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1 Introduction

Various methods of reducing gravity have been used such as parabolic flight,
air-bearing, neutral buoyancy and suspension system [1–5]. These methods may be
beneficial in some ways but are limited in others. Among them the suspension
method [5–7] is superior on practicality, economy and reliability. There are two
types of suspension methods passive suspension [5] and active suspension [6, 7].
The active suspension gravity offload method performs much better than the passive
one. The offload accuracy of the active suspended system depends on the
mechanical structure and the controller. Generally, a wire rope is one necessary part
of the upright subsystem. However, the rope is flexible and easy to swing. To solve
this problem, a buffer is developed. Besides, a creative suspension structure is
developed to insure the object to rotate freely. The dynamic model of the system is
deduced based on Lagrange equation. It’s a nonlinear coupling system with dis-
turbances, uncertainties and control input uncertainties. To ensure the system robust
stability, an adaptive sliding mode controller is developed [8, 9].

2 Active Gravity Offload System (AGOS)

The AGOS is a servo platform consisting of a suspension structure, a buffer, a
universal joint, a gantry robot, a tilt sensor, a tension sensor. The work flow chart is
presented in Fig. 1. The specific connection relationship is shown in Fig. 2. The
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suspension structure is composed of rolling bearings and the corresponding fixa-
tions, which guarantees the equivalent suspension point to coincide with the cen-
troid of the object. Hence, the object can maintain balance at any attitude.

Fig. 1 The work flow chart

Fig. 2 The connection relationship and the coordinate system of AGOS. 1 object, 2 suspension
structure, 3 buffer, 4 tilt sensor, 5 universal joint, 6 tension sensor
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According to Figs. 1 and 2, when the object is driven to move along the hori-
zontal plane, the buffer swings around the universal joint and the tilt sensor can
measure the swing angles. Then the X and Y linear modules will be driven by the X
motor and Y motor to eliminate the swing angle to maintain the buffer vertically.
When the object is driven to move vertically, the tension sensor will detect the
variation of the buffer and then the Z linear module will be actuated by the Z motor
to eliminate the variation as required. The control inputs are determined by the
PMAC and the IPC. Then the variable gravity field is built for the object.

The AGOS coordinate system is shown in Fig. 2. The buffer is equivalent to a
spring and the suspension structure is equivalent to a rope linked to the centroid of
the object. The meaning of each part is as below.

• m0x;m0y, the load of X motor and the load of Y motor respectively,
• m1, m2, the pinion and the rack mass,
• M, the object mass,
• a, the pinion rotation angle
• Q� XYZ, the static coordinate system
• O, m0x centroid
• O1;O2;O4, centroids of m1, m2;M respectively,
• O3, the universal joint centroid,
• Fx;Fy, X motor and Y motor equivalent driven force on X and Y linear modules
• Tx, Z motor output torque on the pinion
• F4x;F4y;F4z, the object driven force
• T4x; T4y; T4z, the object driven torque
• b, swing angle between spring buffer and upright
• bx; by, orthogonal decomposition of b
• O� xyz, coordinate moves with O,
• Oi � xiyizi; i ¼ 3; 4, coordinates move with O3 andO4,
• O3 � x31y31z31, coordinate rotates with the buffer.

According to the definition above, the coordinates of O;O1;O2 are x; y; 0ð Þ,
x; y� R; 0ð Þ and x; y; aRð Þ respectively.
The velocities of O;O1;O2 are ð _x; _y; 0Þ, _x; _y; 0ð Þ and _x; _y; _aRð Þ respectively.
Denote l1 ¼ Mg=k; d ¼ l0 þ l1 þ l where l0 is the free length of the spring. And

O4 is ðxþ d sin bx cos by; yþ d sin by; aR� 0:5h0 � d cos bx cos byÞ where h0
presents the length of the rack. O andO2 are coincident at the initial position. The
variation of the spring length is denoted by l. Define l ¼ 0, when spring force is
equal to the object.

When b� 5�, let sin b � b; cos b � 1. The position and velocity of O4 are

xþ dbx; yþ dby; aR� 0:5h0 � d
� �

, _xþ _lbx þ d _bx; _yþ _lby þ d _by; _aR� _l
� �
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The object attitudes will be changed along with T4x; T4y; T4z, and therefore the
angular velocity is time-varying. But when x; y; a; l; bx and by are choose as the
system generalized coordinates, they are independent of the object rotational kinetic
energy. Hence, when we calculate the system kinetic energy the object rotational
kinetic energy could be ignored.

The system kinetic energy is

T ¼ 0:5ð0:5m1R
2Þ _a2 þ 0:5m2ð _aRÞ2 þ 0:5m0xv

2
m0x

þ 0:5m0yv
2
m0y þ 0:5Mðv2Mx þ v2My þ v2MzÞ

The pinion and rack move with the X and Y linear modules at the horizontal
plane, so their kinetic energy is included in 0:5m0xv2m0x þ 0:5m0yv2m0y.

Choose xOy plane as zero potential energy surface. Then the system potential
energy is

V ¼ m2gaRþ 0:5kðlþ l1Þ2 þMg aR� 0:5h0 � dð Þ

L ¼ T � V ð1Þ

The Lagrange equation

d
dt

@L
@ _q

� �
� @L

@q
¼ Qj ðj ¼ 1; 2; . . .Þ ð2Þ

Substitute Eq. (1) into Eq. (2) and define m ¼ 0:5m1 þm2 þM; gx ¼
ðMþm0xÞ=M; gy ¼ ðMþm0yÞ

�
:M; g ¼ m=M; 1 ¼ k=M; g2 ¼ ðm2 þMÞ=M; q ¼

1=M; b2 ¼ b2x þ b2y ;b
y
x ¼ bx _bx þ by _by; q1 ¼ x; y; a½ �T ; q2 ¼ ½l; bx; by�T . We get

M1€q1 þM2€q2 þC1 _q1 þC2 _q2 þG1 ¼ F1 ð3Þ

MT
2
€q1 þM3€q2 þC3 _q1 þC4 _q2 þG2 ¼ F2 ð4Þ

Obviously, M2 is invertible as follow
Let Eq. (3) �M1M�T

2 Eq. (4) and because of C1 ¼ C3 ¼ 0 we gain Eq. (5)

Mmðq; _qÞ€q2 þCðq; _qÞ _q2 þGðqÞ ¼ F1 �M1M�T
2 F2 ð5Þ

Mm ¼ M2 �M1M�T
2 M3;C ¼ C2 �M1M�T

2 C4;G ¼ G1 �M1M�T
2 G2
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0 gy 0
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2
4

3
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bx d 0
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2
4

3
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b2 þ 1 dbx dby
dbx d2 0
dby 0 d2

2
4

3
5;F1
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Fy

Tx

2
4

3
5

C2 ¼
2 _bx 0 0
2 _by 0 0
0 0 0

2
4

3
5;C4 ¼

2byx 0 0
2d _bx 0 0
2d _by 0 0

2
4

3
5;G1 ¼

0
0

g2gR

2
4

3
5;G2 ¼

fl
0
0

2
4

3
5;F2

¼
F4z

F4x

F4y

2
4

3
5

3 Adaptive Sliding Mode Controller

For Eq. (5), define Mðq; _qÞ ¼ Mm;F ¼ F1;Fd ¼ �M1M�T
2 F2, and we obtain

Mðq; _qÞ€qþCðq; _qÞ _qþGðqÞ ¼ FþFd ð6Þ

Then €q2 ¼ M�1ðFþFd � C_q� GÞ. Define x1 ¼ q2 ¼ q, we gain _x1 ¼ x2; _x2 ¼
M�1� ðFþFd � C_q� GÞ. Define _x ¼ _x1; _x2½ �T ; u ¼ F1 ¼ F, we gain Eq. (7)

_x ¼ f ðxÞþ bðxÞuþ d ð7Þ

where f ðxÞ ¼ ½x2;M�1
m ð�Cx2 � GÞ�T ; bðxÞ ¼ ½0;M�1

m �T ; g ¼ 0;�M�1
m G1

	 
T
;

d ¼ ½0;�M�1
m M1M�T

2 F2�T .
Due to external disturbances and parameters uncertainties, rewrite the dynamical

model as below

_x ¼ f 0ðxÞþ b0ðxÞuþx ð8Þ

f ðxÞ ¼ f 0ðxÞþDf ðxÞ; bðxÞ ¼ b0ðxÞþDbðxÞ, x ¼ Df ðxÞþDbðxÞuþ d is
bounded.

Adaptive Sliding Mode Control for an Active … 565



The control objectives of the system are to keep the object vertically and the
gravity of the object is partly or completely compensated as demanded. When the
reference input is given as xd1 ¼ ld; 0; 0½ �T , then we have xd ¼ xd1; _xd1½ �T ,
e ¼ x� xd . Choose the sliding surface as Eq. (9).

s ¼ we ¼ 0 ð9Þ

where s ¼ s1; s2; s3½ �T 2R3, a ¼ diagða1; a2; a3Þ, b ¼ diagðb1; b2; b3Þ, w ¼ ½a; b�T .
The constant a1; a2; a3; b1; b2; b3 and are chosen to be positive to make sure the
relative polynomial is Hurwitz.

Theorem 1 For the AGOS (8), if the sliding function is defined as (9), the con-
troller is designed as

u ¼ ue þ ud ; ue¼ �ðwTb0ðxÞÞ�1ðwT f 0ðxÞ
� wT _xdÞ; ud¼ �ðwTb0ðxÞÞ�1diagðk̂ÞsignðsÞ ð10Þ

the sliding mode is guaranteed to be reached in finite time.

k̂ ¼ k̂1; k̂2; k̂3
h iT

is an adjustable parameter, and the adaptive law is

_̂
k¼ ð 1

q1
s1k k; 1

q2
s2k k; 1

q3
s3k kÞT ð11Þ

where q1; q2; q3 are positive.

Proof Assume that kd is the terminal solution of k̂ which satisfies
x1\kd1;x2\kd2; x3\kd3 respectively.

Choose the adaption error as:

~k ¼ k̂�kd ð12Þ

Consider a Lyapunov candidate function as:

V ¼ 1
2
sTsþ 1

2
~k
T
diagðq1; q2; q3Þ~k ð13Þ

By differentiating V with respect to time, substituting Eqs. (9)–(12) into it, we
have

_V ¼ sTðwT f 0ðxÞ � wT _xd þwTb0ðxÞuþxÞþ ~k
T
diagðq1; q2; q3Þ_~k

¼ sTðx� k̂signðsÞÞþ ~kTdiagðsÞsignðsÞ
¼ s1x1 þ s2x2 þ s3x3 � s1j jkd1 � s2j jkd2 � s1j jkd3\0
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In order to reduce the input chattering caused by the signðsÞ, the function
s.=ð sj j þ eÞ is used.

4 Simulation

The nominal values are m̂1 ¼ 0:5 kg; m̂2 ¼ 4 kg; m̂0x ¼ 16 kg; m̂0y ¼ 40 kg; M̂ ¼
10 kg; k̂ ¼ 500N=m; l̂0 ¼ 1m; ĝ ¼ 10m

�
s2; R̂ ¼ 0:02m. The parameter values are

m1 ¼ 0:55 kg;m2 ¼ 4:4 kg;m0x ¼ 17:6 kg;m0y ¼ 44 kg;M ¼ 11 kg; k ¼ 550N=m;

l0 ¼ 1:1m; g ¼ 9:8m
�
s2;R ¼ 0:022m.

The reference signals are given by xd1 ¼ ½ld; 0; 0�T according to the simulation
mechanism of AGFS and ld represent offload quantity of the object gravity. When
ld ¼ 0 the object’s gravity is compensated completely and when ld ¼ �0:2 the
object’s gravity is at normal situation. When the value of ld is between ð0;�0:2Þ,
the object’s gravity is partly compensated and when ld is positive, the object’s
gravity is greater than earth’s gravity.

Fig. 3 shows the object driven inputs. For the control objectives we consider
them as disturbances.

For the uncertain system with bounded disturbances and noises, the control
parameters of the controller parameters are chosen as

a ¼ diagð120; 200; 200Þ, b ¼ diagð2; 1; 1Þ, q1 ¼ 0:5; q2 ¼ q3 ¼ 1,
k̂0 ¼ ½80; 10; 10�T

The boundary layer sk k� 6:2� 10�3 is reached in the finite time and the settling
time t� 0:3 s and ek k� 2:0� 10�4 as shown in Figs. 4 and 5.
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5 Conclusions

In this paper, an active gravity offload system is introduced in details. It’s a servo
platform consisting of a suspension structure, a buffer, a universal joint, a gantry
robot, a tilt sensor and a tension sensor. A variable gravity field is built by the
gravity offload system with the adaptive sliding mode controller.
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