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1 Introduction

UAV applications in recent years have become more and more widely for its small
size and excellent mobility. Most UAVs used to depend on GPS or inertial system
for autonomous flight, but in the indoor or GPS denied environment it becomes a
great challenge. Because of the small size and load capacity constraints, traditional
sensors are not suitable for small UAV platforms, such as lasers [1, 2]. As a result,
visual sensor provides a good solution as it contains a wealth of motion and
environment information.

The traditional visual odometry which can be seen as pairwise and structure-less
lacks robustness and easily accumulate drift. In this paper, we realize the real-time
localization for UAVs in indoor environment based on the idea of the monocular
visual odometry. Figure 1 shows main components of the system and we elaborates
on in the paper. In addition, to improve the performance and overcome the short-
comings of traditional method, we use g2o and a map based method to optimize the
estimated pose and reduce the drift of estimated trajectory in the case of prolonged
motion.
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2 Feature Detection and Mapping

2.1 ORB Feature Detection and Description

ORB features consists of two parts: the oriented multi-scale FAST keypoints and
the rotated BRIEF descriptor [3]. As a result, they are rotation invariant and it is
extremely fast to compute and match ORB.

FAST corners are widely used because of its fast detection speed, but they do not
have an orientation component and are not multi-scale. To overcome these weak-
nesses, ORB add scale and rotation description. Scale invariance is achieved by
building a scale pyramids of the image and detecting corners at each level and the
rotation description is added by intensity centroid. The moments of a patch are
defined as:

mpq ¼
X
x;y

xpyqIðx; yÞ ð1Þ

And the centroid of it can be found by the moments defined above:

C ¼ ðm10

m00
;
m01

m00
Þ ð2Þ

A vector OC is get by connecting the corner’s center and the centroid. The
orientation of the features is defined as:

h ¼ arctanðm01;m10Þ ð3Þ

The BRIEF descriptor is a binary descriptor which describes the pixels infor-
mation around the detected keypoints. The “Steer BRIEF” feature after the rotation
can be calculated by using the direction information, so that the descriptor of the
ORB has good rotation invariance.

According to the statistics, the calculation speed of ORB is about 10 times faster
than SURF and SIFT. To compute ORB in an image of size 752 � 480, it detects
500 features in 0.011679 s. Comparing to SURF and SIFT on the same image, the
time cost are as follows: 0.091570 s, 0.116692 s.

Fig. 1 Main components of the system
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2.2 Feature Matching

The feature matching step solves the problem of data association, which is critical
because it can reduce the burden for subsequent pose estimation, optimization, and
so on by accurate feature matching.

We adopt FLANN (Fast Library for Approximate Nearest Neighbors) in the
feature matching step as it is fast and efficient. It significantly improves matching
efficiency depending on the Randomized K-d Three Algorithm and The Priority
search K-means Three Algorithm. For better performance, we remove error matches
based on the condition that Hamming distance is less than twice the minimum
distance. In the next step, we will use random sampling consensus strategies to
remove more outliers for more accurate motion estimation.

3 Motion Estimation

3.1 Motion Estimation Based on the Epipolar Constraint

After feature matching, the geometric relations between two images can be com-
puted from feature correspondences. Furthermore, we can compute the relative
motion to get real-time position information. The main property of the epipolar
constraint illustrated in the below, which is the basis of 2d-2d motion estimation
[4].

P2 is the corresponding feature point of P1 in the other image, and they are both
normalized coordinates. The epipolar constraint between them can be formulated
as:

pT2Ep1 ¼ 0 ð4Þ

E is the essential matrix which describes the geometric relations between two
images. In this paper, we use the classic eight-point algorithm to compute E in the
following form, where u and v is the normalized coordinates:

u1u2;u1v2;u1; v1u2;v1v2;u2;v2;1
� � � E ¼ 0 ð5Þ

The rotation matrix R and the translation matrix t can directly be extracted from
E by SVD. And the rigid body transformation can be composed as:

Tiþ 1;i ¼ Riþ 1;i tiþ 1;i

0 1

� �
ð6Þ

In summary, the motion estimation based on feature correspondences are as
follows. Step 1: Feature detection and matching in continuous frame. Step 2:
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Compute essential matrix E based on corresponding features. Step 3: Extract the
rotation and translation parts R, t from E. So the current pose can be computed by
the transformation T if we get the pose at last timestamp.

3.2 RANSAC Algorithm

Matched features are usually contaminated by outliers that may be caused by blur,
illumination and so on. Since the motion estimation is based on matched features,
the wrong data association will have a bad effect on the accuracy on estimation.

For robust estimation, in the motion estimation step we take RANSAC (random
sampling consensus) algorithm as a solution to outlier removal [5, 6]. The main idea
behind the RANSAC algorithm is that based on data sets that randomly sampled the
model hypotheses can be computed and the hypothetical model can be verified on
other data. After iterations, the hypotheses which has the highest accordance is
selected as a solution.

4 Optimization

4.1 Bundle Adjustment

Since the pose and trajectory of the camera are computed incrementally, the errors
of each image will increase with time gradually. To keep the drift as small as
possible, we use bundle adjustment to obtain more accurate estimation. 3D point P
is computed based on correspondences P1, P2 by triangulation. The projection
position of point P2′ is known according to the current pose. The error distance
between P2 and P2′ is reprojection error.

In bundle adjustment, the goal is to minimize the reprojection error:

argmin
Ck

X
i;k

pik � gðXi;CkÞ
�� ��2 ð7Þ

where Ck is the camera pose in kth frame. In this paper, we use g2o to realize the
bundle adjustment. G2o is a library based on graph optimization [7]. In a pose
graph, the camera poses and all 3D points are presented as nodes and the image
projection of all 3D points are edges between nodes. Bundle adjustment tried to
optimize the poses and 3D points to minimize the reprojection error.
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4.2 Map Based Visual Odometry

The traditional visual odometry computes the relative transformations T from the
adjacent images and then concatenate the transformation to recover the full tra-
jectory [8]. It can be seen as pairwise and structure-less VO, because it only
concentrates the motion between two frames. In addition, it ignores the features that
once used so it saves the amount of computation but losses lots of information.
Another drawback of the pairwise VO is that once there is a bad estimate in one
frame, the error will always effect the following estimate.

To solve the problem mentioned above and take advantage of features extracted
in old frames, we can use map based visual odometry instead. The map is a
collection of 3D points by triangulating features in each frame. We match points in
the map and the features extracted in the current frame to compute the pose of
camera directly. The benefit of this method is that we are able to maintain a
constantly updated map. As long as the map is correct, even if a frame goes wrong,
it is possible to estimate the correct position of following frames. Besides, only
feature points that close to the current position are kept in the map and those points
out of view field will be dropped for computation efficiency.

The difference between traditional VO and map based VO is described in Fig. 2
in detail.

Fig. 2 The difference between the pairwise VO and map based VO
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5 Results and Analysis

To test the effect of the bundle adjustment and evaluate the performance of the
system, we have performed several experiments that are demonstrated in detail as
follows.

The system runs with Intel Core-i7 and 16G RAM and in the platform of ROS
(Robot Operating System), and the image is captured by the IDS-ueye camera at 30
fps. The resolution of the image is 752 � 480.

1. Accuracy evaluation in the TUM dataset

The TUM dataset is good for evaluating the accuracy as it provides image
sequences with accurate ground_truth which is given by motion capture system.
The following experiments are performed in freiburg1_xyz dataset.

In Fig. 3, the black line is the ground truth, and the blue is the estimated
trajectory. The red line is the difference between them. Figure 3a shows the esti-
mated trajectory before bundle adjustment, and Fig. 3b is the result after bundle

Fig. 3 Comparison of the estimated trajectory using different methods
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adjustment with pairwise algorithm. Figure 3c shows the performance with map
based algorithm.

• Experiment on bundle adjustment

Figure 4 shows that the reprojection error decreases a lot after bundle adjustment.
In addition, from Fig. 3a, b and the first two lines in Table 1, it can be concluded
that after bundle adjustment the localization error is reduced and the estimated
trajectory is clearly more accurate.

• Pairwise algorithm Versus map based algorithm

Comparing Fig. 3b, c and the last two lines in Table 1, map based visual odometry
obviously shows a better performance. And Fig. 5 plots the error respectively in
x direction and y direction based on map based visual odometry.

2. Real-time localization experiments in indoor environment

Besides the experiments in TUM dataset, we have done the real-time localization
experiments in the lab environment.

• Handheld experiment

We handheld the camera and walked around a table with a rectangular track in the
lab environment. The environment and the real-time estimated trajectory is shown
in Fig. 6. And from Table 2, it shows the computation speed of the system can
satisfied the real-time need for UAVs.
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Table 1 Localization error comparison in different methods

Algorithms Translational error
min (m)

Translational error
max (m)

Translational error
mean (m)

Before BA 0.084973 0.413918 0.280460

After BA 0.015544 0.308868 0.109293

Map based
algorithm

0.010236 0.137224 0.067179
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Fig. 5 Localization error

Fig. 6 Real-time rectangular trajectory around a table
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• Flight experiment

We use a small UAV with the wheelbase of 80 cm and 1*2 m/s flight speed to
perform the experiments in the indoor environment. The components of the hard-
ware is showed in Fig. 7. Figure 8 shows some images during the flight and the
estimated flight trajectory.

Table 2 Computation time in one frame

Feature
detection

Feature
matching

Motion estimation and
optimization

Total

Time (s) 0.01665 0.01182 0.011342 0.039812

Fig. 7 The components of the system

Fig. 8 The images during the flight and the estimated trajectory
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6 Conclusion

A real-time localization method based on monocular is proposed to solve the
navigation problem for UAVs in indoor environment in this paper. Several
improvements have been made on traditional VO to satisfy the need of real-time
and accuracy of UAVs. With the experiments carried out both in dataset and indoor
environment, it turns out the method is feasible for UAV applications.
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