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1 Introduction

The study on task allocation behaviors realized by self-organization receives much
attention nowadays, which has a wide range of applications in artificial intelligence
and engineering areas. Division of labor, where thousands of individuals in nature
perform specific tasks can be seen as the hallmark of insect societies [1–3]. Daily
experience tells us that the division of labor is a common phenomenon, in which
different sub-tasks may require different effort or cost with others [4, 5]. Group
behaviors achieved by self-organization, can be seen as a result from local inter-
actions without central control or global information exchange.

Most mechanisms for promoting effective task allocation results have been
proposed. Among these mechanisms, an often-used approach is based on thresholds
of tasks, where the switching of the agents’ strategy choices are related with the
threshold value [6, 7]. This consideration is closely related with the hints provided
by the observation from animal societies. The settings of threshold is on the
strength of feeling a stimulus which describes the “degree of urgency” of a task to
be performed [7]. It is thus understandable that larger stimulus of a task will attract
more agents to engage in the task performing. Besides, many works have made
their contributions in the study of division of labor. The study in [8] focuses on a
foraging task including two sub-tasks, called harvest and store. Robinson [9]
investigate the potential ways for effective task allocation, by setting a scenario
where the employed robots collect the randomly distributed objects to accumulate
them in a cluster. Michael J.B. Krieger et al. use robots to simulate agents to
conduct a foraging task by employing the method based on the thresholds [10],
where the strategy switching occurs when a given parameter in the surroundings
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reaches a threshold. The works by Sendova-Franks and Franks [11] provide an
equation which is helpful for calculating the instantaneous rate of energy, which is
fundamental to the strategy choices of foraging robots in their study.

In the collective systems, collaboration dilemmas usually describe the scenario
where the conflicts between the best decision of an individual and that of the group
arise [12]. Rational agents, who attempt to maximize their own benefits, may thus
attempt to free-ride on the others—benefiting from the contributions of others
without offering their own to the group. In investigating this problem the often-used
tool for modelling the dilemma is evolutionary game theory [13–15]. In other
words, cost and benefits are the key factors for tasks, which will influence indi-
vidual’s choice. From the perspective of game theory and benefits-maximizing
pursuit of rational agents, division of labor, can be seen as a particular or further
developed form of cooperation. The effective distribution of sub-tasks execution
will result a better performance of the system, though different group members may
bear unequal costs for the sub-tasks [16, 17].

By feat of game theory, we study the collective behaviors in the form of tasks by
a swarm of robots whose personalities are described by their strategies. Then,
assumptions made on the robotic platform make these results rather interesting from
a theoretical perspective. A single robot is equivalent to an individual in the game
theory. The robot task selection can be seen as a game situation. The task
assignment of multi-robot system is to select the most effective task by each robot
according to the certain goal in a game state. In this paper, we will study the
relationship between agents’ payoff and agents’ cooperative level in different state
and try to find some rules which are useful for agents to execute task effectively.

The paper is organized as follows. Section 2 describes the experimental platform
design. Sections 3 and 4 is contributed to introduce experimental setup. Section 5
displays the experimental results. Finally in the last section concluding comments
are given.

2 Experimental Platform Design

The experiment platform includes two parts: hardware platform and software
platform. The hardware platform consists of a host computer, two USB cameras, 4
E-puck robots and an experiment Table (240 cm*240 cm). The host computer is
responsible for image processing, running game and path planning algorithm.
The USB camera can catch the real-time position information of the robots (Fig. 1).

The software platform includes three modules: target location and recognition
module, communication module, and algorithm module. The target recognition and
recognition module is mainly responsible for robots’ localization. It uses openCV
[2], a visual library, to implement the recognition of color marks on robots, which
contains position information of robots. The communication module is based on the
Bluetooth communication. The algorithm module is divided into two parts: game
algorithm, path planning and obstacle avoidance algorithm. Game algorithm is
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mainly responsible for robots’ decision-making and payoff calculation. Path plan-
ning [1] and obstacle avoidance algorithm refers to leading robots to run from the
current location to the target location, and meanwhile avoid collision with obstacles
in the planned route.

3 Experimental Setup

Here 4 E-puck robots are employed for performing the collective task, whose
maneuverability and intelligence improves their applicability. It has a pair of
driving wheels and their real-time position and angle are available. The experiment
settings are: (1) initial position: 4 robots are randomly scattered at the experimental
table. (2) initially target site: to increase the conflicts between the robots, robots’
initial target site is randomly selected. (3) objects: to move towards the 4 target sites
which can form some spatial pattern, such as the square shown in Fig. 2. (4) con-
flicts: the conflicts for selecting the same site is adjusted by the evolutionary game
theory, where strategy choices are endowed with the robots.

4 The Individual Behavior of Robots

Searching state: Robots randomly select a target site in the initial state. When the
robot approaches the target site within a certain range, she will check whether the
target site has been occupied. If not, robot continues to move to the chosen target.
Otherwise, robot must determine whether to give up the target (already has been
occupied by others) or not. Insisting on this site will face potential conflicts with the
robots who have already been in the site. The results of conflicts depend on the

Fig. 1 Left the used E-puck robot; right settings of the experiment platform
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strategy choice (cooperation or defection) of the involved robots. Whereas giving
up the target, means the robot run to another site instead. The above process until it
stops at a target position.

Occupation state: Robot that has stopped at the target point is on the Occupation
state. The robot on the occupation state checks if any other robot is approaching to
the target site occupied by itself. When other robots are coming to fight for the
target point, the robot will determine whether to leave. If robot gives up the
occupied site, it turns to search state.

Robot’s payoffs and cost: The collected payoff is related to the task choice and
the completion of the chosen tasks. If the robots can finally form the specified
spatial pattern, the collective task succeeds. Successful task will bring robots a
payoff denoted by b. Failed task will bring nothing to the group members. To
perform the task, the consumed energy of E-puck robots is related to time and
distance. Besides, the time and distance needed to achieve a steady state in per-
forming the tasks are noteworthy indicators. And, they can help us to measure how
the employed method influences the collaboration behaviors. Therefore, the robots’
payoffs are described by,

R ¼ b� x1et=a þx2ed=b ð1Þ

Here b = 100 for successful task, and b = 0 for failed one. t is the time that
robot spends on the task. d is the distance that robot runs for the task. a and b are
scale factors.

For a robot suiting on the chosen target, she faces two choices when another
robot gets close to her site: cooperation or defection. Here, we employ Psea to
describe the probability that robot chooses to be a cooperator who will leave the
current site and choose a new target. Pocc describes the probability that the focal
robot chooses to be a defector who will stay in her current target.

Fig. 2 The illustration about the evolving process of the multi-robots. Initially, robots randomly
select the target site. Conflicts results for one site depend on the strategy choices of robots
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5 Experiment Results

In collecting the experiment results, our focus is put on three main parameters: the
success rate of the tasks, the performance index and the payoffs of robots. The
success rate is fraction of successfully-performed tasks in the whole experiments.
The performance index is the number of appointed sites which are occupied by
robots in experiments. If all the sites are occupied by the robots, i.e. they finally
self-organize into the specified shape, the value of the performance index will be 4.
If only two robots steadily situate in the specified sites, while other two sites are
empty, the value of the performance index will be 2. The payoffs are collected and
calculated by the R ¼ b� x1et=a þx2ed=b.

Figure 3 clearly shows that the success rate reaches the highest for the settings:
Psea ¼ 1 and Pocc ¼ 0 or Psea ¼ 0 and Pocc ¼ 1. It means that, if the robots in the
searching state will leave the already occupied site and choose a new target (i.e. to
be a cooperator), meanwhile the robots who occupied this site will stay (i.e. to be a
defector), what will benefit the success performing of the specified tasks. In the
same way, if the robots in the searching state will insist in occupying the already
occupied site, meanwhile the occupants leave this site which causes conflicts, this
will promote the successful performance of the tasks. The reason lies on the fact

Fig. 3 The success rate of the robotics in performing tasks as a combination function of Psea and
Pocc. When conflicts for one site occur, Psea is the probability that robot chooses to be a cooperator
who will leave the current site and choose a new target. Similarly, Pocc describes the probability
that the focal robot chooses to be a defector who will stay in her current target, when conflicts for
one site occur. Here, it is clear that the success rate reaches the highest for the settings: Psea ¼ 1
and Pocc ¼ 0 or Psea ¼ 0 and Pocc ¼ 1
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that, the cooperation-cooperation will make it be easier for the appearance of vacant
sites. While the defection-defection will lead the system to evolve into a state of an
infinite loop where the two robots conflict with one site.

Figure 4 suggests that the number of completions reaches a higher level for the
settings of largerPsea or largerPocc. It means that, larger cooperation probability of the
robots will help more specified sites to be occupied by robots. Notably, it is irre-
spective of the state of robots, either in the searching state or occupation state. Thus,
the performance of tasks is closely related with the strategy choice of the robots.
However, the successful performance of tasks depends onmore limited conditions. To
facilitate the understanding, Fig. 5 provides the general view of the gaming process.

Fig. 4 The fraction of number of completions (i.e. performance index) as a function of Psea and
Pocc. The number of completions describes the number of robots who stay at a target position when
task ends. It is clear that high number of completions means the close to success. As the figure
above depicted, the number of completions is low when Psea and Pocc are at a low level. It reaches
the highest when Psea ¼ 1, Pocc ¼ 0 or Psea ¼ 0, Pocc ¼ 1. The number of completions is low
when Psea and Pocc are at a low level. The number of completions is high when Psea and Pocc are at
a high level

Fig. 5 The process for performing the aggregation task in the robotic swarm. 1 Robots settings at
the initial state. 2 Robots are moving to the chosen targets. 3 The conflicts for a site. 4 The steady
state where no one changes her choice
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6 Conclusions

Conflicts of interest and self-adjustment are pivotal elements in studying the
problem of task allocation or division of labor in a swarm of agents. Different from
the traditional approach, we employ the evolutionary game theory to study the
self-organization of individual behaviors among E-puck robots. Experiment results
show that robots can gain the highest payoffs under the following conditions: robots
cooperate when being in the searching state and defect in the occupied state, robots
defect in the searching state and cooperate in the occupied state. The coordination
driven by strategy choice can help us get more hints about the solutions for the
effective division of labor among selfish agents. The successful performance of the
collective task can be better realized by the agents with rationality and selfishness.
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