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1 Introduction

Rapidly exponential stability of nonlinear systems has the advantage of providing a
guarantee on the accelerated time it takes for the nonlinear system to converge to a
equilibrium. Actually, under some suitable conditions, the existence of a Lyapunov
function with properties is equivalent to stability in the sense of Lyapunov,
asymptotic stability, or exponential stability of state equilibrium point [1, 2].
Furthermore, once a Lyapunov function was constructed, a domain of attraction
could be estimated. However, the estimate region is very conservative. Recently,
Lyapunov methods have been studied a further surge of interest in the nonlinear
systems field through powerful tools for obtaining them as sum of squares and here,
we will mention the following works, for instance, [3–6]. In [7–9], Sontag and
Artestein proposed control Lyapunov function for nonlinear control systems
respectively. Without loss of generality, if there exists a control law such that the
derivative of Lyapunov function is negative definite, then the state of nonlinear
control systems converge to zero. However, when we use the control Lyapunov
approach to analyze the stability of nonlinear systems, the controller must be
constructed before. In order to satisfy the property of negative definite for control
Lyapunov function, the inequalities should holds. Nevertheless, this will lead to a
small attractive region. In order to enlarge the domain of attraction, this motivates
our present study.
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This work deals with design of rapidly exponential stabilizing control techniques
for nonlinear mechanical systems with control input. In this paper, a new Lyapunov
uniform framework for rapidly exponential stabilization of fully actuated
mechanical systems is developed. The Lyapunov function is constructed as a
quadratic function with an accelerated parameter. The motivation of this function is
that when the value of Lyapunov function is zero vector, the generalized states
converge to the desired states in accelerated time. According to the continuous
feedback control law for generalized forces, the vectors converge to the zero vectors
in accelerated time. Therefore, the states of nonlinear mechanical systems converge
to the equilibrium in accelerated time duration.

This paper is organized as follows: Sect. 2 gives the main result on rapidly
exponentially stabilization of nonlinear mechanical systems using a continuous
Lyapunov function. Section 3 states two numerical simulation results for inverted
pendulum on a cart and two link planar manipulator. The results illustrate the
stability of this rapidly exponentially continuous feedback stabilization technique in
comparison to finite time and asymptotically stabilizing continuous feedback
techniques. Finally, Sect. 4 develops a summary of the main conclusions of this
paper and future works.

2 Rapidly Exponentially Stabilization of Nonlinear
Mechanical Systems

In this paper, we will consider the nonlinear mechanical systems as follows:

M qð Þ€q + C q; _qð Þ _qþG qð Þ ¼ F q; _qð Þ

where M qð Þ is a positive definite inertia matrix, and C q; _qð Þ is the time derivative of
the inertia matrix, and G qð Þ is a gravity matrix, and F q; _qð Þ is the non-conservative
forces.

In this section, a new constructive approach to obtain rapidly exponentially
stabilization techniques is developed for nonlinear mechanical systems. There are
two steps for this method. First, a novel continuous function of the states is con-
structed that ensure that when the continuous function converges to zero, the state
of nonlinear mechanical systems converges to zero as well. Second, a new con-
tinuous Lyapunov function is constructed to guarantee the rapidly exponentially
stability of the nonlinear mechanical systems. The two subsections are described as
following in details.
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2.1 Rapidly Exponentially Stabilization of Nonlinear
Mechanical Systems

In the first step of the rapidly exponentially stabilization process, a novel function is
developed that ensures the generalized coordinate vectors of nonlinear mechanical
systems converge to zero. Furthermore, assume that the desired equilibrium to be
stabilized is the origin, namely, the generalized coordinate vector. Now, we will
construct a function with some properties as follows.

Proposition 1 Let lðq; vÞ : Q�Rn!Rn be a function that has the following
properties:

l q; vð Þ is linear in v ¼ _q; l q; vð Þ is continuous in q,
l q; vð Þ ¼ 0; 0ð Þ ) q tð Þ ¼ 0; for t ! 1.
These properties guarantee that the state of nonlinear mechanical systems

ðq; vÞ 2 Q� Rn converge to zero in accelerated time when l q; vð Þ ¼ 0; 0ð Þ.
According to the nonlinear mechanical systems, we can construct a novel

function as follows

l q; vð Þ ¼ vþ jq
e
; j[ 0; e 2 0; 1ð Þ ð1Þ

Due to the Eq. (1), we have an important Lemma 1 as follows.

Lemma 1 If l q; vð Þ is defined by (1) where v ¼ _q, then l q; vð Þ satisfies the prop-
erties in Proposition 1.

Proof In order to prove the Lemma 1, we will consider the following candidate
Lyapunov function V qð Þ ¼ 1

2 q
Tq.

In order to evaluate on the submanifold l q; vð Þ ¼ 0; 0ð Þ, where l q; vð Þ is given by
Eq. (1), we will adopt the time derivative of candidate Lyapunov function.
Therefore, we have

_V qð Þ ¼ qTv ¼ � j
e
qTq ¼ � 2j

e
V � � CV ; ð2Þ

where constant C 2 0;1ð Þ. From the inequality (2), we can see that
_V qð Þ ¼ 1

2 q
Tq ¼ 1

2 qk k2.
The second step of the constructive approach is shown in the following

Sect. 2.2. According to a new Lyapunov function, we obtain a rapidly exponen-
tially stabilization technique for nonlinear mechanical systems.
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2.2 Rapidly Exponentially Stabilization of Nonlinear
Mechanical Systems with Input Forces

In the second step of this rapidly exponentially stabilization approach is considered
for nonlinear mechanical systems with input forces. Without loss of generality, a
novel vector of generalized input forces is obtained for nonlinear mechanical sys-
tems. Furthermore, we will construct a new Lyapunov function with positive def-
inite property. Moreover, the Lyapunov function satisfies the properties listed in
Proposition 1. Now, the Lyapunov function is constructed as follows

t q; vð Þ ¼ 1
2
l q; vð ÞT l q; vð Þ ð3Þ

According to the above candidate Lyapunov function, we can use it to obtain the
rapidly exponentially stabilization technique.

Theorem 1 Consider the nonlinear mechanical systems with the following con-
tinuous feedback control law given by

f q; vð Þ ¼ � c
2
l q; vð Þ � j

e
v

where c[ 0; j[ 0; e 2 0; 1ð Þ, Moreover, l q; vð Þ is defined by Eq. (1), then the
nonlinear mechanical systems is rapidly exponential stable.

Proof In order to prove the Theorem 1, we will consider the following candidate
Lyapunov function t q; vð Þ ¼ 1

2 l q; vð ÞT l q; vð Þ. Due to evaluate on the submanifold
l q; vð Þ ¼ 0; 0ð Þ, we will take the time derivative of candidate Lyapunov function
(3). Thereby, we obtain

_t q; vð Þ ¼ l q; vð ÞT _l q; vð Þ ¼ l q; vð ÞT f q; vð Þþ j
e
v

h i
¼ �cV

Hence, _t q; vð Þ ¼ �cV � � CV ;C 2 0;1ð Þ.

3 Numerical Simulation Results

In this section, we will report some numerical results obtained from the inverted
pendulum on a cart and two link planar manipulator model [10]. The results show
that the continuous feedback controller of this paper is feasible and effective.
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3.1 Inverted Pendulum on a Cart

In this subsection, an inverted pendulum on a cart nonlinear mechanical system is
considered. In general, this system has two degrees of freedom. The mathematical
model is described as follows:

M qð Þ ¼ mc þmp mpd cos h

mpd cos h Iþmpd2

� �
; C q; _qð Þ ¼ 0 �mpd _h cos h

0 0

" #

G qð Þ ¼ 0

�mpgd sin h

� �
; Fc ¼

fc tð Þ
sc tð Þ

" #
; FNC q; vð Þ ¼

0

0

" #
;

ð4Þ

where mc and mp are the mass of the cart and the pendulum respectively.
I represents the center of mass of pendulum inertia, and d is a distance between the
center of mass and the pendulum pivot, and g is gravity acceleration. fc tð Þ and sc tð Þ
are non-conservative forces. The parameters are the same with literature [10], in this
paper, we will omit it. In Fig. 1, the horizontal displacement of the cart converges to
zero in about 6 s using the finite time stable scheme, whereas it takes the asymptotic
stable about 9 s to converge to zero.

From Fig. 1, we can see that the rapidly exponentially stable control law is better
than the asymptotic stable control law and finite time control law at the beginning.
That is to say, the rapidly exponentially stabilization is suit to real time control
systems. From Fig. 2, it is easy can be seen that the time for the finite time stable
controller shows that the rotational displacement of the pendulum converges to zero
after about 6 s. Whereas the rapidly exponentially controller shows that the rota-
tional displacement of the pendulum converges to zero after about 5 s and the
asymptotic controller need about 9 s. Figure 3 shows that the velocity of the cart

Fig. 1 Displacement of
the cart
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over the time. From the figure, we can see that the rapidly exponentially stable
controller is better than the others. Figure 4 shows that the rate of change of the
rotational displacement.

3.2 Two Link Planar Manipulator System

In this subsection, a two-link planar manipulator system of nonlinear mechanical
system is considered. The mathematical model is described as follows:

M qð Þ€qþC q; _qð Þ _qþG qð Þ ¼ F q; _qð Þ.

Fig. 2 Rotational
displacement of the pendulum

Fig. 3 Velocity of the cart
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The nonlinear model is of the form given by the following equations

M qð Þ ¼ m1 þm2ð Þd21 þm2d22 þ 2m2d1d2 cos h2 m2 d22 þ d1d2 cos h
� �

m2 d22 þ d1d2 cos h
� �

m2d22

" #
;

C q; _qð Þ ¼ �m2d1d2 _h2 sin h2
2 1

1 0

� �
; Fc ¼

s1 tð Þ
s2 tð Þ

" #
; FNC ¼

0

0

" #
;

G qð Þ ¼ g
m1 þm2ð Þd1 cos h1 þm2d2 cos h1 þ h2ð Þ

m2d2 cos h1 þ h2ð Þ

� �
:

This nonlinear model assumes that the non-conservative forces acting on the
system are the control input torques. Figure 5 shows that the link 1 rotation angle

Fig. 4 Rate of change of the
rotational displacement

Fig. 5 Link 1 rotation angle
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versus time. From the Fig. 5, we can see that the rapidly exponentially stable
controller is better than the other controllers. It is shows that the continuous
feedback controller of this paper is fit to the real time control systems. Figure 6
shows that the link 2 rotation angle versus time. From Fig. 6, we can see that the
state of nonlinear mechanical systems converge to equilibrium about 9 s.

However, at the beginning, the rapidly exponentially controller is better than the
others. Figure 7 represents angular velocity of link 1 and Fig. 8 shows that angular
velocity of link 2. From Figs. 7 and 8, we can see that the states of mechanical
systems converge to equilibrium at 8 s.

Fig. 6 Link 2 rotation angle

Fig. 7 Angular velocity
of link 1
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4 Conclusion and Future Work

In this paper, a novel approach of continuous feedback control law is developed for
nonlinear mechanical systems. According to the vector value function, some
properties are satisfied that ensure when this vector value function converges to
zero, the state of nonlinear mechanical systems converges to the desired state in
accelerated time. Therefore, due to the vector value function, a new Lyapunov
function is constructed for nonlinear mechanical systems. Moreover, a continuous
feedback control law is used to obtain rapidly exponential stability in accelerated
time. Numerical results are illustrated on two classical nonlinear mechanical sys-
tems, for instance, an inverted pendulum on a cart and a planar two-link manipu-
lator. Furthermore, comparisons with asymptotic stability and finite time stability
for both examples show that the rapidly exponentially stabilization scheme has
superior convergence rate while requiring lower control effort. Future work will
generalize such rapidly exponentially stabilizing control schemes to multi-body
systems.
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