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1 Introduction

Strapdown inertial navigation system (SINS) has been widely used in various types
of aircrafts, for the advantages of completely autonomy and high rate of output. The
accuracy of initial alignment and calibration of the IMU installing errors greatly
affect the overall navigation accuracy [1]. The initial alignment is the process of
determining the initial values of attitude of the system. Installation errors mean that
the IMU incorrectly installs on the plane, which can cause the existence of an
additional interference acceleration in accelerator output and gyros drift in gyro
output and finally lead to navigation errors.

Celestial navigation system (CNS) can provide accurate attitude information,
whose navigation accuracy is not relate to time and distance, but strongly depends
on the accuracy of measurements [2]. Research on the initial alignment has been
carried on the past. Lei [3] proposed a fast initial alignment for SINS method which
combines Extended States Observers (ESO) with Kalman filters. Using this method,
the speed of initial alignment is more quickly and characters such as high accurate
and robust are possessed. However, this fast initial alignment, with low observ-
ability, cannot calibrate the installation errors. Sun [4] proposed an online cali-
bration method of marine SINS aided by CCD star sensor. This method could
estimate the gyro drift and accelerometer bias quickly and accurately, but it does not
take installation errors into account on the navigation result.

The initial alignment of the SINS and the calibration of the IMU installing errors
are difficult problems under the environment of autonomous navigation. However,
considering the complementary characteristics of SINS and CNS, the SINS initial
alignment and calibration can be accomplished by combing both of them [5].
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A method using a single inflight star sighting to estimate the initial attitude and
calibrate the IMU installing errors is presented in this paper. To make all state
variables observable, the outputs of IMU are also added to the measurement
variables, and an unscented Kalman filter is used to fuse the data of SINS and CNS.

2 Principles of SINS and CNS

Coordinate frames which including earth-centered inertial frame (i-frame),
earth-fixed frame (e-frame), the navigation frame (n-frame), the plane body frame
(b-frame), IMU coordinate frame (p-frame), and the star sensor frame (s-frame)
used in this paper are shown in Fig. 1.

2.1 Principle of SINS and Influence of Installation Errors

A full inertial navigation system mainly consists of the corresponding SINS
mechanization and an inertial measurement unit (IMU), which typically includes
three orthogonal accelerometers and three orthogonal gyroscopes. Angular rates
and linear accelerations measured by the IMU are transformed to the n-frame and
are used to determine the position, velocity and attitude of the plane. SINS attitude
initialization is called alignment, which is the process of determining the initial
values of the coordinate transformation from the body frame to the navigation frame
in SINS. In the SINS, the IMU is directly mounted on the plane, which is assumed
to coincide with the body frame under ideal conditions. However, due to the
existence of installation errors, the existence of an additional interferential accel-
eration in accelerator output and gyro drift in gyros output are induced, which can
lead to navigation errors. The installation errors matrix of IMU can be represented
by three small angles #x; #y and #z [6].
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where Cn
b is the plane’s attitude matrix, which can be defined using sequence of
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where h;u;w are pitch, roll and yaw angles, respectively.

2.2 Principle of CNS

Stars always move in the regular way, thus their positions at a specific time can be
obtained exactly. CNS is mainly composed of the star sensor and the star image
processing software. After preprocessing of the original star image captured by star
sensor, the starlight unit vector in the s-frame ss can be obtained [7]. At the same
time, When the number of stars observed is more than three, the transformation
matrix (Ci

b) from the b-frame to i-frame can be calculated. Also, the starlight unit
vector expressed in the earth-centered inertial frame si can be acquired after star
image pattern recognition as follows [8].

si ¼ cosD cosRA cosD sinRA sinD½ �T ð4Þ

where D;RA represent the declination and right ascension of the star respectively.
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3 System Models

3.1 State Model

Due to the stationary of the plane, the altitude velocity component is ignored, and
the SINS error equation in the navigation frame is used as state model, which can be
written as [9]

_/ ¼ /� xn
in þ dxn

in � Cn
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b
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where / ¼ /E /N /U½ �T is the misalignment angle. dvn ¼ dvE dvN½ �T is the
velocity error. e ¼ ex ey ez½ �T is the gyro drift. $ ¼ rx ry rz½ �T is
the accelerometer bias. f n is the projection of the output of accelerometers in the
n-frame.

xn
ie ¼ ½0;xie cos L;xie sin L �T is the earth rotation rate denoted in the n-frame.

Assure state vector X, Eq. (5) can be expressed as
_X ¼ f Xð ÞþW ð6Þ

where W is the process noise.

3.2 Measurement Model

To make all state variables observable, the horizontal velocity errors, starlight
vector and outputs of IMU are chosen as the measurement variables.

(1) Horizontal Velocity Errors

When the plane is stationary, the horizontal velocities calculated by the SINS are
velocity errors. Using this velocity errors as measurements, the measurement
equation can be expressed as follows.
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(2) Starlight Vector

According to the principle of CNS, the starlight vector can be obtained in i-frame
and s-frame. Therefore the measurement equation can be expressed as follows.
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(3) Output of Accelerometers

~f bib ¼ Cp
bC

b
ngn þ$ ð9Þ

where gn ¼ 0 0 g½ �T is the local gravity vector. According to Eqs. (7), (8) and
(9), the measurement using Z ¼ ½dv; ss;~f bib�T can be expressed as

Z ¼ h Xð ÞþV ð10Þ

where V is the measurement noise. Because the measurement model (10) is non-
linear, the Unscented Kalman Filter (UKF) [10, 11] is implemented to fuse SINS
and CNS data in this study. The block diagram of alignment and installation errors
calibration by SINS/CNS integration method based on UKF is shown in Fig. 2.
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Fig. 2 Workflow of alignment and installation errors calibration by SINS/CNS integration
algorithm
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4 Results and Discussion

4.1 Simulation Condition

Simulations are performed to verify the feasibility of this method. In the following
simulations, the plane keeps stationary, and the initial conditions are defined as:
longitude 116°E, latitude 40°N. The initial pitch, yaw and roll angles are 0°, 20°
and 0°, and its initial attitude errors of pitch angle, yaw angle and roll angle are all
10″. The parameters of IMU are: the drifts and random drifts of each gyro are
chosen as 0.005°/h and 0.001°/h, and the biases and random biases of each
accelerometer are chosen as 50 and 10 ug, with its frequency as 100 Hz. The
accuracy of the star sensor is 3″ (1r) and its frequency is 5 Hz. The total running
time is 5 min and the filtering period is 1 s.

4.2 Simulation Results

The estimation of attitude and its error are shown in Fig. 3, it can be seen that the
curve of estimated attitude converges rapidly from the start. During the filtering
period, the mean estimation errors in pitch, yaw and roll are 0.8858″, 0.9232″ and
0.8369″, respectively. The maximum error in attitude is 6.18″, which is much better
than that of tradition method. From this result, we can see that this method can
accurately estimate the attitude of the plane.

Figure 4 shows the results of accelerometer and gyroscope errors estimated by
this SINS/CNS integration method. The estimation curves of accelerometer and
gyroscope converge quickly, which suggests that it can accurately estimate the
gyroscope drifts and accelerometer biases. Figure 5 illustrates the estimation result
of the IMU installing errors. As indicated in this figure, the estimated values of
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Fig. 3 The estimation of attitude and its error
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installation errors in three directions converge to 9.98″, 9.91″, 10.07″, which are
very close to the true value 10″, 10″, and 10″. The maximum estimation errors of
installation errors is 2″. From these figures, it is clear that the initial attitude esti-
mation and installation errors calibration by SINS/CNS integration method devel-
oped in this paper is able to accurately estimate the accelerometer and gyroscope
errors. Furthermore, it can also estimate the installation errors of the IMU
effectively.
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5 Conclusion

In the paper, an initial attitude estimation and installation errors calibration of the
IMU for plane by SINS/CNS integration method is presented, which could solve
the problems of SINS initial alignment and IMU calibration at the same time.
The IMU installing errors are considered and its corresponding state equation is
established. To make all state vectors observable, all original information provided
by the sensors of the SINS and the CNS are used as measurements. The maximum
error in attitude is 6.18″, which indicates that both the inertial sensors’ biases in the
SINS and the installation errors of the IMU are estimated effectively. It should be
noted that the proposed approach can be also applied to other carrier with a series of
sensors.
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