length) of the bandpass filter is the value of the sliding window. For
example, if the current window is 6–10 Hz, then the low pass is 6 Hz and the high pass
is 10 Hz. The example representation of sliding window can be seen in Fig. 3 below.

Fig. 3. Example representation of sliding window.

Fig. 2. FSc-CSP framework.
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3.2 Feature Scaling for Proposed Framework

GA is an optimization method process that tries to mimic biological evolution. The
algorithm creates a population of random solutions for the function, and at each
generation, the algorithm is aimed to move toward an optimal solution of the function.
The flowchart can be seen in Fig. 4. In this FSc-CSP algorithm, GA is used to find an
optimized scale for the classifier. The scale signifies the importance of the combination;
The higher the classifier accuracy with that scale, more important that scale is. The
number of the scale is the same as the number of bands, and then the scale is replicated
for each feature in that band.

As pictured in Fig. 4, the GA will first initialize a set of populations of the scale,
and then these scales will be applied to the ELM classifier. And then GA will try to
crossover all the members of the initial sets to produce children scales, in which will be
passed again to the ELM classifier. Throughout the iterations, GA will try to optimize
the scale so that the classifier will reach the best result. The scale that gives zero or
closest to zero error percentage during training with ELM compared with other scale
sets is the one that is selected as the best scale for the data. As for the process in ELM
itself can be seen in Fig. 5.

In Fig. 5, features encompass all the features from every bands, with m representing
the number of bands, and n representing the number of features. s1 until sm is the scale
the GA is trying to find in order to reach the optimal scale combination, which is valued
between zero to one depending on the importance of the band, and replicated for the
number of n for each m. For example, if there are 17 bands and each band has 8 features,
then the scale will be replicated 8 times for each band. h represents the number of the
predetermined hidden nodes. The criteria for the optimal scale combination tuning is
based on the training accuracy of a certain scale combination. The combination of the
scaling which yields the best training accuracy will then be passed into testing to
validate the result of the algorithm.

Fig. 4. Genetic Algorithm flowchart.
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4 Experiments Setup, Results and Discussion

4.1 Experiments Setup

To test our method, we use dataset IVa aa, al, av, aw, and ay from BCI Competition III
[23]. For the Genetic Algorithm, we use 50 Generations and 50 Populations. The band
is split into 17 sub-bands, ranging from 4–40 Hz, with a width of 4 and a step of 2. We
generate ten random samples from each dataset, and split them as follows: 60% of the
sample is used as the training sample and 40% of the sample is used as the testing
sample. Detailed explanation can be seen in Tables 1 and 2.

Fig. 5. Extreme learning machine.

Table 1. Dataset partitioning with 60:40 ratio.

Dataset # of trials # of class 1 data # of class 2 data

Subject aa 168 80 88
Subject al 224 112 112
Subject av 84 42 42
Subject aw 56 30 26
Subject ay 28 18 10
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4.2 Performance Evaluation

The performance of the algorithms is evaluated through the Mean Squared Error
(MSE) of the algorithm, which can be represented as

1
n

Xn
i¼1

Y 0
i � Yi

� �2 ð4Þ

where n represents the number of prediction, Y′ represents the predictions itself and Y is
the predictor. The evaluation is done per hidden nodes basis to attune the underfitting
or overfitting problem of neural network.

4.3 Results and Discussion

In this test, we conduct tests using vanilla CSP, with a bandwidth of 8–12 Hz, or the
alpha band, and Feature Selection to represent the BPSO-CSP, to give a comparison to
our proposed algorithm. Each algorithm is tested using different numbers of hidden
nodes for the classifier. The number of hidden nodes is decided randomly, except for
68, which is half of the total number of training and testing data of dataset aa. ELM is
used as the classifier. 10-fold cross validation is used to validate each data. These tests
were done in order to validate the result of our proposed algorithm.

Table 3 shows the testing performance of FSc-CSP algorithm. The performance of
feature scaling compared to Feature Selection yields some performance improvement
for at least three data sets, namely aa, aw and ay for 100 hidden nodes configuration,
while for a lower number of hidden nodes, Feature Selection yields better performance,
albeit with lower accuracy compared to FSc-CSP with higher hidden nodes.

There is an anomaly, however, with dataset al as the only dataset which perfor-
mance with both algorithms yield not an objectively bad result, but compared to the

Table 2. Parameter setup for conducted experiment.

Parameter setup

# of GA generations 50
# of GA populations 50
# of hidden nodes 5/10/68/100
# of runs 10
# of sub-bands 17
# of features 8
# of window steps 2
# of window width 4
Window range 4–40 Hz
Filter type Third-order butterworth
ELM activation function Sigmoid
# of input nodes 136 (Bands � Features = 17 � 8)
# of output nodes 2
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vanilla CSP, the performance is much worse, and compared to other datasets, should
we put vanilla CSP results aside and only put FSc-CSP and Feature Selection into
consideration, dataset al yields a reversed result: FSc-CSP yields better performance for
lower hidden nodes, while Feature Selection yields better performance for higher
hidden nodes.

In Fig. 6, we present an example of scale distribution of FSc-CSP for 100 Hidden
Nodes. It is seen that the algorithm can distinct between the most important bands
with the less important bands, evident in the results. Some bands, namely band 11
(24–28 Hz), 12 (26–30 Hz) and 13 (28–30 Hz), are deemed less important due to the

Table 3. Testing performance validation of the FSc-CSP.

# of HN Type aa al av aw ay

5 FSc-CSP 0.52 0.60 0.48 0.50 0.48
Feature selection 0.50 0.59 0.52 0.56 0.50
Vanilla CSP 0.48 0.71 0.47 0.45 0.43

10 FSc-CSP 0.48 0.65 0.49 0.48 0.48
Feature selection 0.47 0.60 0.45 0.52 0.48
Vanilla CSP 0.52 0.74 0.47 0.48 0.48

68 FSc-CSP 0.53 0.60 0.53 0.68 0.48
Feature selection 0.49 0.70 0.53 0.57 0.50
Vanilla CSP 0.52 0.84 0.57 0.52 0.47

100 FSc-CSP 0.58 0.64 0.53 0.61 0.55
Feature selection 0.53 0.68 0.55 0.53 0.55
Vanilla CSP 0.53 0.82 0.54 0.52 0.48

Note: Bold means the best result for the dataset compared to
other algorithms with respective hidden nodes configuration

Sc
al
e

Fig. 6. Dataset aa scale distribution for 100 hidden nodes.
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range of the scale. The outliers from these bands are occasions where the algorithm
deem the band as important enough, however, compared to significant bands like band
3, where the most evident range of importance is equal or above 0.4, these bands seem
to contain not so many useful information.

In Fig. 7(a) and (b), we present the power spectrum distribution of two of the most
significant bands with the closest range, namely band 3 (8–12 Hz) and band 4 (10–
14 Hz). From the figures, it is seen that both bands can distinguish between the hand
imagery and foot imagery, which is evident from the gradient difference in both sides.
We can also see that the 10–14 Hz band, which was deemed less important by the scale
in Fig. 7, albeit able to distinct the signals, the spread of the gradient is less distinct and
has more overlapping gradients compared to 8–12 Hz.

In Fig. 8(a) and (b), we present the eigenvalue pairing of both bands, and it is seen
that the results are in accordance with the scale. 8–12 Hz can distinguish both classes in
a good manner, evident in EV Pair 1 and 2 for class 1 and EV Pair 5 for class 2. As for
the 10–14 Hz band, it can distinguish for EV Pair 1 and 2 for the first class, but not so
much for the second class.

In Fig. 9(a) and (b), the results of CSP filtering are presented for Channel C5 and
C6. Both channels were selected because of its position as the center position of both
left and right side of the head, thus providing the most representative signal for the

Fig. 7. EEG Power spectrum for (a) band 8–12 Hz (b) band 10–14 Hz.
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distinction of left and right brain signal. Figure 9(a) shows the result of CSP filtering
for 8–12 Hz, which shows good distinction with some spike overlaps in Class 1, but a
clean distinction in Class 2. A good distinction can also be seen in Fig. 9(b); however,
10–14 Hz has more overlaps compared to the 8–12 Hz, which means the scale of the
features can predict the importance of the bands.

5 Conclusion

In this paper, we present a new algorithm developed to overcome the fine-tuning
problem of CSP. The fine-tuning problem is one of the most significant problem faced
in BCI research due to its time-consuming nature and its fine-tuned nature causes
difficulty for other researchers to replicate the results for benchmarking purposes.

We propose a Feature Scaling Common Spatial Pattern (FSc-CSP) algorithm,
which is benchmarked using datasets from BCI Competition III datasets IVa. In the
experiment, we also include the vanilla CSP algorithm and From the results, it is seen

Fig. 8. Eigenvalue pairing for (a) band 8–12 Hz (b) band 10–14 Hz.

(a) (b)

Fig. 9. CSP class distinction for (a) band 8–12 Hz and (b) band 10–14 Hz.
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that FSc-CSP could provide better result spreads compared to Feature Selection.
Feature Selection tends to have better results at a very low hidden nodes number
compared to FSc-CSP, whilst FSc-CSP has a better spread across different numbers of
hidden nodes compared to Feature Selection, even at the lower ones, as evidenced by
the result of dataset aa. FSc-CSP is also proven to be able to determine the importance
of each band through the scaling system.

The only exception for both algorithm is in dataset al, where in all hidden nodes
spread, dataset al is consistent in providing best result by using only one specific band
range, which is 8–12 Hz or the alpha wave.

In the future works, several improvements can be made based on these findings; for
example, an improvement of the algorithm through the improvement of the vanilla CSP
algorithm itself to overcome the limitation of the vanilla CSP algorithm, or the
improvement of feature scaling algorithm to include the probability of using single
sub-band, as evidenced by the result of dataset al where best results can only be seen by
using single sub-band.
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