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1 Introduction

Various control and synchronization of complex networks have been widely
studying, which have many potential applications in many areas such as biology
system, physics, communication, traffic and so on [1–3]. In view of the ubiquitous
synchronization phenomena, the studies of synchronization and control have been
attracted increasing attention [4–6]. Many works mainly study the outer relationship
between the nodes. However the inner relationship ignored in many literatures plays
important roles for the study of the whole networks.

In many realistic systems, another relationship may exist in the social networks
consisting of N individuals, e.g., schoolmates, relatives and collaborative
relationship. For individuals i and j, they may be either schoolmate or relatives but
have no collaborative relationship, while for individual i and k (k 6¼ j), they may
only have collaborative relationship. To depict this phenomenon more clearly, the
graph theory in mathematics is introduced to solve such problem [7, 8]. In the
colored networks, nodes with different color signify that they have different
properties, and a pair of nodes connected by different color edges means that they
have different mutual interactions. In particular, networks of coupled nonidentical
dynamical systems with identical inner coupling matrixes can be deem as node
colored networks, while networks of coupled identical dynamical systems with
nonidentical inner coupling matrixes can be regarded as edge colored networks.
Figure 1 shows a colored networks consisting of 6 colored nodes and 9 colored
edges.
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To our knowledge, the research of colored networks synchronization was con-
cerned with asymptotical or exponential synchronization of networks through
impulsive control, intermittent control to reduce the synchronization time [9, 10].
However, in reality, it needs a faster rate to achieve in engineering area. For
achieving synchronization quickly, an effective method is to use finite time syn-
chronization control technique [11, 12]. There are few works involved in the
synchronization of colored networks in finite time.

This paper investigates the problems of adaptive generalized function projective
synchronization of colored networks in finite time. By using finite time synchro-
nization control technique, one considers a complex networks consisting of
N linearly and diffusively coupled identical nodes, which in many papers only
consider the general synchronization of drive-response networks. Particularly, the
parameter identification is considered in this paper, and the finite time considers the
unknown parameters identification. Based on Lyapunov stability theory, sufficient
conditions for ensuring the synchronization of colored networks are derived
through designing appropriate controllers.

This paper is organized as follow: In Sect. 2, a general colored networks con-
sisting of N linearly and diffusively coupled identical nodes is considered. At the
same time, assumption and lemma are stated. In order to reach the generalized
function projective synchronization with general colored networks, a sufficient
criterion is presented in Sect. 3. In Sect. 4, several simulations are illustrated to
verify the effectiveness of the theory proposed. Finally, conclusions are gained in
Sect. 5.

2 Problem Formulation and Preliminaries

In this section, one considers a general colored networks consisting of N linearly
and diffusively coupled identical nodes described as follows:

Fig. 1 A colored networks
consisting of 6 colored nodes
and 9 colored edges
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_xiðtÞ ¼ Fiðt; xiðtÞ; aiÞþ e
XN

j¼1;j6¼i

aijHij xjðtÞ � xiðtÞ
� �

; i ¼ 1; 2; . . .;N: ð1Þ

where xiðtÞ¼ xi1ðtÞ; xi2ðtÞ; . . .; xinðtÞð ÞT2 Rn is the state variable of the ith node,
Fiðt; xiðtÞ; aiÞ representing the local dynamic of node i, which is continuous dif-
ferentiable, can be rewritten in the following form: Fiðt; xiðtÞ; aiÞ ¼
fiðt; xiðtÞÞþ giðt; xiðtÞÞ � ai, fið�Þ and giðt; xiðtÞÞ:Rn ! Rn is a nonlinear
vector-valued function. The matrix A ¼ ðaijÞN�N is outer-coupling matrix, which
denotes the networks topology. If there is a connection between node i and node
j ði 6¼ jÞ, then aij [ 0, otherwise aij ¼ 0, and the entire diagonal element aii ¼ 0.
Hij ¼ diagðh1ij; h2ij; . . .; hnijÞ is the inner coupling matrix, which represents the mutual
interactions between nodes i and j, which is defined as the following: if the fth
component of node i is affected by that of node j, then hnij 6¼ 0, otherwise hnij ¼ 0.

Figure 1 indicates that F1 = F3 = F4, F2 = F5 = F6, H16 = H23, H12 = H35,
H24 = H36. When n = 3, andH16 = diag{1,1,0} andH56 = diag{1,0,1}, then the first
and second components of node 1 are affected by those of node 6, and the first and
third components of node 6 are affected by that of node 5, which is shown by Fig. 2.

Let cij ¼ diagðc1ij; c2ij; . . .; cnijÞ; where ckij ¼ aijhkij for i 6¼ j and ckii ¼ � PN
j¼1;j6¼i

ckij,

Then, the colored networks (1) can be rewritten as follows:

_xiðtÞ ¼ Fiðt; xiðtÞ; aiÞþ e
XN
j¼1

cijxjðtÞ; i ¼ 1; 2; . . .;N ð2Þ

Let Cn ¼ ðcnijÞ 2 RN�N ; n ¼ 1; 2; . . .;N, then we regard the colored networks (2)
as a combination of n component sub-networks with a topology determined by
Cn;n ¼ 1; 2; . . .; n.

A general response colored networks, which can be response edged-colored
networks or colored networks, is given to achieve adaptive generalized function
projective synchronization with the colored networks (2), which is shown as

_yiðtÞ ¼ Fiðt; yiðtÞ; aiÞþ e
XN
j¼1

cijyjðtÞþ uiðtÞ; i ¼ 1; 2; . . .;N ð3Þ

Fig. 2 The red, blue and
black stand for the first,
second, and third components
of each individual node,
respectively
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where yiðtÞ ¼ ðyi1ðtÞ; yi2ðtÞ; . . .; yinðtÞÞT 2 Rn stands for the state vector of the ith
node, fiðt; yiðtÞÞ and giðt; yiðtÞÞ:Rn ! Rn is a nonlinear vector-valued function, ui is
the adaptive controller.

Next, one introduces definitions assumptions, lemmas that will be required in
this paper.

Definition 1 (GFPS) For the colored networks (3), it is said that achieve adaptive
generalized function projective synchronization (GFPS) with the colored networks
(2), if there exist the continuous function uðxiðtÞÞ such that

lim
t!1 eiðtÞk k ¼ lim

t!1 yiðtÞ � uðxiðtÞÞk k ¼ 0; i ¼ 1; 2; . . .;N:

where u xiðtÞð Þ are nonzero scaling functions and continuously differentiable
functions.

Assumption 1 Suppose that there exist a constant Li [ 0 satisfying

Fi t; yiðtÞ; aið Þ � Fi t; xiðtÞ; aið Þk k� Li yiðtÞ � xiðtÞk k ð4Þ
Lemma 1 Let x1; x2; . . .; xn [ 0 and 0\r\p. Then

Xn
i¼1

xpi

 !1=p

�
Xn
i¼1

xri

 !1=r

ð5Þ

Lemma 2 Cai et al. [12]. Assume that a continuous, positive-definite function V(t)
satisfy the following differential inequality:

_VðtÞ� � pVnðtÞ 8t� t0; Vðt0Þ� 0 ð6Þ

where p > 0, 0 < n < 1 are two constants. Then, for any given t0, VðtÞ satisfies the
following inequality: V1�nðtÞ�V1�nðt0Þ � pð1� nÞðt � t0Þ; t0 � t� t1 and VðtÞ ¼
0 8t� t1 with t1 given by t1 ¼ t0 þ V1�nðt0Þ

pð1�nÞ .

3 Main Results

In this section, the colored networks (2) achieve generalized function projective
synchronization with general colored networks (3).

For simplicity sake, we define uðxÞ ¼ PxþQ, where P and Q is constant matrix.
The error dynamic networks can be calculated in the following:

484 G. Cai et al.



_eiðtÞ ¼ _yiðtÞ � P _xiðtÞ
¼ fiðt; yiðtÞÞ � Pfiðt; xiðtÞÞþ ðgiðt; yiðtÞÞ � Pgiðt; xiðtÞÞÞ � ai

þ
XN
j¼1

cijðyiðtÞ � PxiðtÞÞþ ui i ¼ 1; 2; . . .;N

ð7Þ

For achieving the main focus, the nonlinear controllers are designed as

ui ¼ Pfi t; xiðtÞð Þ � f t;u xiðtÞð Þð Þ � gi t; yiðtÞð Þð Þ � Pgi t; xiðtÞð Þâ�
XN
j¼1

cijQ

� diðtÞei � xsign eiðtÞð Þ eiðtÞj jh
ð8Þ

where di(t) > 0, i = 1,2,…,N are the time-varying adaptive control gains that can be
suitably chosen by the generalized function projective synchronization system and
satisfy the following conditions: _diðtÞ ¼ kieTi ðtÞeiðtÞ[ 0

Theorem 1 Suppose the Assumption 1 and Lemma 2 holds. If the following con-
dition holds:

g ¼ �kmax Li þC � d�ð ÞI � Ið Þ[ 0 ð9Þ

when using the above controller (8) and the parameter identification:

_̂a ¼ bie
T
i ðtÞ½giðyiðtÞÞ � PgiðxiðtÞÞ	 ð10Þ

then the drive system (2) and response system (3) can achieve synchronization in

finite time t1 ¼ t0 þ Vðt0Þð1�hÞ=2

2xð1�hÞ for any given t0.

Proof Construct a Lyapunov function as the following

VðtÞ ¼ 1
2

XN
i¼1

eTi ðtÞeiðtÞþ
XN
i¼1

1
2bi

a� âð Þ2 þ
XN
i¼1

1
2ki

di � d�ð Þ2 ð11Þ

Then the derivation of V(t):

_VðtÞ ¼
XN
i¼1

eTi ðtÞ _eiðtÞ �
XN
i¼1

1
bi

_̂a a� âð Þþ
XN
i¼1

1
a
_di di � d�ð Þ

¼
XN
i¼1

eTi ðtÞ fi½ t; yiðtÞð Þ � Pfi t; xiðtÞð Þþ gi t; yiðtÞ � Pgi t; xiðtÞð Þð Þð Þ � ai

þ
XN
j¼1

cij yiðtÞ � PxiðtÞð ÞþUi

#
þ
XN
i¼1

1
bi

_̂a â� að Þþ
XN
i¼1

1
ki
_di di � d�ð Þ

: ð12Þ
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From the above calculations, one has

XN
i¼1

XN
j¼1

eTijxsign eijðtÞ
� �

eijðtÞ
�� ��h ¼ x

XN
i¼1

XN
j¼1

eTi ðtÞ
�� �� eiðtÞj jh ¼ x

XN
i¼1

XN
j¼1

eiðtÞj jhþ 1

By Lemma 1,
PN
i¼1

PN
j¼1

e2ij

 !1=2

� Pn
i¼1

e1þ h
ij

� �1=ð1þ hÞ

Hence,

XN
i¼1

XN
j¼1

eiðtÞj jhþ 1 �
XN
i¼1

XN
j¼1

eijðtÞ
�� ��2 !ðhþ 1Þ=2

¼
XN
i¼1

XN
j¼1

eTijðtÞeijðtÞ
 !ðhþ 1Þ=2

:

ð13Þ

According to (3), (5) and (6), the derivation of V(t) can be calculated as follows:

_VðtÞ�
XN
i¼1

eTi Li þC � d�ð ÞI � I½ 	ei � x
XN
i¼1

XN
j¼1

eTijðtÞeijðtÞ
 !ðhþ 1Þ=2

� � g
XN
i¼1

eTi ðtÞeiðtÞ � x
XN
i¼1

XN
j¼1

eTijðtÞeijðtÞ
 !ðhþ 1Þ=2

� � 4x VðtÞð Þðhþ 1Þ=2

ð14Þ

From Lemma 2, Theorem 1 and on the basis of the Lyapunov stability theorem,
one has e(t) ! 0 (t ! ∞), which means the drive system (1) can achieve the
generalized function projective synchronization with response system (2) in finite

time t1 ¼ t0 þ Vðt0Þð1�hÞ=2

2xð1�hÞ for any given t0. That completes the proof.

Based on Theorem 1, one gives the procedure of complex networks finite time’s
calculation methods: Firstly, according to the Theorem 1, calculate the parameters
d*. Secondly, determine the system initial values, especially the unknown param-
eters’ ones. Next step is to calculate the V(t0) when t0 = 0. At the last, in line with

the equation t1 ¼ t0 þ Vðt0Þð1�hÞ=2

2xð1�hÞ , obtain the finite time scheme t1.

Remark 1 It should emphasized that finite time synchronization control techniques
are adopted to guarantee generalized function projective synchronization of colored
networks in finite time, while little of form paper has been done about this work,
which can applied to many practical areas.
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4 Numerical Simulations

In this section, two illustrative examples are adopted to demonstrate the validity and
reduce conservatism of the above theory.

Example 1 Consider a edge-colored networks with 10 coupled Lorenz systems.

f t; xðtÞð Þ ¼
0

�x1x3 � x2
x1x2

0
@

1
Aand g t; xðtÞð Þ ¼

x2 � x1 0 0
0 0 x1
0 �x3 0

0
@

1
A

and in view of the error system defined, one sets

P ¼
2 �1 0
0 �1 0
0 0 1

2
4

3
5;Q ¼ 0; 0; 0ð ÞT:

In numerical simulation, the initial values of drive-response system are chosen as
xið0Þ ¼ ð0:3þ 0:1i; 0:3þ 0:1i; 0:3þ 0:1iÞT, For brevity, one always sets
C¼diagð1; 1; 1Þ, Ck k¼1, L = 1, h¼0:5, b1 ¼ b2 ¼ b3 ¼ 1, x1 ¼ x2 ¼ x3 ¼ 5 the
estimated parameters have initial conditions: â ¼ 0; b̂ ¼ 0, ĉ ¼ 0. According to
procedure of complex networks finite time’s calculation methods, one can obtain

Fig. 3 Synchronization errors of the edge-colored networks coupled with 10 Lorenz systems

Adaptive Generalized Function Projective Synchronization … 487



and give the parameter d�¼ 5.Then the finite time is t1 ¼ t0 þ Vðt0Þð1�hÞ=2

2xð1�hÞ ¼ 2:41 s.

The Fig. 3 shows the synchronization errors of the edge-colored networks.

Example 2 Two general colored networks, whose topology coupled with 3 Chen
systems and 3 Lorenz systems shown in Fig. 4, are considered.

f t; xðtÞð Þ ¼
0

�x1x3
x1x2

0
@

1
A and g t; xðtÞð Þ ¼

x2 � x1 0 0
�x1 0 x1 þ x2
0 �x3 0

0
@

1
A:

The initial values of drive-response system are chosen as the Example 1 except

the x1 ¼ x2 ¼ x3 ¼ 2. So the finite time is t1 ¼ t0 þ Vðt0Þð1�hÞ=2

2xð1�hÞ ¼ 7:17 s: The

synchronization error of the general colored networks is shown in Fig. 5.

Remark 2 General synchronization of colored networks has been extensively
studied, in which all the nodes synchronized each other in a common manner.
However, in real complex networks, different communities usually synchronize
with each other in a different manner. So in this paper, one considers generalized
function projective synchronization. If P ¼ /i, Q ¼ 0, the general projective syn-
chronization can be realized.

Remark 3 In the existing research of synchronization of the colored networks,
certain networks are often considered. However, information may be not available
in many practical cases. The uncertain networks (1) can be seen as the special case
of the colored networks.

Fig. 4 The topology of the
colored networks coupled
with 3 Chen systems and 3
Lorenz systems
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5 Conclusions

In this paper, adaptive generalized function projective synchronization of the col-
ored networks in finite time has been investigated. A uncertain colored networks is
considered as many practical cases. Specially, instead of using impulsive control,
intermittent control to reduce the synchronization time, an effective method—finite
time synchronization control techniques, is applied to achieve the colored networks’
synchronization. Based on Lyapunov stability theorem, simple and useful criteria
for the colored networks have been established. The corresponding numerical
simulations have been presented to verified effectiveness and correctness of the
theoretical results.
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