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Abstract Positive density-dependence occurs when individuals experience
increased survivorship, growth, or reproduction with increased population densi-
ties. Mechanisms leading to these positive relationships include mate limitation,
saturating predation risk, and cooperative breeding and foraging. Individuals within
these populationsmay differ in age, size, or geographic location and thereby structure
these populations. Here, I study structured populationmodels accounting for positive
density-dependence and environmental stochasticity i.e. random fluctuations in the
demographic rates of the population. Under an accessibility assumption (roughly,
stochastic fluctuations can lead to populations getting small and large), these models
are shown to exhibit a dynamical trichotomy: (i) for all initial conditions, the pop-
ulation goes asymptotically extinct with probability one, (ii) for all positive initial
conditions, the population persists and asymptotically exhibits unbounded growth,
and (iii) for all positive initial conditions, there is a positive probability of asymptotic
extinction and a complementary positive probability of unbounded growth. Themain
results are illustrated with applications to spatially structured populations with an
Allee effect and age-structured populations experiencing mate limitation.

Keywords Structured populations · Environmental stochasticity · Allee effects ·
Positive density-dependence

1 Introduction

Higher population densities can increase the chance of mating success, reduce the
risk of predation, and increase the frequency of cooperative behavior [5]. Hence,
survivorship, growth, and reproductive rates of individuals can exhibit a positive
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relationship with density i.e. positive density-dependence. In single species models,
positive density-dependence can lead to an Allee effect: the existence of a criti-
cal density below which the population tends toward extinction and above which
the population persists [7, 12, 18, 22, 23]. Consequently, the importance of Allee
effects have been widely recognized for conservation of at risk populations and the
management of invasive species [5]. Populations experiencing environmental sto-
chasticity and a strong Allee effect are widely believed to be especially vulnerable
to extinction as the fluctuations may drive their densities below the critical thresh-
old [6].When population densities lie above the critical threshold for the unperturbed
system, analyses and simulations of stochastic models support this conclusion [2,
7–9, 17, 21]. However, these studies also show that when population densities lie
below the critical threshold, stochastic fluctuations can rescue the population from
the deterministic vortex of extinction.

Individuals within populations often differ in diversity of attributes including
age, size, gender, and geographic location [4]. Positive density-dependence may
differentially impact individuals in populations structured by these attributes [5, 11].
This positive density-dependence can lead to anAllee threshold surface (usually a co-
dimension one stable manifold of an unstable equilibrium) that separates population
states that lead to extinction from those that lead to persistence [24].

While several studies have examined howenvironmental stochasticity and popula-
tion structure interact to influence persistence of populations experiencing negative-
density dependence [3, 13, 14, 20], I know of no studies that examine this issue
for populations experiencing positive density-dependence. To address this gap, this
paper examines stochastic, single species models of the form

Xt+1 = A(Xt , ξt+1)Xt (1)

where Xt = (X1,t , X2,t , . . . , Xn,t ) ∈ [0,∞)n is a column-vector of population den-
sities, A(Xt , ξt+1) is a n × n non-negative matrix that determines the population
densities in the next year as a function of the current densities Xt and the environ-
mental state ξt+1 over the time interval [t, t + 1). To focus on the effects of positive
density-dependence, I assume that the entries of A are non-decreasing functions of
the population densities. Under additional suitable assumptions described in Sects. 2
and 3, this paper shows that there is a dynamical trichotomy for (1): (i) asymp-
totic extinction occurs with probability one for all initial conditions, (ii) long-term
persistence occurs with probability one for all positive initial conditions, or (iii)
long-term persistence and asymptotic extinction occur with complementary positive
probabilities for all positive initial conditions. The model assumptions and defini-
tions are presented in Sect. 2. Exemplar models of spatially-structured populations
and age-structured populations are also presented in this section. The main results
and applications to the exemplar models appear in Sects. 3 and 4. Proofs of the main
results are relegated to Sect. 5.
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2 Models, Assumptions, and Definitions

Throughout this paper, I consider stochastic difference equations of the form given
by Eq. (1). The state space for these equations is the non-negative coneC = [0,∞)n .
Define the standard ordering on this cone by x ≥ y for x, y ∈ C if xi ≥ yi for all i .
Furthermore, x > y if x ≥ y but x �= y and x � y if xi > yi for all i . Throughout,
I will use ‖x‖ = maxi |xi | to denote the sup norm and ‖A‖ = max‖x‖=1 ‖Ax‖ to
denote the associated operator norm. Define the co-norm of a matrix A by co(A) =
min‖x‖=1 ‖Ax‖. The co-norm is the minimal amount that the matrix A stretches a
vector. Define log+ x = max{log x, 0} to be the non-negative component of log x .

For (1), there are five standing assumptions

A1 Uncorrelated environmental fluctuations: {ξt }∞t=0 is a sequence of indepen-
dent and identically distributed (i.i.d) randomvariables takingvalues in a separable
metric space E (such as Rk).

A2 Feedbacks depend continuously on population and environmental state:
the entries of thematrix function Ai j : C × E → [0,∞) are continuous functions
of population state x and the environmental state ξ.

A3 The population only experiences positive feedbacks: For all i, j and ξ ∈ E ,
Ai j (x, ξ) ≥ Ai j (y, ξ) whenever x ≥ y.

A4 Primitivity: There exists τ ≥ 0 such that A(x, ξ)τ � 0 for all x � 0 and
ξ ∈ E .

A5 Finite logarithmic moments: For all c ≥ 0,E[log+ ‖A(c1, ξt )‖] < ∞where
1 = (1, 1, . . . , 1) is the vector of ones. There exists c∗ > 0 such thatE[log+(1/co(∏τ

t=1 A(c1, ξt )
)
)] < ∞ for all c ≥ c∗.

The first assumption implies that (Xt )t≥0 is a Markov chain on C and the sec-
ond assumption ensures this stochastic process is Feller. The third assumption is
consistent with the intent of understanding how non-negative feedbacks, in and of
themselves, influence structured population dynamics. An important implication of
this assumption is that the system is monotone i.e. if X0 > X̃0 > 0, then Xt ≥ X̃t

for all t ≥ τ where Xt , X̃t are solutions to (1) with initial conditions X0 and X̃0,
respectively. The fourth assumption ensures that all states in the population con-
tribute to all other population states after τ time steps. The final assumption is met
for most models and ensures that Kingman’s subadditive ergodic theorem![16] and
the random Perron–Frobenius theorem [1] are applicable.

To see that these assumption include models of biological interest, here are a few
examples.

Example 1 (Scalar models) Considered an unstructured population with n = 1 in
which case x ∈ [0,∞). To model mate limitation, McCarthy et al. [18] considered
a model where x corresponds to the density of females and, with the assumption
of a 1:1 sex ratio, also equals the density of males. The probability of a female
successfully mating is given by ax/(1 + ax) where x is the male density and a > 0
determines how effectively individuals find mates. If a mated individual produces on
average ξ daughters, then the population density in the next year is ξax2/(1 + ax).
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If we allow ξ to be stochastic, then (1) is determined by A(x, ξ) = ξax2/(1 + ax).
Allowing the ξt to be a log-normal would satisfy assumptions A1–A5.

To model predator saturation [23], let exp(−M/(1 + hx)) be the probability that
an individual escapes predation from a predator population with an “effective” attack
rate of M and handling time h. If ξ is the number of offspring produced by an
individual which escaped predation, then the population density in the next year is
ξx exp(−M/(1 + hx)). Letting ξ be stochastic yields A(x, ξ) = ξx exp(−M/(1 +
hx)). Allowing the ξt to be a log-normal would satisfy assumptions A1–A5.

Finally, Leibhold and Bascompte [17] used a more phenomenological model of
the form A(x, ξ) = exp(x − C + ξ) where C is the critical threshold in the absence
of stochasticity and ξ are normally distributed with mean zero. This model also
satisfies all of the assumptions.

We can use these scalar models, which were studied by [21], to build structured
models as the next two examples illustrate.

Example 2 (Spatial models) Consider a population that lives in n distinct patches.
xi is the population density in patch i . Let Ci > 0 be the critical threshold in patch
i and ξi be the environmental state in patch i . Let di j be the fraction of individuals
dispersing from patch j to patch i , and D = (di j ) be the corresponding dispersal
matrix. Then the spatial model is

A(x, ξ) = Ddiag(exp(x1 − Ci + ξ1), exp(x2 − C2 + ξ2), . . . , exp(xn − Cn + ξn))
(2)

where diag denotes a diagonal matrix with the indicated diagonal elements. If D is
a primitive matrix and the ξt = (ξ1,t , . . . , ξn,t ) are a multivariate normals with zero
means, then this model satisfies the assumptions.

Example 3 (Age-structured models) Consider a population with n age classes and
xi is the density of age i individuals. Assume that final � age classes reproduce
i.e. ages n − � + 1, n − � + 2, . . . , n reproduce. If mate limitation causes posi-
tive density dependence (see Example 1) and reproductively mature individuals
mate randomly, then the fecundity of individuals in age class n − � + i equals
fi (x, ξ) = ξi a

∑n
j=n−�+1 x j/(1 + a

∑n
j=n−�+1 x j ) where ξi is the maximal fecun-

dity of individuals of age i and a > 0. Let si be the probability an individual survives
from age i − 1 to age i . This yields the following nonlinear Leslie matix model

A(x, ξ) =

⎛

⎜⎜⎜⎜⎜
⎝

0 . . . 0 f1(x, ξ) . . . f�(x, ξ)
s2 0 0 . . . 0 0
0 s3 0 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 sn 0

⎞

⎟⎟⎟⎟⎟
⎠

. (3)

If � ≥ 2 and ξt = (ξ1,t , . . . , ξn,t ) are multivariate log-normals, then this model sat-
isfies the assumptions A1–A5.
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3 Main Results

To state the main results, consider the linearization of (1) at the origin and near
infinity. At the origin, the linearized dynamics are given by Xt+1 = A(0, ξt+1)Xt .
Hence, the rate at which the population grows at low density is approximately given
by the rate at which the random product of matrices, A(0, ξt ) . . . A(0, ξ1), grows.
Kingman’s subadditive ergodic theorem [16] implies there exists r0 (possibly −∞)
such that

lim
t→∞

1

t
log ‖A(0, ξt ) . . . A(0, ξ1)‖ = r0 with probability one.

To characterize population growth near infinity, for all c > 0 the subadditive ergodic
theorem implies there exists an rc such that

lim
t→∞

1

t
log ‖A(c1, ξt ) . . . A(c1, ξ1)‖ = rc with probability one.

Due to our assumption that the entries of A(x, ξ) are non-decreasing with respect
the entries of x , rc is non-decreasing with respect to c. Hence, the following limit
exists (possibly +∞)

r∞ = lim
c→∞ rc.

With these definitions and assumptions, the following theorem is proven in Sect. 5.

Theorem 1 Unconditional persistence If r0 > 0, then

lim
t→∞ ‖Xt‖ = ∞ with probability one whenever X0 � 0.

Unconditional extinction If r∞ < 0, then

lim
t→∞ Xt = 0 with probability one.

Conditional persistence and extinction If r0 < 0 < r∞, then for all ε > 0 there
exist c∗ > c∗ > 0 such that

P

[
lim
t→∞ Xt = 0

∣∣∣X0 = x
]

≥ 1 − ε whenever x ≤ c∗1

and
P

[
lim
t→∞ ‖Xt‖ = ∞

∣∣∣X0 = x
]

≥ 1 − ε whenever x ≥ c∗1.

To get statements about all initial conditions with probability one in the final
case, an assumption that ensures that the environmental stochasticity can drive the
population to low or high densities is needed. Define {0,∞} to be accessible if for



60 S.J. Schreiber

all c > 0 there exists γ > 0 such that

P

[
{ there is t ≥ 0 such that Xt � c1 or Xt � 1/c}

∣
∣∣X0 = x

]
≥ γ

for all x � 0. All of the examples in Sect. 2 satisfy this accessibility condition.

Theorem 2 If r0 < 0 < r∞ and {0,∞} is accessible, then

P

[
lim
t→∞ ‖Xt‖ = ∞ or lim

t→∞ Xt = 0
∣
∣∣X0 = x

]
= 1.

Proofs of both theorems are presented in Sect. 5. The scalar version of these
theorems were proven in Theorem 3.2 of [21].

4 Applications

To illustrate the applicability of the two theorems, we consider the spatial structured
and age structured models introduced in Sect. 3.

Example 2 (spatially structured populations) revisited Consider the spatial
structured model described in Example 2 and characterized by (2). For this model,

A(c1, ξ) = Ddiag(exp(−C1 + ξ1), exp(−C2 + ξ2), . . . , exp(−Cn + ξn)) exp(c).

For simplicity, let us assume that the fraction of individuals dispersing is d and dis-
persing individuals land with equal likelihood on any patch (including the possibility
of returning to its original patch). Then D = (di j ) is given by di j = d/n for i �= j
and dii = (1 − d) + d/n. Assume that d ∈ (0, 1].

I claim that r∞ = ∞. Indeed, let b = max{1 − d, d/n} > 0.Then D ≥ bIdwhere
Id denotes the identity matrix and

E[log ‖
t∏

s=1

A(c1, ξs)‖] ≥ E[log ‖
t∏

s=1

bdiag(exp(−C1 + ξ1,s), exp(−C2

+ξ2,s), . . . , exp(−Cn + ξn,s)) exp(c)‖]

≥ E[log ‖
t∏

s=1

diag(exp(ξ1,s), exp(ξ2,s), . . . , exp(ξn,s))‖]

+t (c + log b − max
i

Ci )

= E[max
i

t∑

s=1

ξi,s] + t (c + log b − max
i

Ci )

≥ t

(
E[ξ1,1] + c + log b − max

i
Ci

)
.
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Dividing by t and taking the limit as t → ∞, this inequality implies that rc ≥
E[ξ1,1] + c + log b − maxi Ci .Hence, r∞ = limc→∞ rc = ∞ as claimed.Theorem2
implies that for all x � 0, ‖Xt‖ → ∞ with positive probability whenever X0 = x .

Understanding r0 is more challenging. However, Proposition 3 of [3] implies
that r0 varies continuously as a function of d. In the limit of d = 0, D = Id and
r0 = maxi E[ξi,1 − Ci ]. Hence, for populations where d ≈ 0 but d > 0, there are
two types of dynamics. If E[ξi,1] < Ci for all patches (i.e. populations are unable
to persist in each patch at low density), then there is a positive probability of going
either asymptotically extinct or a complementary positive probability of persistence.
Alternatively, if E[ξi,1] > Ci for at least one patch, then the population persists with
probability one whenever X0 � 0.

Now consider the case that all individuals disperse i.e. d = 1. Then
r0 = E[log 1

n

∑
i exp(ξi,1 − Ci )] i.e. er0 is the geometric mean of the spatial aver-

age of the exp(ξi,1 − Ci ). By Jensen’s inequality, r0 when d ≈ 1 is greater than r0
when d ≈ 0. Hence, one can get the scenario where increasing the dispersal frac-
tion d shifts a population from experiencing asymptotic extinction with positive
probability to a population that persists with probability one. This corresponds to a
positive density-dependence analog of a phenomena observed in models with nega-
tive density-dependent feedbacks [3, 14] and density-independent feedbacks [10, 15,
19, 25]. However, in these models, the long-term outcome never exhibits a mixture
of extinction and persistence.

Examble 3 (age-structured populations) revisited Consider the age-structured
model with mate-limitation in Example 3 where there are � ≥ 2 reproductive stages.
If ξt are multivariate log-normals, then {0,∞} is accessible. Define

B =

⎛

⎜⎜
⎜⎜⎜
⎝

0 0 0 0 . . . 0
s2 0 0 . . . 0 0
0 s3 0 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 sn 0

⎞

⎟⎟
⎟⎟⎟
⎠

.

As 0 < si < 1 for all i , the dominant eigenvalue λ of B is strictly less than one.
Thus,

r0 = lim
t→∞

1

t
E[log ‖

t∏

s=1

‖A(0, ξs)‖] = lim
t→∞

1

t
log ‖Bt‖

= logλ < 0.

As r0 < 0, it follows that for all positive initial conditions there is a positive prob-
ability of asymptotic extinction (in contrast the spatial model which always has a
positive probability of persistence and unbounded growth.)

To say something about persistence, assume that ξ1,t , . . . , ξ�,t have the same log
mean μ and non-degenerate log-covariance matrix �2. Then r∞ is an increasing
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function of μ with limμ→∞ r∞ = ∞ and limμ→−∞ r∞ < 0. Hence, there is a critical
μ, call it μ∗, such that the population goes asymptotically extinct with probability
one whenever μ < μ∗ and the population persists with positive probability whenever
μ > μ∗.

5 Proofs

First, I prove Theorem 1. Assume r0 > 0 and X0 = x0 � 0. As the entries of A(x, ξ)
are non-decreasing functions of x ,

lim inf
t→∞

1

t
log ‖Xt‖ = lim inf

t→∞
1

t
log ‖

t∏

s=1

A(Xs−1, ξs)x0‖

≥ lim inf
t→∞

1

t
log ‖

t∏

s=1

A(0, ξs)x0‖

= r0 > 0 with probability one.

In particular, limt→∞ ‖Xt‖ = ∞ with probability one as claimed.
Next, assume that r∞ < 0. Given any X0 = x0 � 0, choose c > 0 such that c1 ≥

x0 and

lim
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≤ r∞/2 with probability one.

Then

lim sup
t→∞

1

t
log ‖Xt‖ ≤ lim sup

t→∞
1

t
log ‖

t∏

s=1

A(c1, ξs)x0‖

≤ r∞/2 < 0 with probability one.

In particular, limt→∞ Xt = 0 with probability one as claimed.
Finally, assume that r∞ > 0 and r0 < 0. As the entries of A are non-decreasing

in x , there exists c > 0 such that A(c1, ξ) ≤ A(0, ξ) exp(−r0/2) for ξ ∈ E . Hence,

lim sup
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≤ r0/2 < 0 with probability one. (4)
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Define the random variable

R = sup
t≥1

‖
t∏

s=1

A(c1, ξs)‖.

Equation (4) implies that R < ∞ with probability one. For all k > 0, define the
event Ek = {R ≤ k}. For x0 ≤ c1/k and X0 = x0, I claim that Xt ≤ c1 for all t ≥ 0
on the event Ek . I prove this claim by induction. X0 ≤ c1 by assumption. Suppose
that Xs ≤ c1 for 0 ≤ s ≤ t − 1. Then

‖Xt‖ = ‖
t∏

s=1

A(Xs−1, ξs)x0‖

≤ ‖
t∏

s=1

A(c1, ξs)c1/k‖ by induction and monotonicity

≤ ‖
t∏

s=1

A(c1, ξs)‖c/k ≤ Rc/k by the definition of R and x

≤ c on the event Ek .

This completes the proof of the claim that Xt ≤ c1 for all t ≥ 0 on the event Ek . It
follows that on the event Ek and X0 = x ≤ c1/k that

lim sup
t→∞

1

t
log ‖Xt‖ ≤ lim sup

t→∞
1

t
log ‖

t∏

s=1

A(c1, ξs)‖c

≤ r0/2 < 0 almost surely.

In particular, limt→∞ Xt = 0 almost sure on the eventEk . As the eventsEk are increas-
ing with k, limk→∞ P[Ek] = P[∪kEk] = P[R < ∞] = 1. Therefore, given ε > 0,
there exists k such that P[Ek] > 1 − ε. For this k, x0 ≤ c1/k and X0 = x0,

P[ lim
t→∞ Xt = 0|X0 = x0] ≥ P[Ek] ≥ 1 − ε.

To show convergence to∞with positive probability when r∞ > 0, choose c ≥ c∗
sufficiently large so that

lim
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≥ r∞/2 > 0 with probability one.

By the Random Perron–Frobenius theorem [1, Theorem 3.1 and Remark (ii) on pg.
878],
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lim
t→∞

1

t
log

(

eTi

t∏

s=1

A(c1, ξs)e j

)

≥ r∞/2 > 0 with probability one. (5)

for all elements ei , e j of the standard basis of Rn and where T denotes the trans-
pose of a vector. Equation (5) implies that all of the entries of

∏t
s=1 A(c1, ξs) grow

exponentially in time at rate greater than r∞/2 with probability one.
Define

R∞ = inf
t≥1,1≤i≤n

eTi

t∏

s=1

A(c1, ξs)c1.

By (5) and the primitivity assumption A4, R∞ > 0 with probability one. Define the
events

Fk = {R∞ > 1/k} for k ≥ 1.

Now, suppose that X0 = x0 ≥ c1k. I claim that Xt ≥ c1 for all t ≥ 0 on the event
Fk . X0 ≥ c1 by the choice of x0. Assume that Xs ≥ c1 for 0 ≤ s ≤ t − 1. Then

Xt =
t∏

s=1

A(Xs−1, ξs)x0

≥
t∏

s=1

A(c1, ξs)x0 by inductive hypothesis

≥ R∞c1k by definition of R∞ and x0
≥ c1 on the event Fk .

Equation (5) implies that on the event Fk

lim inf
t→∞

1

t
log ‖Xt‖ ≥ r0/2 almost surely.

Hence, limt→∞ ‖Xt‖ = ∞ almost surely on the event Fk . As Fk are an increasing
set of events, P[R∞ > 0] = P[∪t≥1Fk] = 1. For any ε > 0 there is k ≥ 1 such that
P[Fk] ≥ 1 − ε. Hence, for this k and X0 = x ≥ ck1,

P[ lim
t→∞ ‖Xt‖ = ∞|X0 = x] ≥ 1 − ε.

This completes the proof of Theorem 1.
The proof of Theorem 2 follows from Theorem 1 and the following proposition.

Proposition 1 Assume {0,∞} is accessible. Let c > 0 and δ ∈ [0, 1) be such that

P

[
lim
t→∞ Xt = 0|X0 = x

]
≥ 1 − δ whenever x ≤ 1/c
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and
P

[
lim
t→∞ Xt = ∞|X0 = x

]
≥ 1 − δ whenever x ≥ c1.

Then
P

[
lim
t→∞ Xt = ∞ or lim

t→∞ Xt = 0|X0 = x
]

= 1 whenever x � 0.

Proof Define the event

C =
{
lim
t→∞ Xt = ∞ or lim

t→∞ Xt = 0
}

.

For any x ∈ C , define Px [E] = P[E |X0 = x] (respectively, Ex [Z ] = E[Z |X0 = x])
for any event E (respectively, random variable Z ) in the σ-algebra generated by
{X0 = x, X1, X2, . . . }. Furthermore, define IE to be random variable that equals 1
on the event E and 0 otherwise.

Define the stopping time

S = inf{t ≥ 0 : Xt ≥ c1 or Xt ≤ 1/c}.

Since {0,∞} is accessible, there existsγ > 0 such thatPx [S < ∞] > γ for all x � 0.
Let I{S<∞} equal 1 if S < ∞ and 0 otherwise. The strong Markov property implies
that for all x � 0

Px [C] = Ex
[
PXS [C] I{S<∞}

] + Ex
[
PXS [C] I{S=∞}

]

= Ex
[
PXS [C] I{S<∞}

]

≥ (1 − δ)γ.

Let Ft be the σ-algebra generated by {X1, . . . , Xt }. The Lévy zero-one law implies
that for all x � 0, limt→∞ Ex [IC|Ft ] = IC almost surely. On the other hand, the
Markov property implies that Ex [IC|Ft ] = PXt [C] ≥ (1 − δ)γ for all x � 0. Hence
Px [C] = 1 for all x � 0. ��
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