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1 Introduction

Dynamic Positioning (DP) Systems use sensors to measure the movement states
and positions of ships and provide the propeller systems with a certain control
amount by a controller, which can resistance the environmental interferences and
maintain the lateral, longitudinal positions and heading angle [1, 2]. However,
because of their strong dependence on the model and the complexity of the theory
and the algorithm, many methods only stay in the theoretical simulation stage,
having many shortcomings in practice [3]. Active Disturbance Rejection Controller
(ADRC) doesn’t depend on an exact model of the controlled object [4, 5].

However, there are many adjustable parameters in nonlinear ADRC, which
seriously affected the application of ADRC in the project. In order to solve this
problem, RBF neural network control is used to improve ADRC in this paper. We
uses RBF neural network to do online identification for the controlled object and
design RBF Neural Network Identifier (RBFNNI). Then, use RBFNNI to adjust the
controller’s parameters of NLSEF in real time. Compared with the traditional
ADRC, this method greatly reduces the number of adjustable parameters, improves
the control accuracy, and increases the anti-disturbance range of the control system.
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2 Problem Formulation

2.1 Mathematical Model of Ship Manoeuvring

Generally, low frequency motion model is used in DP systems of ships [5]:

_g ¼ R wð Þv
M _vþDv ¼ s

�
ð2:1Þ

where, g ¼ ½x y w�T expresses a ship’s position, v ¼ ½u v r�T is the velocity vector.
R wð Þ is the conversion matrix of the inertial coordinate system and the ship
coordinate system. M is the inertial matrix. D is the damping matrix. s ¼
sT þ sW þ � � � is the total force of the ship’s motion. sT ¼ ½XT YT NT �T is the force
calculated by the controller. sW is the total interferences force and torque, generated
by Wind, wave, flow and other environmental interference.

2.2 Mathematical Model of Disturbances

2.2.1 Wind, Wave and Flow

Marine environmental disturbances that can affect the location of the ship include
second-order wave force, flow and average wind. The model is described as fol-
lowing [6]:

XW ¼ Fe cos be � wð Þ
YW ¼ Fe sin be � wð Þ
NW ¼ lx sin be � wð Þ � ly cos be � wð Þ

8><
>: ð2:2Þ

where, Fe is the constant force, be is the average direction of disturbance change,
lx; ly
� �

is the position of the interference force acting on the ship.

2.2.2 System’s Unmodeled Dynamics

Considering the unmodeled dynamics of the system, the ship dynamic positioning
linear model given by Formula (2.1) can be rewritten as:

M _vþDv ¼ sT þ sM þw ð2:3Þ

where, w ¼ w1;w2;w3½ �T is the unmodeled dynamics.
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w ¼ JT gð Þb
_b ¼ �T�1

b bþEbxb

(
ð2:4Þ

where, b 2 R3 is the deviation force and torque. Eb ¼ diag Eb1;Eb2;Eb3f g and xb

are Gaussian white noise vectors, Tb is a diagonal matrix.
Then, the ship’s motion model can be described as:

_g ¼ JðgÞv ¼ R wð Þv
M _vþDv ¼ sT þ sM þw

(
ð2:5Þ

3 Controller Design

3.1 ADRC

ADRC includes Tracking Differentiator (TD), Extended State Observer (ESO) and
Nonlinear State Error Feedback (NLSEF).

1. Tracking Differentiator (TD).

TD
_x1 ¼ x2
_x2 ¼ fhan x1 � v; x2; r; h0ð Þ

(
ð3:1Þ

2. Extended State Observer (ESO).

e ¼ z1 � y

_z1 ¼ z2 � b1e

_z2 ¼ z3 � b2fal e; a1; dð Þþ bu

_z3 ¼ �b3fal e; a1; dð Þ

8>>><
>>>:

ð3:2Þ

3. Nonlinear State Error Feedback (NLSEF).

u0 ¼ b1fal e1; a1; dð Þþ b2fal e2; a2; dð Þ ð3:4Þ
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Then, the final control is:

u ¼ u0 � z3
b

ð3:5Þ

3.2 RBF and ADRC Integrated Controller

There are many parameters in nonlinear ADRC, which is quite inconvenient to
adjust. In this paper, RBF Neural Network Identifier (RBFNNI) is designed to
identify the controlled object and adjust the controller parameters of NLSEF in real
time, as shown in Fig. 1.

3.2.1 RBF Neural Network

RBF neural network is a three-layer feed forward network of local approximation
[7]. The mapping from the input layer to the output layer is non-linear and the
mapping from the hidden layer to the output layer is linear, which can track any
continuous function with arbitrary precision [7, 8].

In this chapter, the function of RBF neural network is Gaussian basis function.
Then the output of the neurons in the hidden layer is:

hj ¼ exp � jjX � Cjjj2
2b2j

 !
ð3:5Þ

where, X ¼ x1; x2; . . .; xn½ �T is the input vector for the network. Cj is the center

vector of node j, Cj ¼ cj1; cj2; . . .; cji; . . .; cjn
� �T

, j ¼ 1; 2; . . .; m. bj is the base
width parameter of node j, bj [ 0.

Fig. 1 The structure of RBF neural network based on ADRC
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Weight vector of the network is:

W ¼ w1; w2; . . .; wj; . . .; wm
� �T ð3:6Þ

The output of the network identification at time k is:

ym kð Þ ¼ w1h1 þw2h2 þ � � � þwjhj þ � � � þwmhm ð3:7Þ

3.2.2 Design of RBFNNI and Parameters Setting for NLSEF

Select X ¼ u kð Þ; y kð Þ; y k � 1ð Þ½ �T as input vector of RBFINN, in which, u kð Þ and
y kð Þ are the control and output of the system respectively.

The performance index function of the identifier is:

E kð Þ ¼ 1
2
e kð Þ2¼ 1

2
ðy kð Þ � ym kð ÞÞ2 ð3:8Þ

According to the gradient descent method, the iterative algorithm of output
weight vector, node center vector and node base width parameters are:

Dwj kð Þ ¼ gðy kð Þ � ym kð ÞÞhj

xj kð Þ ¼ xj k � 1ð ÞþDwj kð Þþ a xj k � 1ð Þ � xj k � 2ð Þ� �

Dbj kð Þ ¼ gðy kð Þ � ym kð ÞÞxjhj
jjX � Cjjj2

b3j

bj kð Þ ¼ bj k � 1ð ÞþDbj þ a bj k � 1ð Þ � bj k � 2ð Þ� �
Dcji kð Þ ¼ gðyk kð Þ � ym kð ÞÞxj

xi � cji
b2j

cjiðkÞ ¼ cjiðk � 1ÞþDcji kð Þþ a cji k � 1ð Þ � cji k � 2ð Þ� �
where, g is for the learning rate; a is for the momentum factor.

Jacobian matrix from RBFNNI is as following

@y kð Þ
@u kð Þ �

@ym kð Þ
@u kð Þ ¼

Xm
j¼1

wjhj
cji � x1

b2j
ð3:9Þ

where, x1 ¼ u kð Þ.
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Gradient descent method is used to adjust b1 and b2:

Db1 kð Þ ¼ �g
@E
@b1

¼ �g
@E
@y

@y
@u

@u
@b1

¼ ge kð Þ @y
@u

fal e1; a1; dð Þ

b1 kð Þ ¼ b1 k � 1ð ÞþDb1 kð Þ

Db2 kð Þ ¼ �g
@E
@b2

¼ �g
@E
@y

@y
@u

@u
@b2

¼ ge kð Þ @y
@u

fal e2; a2; dð Þ

b2 kð Þ ¼ b2 k � 1ð ÞþDb2 kð Þ

4 Simulation Studies

In this paper, the controlled object is a rescue ship, named as Beihaijiu115. Its DP
system with RBF-ADRC Controller gradient descent method is simulated in
MATLAB. Combined with ADRC control, we conducted a comparative study in
lower disturbance and higher disturbance of sea conditions environment,
respectively.

Fig. 2 Simulation result in lower disturbance of sea conditions
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The initial state of the ship is x; y; w½ �T¼ 0m0m0rad½ �T , the expected state is
xd; yd ; wd½ �T¼ 50m 50m10rad½ �T and the total time is 100 s.

1. Under lower disturbance of sea conditions.

The parameters of the external slow disturbance simulated in Formula (2.2) are set
as:

Fe ¼ 10; be ¼ 120 sin 0:3tð Þ; lx; ly
� � ¼ 20m; 5mð Þ;

The parameters of unmodeled dynamic simulated in formula (2.4) are set as:

Tb ¼ diag 1000; 1000; 1000f g, Eb ¼ diag 1; 1; 1f g, The variance of xb is 0.01.
The simulated results are shown in Fig. 2

2. Under higher disturbance conditons.

Set the external slow disturbance as Fe ¼ 100 to increase disturbance force of sea
conditions. The simulated results are shown in Fig. 3.

From Figs. 2 and 3, it can be seen that, in lower disturbance of sea conditions,
ADRC controller and RBF-ADRC controller have the same result and can control
the ship to maintain the desired position. In higher disturbance of sea conditions,

Fig. 3 Simulation result in higher disturbance of sea conditions
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RBF-ADRC controller still has a good result, the simulation curve is not change.
However, the simulation curve of the ADRC controller has a large oscillation, the
ship deviates from the desired position is 5 m, and the curve in the bow control is
unstable. It can be seen that improved ADRC with RBF neural network has
excellent control performance, which can increase the range of interference sup-
pression of ADRC and improve the control accuracy, when the ship suffered a large
disturbance.

5 Conclusions

RBF based ADRC control method is used to locate the low-frequency model of the
ship with strong non-linear characteristics. When the system is disturbed, ADRC
can automatically compensate for the disturbance, which has strong
anti-interference ability. However, it is difficult to adjust so many parameters in
ADRC and the suppression of interference intensity of ADRC is limited.
Using RBF Neural Network Identifier to set the parameters of ADRC can reduce
the number of adjustable parameters. What’s more, the simulation results demon-
strate that RBF-ADRC can increase the range of interference suppression and
improve the control accuracy of ship dynamic positioning system.
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