
A Stacked Denoising Autoencoders Based
Collaborative Approach for Recommender

System

Baojun Niu, Dongsheng Zou(&), and Yafeng Niu

Chongqing University, Chongqing 400044, China
dszou@cqu.edu.cn

Abstract. This paper uses an autoencoder neural network as user feature
learning component for collaborative filtering task. We propose a stacked
denoising autoencoder (SDAE) based model to alleviate the sparseness issues in
recommendation system. Our model also extends the scalability of CF-based
methods in the Top-N recommendation task. Experiments on MovieLens
datasets and the result confirmed the effectiveness and potential of our model.

Keywords: Collaborative filtering � Recommender system � Stacked denoising
autoencoder

1 Introduction

Recommender System (RS) is an effective tool to deal with information overload
problem [1]. As the main thrust in the field of RS research, collaborative filtering(CF)
methods are widely used for its knowledge domain free. CF-based approaches can be
divided into two branches: neighborhood-based and model-based [2]. Neighborhood-
based approaches focus on spotting the similarity relationships among either users or
items. Herlocker et al. [3] carried out a comprehensive research into user-based col-
laborative algorithms. Badrul et al. [4] presented the item-based collaborative system to
pre-compute the item-item similarities.

In contrast to the neighbor-based method, singular value decomposition (SVD) [6]
is the most prevalent model-based method for Matrix factorization (MF) [5]. SVD
performs well in building accurate models for RS by applying elaborated and succinct
algebraic structure. Nevertheless, SVD method is only well-defined when the matrix is
complete, still facing the problem of sparseness. Imputation [7] is a technique to get a
relatively denser matrix filled with baseline estimations for missing ratings. However,
inaccurate imputation might distort the original data considerably.

In recent years, research in the neural network has taken a breakthrough in deep
layer architecture. The deep belief networks (DBN) [8] inspire researchers to integrate
neural network with CF for patterns learning or useful features extracting [9] uses
Restricted Boltzmann Machines (RBM) to perform CF, and [10] extended this work to a
noo-iid framework. Autoencoder (AE) as a special neural network has achieved good
performance in the text processing, image classification tasks. In this paper, we employ

© Springer Nature Singapore Pte Ltd. 2017
G. Chen et al. (Eds.): PAAP 2017, CCIS 729, pp. 172–181, 2017.
DOI: 10.1007/978-981-10-6442-5_15



AE as a user preference learning component in collaborative filtering and develop a
stacked denoising autoencoder (SDAE) based model to alleviate sparseness issue in RS.

2 Traditional Autoencoder

A traditional autoencoder is a feedforward neural network illustrated in Fig. 1. AE can
learning representations of the raw data by reconstructing the input data from its output.
Usually, it has a three-layered structure, the input and the output has the same number
of neurones, and a hidden layer is in the middle.

Training an autoencoder is to minimise the reconstruction error, solve the following
optimisation problem:

Lðx; x̂Þ
h;h0

¼ 1
2m

Xm
i¼1

x̂i � xi
�� ��2 þ k

2
ð W ð1Þ�� ��2 þ W ð2Þ�� ��2Þ

argmin
h;h0

Lðx; x̂Þ
ð1Þ

To get the hyper-parameters WðlÞ; bðlÞ; l ¼ 1; 2 in (1). Stochastic Gradient Descent
(SGD) is an efficient method to train autoencoder. The key steps of SGD is computing
the partial derivatives. We use backpropagation algorithm to compute these partial
derivatives. Steps as follows:

For each training example xi

1. Feedforward pass the inputs, we get activations for each layer: xi,hi, x̂i.
2. Backpropagate the errors:

(1) Compute the error of output layer,

dð2Þ ¼ ðx̂i � xiÞ � x̂i � ð1� xiÞ ð2Þ

(2) Backpropagate the output error dð2Þ to the hidden layer,

Fig. 1. Traditional autoencoder

A SDAEs Based Collaborative Approach 173



dð1Þ ¼ ðW ð2ÞÞT � dð2Þ � hi � ð1� hiÞ ð3Þ

3. Compute the desired partial derivatives, set as

@L
@W ð1Þ ¼ dð1ÞðxiÞT ; @L

@bð1Þ
¼ dðlÞ ð4Þ

@L
@W ð2Þ ¼ dð2ÞðhiÞT ; @L

@bð2Þ
¼ dð2Þ ð5Þ

4. After T rounds iterations when finally the value of (1) tends to be stable, we can
take hi, the high-order vector of original xi, as a more concentrated and effective
feature representation of raw input xi.

3 Construct SDAE

SDAE stands for Stacked Denoising Autoencoder, which is a variant of traditional
autoencoder. We can impose constraints on AE to discover more useful representation.
By altering the number of units in the hidden layer, we can get a lossy compressed
representation feature. But purely altering the size of bottleneck layers may not
guarantee to extract good features consistently. [11] proposed a strategy to corrupt the
clean input partially for constructing a denosing autoencoder structure(DAE). There are
three commonly used noise models to corrupt the input, the additive Gaussian noise,
the salt-and-pepper noise and the Masking noise.

The training process of DAE is the same as an AE, except that it takes corrupted
input ~x generated from a particular noise model and then minimise reconstruction error
between its outputs and the original clean inputs. That is, the overall loss function is
still the same. Figure 2. shows a schematic for these procedures.

Fig. 2. The schematic of denoising autoencoder

174 B. Niu et al.



Based on all of the foundations above, learning even higher level representations
would be possible by stacking denoising autoencoders. SDAE is a bit deeper neural
network constructed with multiple levels of DAEs in which the hidden outputs of each
level is accepted as inflow to the successive.

Greedy layer-wise training [12] is an efficient way to obtain parameters for SDAE
or SAE. After training the first level autoencoder for corrupted input, its learnt
encoding operator fh acts on clean input to get the first level hidden layer vector, then

use it to train the second level DAE to learn encoder f ð2Þh . From here, repeat the
procedure. After training a stack of encoders, perform backpropagation through the
whole system to fine-tune the hyper-parameters globally. Figure 3 illustrates the
schematic for training the SDAE.

3.1 SDAE Applied in Collaborative Filtering

In view of the ability of AE to mining inherent structure of data in many domains, we
bring SDAE into collaborative filtering, trying to excavate delicate structure of user’s
preference, and obtain the compressed representation of user’s behaviour vector, then
apply these high-level features in recommendation task.

We model user’s preference behaviour as a vector consisting of ratings over items,
denoting pui 2 <n, for example, in a 5-stars scaled rating system for movies. There
exist a target user ut which has a rated items collection Iut ¼ fi1; i3; i4; i5g, in which
rt;1 ¼ 5; rt;3 ¼ 2; rt;4 ¼ 3; rt;5 ¼ 4, then we can get pui ¼ ð5;NULL; 2; 3; 4;NULL;
� � � ;NULLÞT .

As shown above, due to the sparseness of rating matrix for RS, the user behaviour
preference vector containing a large number of NULL value or missing value. There are
many reasons for these missing ratings beyond only not liking it, so we can’t fill these
NULLs with “0” and feed this kind of input to autoencoder, otherwise, all these zero
ones will be treated as negative preference leading to a strong bias in the system.

To address issue stated above, we extend the user preference vector to a user
preference matrix denoting as pui 2 <n�S where S is the numerical rating scale. In this

Fig. 3. Schematic for training the SDAE

A SDAEs Based Collaborative Approach 175



n� S matrix, if exists the rating ri;j on item ij by user ui valued with c, then we set the
pcui;ij ¼ 1,otherwise 0, and we set the formula as

pcui;ij ¼
1; if 3 ri;j ¼ c; ij 2 Iui
0; if c 6¼ ri;j; ij 2 Iui
0; otherwise if ij 62 Iui

8<
: ð6Þ

As for the values of pcui;ij , we illustrate the same example aforementioned, in a
5-starts scaled(S = 5) rating system for movies, as for the partial feature comes from
item i1 in the combined user’s preference matrix,we get p5ut ;i1 ¼ 1 and set the rest part
as 0, thus we get vector put ;i1 ¼ ð1; 0; 0; 0; 0Þ, the same process as for the rest part, we
get put ;i3 ¼ ð0; 1; 0; 0; 0Þ, put ;i4 ¼ ð0; 0; 1; 0; 0Þ, put ;i5 ¼ ð0; 0; 0; 1; 0Þ. For those items
iother 62 Iui called missing value still can be derived according to (6). Finally, we
combine each partial feature vector as a feature matrix

Note that the value “0” is deferent from the binary indicator vector 0. And we
suppose 0� NULL ¼ 0, which will be useful in the next computation process of
modified AE.

In this article, we modify the autoencoder to adapt the NULL-value (sparseness)
scenario illustrated as above. The particular modifications are listed as follows.

1. For a particular user ui, only activate the input units for the items rated by that
user, and then feed those data to SDAE for encoding.

2. In steps of building each level AE of SDAE, when involving decoding the
hidden layer in each local level DAE. We also only reconstruct the ratings for the items
rated by the user ui, which also means only backpropagate the error coming from rated
items by the current user.c

In this modified model, it seems that every user in the system will have their own
personal autoencoder based on their own collection of rated items. Each autoencoder
only has a single training case. Weights and biases belonging to one user-specific
autoencoder contribute to the entire global neural networks. Thus if the item was
co-rated by many users, these users would share the corresponding weights for that
item through the path from input to output in their own autoencoder networks. Figure 4
illustrate the modified AE model.

After all above preparation, then we can train the basic DAE and then stack them all
to get SDAE. For each user ui, we substitute pui for x

i and carry out the feedforward
step illustrated in Sect. 2, the final output p̂cuiij 2 ½0; 1� substituted for x̂i represents the

probability of item ij rated in value c. Here we can regard c as a confidence level for

176 B. Niu et al.



expressing not only the user rated the item but also indicate the preference extent the
user showed when rating it.

By limiting the number of hidden neurons d’ to a much smaller but reasonable scale
than the total number of items n, the modified AE transform the sparse users behavior
vector with null values into a dense feature vector. Thus decreasing the dimensionality
of the user behavior vector space from n to d’, in which small perturbances inherited
from noise in the data are eliminated, leaving only the strongest effects or robust
dependency features. Consequently, it decreases the storage and computational
requirements for the next collaborative filtering workflow.

3.2 Generate Recommended List and Prediction

After the workflow of SDAE, we can obtain the compact and efficient feature vector
learnt from user’s original preference behaviour. For a particular user ui, we regularise
the hidden feature vector hui to bicodeui , the process of binarization given as follows,
where 0.5 is the threshold value to decide if the hidden unit was highly activated by
some latent features.

bicodeuik ¼ 1; if hui � 0:5
0; otherwise

�
1� k� d0 ð7Þ

We use the modified Hamming distance between these bicodeui as the similarity
metric formulated as

simðu1; u2Þ ¼ 1� Hammðbicodeu1 ; bicodeu2Þ
lenðhidden units of final featuresÞ ð8Þ

In the last step, we use the similarity between users to generate prediction ratings
and recommendation list. Given the particular user ui, and a certain item ij, where
ij 62 Iui , we define degui;ij to express the degree for item ij worth of being recommended
to user ui.

Fig. 4. Modified AE model in collaborative filtering

A SDAEs Based Collaborative Approach 177



degui;ij ¼

P
v2Nbrðui;ijÞ

simðu; vÞ

K
ð9Þ

where Nbr(u,i) are the neighbourhood users who have rated item ij, and shared the most
top-K similarity with the user ui. The parameter K is the neighborhood size, needed to
be optimized and determined experimentally. Then we can get the Top-N items in a
descending order of degui;ij as recommendation list for the target user.

We also define prediction ratings scoreui;ij as

scoreui;ij ¼ �rui þ

P
v2Nbrðui;ijÞ

ðrv;ij � �rvÞsimðu; vÞ
P

v2Nbrðui;ijÞ
simðu; vÞ ð10Þ

4 Experiments and Discussion

4.1 Dataset and Evaluation

We use MovieLens datasets provided by GroupLens research team to evaluate the
performance of our SDAE-CF approach and compare the results with several alter-
native baseline CF-based methods. To mimic different extent sparseness of the rating
matrix, in this paper we experiment on MovieLens 100 k, 1 M, and 10 M datasets with
their statistics summarised in Table 1.

We randomly sample 80% ratings for each user as the training set and the rest 20%
is used as the testing set. We generate five independent splits and report the averaged
performance in our evaluations. We firstly take MAE as our evaluation metric to report
experiments in user preference prediction. Then we use recall as another performance
measure particularly for the Top-N recommendation task [13]. The evaluation rules are
listed as follows, where Testu denotes the items having been rated by the user in the
testing set. Ir is the set of Top-N recommendation generated from its training set
denoted as Trainu.

MAE ¼
P

u2U ri;j � scroreui;ij
�� ��P
u2U Testuj j ; recall ¼

P
u2U Ir \ Testuj jP

u2U Testuj j

Table 1. Statistics for data sets of the MovieLens

Type Users Movies Ratings Density%

100 k 943 1682 100,000 6.30
1 M 6040 3900 1,000,209 4.26
10 M 71567 10681 10,000,054 1.31

178 B. Niu et al.



4.2 Results and Discussion

In this section, we present the prediction quality of our SDAE-CF model. The
benchmark methods include three conventional CF-based methods, that’s the pure
user-based method [2], the pure Item-based method [3], and the SVD feature [5].

In order to do a reasonable comparison, pre-settings of the experiments are as
follows, according to [2], we set the neighbourhood size with 30 and use person
correlation as similarity metric for user-based benchmark algorithm. As for [3], we
choose the adjusted cosine as the similarity metric. The third baseline SVD feature
method is a latent factor model intuitively having some analogies with our model,
which leads us first thought of experiment on a middle sized dataset—MovieLens 1 M,
to determine the optimal numbers of hidden units for our model, and simultaneously in
line with the number of the latent factor in SVD. The sensitivity of MAE affected by
the number of hidden units in a basic DAE is illustrated in Fig. 5, showing that 200
hidden units would be the choice for a better prediction performance and there is no
obvious difference when the hidden units go beyond 200. Thus we set the number of
latent factors in SVD feature with 200.

Table 2 presents the MAE results from all three alternative baseline methods and
our SDAE based model, in which fundamental structure also be involved. We can
express the table from an empirical view that the DAE is relatively more accurate than
the basic AE in faced with higher dimensional data. As it shows in Table 2, DAE and
SDAE seems underperforming when coping with a lower dimension datasets, but still

Fig. 5. The sensitivity of the number of hidden
units

Fig. 6. Performance comparison by recall

Table 2. Performance on MovieLens datasets by MAE

CF-based method ML-100 k ML-1 M

Pure user-based 0.7489 0.7592
Pure item-based 0.7293 0.6983
SVD feature 0.7334 0.6944
AE (1 level) 0.7282 0.6965
DAE (1 level) 0.7482 0.6940
SDAE (3 level) 0.7262 0.6825

A SDAEs Based Collaborative Approach 179



outperform other alternatives slightly. The purpose of introducing noise in autoencoder
is for learning more robust features from the input. However, if the input itself are not
strong enough, introducing noise would achieve nothing and may result in unrecov-
erable injuries to the original input. In general, AE based models are nearly the same
level performance with the SVD feature methods by MAE.

The second form of interest prediction is Top-N recommendation task. We carry
out experiments on MovieLens 10 M dataset to get the Top-N recommended items just
according to (9), requires no further prediction score calculation. And we zoomed the
range of N in [5, 10, 40]. Table 3 report the recall results in particular when the length
of recommendation list is 20 and 40. Figure 6 illustrates that SDAE-based method
outperforms the other three basic methods regarding recall metric, first also followed by
the SVD feature. However, there is just a small performance gap between SDAE and
SVD. In this respect, the two traditional neighborhood-based methods are in an inferior
position, for in a sparser dataset the similarity calculation based on correlation is
hindered by lacking enough co-rated items for users.

5 Conclusion

In this paper, we analysis the problems of traditional collaborative filtering methods,
then we proposed SDAE-CF model to alleviate the issues. On the one hand, using
SDAE to encode the user preference vector break the limitation of similarity calculation
among users depending on the common rated items, thus alleviate the loss of potential
information. On the other hand, since the modified similarity based on Hamming
distance can be calculated in constant time, decreasing the requirement for storing
similarity extensively, which extends the scalability of traditional correlation-based
algorithm. Experiments on three type scale MovieLens datasets show that SDAE-CF
has potential in dealing with a high-dimension dataset and can achieve relative good
performance in score prediction and Top-N recommendation task.

For the future work, we consider integrating with content-based techniques which
can provide a more informational data foundation for extracting more useful latent
features, and further to confirm the applicability of SDAE-CF model.

Acknowledgment. This work was supported by the National Nature Science Foundation of
China (No. 61309013) and Chongqing Basic and frontier research projects (No. CSTC2014J
CYJA40042).

Table 3. Performance on MovieLens 10 M dataset by recall*

N = 20 N = 40

CF-based method Recall Recall
Pure user-based 0.0877 0.1368
Pure item-based 0.0982 0.1456
SVD feature 0.1386 0.2017
SDAE (3 level) 0.1710 0.2561

180 B. Niu et al.



References

1. Eppler, M.J., Mengis, J.: The concept of information overload: a review of literature from
organization science, accounting, marketing, MIS, and related disciplines. Inf. Soc. 38(5),
325–344 (2004)

2. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17,
634–749 (2005)

3. Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for
performing collaborative filtering. In: Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 230–
237. ACM, Berkeley (1999)

4. Badrul S., George K., et al.: Item-based collaborative filtering recommendation algorithms.
In: Proceedings of the 10th international conference on World Wide Web (WWW 2001),
Hong Kong (2001)

5. Yehuda, K., Robert, B., Chris, V.: Matrix factorization techniques for recommender systems.
Comput. J. 42(8), 30–37 (2009)

6. Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., Yu, Y.: Svdfeature:a toolkit for
feature-based collaborative filtering. JMLR 13, 3619–3622 (2012)

7. Sarwar B., Karypis, G., Konstan, J., Riedl. J.: Application of dimensionality reduction in
recommender systems—a case study. In: Proceedings of the ACM WebKDD Workshop,
Boston (2000)

8. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18, 1527–1554 (2006)

9. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted boltzmann machines for collaborative
filtering. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 791–798. ACM, Corvalis (2007)

10. Georgiev, K., Nakov, P.: A non-iid framework for collaborative filtering with restricted
Boltzmann machines. In: The 30th International Conference on Machine Learning (ICML
2013), pp. 1148–1156, Atlanta (2013)

11. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising
autoencoders: learning useful representations in a deep network with a local denoising
criterion. JMLR 11, 3371–3408 (2010)

12. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., et al.: Greedy layer-wise training of
deep networks. Adv. Neural. Inf. Process. Syst. 19, 153–160 (2007)

13. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n
recommendation tasks. In: Proceedings of the fourth ACM conference on Recommender
systems. ACM, Barcelona (2010)

A SDAEs Based Collaborative Approach 181


	A Stacked Denoising Autoencoders Based Collaborative Approach for Recommender System
	Abstract
	1 Introduction
	2 Traditional Autoencoder
	3 Construct SDAE
	3.1 SDAE Applied in Collaborative Filtering
	3.2 Generate Recommended List and Prediction

	4 Experiments and Discussion
	4.1 Dataset and Evaluation
	4.2 Results and Discussion

	5 Conclusion
	Acknowledgment
	References


