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1 Introduction

Modern spacecrafts are typical Cyber-Physical Systems (CPSs) which are tight
integrations between onboard cyber systems (e.g. processing, communication) and
physical elements (e.g. platform structure, sensing, actuation, and environment) [1, 2].
Tasks implement on the onboard cyber systems of spacecrafts include attitudes and
orbit control, onboard planning and scheduling, onboard data acquiring and analyzing
et al. For the limit of onboard digital resource, saving communication bandwidth and
power from the basic function like control tasks mean providing more resource to
payloads onboard, which may implement a sufficient use of spacecrafts.

Classic spacecraft attitude control problem is always developed in continuous
framework [3–5], and their implementation on the digital platform is traditionally in
a periodic fashion due to the ease of design and analysis. However, periodic
sampling is sometimes less preferable from a resource utilization point of view.
When the system states almost keep constant and no disturbances are acting, the
systems are operating desirably is a waste of digital resources. To overcome these
limitations, some resource-aware control laws like anytime control [6]
event-triggered control (ETC) [7–9] self-triggered control (STC) [10, 11] and so on
are developed. In anytime control, consisting in a hierarchy of controllers for the
same plant, will switch between different order control algorithms to adopt the
cyber resource of the onboard system. In ETC, the classic event triggered mecha-
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nisms are detecting the system output or states varying. The main idea of STC is to
select the next controller update instant based on the knowledge of the dynamics
and the latest measurements of the plant state. While the ETC depending on the
continuous supervision of the plant, the STC will reduce more cyber resource than
ETC theoretically.

In recent years, many work addressed on STC and its applications in CPSs. In [9],
the theoretical foundation rendering control system Input-to-State Stable (ISS) is
introduced. Based on this framework, many STCmechanisms are proposed for linear
and nonlinear systems. In [10–15], the basic self-triggered strategies for linear system
are presented and a trade-off between performance and cyber resource utilization is
making. However, the most expensive part of the realization of STC is the derivation
of the trigger function. The abovework is extremely complex so that the calculating of
the trigger functions requires a lot of computing resources. From this point of view, the
use of NN as a model of trigger behavior is presented in this paper.

The Neural Network is usually performed to estimate the system that transforms
inputs into outputs, where a set of examples of input-output pairs are given in [16].
Furthermore, the NN was demonstrated as a universal smooth function approxi-
mator, extensive studies have been conducted for diverse applications, especially
pattern recognition, identification, estimation, and time series prediction [17]. In
[18], the NN is designed to predict the time delay induced in the networked control
systems, which shows that the NN can alleviate the influence of time delay and
improve the performance of the networked control system.

The main contribution of this paper is the design of a neural network based
self-triggered control (NN-STC) strategy for the spacecraft attitude stabilization
problem. The attitude motion dynamics equations are derived and a STC algorithm
is proposed to ensure attitude stability. Furthermore, simulation results demonstrate
the proposed approach guarantees a high control performance and a large reduction
of sampling times.

2 Space Attitude Dynamics

The dynamics equations of motion of a rigid spacecraft are given by [4]

J _x ¼ �x�Jxþ uþT ð1Þ

where J ¼ JT 2 R
3�3 is the inertia matrix, x ¼ xðtÞ 2 R

3 denotes the body
angular velocity of the spacecraft body-fixed frame B with respect to the inertial
frame I. u 2 R

3 is the actuator torque calculated by the onboard computer and
T 2 R

3 is the external disturbance torques.
To describe the orientation of B respect to the inertial frame I in terms of three

Euler angles: roll angle u, pitch angle h, and yaw angle w. In the rigid body
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three-axis stability control problem, the Euler angles are all small. Therefore, the
linearized kinematic differential equations can be found as

x1 ¼ _u� xow; x2 ¼ _h� xo; x3 ¼ _wþxou ð2Þ

We consider the attitude motion about its pitch axis, assume the effect of the
attitude motion on the orbital motion with a constant angular velocity xo.

In such case, the dynamics equations (1) with small attitude errors and small
products of inertial become [19]

Jx€uþðJy � JzÞx2
ouþðJy � Jz � JxÞxo

_w ¼ ux þ Tx; Jy€h ¼ uy þ Ty

Jz€wþðJy � JzÞx2
ow� ðJy � Jz � JxÞxo _u ¼ uz � xohx þ Tz

ð3Þ

Also, the external disturbance torques include the gravity gradient torque, and it
can be expressed in the body frame B as

Tgx � �3x2
oðJy � JzÞu; Tgy � �3x2

oðJx � JzÞh; Tgz � 0 ð4Þ

Generally, from the equations above, we can see that the pitch equation is
uncoupled from the roll/yaw equations. It is a Single Input & Single Output system
(SISOs), which is easy to design a classical PD controller. However, if we take
three dynamics equations into consideration with the self-triggered control design,
the size of the state space is large, which will provide more pressure on the real time
calculation on the embedded system. Therefore, we only consider roll & yaw
coupled system in this paper.

The dynamics and kinematic equations can be realized in state space form as

_x ¼ AxþBu; x ¼ u w _u _w
� �T ð5Þ

A ¼
0 0 1 0
0 0 0 1

� 1
J11

a 0 0 1
J11

b
0 � 1

J33
c 1

J33
b 0

0
BB@

1
CCA; B ¼

0 0
0 0
1
J11

0
0 1

J33

0
BB@

1
CCA

3 Neural Network Based Self-triggered Control Strategy
Design

3.1 Problem Formulation

The attitude control system on the spacecraft is shown in Fig. 1. The control signal
u and states signal x; _xð Þ is transferred over the network. In a periodic imple-
mentation, this system is usually in the following form
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_x ¼ AxðtÞþBuðtÞ
yðtÞ ¼ CxðtÞ ð6Þ

where A 2 R
n�n, B 2 R

n�r, C 2 R
m�n are the characteristic matrices and

xðtÞ 2 R
n, uðtÞ 2 R

r and yðtÞ 2 R
m the state, input and output vectors respectively.

If the pair ðA;BÞ is stabilizable, then a linear feedback controller K : Rn ! R
m

rendering the closed-loop asymptotically stable can be found:

uðtÞ ¼ KðxðtÞÞ ð7Þ

where AþBK is Hurwitz.
The controller will implement on the embedded system, and a sampled-data

system implementation is in a classical periodic time-triggered way:

_x ¼ AxðtÞþBuðtkÞ t 2 ½tk; tkþ 1Þ
yðtÞ ¼ CxðtÞ
uðtÞ ¼ KðxðtkÞÞ; t 2 ½tk; tkþ 1Þ; k 2 Zþ

ð8Þ

where tk represents the sampling time satisfying tkþ 1 � tk ¼ T . For some specified
period T [ 0, it means hðxk; TÞ in Fig. 1 equals a constant T . In discrete control
aspect, T is generally chosen as small as technology and network load permit to
achieve a desired performance. This strategy is easy to implemented, however, it
may produce unnecessary overload on the network and power consumption.

Fig. 1 CPSs on the spacecrafts
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We design the Performance Index (PI) DJ

DJ ¼ 100
Z1

0

xTQlqrxþ uTRlqru
� �

dt � J�

2
4

3
5 ð9Þ

when any control uðtÞ is implemented digitally, the system performance will
depend on the sampling period. As the sampling period increasing, the PI will
increase and the system tends to unstable.

To extend the sampling periods without sacrificing performance, we apply
self-triggered control to the system. Moreover, the longer mean sampling period
means the lower network loaded.

The STC scheme can be defined in following form

_x ¼ AxðtÞþBuðtkÞ t 2 ½tk; tkþ 1Þ
yðtÞ ¼ CxðtÞ
uðtkÞ ¼ KðxðtkÞÞ; t 2 ½tk; tkþ 1Þ; k 2 Zþ
tkþ 1 ¼ tk þ hðxkÞ

ð10Þ

A general STC scheme usually means two functions: A feedback control uðtkÞ is
used as in the classical frame and the triggered function hðxðtkÞ; TÞ :
R

m � R
þ
0 ! R

þ
0 , determining the sampling time tkþ 1 as a function of the state

xðtkÞ at the time tk. The design of these two functions is the main problem in the
STC study. Moreover, a positive minimal inter-sample time is also required to
fulfill, to avoid the Zeno phenomenon.

3.2 Feedback Controller Design

An LQR design technique is usually applied to the spacecraft attitude control
problem. The cost function and weighting matrices used in the LQR design are

J� ¼ minðJðuÞÞ ¼
Z1

0

xTQlqrxþ uTRlqru
� �

dt

Qlqr ¼
I2�2

5I2�2

� �
Rlqr ¼ 10I2�2

ð11Þ

The consideration of selecting weighting matrices in this paper is increasing
system dumpling and preventing the actuators saturation.
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we can solve the Riccati equation to get the unique positive definite solution P

ATPþPA� PB�1RlqrBTPþQlqr ¼ 0 ð12Þ

The optimal feedback policy K is given by

K¼� R�1
lqrB

TP ð13Þ

The true cost of continuous LQR is

J� ¼ xT0Px0 ð14Þ

3.3 NN Based Triggered Condition Design

Under certain conditions, it has been proved that the neural networks have function
approximation abilities and have been frequently used as function approximators. In
this section, the NN is used to approximate the function hðxk; TÞ in Fig. 1, hðxk; TÞ
determines the next sampling time based on the states sampled before, so it is a
mapping between state space and time space. And a neural network model can be
derived from measured input/output data of the original triggered conditions.

As one of the classical neural networks, BP feedforward neural network has a
simple topology and strong generalization ability. We use a four-layered feedfor-
ward neural network and adopt the BP learning algorithm to determine the sampling
time.

Figure 2 shows the specific configuration of the BP feedforward network for
approximating the triggered function. The BP network consists of four layers: input
layer with four neurons presenting the four input states of dynamics systems (5).
The neuron numbers of the two hidden layers are 12 and 4, which greatly improve
the accuracy of the network. The output layer which has only one neuron for the
triggered time is one dimension. The number of hidden layers and neurons are
varied, but in this problem the above choice is enough.

Fig. 2 BP network
configuration for triggered
time prediction
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In order to make the NN perform the desired mapping performance, the con-
nection weights will be trained by so-called training algorithms. The detail of this
algorithm is given in [20] which is no longer mentioned here. Moreover, the
training data generation is another important issue.

We acquire a training set which is generated by the system under closed-loop
and the specified triggered condition. The input sets with four states ðu;w; _u; _wÞ are
generated randomly within ð�5; 5Þ deg and ð�5; 5Þ deg/s which ensure the lin-
earized model is effective. And a triggered time is calculated from a input sets by
the original triggered function. Finally, a training sample with five elements
ðu;w; _u; _w; tkÞ is acquired.

4 Simulation

In this section, an example is presented to validate the proposed STC strategy for
spacecraft attitude control problem. The inertia matrix of spacecraft J is assumed to
be as follows

J ¼
10:5

8
6:75

2
4

3
5 kgm2

The control authority is limited by the maximum torque provided by the actu-
ators is �0:15Nm, orbit angle velocity is xo ¼ 0:0612 deg/s.

The time of simulation is 80 s, the initial attitude and angular velocity is

u0 w0½ �T¼ 5 �3½ �T deg; _u0
_w0

� �T¼ 2 1½ �T deg/s

The disturbance is given by:

dex
dez

� 	
¼ 0:0015þ 0:0012 sinð0:263tÞ

0:0015þ 0:0012 sinð0:245tÞ
� 	

The triggered function is given by

tkþ 1 ¼ sup t\tmax hðxðtkÞ; tÞ\0jf g
hðxðtkÞ; tÞ :¼ xðtk þ tÞTPxðtk þ tÞ � xðtkÞTPxðtkÞT expð�ktÞ

P is calculated by (14), k ¼ 1:0524, the detail is given in [9–11].
From Table 1, we have compared the performance between the NN with one and

two hidden layers. The results show the two hidden layers of NN has better
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performance. Figure 3 is the training curve of the NN, it shows that the training
progress becomes very slow after 10 iterations.

From Fig. 4, we can see the Performance Index (PI) DJ is increasing with the
sampling period increases in the scheme of periodic time triggered LQR. Moreover,
with the performance of NN increasing, the mean sampling times increases in the
scheme of the NN-STC. But the PI is much lower than periodic time triggered
control with the same mean sampling period. It means the control performance of
NN-STC is better than the periodic time triggered control using the same use of
network resource.

The attitude angle and angular velocity errors, by using STC and classical
nonlinear controller are shown in a, b of Fig. 5. Roughly speaking, the errors
converge to a small level. From c of Fig. 5, it can be seen that the sampling interval
continuous increases and it keeps constant after 30 s. It means when the states

Table 1 Performance of the NN

Two hidden layers (neurons: 12.4) One hidden layer (neurons: 18)

Performance (MSE) Iterations Performance (MSE) Iterations

0.01 (t1) 6 0.01 4

0.001 (t2) 9 0.001 45

0.0005 (t3) 58 0.0005 Failed
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Fig. 3 Training curve of the NN
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convince to the steady equilibrium, the controller will entry a salient periods, which
is advantageous to save the cyber resources onboard. During 0–10 s, sampling
intervals changes with the states overshoot. It means the NN-STC scheme works
when the system quits steady process immediately.

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

MeanSamplingTime s

PI

 

 

PeriodicTime-Triggered
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Fig. 4 Performance comparison between PTTC and NN-STC
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Fig. 5 States responses and triggered intervals using NN-STC
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5 Conclusion

The main contribution of this paper is the development and implementation of a
neural network based self-triggered control for the attitude stabilization of a rigid
spacecraft. The control law ensures the system stability of the closed-loop system to
the desired attitude. The approach is validated in the simulation and it shows the
proposed NN-STC strategy reduces sampling times without degrading the control
system performance. The overall performance of the spacecraft is improved by this
CPS aspect design.
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