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Preface

This volume contains the proceedings of the 22nd International Conference on
Difference Equations and Applications (ICDEA 2016), which was held in Osaka,
Japan, from July 24–29, 2016. The conference was organized by Osaka Prefecture
University (OPU), under the auspices of the International Society of Difference
Equations (ISDE) and Okayama University of Science (OUS). There were more
than 80 participants from 20 countries including Austria, Belarus, China, the Czech
Republic, France, Hungary, Italy, Jamaica, Japan, Latvia, Malaysia, Norway,
Poland, Portugal, Spain, Taiwan, Thailand, UAE, the United Kingdom, and the
United States.

The main topics in ICDEA 2016 were difference equations and discrete
dynamical systems with applications to mathematical biology and economics. The
conference brought together both experts and novices in the theory and applications
of difference equations and discrete dynamical systems.

The papers in the proceedings have been through a rigorous refereeing process to
insure high scientific quality and standards. Four of the articles were written by the
plenary speakers Ryusuke Kon, Christian Pötzsche, Sebastian J. Schreiber, and Petr
Stehlík. This book will be of great value to researchers, scientists, and educators
who work in the fields of difference equations, discrete dynamical systems, and
their applications.

We would like to take this opportunity to express our gratitude to all the par-
ticipants for making the conference a great success. We would also like to thank the
organizing committee for their great efforts in organizing a successful and well-run
conference, and the scientific committee who were instrumental in insuring the high
scientific standards and quality of the conference. Finally, we are grateful to all the
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authors for their contributions to these proceedings and to all the referees for their
timely and valuable reviews of the manuscripts.

San Antonio, USA Saber Elaydi
Okayama, Japan Yoshihiro Hamaya
Osaka, Japan Hideaki Matsunaga
Klagenfurt, Austria Christian Pötzsche
June 2017
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Stable Bifurcations in Multi-species
Semelparous Population Models

Ryusuke Kon

Abstract It is known that the behavior of a nonlinear semelparous Leslie matrix
model with the basic reproduction number close to one can be approximated by
a solution of a Lotka-Volterra differential equation. Furthermore, even in multi-
species cases, a similar approximation works as long as every species is semelparous.
This paper gives a mathematical basis to this approximation and shows that Lotka-
Volterra equations are helpful to study a certain bifurcation problem of multi-species
semelparous populationmodels.With the help of this approximationmethod, we find
an example of coexistence of two biennial populations with temporal segregation.
This example provides a new mechanism of producing population cycles.

Keywords Lotka-Volterra equations · Leslie matrix models · Bifurcation · Semel-
parity · Population cycles · Temporal segregation

1 Introduction

A species is said to be semelparous if it reproduces only once immediately before
death. Semelparous species are often observed in insects. In order to reveal a mech-
anism of producing population cycles observed in insect populations, Bulmer [1]
studied a nonlinear semelparous Leslie matrix model, which is an age-structured
population model for a semelparous species. One of the important conclusions of
this study is that population cycles occur if competition is more severe between than
within age-classes. After Bulmer [1], several papers have studied the dynamics of
nonlinear semelparous Leslie matrix models (e.g., see [2–6, 8, 11, 12, 15, 17]). In
particular, the papers [2–5] focus on bifurcations that occur around the extinction (or
population free) equilibrium and provide a clear mathematical formula expressing
Bulmer’s conclusion.

R. Kon (B)
Faculty of Engineering, University of Miyazaki, Gakuen Kibanadai Nishi 1-1,
Miyazaki 889-2192, Japan
e-mail: konr@cc.miyazaki-u.ac.jp
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Dynamical Systems, Springer Proceedings in Mathematics & Statistics 212,
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4 R. Kon

In such bifurcation studies, the basic reproduction number R0 is used as a bifur-
cation parameter. SinceR0 represents the expected number of newborns reproduced
by an individual over a lifetime, population persistence is unlikely if R0 < 1 and
is likely if R0 > 1. In fact, the extinction equilibrium of a nonlinear semelparous
Leslie matrix model is stable ifR0 < 1 and is unstable ifR0 > 1. Therefore, at the
critical point R0 = 1, a branch of positive equilibria is expected to bifurcate from
the extinction equilibrium. The papers [2–5] provide a condition for the existence
and the stability of such a positive bifurcating branch. Cushing and Li [2] focus on
a two-age-class semelparous Leslie matrix model and provide a condition for sta-
ble bifurcations of positive equilibria (see also Cushing [3]). Furthermore, it is also
shown that if a branch of positive equilibria is unstable, a stable branch of 2-cycles
bifurcates from the extinction equilibrium. Therefore, an occurrence of population
cycles is predicted by the instability of bifurcating positive equilibria. These studies
are extended to the case where the number of age-classes is more than two. Cushing
[4] classifies the possible types of bifurcation in a three-age-class case. Furthermore,
Cushing and Henson [5] provides a condition for stable bifurcations of positive equi-
libria that is applicable even if the number of age-classes is arbitrary large.

The purpose of this paper is to provide a simple method of dealing with such a
bifurcation problem of nonlinear semelparous Leslie matrix models. The method is
motivated by the study of Diekmann and vanGils [7], who showed that a solution of a
nonlinear semelparous Leslie matrix model can be approximated by that of a Lotka-
Volterra (differential) equation. Our method shows that the stability of bifurcating
positive equilibria can be evaluated by that of positive equilibria of Lotka-Volterrra
equations. That is, our bifurcation problem can be reduced to a stability problem
of Lotka-Volterra equations. Since a solution of a multi-species semelparous pop-
ulation model can also be approximated by that of a Lotka-Volterra equation [13,
14], we develop our method in the form applicable to multi-species models. With
this method, we rediscover the result of Cushing and Henson [5] on a nonlinear
semelparous Leslie matrix model. Furthermore, our method allows us to study high
dimensional multi-species semelparous populationmodels and to construct an exam-
ple of population cycles in a competitive system of two biennial populations without
assuming severe between-age-class competition. The population cycle occurs as a
result of temporal segregation caused by severe age-specific species competition.
This example provides a new mechanism of population cycles.

This paper is organized as follows. Section2 introduces a multi-species semel-
parous population model, which is constructed by coupling multiple semelparous
Leslie matrix models. Section3 develops a bifurcation theory for a Kolmogorov
difference equation, and shows that a certain bifurcation problem of Kolmogorov
difference equations can be reduced to a stability problem of Lotka-Volterra equa-
tions. In order to apply the bifurcation theory to our bifurcation problem, Sect. 4
shows that a multi-species semelparous population model can be transformed to
a Kolmogorov difference equation, and Sect. 5 specifies the stability problem of
Lotka-Volterra equations that we need to examine. Section6 shows that the derived
stability problem of Lotka-Volterra equations can be reduced to a stability problem of
lower dimensional Lotka-Volterra equations if lifespans of species,which are positive
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integers, are pairwise coprime. Section7 examines the case where such a reduction
does not work and constructs an example that age-specific species interactions have
an essential impact on the stability of population dynamics. The example provides a
new mechanism of population cycles. Section8 includes a concluding remark.

2 Multi-species Semelparous Population Models

Let N ≥ 1 be the number of species. Suppose that species i has ni (≥ 2) age-classes.
Then there are n1 + n2 + · · · + nN =: n age-classes in total.We consider the interac-
tion among N species expressed by the following n-dimensional nonlinear difference
equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u[i,1],k+1 = fiσ[i,ni ](uk)u[i,ni ],k
u[i,2],k+1 = s[i,1]σ[i,1](uk)u[i,1],k

...

u[i,ni ],k+1 = s[i,ni−1]σ[i,ni−1](uk)u[i,ni−1],k

i = 1, 2, . . . , N . (1)

Here uk = (u1,k, u2,k, . . . , un,k)
� (the symbol � is used for vector or matrix trans-

pose) and for i ∈ {1, 2, . . . , N } the following notation is used to simplify the
expression:

[i, j] := n0 + n1 + · · · + ni−1 + j,

where n0 = 0 and j ∈ {1, 2, . . . , ni }. Therefore, for example, uk is also written as

uk = (u[1,1],k, . . . , u[1,n1],k︸ ︷︷ ︸
n1

, u[1,2],k, . . . , u[2,n2],k︸ ︷︷ ︸
n2

, . . . , u[N ,1],k, . . . , u[N ,nN ],k
︸ ︷︷ ︸

nN

)�.

The variable u[i, j],k denotes the number of individuals of age j ∈ {1, 2, . . . , ni }
of species i ∈ {1, 2, . . . , N } at time k ∈ {0, 1, 2, . . .}. The vital rates fiσ[i,ni ] and
s[i, j]σ[i, j] denote the number of newborns produced by an individual of age ni of
species i and the probability that an individual of age j of species i survives one unit
of time, respectively. It is assumed that each species has a single reproductive age-
class. Thus each species is assumed to be semelparous. The ability of each individual
of age j of species i is characterized by a single vital rate, either fiσ[i,ni ] or s[i, j]σ[i, j]. It
is assumed that fi and s[i, j] are positive constants and σ[i, j] is a positive function of the
population vector uk . We normalize the functions σ[i, j] by σ[i, j](0) = 1. This implies
that the constants fi and s[i, j] represent vital rates at low population sizes, and thus
the functions σ[i, j] solely determine how the vital rates depend on (both conspecific
and allospecific) population sizes. Under these assumptions, the nonnegative cone
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R
n
+ := {(u1, u2, . . . , un)� ∈ R

n : ui ≥ 0 for all i ∈ {1, 2, . . . , n}}

is forward invariant, i.e., uk ∈ R
n+ for all k ≥ 1 if u0 ∈ R

n+.
If N = 1, then system (1) is reduced to a nonlinear semelparous Leslie matrix

model, which is for instance studied in [1–6, 8, 11, 12, 15, 17].

3 Bifurcations in Kolmogorov Difference Equations

This section considers a bifurcation problem of the Kolmogorov difference equation

xi,k+1 = xi,kgi (ε, xk), i = 1, 2, . . . , n, (2)

where xk = (x1,k, x2,k, . . . , xn,k)
�. This difference equation has a parameter ε ∈ R.

We assume that each gi is aC2 function defined in a neighborhood of (0, 0) ∈ R × R
n

and satisfies gi (0, 0) = 1. A vector is said to be positive (resp. negative) if all
its components are positive (resp. negative). We are concerned with the positive
equilibria of system (2), which are given by the positive vectors x satisfying the
equation g(ε, x) = 1, where 1 is a column vector whose components are all 1 and
g(ε, x) := (g1(ε, x), g2(ε, x), . . . , gn(ε, x))�. We shall construct a positive equilib-
rium of system (2) near the origin 0 and show that such a positive equilibrium has
the same stability property as a positive equilibrium of the Lotka-Volterra equation

dxi
dt

= xi

(

ri +
n∑

j=1

ai j x j

)

, i = 1, 2, . . . , n, (3)

where

ri := ∂gi
∂ε

(0, 0), ai j := ∂gi
∂x j

(0, 0).

The positive equilibria of system (3) are given by the positive vectors x satisfying
the linear equation r + Ax = 0, where r := (r1, r2, . . . , rn)� and A := (ai j ). If A
is nonsingular, i.e., det A �= 0, then the equation has the unique solution x∗ :=
−A−1r, which might not be positive. In the following theorems, the matrix A is
always assumed nonsingular. Since the situation that the equality det A = 0 holds
is negligible, the nonsingularity assumption does not impose significant restrictions
on our results.

Theorem 1 Suppose that A is nonsingular. Then there exists a constant ε0 > 0
and a unique function x̂ : (−ε0, ε0) → R

n satisfying x̂(0) = 0 and g(ε, x̂(ε)) = 1.
Furthermore, if g is a Cd function (d ≥ 1), then so is x̂.

Proof By assumption, ∂g
∂x (0, 0) = A is nonsingular. Thus the conclusion of this the-

orem is an immediate consequence of the implicit function theorem. �	
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It is clear that x̂ is an equilibrium of system (2). Furthermore, around ε = 0, the
function x̂ is written in the form

x̂(ε) = x̂(0) + ε
dx̂
dε

(0) + O(ε2)

= εx∗ + O(ε2)

since x̂(0) = 0 and dx̂
dε

(0) = −(
∂g
∂x (0, 0))

−1 ∂g
∂ε

(0, 0) = −A−1r. Therefore, a branch
of positive equilibria of system (2) bifurcates from the origin as increasing (resp.
decreasing) ε through ε = 0 if x∗ is positive (resp. negative). That is, the bifurcation
is to the right if x∗ > 0 and to the left if x∗ < 0.

The Jacobi matrix of system (3) evaluated at x∗ is given by diag(x∗)A, where
diag(x∗) denotes the diagonal matrix

⎛

⎜
⎜
⎜
⎝

x∗
1 0 · · · 0
0 x∗

2 · · · 0
...

...
...

0 0 · · · x∗
n

⎞

⎟
⎟
⎟
⎠

.

The following theorem shows that the stability of x̂ constructed in Theorem 1 can
be evaluated by the stability of diag(x∗)A. A matrix is said to be stable if all its
eigenvalues have negative real part. For convenience, we denote the stability modulus
of a matrix M by

s(M) := max{Re λ : λ is an eigenvalue of M},

where Re λ denotes the real part of λ. Then M is stable if and only if s(M) < 0.

Theorem 2 If s(diag(x∗)A) < 0 (resp. s(diag(x∗)A) > 0), then the equilibrium
x̂(ε) of system (2) is asymptotically stable (resp. unstable) for all sufficiently small
ε > 0.

Proof Since x̂(ε) satisfies g(ε, x̂(ε)) = 1, the Jacobi matrix of system (2) evaluated
at x̂(ε) is

J (x̂(ε)) := ∂

∂x
diag(x)g(ε, x)

∣
∣
∣
∣
x=x̂(ε)

=
(

diag(g(ε, x)) + diag(x)
∂g
∂x

(ε, x)
) ∣

∣
∣
x=x̂(ε)

= I + diag
(
x̂(ε)

) ∂g
∂x

(
ε, x̂(ε)

)
,

where I is the identity matrix. Around ε = 0, this is written in the form

J (x̂(ε)) = I + ε (diag(x∗)A + O(ε)).
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Suppose that s(diag(x∗)A) < 0.Thenbecause of continuous dependence of eigen-
values of a matrix on its entries, there exists a constant εs ∈ (0, ε0) such that every
eigenvalue λ(ε) of diag(x∗)A + O(ε) satisfies

∣
∣
∣
∣λ(ε) + 1

ε

∣
∣
∣
∣ <

1

ε

for all ε ∈ (0, εs). This inequality represents the situation that the disk centered at− 1
ε

with radius 1
ε
contains all eigenvalues of diag(x∗)A + O(ε) on the complex plane.

Since ε > 0, the inequality is reduced to |1 + ελ(ε)| < 1, which implies that the
spectral radius of J (x̂(ε)) is less than one. Therefore, x̂(ε) is asymptotically stable
for all ε ∈ (0, εs).

Suppose that s(diag(x∗)A) > 0. Then diag(x∗)A has an eigenvalue λu with posi-
tive real part and diag(x∗)A + O(ε) has an eigenvalue λ(ε) satisfying λ(ε) → λu as
ε → 0. Therefore, there exists a constant εu ∈ (0, ε0) such that

∣
∣
∣
∣λ(ε) + 1

ε

∣
∣
∣
∣ >

1

ε

holds for all ε ∈ (0, εu). Since ε > 0, the inequality is equivalent to |1 + ελ(ε)| > 1,
which implies that the spectral radius of J (x̂(ε)) is larger than one. Therefore, x̂(ε)
is unstable for all ε ∈ (0, εu). �	

4 Derivation of Kolmogorov Difference Equations from
System (1)

Define the basic reproduction number Ri
0 for species i by Ri

0 := s[i,1]s[i,2] . . .
s[i,ni−1] fi . This number represents the expected number of newborns reproduced
by an individual of species i per lifetime at low population sizes. We are concerned
with a bifurcation that occurs in system (1) at R1

0 = R2
0 = · · · = RN

0 = 1. Since it
is difficult to treatR1

0 ,R
2
0 , . . . ,R

N
0 as multiple independent bifurcation parameters,

we only consider the case where the vector (R1
0 ,R

2
0 , . . . ,R

N
0 )� changes along a

certain one-dimensional manifold and treat a one-parameter bifurcation problem.
More precisely, in order to make the derived Lotka-Volterra equation simple, we
choose an arbitrary fixed vector c = (c1, c2, . . . , cN )� and consider bifurcations by
changing the parameters R1

0 ,R
2
0 , . . . ,R

N
0 with maintaining the relation

(
log(R1

0 )
ν
n1 , log(R2

0 )
ν
n2 , . . . , log(RN

0 )
ν
nN

)� = ε(c1, c2, . . . , cN )�, ε ∈ R (4)

where ν is the least common multiple of n1, n2, . . . , nN , and thus species i experi-
ences ν

ni
generations within ν time steps and (Ri

0)
ν
ni represents the expected number

of descendants of species i per individual per ν time step at lowpopulation sizes. Since
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the above relation is assumed to be always satisfied when we consider a bifurcation
problem of system (1), the new parameter ε instead ofR1

0 ,R
2
0 , . . . ,R

N
0 shall be used

as a bifurcation parameter. Although our approach is practically sufficient to examine
the dynamics of system (1) with the parameters aroundR1

0 = R2
0 = · · · = RN

0 = 1,
there could exist exceptional cases that our approach is unable to treat (see Sect. 9).
Note that increase of ε implies increase ofRi

0 if ci > 0 and decrease ofRi
0 if ci < 0.

To include ε as an explicit parameter of system (1), we replace fi by e
ci ni

ν ε

s[i,1]s[i,2]...s[i,ni−1] .
Then system (1) becames

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u[i,1],k+1 = e
ci ni

ν ε

s[i,1]s[i,2]...s[i,ni−1] σ[i,ni ](uk)u[i,ni ],k
u[i,2],k+1 = s[i,1]σ[i,1](uk)u[i,1],k

...

u[i,ni ],k+1 = s[i,ni−1]σ[i,ni−1](uk)u[i,ni−1],k

i = 1, 2, . . . , N . (5)

Define

Di := diag(1, s[i,1], s[i,1]s[i,2], . . . s[i,1]s[i,2] . . . s[i,ni−1]), i = 1, 2, . . . , N ,

and D := diag(D1, D2, . . . , DN ). The rescaling of system (5) with x := D−1u gives

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x[i,1],k+1 = e
ci ni

ν
εσ[i,ni ](Dxk)x[i,ni ],k

x[i,2],k+1 = σ[i,1](Dxk)x[i,1],k
...

x[i,ni ],k+1 = σ[i,ni−1](Dxk)x[i,ni−1],k

i = 1, 2, . . . , N .

Let πi , i = 1, 2, . . . , N , be the cyclic permutation

( [i, 1] [i, 2] · · · [i, ni ]
[i, ni ] [i, 1] · · · [i, ni − 1]

)

and Pπi be its permutation matrix. The product of π1, π2, . . . , πN is denoted by π

and its permutation matrix is denoted by Pπ . Define

Si (ε, x) := Pπi diag(σ[i,1](Dx), . . . , σ[i,ni−1](Dx), e
ci ni

ν
εσ[i,ni ](Dx)), i = 1, 2, . . . , N ,

and S(ε, x) := diag(S1(ε, x), S2(ε, x), . . . , SN (ε, x)). Then the rescaled equation is
written as

xk+1 = S(ε, xk)xk .
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Let ξ(x) := S(ε, x)x. Since ν is a common multiple of the periods of the cyclic per-
mutations π1, π2, . . . , πN , the matrixG(ε, x) := S(ε, ξ ν−1(x)) . . . S(ε, ξ(x))S(ε, x)
is diagonal. Thus the map ξ ν , i.e.,

yk+1 = G(ε, yk)yk (6)

is a Kolmogorov difference equation. The behavior of yk shows the stroboscopic
behavior of xk with period ν.

5 Lotka-Volterra Equations

In the previous two sections, it was shown that system (1) is reduced to aKolmogorov
difference equation and its bifurcation problem is reduced to a stability problem of a
Lotka-Volterra equation. In this section, we shall identify the Lotka-Volterra equation
that we need to study.

Define the n × n matrix B = (bi j ) by

bi j := ∂σi

∂u j
(0),

i.e., B = ∂σ
∂u (0), where σ = (σ1, σ2, . . . , σn)

�. The parameter b[i,k][ j,l] represents the
intensity of density dependent effect from age-class l of species j to age-class k of
species i at low population sizes. The interaction between age-class k of species i
and age-class l of species j is competitive if b[i,k][ j,l] < 0 and b[ j,l][i,k] < 0, mutual-
istic if b[i,k][ j,l] > 0 and b[ j,l][i,k] > 0, and antagonistic if b[i,k][ j,l]b[ j,l][i,k] < 0 at low
population sizes. Let g = (g1, g2, . . . , gn)� be the diagonal entries of G defined in
the previous section, i.e., diag(g(ε, x)) = G(ε, x). Then it is clear that g(0, 0) = 1
holds. Furthermore, we have

∂g[i,1]
∂ε

(0, 0) = ∂g[i,2]
∂ε

(0, 0) = · · · = ∂g[i,ni ]
∂ε

(0, 0) = ci , i = 1, 2, . . . , N .

Thus gi can be written as

gi (ε, x) = exp

(

ε
∂gi
∂ε

(0, 0)
) ν−1∏

k=0

σπ k (i)(Dξ k(x)), i = 1, 2, . . . , n,
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whose partial derivative with respect to x j evaluated at (ε, x) = (0, 0) is

∂gi
∂x j

(0, 0) = ∂

∂x j
exp

(

ε
∂gi
∂ε

(0, 0)
) ν−1∏

k=0

σπ k (i)(Dξ k(x))
∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))
∂

∂x j
σπ l (i)(Dξ l(x))

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))
∂

∂u
σπ l (i)(Dξ l(x))

∂

∂x j
Dξ l(x)

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

ν−1∏

k=0
k �=l

σπ k (i)(Dξ k(x))

(
∂σ

∂u
(Dξ l(x))D

∂ξ l

∂x

)

π l (i), j

∣
∣
∣
(ε,x)=(0,0)

=
ν−1∑

l=0

(P−l
π BDPl

π )i j .

This implies

∂g
∂x

(0, 0) = BD + P−1
π BDPπ + · · · + P−ν+1

π BDPν−1
π .

Thus Theorems 1 and 2 suggest that the Lotka-Voterra equation (3) satisfying

r = (c1, c1, . . . , c1︸ ︷︷ ︸
n1

, c2, c2, . . . , c2︸ ︷︷ ︸
n2

, . . . , cN , cN , . . . , cN︸ ︷︷ ︸
nN

)�

A = BD + P−1
π BDPπ + · · · + P−ν+1

π BDPν−1
π

(7)

is helpful to study our bifurcation problem of system (5).
Each parameter in (7) has an important biological meaning. The parameters

c1, c2, . . . , cN represent the ratio of log(R1
0 )

ν
n1 , log(R2

0 )
ν
n2 , . . . , log(RN

0 )
ν
nN , inwhich

the basic reproduction numbers are comparedwith the same time scale. By definition,
the ([i, k], [ j, l])-entry of A is written as

a[i,k][ j,l] =
ν−1∑

Δ=0

(
BD

)

πΔ([i,k])πΔ([ j,l]).

Since π is the product of the cyclic permutations π1, π2, . . . , πN , every entry of B
that appears in the right-hand side of this equation has the first subscript belonging
to {[i, 1], [i, 2], . . . , [i, ni ]} and the second subscript belonging to {[ j, 1], [ j, 2], . . . ,
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[ j, n j ]}. Therefore, every a[i,k][ j,l], k = 1, 2, . . . , ni , l = 1, 2, . . . , n j , indicates the
intensity of an effect of species j on species i at low population sizes. In the subse-
quent sections, we shall see that age-specific effects of density dependence between
species i and j intricately depend on ni and n j .

The rest of this section provides some basic properties of system (3) satisfying (7).

Lemma 1 The vector r and the matrix A defined by (7) satisfy Pπr = r and
Pπ AP−1

π = A.

Proof It is clear that the first equality holds. Since Pν
π = P−ν

π = I , we have
PπBDP−1

π = P−ν+1
π BDPν−1

π . Thus

Pπ AP
−1
π = Pπ (BD + P−1

π BDPπ + · · · + P−ν+1
π BDPν−1

π )P−1
π

= A,

which shows that the second equality holds. �	
Define the N × n matrix T = (ti j ) by

ti j :=
{
1, j ∈ {[i, 1], [i, 2], . . . , [i, ni ]}
0, j /∈ {[i, 1], [i, 2], . . . , [i, ni ]}.

For an n × n matrix M = (mi j ), define the N × N matrix M̄ = (m̄i j ) by

m̄i j := 1

nin j

ni∑

k=1

n j∑

l=1

m[i,k][ j,l],

similarly, for ann-dimensional vectorv=(v1, v2, . . . , vn)
�, define the N -dimensional

vector v̄ = (v̄1, v̄2, . . . , v̄N )� by

v̄i = 1

ni

ni∑

k=1

v[i,k].

Lemma 2 Let r and A be the vector and the matrix defined by (7). Suppose that A
is nonsingular. Then x∗ = −A−1r satisfies

x∗
[i,1] = x∗

[i,2] = · · · = x∗
[i,ni ] = − 1

ni
( Ā−1r̄)i , i = 1, 2, . . . , N .

Thus r̄ + ĀT x∗ = 0 is fulfilled.
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Proof Multiplying the both sides of r + Ax∗ = 0 on the left by Pπ , we have
Pπr + Pπ AP−1

π Pπx∗ = 0. Since Pπr = r and Pπ AP−1
π = A hold, we obtain r +

APπx∗ = 0. The same argument shows that r + Ax∗ = r + APπx∗ = · · · = r +
APν−1

π x∗ = 0, i.e., Ax∗ = APπx∗ = · · · = APν−1
π x∗ = −r. Since A is nonsingular,

x∗ = Pπx∗ = · · · = Pν−1
π x∗. This shows that x∗

[i,1] = x∗
[i,2] = · · · = x∗

[i,ni ] for each
i ∈ {1, 2, . . . , N }. Then we further obtain 0 = r + Ax∗ = r̄ + Ax∗ = r̄ + ĀT x∗. �	

If N = 1, then π is a cyclic permutation of {1, 2, . . . , n}. Thus all components of
r are identical and A is a circulant matrix. In [10], the Lotka-Volterra equation with
such r and A is studied. It is called the May-Leonard system [16] if n = 3.

6 Stable Bifurcations in Multi-species Semelparous Models

By combing the results of the previous sections, we can establish theorems on bifur-
cations of positive equilibria of system (5). In the theorems of this section, we focus
on the case x∗ > 0 since the case x∗ < 0 can be examined by changing the signs of
c1, c2, . . . , cN .

Theorem 3 Assume that σ is a C2 function. Let r and A be the vector and the matrix
defined by (7). Suppose that A is nonsingular and x∗ = −A−1r > 0. Then system (5)
has a unique branch of positive equilibria bifurcating from the origin as increasing
ε through ε = 0. The bifurcation is stable if s(diag(x∗)A) < 0 and is unstable if
s(diag(x∗)A) > 0.

Proof By Theorem 1, the map ξ ν has a unique branch of positive equilibria writ-
ten in the form x̂(ε) = εx∗ + O(ε2). It is obvious that all of x̂, ξ(x̂), . . . , ξ ν−1(x̂)
are positive equilibria of ξ ν bifurcating from the origin. However, it is ensured that
x̂, ξ(x̂), . . . , ξ ν−1(x̂) are identical since a branch of positive equilibria of ξ ν bifur-
cating from the origin is unique. This implies that x̂ is a positive equilibrium of the
map ξ , i.e., system (5). The other statements follow from Theorem 2. �	
In the rest of this section, we consider the sign of s(diag(x∗)A). To derive the fol-
lowing results, a certain property of the integers n1, n2, . . . , nN plays an important
role. Two integers are said to be coprime if their greatest common divisor is 1. A set
of integers is said to be pairwise coprime if every couple of different integers in this
set is coprime.

Lemma 3 Suppose that M = (mi j ) is an n × n matrix satisfying Pπ MP−1
π = M.

If ni and n j are coprime for some disjoint i, j ∈ {1, 2, . . . , N }, then there exists a
constant μ such that m[i,k][ j,l] = μ for all k ∈ {1, 2, . . . , ni } and l ∈ {1, 2, . . . , n j }.
Proof Since π has the cycles visiting cyclically all elements of {[i, 1], [i, 2], . . . ,
[i, ni ]} and {[ j, 1], [ j, 2], . . . , [ j, n j ]}, respectively, it is sufficient to show that for
every integer Δ there exists an integer k such that
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mπ k ([i,1])π k+Δ([ j,1]) = m[i,1][ j,1].

Let Δ be an arbitrary integer. Then there exists an integer s such that π s+Δ([ j, 1]) =
[ j, 1]. Since ni and n j are coprime, {n j , 2n j , . . . , nin j } is a complete system of
incongruent residues of mod ni (e.g., see [9, Theorem 56]). Therefore, there exists
an integer t such that π tn j+s([i, 1]) = [i, 1]. For k = tn j + s, the desired equation
is satisfied as follows:

mπ k ([i,1])π k+Δ([ j,1]) = mπ
tn j+s

([i,1])π tn j+s+Δ
([ j,1])

= m[i,1]π tn j ([ j,1])
= m[i,1][ j,1].

�	
For an n × n matrix M , we denote by Mi j the ni × n j submatrix of M with

{[i, 1], [i, 2], . . . , [i, ni ]} and {[ j, 1], [ j, 2], . . . , [ j, n j ]} as the sets of row and col-
umn indices, respectively.Write an ni × n j matrixMi j (possibly i = j) in partitioned
form

Mi j =
(
m[i,1][ j,1] q1[Mi j ]�
q2[Mi j ] Q[Mi j ]

)

.

Then we obtain the following lemma.

Lemma 4 Assume that {n1, n2, . . . , nN } is pairwise coprime. Suppose that M =
(mi j ) is an n × n matrix satisfying Pπ MP−1

π = M. Then the characteristic equation
of M is given by

det

(

λI − diag(n1, n2, . . . , nN )M̄

) N∏

i=1

det

(

λI + q2[Mii ]1� − Q[Mii ]
)

= 0.

Proof Define the ni × ni matrix Hi by

Hi :=
(
1 −1�
0 I

)

,

which is nonsingular and its inverse is

H−1
i =

(
1 1�
0 I

)

.
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Then H−1
i Mi j Hj is equivalent to

(
1 1�
0 I

)(
m[i,1][ j,1] q1[Mi j ]�
q2[Mi j ] Q[Mi j ]

) (
1 −1�
0 I

)

=
(
1 1�
0 I

)(
m[i,1][ j,1] −m[i,1][ j,1]1� + q1[Mi j ]�
q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]

)

=
(
m[i,1][ j,1] + 1�q2[Mi j ] −m[i,1][ j,1]1� + q1[Mi j ]� − 1�q2[Mi j ]1� + 1�Q[Mi j ]

q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]
)

=
(
m[i,1][ j,1] + 1�q2[Mi j ] 0�

q2[Mi j ] −q2[Mi j ]1� + Q[Mi j ]
)

,

where we used the fact that each column sum of Mi j is identical to obtain the last
equality. By Lemma 3, if i �= j , then there exists a constant μi j such that all entries
of Mi j are equal to μi j . Thus if i �= j , then

H−1
i Mi j Hj =

(
niμi j 0�
μi j1 O

)

,

whereO denotes the zeromatrix.Wedefine the block diagonalmatrix H := diag(H1,

H2, . . . , HN ), whose inverse is H−1 = diag(H−1
1 , H−1

2 , . . . , H−1
N ). Then we have

H−1HM =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1 0� n1μ12 0� · · · n1μ1N 0�
q2(M11) Γ1 μ121 O · · · μ1N1 O
n2μ21 0� γ2 0� · · · n2μ2N 0�
μ211 O q2(M22) Γ2 · · · μ2N1 O

...
...

...
...

...
...

nNμN1 0� nNμN2 0� · · · γN 0�
μN11 O μN21 O · · · q2(MNN ) ΓN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where γi := m[i,1][i,1] + 1�q2[Mii ] and Γi := −q2[Mii ]1� + Q[Mii ]. Thus it is
straightforward to show that det(λI − H−1MH) is equivalent to

det
(
λI − diag(n1, n2, . . . , nN )M̄

)
N∏

i=1

det
(
λI + q2[Mii ]1� − Q[Mii ]

)

where the fact that
⎛

⎜
⎜
⎜
⎝

γ1 n1μ12 · · · n1μ1N

n2μ21 γ2 · · · n2μ2N
...

...
...

nNμN1 nNμN2 · · · γN

⎞

⎟
⎟
⎟
⎠

= diag(n1, n2, . . . , nN )M̄

is used. Thus we obtain the desired form of the characteristic equation of M . �	
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Lemma4with N = 1 shows that the characteristic equation ofMii is equivalent to

det(λI − ni m̄ii ) det(λI + q2[Mii ]1� − Q[Mii ]) = 0.

Therefore, s(Mii )<0 (resp. s(Mii )>0) if and only if both s(Q[Mii ] − q2[Mii ]1�) <

0 and m̄ii < 0 (resp. either s(Q[Mii ] − q2[Mii ]1�) > 0 or m̄ii > 0).
The following theorem shows that the stability of diag(x∗)A can be evaluated by

the stability of some matrices whose sizes are smaller than that of diag(x∗)A.

Theorem 4 Assume that {n1, n2, . . . , nN } is pairwise coprime. Let r and A be
the vector and the matrix defined by (7). Suppose that A is nonsingular, x∗ =
−A−1r > 0, and āii < 0, i = 1, 2, . . . , N. Then s(diag(x∗)A) < 0 if and only if all
of s(diag(T x∗) Ā) and s(Aii ), i = 1, 2, . . . , N, are negative, and s(diag(x∗)A) > 0
if and only if some of s(diag(T x∗) Ā) and s(Aii ), i = 1, 2, . . . , N, are positive.

Proof Since diag(x∗)A satisfies Pπdiag(x∗)AP−1
π =diag(x∗)Pπ AP−1

π = diag(x∗)A,
we can apply Lemma 4 to diag(x∗)A. Then the characteristic equation of diag(x∗)A
is equivalent to

det(λI − diag(n1, n2, . . . , nN )diag(x∗)A)

×
N∏

i=1

det

(

λI + q2[(diag(x∗)A)i i ]1� − Q[(diag(x∗)A)i i ]
)

= det

(

λI − diag(T x∗) Ā
) N∏

i=1

x̄∗
i det

(
λ

x̄∗
i

I + q2[Aii ]1� − Q[Aii ]
)

= 0.

This characteristic equation and the remark after Lemma 4 completes the proof. �	
Aswe shall see inSect. 8, the assumption that {n1, n2, . . . , nN } is pairwise coprime

is essential to derive the conclusion of Theorem 4. It is known that the probability
that two integers are coprime is 6/π2 ≈ 0.6 (see [9, Theorem 332]). Therefore, if
a community is composed of randomly chosen two semelparous species, then the
assumption of Theorem 4 is satisfied with the probability 6/π2. However, if the
number of species is large, the probability becomes very small. A natural situation
that Theorem 4 can apply might be found when we consider evolution of lifespans.
Since consecutive integers are coprime, Theorem 4 is applicable if n1, n2, . . . , nN

are consecutive integers. This situation might happen if we consider an interaction
among allied species that are produced by gradual evolution of lifespans.
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7 Interpretation of Stability Conditions

7.1 The Sign of āi i

By definition, we obtain

āi i = ν

n2i

(

b[i,1][i,1] + b[i,1][i,2]s[i,1] + · · · + b[i,1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]

+b[i,2][i,1] + b[i,2][i,2]s[i,1] + · · · + b[i,2][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]

+ · · · + b[i,ni ][i,1] + b[i,ni ][i,2]s[i,1] + · · · + b[i,ni ][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

.

Since only the entries of the diagonal block Bii of the matrix B appear in this form,
āi i represents a gross effect of conspecific density dependence within species i at
low population sizes. Thus the assumption āi i < 0 implies density-dependent self-
inhibition in species i at low population sizes. On the other hand, the inequality
āi i > 0 implies positive density dependence, i.e., Allee effect, in species i . Note that
even if āi i < 0, some b[i, j][i,k], j, k ∈ {1, 2, . . . , n1}, could be positive. Therefore,
āi i < 0 does not simply imply that all interaction within species i are competitive.

7.2 The Sign of s(Ai i )

Suppose that N = 1 and A is nonsingular. Thenn1 = n. Choose c1 = 1. ThenLemma
2 shows that x∗

1 = x∗
2 = · · · = x∗

n1 = − 1
n1ā11

. Because of this property, if ā11 < 0 then
x∗ > 0 and the sign of s(diag(x∗)A) is equivalent to that of s(A). Therefore, under
the assumption ā11 < 0, system (5) with N = 1 has a branch of positive equilibria
bifurcating from the origin as increasing R1

0 through R1
0 = 1 and the bifurcation

is stable (resp. unstable) if s(A) < 0 (resp. s(A) > 0). An application of this result
to multi-species cases shows that, under the assumption āi i < 0, i = 1, 2, . . . , N ,
s(Aii ) < 0 implies that each single-species subsystem has a stable bifurcation of
positive equilibria when all species are isolated from each other.

If all interactions within species i are competitive, i.e., b[i, j][i,k] < 0 for every
j, k ∈ {1, 2, . . . , ni }, then s(Aii ) < 0 implies that, within species i , competition is
more severewithin than between age-classes. In fact, since thematrix Aii is circulant,
its eigenvalues are

λk =
ni−1∑

j=0

κ j e
2π

√−1
ni

jk = κ0 +
ni−1∑

j=1

κ j e
2π

√−1
ni

jk
, k = 0, 1, . . . , ni − 1,
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where
√−1 denotes the imaginary unit and (κ0, κ1, . . . , κni−1) is the first row of the

matrix Aii , i.e.,

κ0 := ν

ni

(

b[i,1][i,1] + b[i,2][i,2]s[i,1] + · · · + b[i,ni ][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

κ1 := ν

ni

(

b[i,ni ][i,1] + b[i,1][i,2]s[i,1] + · · · + b[i,ni−1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

...

κni−1 := ν

ni

(

b[i,2][i,1] + b[i,3][i,2]s[i,1] + · · · + b[i,1][i,ni ]s[i,1]s[i,2] . . . s[i,ni−1]
)

.

By definition, s(Aii ) < 0 if and only ifRe λk < 0 for all k = 0, 1, . . . , ni − 1. These
inequalities clearly hold if competition between age-classes is weak, i.e., all b[i, j][i,k],
j �= k, are sufficiently small since κ0 < 0 holds when all interaction within species
i are competitive and κ0 is independent of b[i, j][i,k], j �= k. The same conclusion is
obtained in [5] and its Table1 gives exact stability criteria for ni = 2, 3, . . . , 6.

7.3 The Sign of s(Diag(Tx∗) Ā)

We shall show that if s(diag(T x∗) Ā) < 0 (resp. s(diag(T x∗) Ā) > 0), then the N -
species community in system (5) is evaluated as stable (resp. unstable) when each
species is assumed to be fixed at a certain age-distribution. Define the vector di , i =
1, 2, . . . , N , by di = (1, s[i,1], . . . , s[i,1]s[i,2] . . . s[i,ni−1])�. Then di is an eigenvector
of the matrix

Li =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0 1
s[i,1]s[i,2]...s[i,ni−1]

s[i,1] 0 · · · 0 0
...

...
...

...

0 0 · · · s[i,ni−1] 0

⎞

⎟
⎟
⎟
⎠

associated with its dominant eigenvalue 1. This matrix is a Leslie matrix for a semel-
parous population whose basic reproduction number is 1. Let H be the plane spanned
by di , i = 1, 2, . . . , N . Then since each di is an eigenvector of Li , the plane H is
invariant under the linearized system of (5) at the origin when ε = 0. Suppose that uk
is on the plane H . Then each species i has the age-distribution parallel to di at time
k. Define wk = (w1,k, w2,k, . . . , wN ,k)

� by wk := T D−1uk . The i-th component of
wk denotes a weighted total population size of species i at time k. Since uk is on the
plane H , we have

u[i,1],k = u[i,2],k
s[i,1]

= · · · = u[i,ni ],k
s[i,1]s[i,2] . . . s[i,ni−1]

= wi,k

ni
, i = 1, 2, . . . , N .
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By Eq.(5), the weighted total population size of species i at time k + 1 is given by

wi,k+1 = hi (ε,wk)wi,k,

where

hi (ε,wk) := 1

ni

(

σ[i,1](uk) + σ[i,2](uk) + · · · + e
ci ni

ν
εσ[i,ni ](uk)

)

.

Since uk+1 might not be on the plane H , wk+2 is not given by iterating this Kol-
mogorov difference equation. However, it is used to estimate the average effect of
species interactions when each species i has the age-distribution parallel to di . In
fact, we obtain

∂hi
∂ε

(
0, 0

) = ci
ν

,
∂hi
∂w j

(
0, 0

) = āi j
ν

,

which shows that the species interactions can be modeled by the N -dimensional
Lotka-Volterra equation

ν
dyi
dt

= yi

(

ci +
N∑

j=1

āi j y j

)

, i = 1, 2, . . . , N

as long as ε > 0 is very small and each species i has the age-distribution parallel
to di . In this unstructured model, the N species coexist (resp. cannot coexist) stably
at a positive equilibrium if s(diag(T x∗) Ā) < 0 (resp. s(diag(T x∗) Ā) > 0). There-
fore, roughly speaking, Theorem 4 shows that the unstructured model derived above
under the assumption that each species i has the fixed age-distribution parallel to di
correctly evaluates the stability of bifurcations in system (5) if all species have stable
dynamics when they are isolated from each other (i.e., s(Aii ) < 0, i = 1, 2, . . . , N )
and {n1, n2, . . . , nN } is pairwise coprime.

8 Examples of Instability

Theorem 4 shows that, under the condition that {n1, n2, . . . , nN } is pairwise coprime,
āi i < 0, i = 1, 2 . . . , N , and x∗ = −A−1r > 0, the stability problem of the positive
equilibrium of (5) bifurcating from the origin is reduced to that of N + 1 matrices,
Aii , i = 1, 2, . . . , N , and diag(T x∗) Ā. Since their sizes are usually much smaller
than that of diag(x∗)A, this reduction is useful. However, if {n1, n2, . . . , nN } is not
pairwise coprime, this simple reduction does not work. This section focuses on this
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point. We shall show that system (5) can posses an unstable branch of positive
equilibria even if all of Aii , i = 1, 2, . . . , N , and diag(T x∗) Ā are stable.

To this end, we consider the case where N = 2 and n1 = n2 = 2. Then n1 and
n2 are not coprime and their least common multiple is ν = 2. The vector r and the
matrix A given by (7) can be rewritten as

r =

⎛

⎜
⎜
⎝

c1
c1
c2
c2

⎞

⎟
⎟
⎠ , A =

⎛

⎜
⎜
⎝

−k1 −k2 −α1 −α2

−k2 −k1 −α2 −α1

−α3 −α4 −k3 −k4
−α4 −α3 −k4 −k3

⎞

⎟
⎟
⎠ ,

where every constant is assumed to be positive. Then ā11 = − k1+k2
2 < 0 and ā22 =

− k3+k4
2 < 0 are satisfied.
Suppose that A is nonsingular. Then the equation r + Ax = 0 has a unique solu-

tion x∗. Note that we can control the sign of x∗ by choosing suitable signs of c1 and
c2. By Lemma 2, x∗ is written as (w1

2 , w1
2 , w2

2 , w2
2 )�, where (w1, w2)

� = T x∗. We
shall show that diag(x∗)A can be destabilized under the following assumption:

(A): A11 =
(−k1 −k2

−k2 −k1

)

, A22 =
(−k3 −k4

−k4 −k3

)

,

and diag(T x∗) Ā =
(− k1+k2

2 w1 −α1+α2
2 w1

−α3+α4
2 w2 − k3+k4

2 w2

)

are stable.

Since tr A11 < 0 and tr A22 < 0 are satisfied, the stability conditions for A11 and A22

are reduced to
k1 > k2 and k3 > k4. (8)

By the definition of A, the inequality implies that in each species competition
between age-classes are more severe than within age-classes. Furthermore, since
tr diag(T x∗) Ā < 0 is satisfied, the condition for s(diag(T x∗) Ā) < 0 is reduced to

(k1 + k2)(k3 + k4) > (α1 + α2)(α3 + α4), (9)

which shows that competition between species is more severe than within species
(see Sect. 7.3). In order to destabilize diag(x∗)A, let us examine the characteristic
polynomial det(λI − diag(x∗)A), which is reduced to

det(λI − diag(T x∗) Ā) det(λI − Ã),

where

Ã := 1

2
diag

(

T x∗
)(−k1 + k2 −α1 + α2

−α3 + α4 −k3 + k4

)

.

Since diag(T x∗) Ā is assumed to be stable, diag(x∗)A can be destabilized if Ã can
be destabilized. By Eq. (8), tr Ã < 0 holds, but the sign of det Ã is not determined.
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Therefore, if the set of parameters satisfying (8), (9) and

(k1 − k2)(k3 − k4) < (α1 − α2)(α3 − α4) (10)

is nonempty, then system (5) can possess an unstable branch of a positive equilibria
even if A11, A22 and diag(T x∗) Ā are stable.

Figures1 and 2 give such examples. In the examples, it is assumed the nonlinearity
is of Beverton-Holt type

σi (u) = 1

1 + (Bu)i
, i = 1, 2, . . . , n.

To construct an example of system (5) satisfying (8), (9), and (10), we need to
determine s1, s2, c1, c2, and B. We suppose that s1 = s2 = 0.9 and c1 = c2 = 1 (i.e.,
R1

0 = R2
0 = eε). Furthermore, we suppose that

Fig. 1 Bifurcation diagram for system (5) with N = 2 and n1 = n2 = 2. In both panels, the hor-
izontal axes denote eε (= R1

0 = R2
0 ) and the vertical axes denote u1 + u2 and u3 + u4 in the left

and right panels, respectively. The parameters are s1 = s3 = 0.9, c1 = c2 = 1, k1 = 4K , k2 = 3K ,
k3 = 3K , k4 = 2K , α1 = 3K , α2 = K , α3 = 3K , α4 = K , where K = 10−3

Fig. 2 Bifurcation diagram for system (5) with N = 2 and n1 = n2 = 2. In both panels, the hor-
izontal axes denote eε (= R1

0 = R2
0 ) and the vertical axes denote u1 + u2 and u3 + u4 in the left

and right panels, respectively. The parameters are s1 = s3 = 0.9, c1 = c2 = 1, k1 = 4K , k2 = 3K ,
k3 = 3K , k4 = 2K , α1 = K , α2 = 3K , α3 = K , α4 = 3K , where K = 10−3
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Fig. 3 Dynamics of system (5) with N = 2 and n1 = n2 = 2. The parameters are s1 = s3 = 0.9,
c1 = c2 = 1, eε = 10 (= R1

0 = R2
0 ), k1 = 4K , k2 = 3K , k3 = 3K , k4 = 2K , α1 = 3K , α2 = K ,

α3 = 3K ,α4 = K , where K = 10−3. The horizontal axes denote time k. The black andwhite circles
denote u1,k and u2,k , respectively. The black and white triangles denote u3,k and u4,k , respectively.
The left panel shows the transient dynamics and the right panel shows the ultimate dynamics

Fig. 4 Dynamics of system (5) with N = 2 and n1 = n2 = 2. The parameters are s1 = s3 = 0.9,
c1 = c2 = 1, eε = 10 (= R1

0 = R2
0 ), k1 = 4K , k2 = 3K , k3 = 3K , k4 = 2K , α1 = K , α2 = 3K ,

α3 = K ,α4 = 3K , where K = 10−3. The horizontal axes denote time k. The black andwhite circles
denote u1,k and u2,k , respectively. The black and white triangles denote u3,k and u4,k , respectively.
The left panel shows the transient dynamics and the right panel shows the ultimate dynamics

Fig. 5 Dynamics of system (5) with N = 2 and n1 = n2 = 2 when two species are isolated, i.e.,
α1 = α2 = α3 = α4 = 0. All other parameters are the same as in Figs. 3 and 4. The horizontal axes
denote time k. The black and white circles denote u1,k and u2,k , respectively. The black and white
triangles denote u3,k and u4,k , respectively. The left panels show the transient dynamics and the
right panels shows the ultimate dynamics
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B = 1

2

⎛

⎜
⎜
⎜
⎝

−k1 − k2
s1

−α1 −α2
s3−k2 − k1

s1
−α2 −α1

s3−α3 −α4
s1

−k3 − k4
s3−α4 −α3

s1
−k4 − k3

s3

⎞

⎟
⎟
⎟
⎠

.

Then Eq. (7) yields the matrix A shown above. The values of α1, . . . , α4, k1, . . . , k4
are given in the figure legends of Figs. 1 and 2. They show bifurcation diagrams
for system (5). In each bifurcation diagram, system (5) does not have a stable pos-
itive equilibrium bifurcating from the origin and is settled in a 2-cycle. In Fig. 1,
α1 > α2 and α3 > α4 are satisfied. This condition implies that two species compete
severely between the same level of age-classes. As shown in Fig. 3, this case leads
to coexistence of two species with temporal segregation between the same level of
age-classes. In Fig. 2, α1 < α2 and α3 < α4 are satisfied. This condition implies that
two species compete severely between the different level of age-classes. As shown
in Fig. 4, this case leads to coexistence of two species with temporal segregation
between the different level of age-classes. Figure 5 shows the dynamics of species
1 and 2, respectively, when they are isolated from each other. All parameters are the
same as in Figs. 3 and 4 except α1, . . . , α4. Thus this numerical simulation shows
that age-specific species competition is an essential factor causing the population
cycles observed in Figs. 3 and 4.

9 Concluding Remarks

This paper studied the dynamics of a multi-species semelparous population model,
which is described by coupling multiple nonlinear semelparous Leslie matrix mod-
els. We focused on bifurcations of the extinction equilibrium and proposed a simple
method of evaluating the stability of a branch of positive equilibria bifurcating from
the extinction equilibrium. The method reduces the bifurcation problem into a sta-
bility problem of Lotka-Volterra equations. Using this reduction method, we found
a population cycle in a competitive system composed of two biennial species. The
mechanism of producing this population cycle is new in the sense that it is produced
without either severe between-age-class competition or predator-prey like species
interaction. It is a future problem to classify all possible dynamics of such a com-
petitive system.

Our study provides a mathematical basis to some preceding studies. In [13, 14],
the Lotka-Volterra equation with A and r given by (7) is derived from system (1).
Our study was motivated by the study by Diekmann and van Gils [7], who derived a
Lotka-Volterra equation with cyclic symmetry from a nonlinear semelparous Leslie
matrix model. The three preceding studies do not show how the derived Lotka-
Volterra equation reflects the dynamical behavior of the original single- or multi-
species semelparous population model. However our study revealed that the derived
Lotka-Volterra equation can be used to examine the stability of a branch of positive
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Fig. 6 The

(log(R1
0 )

ν
n1 , log(R2

0 )
ν
n2 )-

parameter plane with an
open parameter region R
with a cusp at the origin

equilibria of the original model bifurcating the extinction equilibrium. Furthermore,
our result rediscovered the result by Cushing and Henson [5], who obtained a con-
dition for stable bifurcation of positive equilibria in nonlinear semelparous Leslie
matrix models (see Sect. 7.2).

In our bifurcation study,we focused on a bifurcation that occurs at the critical point
R1

0 = R2
0 = · · · = RN

0 = 1. In order to avoid treating a multi-parameter bifurcation
problem, we perturb the parametersR1

0 ,R
2
0 , . . . ,R

N
0 with maintaining the relation

(4). This approach is practically sufficient to examine the dynamics of system (1)with
the parameter around the critical point. However there could exist exceptional cases
that our approach is unable to treat. Figure6 shows the (log(R1

0 )
ν
n1 , log(R2

0 )
ν
n2 )-

parameter plane with an open parameter region R with a cusp at the origin. It is clear
that any neighborhood of the origin intersects with R. However, for any vector c,
there exists a constant ε0 > 0 such that εc /∈ R for all ε ∈ (0, ε0). This implies that
our approach cannot detect the dynamics in such a region. Therefore, in order to
reveal the dynamics of system (1) in a neighborhood of the origin of the parameter
plane, we need to consider a multi-parameter bifurcation problem. Whether or not
the region that our approach cannot detect exists remains an open question.
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Dichotomy Spectra of Nonautonomous
Linear Integrodifference Equations

Christian Pötzsche

Abstract We give examples of dichotomy spectra for nonautonomous linear dif-
ference equations in infinite-dimensional spaces. Particular focus is on the spectrum
of integrodifference equations having compact coefficients. Concrete systems with
explicitly known spectra are discussed for several purposes: (1) They yield refer-
ence examples for numerical approximation schemes. (2) The asymptotic behavior
of spectral intervals is tackled illustrating their merging.

Keywords Integrodifference equations · Dichotomy spectrum · Sacker–Sell
spectrum

1 Motivation and Introduction

Over the last decades, integrodifference equations (IDEs, for short) became popular
models in theoretical ecology, since they provide a flexible tool to describe the growth
anddispersal of populationswith discrete nonoverlappinggenerations. In the simplest
case, where growth precedes dispersal, they are of Hammerstein type

ut+1(x) =
∫

Ω

kt (x, y) ft (y, ut (y)) dy for all t ∈ Z, x ∈ Ω (1)

(see [17]). Here, the real-valued function ut represents the density of a population
at discrete time t over some spatial habitat Ω ⊆ R

κ , the kernels kt are probabil-
ity density functions describing the dispersal and ft is a growth function of e.g.
Beverton–Holt or Ricker type. Both functions kt and ft are allowed to depend on
time in order to include temporally changing environments into our analysis; we refer
to [16] for a concrete application. Typical state spaces for (1) are the continuous or
the p-integrable functions over Ω .

C. Pötzsche (B)
Institut für Mathematik, Universität Klagenfurt, 9020 Klagenfurt, Austria
e-mail: christian.poetzsche@aau.at

© Springer Nature Singapore Pte Ltd. 2017
S. Elaydi et al. (eds.), Advances in Difference Equations and Discrete
Dynamical Systems, Springer Proceedings in Mathematics & Statistics 212,
DOI 10.1007/978-981-10-6409-8_2

27



28 C. Pötzsche

Apparently, linear IDEs are of fundamental nature. First, they describeMalthusian
growth ft (y, u) = ct (y)u with ambient growth functions ct . Second, and more
importantly, when linearizing (1) along a reference solution (φ∗

t )t∈Z, one arrives at a
linear variational equation

vt+1(x) =
∫

Ω

kt (x, y)D2 ft (y, φ∗
t (y))vt (y) dy for all t ∈ Z, x ∈ Ω. (2)

This is a nonautonomous linear difference equation in the infinite-dimensional state
space of (1) and alone a local analysis near φ∗ requires a thorough insight into
the dynamical behavior of (2). Theoretically the dichotomy spectrum Σ ⊆ (0,∞)

(also denoted as dynamical or Sacker–Sell spectrum) of (2) provides such an insight
and hence an adequate “linear algebra” well-suited to establish a geometric theory
of nonautonomous difference equation (cf. [20]) and particularly (1). In terms of
spectral intervals it indeed gives nonautonomous counterparts to eigenvalue moduli,
while the spectral bundles extend (generalized) eigenspaces to a time-variant setting.
Specific applications of the dichotomy spectrum are as follows:

• The solutionφ∗ is uniformly asymptotically stable, if and only ifΣ ⊆ (0, 1) holds,
while a spectral interval in (1,∞) implies instability.

• If 1 /∈ Σ , then the solution φ∗ is robust and persists locally as unique bounded
entire solution to (1) under variation of the system.

• For each gap inΣ one can construct a pair of invariant fiber bundles, which gener-
alize the classical hierarchy of invariant manifolds to a nonautonomous setting. In
case 1 ∈ Σ stability is determined by the behavior on such a center fiber bundle.
Hence, the gaps determine the number of invariant fiber bundles corresponding to
an entire solution φ∗ to (1).

While the dichotomy spectrum dates back to [4, 25], a detailed analysis of its
structure for difference equations in infinite-dimensional spaces is of more recent
origin [24]. Nevertheless the motivation for this text is two-fold: First, already in
finite dimensions only numerical methods allow an approximation of the spectrum
(see [15]). It is thus handy to have a class of reference exampleswith explicitly known
spectra available in order to verify computational methods. Second, we illustrate the
structure of several spectra arising for nonautonomous IDEs and investigate the
asymptotics of their spectral intervals.

The organization of this paper is as follows: We begin reviewing the dichotomy
spectrum and some of its central properties for difference equations in infinite-
dimensional state spaces. Particular focus is on the situation of compact operators,
which was established in [24]. We then concentrate on operators having a discrete
spectrum and provide the spectra for associate systems with multiplicative time-
varying perturbations. As concrete application we consider IDEs. Sufficient criteria
for their well-definedness in L p- and C-spaces are quoted, we address the asymp-
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totic behavior of the spectral intervals accumulating at 0, and finally present operators
with explicitly known spectra or at least explicitly known asymptotics. The latter case
applies to various equations relevant in applications.

As reference for difference equations in Banach spaces we mention [11, 20].
Corresponding results for nonautonomous parabolic evolutionary equations were
obtained in [23].

Notation

LetK be one of the fieldsR orC. The Kronecker symbol is denoted by δkl . A discrete
interval I is the intersection of a real interval withZ, i.e. a set of consecutive integers.
We write I′ : = {t ∈ I : t + 1 ∈ I} and suppose throughout that I is unbounded. For
nonempty subsets A, B ⊆ R and λ ∈ R let us abbreviate

AB : = {ab ∈ R : a ∈ A, b ∈ B} , λA : = {λa ∈ R : a ∈ A} .

Unless further noted, X, Y are Banach spaces, resp. their complexification, if spec-
tral theoretical matters are addressed. Let X ′ be the dual space of X with dual-
ity pairing 〈·, ·〉. The bounded linear maps from X to Y are denoted by L(X, Y ),
L(X) : =L(X, X) and IX is the identity mapping on X . We write N (T ) : =T −1({0})
for the kernel and R(T ) : =T X for the range of T ∈ L(X, Y ). The spectrum of
S ∈ L(X) is σ(S) ⊂ C.

A subset A ⊆ I × X is called a nonautonomous set, if all t-fibers

A (t) : = {x ∈ X : (t, x) ∈ A } , t ∈ I

are nonempty. One speaks of a vector bundle V ⊆ I × X , if every fiber V (t) ⊆ X
is a linear subspace and in case all V (t) have the same dimension, it determines the
dimension dim V of V . Constant vector bundles are of the form V = I × X0 with
a subspace X0 ⊆ X and particular examples are

O : =I × {0} , X : =I × X.

2 Dichotomy Spectrum

Given a sequence (Kt )t∈I′ of bounded linear operators in L(X) as coefficients, we
consider linear nonautonomous equations

ut+1 = Kt ut (L)

in an infinite-dimensional Banach space X . A vector bundle V is called forward
invariant resp. invariant, providedKtV (t) ⊆ V (t + 1) orKtV (t) = V (t + 1) hold
for all t ∈ I

′. Their evolution operator is the mapping
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ΦK : {(t, s) ∈ I × I : s ≤ t} → L(X), ΦK(t, s) : =
{
Kt−1 · · ·Ks, s < t,

IX , s = t.

For simplicity we suppose from now on that (L) has bounded (forward) growth, i.e.

α0 : = sup
t∈I′

‖Kt‖ < ∞. (3)

One says a linear difference equation (L) has an exponential dichotomy (ED for short,
cf. [14, p. 229, Definition 7.6.4]) on I, if there exists a projector P : I → L(X) and
reals K ≥ 1, α ∈ (0, 1) such that

• Kt P(t) = P(t + 1)Kt for all t ∈ I
′ (P is an invariant projector)

• Φ̄K(t, s) : =ΦK(t, s)|N (P(s)) : N (P(s)) → N (P(t)) is a topological isomor-
phism for s < t1

• ‖ΦK(t, s)P(s)‖ ≤ Kαt−s and
∥∥Φ̄K(s, t) [IX − P(t)]

∥∥ ≤ Kαt−s for s ≤ t .

The dichotomy spectrum of (L) is defined as

ΣI(K) : = {
γ > 0 : ut+1 = γ −1Kt ut admits no ED on I

}

andρI(K) : =(0,∞)\ΣI(K) denotes the dichotomy resolvent. If the discrete interval
I is fixed, then we simply write Σ(K) resp. ρ(K).

Due to the bounded growth (3) one hasΣ(K) ⊆ (0, α0]. The components ofΣ(K)

are called spectral intervals and the dominant spectral interval contains the largest
elements. If Σ(K) consists of isolated points, one speaks of a discrete spectrum.

Essential properties of the dichotomy spectrum can be summarized as follows:

• Σ(K) ∪ {0} is compact, ΣI(K) ⊆ ΣZ(K) for unbounded subintervals I ⊆ Z and

Σ(λK) = |λ| Σ(K) for all λ ∈ C \ {0}

• It is upper-semicontinuous, i.e. for every ε > 0 there exists a δ > 0 such that every
sequence (K̄t )t∈I′ in L(X) fulfills

sup
t∈I′

∥∥K̄t − Kt

∥∥ < δ ⇒ Σ(K̄) ⊆ Bε(Σ(K))

• Σ(K) is invariant under kinematic similarity, i.e. if there exists a sequence (St )t∈I
of invertible operators St ∈ L(X, Y ) with supt∈I max

{‖St‖ ,
∥∥S−1

t

∥∥} < ∞, then
(L) and vt+1 = S−1

t+1KtSt vt have the same dichotomy spectrum. The sequence
(St )t∈I is called Lyapunov transformation.

1For this it suffices to assume thatKt |N (P(t)) : N (P(t)) → N (P(t +1)), t ∈ I
′, are isomorphisms.
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Finally, for every γ > 0 we define the vector bundles

V +
γ :=

{
(τ, ξ) ∈ X : sup

τ≤t
‖ΦK(t, τ )ξ‖ γ τ−t < ∞

}
,

V −
γ :=

{
(τ, ξ) ∈ X : there exists a solution (φt )t∈I of (L)

with φτ = ξ and supτ≤t ‖φt‖ γ τ−t < ∞
}

;

in case γ is chosen from the dichotomy resolvent ρ(K), one denotesV +
γ as a pseudo-

stable and V −
γ as a pseudo-unstable bundle of (L).

The subsequent classes of linear difference equations allow more detailed state-
ments and insights into the structure of their dichotomy spectrum:

2.1 Periodic Difference Equations

Let (L) be p-periodic, i.e. there exists a p ∈ N such that Kt = Kt+p for all t ∈ Z.
Then the dichotomy spectrum reads as

ΣZ(K) = |{λ ∈ C : λ ∈ σ(ΦK(p, 0))} \ {0}|1/p (4)

and in particular for autonomous equations (p = 1) it consists of the positive moduli
of the spectral points for K. The pseudo-stable and -unstable bundles of (L) can be
characterized in terms of Riesz projections (see [8, p. 30, Theorem 1.5.4]) associated
to the components of σ(ΦK(p, 0)), but need not to be finite-dimensional.

Rather explicit information can be obtained in

Example 1 (multiplication operator) Suppose (Ω,Σ,μ) is a σ -finitemeasure space
and 1 ≤ p < ∞. For K-valued functions at ∈ L∞(Ω,μ) we define the essential
range

ρess(at ) : =
{
λ ∈ C : μ

({
x ∈ Ω :

∣∣∣at (x) − λ

∣∣∣ < ε
})

�= 0 for all ε > 0
}

for all t ∈ I
′. On X = L p(Ω,μ) the multiplication operators

Kt ∈ L(L p(Ω,μ)), [Kt v](x) : =at (x)v(x) for all t ∈ I
′, x ∈ Ω

are well-defined and yield an evolution operator of (L) given by

[ΦK(t, τ )v](x) =
(

t−1∏
s=τ

as(x)

)
v(x) for all τ ≤ t, v ∈ L p(Ω,μ),
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which is a multiplication operator again. In the periodic situation at = at+p, t ∈ Z,
the spectrum of ΦK(p, 0) is the essential range of the product

∏p−1
s=0 as : Ω → K

(see [10, pp. 30ff]) and due to (4) we arrive at

Σ(K) =
∣∣∣∣∣ρess

(p−1∏
s=0

as

)
\ {0}

∣∣∣∣∣
1/p

.

Example 2 (shift operator) Suppose that (Bt )t∈Z is a bounded sequence in L(Y ) such
that the difference equation yt+1 = Bt yt in Y has a nonempty dichotomy spectrum
ΣZ(B). Furthermore, let X : =�p(Y ) be the space of p-summable sequences (yt )t∈Z
in Y for p ∈ [1,∞] and define the shift

K ∈ L(�p(Y )), [Kv]s : =Bs−1vs−1 for all s ∈ Z, v ∈ �p(Y ).

In [21, Theorem 1] it is shown that σ(K) = {λ ∈ C : |λ| ∈ ΣZ(B)} and we hence
obtain from (4) for p = 1 that ΣI(K) = ΣZ(B).

2.2 Compact Difference Equations

Let (L) be compact, i.e. the coefficients Kt ∈ L(X), t ∈ I
′, are compact operators.

Due to our global bounded growth assumption (3) the spectrumΣ(K) is bounded
above by α0 and there exists a γ0 > 0 such that (γ0,∞) ⊆ ρ(K); we set

V +
γ0

: =X , V −
γ0

: =O.

Furthermore, in [24, Corollary 4.13] it is shown that Σ(K) is a union of at most
countably many intervals which can only accumulate at a number μ̄ ≥ 0 and that
the pseudo-unstable bundles V −

γ are finite-dimensional. In detail, one of the cases
holds:

(S0) Σ(K) = ∅
(S1) Σ(K) consists of finitely many closed spectral intervals:

(S1
1) There exists a k ∈ N and reals 0 < αk ≤ βk < . . . < α1 ≤ β1 ≤ α0 with

Σ(K) =
k⋃

j=1

[α j , β j ]

and we choose reals γ j ∈ (β j+1, α j ), 1 ≤ j < k, and γk ∈ (0, αk) (see Fig. 1)
(S2

1) There exists a k ∈ N0 and reals 0 < βk+1 < αk ≤ βk < . . . < α1

≤ β1 ≤ α0 with
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R
α0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1γk

Fig. 1 Case (S1
1) with k compact spectral intervals

R
α0α1 β1α2 β2αk−1 = βk−1αk βk0

γ0γ1γ2γk−1

βk+1

γk

Fig. 2 Case (S2
1) with k + 1 spectral intervals

Σ(K) = (0, βk+1] ∪
k⋃

j=1

[α j , β j ]

and we choose reals γ j ∈ (β j+1, α j ), 1 ≤ j ≤ k (see Fig. 2).
In both cases the spectral bundles

X0 : =V −
γ0

, X j : =V +
γ j−1

∩ V −
γ j

�= O for all 1 ≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the finite Whitney
sum

X =
k⊕

j=0

X j ⊕ V +
γk

and the bundle V −
γk

= ⊕k
j=0 X j satisfying k ≤ dim V −

γk
= ∑k

j=0 dimX j

(S2) Σ(K) consists of infinitely many spectral intervals: There exist strictly
decreasing sequences (α j ) j∈N, (β j ) j∈N such that

Σ(K) = σ∞ ∪
∞⋃
j=1

[α j , β j ],

where μ̄ < α j ≤ β j , lim j→∞ α j = μ̄, σ∞ = ∅ for μ̄ = 0 and σ∞ = (0, μ̄]
otherwise (see Fig. 3). If we choose reals γ j ∈ (β j+1, α j ), j ∈ N, then the spectral
bundles

X0 : =V −
γ0

, X j : =V +
γ j−1

∩ V −
γ j

�= O for all j ∈ N

are finite-dimensional invariant vector bundles of (L) and for every k ∈ N one has
the finite Whitney sum



34 C. Pötzsche

R
α0α1 β1α2 β20

γ0γ1γ2γj

αj βj

Fig. 3 Case (S2) with infinitely many spectral intervals [α j , β j ] accumulating at μ̄ = 0 i.e.
σ∞ = ∅

X =
k⊕

j=0

X j ⊕ V +
γk

and the bundle V −
γk

= ⊕k
j=0 X j satisfying k ≤ dim V −

γk
= ∑k

j=0 dimX j .

By construction, the dominant interval is [α1, β1]. The order of a spectral interval
with maximum β j is the dimension of the associate spectral bundle X j ; a simple
spectral interval has order 1.

2.3 Finite-Rank Difference Equations

Let (L) be of finite rank, i.e. there exists a finite-dimensional subspace X0 ⊂ X such
that R(Kt ) = X0 for all t ∈ I

′. In particular, everyKt is compact and (L) essentially
behave like finite-dimensional equations.

If d : = dim X0, then Σ(K) is a union of at most d intervals (cf.
[24, Theorem 4.14]), i.e. either (S0) holds or Σ(K) consists of k ∈ {1, . . . , d}
spectral intervals: There exist reals 0 < αk ≤ βk < . . . < α1 ≤ β1 ≤ α0 with closed
spectral intervals:

Σ(K) =
{

[αk, βk]
(0, βk] ∪

k−1⋃
j=1

[α j , β j ]. (5)

If possible, we choose γk ∈ ρ(K) such that (0, γk) ⊆ ρ(K) and otherwise, we define
V +

γk
= O and V −

γk
= X . Then Xk+1 = V +

γk
and X0 = V −

γ0
are invariant vector

bundles of (L). For k > 1 we choose reals γ j ∈ (β j+1, a j ), 1 ≤ j < k. Then the sets

X j : =V +
γ j−1

∩ V −
γ j

�= O for all 1 ≤ j ≤ k

are finite-dimensional invariant vector bundles of (L) with the Whitney sum

X =
k+1⊕
j=0

X j .
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Remark 1 Note that the above situation differs from the dichotomy spectrum intro-
duced in [4] for finite-dimensional equations. Indeed, [4] work with the dichotomy
concept from [3], which is not �∞-robust and yields a finer spectrum than ours.

2.4 Finite-Dimensional and Difference Equations

Suppose that (Bt )t∈I′ is a bounded sequence in Kn×n and consider a linear equation

yt+1 = Bt yt (6)

with evolution operator ΦB(t, s) ∈ K
n×n , s ≤ t . Its dichotomy spectrum Σ(B) fits

in the above framework of Sect. 2.3. Each spectral interval in (5) corresponds to an
invariant vector bundle

Y j : = {
(t, x) ∈ I × K

n : x ∈ R(p j (t))
}

for all 1 ≤ j ≤ k,

where p j : I → L(Kn) is an invariant projector for (6), and I × K
n = ⊕k

j=1 Y j .
For scalar difference equations the following notion of Bohl exponents is central.

Assume (at )t∈I′ is a tempered sequence inK, i.e. it satisfies at �= 0 for all t ∈ I
′ and

sup
t∈I′

max
{|at | ,

∣∣a−1
t

∣∣} < ∞.

Let IT (I) : = {J ⊆ I : J is a discrete interval with #J = T } denote the family of all
discrete subintervals of Iwith T ∈ N elements. The upper resp. lower Bohl exponent
of a are given by

β(a) : = lim
T →∞ sup

J∈IT (I)

T

√∣∣∣∏
s∈J

as

∣∣∣, β(a) : = lim
T →∞ inf

J∈IT (I)
T

√∣∣∣∏
s∈J

as

∣∣∣

and one clearly has the homogeneity relations

β(λa) = |λ| β(a), β(λa) = |λ| β(a) for all λ ∈ C \ {0} .

Especially for Kt : =at IX , t ∈ I, one has the spectrum

Σ(K) = [β(a), β(a)]

and we refer to [22] for further properties of Bohl exponents.
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3 Operators with Discrete Spectrum

Assume now that K ∈ L(X) is a single linear operator. Given an eigenvalue λ ∈ C

of K, we denote its order as

oλ = min
{
o ∈ N : N (K − λIX )o = N (K − λIX )o+1

}

and our future analysis is based on the following properties:

• (H1) There exist nonempty discrete intervals J(K) ⊆ I (K) ⊆ N such that

– σ(K) \ {0} = {λi : i ∈ I (K)} consists of eigenvalues λi such that (|λi |)i∈I (K)

is a decreasing sequence
– |σ(K) \ {0}| = {

ρ j : j ∈ J(K)
}
with a strictly deceasing sequence (ρ j ) j∈J(K)

of positive reals and s j : =#
{
λ ∈ σ(K) : |λ| = ρ j

}
< ∞ for j ∈ J(K)

• (H2) Given bases of generalized (and norm 1) eigenvectors such that

N (K − λIX )oλ = span
{
e1λ, . . . , eoλ

λ

}
for all λ ∈ σ(K) \ {0} ,

the sequence (en)n∈N : =(e1λ1
, . . . , e

oλ1
λ1

, e1λ2
, . . . , e

oλ2
λ2

, . . .) is a basis of X .

According to [8, p. 80, Lemma 3.3.1] one can complement the basis (en)n∈N of X to
a biorthonormal system (en, fn)n∈N , where N ⊆ N is a discrete interval. This means
there exists a sequence ( fn)n∈N : =( f 1λ1

, . . . , f
oλ1
λ1

, f 1λ2
, . . . , f

oλ2
λ2

, . . .) of functionals
fn ∈ X ′ satisfying 〈en, fm〉 = δnm for all m, n ∈ N . Then

Π(λ) : =
oλ∑

n=1

〈·, f n
λ

〉
en
λ for all λ ∈ σ(K) \ {0}

is a bounded projector onto N (K − λIX )oλ with

Π(λi )Π(λ j ) = δi jΠ(λi ), Π(λi )K = KΠ(λi ) for all i, j ∈ I (K), (7)

since (en, fn)n∈N is a biorthonormal system. We next define the spectral spaces

X j : =
⊕

|λ|=ρ j

N (K − λIX )oλ for all j ∈ J(K),

which are invariant and of dimension
∑

|λ|=ρ j
oλ, as well as finite rank mappings

Π j : X → X j , Π j : =
∑

|λ|=ρ j

Π(λ) for all j ∈ J(K).
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From (7) we readily obtain the commutativity relations

Π jΠi = δi jΠ j , KΠ j = Π jK for all i, j ∈ J(K).

Thus, Π j , j ∈ J(K), are a family of complementary projections onto the spectral
spaces X j .

Example 3 (normal compact operators) If K ∈ L(X) is a compact operator with
I (K) = J(K) = N, then limi→∞ λi = lim j→∞ ρ j = 0 holds. In case X is an infinite-
dimensional Hilbert space and K is normal, we identify X ′ with X by means of the
Riesz representation theorem. One chooses fn : =en , n ∈ N , and the projectionsΠ j ,
as well as the eigenspaces X j are pairwise orthonormal (see [18, p. 484ff, Sect. 6.7]).

Example 4 (finite rank operators) Suppose that X0 : =R(K) is finite-dimensional
with a basis (x1, . . . , xd) and let S : X0 → C

d be an isomorphism. Following [1,
p. 274, Theorem 7.4] and using the representation

Kv =
d∑

j=1

〈
v, x ′

j

〉
x j for all v ∈ X

we define the matrix K : =(x ′
i (x j ))

d
i, j=1 ∈ C

d×d and obtain σ(K) = σ(K )∪{0}. By
means of e.g. the Jordan form there exists an invertible matrix T ∈ C

d×d such that

T −1K T =
⎛
⎜⎝

Sk

. . .

S1

⎞
⎟⎠ and k ≤ d.

The eigenvalues of each block matrix Sj ∈ C
d j ×d j have the same moduli and satisfy∣∣σ(Sj+1)

∣∣ <
∣∣σ(Sj )

∣∣ for 1 ≤ j < k. One obtains the spectral spaces

X j : =ST ({0} × C
d j × {0}) ⊂ X for all 1 ≤ j ≤ k

and Π j : =ST diag(0, I
C

d j , 0)(ST )−1 as corresponding projections.

In conclusion, we arrive at a weighted sum

Kv =
∑

j∈J(K)

∑
|λ|=ρ j

λΠ(λ)v for all v ∈ X

and the discrete semigroup (Kt )t≥0 generated by K has the Fourier representation

Kt v =
∑

j∈J(K)

∑
|λ|=ρ j

λtΠ(λ)v for all t ≥ 0, v ∈ X. (8)



38 C. Pötzsche

For autonomous difference equations

ut+1 = Kut

in X with coefficients K ∈ L(X) satisfying (H1)–(H2) the above notions translate
into the language of Sect. 2.2 as follows: We obtain a discrete dichotomy spectrum

Σ(K) =
⋃

j∈J(K)

{
ρ j

}

and constant spectral bundles X j = I × X j , j ∈ J(K), from (4). An immediate
nonautonomous generalization is treated in

Theorem 1 (multiplicative perturbation 1) If a sequence (at )t∈I is tempered, then
the difference equation

ut+1 = atKut (9)

has the dichotomy spectrum Σ(aK) = [
β(a), β(a)

]⋃
j∈J(K)

{
ρ j

}
and constant

spectral bundles.

Proof Using the Fourier representation (8) we obtain that the evolution operator of
(9) reads as

ΦaK(t, s) =
∑

j∈J(K)

(
t−1∏
r=s

ar

) ∑
|λ|=ρ j

λt−sΠ(λ) for all s ≤ t.

If
{
λ1

j , . . . , λ
s j

j

}
⊆ σ(K) is the set of eigenvalues with absolute value ρ j , we obtain

Π jΦaK(t, s) =
∑

j∈J(K)

(
t−1∏
r=s

ar

) s j∑
i=1

(λi
j )

t−s PjΠ(λi
j )

= ΦaK(t, s)Π j for all s ≤ t.

Hence, the finite-dimensional vector bundlesP j : = {
(t, v) ∈ X : v ∈ R(Π j )

}
are

invariant w.r.t. (9) for all j ∈ J(K). Inside of each P j the dynamics is given by

ut+1 = at

s j∑
i=1

λi
jΠ(λi

j )ut ,

having an evolutionoperatorΦ j (t, s) : =ΦaK(t, s)Π j and the spectrumρ j
[
β(a), β(a)

]
.

Thanks to ΦaK(t, s) = ∑
j∈J(K) Φ j (t, s) for all s ≤ t we thus obtain the assertion.

��
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Corollary 1 If a sequence (at )t∈Z in K is p-periodic with nonzero values, then

Σ(aK) = p

√√√√p−1∏
s=0

|as |
⋃

j∈J(K)

{
ρ j

}
.

Proof The upper and lower Bohl exponents of a are given by p

√∏p−1
s=0 |as |.

In the following, we are interested in systems of difference equation

Ut+1 = K̃tUt (10)

on the state space Xn for coefficient sequences (K̃t )t∈I′ in L(Xn). We conveniently
abbreviate U = (u1, . . . , un) ∈ Xn throughout. Suppose that (Bt )t∈I′ is a sequence
of invertible matrices in Kn×n satisfying

sup
t∈I′

‖Bt‖ < ∞, sup
t∈I′

∥∥B−1
t

∥∥ < ∞ (11)

and having the entries bi j (t), 1 ≤ i, j ≤ n. In [4, Theorem 2.1] and Sect. 2.4 it is
shown that Σ(B) consists of compact intervals in (0,∞).

Theorem 2 (multiplicative perturbation 2) Suppose that (11) holds. If (6) possesses
full spectrum, i.e.

Σ(B) =
n⋃

i=1

σi (12)

with compact, decreasing and disjoint spectral intervals σi ⊂ (0,∞), then the
difference Eq. (10) with

K̃tU : =
⎛
⎜⎝

b11(t)Ku1 + . . . + b1n(t)Kun
...

bn1(t)Ku1 + . . . + bnn(t)Kun

⎞
⎟⎠ for all t ∈ I

′, U ∈ Xn

has the dichotomy spectrum Σ(K̃) = ⋃
j∈J(K) ρ j

⋃n
i=1 σi = ⋃

j∈J(K) ρ jΣ(B).

Remark 2 (computation of (12)) For general coefficient sequences in (6) the compu-
tation of the dichotomy spectrum Σ(B) is only possible using numerical schemes,
as developed in [9, 15].

For the remaining section it is convenient to define the operator

K̂ : =
⎛
⎜⎝
K

. . .

K

⎞
⎟⎠ ∈ L(Xn).
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Proof First of all, we obtain from [26, Reduction Theorem] that (6) is kinemati-
cally similar to a diagonal system in K

n . More precisely, there exists a Lyapunov
transformation (St )t∈I inKn×n such that S−1

t+1Bt St = diag(b1
t , . . . , bn

t )with tempered
sequences (bi

t )t∈I′ such that σi = [β(bi ), β(bi )], 1 ≤ i ≤ n. One has

K̂StU = StK̂U for all t ∈ I, U ∈ Xn

and consequently we arrive at

S−1
t+1K̃t St = S−1

t+1BtK̂St = S−1
t+1Bt StK̂ =

⎛
⎜⎝

b1
t K

. . .

bn
t K

⎞
⎟⎠ for all t ∈ I

′.

Hence, (10) is kinematically similar to a diagonal difference system in Xn and there-
fore Σ(K̃) = ⋃n

i=1 Σ(biK). Then the assertion follows from Theorem 1 yielding
the spectra Σ(biK). ��

We next investigate scalar multiplicative and time-dependent perturbations. The
situation is related to Theorem 2, but allows a different proof.

Theorem 3 (multiplicative perturbation 3) Suppose D ∈ K
n×n is diagonalizable

and σ(D) = {d1, . . . , dn}. If (at )t∈I′ is tempered, then the difference Eq. (10) with

K̃tU : =at

⎛
⎜⎝

d11Ku1 + . . . + d1nKun

...

dn1Ku1 + . . . + dnnKun

⎞
⎟⎠ for all t ∈ I

′, U ∈ Xn

has the dichotomy spectrum Σ(aK̃) = [
β(a), β(a)

]⋃
j∈J(K) ρ j

⋃n
i=1 |di | and con-

stant spectral bundles.

Proof First of all, one has the representation K̃t = at DK̂ and therefore

ΦK̃(t, s) =
(

t−1∏
r=s

ar

)
(DK̂)t−s for all s ≤ t.

Since D and K̂ commute, we arrive at

ΦK̃(t, s) =
(

t−1∏
r=s

ar

)
Dt−sK̂t−s for all s ≤ t.

By assumption D is diagonalizable and hence there is an invertible T ∈ K
n×n with

D = T diag(d1, . . . , dn)T −1. From K̂T −1 = T −1K̂ we get
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T ΦK̃(t, s)T −1 =
(

t−1∏
r=s

ar

)
T Dt−sK̂t−s T −1 =

(
t−1∏
r=s

ar

)
T Dt−s T −1K̂t−s

=
(

t−1∏
r=s

ar

)
(T DT −1)t−sK̂t−s

=
(

t−1∏
r=s

ar

)
diag((d1K)t−s, . . . , (dnK)t−s) for all s ≤ t.

Thus, (10) is kinematically similar to the n systems ut+1 = di atKut for all 1 ≤
i ≤ n and therefore has the dichotomy spectrum Σ(K̃) = ⋃n

i=1 Σ(di aK). Using
Theorem 1 again, this implies the assertion. ��

On the basis of Corollary 1 it is easy to conclude the special case of a periodic
Eq. (10) in Theorem 3.

4 Linear Integrodifference Equations

Throughout this section, we suppose that (Ω,Σ,μ) is a measure space. From now
on the coefficients in our difference Eq. (L) are assumed to be integral operators

Kt v : =
∫

Ω

kt (·, y)v(y) dμ(y) : Ω → K for all t ∈ I
′

of Fredholm typewith appropriate kernels kt : Ω2 → K. Such equations for instance
occur as right-hand sides of variational Eq. (2). Consequently, (L) is an IDE and
well-definedness of the coefficients Kt on various function spaces will be tacked in
Sect. 4.1. On a purely formal level, the evolution operator of (L) is again an integral
operator

ΦK(t, τ ) =
∫

Ω

kt−1
τ (·, y)v(y) dμ(y) : Ω → K for all τ < t

with the iterated kernels for all x, y ∈ Ω and τ, τ + n ∈ I
′ given by

kτ+n
τ (x, y) : =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kτ (x, y), n = 1,∫
Ω

· · ·
∫

Ω︸ ︷︷ ︸
n−1 times

kτ+n−1(x, yn−1) . . . kτ+1(y2, y1)kτ (y1, y)·

· dμ(yn−1) . . . dμ(y2) dμ(y1), n > 1.
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4.1 Integral Operators

We now summarize basic properties of the integral operatorsKt . For this purpose it
suffices to focus on the time-invariant situation

Kv : =
∫

Ω

k(·, y)v(y) dμ(y). (13)

Theorem 4 ([1, p. 275, Theorem 7.7]) Let Ω be a compact metric space, μ be the
Borel measure and p ∈ [1,∞]. If k ∈ C(Ω2), thenK ∈ L(L p(Ω,μ)) is well-defined
and compact.

The Hilbert space L2(Ω) = L2(Ω,μ) with the Lebesgue measure μ is tackled in

Theorem 5 ([12, p. 47, Theorem3.2.7])Let Ω ⊆ R
κ be measurable. If k ∈ L2(Ω2),

then K ∈ L(L2(Ω)) is well-defined and compact with

‖K‖ ≤
√∫

Ω

∫
Ω

|k(x, y)|2 dy dx .

In the setting of Theorems 4 and 5 the adjoint operator K∗ ∈ L(L2(Ω)) of K
becomes

K∗v =
∫

Ω

k(y, ·)v(y) dy

and consequently K is

• self-adjoint, if and only if k(x, y) = k(y, x) for μ-almost all (x, y) ∈ Ω2. In this
case one denotes the kernel k as symmetric and it follows that σ(K) ⊂ R

• normal, if and only if k(x, y)k(z, y) = k(y, x)k(y, z) forμ-almost all x, y, z ∈ Ω .

On the continuous functions we eventually obtain

Theorem 6 ([12, p. 45, Theorem 3.2.6]) Let Ω ⊂ R
κ be compact. If k : Ω2 → K

satisfies

(i)
∫
Ω

|k(x, y)| dy < ∞
(ii) limξ→x

∫
Ω

|k(ξ, y) − k(x, y)| dy = 0 for all x ∈ Ω ,

then K ∈ L(C(Ω)) is well-defined and compact.

The following consequence of Theorems4 and 6 ensures that the spectrum of an
integral operator K is independent of the state space:

Corollary 2 For k ∈ C(Ω2) one has ‖K‖L(C(Ω)) = maxx∈Ω

∫
Ω

|k(x, y)| dy and
the spectrum ofK is independent whetherK is considered in L(L2(Ω)) or L(C(Ω)).

Proof See [12, p. 45, Lemma 3.2.2] for the assertion on the norm and [8, p. 113,
Theorem 4.2.20]) concerning the spectrum. ��
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4.2 Asymptotics of Spectral Intervals

It is not difficult to construct difference equations (L) having an empty dichotomy
spectrum (e.g. Kt ≡ 0). However, whether Σ(K) consists of a finite (case (S1),
see Figs. 1 and 2) or an infinite number of spectral intervals (case (S2), see Fig. 3)
depends on various factors. The relevance of this question is due to the fact that
the gaps in the dichotomy spectrum Σ(K) of a variational equation determines the
number of invariant fiber bundles associated to the entire solution alongwhich e.g. (1)
is linearized.

In the prototypical situation of a multiplicative perturbation

ut+1 = atKut

with a tempered sequence (at )t∈I′ in K it results from Theorem 3 that

Σ(aK) =
⋃

j∈J(K)

σ j , σ j : =[∣∣λ j

∣∣β(a),
∣∣λ j

∣∣β(a)
]
.

Even for J(K) = N it is possible that consecutive intervals σ j eventually overlap and
yield a finite number of components and hence spectral intervals in Σ(aK). Since
the eigenvalues λ j are ordered as in (H1) we obtain: The intervals σ j , σ j+1

• merge in case max σ j+1 ≥ min σ j , which is equivalent to

∣∣λ j

∣∣ ≤ β(a)

β(a)

∣∣λ j+1

∣∣ (14)

• stay apart for max σ j+1 < min σ j , which holds if and only if

∣∣λ j+1

∣∣ <
β(a)

β(a)

∣∣λ j

∣∣ . (15)

Hence, in order to have an infinite number of spectral intervals, one needs exponen-
tially decaying eigenvalues of K with a suitable decay rate. This property depends
on the smoothness of the kernel, as the following results illustrate:

• Let the compact set Ω ⊂ R
κ be equipped with the Borel measure. If a continuous

kernel k : Ω2 → K satisfies a Hölder condition in the second variable with
∫

Ω

‖k(x, ·)‖Cγ dx < ∞

for some exponent γ ∈ (0, 1], then the eigenvalues of K ∈ L(L2(Ω,μ)) behave
asymptotically like λi = O(i−1/2−γ /κ ) as i → ∞ (see [13, Theorem 3]). For
such positively definite kernels this can be improved to λi = O(i−1−γ /κ) (see [7,
Theorem 4]), which still cannot guarantee (15)
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• Let Ω = [−1, 1] and k : Ω2 → R be of class C1. If k is symmetric, k(·, y) has
an analytic extension from [−1, 1] to the ellipse (foci ±1, axis sum R > 1)

ER : =
{

z ∈ C : (�z)2

a2 + (�z)2

b2 < 1
}

, a : = 1
2 (R + 1

R ), b : = 1
2 (R − 1

R )

and k is boundedon ER×[−1, 1], thenλi = O(R−i ) (see [5, p. 68, Theorem4.22]).
An analytic extension to every such set thus yields super-exponential decay.

Further information on the asymptotic behavior of eigenvalues to integral operators
can be found in the monograph [6].

4.3 Examples

In this section, we first collect miscellaneous examples of time-invariant integral
operators (13) resp. corresponding kernel functions, for which both eigenvalues and
-functions are explicitly known. Then several convolution kernels relevant for appli-
cations are discussed, which also allow to obtain information on the asymptotics
of their spectrum. These operators fulfill the properties (H1)–(H2) from Sect. 3 and
consequently the dichotomy spectra of the nonautonomous Eqs. (9) and (10) tackled
in Theorems 1, 2 resp. 3 — which are now linear IDEs — can be determined.

By means of the following remark these results extend to wider classes of IDEs:

Remark 3 (kinematic similarity) Let 1 ≤ p < ∞ andKt ∈ L(L p(Ω,μ)). Suppose
that mt ∈ L∞(Ω,μ) are K-valued functions with 0 /∈ ρess(mt ) for all t ∈ I

′ and

sup
t∈I′

ρess(mt ) < ∞, sup
t∈I′

ρess(m
−1
t ) < ∞.

According to [10, pp. 30ff] the multiplication operators

Mt ∈ L(L p(Ω,μ)), [Mt v](x) : =mt (x)v(x) for all t ∈ I
′, x ∈ Ω

are well-defined and invertible. Consequently, due to

[M−1
t+1KtMt v](x) =

∫
Ω

kt (x, y)
mt (y)

mt+1(x)
v(y) dμ(y) for all t ∈ I

′, x ∈ Ω

the linear IDE (L) and

ut+1 =
∫

Ω

kt (·, y)

mt+1(·)mt (y)ut (y) dμ(y)

are kinematically similar and thus have the same dichotomy spectrum.
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4.3.1 Explicitly Known Spectra

Assume that (at )t∈I′ is a tempered sequence in K with β(a) < β(a).

Example 5 The Sturm–Liouville problem −u′′ = λu, u(α) = u(β) = 0 leads to a
continuous, symmetric Green’s function (see Fig. 4 (left))

k(x, y) : =
{

(y − α)(β − x), α ≤ y ≤ x ≤ β,

(x − α)(β − y), α ≤ x < y ≤ β.

Thanks to Theorem 5, on the interval Ω : =(α, β) the operator K ∈ L(L2(α, β))

is compact with real eigenvalues λ j : = (β−α)3

π2 j2 of order o j = 1 and normed eigen-

functions e j (x) : =
√

2
β−α

sin( π j
β−α

(x − α)), j ∈ N. From (4) we obtain a discrete
spectrum

Σ(K) =
{

(β−α)3

π2 j2 : j ∈ N

}
, X j : =I × span

{
e j

}

with simple spectral intervals. Moreover, (14) shows thatΣ(aK) is of the form (S2
1).

Example 6 On Ω : =(α, β) the analytical function (see Fig. 4 (right))

k(x, y) : = 1 − γ 2

1 + γ 2 − 2γ cos( 2π
β−α

(x + y − 2α))
for all γ ∈ (0, 1)

defines a symmetric kernel. By Theorem 5 the operatorK ∈ L(L2(α, β)) is compact,
has real eigenvalues (of order o j = 1) and eigenfunctions (cf. [2, pp. 254–255])

Fig. 4 The symmetric kernels k : (0, 1)2 → R from Example 5 (left) and Example 6 (right, for
γ = 1

2 )
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λ j : =(β − α)

{
γ j , j ≥ 0,

−γ − j , j < 0.
, e j (x) : =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

β−α
cos( 2π j

β−α
(x − α)), j > 0,√

1
β−α

, j = 0,√
2

β−α
sin( 2π j

β−α
(α − x)), j < 0.

Note that the reals λ j are exponentially decaying and symmetrically distributed
around 0. It follows from

∣∣λ j

∣∣ = ∣∣λ− j

∣∣ and (4) that

Σ(K) = {
(β − α)γ j : j ∈ N0

}
, X j = I ×

{
span {e0} , j = 0,

span
{
e j , e− j

}
, j > 0;

the dominant interval {β − α} is simple, while the other intervals have order 2.
Furthermore, the concrete structure of Σ(aK) depends on the ratio of the Bohl

exponents. In case
β(a)

β(a)
≤ γ it follows from (14) that Σ(aK) is of the form (S2

1).

For γ <
β(a)

β(a)
however, (15) implies a countably infinite number of spectral intervals,

where the dominant one (β − α)
[
β(a), β(a)

]
is simple, while the remaining ones

are of order 2.

Example 7 On Ω : =(−π, π) consider the discontinuous kernel (see Fig. 5 (left))

k(x, y) : =
{
2, −π ≤ y ≤ x ≤ π,

1, −π ≤ x < y ≤ π,

which fails to be symmetric. It has the complex eigenvalues and -functions

λ j = 2π

ln 2 + 2π ı j
, e j (x) = exp

(
( ln 22π + ı j)x

)
for all j ∈ Z.

Fig. 5 The asymmetric kernel k : (−π, π)2 → R from Example 7 with α = 1, β = 2 (left) and
symmetric finite radius dispersal kernel from Example 8 (right) for α = 2
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Due to [8, p. 89, Theorem 3.3.15] the set
{
e j

}
j∈Z is a minimal complete set in L2(Ω).

Moreover,
∣∣λ j

∣∣ = ∣∣λ− j

∣∣ and (4) imply

Σ(K) =
{

2π√
(ln 2)2+(2π j)2

: j ∈ N0

}
, X j = I ×

{
span {e0} , j = 0,

span
{
e j , e− j

}
, j > 0;

consequently, the dominant spectral interval
{
2π
ln 2

}
is simple, while the other spectral

intervals have order 2. Moreover, since the eigenvalues decay merely linearly, it
results that Σ(aK) is of the form (S2

1).

We next discuss a class of kernels, where also a spectrum of the form (S1
1) (see

Fig. 1) can be realized. Thereto, a kernel k : Ω2 → K is denoted as degenerate, if it
can be written as

k(x, y) : =
d∑

j=1

a j (y)x j (x) for all x, y ∈ Ω

with linearly independent functions x1, . . . , xd : Ω → K. This brings us into the
framework of finite rank operators discussed in Sect. 2.3 and Example 4 with

Kv =
∫

Ω

d∑
j=1

a j (y)v(y) dμ(y)x j =
d∑

j=1

〈
v, x ′

j

〉
x j : Ω → K

and functionals
〈
v, x ′

j

〉
: = ∫

Ω
a j (y)v(v) dμ(y). The entries of the matrix K ∈ K

d×d

from Example 4 are ki j : = ∫
Ω

ai (y)x j (y) dμ(y), 1 ≤ i, j ≤ d, yield the discrete
spectrum

Σ(K) = |{λ ∈ C : det(λICd − K ) = 0} \ {0}| .

Example 8 (finite radius dispersal kernel) Let Ω = (−1, 1). The kernel

k(x, y) : =
{

π
4α cos

(
π(x−y)

2α

)
, |x − y| ≤ α,

0, |x − y| > α

(cf. [17], see Fig. 5 (right)) is continuous and symmetric. Moreover, due to

k(x, y) =
{

π
4α

(
cos πx

2α cos πy
2α + sin πx

2α sin πy
2α

)
, |x − y| ≤ α,

0, |x − y| > α
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it is degenerate. Hence, for α ≥ 2 the integral operator K allows the representation

Kv =
2∑

j=1

(∫ 1

−1
a j (y)v(y) dy

)
x j : Ω → K

with a1(x) : = cos πx
2α , a2(x) = sin πx

2α and the linearly independent functions

x1(x) : = π
4α cos πx

2α , x2(x) : = π
4α sin πx

2α .

Therefore,K is a rank 2 operator and its eigenvalues λ are the roots of the equation

det

(
λ − ∫ 1

−1 a1(y)x1(y) dy − ∫ 1
−1 a1(y)x2(y) dy

− ∫ 1
−1 a2(y)x1(y) dy λ − ∫ 1

−1 a2(y)x2(y) dy

)
= 0.

In the following example the eigenvalues are not explicitly known, but can be
obtained as solutions of a transcendental equation in R yielding also their asymptot-
ics.

Example 9 On Ω : =(0, 1) the continuous kernel

k(x, y) : = 1
2 min {x, y} (2 − max {x, y})

is symmetric. Suppose that (ν j ) j∈N denotes the strictly increasing sequence of pos-
itive real solutions to the transcendental equation ν + tan ν = 0 (see Fig. 6). The
associate integral operator K has the eigenvalues λ j : = 1

ν2
j
of order o j = 1 with

normed eigenfunctions e j (x) = 2
√

ν j

(2ν j −sin(2ν j ))
sin(ν j x), j ∈ N (see [19, p. 438]).

This yields a discrete dichotomy spectrum with simple spectral intervals

Σ(K) =
{
ν−2

j : j ∈ N

}
, X j : =I × span

{
e j

}
.

In addition, (14) implies that Σ(aK) is of the form (S2
1).

Fig. 6 The points of
intersection ν j > 0 of the
graphs to x �→ x and
x �→ − tan x yield the
eigenvalues in Example 9



Dichotomy Spectra of Nonautonomous Linear Integrodifference Equations 49

4.3.2 Spectra of Convolutive Operators

In the remaining, we supposeΩ = (−1, 1) and consider kernels of convolution type

[Kv](x) : =
∫ 1

−1
k0(x − y)v(y) dy for all x ∈ (−1, 1)

with a real, even and integrable function k0 : R → R. These kernels frequently arise
in applications [17] from theoretical ecology and have a real spectrum. In addition,
we approximate their (largest) eigenvalues numerically using aNyströmmethodwith
the rectangular rule as quadrature and 1000 nodes.

Following [27], the (scaled) Fourier transformation of k0 becomes

k̃0(ξ) : =
∫
R

eıξ x k0(x) dx

and provided it is positive, we define Γ (ξ) : = − ln k̃0(ξ).

Example 10 (Gauß kernel) As archetypical mesokurtic distribution consider

k0(x) : = 1√
2πα2

exp
(
− x2

2α2

)
for all α > 0 (16)

(see Fig. 7) with standard deviation α > 0. It is real analytical with lipk0 ≤ 1√
2eπα2 ,

the Fourier transformation k̃0(ξ) = e− α2

2 ξ 2
is bounded, even and positive, whence

it is Γ (ξ) = α2

2 ξ 2. Since Γ is convex and satisfies limξ→∞ Γ (ξ)

ξ
= ∞, it follows

from [27, Corollary 1] that ln λ j ∼ − j ln j as j → ∞. Consequently, Σ(K) and
Σ(aK) consists of an infinite number of spectral intervals accumulating at 0, i.e.
both dichotomy spectra are of the form (S2) with μ̄ = 0.

0.5 1 1.5 2
α

0

0.2

0.4

0.6

0.8

1

λ
j

Fig. 7 The Gaussian convolution kernel k0 : R → R from Example 10 (left) and the super-
exponentially decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]
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Example 11 (Cauchy kernel) Another smooth kernel is the Cauchy kernel

k0(x) : = α

π(α2 + x2)
for all α > 0

(see Fig. 8) resembling the Gauß kernel (16). The Fourier transform k̃0(ξ) = e−α|ξ |
is bounded, even and positive with Γ (ξ) = α |ξ |. From [27, Theorem 2] we hence

obtain ln λ j ∼ − jψ(α) as j → ∞ with the function ψ(α) : =π
E(sech(π/α))

E(tanh(π/α))
> 0,

where E stands for the complete elliptic integral of first kind. It results from (14) that

Σ(aK) is of the form (S2
1) for eψ(α) ≤ β(a)

β(a)
, while (15) and β(a)

β(a)
< eψ(α) guarantee

(S2), i.e. an infinite number of spectral intervals.

Example 12 (Laplace kernel) The Laplace kernel is given by the function

k0(x) : = 1
2α exp

(−|x |
α

)
for all α > 0

(see Fig. 9), which is continuous with lipk0 ≤ 1
2α2 . If (ν j ) j∈N denotes the strictly

increasing sequence of positive solutions to the transcendental equation tan ν
α

= ±ν,
thenK possesses the eigenvalues λ j : = 1

1+ν2
j
, j ∈ N (see [17]). On the one hand, this

shows that λ j decays quadratically to 0. On the other hand, the Fourier transform of
k0 is k̃0(ξ) = 1

1+α2ξ 2 and hence Γ (ξ) = ln(1 + α2ξ 2). Referring to [27, Theorem I]

it results that λ j ∼ k̃0(
π
2 j + o( j)) as j → ∞, which confirms the quadratic decay.

Due to (14) this results in a dichotomy spectrum Σ(aK) of the form (S2
1).

Example 13 (exponential square root kernel) For the kernel

k0(x) : = 1
4α exp

(
−
√

|x |
α

)
for all α > 0

0.5 1 1.5 2
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Fig. 8 The Cauchy convolution kernel k0 : R → R from Example 11 (left) and the exponentially
decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]
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Fig. 9 The Laplacian convolution kernel k0 : R → R from Example 12 (left) and the quadratically
decaying largest eigenvalues λ j depending on α ∈ [ 12 , 2]
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Fig. 10 The exponential square root convolution kernel k0 : R → R from Example 13 (left) and
the six largest eigenvalues λ j depending on α ∈ [ 12 , 2]

(see Fig. 10) the tails are not exponentially bounded. It is continuous with a Hölder
condition hol1/2k0 ≤ 1

4α3/2 , but not differentiable in 0. The Fourier transformation

k̃0(ξ) = √
2π

sin
(

1
4α|ξ |

) (
1 − 2S

(
1√

2πα|ξ |
))

+ cos
(

1
4α|ξ |

) (
1 − 2C

(
1√

2πα|ξ |
))

|αξ |3/2

is bounded, even and positive, where S, C denote the Fresnel integrals. In this setting,
[27, Theorem I] leads to λ j ∼ k̃0(

π
2 j + o( j)) as j → ∞.

Example 14 (top hat kernel) Let α ∈ (0, 1]. The top hat kernel is defined as

k0(x) : = 1
2α (θ(x + α) − θ(x − α)) = 1

2α χ[−α,α](x) for all α > 0

(see Fig. 11) and has the Fourier transform k̃0(ξ) = sin(αξ)

αξ
, which is bounded, even,

but fails to be positive. Hence, the results from [27] do not apply.
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Fig. 11 The top hat convolution kernel k0 : R → R from Example 14 (left) and the six largest
eigenvalues λ j depending on α ∈ [ 12 , 1]. The spikes appear to be due to numerical inaccuracies
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A Dynamical Trichotomy for Structured
Populations Experiencing Positive
Density-Dependence in Stochastic
Environments

Sebastian J. Schreiber

Abstract Positive density-dependence occurs when individuals experience
increased survivorship, growth, or reproduction with increased population densi-
ties. Mechanisms leading to these positive relationships include mate limitation,
saturating predation risk, and cooperative breeding and foraging. Individuals within
these populationsmay differ in age, size, or geographic location and thereby structure
these populations. Here, I study structured populationmodels accounting for positive
density-dependence and environmental stochasticity i.e. random fluctuations in the
demographic rates of the population. Under an accessibility assumption (roughly,
stochastic fluctuations can lead to populations getting small and large), these models
are shown to exhibit a dynamical trichotomy: (i) for all initial conditions, the pop-
ulation goes asymptotically extinct with probability one, (ii) for all positive initial
conditions, the population persists and asymptotically exhibits unbounded growth,
and (iii) for all positive initial conditions, there is a positive probability of asymptotic
extinction and a complementary positive probability of unbounded growth. Themain
results are illustrated with applications to spatially structured populations with an
Allee effect and age-structured populations experiencing mate limitation.

Keywords Structured populations · Environmental stochasticity · Allee effects ·
Positive density-dependence

1 Introduction

Higher population densities can increase the chance of mating success, reduce the
risk of predation, and increase the frequency of cooperative behavior [5]. Hence,
survivorship, growth, and reproductive rates of individuals can exhibit a positive
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relationship with density i.e. positive density-dependence. In single species models,
positive density-dependence can lead to an Allee effect: the existence of a criti-
cal density below which the population tends toward extinction and above which
the population persists [7, 12, 18, 22, 23]. Consequently, the importance of Allee
effects have been widely recognized for conservation of at risk populations and the
management of invasive species [5]. Populations experiencing environmental sto-
chasticity and a strong Allee effect are widely believed to be especially vulnerable
to extinction as the fluctuations may drive their densities below the critical thresh-
old [6].When population densities lie above the critical threshold for the unperturbed
system, analyses and simulations of stochastic models support this conclusion [2,
7–9, 17, 21]. However, these studies also show that when population densities lie
below the critical threshold, stochastic fluctuations can rescue the population from
the deterministic vortex of extinction.

Individuals within populations often differ in diversity of attributes including
age, size, gender, and geographic location [4]. Positive density-dependence may
differentially impact individuals in populations structured by these attributes [5, 11].
This positive density-dependence can lead to anAllee threshold surface (usually a co-
dimension one stable manifold of an unstable equilibrium) that separates population
states that lead to extinction from those that lead to persistence [24].

While several studies have examined howenvironmental stochasticity and popula-
tion structure interact to influence persistence of populations experiencing negative-
density dependence [3, 13, 14, 20], I know of no studies that examine this issue
for populations experiencing positive density-dependence. To address this gap, this
paper examines stochastic, single species models of the form

Xt+1 = A(Xt , ξt+1)Xt (1)

where Xt = (X1,t , X2,t , . . . , Xn,t ) ∈ [0,∞)n is a column-vector of population den-
sities, A(Xt , ξt+1) is a n × n non-negative matrix that determines the population
densities in the next year as a function of the current densities Xt and the environ-
mental state ξt+1 over the time interval [t, t + 1). To focus on the effects of positive
density-dependence, I assume that the entries of A are non-decreasing functions of
the population densities. Under additional suitable assumptions described in Sects. 2
and 3, this paper shows that there is a dynamical trichotomy for (1): (i) asymp-
totic extinction occurs with probability one for all initial conditions, (ii) long-term
persistence occurs with probability one for all positive initial conditions, or (iii)
long-term persistence and asymptotic extinction occur with complementary positive
probabilities for all positive initial conditions. The model assumptions and defini-
tions are presented in Sect. 2. Exemplar models of spatially-structured populations
and age-structured populations are also presented in this section. The main results
and applications to the exemplar models appear in Sects. 3 and 4. Proofs of the main
results are relegated to Sect. 5.
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2 Models, Assumptions, and Definitions

Throughout this paper, I consider stochastic difference equations of the form given
by Eq. (1). The state space for these equations is the non-negative coneC = [0,∞)n .
Define the standard ordering on this cone by x ≥ y for x, y ∈ C if xi ≥ yi for all i .
Furthermore, x > y if x ≥ y but x �= y and x � y if xi > yi for all i . Throughout,
I will use ‖x‖ = maxi |xi | to denote the sup norm and ‖A‖ = max‖x‖=1 ‖Ax‖ to
denote the associated operator norm. Define the co-norm of a matrix A by co(A) =
min‖x‖=1 ‖Ax‖. The co-norm is the minimal amount that the matrix A stretches a
vector. Define log+ x = max{log x, 0} to be the non-negative component of log x .

For (1), there are five standing assumptions

A1 Uncorrelated environmental fluctuations: {ξt }∞t=0 is a sequence of indepen-
dent and identically distributed (i.i.d) randomvariables takingvalues in a separable
metric space E (such as Rk).

A2 Feedbacks depend continuously on population and environmental state:
the entries of thematrix function Ai j : C × E → [0,∞) are continuous functions
of population state x and the environmental state ξ.

A3 The population only experiences positive feedbacks: For all i, j and ξ ∈ E ,
Ai j (x, ξ) ≥ Ai j (y, ξ) whenever x ≥ y.

A4 Primitivity: There exists τ ≥ 0 such that A(x, ξ)τ � 0 for all x � 0 and
ξ ∈ E .

A5 Finite logarithmic moments: For all c ≥ 0,E[log+ ‖A(c1, ξt )‖] < ∞where
1 = (1, 1, . . . , 1) is the vector of ones. There exists c∗ > 0 such thatE[log+(1/co(∏τ

t=1 A(c1, ξt )
)
)] < ∞ for all c ≥ c∗.

The first assumption implies that (Xt )t≥0 is a Markov chain on C and the sec-
ond assumption ensures this stochastic process is Feller. The third assumption is
consistent with the intent of understanding how non-negative feedbacks, in and of
themselves, influence structured population dynamics. An important implication of
this assumption is that the system is monotone i.e. if X0 > X̃0 > 0, then Xt ≥ X̃t

for all t ≥ τ where Xt , X̃t are solutions to (1) with initial conditions X0 and X̃0,
respectively. The fourth assumption ensures that all states in the population con-
tribute to all other population states after τ time steps. The final assumption is met
for most models and ensures that Kingman’s subadditive ergodic theorem![16] and
the random Perron–Frobenius theorem [1] are applicable.

To see that these assumption include models of biological interest, here are a few
examples.

Example 1 (Scalar models) Considered an unstructured population with n = 1 in
which case x ∈ [0,∞). To model mate limitation, McCarthy et al. [18] considered
a model where x corresponds to the density of females and, with the assumption
of a 1:1 sex ratio, also equals the density of males. The probability of a female
successfully mating is given by ax/(1 + ax) where x is the male density and a > 0
determines how effectively individuals find mates. If a mated individual produces on
average ξ daughters, then the population density in the next year is ξax2/(1 + ax).
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If we allow ξ to be stochastic, then (1) is determined by A(x, ξ) = ξax2/(1 + ax).
Allowing the ξt to be a log-normal would satisfy assumptions A1–A5.

To model predator saturation [23], let exp(−M/(1 + hx)) be the probability that
an individual escapes predation from a predator population with an “effective” attack
rate of M and handling time h. If ξ is the number of offspring produced by an
individual which escaped predation, then the population density in the next year is
ξx exp(−M/(1 + hx)). Letting ξ be stochastic yields A(x, ξ) = ξx exp(−M/(1 +
hx)). Allowing the ξt to be a log-normal would satisfy assumptions A1–A5.

Finally, Leibhold and Bascompte [17] used a more phenomenological model of
the form A(x, ξ) = exp(x − C + ξ) where C is the critical threshold in the absence
of stochasticity and ξ are normally distributed with mean zero. This model also
satisfies all of the assumptions.

We can use these scalar models, which were studied by [21], to build structured
models as the next two examples illustrate.

Example 2 (Spatial models) Consider a population that lives in n distinct patches.
xi is the population density in patch i . Let Ci > 0 be the critical threshold in patch
i and ξi be the environmental state in patch i . Let di j be the fraction of individuals
dispersing from patch j to patch i , and D = (di j ) be the corresponding dispersal
matrix. Then the spatial model is

A(x, ξ) = Ddiag(exp(x1 − Ci + ξ1), exp(x2 − C2 + ξ2), . . . , exp(xn − Cn + ξn))
(2)

where diag denotes a diagonal matrix with the indicated diagonal elements. If D is
a primitive matrix and the ξt = (ξ1,t , . . . , ξn,t ) are a multivariate normals with zero
means, then this model satisfies the assumptions.

Example 3 (Age-structured models) Consider a population with n age classes and
xi is the density of age i individuals. Assume that final � age classes reproduce
i.e. ages n − � + 1, n − � + 2, . . . , n reproduce. If mate limitation causes posi-
tive density dependence (see Example 1) and reproductively mature individuals
mate randomly, then the fecundity of individuals in age class n − � + i equals
fi (x, ξ) = ξi a

∑n
j=n−�+1 x j/(1 + a

∑n
j=n−�+1 x j ) where ξi is the maximal fecun-

dity of individuals of age i and a > 0. Let si be the probability an individual survives
from age i − 1 to age i . This yields the following nonlinear Leslie matix model

A(x, ξ) =

⎛

⎜⎜⎜⎜⎜
⎝

0 . . . 0 f1(x, ξ) . . . f�(x, ξ)
s2 0 0 . . . 0 0
0 s3 0 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 sn 0

⎞

⎟⎟⎟⎟⎟
⎠

. (3)

If � ≥ 2 and ξt = (ξ1,t , . . . , ξn,t ) are multivariate log-normals, then this model sat-
isfies the assumptions A1–A5.
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3 Main Results

To state the main results, consider the linearization of (1) at the origin and near
infinity. At the origin, the linearized dynamics are given by Xt+1 = A(0, ξt+1)Xt .
Hence, the rate at which the population grows at low density is approximately given
by the rate at which the random product of matrices, A(0, ξt ) . . . A(0, ξ1), grows.
Kingman’s subadditive ergodic theorem [16] implies there exists r0 (possibly −∞)
such that

lim
t→∞

1

t
log ‖A(0, ξt ) . . . A(0, ξ1)‖ = r0 with probability one.

To characterize population growth near infinity, for all c > 0 the subadditive ergodic
theorem implies there exists an rc such that

lim
t→∞

1

t
log ‖A(c1, ξt ) . . . A(c1, ξ1)‖ = rc with probability one.

Due to our assumption that the entries of A(x, ξ) are non-decreasing with respect
the entries of x , rc is non-decreasing with respect to c. Hence, the following limit
exists (possibly +∞)

r∞ = lim
c→∞ rc.

With these definitions and assumptions, the following theorem is proven in Sect. 5.

Theorem 1 Unconditional persistence If r0 > 0, then

lim
t→∞ ‖Xt‖ = ∞ with probability one whenever X0 � 0.

Unconditional extinction If r∞ < 0, then

lim
t→∞ Xt = 0 with probability one.

Conditional persistence and extinction If r0 < 0 < r∞, then for all ε > 0 there
exist c∗ > c∗ > 0 such that

P

[
lim
t→∞ Xt = 0

∣∣∣X0 = x
]

≥ 1 − ε whenever x ≤ c∗1

and
P

[
lim
t→∞ ‖Xt‖ = ∞

∣∣∣X0 = x
]

≥ 1 − ε whenever x ≥ c∗1.

To get statements about all initial conditions with probability one in the final
case, an assumption that ensures that the environmental stochasticity can drive the
population to low or high densities is needed. Define {0,∞} to be accessible if for
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all c > 0 there exists γ > 0 such that

P

[
{ there is t ≥ 0 such that Xt � c1 or Xt � 1/c}

∣
∣∣X0 = x

]
≥ γ

for all x � 0. All of the examples in Sect. 2 satisfy this accessibility condition.

Theorem 2 If r0 < 0 < r∞ and {0,∞} is accessible, then

P

[
lim
t→∞ ‖Xt‖ = ∞ or lim

t→∞ Xt = 0
∣
∣∣X0 = x

]
= 1.

Proofs of both theorems are presented in Sect. 5. The scalar version of these
theorems were proven in Theorem 3.2 of [21].

4 Applications

To illustrate the applicability of the two theorems, we consider the spatial structured
and age structured models introduced in Sect. 3.

Example 2 (spatially structured populations) revisited Consider the spatial
structured model described in Example 2 and characterized by (2). For this model,

A(c1, ξ) = Ddiag(exp(−C1 + ξ1), exp(−C2 + ξ2), . . . , exp(−Cn + ξn)) exp(c).

For simplicity, let us assume that the fraction of individuals dispersing is d and dis-
persing individuals land with equal likelihood on any patch (including the possibility
of returning to its original patch). Then D = (di j ) is given by di j = d/n for i �= j
and dii = (1 − d) + d/n. Assume that d ∈ (0, 1].

I claim that r∞ = ∞. Indeed, let b = max{1 − d, d/n} > 0.Then D ≥ bIdwhere
Id denotes the identity matrix and

E[log ‖
t∏

s=1

A(c1, ξs)‖] ≥ E[log ‖
t∏

s=1

bdiag(exp(−C1 + ξ1,s), exp(−C2

+ξ2,s), . . . , exp(−Cn + ξn,s)) exp(c)‖]

≥ E[log ‖
t∏

s=1

diag(exp(ξ1,s), exp(ξ2,s), . . . , exp(ξn,s))‖]

+t (c + log b − max
i

Ci )

= E[max
i

t∑

s=1

ξi,s] + t (c + log b − max
i

Ci )

≥ t

(
E[ξ1,1] + c + log b − max

i
Ci

)
.
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Dividing by t and taking the limit as t → ∞, this inequality implies that rc ≥
E[ξ1,1] + c + log b − maxi Ci .Hence, r∞ = limc→∞ rc = ∞ as claimed.Theorem2
implies that for all x � 0, ‖Xt‖ → ∞ with positive probability whenever X0 = x .

Understanding r0 is more challenging. However, Proposition 3 of [3] implies
that r0 varies continuously as a function of d. In the limit of d = 0, D = Id and
r0 = maxi E[ξi,1 − Ci ]. Hence, for populations where d ≈ 0 but d > 0, there are
two types of dynamics. If E[ξi,1] < Ci for all patches (i.e. populations are unable
to persist in each patch at low density), then there is a positive probability of going
either asymptotically extinct or a complementary positive probability of persistence.
Alternatively, if E[ξi,1] > Ci for at least one patch, then the population persists with
probability one whenever X0 � 0.

Now consider the case that all individuals disperse i.e. d = 1. Then
r0 = E[log 1

n

∑
i exp(ξi,1 − Ci )] i.e. er0 is the geometric mean of the spatial aver-

age of the exp(ξi,1 − Ci ). By Jensen’s inequality, r0 when d ≈ 1 is greater than r0
when d ≈ 0. Hence, one can get the scenario where increasing the dispersal frac-
tion d shifts a population from experiencing asymptotic extinction with positive
probability to a population that persists with probability one. This corresponds to a
positive density-dependence analog of a phenomena observed in models with nega-
tive density-dependent feedbacks [3, 14] and density-independent feedbacks [10, 15,
19, 25]. However, in these models, the long-term outcome never exhibits a mixture
of extinction and persistence.

Examble 3 (age-structured populations) revisited Consider the age-structured
model with mate-limitation in Example 3 where there are � ≥ 2 reproductive stages.
If ξt are multivariate log-normals, then {0,∞} is accessible. Define

B =

⎛

⎜⎜
⎜⎜⎜
⎝

0 0 0 0 . . . 0
s2 0 0 . . . 0 0
0 s3 0 . . . 0 0
...

...
...

...
...

...

0 0 . . . 0 sn 0

⎞

⎟⎟
⎟⎟⎟
⎠

.

As 0 < si < 1 for all i , the dominant eigenvalue λ of B is strictly less than one.
Thus,

r0 = lim
t→∞

1

t
E[log ‖

t∏

s=1

‖A(0, ξs)‖] = lim
t→∞

1

t
log ‖Bt‖

= logλ < 0.

As r0 < 0, it follows that for all positive initial conditions there is a positive prob-
ability of asymptotic extinction (in contrast the spatial model which always has a
positive probability of persistence and unbounded growth.)

To say something about persistence, assume that ξ1,t , . . . , ξ�,t have the same log
mean μ and non-degenerate log-covariance matrix �2. Then r∞ is an increasing
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function of μ with limμ→∞ r∞ = ∞ and limμ→−∞ r∞ < 0. Hence, there is a critical
μ, call it μ∗, such that the population goes asymptotically extinct with probability
one whenever μ < μ∗ and the population persists with positive probability whenever
μ > μ∗.

5 Proofs

First, I prove Theorem 1. Assume r0 > 0 and X0 = x0 � 0. As the entries of A(x, ξ)
are non-decreasing functions of x ,

lim inf
t→∞

1

t
log ‖Xt‖ = lim inf

t→∞
1

t
log ‖

t∏

s=1

A(Xs−1, ξs)x0‖

≥ lim inf
t→∞

1

t
log ‖

t∏

s=1

A(0, ξs)x0‖

= r0 > 0 with probability one.

In particular, limt→∞ ‖Xt‖ = ∞ with probability one as claimed.
Next, assume that r∞ < 0. Given any X0 = x0 � 0, choose c > 0 such that c1 ≥

x0 and

lim
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≤ r∞/2 with probability one.

Then

lim sup
t→∞

1

t
log ‖Xt‖ ≤ lim sup

t→∞
1

t
log ‖

t∏

s=1

A(c1, ξs)x0‖

≤ r∞/2 < 0 with probability one.

In particular, limt→∞ Xt = 0 with probability one as claimed.
Finally, assume that r∞ > 0 and r0 < 0. As the entries of A are non-decreasing

in x , there exists c > 0 such that A(c1, ξ) ≤ A(0, ξ) exp(−r0/2) for ξ ∈ E . Hence,

lim sup
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≤ r0/2 < 0 with probability one. (4)
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Define the random variable

R = sup
t≥1

‖
t∏

s=1

A(c1, ξs)‖.

Equation (4) implies that R < ∞ with probability one. For all k > 0, define the
event Ek = {R ≤ k}. For x0 ≤ c1/k and X0 = x0, I claim that Xt ≤ c1 for all t ≥ 0
on the event Ek . I prove this claim by induction. X0 ≤ c1 by assumption. Suppose
that Xs ≤ c1 for 0 ≤ s ≤ t − 1. Then

‖Xt‖ = ‖
t∏

s=1

A(Xs−1, ξs)x0‖

≤ ‖
t∏

s=1

A(c1, ξs)c1/k‖ by induction and monotonicity

≤ ‖
t∏

s=1

A(c1, ξs)‖c/k ≤ Rc/k by the definition of R and x

≤ c on the event Ek .

This completes the proof of the claim that Xt ≤ c1 for all t ≥ 0 on the event Ek . It
follows that on the event Ek and X0 = x ≤ c1/k that

lim sup
t→∞

1

t
log ‖Xt‖ ≤ lim sup

t→∞
1

t
log ‖

t∏

s=1

A(c1, ξs)‖c

≤ r0/2 < 0 almost surely.

In particular, limt→∞ Xt = 0 almost sure on the eventEk . As the eventsEk are increas-
ing with k, limk→∞ P[Ek] = P[∪kEk] = P[R < ∞] = 1. Therefore, given ε > 0,
there exists k such that P[Ek] > 1 − ε. For this k, x0 ≤ c1/k and X0 = x0,

P[ lim
t→∞ Xt = 0|X0 = x0] ≥ P[Ek] ≥ 1 − ε.

To show convergence to∞with positive probability when r∞ > 0, choose c ≥ c∗
sufficiently large so that

lim
t→∞

1

t
log ‖

t∏

s=1

A(c1, ξs)‖ ≥ r∞/2 > 0 with probability one.

By the Random Perron–Frobenius theorem [1, Theorem 3.1 and Remark (ii) on pg.
878],
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lim
t→∞

1

t
log

(

eTi

t∏

s=1

A(c1, ξs)e j

)

≥ r∞/2 > 0 with probability one. (5)

for all elements ei , e j of the standard basis of Rn and where T denotes the trans-
pose of a vector. Equation (5) implies that all of the entries of

∏t
s=1 A(c1, ξs) grow

exponentially in time at rate greater than r∞/2 with probability one.
Define

R∞ = inf
t≥1,1≤i≤n

eTi

t∏

s=1

A(c1, ξs)c1.

By (5) and the primitivity assumption A4, R∞ > 0 with probability one. Define the
events

Fk = {R∞ > 1/k} for k ≥ 1.

Now, suppose that X0 = x0 ≥ c1k. I claim that Xt ≥ c1 for all t ≥ 0 on the event
Fk . X0 ≥ c1 by the choice of x0. Assume that Xs ≥ c1 for 0 ≤ s ≤ t − 1. Then

Xt =
t∏

s=1

A(Xs−1, ξs)x0

≥
t∏

s=1

A(c1, ξs)x0 by inductive hypothesis

≥ R∞c1k by definition of R∞ and x0
≥ c1 on the event Fk .

Equation (5) implies that on the event Fk

lim inf
t→∞

1

t
log ‖Xt‖ ≥ r0/2 almost surely.

Hence, limt→∞ ‖Xt‖ = ∞ almost surely on the event Fk . As Fk are an increasing
set of events, P[R∞ > 0] = P[∪t≥1Fk] = 1. For any ε > 0 there is k ≥ 1 such that
P[Fk] ≥ 1 − ε. Hence, for this k and X0 = x ≥ ck1,

P[ lim
t→∞ ‖Xt‖ = ∞|X0 = x] ≥ 1 − ε.

This completes the proof of Theorem 1.
The proof of Theorem 2 follows from Theorem 1 and the following proposition.

Proposition 1 Assume {0,∞} is accessible. Let c > 0 and δ ∈ [0, 1) be such that

P

[
lim
t→∞ Xt = 0|X0 = x

]
≥ 1 − δ whenever x ≤ 1/c
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and
P

[
lim
t→∞ Xt = ∞|X0 = x

]
≥ 1 − δ whenever x ≥ c1.

Then
P

[
lim
t→∞ Xt = ∞ or lim

t→∞ Xt = 0|X0 = x
]

= 1 whenever x � 0.

Proof Define the event

C =
{
lim
t→∞ Xt = ∞ or lim

t→∞ Xt = 0
}

.

For any x ∈ C , define Px [E] = P[E |X0 = x] (respectively, Ex [Z ] = E[Z |X0 = x])
for any event E (respectively, random variable Z ) in the σ-algebra generated by
{X0 = x, X1, X2, . . . }. Furthermore, define IE to be random variable that equals 1
on the event E and 0 otherwise.

Define the stopping time

S = inf{t ≥ 0 : Xt ≥ c1 or Xt ≤ 1/c}.

Since {0,∞} is accessible, there existsγ > 0 such thatPx [S < ∞] > γ for all x � 0.
Let I{S<∞} equal 1 if S < ∞ and 0 otherwise. The strong Markov property implies
that for all x � 0

Px [C] = Ex
[
PXS [C] I{S<∞}

] + Ex
[
PXS [C] I{S=∞}

]

= Ex
[
PXS [C] I{S<∞}

]

≥ (1 − δ)γ.

Let Ft be the σ-algebra generated by {X1, . . . , Xt }. The Lévy zero-one law implies
that for all x � 0, limt→∞ Ex [IC|Ft ] = IC almost surely. On the other hand, the
Markov property implies that Ex [IC|Ft ] = PXt [C] ≥ (1 − δ)γ for all x � 0. Hence
Px [C] = 1 for all x � 0. ��

References

1. Arnold, L., Gundlach, V.M., Demetrius, L.: Evolutionary formalism for products of positive
random matrices. Ann. Appl. Probab. 4, 859–901 (1994)

2. Assas, L., Dennis, B., Elaydi, S., Kwessi, E., Livadiotis, G.: A stochasticmodified beverton-holt
model with the allee effect. J. Differ. Equ. Appl. 22(1), 37–54 (2016)

3. Benaïm, M., Schreiber, S.J.: Persistence of structured populations in random environments.
Theor. Popul. Biol. 76, 19–34 (2009)

4. Caswell, H.: Matrix Population Models. Sinauer, Sunderland, Massachuesetts (2001)
5. Courchamp, F., Berec, L., Gascoigne, J.: Allee effects in ecology and conservation. Environ.

Conserv. 36(1), 80–85 (2008)



66 S.J. Schreiber

6. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee
effect. Trends Ecol. Evol. 14, 405–410 (1999)

7. Dennis, B.: Allee effects: Population growth, critical density, and the chance of extinction.
Natural Resour. Model. 3, 481–538 (1989)

8. Dennis, B.: Allee effects in stochastic populations. Oikos 96, 389–401 (2002)
9. Dennis, B., Assas, L., Elaydi, S., Kwessi, E., Livadiotis, G.: Allee effects and resilience in

stochastic populations. Theor. Ecol. 1–13 (2015)
10. Evans, S.N., Ralph, P., Schreiber, S.J., Sen, A.: Stochastic growth rates in spatio-temporal

heterogeneous environments. J. Math. Biol. 66, 423–476 (2013)
11. Gascoigne, J., Lipcius, R.N.: Periodic dynamics in a two-stage allee effect model are driven

by tension between stage equilibria. Theor. Popul. Biol. 68(4), 237–241 (2005)
12. Gascoigne, J.C., Lipcius, R.N.: Allee effects driven by predation. J. Appl. Ecol. 41, 801–810

(2004)
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Replicator Equations as Limits
of Evolutionary Games on Complete
Graphs

Petr Stehlík

Abstract In this paper we discuss connections between the evolutionary games
on graphs and replicator equations. On the traditional examples of social dilemma
games we introduce the basic ideas of replicator dynamics and the mathematical
concepts behind evolutionary games on graphs. We show that the stability regions
of evolutionary games on complete graphs with the sequential and synchronous
updating with deterministic imitation dynamics converge to the stability regions of
replicator equations. Finally, we show that by a finer choice of a time scale and a
stochastic imitation dynamic update rule not only the stability regions but also the
trajectories of evolutionarygamesongraphs converge to those of replicator equations.

Keywords Evolutionary games on graphs · Game theory · Replicator equations ·
Convergence
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1 Introduction

Standard evolutionary game theory [13, 28] considers infinite well-mixed popu-
lations. It enabled to describe the dynamics of such homogeneous populations via
nonlinear differential equations, known as replicator equations [12, 13]. Evolution of
cooperation, as one of the most interesting biological processes, has been one of the
main questions which has been studied in this setting [3, 20]. In recent years, numer-
ous authors considered its counterpart with discrete time, finite, heterogenous and
spatially structured populations–evolutionary games on graphs [19, 21]. Researchers
from various fields have shown that the finite spatial structure could extend or shrink
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the regions of cooperation or coexistence of cooperation and defection [1, 2, 11,
21–23, 27].

Whereas in the prevalent biological applications, the stochastic update rules and
large graphs occur naturally (given the stochastic nature of evolution and a connection
between the game utilities and the biological fitness), in economic applications and
mathematically, evolutionary games on graphs are an interesting (and still not very
well described) concept even for small networks with deterministic update rules. The
goal of our recent papers [5, 6] was to establish rigorous structures for evolutionary
games on graphs (as discrete dynamical systems) and study some basic mathematical
questions, especially for the deterministic imitation dynamics. Among other things,
we showed complete description of dynamics on complete graphs, indicated why
this is already a complicated question even for k-regular graphs [5]. Moreover, we
proved that coexistence equilibria could exist on arbitrary graph or for arbitrary
game-theoretical parameters [6].

The goal of this short note is to develop into detail the connection of evolutionary
gamesongraphs and replicator equationswhichwas indicated in [5].We show that the
stability regions of evolutionary games on complete graphs with the sequential and
synchronous updatingwith deterministic imitation dynamics converge to the stability
regions of replicator equations. Moreover, we go one step further and construct
evolutionary games on graphs with a stochastic imitation dynamics and show that,
when coupledwith a finer choice of a time scale, then not only the stability regions but
also the trajectories of evolutionary games on graphs converge to those of replicator
equations.

Throughout the paper we consider only connected undirected graphsG = (V, E),
where V denotes the set of vertices and E the set of its edges. Moreover we also
consider the 1-neighbourhood of a given vertex i ∈ V to be the set

N1(i) = { j ∈ V : (i, j) ∈ E},

see [9] for more details about graph theory.

2 Social Dilemma Games

Game theoretical parameters form an essential part of evolutionary games on graphs.
In each time step graph neighbours play a game and are rewarded by given and known
utilities. In this section we discuss in detail game theoretical fundamentals (see e.g.
[4, 18] for more detailed introduction on game theory). For our purposes, we take
into account only two-player two-strategies symmetric games. The two considered
strategies will be called cooperation (C) and defection (D) and the utilities are given
by the utility matrix with parameters a, b, c, d ∈ R
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C D
C a b
D c d

This matrix should be read in the following way. Any player gets the utility a if
both he and his partner cooperate, he gets b if he cooperates and his partner defects.
On the other hand, if the player defects and his partner cooperates he gets c, if both
players defect, he gets d. We focus on the so-called social dilemma games (see
e.g. [19, 27]). In this class of games, we make the following assumptions on the
parameters a, b, c, d:

• a > d, i.e., it is always better if both players cooperate than if they both defect.
• c > b, i.e., if only one player cooperates, each player prefers to be the defector.
• a > b and c > d, i.e., no matter what strategy a player chooses, it is always better
for him if his opponent cooperates.

Additionally, it is sometimes assumed for simpler analysis that the parameters a, c
are positive, i.e., there is a positive reward for cooperation. These assumptions could
be summarized by

min{a, c} > max{b, d} (1)

and they imply four different scenarios

• Prisoner’s dilemma game (PD), if c > a > d > b,
• Stag hunt game (SH), if a > c > d > b,
• Hawk and dove game (HD), if c > a > b > d,
• Harmony game (HG), if a > c > b > d.

Note that the names differ from time to time (Hawk and dove game is, especially
in economic applications, called the snowdrift game [11] and the not so frequently
studied Harmony game appears, e.g., under the Full cooperation game name [5]).
In the same spirit, especially in the Prisoner’s dilemma scenario, the parameters
a, b, c, d are being replaced by R, S, T, P for their specific meaning, R—reward,
S—the sucker’s pay-off, T—temptation and P—punishment, see e.g. [19, 24].

The key concept in static games is theNash equilibrium [4, 17, 18]. Intuitively, it is
the combination of (mixed) strategies (σ ∗

1 , σ ∗
2 ) such that neither player could improve

his utility by a change of his strategy only, i.e. there are two conditions in the case of
two-player two-strategies games. First, u1(σ ∗

1 , σ ∗
2 ) ≥ u1(σ1, σ

∗
2 ) for all admissibleσ1

(the former player cannot improve his utility by a change of his strategy). Secondly,
u2(σ ∗

1 , σ ∗
2 ) ≥ u2(σ ∗

1 , σ2) for all admissible σ2 (the corresponding condition for the
latter player).

In our case, allowing for mixed strategies, we can study σi ∈ [0, 1] where σi = 1
corresponds to the player i playing the pure strategy C and σi = 0 corresponds to
the player i playing the pure strategy D. From a perspective of player 1 for a fixed
σ2 we get

u1(σ1, σ2) = aσ1σ2 + bσ1(1 − σ2) + c(1 − σ1)σ2 + d(1 − σ1)(1 − σ2). (2)
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Table 1 Nash equilibria of social dilemma games

Scenario Nash equilibria Symmetric nash eq

c > a > d > b PD Prisoner’s
dilemma

NPD = {(0, 0)} SPD = {0}

a > c > d > b SH Stag hunt NSH = {(0, 0), (1, 1), (σ∗, σ∗)} SSH = {0, 1, σ∗}
c > a > b > d HD Hawk and dove NHD = {(0, 1), (1, 0), (σ∗, σ∗)} SHD = {σ∗}
a > c > b > d HG Harmony game NHG = {(1, 1)} SHG = {1}

The player 1 maximizes his utility by σ1 = 1 in HG scenario, σ1 = 0 in PD scenario
and in the HD and SH scenarios the situation depends on the exact value of σ2.
Similar analysis from the perspective of the player 2 leads to the Nash equilibria
structure listed in Table1, where σ ∗ = d−b

a−c+d−b .
We denote byN the set of all Nash equilibria for the given social dilemma scenario

and by S the set of all symmetric Nash equilibria (represented by a single value).
Note that the sets differ, asymmetric Nash equilibria occur only in the Hawk &Dove
scenario.

3 Replicator Equations

The game, as introduced in Sect. 2, is in its nature static and in the case of HD and SH
scenarios provides multiple equilibria. The beautifully elegant concept of replicator
dynamics [12, 13] allows not only to introduce dynamics to games but also to select
equilibria which are stable (in the case of games with two players and two strategies
they correspond to the so-called evolutionary stable strategies [13, 28], which in turn
represent one of many Nash equilibrium refinements [17]).

In our case with two strategies C and D, let us assume that in the population of
n = nC + nD individuals there are nC cooperators and nD defectors. Proportionally
we can denote

x = xC = nC
n

, xD = nD

n
,

i.e., xC + xD = 1. For each strategy we denote by u(C, x) and u(D, x) the utilities
which are obtained by the players playing C or D in the population with the fraction
x of cooperators. If we consider the modification of the Malthusian growth with a
growth factor r (combining birth rate minus the growth rate) adjusted by the utili-
ties of each strategy we can introduce the dynamics for the number of cooperating
and defecting individuals (we also simplify the situation by taking into account the
continuous time model)

n′
C(t) = (r + u(C, x))nC (t), n′

D(t) = (r + u(D, x))nD(t).
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Easy calculation yields that for the number of individuals in the aggregate population
we get the following modification of the Malthusian growth model

n′(t) = (r + u(x))n(t),

where u(x) = xu(C, x) + (1 − x)u(D, x) denotes the average utility of the popula-
tion. Being interested in the change of strategy ratios we observe that:

x ′(t) = n′
C(t) − x(t)n′(t)

n(t)
= (r + u(C, x))nC(t) − x(t)(r + u(x))n(t)

n(t)
.

Employing nC/n = x weget the replicator equation for the proportion of cooperators

x ′(t) = (u(C, x(t)) − u(x(t)))x(t). (3)

If we pass to infinite population, i.e. n → ∞, we get

u(C, x) = ax + b(1 − x), u(D, x) = cx + d(1 − x). (4)

Similarly, one can obtain the average utility of the population:

u(x) = xu(C, x) + (1 − x)u(D, x) = x(ax + b(1 − x)) + (1 − x)(cx + d(1 − x)).
(5)

Consequently, the replicator equation for social dilemma games becomes (starting
from (3))

x ′(t) = (ax(t) + b(1 − x(t)) − x(t)(ax(t) + b(1 − x(t)))

+ (1 − x(t))(cx(t) + d(1 − x(t)))x(t).

Factoring out, we can simplify it and rewrite it as

x ′(t) = x(t)(1 − x(t)) (x(t)(a − c + d − b) + b − d) . (6)

We immediately observe that there are three stationary solutions of this ordinary
differential equation x∗

1 = 0, x∗
2 = 1 and x∗

3 = d−b
a−c+d−b .

Let us define two additional sets. LetF be the set of all fixed points of the replicator
equation in [0, 1] and let A denote the set of all asymptotically stable fixed points
of the replicator equation in [0, 1]. Then the analysis of (6) yields that we have the
structure of fixed points for replicator equations of social dilemma games summed
up in Table2 (moreover, the trajectories for various initial fraction of cooperators are
illustrated in Fig. 2).

Comparing Tables1 and 2 we immediately observe the following relationship:

A ⊆ S ⊆ F (7)



72 P. Stehlík

Table 2 Fixed points of replicator dynamics of social dilemma games

Scenario Fixed points Asymptotically stable
fixed points

c > a > d > b PD Prisoner’s dilemma FPD = {0, 1} APD = {0}
a > c > d > b SH Stag hunt FSH = {0, 1, σ ∗} ASH = {0, 1}
c > a > b > d HD Hawk and dove FHD = {0, 1, σ ∗} AHD = {σ ∗}
a > c > b > d HG Harmony game FHG = {0, 1} AHG = {1}

HG

HD

SH

PD

-1.0 - 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

b

c

Fig. 1 Set of admissible parameters and four game-theoretic scenarios, a = 1 and d = 0

Remark 1 In fact, (7) (which we derived only for social dilemma games) is a special
case of a more general result [13], which furthermore includes the set E of the so-
called evolutionary stable strategies (ESS), which is one of equilibrium refinements
defined by John Maynard Smith [28]. For general symmetric game we then have

E ⊆ A ⊆ S ⊆ F,

and E = A in the case of two strategy games (for example, our social dilemma
games).

Figures1 and 2 indicate that for the sake of easier visualisation, we can reduce
the dimension of parameter space from 4 to 2 by normalizing parameters a, b, c, d
so that ã = 1 and d̃ = 0 by the following map

x̃ = x − d

a − d
, x = a, b, c, d.

Similarly, givennormalizedvalues of parameters ã, b̃, c̃, d̃ ,we couldfind for arbitrary
a and d such that a > d non-normalized values of parameters by

x = d + (a − d)x̃, x̃ = ã, b̃, c̃, d̃.
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(a) PD, b=−2, c= 2 (b) HD, b= 0.5, c= 2

(c) SH,b=−1, c= 0.5 (d) HG, b= 0.7, c= 0.8

Fig. 2 Replicator equation trajectories for social dillemma scenarios, a = 1 and d = 0. Light gray
lines show trajectories for solutionswith initial conditions x(0) = i/20,with i = 0, 1, . . . , 20.Black
solid lines represent asymptotically stable stationary solutions and black dashed lines correspond
to unstable stationary solutions

This allows us to simplify conditions or plot regions corresponding to various sce-
narios, cf. Fig. 1 where the four social dilemma scenarios are depicted. For the sake
of brevity, we will simplify our computations in the rest of the paper by assuming
that a = 1 and d = 0.

4 Evolutionary Games on Graphs

There are two main disadvantages of replicator dynamics. First, the population is
homogeneous and well-mixed, i.e. each player interacts with all other players. Sec-
ondly, the population size must be taken as infinite. These drawbacks have been
fixed by the concept of evolutionary games on graphs [21]. The avalanche of ensuing
papers studied these cellular automata1 from numerous complex angles and showed

1In some cases one should rather speak about agent-based models, since the graph structure varies
and agents are allowed to interact in a very complex fashion [24, 29], see also [10].
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by more or less analytical methods that the finite and heterogeneous graph structure
can either promote or inhibit cooperation.

In our previous papers [5, 6] we attempted to describe the simplest evolutionary
games on graphs using discrete dynamical systems2 and we showed that they could
be defined as discrete dynamical systems in the following way.

Each vertex could either attain value 0 (defection) or 1 (cooperation). Evolutionary
games on graphs consist of a non-directed graph G, game theoretical parameters p
(seeTable1, an utility functionuwhich assign to each vertex utility based on the graph
structure, game theoretical parameters and the distribution of cooperation/defection.
Consequently, there is an update order T assigning to each time instance t a set of
vertices which could be update at t . The exact mechanism how the vertex is being
updated is given by the an update rule ϕ.

Definition 1 An evolutionary game on a graph E is a quintuple (G, p, u,T , ϕ),
where

(a) G = (V, E) is a connected graph,
(b) p = (a, b, c, d) are game-theoretical (social dilemma) parameters,
(c) u : {0, 1}V → R

V is a utility function,
(d) T : T → 2V is an update order on an infinite discrete time scale T ⊂ [0,∞),
(e) ϕ : T

2≥ × {0, 1}V → {0, 1}V is a (generally nonautonomous) dynamical system
(the so-called update rule).3

Remark 2 In contrast to our original definition [6, Definition 2.1] we allow for more
general time T instead of N0. The only motivation for this slight modification is
the study of the convergence to the replicator equations, for which the vanishing
discrete time step is necessary. If not said otherwise (when dealing with convergence
of trajectories) we still use T = N0.

Remark 3 There could be several choices of utility functions. Since we study evo-
lutionary games on complete graphs, the choice of a utility function does not play a
key role (as is the case for irregular graphs [5, Sect. 8]). Therefore, we only consider
the mean utility function given by

2Another motivation for our study had been the small size of cooperationmacroeconomic networks,
see e.g. [8, 14, 15]. Note that this is in contrast to the focus on large, often scale-free, networks in
the physical and biological applications [27].
3We denote by T

2≥ the set

T
2≥ := {(t, s) ∈ T

2 : t ≥ s}.
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uM
i (x) = 1

|N1(i)|

⎛
⎝a

∑
j∈N1(i)

xi x j + b
∑

j∈N1(i)

xi (1 − x j ) + c
∑

j∈N1(i)

(1 − xi )x j

+d
∑

j∈N1(i)

(1 − xi )(1 − x j ),

⎞
⎠

where x ∈ {0, 1}V and its components are xi ∈ {0, 1}. Since we only consider the
mean utility function, we often omit the upper index M and use u instead of uM in
the following.

Remark 4 There are two major deterministic examples of update orders T : T →
2V . Namely the synchronous update order

TSYN (t) = V, for each t ∈ N0.

which mathematically leads to simpler autonomous evolutionary games E and the
sequential update order, in which vertices can be ordered and numbered 1, . . . n and

TSEQ(t) = t (mod n) + 1, for each t ∈ N0.

There are numerous other update orders, in the proof of convergence we consider
an example of an update order which is (i) stochastic and (ii) defined on a finer time
scale (with a smaller discretization step).

Note that both synchronous and sequential update orders are non-omitting and
periodic (cf. [5, Definition 14]).

Remark 5 The major example of a deterministic update rule ϕ is the deterministic
imitation dynamics ϕ ID which we use in this paper. In this update rule, each vertex
(if being updated) follows the strategy in its neighbourhood which, at a given time
t , yields the highest utility. In other words, the update rule ϕ ID is defined via its
components ϕ ID

i := proji ◦ ϕ : (N0)
2
≥ × {0, 1}V → {0, 1} by

ϕ ID
i (t + 1, t, x) =

{
xmax if i ∈ T (t), |Ai (x)| = 1 and Ai (x) = {xmax},
xi otherwise,

(8)

where Ai (x) is the set of strategies in the neighbourhood of x which yield the highest
utility and is given by

Ai (x) = {
xk : k ∈ argmax

{
u j (x) : j ∈ N≤1(i)

}}
, (9)

where N≤1(i) := { j ∈ V : dist(i, j) ≤ 1} denotes the neighbourhood of i . The car-
dinality of Ai (x) is used to ensure that all vertices with the highest utility have the
same state. If that is not the case, the vertex preserves its current state (in order to
keep the dynamics deterministic).
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There are numerous other update rules, especially death-birth, birth-death and best
response update rules, see [19, 24] or [5, Remark 4]. For the sake of convergence, we
define later another stochastic update rule (20) which is a modification of imitation
update rule with a probabilistic ingredient based on a difference between the utilities
of more and less successful strategies.

Our main results which followed from this rigorous approach included the fol-
lowing universal existence theorems for coexistence equilibria4 in the case of deter-
ministic imitation dynamics ϕ ID . First, we showed that for each social-dilemma
parameters there is a graph so that there is a coexistence equilibrium of the corre-
sponding evolutionary game (the proof is actually constructive [6, Theorem 4.1]).

Theorem 1 For each p = (a, b, c, d) and any update order T there exists a con-
nected graph G such that the evolutionary game on a graph (G, p, uM ,T , ϕ ID) has
a coexistence equilibrium.

In a similar way, we showed that for each graph there are social-dilemma game
theoretical parameters so that there is a coexistence equilibrium of the corresponding
evolutionary game (again, the reader is invited to check the constructive proof [6,
Theorem 4.2]).

Theorem 2 For each connected graph G and any update order T there exists
a parameter vector p = (a, b, c, d) such that the evolutionary game on a graph
(G, p, uM ,T , ϕ ID) has a coexistence equilibrium.

In order to consider stability of configurations of evolutionary games on graphs,
we also introduced the concept of attractivity. Roughly speaking, a state x ∈ {0, 1}V
(or a set of such states) is attractive if a perturbation (represented by the change
of exactly one xi ) eventually returns to the given state (or the set of states). The
attractor A ⊂ {0, 1}n is called nontrivial if A � {(0, 0, . . . , 0), (1, 1, . . . , 1)}. For
more details, see [5, Definition 5].

5 Evolutionary Games on Complete Graphs—Convergence
of Stability Regions

In this section we consider evolutionary games on complete graphs Kn with syn-
chronous and sequential updating and show that as n → ∞ the stability regions of
their stationary solutions coincide with those of replicator equations.

Letm ∈ {0, 1, . . . , n} denote the number of cooperators. Then the mean utility of
cooperators and defectors in the complete graph Kn could be evaluated as (if there

4We say that a state x ∈ {0, 1}V is a coexistence equilibrium (coexistence fixed point) of the evo-
lutionary game on a graph (G, p, u,T , ϕ) if (a) it is a fixed point, i.e., ϕ(t + 1, t, x) = x for all
t ∈ T, and (b) it is a coexistence state, i.e., 0 <

∑
i∈V xi < |V |, see [6] for more details.
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are m cooperators then a cooperating vertex has m − 1 cooperating neighbours and
n − m defecting neighbours)

un(C,m) = a(m − 1) + b(n − m)

n − 1
, un(D,m) = cm + d(n − m − 1)

n − 1
, (10)

and the average utility is given by

un(m) = mun(C,m) + (n − m)un(D,m)

n

= m[a(m − 1) + b(n − m)] + (n − m)[cm + d(n − m − 1)]
n(n − 1)

. (11)

Applying few simple algebraic operations we can show that for each n we have

un(C,m∗) = un(m
∗) = un(D,m∗),

where m∗ is a critical constant given by

m∗ := n(b − d) − (a − d)

(c − a) + (b − d)
, (12)

which is not necessary integer.
Comparing the values of un(C,m) and un(D,m)weget immediately the complete

characterization of the evolutionary game on complete graphs with synchronous
updating

ESYN = {Kn, p, u
M ,TSYN , ϕ ID},

where TSYN (t) = V for all t ∈ N0.

Theorem 3 The synchronous evolutionary game ESYN = {Kn, p, uM ,TSYN , ϕ ID}
has got at most three homogeneous (constant) solutions and

(a) the state (0, 0, . . . , 0) is a stationary solution which is attractive if and only if

b < d, or n < 1 + c − d

b − d
. (13)

(b) the state (1, 1, . . . , 1) is a stationary solution which is attractive if and only if

a > c, and n > 1 + a − b

a − c
. (14)

(c) if m∗ ∈ N (see (12)) then there exists the set of stationary solutions M∗ = {x ∈
{0, 1}V : ∑

i∈V xi = m∗}. This set is never attractive.



78 P. Stehlík

Proof The proof follows from [5, Theorems 9, 10].

Remark 6 Rather than repeating the individual steps of the proof (which can be
found in [5, Theorems 9, 10]), we emphasize the differences between (13) and (14).
It could seem counter-intuitive that one cannot transform one into another by a simple
substitution of d, c, b, a for a, b, c, d. This could be easily seen from the assumptions
on parameters (1). Indeed, the necessary and sufficient condition for (0, 0, . . . , 0)
being an attractive stationary solution is:

un(D, 1) − un(C, 1) > 0

which is equivalent with

(n − 1)(d − b) + (c − d) > 0. (15)

Similarly, the necessary and sufficient condition for (1, 1, . . . , 1) being an attractive
stationary solution is:

un(C, n − 1) − un(D, n − 1) > 0

which is equivalent with

(n − 1)(a − c) + (b − a) > 0. (16)

Note that (15) and (16) aremutually obtainable by the simple substitution of d, c, b, a
for a, b, c, d. However, since (1) hold we observe that c − d > 0 but b − a < 0.
Consequently, when we want to rewrite (15) and (16) in terms of dependence on n
as in Theorem 3, we arrive to the conditions (13) and (14). In other words, these
conditions imply that with the increasing n the basin of attraction of (0, 0, . . . , 0)
shrinks whereas the basin of attraction of (1, 1, . . . , 1) expands.

One could repeat the reasoning for the evolutionary game on Kn with the sequen-
tial update order

ESEQ = {Kn, p, u
M ,TSEQ, ϕ ID},

where TSEQ(t) = {i} with i = (t mod n) + 1 for all t ∈ N0.

Theorem 4 The sequential evolutionary game ESEQ = {Kn, p, uM ,TSEQ, ϕ ID} has
got at most three homogeneous (constant) solutions and

(a) the state (0, 0, . . . , 0) is a stationary solution which is attractive if and only if

b < d, or n < 1 + c − d

b − d
.
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(b) the state (1, 1, . . . , 1) is a stationary solution which is attractive if and only if

a > c, and n > 1 + a − b

a − c
.

(c) if m∗ ∈ N (see (12)) then there exists the set of stationary solutions M∗ = {x ∈
{0, 1}V : ∑

i∈V xi = m∗}. This set is attractive if and only if m∗ ∈ {2, 3, . . . , n −
2} and c − a + b − d > 0.

Proof The proof follows from [5, Theorems 26, 27].

Note that in the case of the sequential evolutionary game ESEQ if m∗ /∈ N and
m∗ ∈ (1, n − 1) then there arise periodic solutions with the values of cooperators
oscillating between �m∗ and �m∗�. Consequently, we can claim that the set

M∗ =
{
x ∈ {0, 1}V :

∑
i∈V

xi = �m∗ or
∑
i∈V

xi = �m∗�
}

is also attractive if m∗ ∈ [2, n − 2], cf. [5, Example 29]. Note that this set contains
either periodic solutions (ifm∗ is not a natural number) or stationary solutions (ifm∗
is a natural number).

Theorems 3 and 4 immediately yield the following statement which could be
interpreted as a convergence of regions of stability to those of replicator equations.

Theorem 5 The following statements hold:

• Let (a, b, c, d) satisfy c > a > d > b (PD region). Then (0, 0, . . . , 0) is a unique
non-trivial attractor of ESEQ and ESYN for all n ∈ N.

• Let (a, b, c, d) satisfy a > c > d > b (SH region). Then there exists n0 ∈ N such
that (0, 0, . . . , 0) and (1, 1, . . . , 1) are attractors of ESEQ and ESYN for all n > n0.

• Let (a, b, c, d) satisfy c > a > b > d (HD region). Then there exists n0 ∈ N such
that the set

M∗ =
{
x ∈ {0, 1}V :

∑
i∈V

xi = �m∗ or
∑
i∈V

xi = �m∗�
}

is an attractor ofESEQ.Moreover, the stationary solution (0, 0, . . . , 0) is not attrac-
tive for sufficiently large n and (1, 1, . . . , 1) is never attractive.

• Let (a, b, c, d) satisfy a > c > b > d (HG region). Then there exists n0 ∈ N such
that (1, 1, . . . , 1) is a unique non-trivial attractor of ESEQ and ESYN for all n > n0.

The convergence of attractivity regions is illustrated in Fig. 3.

Remark 7 Note that necessary and sufficient attractivity conditions which appear in
Theorems 3 and 4 could be easily modified for general k-regular graph. However,
they are only sufficient conditions. Counterexamples to their necessity could be
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K20

K6

Fig. 3 Attractivity regions for various complete graphs, a = 1 and d = 0. The central graphs
correspond to the synchronous updating, the rightmost ones to the sequential updating. In the light
gray region, only (0, 0, . . . 0) is attractive, in the dark gray region only (1, 1, . . . 1) is attractive. In
the horizontally hatched region, both (0, 0, . . . 0) and (1, 1, . . . 1) are attractive. In the vertically
hatched region the coexistence attractors or attractive periodic solutions occur. In the dotted regions,
there are no attractors. Compare those figures with the stability regions of the replicator equations,
Fig. 1

constructed, see [5, Example 13]. So far, it is not clear, whether there are necessary
and sufficient conditions for general k-regular graphs. Only special cases, e.g., cycles
(i.e., 2-regular graphs) have been studied and fully described [22].

6 Evolutionary Games on Complete Graphs—Convergence
of Trajectories

Apparently, Theorem5 andFig. 3 indicate that in the case of synchronous and sequen-
tial updating the dynamic properties of equilibria of evolutionary games on graphs
converge to those of replicator equations. However, the trajectories differ signifi-
cantly. For example, in the case of synchronous updating, the equilibria are reached
in one step. The goal of this section is to discuss another update rule for which not
only the dynamic properties coincide but the solution trajectories converge to the
solutions of the replicator equations.
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We modify the evolutionary game with the synchronous updating in two aspects.
Firstly, since we want the convergence to functions defined on continuous sets,
trajectories must be considered on a finer time scale, i.e., we consider time scale
T = hN0 = {0, h, 2h, . . .} with a time step h instead of T = N0. Secondly, we mod-
ify the imitation dynamics update rule in the following way. As before, each player
preserves his strategy if it yields better utility than the utilities of his neighbours.
However, there will be a probabilistic rule which would describe whether the player
with worse utility would switch or not. Roughly speaking, the more the difference in
the utilities the higher probability of switching. This secondmodification ensures that
we get different trajectories for various parameters in each social-dilemma region.

Since the utilities are bounded, we can make the difference in utilities arbi-
trarily small in the following way. Let us choose k ∈ N0 so that for each x ∈
{0, 1/n, 2/n, . . . , 1} and almost all n ∈ N we have

1

nk
(un(χ, nx) − un(nx)) ≥ −1, χ ∈ {C, D}. (17)

Note that this is straightforwardly possible because the quantities (un(C, nx) −
un(nx)), (un(D, nx) − un(nx)) are bounded, see (10) and (11).

For such a k we define the sufficiently fine time scale

T = hN0 = {0, h, 2h, . . .}

where h = 1
nk+1 .

Let us modify the sequential update order and consider the scaled sequential ran-
dom update orderTsc(t) : hN0 → {0, 1}n .Tsc(t) contains, for each t ∈ hN0 exactly
one randomly selected vertex i ∈ V . Note that such an update order is no longer
deterministic and it is almost surely non-omitting.

Let us define the scaled imitation dynamic rule ϕsc. Let Ai (x) be the set of strate-
gies in the neighbourhood of xi which yield the highest utility at a given time t

Ai (x) = {
xk : k ∈ argmax

{
u j (x) : j ∈ n≤1(i)

}}
. (18)

Furthermore, let us denote

ymax
i :=

{
y if |Ai (x)| = 1, and Ai (x) = {y},
xi otherwise.

The cardinality of Ai (x) is used to ensure that all vertices with the highest utility
have the same state. If that is not the case, the vertex preserves its current state. If
that is the case, the vertex switches to the most successful strategy with probability

p∗ =
{

− 1
nk (un(χ, nx) − un(nx)) if un(χ, nx) < un(nx), χ ∈ {C, D},

0 otherwise,
(19)
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(see (17) to check that this indeed defines a probability). Consequently, we can define
the dynamical system

(ϕsc)i (t + h, t, x) =
{
ymax
i with probability p∗ if i ∈ Tsc(t)

xi otherwise.
(20)

Now we are ready to consider the scaled evolutionary game Esc on Kn

Esc = (Kn, p, u
M ,Tsc, ϕsc).

Let us analyze the mean trajectory (note that the trajectories are random since both
Tsc and ϕsc are stochastic) of the scaled evolutionary game on Kn . For a given ratio
of xn(t) cooperators we look for the ratio of cooperators xn(t + h) at time t + h.

Lemma 1 The mean trajectory of the scaled evolutionary game Esc = (Kn, p, uM ,

Tsc, ϕsc) satisfies the difference equation

xn(t + h) = xn(t) + hxn(t) (un(C, nxn(t)) − un(nxn(t))) . (21)

Proof Let us distinguish two cases, according to utility of cooperators and defectors:

• If un(C, nxn(t)) < un(nxn(t)) (i.e., if defectors are doing better) we observe
that exactly one player will be selected for possible update (ratio 1/n), he
will be cooperator with probability xn(t) and he will switch with probability
− 1

nk (un(C, nx) − un(nx)), see (19). Consequently,

xn(t + h) = xn(t) + 1

n
xn(t)

1

nk
(un(C, nxn(t)) − un(nxn(t)))

= xn(t) + hxn(t) (un(C, nxn(t)) − un(nxn(t)))

• If un(C, nxn(t)) > un(nxn(t)) (i.e., if cooperators are doing better) we observe
that the cooperator keeps his strategy. Again, exactly one player is selected for
possible update, he is a defector with probability (1 − xn(t)) and he will switch
with probability − 1

nk (un(D, nx) − un(nx)), see (17). Since

un(nxn(t)) = xn(t)un(C) + (1 − xn(t))un(D),

we have

xn(t) (un(C, nxn(t)) − un(nxn(t))) = −(1 − xn(t)) (un(D, nxn(t)) − un(nxn(t))) ,
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and we observe that also in this case

xn(t + h) = xn(t) + 1

n
xn(t)

1

nk
(un(C, nxn(t)) − un(nxn(t)))

= xn(t) − 1

n
(1 − xn(t))

1

nk
(un(D, nxn(t)) − un(nxn(t)))

= xn(t) + hxn(t) (un(C, nxn(t)) − un(nxn(t)))

We are ready to prove our main convergence theorem. Dealing with the con-
vergence we extend xn(t), which is only defined on the discrete time scale T, to a
function defined on a continuous domain by defining

x∗
n (t) = xn(t

∗), t∗ := max
s≤t,s∈T

s. (22)

We use the following result as a key tool to prove the convergence of the scaled
evolutionary game on complete graph to the replicator equations. This theorem can
be seen as a variant of Euler method in which we not only have the convergence
of discrete time scales but at the same time the convergence of nonlinear right hand
sides. This auxiliary result follows frommore general results for generalized ordinary
differential equations [7, Theorem 2.5] and [26, Theorem 12].

Theorem 6 Let

• fn : [0, 1] → R for each n ∈ N0,
• there exist M such that for each n ∈ N0 and for each x ∈ [0, 1] we have

| fn(x)| < M,

• there exist L such that for each n ∈ N0 and for each x, y ∈ [0, 1] we have

| fn(x) − fn(y)| ≤ L|x − y|,

• fn(x) converge uniformly to f0(x) on [0, 1],
• Tn = hnN0 be a sequence of discrete time scales such that T ∈ Tn such that
hn → 0,

• for each n ∈ N let xn(t) be a solution of the recurrence equation

{
xn(t + h) = xn(t) + hn fn(xn(t)), t ∈ Tn ∩ [0, T ],
xn(0) = xn0 ∈ [0, 1].

• there exist limits x0 = limn→∞ xn0 and x0(t) = limn→∞ x∗
n (t) for all t ∈ [0, T ].

Then the sequence x∗
n (t) contains a subsequence x

∗
nk (t)which converges uniformly

to x0(t) and x0(t) solves
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{
x ′
0(t) = f0(x0(t)), t ∈ [0, T ],
x0(0) = x0 ∈ [0, 1]. (23)

Using this theorem we are ready to show that the solutions of the scaled evolu-
tionary game on complete graph converge uniformly to the solutions of replicator
equations.

Theorem 7 Let xn : 1
nN0 → R be themean solution of the scaled evolutionary game

Esc = (Kn, p, uM ,Tsc, ϕsc) with xn(0) = �nx0/n for some x0 ∈ [0, 1], x∗
n (t) its

extension to [0, T ] for some T > 0 given by (22). Let the limit limn→∞ x∗
n (t) exist.

Then

lim
n→∞ x∗

n (t) = x0(t),

for each t ∈ [0, T ] where x0 : [0, T ] → R is the solution of the replicator equa-
tion (6) with x0(0) = x0 and the convergence is uniform.

Proof We only provide a sketch of the proof, we don’t verify all assumptions of
Theorem 6 in detail. The recursive scheme (21) could be written as

xn(t + h) − xn(t)

h
= xn(t) (un(C, nxn(t)) − un(nxn(t))) =: fn(xn(t)) (24)

Taking the definitions (10), (11) into account we observe that the functions fn(x) are
polynomials defined on [0, 1]. Therefore the first three assumptions of
Theorem 6 are satisfied. Moreover, a closer analysis of (4), (5), (10), (11) and the
fact that the polynomials are defined on the compact interval [0, 1] imply that the
following convergences are uniform:

un(C, nx∗
n (t)) ⇒ u(C, x0(t)), un(nx

∗
n (t)) ⇒ u(x0(t)),

Consequently, we have

fn(xn(t)) ⇒ f0(x0(t)) := x0(t)(u(C, x0(t)) − u(x0(t))).

Theorem 6 then implies that the sequence x∗
n (t) converges uniformly to x0(t)

which is the solution the replicator equation (cf. (6))

x ′
0(t) = x0(t)(u(C, x0(t)) − u(x0(t))).

Note that the uniform convergence is an indirect consequence of Theorem 6.
Theorem 6 only states that there is a uniformly convergent subsequence of {x∗

n (t)}.
Butwe can reapplyTheorem6 to get that each subsequence of {x∗

n (t)} has a uniformly
convergent subsequence. However, all these subsequences must have the same uni-
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(a) K5 (b) K10

(c) K50

Fig. 4 Illustration to Theorem 7. Convergence of mean solutions x∗
n (t) of evolutionary game Esc on

complete graphs (black step functions) to the solution x(t)of replicator equation (6) (gray functions).
The pictures depict the prisoner’s dilemma scenario with b = −1 and c = 2, with initial condition
x(0) = 0.8 and the mean solutions are computed from 500 simulations on complete graphs with
n = 5, 10, 50 vertices

form limit, since the replicator equation (6) has at most one solution. This implies
that the whole sequence {x∗

n (t)} is uniformly convergent as well.5

The process of convergence is illustrated in Fig. 4. We emphasize the fact that our
choice of evolutionary game on graphs, especially of the update order Tsc and the
update rule ϕsc, is not unique. On the contrary, it is very specific and makes mostly
sense only for complete graphs. There are other choices of update rules and update
orders which lead to the convergence to trajectories of replicator equations. One
could, for example, make update orders deterministic and consider non-constant
step size where the length of the step size depends on the difference in utilities.
We have chosen this particular example for the exact interpretations and a proof of
convergence.

5The reason why Theorem 6 is not stated in this way directly is the fact that it could be applied also
in cases when the problem (23) does not have a unique solution.
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7 Summary and Final Remarks

The previous results indicate that the evolutionary games on graphs are not only
a finite-dimensional counterpart of replicator equations but the exact solutions of
replicator equations can be reconstructed as a limit of mean solutions of evolutionary
games on complete graphs by intricate choices of update orders and update rules.
The purpose of this paper has been to show this relationship in a clear way from
a purely mathematical perspective. We note that, for example, the convergence of
stability regions could be shown for any non-omitting update order (we discussed it
only for synchronous and sequential update orders).

We emphasize that our main motivation was to show that the limit behaviour
of evolutionary games on complete graphs correspond to the replicator equations.
In contrast to the standard derivation of replicator equations [13, 25] we arrive to
replicator equations from the finite population models. On the other hand, we admit
that the updating probability p∗ defined in (19) has weak justification in terms of
biological interpretation for general graphs, since it contains the global property u,
which is the global average payoff in the population. In other words, this choice is an
ad hoc choice for the case of complete graphs which we consider in this manuscript.

There are many open problems which are related to the mathematics of evolu-
tionary games on graphs, even in the deterministic settings. We highlight especially
the conditions ensuring the stability of fixed points, nonexistence of fixed points,
existence of periodic solutions (is it as universal as the existence of coexistence equi-
libria [6]?) or the dynamics on special classes of graphs (even k-regular graphs are
not fully described). The reader is invited to check the detailed commented lists of
open problems in final sections of [5, 6].

Regarding this note, we highlight one additional open problem. Namely, the con-
vergence of other classes of graphs. Note that we only considered the convergence
of evolutionary games on complete graphs. But graph limits are much more general
[16] and such limit processes could yield differential models generalizing traditional
replicator equations.
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Abstract The main results of the paper are complimenting, extending and improv-
ing several earlier results obtained for Halanay type discrete difference inequalities.
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tinuous time results by using suitable delay differential inequalities with piecewise
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1 Introduction

Halanay [12] proved an upper estimation for the set of the nonnegative solutions
of an autonomous continuous time delay differential inequality with maxima. This,
so called Halanay inequality became a powerful tool in the stability theory of delay
differential equations, therefore several authors improved, generalized and applied
it (see for instance Baker and Tang [4], Baker [3], Ivanov, Liz and Trofimchuk [12],
Mohamad and Gopalsamy [16], and Wen, Yu and Wang [19]).

The set of nonnegative numbers and the set of nonnegative integerswill be denoted
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earlier literature for the differential inequality
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x ′ (t) ≤ −α (t) x (t) + β (t) x (t − τ (t)) , t ≥ t0, (1)

and the Halanay type inequality

x ′ (t) ≤ −α (t) x (t) + β (t) sup
t−τ(t)≤s≤t

x (s) , t ≥ t0, (2)

under the mild conditions

(A1) t0 ∈ R is fixed, the functions α : [t0,∞[ → R and β : [t0,∞[ → R+ are
locally integrable,

(A2) τ : [t0,∞[ → R+ is a measurable function and it obeys the inequality

t0 − r ≤ t − τ (t) , t ≥ t0

with a constant r ≥ 0.
Based on the importance of the discrete time dynamical systems there are several

works in the literature (see Agarwal, Young-Ho Kim and Sen [1] and [2], Liz and
Ferreiro [13], Liz, Ivanov and Ferreiro [14], Liz, Tkachenko and Trofımchuk [15],
Song, Shen andYin [18], andXu [20]) devoted to the reformulation of the continuous
time results for the discrete time difference inequality

y (n + 1) ≤ a (n) y (n) + b (n) y (n − k (n)) , n ≥ n0, (3)

and the Halanay type difference inequality

y (n + 1) ≤ a (n) y (n) + b (n) max
n−k(n)≤i≤n

y (i) , n ≥ n0. (4)

where

0 < a (n) < 1, b (n) ≥ 0, n ≥ n0, (5)

and

k (n) ∈ N, n − k (n) ≥ n0 − l, n ≥ n0 (6)

with a fixed integer n0 and a fixed l ∈ N.
We say that a function x : [t0 − r,∞[ → R is a solution of the differential inequal-

ities (1) or (2) if x is Borel measurable and bounded on [t0 − r, t0], locally absolutely
continuous on [t0,∞[, and x satisfies (1) or (2) almost everywhere on [t0,∞[, respec-
tively.

We say that the real sequence (y (n))n≥n0−l is a solution of the difference inequal-
ities (3) or (4) if it satisfies (3) or (4) for all n ≥ n0, respectively.
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It is interesting to note that in all of the above papers the proof of the discrete
version of a continuous case result is basically a repetition of the original proof, of
course, with some suitable changes.

In this paperweuse a novel idea.Namely,we show that the qualitative properties of
the solutions of our discrete inequalities are equivalent to the qualitative properties of
the solutions of some suitable delay differential inequalities with piecewise constant
argument.

The theory of delay differential equations with piecewise constant argument
(EPCA) was initiated and studied by Cooke and Wiener [6] and [7]. The idea of
approximating the solutions of continuous time delay differential equations with
the solutions of a suitable constructed EPCA has been suggested by Győri [8] who
proved convergence of the method for linear and nonlinear delay equations on com-
pact intervals. In Cooke and Győri [5], it was pointed out that the approximation may
be extended to noncompact intervals. The interested readers may refer to the further
paper Sepúlveda [17].

The integer part of a real number r will be denoted by [r ] ([r ] is the largest integer
less than or equal to r ).

The connection among the continuous time inequalities (1) and (2) and the discrete
time inequalities (3) and (4), respectively is given by the relations

α (t) := a1 ([t]) , β (t) := b1 ([t]) , t − τ (t) := [t] − k ([t]) , t ≥ n0, (7)

where

a1 (n) := − ln (a (n)) , b1 (n) := − ln (a (n))

1 − a (n)
b (n) , n ≥ n0. (8)

Clearly, a1 (n) > 0 and b1 (n) ≥ 0 for all n ≥ n0.
We shall see that the delay differential inequality

x ′ (t) ≤ −α (t) x (t) + β (t) x (t − τ (t)) , t ≥ n0, (9)

and the Halanay type differential inequality

x ′ (t) ≤ −α (t) x (t) + β (t) sup
t−τ(t)≤s≤t

x (s) , t ≥ n0, (10)

where α, β and τ are defined in (7), are closely related to the difference inequalities
(3) and (4).

Remark 1 (a) Here α and β are piecewise constant functions, while τ is piecewise
continuous, and therefore they are Borel measurable. It follows from (5–8) that
α (t) > 0, β (t) ≥ 0, τ (t) ≥ 0 and t − τ (t) ≥ n0 − l for all t ≥ n0.

These conditions guarantee that (A1) and (A2) are satisfied for (9) and (10).
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(b) It is easy to check that β (t) ≤ α (t) (t ≥ n0) if and only if a (n) + b (n) ≤ 1
(n ≥ n0). It is also obvious that lim

t→∞ (t − τ (t)) = ∞ if and only if lim
n→∞

(n − k (n)) = ∞.

The paper is organized as follows: Sect. 2 contains some important lemmas on the
equivalent behavior of the nonnegative solutions of our discrete and the related con-
tinuous inequalities. These lemmas clearly show the important role of the delay differ-
ential inequalities with piecewise constant arguments. The main results which com-
pliment, extend and improve several earlier results are presented in Sect. 3. Finally, in
Sect. 4 we compliment, extend and improve the result of Mohamad and Gopalsamy
[16] given for a discrete inequality. Here we also illustrate the sharpness of some
conditions with some examples.

This work has been inspired by an open discussion during the 22nd International
Conference on Difference Equations and Applications, Osaka, Japan July 24–29,
2016 about the relevance of the continuous and discrete time model equations and
their connections, initiated by Professors S. Elaydi and J. M. Cushing.

2 Basic Lemmas on the Equivalence of the Asymptotic
Behavior of the Solutions of Continuous and Discrete
Inequalities

To study the convergence of the nonnegative solutions of either (3) or (4) we need
some lemmas.

Lemma 2 Suppose that (5) and (6) are satisfied. Let (y (n))n≥n0−l be a nonnegative
solution of (3), and denote (z (n))n≥n0−l be the unique solution of the initial value
problem

z (n + 1) = a (n) z (n) + b (n) z (n − k (n)) , n ≥ n0,
z (n0 − l) := y (n0 − l) , . . . , z (n0) := y (n0)

}
. (11)

Then

y (n) ≤ z (n) , n ≥ n0 − l.

Proof We can apply an easy induction argument, by using that a (n) > 0 and b (n) ≥
0 for all n ≥ n0. �

Lemma 3 Suppose that (5) and (6) are satisfied.

(a) Let (y (n))n≥n0−l be a nonnegative solution of (3), and denote (z (n))n≥n0−l be
the unique solution of the initial value problem (11). Define the function x :
[n0 − l,∞[ → R by
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x (t) := e−a1(n)(t−n)z (n) (12)

+ b1 (n)

a1 (n)

(
1 − e−a1(n)(t−n)

)
z (n − k (n)) , n ≤ t < n + 1, n ≥ n0,

and

x (t) := y (n) , n ≤ t < n + 1, n0 − l ≤ n < n0. (13)

Then x is a nonnegative solution of the differential inequality (9) such that

y (n) ≤ x (n) , n0 − l ≤ n. (14)

(b) The set of nonnegative solutions of the Halanay type difference inequality (4)
is the same as the set of nonnegative solutions (y (n))n≥n0−l of all delay difference
inequalities

y (n + 1) ≤ a (n) y (n) + b (n) y (n − p (n)) , n ≥ n0, (15)

where (p (n))n≥n0 is an integer valued sequence satisfying

0 ≤ p (n) ≤ k (n) , n ≥ n0. (16)

Proof (a) Obviously, x is nonnegative, and

x (n) = z (n) , n ≥ n0 − l. (17)

Since x is piecewise constant on [n0 − l, n0], it is Borel measurable and bounded
on [n0 − l, n0]. It is not hard to check that x is continuous on [n0,∞[, and

x ′ (t) = −a1 (n) e−a1(n)(t−n)z (n)

+ b1 (n) e−a1(n)(t−n)z (n − k (n)) , n ≤ t < n + 1, n ≥ n0, (18)

where x ′ (n) (n ≥ n0) means right-hand derivative in (18). The left-hand derivative
at n (n ≥ n0 + 1) also exists, but the function x is not differentiable at n in general.

It follows that

∣∣x ′ (t)
∣∣ ≤ a1 (n) z (n) + b1 (n) z (n − k (n)) , n ≤ t < n + 1, n ≥ n0,

and hence the right-hand side derivative of x is bounded on [n0, t] for all t > n0. We
can see that x is locally absolutely continuous on [n0,∞[.
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By (18), some easy calculation shows that

x ′ (t) = −a1 (n) x (t) + b1 (n) x (n − k (n))

= −a1 (n) x (t) + b1 (n) x (t − τ (t)) , n ≤ t < n + 1, n ≥ n0,

thus x is a solution of the delay differential equation

x ′ (t) = −α (t) x (t) + β (t) x (t − τ (t)) , t ≥ n0,

and hence x is a solution of (9).
Finally, (14) follows from (17) and Lemma 2.

(b) Since the set {n − k (n) , . . . , n} is finite for every n ≥ n0, for any fixed non-
negative solution (y (n))n≥n0−l of (4) there exists an integer valued sequence
(p (n))n≥n0 (depending on this solution) which satisfies (16) and

max
n−k(n)≤i≤n

y (i) = y (n − p (n)) , n ≥ n0.

Thus (y (n)) obeys (15).
Conversely, if (y (n))n≥n0−l is a nonnegative solution of (15) with a sequence

(p (n))n≥n0 satisfying (16), then b (n) ≥ 0 (n ≥ n0) yields that (y (n)) is a solution
of (4) too.

The proof is complete. �

Lemma 4 Suppose that (5) and (6) are satisfied. Then
(a) If every nonnegative solution of the differential inequality (9) tends to zero at

infinity, then every nonnegative solution of the difference inequality (3) tends to zero
at infinity.

(b) If

a (n) + b (n) ≤ 1, (n ≥ n0) (19)

and

lim
n→∞ (n − k (n)) = ∞, (20)

then the reverse assertion in (a) also holds.
(c) If every nonnegative solution of the Halanay type differential inequality (10)

tends to zero at infinity, then every nonnegative solution of theHalanay type difference
inequality (4) tends to zero at infinity.

(d) If (19) and (20) are satisfied, then the reverse assertion in (c) also holds.

Proof (a) Let (y (n))n≥n0−l be a nonnegative solution of (3). By Lemma 3 (a), the
function x defined by (12) and (13) is a nonnegative solution of (9). Consequently,
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lim
t→∞ x (t) = 0. (21)

Since (14) is satisfied, (21) tells us that lim
n−∞ y (n) = 0.

(b) Let x : [n0 − l,∞[ → R be a nonnegative solution of (9). Then for any fixed
n ≥ n0 we have

x ′ (t) ≤ −a1 (n) x (t) + b1 (n) x (n − k (n)) , a.e. on [n, n + 1[ ,

and hence the Gronwall–Bellman inequality yields

x (t) ≤ x (n) e−a1(n)(t−n)

+ b1 (n) x (n − k (n))
1

a1 (n)

(
1 − e−a1(n)(t−n)

)
, n ≤ t < n + 1. (22)

Since x is continuous on [n0,∞[, (22) gives that

x (n + 1) ≤ x (n) e−a1(n) + b1 (n) x (n − k (n))
1

a1 (n)

(
1 − e−a1(n)

)
= a (n) x (n) + b (n) x (n − k (n)) , n ≥ n0.

It can be seen that (x (n))n≥n0−l is a nonnegative solution of (3), and hence

lim
n→∞ x (n) = 0. (23)

Thus (20) implies

lim
n→∞ x (n − k (n)) = 0. (24)

By using a1 (n) > 0 (n ≥ n0), we get that for every n ≥ n0

0 < e−a1(n)(t−n) ≤ 1, n ≤ t < n + 1. (25)

From (8), (5) and (19) we can deduce that

0 <
b1 (n)

a1 (n)
= b (n)

1 − a (n)
≤ 1, n ≥ n0. (26)

The inequality (22) together with (23–26) give that lim
t→∞ x (t) = 0.

(c) It follows from Lemma 3 (b) that every nonnegative solution of (4) tends to
zero at infinity if and only if every nonnegative solution of (15) tends to zero at
infinity for every integer valued sequence (p (n))n≥n0 satisfying (16).

Now let (p (n))n≥n0 be an integer valued sequence satisfying (16), and let η :
[n0,∞[ → R+ be defined by
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t − η (t) := [t] − p ([t]) , t ≥ n0.

Then η is a nonnegative measurable function satisfying

n0 − l ≤ t − η (t) and η (t) ≤ τ (t) , t ≥ n0.

Since every nonnegative solution of the delay differential inequality

x ′ (t) ≤ −α (t) x (t) + β (t) x (t − η (t)) , t ≥ n0, (27)

is obviously a solution of (10), every nonnegative solution of (27) tends to zero at
infinity.

By applying (a) to (27) in this case, it follows that every nonnegative solution of
(15) tends to zero at infinity.

(d) Since every nonnegative solution of (3) is a solution of (4), every nonnegative
solution of (3) tends to zero at infinity. It now follows from (b) that every nonnegative
solution of (9) also tends to zero at infinity. Therefore by Remark 1 (b) and by (19),
we have from Theorem 2.8 in [10] that every nonnegative solution of (10) tends to
zero at infinity too.

The proof is complete. �

We define the notion of exponential convergence.

Definition 5 (a)We say that every nonnegative solution y : [n0 − l,∞[ → R of the
difference inequalities (3) or (4) tends to zero exponentially at infinity if there are
κ > 0 and K ≥ 0 (independent of the solutions) such that

y (n) ≤ K max
n0−l≤i≤n0

y (i) e−κ(n−n0), n ≥ n0,

where κ is called as rate of convergence.
(b)We say that every nonnegative solution x : [n0 − l,∞[ → R of the differential

inequalities (9) or (10) tends to zero exponentially at infinity if there are κ > 0 and
K ≥ 0 (independent of the solutions) such that

x (t) ≤ K sup
n0−l≤s≤n0

x (s) e−κ(t−n0), t ≥ n0,

where κ is called as rate of convergence.

The next result is analogous to Lemma 4.

Lemma 6 Suppose that (5) and (6) are satisfied. Then
(a) If every nonnegative solution of the differential inequality (9) tends to zero

exponentially at infinity with the convergence rate κ > 0, then every nonnegative
solution of the difference inequality (3) tends to zero exponentially at infinity with
the same convergence rate.
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(b) If

a (n) + b (n) ≤ 1, (n ≥ n0) , (28)

and the sequence (k (n))n≥n0 is bounded, then the reverse assertion in (a) also holds.
(c) If every nonnegative solution of the Halanay type differential inequality (10)

tends to zero exponentially at infinity with the convergence rate κ > 0, then every
nonnegative solution of the Halanay type difference inequality (4) tends to zero
exponentially at infinity with the same convergence rate.

(d) If (28) is satisfied, and the sequence (k (n))n≥n0 is bounded, then the reverse
assertion in (c) also holds.

Proof (a) We can follow the contexture of the proof of Lemma 4 (a).
By Lemma 3 (a), the function x : [n0 − l,∞[ → R defined by (12) and (13) is a

nonnegative solution of (9), and hence there are κ > 0 and K ≥ 0 such that

x (t) ≤ K sup
n0−l≤s≤n0

x (s) e−κ(t−n0), t ≥ n0.

We obtain from this and (14) that

y (n) ≤ x (n) ≤ K max
n0−l≤i≤n0

y (i) e−κ(n−n0), t ≥ n0,

which shows the result.
(b) Exactly as in the proof of Lemma 4 (b), we have that (x (n))n≥n0−l is a non-

negative solution of (3), and hence there are κ > 0 and K ≥ 0 such that

x (n) ≤ K max
n0−l≤i≤n0

x (i) e−κ(n−n0), n ≥ n0.

Now, inequality (22) gives that

x (t) ≤ K max
n0−l≤i≤n0

x (i) e−κ(n−n0)e−a1(n)(t−n) + b1 (n)

a1 (n)

(
1 − e−a1(n)(t−n)

)
×K max

n0−l≤i≤n0
x (i) e−κ(n−k(n)−n0), n ≤ t < n + 1.

This implies by using (25) and (26), that

x (t) ≤ K max
n0−l≤i≤n0

x (i) e−κ(n−n0)
(
1 + eκk(n)

)
, n ≤ t < n + 1.

Since (k (n)) is bounded (0 ≤ k (n) ≤ τ, n ≥ n0), we have

x (t) ≤ K (1 + eκτ ) max
n0−l≤i≤n0

x (i) e−κ(n−n0)
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≤ K (1 + eκτ ) eκ sup
n0−l≤s≤n0

x (s) e−κ(t−n0) t ≥ n0,

and thus the desired conclusion is obtained.
(c) Lemma 3 (b) shows that every nonnegative solution of (4) tends to zero expo-

nentially at infinity with the rate of convergence κ > 0 if and only if every nonneg-
ative solution of (15) tends to zero exponentially at infinity with the same rate of
convergence κ for every integer valued sequence (p (n))n≥n0 satisfying (16).

We can follow the proof as in Lemma 4 (c): every nonnegative solution of (27)
tends to zero exponentially at infinity, and the rate of convergence κ > 0 is the same
as for (10). By applying (a) to (27) in this case, it follows that every nonnegative
solution of (15) tends to zero exponentially at infinity with the rate of convergence κ .

(d)We can prove exactly as in Lemma 4 (d) by using Theorem 2.11 in [10] instead
of Theorem 2.8 in [10].

The proof is complete. �

We close this section with the next result.

Lemma 7 Suppose that (5) and a (n) + b (n) ≤ 1 (n ≥ n0) hold, and consider the
functions α and β defined in (7). Then

(a)

∞∫
n0

(α (s) − β (s)) ds =
∞∑

n=n0

1 − a (n) − b (n)

1 − a (n)
ln

(
1

a (n)

)
. (29)

(b)

lim inf
t→∞

1

t − n0

t∫
n0

(α (s) − β (s)) ds

= lim inf
n→∞

1

n − n0

n∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
. (30)

Proof (a) Since β (t) ≤ α (t) (t ≥ n0), the integral exists. Now, (29) follows from
the definitions of α and β.

(b) Clearly,

1

t − n0

t∫
n0

(α (s) − β (s)) ds

= [t] − 1 − n0
t − n0

(
1

[t] − 1 − n0

[t]−1∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

))
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+ t − [t]

t − n0
· 1 − a ([t]) − b ([t])

1 − a ([t])
ln

(
1

a ([t])

)
, t ≥ n0 + 1,

and this implies (30).
The proof is complete. �

3 Main Results

Theorem 8 Suppose that (5), (6) and a (n) + b (n) ≤ 1 (n ≥ n0) are satisfied.
(a) Assume further that lim

n→∞ (n − k (n)) = ∞. If every nonnegative solution of

either the difference inequality (3) or the Halanay type difference inequality (4) tends
to zero at infinity, then

∞∑
n=n0

1 − a (n) − b (n)

1 − a (n)
ln

(
1

a (n)

)
= ∞. (31)

(b) Assume further that the sequence (k (n))n≥n0 is bounded. If every nonnega-
tive solution of either the difference inequality (3) or the Halanay type difference
inequality (4) tends to zero exponentially at infinity, then

lim inf
n→∞

1

n − n0

n∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
> 0.

Proof (a) By Remark 1, Theorem 3.1 (a) in [10] guarantees that if every nonnegative
solution of either (9) or (10) tends to zero at infinity, then

∞∫
n0

(α (s) − β (s)) ds = ∞.

In light of Lemma 7 (a), either Lemma 4 (b) or Lemma 4 (d) can be applied.
(b) Similar reasoning, starting with Theorem 3.1 (b) in [10], gives that if every

nonnegative solution of either (9) or (10) tends to zero exponentially at infinity, then

lim inf
t→∞

1

t − n0

t∫
n0

(α (s) − β (s)) ds > 0.

The result follows from this by using Lemma 7 (b) and either Lemma 6 (b) or
Lemma 6 (d).

The proof is complete. �



102 I. Győri and L. Horváth

Theorem 9 Suppose that (5), (6), a (n) + b (n) ≤ 1 (n ≥ n0) and lim
n→∞

(n − k (n)) = ∞ are satisfied. Assume further that there exists a constant 0 < q < 1
such that

lim sup
n→∞

n∑
i=n0

q − qa (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
= ∞.

Then every nonnegative solution of either the difference inequality (3) or the
Halanay type difference inequality (4) tends to zero at infinity.

Proof Since

lim sup
t→∞

t∫
n0

(qα (s) − β (s)) ds

≥ lim sup
n→∞

n∑
i=n0

q − qa (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
,

it follows that

lim sup
t→∞

t∫
n0

(qα (s) − β (s)) ds = ∞. (32)

Then Remark 1, lim
t→∞ (t − τ (t)) = ∞, and (32) show that Theorem 3.3 in [10]

can be applied to the differential inequalities (9) and (10). According to this theorem,
every nonnegative solution of either (9) or (10) tends to zero at infinity.

Lemma 4 (a) and Lemma 4 (c) imply the assertions.
The proof is complete. �

In the next two results we use the condition: there exists a constant 0 < q < 1
such that

b (n) ≤ q (1 − a (n)) , n ≥ n0. (33)

Clearly, (33) is equivalent to

β (t) ≤ qα (t) , t ≥ n0. (34)

Theorem 10 Suppose that (5), (6), (33) and lim
n→∞ (n − k (n)) = ∞ are satisfied.

Then every nonnegative solution of either the difference inequality (3) or the
Halanay type difference inequality (4) tends to zero at infinity if and only if
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∞∑
n=n0

ln

(
1

a (n)

)
= ∞. (35)

Proof According to (33)

(1 − q)

n∑
i=n0

ln

(
1

a (i)

)
≤

n∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
≤

n∑
i=n0

ln

(
1

a (i)

)
,

(36)

which implies that (35) holds if and only if

∞∑
n=n0

1 − a (n) − b (n)

1 − a (n)
ln

(
1

a (n)

)
= ∞. (37)

Remark 1 and (34) show that the conditions of Theorem 3.5 in [10] hold. By
applying this theorem we have that every nonnegative solution of either (9) or (10)
tends to zero at infinity if and only if

∞∫
n0

(α (s) − β (s)) ds = ∞,

but Lemma 7 (a) shows that this condition is equivalent to (37).
The result comes fromLemma4 (a) and (b), andLemma4 (c) and (d), respectively.
The proof is complete. �

Remark 11 Let n0 := 1. If a (n) := e− 1
n (n ≥ 1), then (35) holds, while if a (n) :=

e− 1
n2 (n ≥ 1), then (35) does not hold.

Theorem 12 Suppose that (5), (6) and (33) are satisfied. Assume further that

M := sup
n≥n0

n∑
i=max(n−k(n),n0)

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
< ∞. (38)

(a1) For every nonnegative solution (y (n))n≥n0−l of the difference inequality (3)
we have

y (n) ≤ max
n0−l≤i≤n0

y (i) exp

(
−μ

n∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

))
, n ≥ n0,

(39)
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where μ ∈ ]0, 1] is the unique root of the equation

qeμM + μ (1 − q) − 1 = 0. (40)

(a2) For every nonnegative solution (y (n))n≥n0−l of the Halanay type difference
inequality (4) satisfies (39) too.

(b) Every nonnegative solution of either the difference inequality (3) or the
Halanay type difference inequality (4) tends to zero exponentially at infinity if

lim inf
n→∞

1

n − n0

n∑
i=n0

ln

(
1

a (i)

)
> 0. (41)

This condition is also necessary if the sequence (k(n))n≥n0 is bounded.

Proof (a1) Define the function x : [n0 − l,∞[ → R by (12) and (13). As we have
seen in Lemma 3 (a), x is a nonnegative solution of (9).

By (38) and (7), it is clear that

M = sup
t≥n0

t∫
max(t−τ(t),n0)

(α (s) − β (s)) ds < ∞,

and hence, by Remark 1, Theorem 3.6 (a) in [10] can be applied, which gives that

x (t) ≤ sup
n0−l≤s≤n0

x (s) exp

⎛
⎝−μ

t∫
n0

(α (s) − β (s)) ds

⎞
⎠ , t ≥ n0. (42)

Since y (n) ≤ x (n) for every n ≥ n0 (see (14)), and

sup
n0−l≤s≤n0

x (s) = max
n0−l≤i≤n0

y (i) ,

the result comes from (42).
(a2) The condition (38) holds with the same constant M for every integer valued

sequence (p (n))n≥n0 satisfying (16), and hence Lemma 3 (b) and (a1) can be applied.
(b) From (36) we have that (41) holds if and only if

lim inf
n→∞

1

n − n0

n∑
i=n0

1 − a (i) − b (i)

1 − a (i)
ln

(
1

a (i)

)
> 0. (43)
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By Lemma 7 (b), the condition (43) is equivalent to

lim inf
t→∞

1

t − n0

t∫
n0

(α (s) − β (s)) ds > 0,

and therefore Theorem 3.6 (c) in [10] yields that every nonnegative solution of the
differential inequalities (9) and (10) tends to zero exponentially at infinity. Thus
Lemmas 6 (a) and (c) can be applied, respectively.

Under the additional assumption, the condition is also necessary by Theorem
8 (b).

The proof is complete. �

Remark 13 Assume that the conditions of the previous theorem are satisfied. If (41)
is also satisfied, then Remark 14 in [10] shows that lim

n→∞ (n − k (n)) = ∞.

Theorem 14 Suppose that (5), (6) and a (n) + b (n) ≤ 1 (n ≥ n0) are satisfied.
(a1) There exists a constant κ ≥ 0 such that for every nonnegative solution

(y (n))n≥n0−l of the difference equation (3)

y (n) ≤ max
n0−l≤i≤n0

y (i) e−κ(n−n0), n ≥ n0. (44)

(a2) There exists a constant κ ≥ 0 such that for every nonnegative solution
(y (n))n≥n0−l of the Halanay type difference inequality (4) satisfies (44).

(b) If the sequence (k (n))n≥n0 is bounded and

inf
n≥n0

ln
(

1
a(n)

)
(1 − a (n) − b (n))

1 − a (n) + ln
(

1
a(n)

)
b (n)

> 0, (45)

then there exists κ > 0 such that (44) holds, and thus every nonnegative solution
of either the difference inequality (3) or the Halanay type difference inequality (4)
tends to zero exponentially at infinity.

Proof κ = 0 is obviously satisfies the inequality

κ +
ln

(
1

a(n)

)
1 − a (n)

b (n) eκ(t−n+k(n)) ≤ ln

(
1

a (n)

)
, n ≤ t < n + 1, n ≥ n0, (46)

and hence the definitions of the functions α, β and τ in (7) give that

κ + β (t) eκτ(t) ≤ α (t) , t ≥ n0. (47)
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By Remark 1, Theorem 3.9 (b1) in [10] can be applied, which insures that for
every nonnegative solution x : [n0 − l,∞[ → R of the differential inequalities (9)
and (10)

x (t) ≤ sup
n0−l≤s≤n0

x (s) e−κ(t−n0), n ≥ n0.

(a1) By using the solution of (9) defined in (12) and (13), we have (44).
(a2) Let (p (n))n≥n0 be an integer valued sequence satisfying (16), and consider

the delay differential inequality (27). Since

κ + β (t) eκη(t) ≤ α (t) , t ≥ n0

also holds, we can apply Lemma 3 (b) and (a1).
(b) We can see from the proofs of (a1) and (a2) that it is enough to show that (47)

holds with a κ > 0.
Assume 0 ≤ k (n) ≤ K for all n ≥ n0. Since

ln
(

1
a(n)

)
(1 − a (n) − b (n))

1 − a (n) + ln
(

1
a(n)

)
b (n) (t − n + k (n))

≥
ln

(
1

a(n)

)
(1 − a (n) − b (n))

1 − a (n) + ln
(

1
a(n)

)
b (n) (1 + k (n))

≥ 1

K + 1
·
ln

(
1

a(n)

)
(1 − a (n) − b (n))

1 − a (n) + ln
(

1
a(n)

)
b (n)

, n ≤ t < n + 1, n ≥ n0,

the definitions of the functions α, β and τ in (7) and (45) insure that

inf
n≥n0

α (t) − β (t)

1 + β (t) τ (t)
> 0.

Now by Remark 1, Corollary 1 (c) in [10] shows that there exists κ > 0 such that
(47) holds.

The proof is complete. �

4 Applications

The following result can be found in the paper [16].



Connection Between Continuous and Discrete Delay … 107

Theorem A Let h > 0 and let (y (n)) be a nonnegative sequence satisfying

y (n + 1) ≤ 1

1 + a0 (n) h
y (n) + b0 (n) h

1 + a0 (n) h

(
max

n−κ(n)≤i≤n
y (i)

)
, n ≥ n0, (48)

y (n) = ϕ (n) for n ∈ [
n0 − κ∗, n0

]
, (49)

where κ (n) denotes an integer valued, nonnegative and bounded sequence defined
for n ∈ Z and κ∗ = max

n∈Z
κ (n) is a positive integer; ϕ (n) is a real valued sequence

defined for n ∈ [n0 − κ∗, n0]; the parameters a0 (n) and b0 (n) defined for n ∈ Z

denote real valued, nonnegative and bounded sequences. Suppose

a0 (n) − b0 (n) ≥ σ > 0, n ∈ Z.

Then there exists a real number λ̃ > 1 such that

y (n) ≤
(

max
n0−κ∗≤i≤n0

y (i)

) (
1

λ̃

)n−n0

, n ≥ n0.

From Theorems 12 and 14 we could find more general results which are better
and complementary to the above theorem.

Theorem 15 Let h > 0 and let (y (n))n≥n0−κ∗ be a nonnegative sequence satisfying
(48) and (49), where κ (n) denotes an integer valued, nonnegative sequence defined
for n ≥ n0 such that n − κ (n) ≥ n0 − κ∗ with a positive integer κ∗; the parameters
a0 (n) and b0 (n) defined for n ∈ Z denote positive sequences. Suppose that there
exists a constant 0 < q < 1 such that

b0 (n) ≤ qa0 (n) , n ≥ n0 (50)

and

sup
n≥n0

n∑
i=max(n−κ(n),n0)

a0 (i) − b0 (i)

a0 (i)
ln (1 + a0 (i) h) < ∞. (51)

If

lim inf
n→∞

1

n − n0

n∑
i=n0

ln (1 + a0 (i) h) > 0,

then there exists a real number λ̃ > 1 such that

y (n) ≤
(

max
n0−κ∗≤i≤n0

y (i)

) (
1

λ̃

)n−n0

, n ≥ n0.
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Proof Since (5), (6) and (33) are satisfied with

a (n) := 1

1 + a0 (n) h
, b (n) := b0 (n) h

1 + a0 (n) h
, k (n) := κ (n) , n ≥ n0,

Theorem 12 (b) can be applied.
The proof is complete. �

The next two remarks show that Theorem 15 is an essential improvement of
Theorem A.

Remark 16 Suppose that the conditions of Theorem A are satisfied. In this case
0 ≤ a0 (n), b0 (n) < c (n ≥ n0), therefore

b0 (n)

a0 (n)
≤ b0 (n)

b0 (n) + σ
≤ c

c + σ
< 1,

and thus (50) holds. Since

n∑
i=max(n−κ(n),n0)

a0 (n) − b0 (n)

a0 (n)
ln (1 + a0 (n) h)

≤
n∑

i=max(n−κ(n),n0)

ln (1 + a0 (n) h) ≤ κ∗ ln (1 + ch) < ∞,

(51) holds too.

Remark 17 Choose h := 1,

a0 (n) :=
{

1, n = 2 j, j ∈ N
1
n , n = 2 j + 1, j ∈ N

,

and

b0 (n) := 1

2n + 1
, n ∈ N.

Then

b0 (n) ≤ 1

2
a0 (n) , n ∈ N.

It is easy to check that (51) is also satisfied, if the sequence (κ (n)) is bounded.
We have

lim
n→∞

1

n

n∑
i=0

ln (1 + a0 (i)) = 1

2
ln (2) ,
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and hence Theorem 15 can be applied. Theorem A can not be used, since

a0 (2 j + 1) − b0 (2 j + 1) → 0 as j → ∞.

The next theorem gives applicable explicit conditions for the exponential conver-
gence of the nonnegative solutions of (48).

Theorem 18 Let h > 0 and let (y (n))n≥n0−κ∗ be a nonnegative sequence satisfying
(48) and (49), where κ (n) denotes an integer valued, nonnegative and bounded
sequence defined for n ≥ n0 and κ∗ = max

n≥n0
κ (n) is a positive integer; the parameters

a0 (n) and b0 (n) defined for n ∈ Z denote positive sequences. Suppose that

b0 (n) ≤ a0 (n) , n ≥ n0 (52)

and

inf
n≥n0

ln (1 + a0 (n) h) (a0 (n) − b0 (n))

a0 (n) + ln (1 + a0 (n) h) b0 (n)
> 0. (53)

Then there exists a real number λ̃ > 1 such that

y (n) ≤
(

max
n0−κ∗≤i≤n0

y (i)

) (
1

λ̃

)n−n0

, n ≥ n0.

Proof As in the proof of the previous theorem (5) and (6) are satisfied, and

a (n) + b (n) = 1 + b0 (n) h

1 + a0 (n) h
≤ 1, n ≥ n0.

Now, Theorem 14 (b) can be applied.
The proof is complete. �

Remark 19 Suppose that the conditions of TheoremA are satisfied. It is obvious that
(52) holds. We show that (53) is also satisfied. If 0 ≤ a0 (n), b0 (n) < c (n ≥ n0),
then

ln
(

1
a(n)

)
(1 − a (n) − b (n))

1 − a (n) + ln
(

1
a(n)

)
b (n)

= ln (1 + a0 (n) h) (a0 (n) − b0 (n))

a0 (n) + ln (1 + a0 (n) h) b0 (n)

≥ σ

c
· ln (1 + a0 (n) h)

1 + ln (1 + a0 (n) h)
≥ σ

c
· ln (1 + σh + b0 (n) h)

1 + ln (1 + ch)

≥ σ

c
· ln (1 + σh)

1 + ln (1 + ch)
> 0, n ≥ n0.

It can be seen that Theorem A is a special case of Theorem 18.
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Remark 20 Choose

a0 (n) := e2n+1 − 1, b0 (n) := en+1 − 1, n ≥ 1.

Then easy to check that (52) and (53) hold, and therefore Theorem 18 can be
applied. Since the sequences (a0 (n))n≥1 and (b0 (n))n≥1 are not bounded, Theorem
A can not be applied.
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Convergence of Finite Difference Schemes
Applied to the Cauchy Problems
of Quasi-linear Partial Differential Equations
of the Normal Form

Nobuyuki Higashimori, Hiroshi Fujiwara and Yuusuke Iso

Abstract We consider the Cauchy problems of nonlinear partial differential equa-
tions of the normal form in the class of the analytic functions.We apply semi-discrete
finite difference approximation which discretizes the problems only with respect to
the time variable, andwe give a result about convergence. Themain result shows con-
vergence of consistent finite difference schemes even without stability, and therefore
shows independence between stability and convergence for finite difference schemes.
Our theoretical result can be realized numerically on multiple-precision arithmetic
environments.

Keywords Finite difference method · Nonlinear PDE · Cauchy problem ·
Unstable scheme · Multiple-precision arithmetic

1 Introduction

We consider consistent finite difference schemes applied to the Cauchy problems of
quasi-linear partial differential equations of the normal form:

∂u

∂t
=

n∑

j=1

a j (t, x, u)
∂u

∂x j
+ f (t, x, u), u(t, x)

∣∣∣
t=0

= 0, (1)
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where a j (t, x, u) and f (t, x, u) are C1 functions which are analytic with respect to
x = (x1, . . . , xn) and u. Since a j (t, x, u) and f (t, x, u) can be extended holomor-
phically with respect to x and u in some complex domain, we consider the problems
for complex-valued functions u = u(t, x) of a real variable t and complex variables
x . If a j (t, x, u) and f (t, x, u) are analytic with respect to all the variables, unique
existence of an analytic solution is known as the Kowalevskaya theorem [12], and
its classical proof is based on the method of power series. By the idea of reducing
the Cauchy problems to those of an abstract ordinary differential equation on a scale
of Banach spaces, Nirenberg [8] and Nishida [9] relaxed the analyticity assumption
with respect to t to continuity with respect to t . In this case, there exists a unique
solution in a class of C1 functions of t with values in spaces of analytic functions
of x . We follow their approach to show convergence of finite difference schemes
applied to the Cauchy problems of nonlinear partial differential equations.

In the argument of convergence analysis, we often refer to stability analysis.
We know, by the Lax equivalence theorem [7], that stability and convergence are
equivalent to each other for consistent finite difference schemes of the well-posed
Cauchy problems for linear partial differential equations. However, as is shown by
Dahlquist [2] for the wave equation and by Hayakawa [4] for linear equations with
constant coefficients, solutions to consistent but unstable finite difference schemes
can be convergent in the class of the analytic functions. We remark that Dahlquist
[2] relied on the Fourier analysis of the scheme, and that Hayakawa [4] relied on
the method of power series, and we note that the latter is a discrete analogue of a
classical proof of the Kowalevskaya theorem.

In 2011, Iso [6] developed Hayakawa’s result and obtained convergence of semi-
discrete finite difference schemes for the linear Cauchy problems. His method is
discretization of the argument given in Yamanaka [13] and Ovsjannikov [10], in
which they proved the Kowalevskaya theorem for linear equations by analyzing
abstract linear Cauchy problems on a scale of Banach spaces earlier than Nirenberg
[8] and Nishida [9] did for the nonlinear case. The present paper generalizes the main
result of Iso [6] for nonlinear equations and is based on the results of Nirenberg-
Nishida. As Dahlquist [2], Hayakawa [4], and Iso [6] did, our main result indicates
that stability and convergence of finite difference schemes are independent of each
other.

This paper is organized as follows. In Sect. 2, we quote the Nirenberg–Nishida
theorem to confirm unique existence of the solution to (1). We give our main result
in Sect. 3, an outline of its proof in Sect. 4, and a numerical example in Sect. 5. The
difference scheme given in Sect. 5 is unstable, and its convergence cannot be observed
by the standard double precision arithmetic. We use a multiple precision arithmetic
exflib [3] to construct our numerical results.
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2 An Abstract Cauchy-Kowalevskaya Theorem

Following [8–10, 13], we introduce a scale of Banach spaces. Let {Bρ}0<ρ≤ρ0 be a
family of parametrized Banach spaces Bρ with norm ‖·‖ρ satisfying

Bρ ⊂ Bρ ′ and ‖u‖ρ ′ ≤ ‖u‖ρ for 0 < ρ ′ < ρ ≤ ρ0 and u ∈ Bρ. (2)

We assume that all Bρ are linear subspaces of a certain linear space B0. Let F(t, u)

be a mapping defined on a subset of R×B0 into B0, and we consider the Cauchy
problem of the form

du/dt = F(t, u(t)), u(0) = 0. (3)

Suppose that there exist positive numbers η, R, C , and K such that

If 0 < ρ ′ < ρ ≤ ρ0, the operator F maps {t ∈ R; |t | < η} × (4)

{u ∈ Bρ; ‖u‖ρ < R} to Bρ ′ continuously;

‖F(t, u) − F(t, v)‖ρ ′ ≤ C‖u − v‖ρ/(ρ − ρ ′) for 0 < ρ ′ < ρ ≤ ρ0, (5)

|t | < η, and u, v ∈ Bρ with ‖u‖ρ < R, ‖v‖ρ < R;

‖F(t, u)‖ρ ≤ K/(ρ0 − ρ) for 0 < ρ < ρ0, |t | < η, and u ∈ Bρ0 with (6)

‖u‖ρ0 < R.

Our main result is to show convergence of semi-discrete difference schemes for
the Cauchy problem (3), and we should remark that unique solvability of (3) is
guaranteed by the following theorem due to Nirenberg [8] and Nishida [9].

Theorem 1 ([8, 9]) Under the hypotheses (2) and (4)–(6), there exists a positive
number a < η/ρ0 such that there exists a unique function u(t) which is a solution to
the Cauchy problem (3) in the sense that

f or every posi tive ρ < ρ0, the f unction u(t) is C1 with values in Bρ on
the interval {t ∈ R; |t | < a(ρ0 − ρ)}, ‖u(t)‖ρ < R, and satis f ies (3) on
the same interval.

Remark 1 The proof given in [9] shows that the solution u satisfies ‖u(t)‖ρ ≤ R/2
if ρ and t satisfy 0 < ρ < ρ0 − |t |/a.
Remark 2 As is stated in Nirenberg [8], the abstract ordinary differential equation
(3) contains the Cauchy problems for nonlinear partial differential equations of the
normal form, and it immediately implies that our case (1) is contained. Precisely
speaking, the Cauchy problem for the quasi-linear partial differential equation (1)
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has a unique analytic solution by Theorem 1 if there exist positive numbers η, ρ0,
and R such that a j (t, x, u) and f (t, x, u) are

• C1 functions of (t, x, u) which are bounded along with their first derivatives,
• analytic functions of (x, u) in the polydisk

(∏n
j=1{x j ∈ C; ∣∣x j

∣∣ < ρ0}
)

× {u ∈ C; |u| < R}

for every t ∈ {|t | < η}.
To prove this, let F(t, u) be defined by

F(t, u) :=
n∑

j=1

a j (t, x, u)∂u/∂x j + f (t, x, u),

and let Bρ be the space of all bounded holomorphic functions on the polydisk

Dn
ρ := ∏n

j=1{x j ∈ C; ∣∣x j

∣∣ < ρ}

with a norm ‖u‖ρ := sup{|u(x)| ; x ∈ Dn
ρ}. Here we remark that the family {Bρ} is

a scale of Banach spaces and that the conditions (4)–(6) are met. Then we apply
Theorem 1 to the Cauchy problem (1). Details are given in Sect. 3 of Nirenberg [8].

3 Main Result

We consider a consistent semi-discrete finite difference scheme for the Cauchy prob-
lem (3). For a number T > 0 and an integer N ≥ 1, we setΔt := T/N and tk := kΔt
(k = 0, . . . , N ), and we consider the explicit semi-discrete finite difference scheme

uk+1 − uk

Δt
= F(tk, u

k) (k = 0, . . . , N − 1),

u0 = 0.

This is equivalent to

uk = Δt
k−1∑

j=0

F(t j , u
j ) (k = 0, 1, . . . , N ), (7)

where the summation equals zero for k = 0. We remark that a finite dimensional
approximation of the operator F(t, ·) is not considered here.

Our main result is that elements u0, . . . , uN ∈ B0 are well-defined by formula
(7) and that uk is close to u(tk) if Δt is sufficiently small. To show the result we
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additionally pose the following hypotheses:

For 0 < ρ ′ < ρ ≤ ρ0, the restriction of F to {t ∈ R; |t | < η} × (8)

{u ∈ Bρ; ‖u‖ρ < R} is a C1 function with values in Bρ ′ ;

The partial Fréchet derivative of F with respect to u is a (9)

bounded linear operator from Bρ to Bρ ′ and its norm satisfies

‖∂u F(t, u)‖ρ→ρ ′ ≤ C/(ρ − ρ ′) for 0 < ρ ′ < ρ ≤ ρ0, |t | < η,

u ∈ Bρ, ‖u‖ρ < R;

There is a positive number L such that the partial Fréchet deriva- (10)

tive of F with respect to t satisfies ‖∂t F(t, u)‖ρ ′ ≤ L/(ρ − ρ ′)2 for
0 < ρ ′ < ρ ≤ ρ0, |t | < η, u ∈ Bρ, ‖u‖ρ < R.

The hypotheses above imply that the solution u(t) to (3) is a C2 function of t .
Precisely, the next proposition holds.

Proposition 1 Suppose (2), (6), and (8)–(10). Let u(t) be the unique solution to (3)
as stated in Theorem 1. Then u(t) is a C2 function from {t ∈ R; |t | < a(ρ0 − ρ)} to
Bρ for every 0 < ρ < ρ0. Moreover, there is a number V > 0 such that

‖u′′(t)‖ρ ≤ V/(ρ0 − ρ − |t |/a)2 (11)

for every ρ and t with 0 < ρ < ρ0 − |t |/a.
Proof (Outline) Suppose 0 < ρ < ρ0 − |t |/a, and let ρ(t) := (ρ + ρ0 − |t |/a)/2.
Then we have 0 < ρ < ρ(t) < ρ0 − |t |/a, and ‖u(t)‖ρ(t) ≤ R/2 by Remark 1. By
using (9) and (6), we have

‖u′(t)‖ρ ≤ ‖F(t, u(t)) − F(t, 0)‖ρ + ‖F(t, 0)‖ρ ≤ C‖u(t)‖ρ(t)

ρ(t) − ρ
+ K

ρ0 − ρ
,

and thus, for some V1 > 0,

‖u′(t)‖ρ ≤ V1/(ρ0 − ρ − |t |/a), 0 < ρ < ρ0 − |t |/a. (12)

By differentiating both sides of u′ = F(t, u) and using (9), (10), and (12), we can
obtain (11) for some V > 0. �

Note that (8) implies (4) and (9) implies (5), and that by Theorem 1 the unique
solution to (3) exists. Our main result is the following theorem.
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Theorem 2 Suppose (2), (6), and (8)–(10). Let u(t) be the unique solution to (3) as
in Theorem 1. Let c, r0, and T be real numbers satisfying

0 < c < min{a, 1/4C}, 0 < r0 < ρ0, 0 < T < cr0. (13)

Then there exists a number S > 0 such that if SΔt < R/2, Eq. (7) determines
u0, . . . , uN ∈ B0, and they satisfy

sup
0≤tk≤c(r0−ρ)

‖uk − u(tk)‖ρ ≤ SΔt (14)

for every positive ρ < r0.

Proof (Outline) We introduce truncation errors wk (0 ≤ k ≤ N − 1) by

u(tk+1) − u(tk)

Δt
= F(tk, u(tk)) + wk . (15)

By Taylor’s theorem, there are v0, . . . , vN−1 ∈ B0 such that

u(tk+1) − u(tk) = F(tk, u(tk))Δt + vkΔt2, 0 ≤ k ≤ N − 1,

hence wk = vkΔt . For each k, 0 ≤ k ≤ N − 1, vk satisfies

‖vk‖ρ ≤ V/(ρ0 − ρ − tk+1/a)2, 0 < ρ < ρ0 − tk+1/a, (16)

by Proposition 1. The theorem immediately follows from the next lemma.

Lemma 1 Under the hypotheses of Theorem 2, there exists a number S > 0 such
that, if SΔt < R/2, the formula

ek = Δt
k−1∑

j=0

{
F(t j , u(t j ) + e j ) − F(t j , u(t j )) − wj

}
, 0 ≤ k ≤ N , (17)

determines elements e0, . . . , eN ∈ B0, and for every k, 0 ≤ k ≤ N, we have

‖ek‖ρ ≤ SΔt, 0 < ρ ≤ r0 − tk/c. (18)

Assuming Lemma 1 for themoment we continue the proof of Theorem 2. Suppose
that SΔt < R/2. Then (17) determines e0, e1, . . . , eN , and (18) holds. Put uk :=
u(tk) + ek . Then (15) and (17) yield (7), and (18) yields (14). The proof will be
completed by proving Lemma 1. �
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4 Outline of Proof of Lemma 1

The detail will be found in [5]. Suppose that c, r0, and T satisfy (13). We introduce
a family {Yα}α≥c of linear subspaces of (B0)

N+1 defined by

Yα := { f = ( f0, . . . , fN ) ∈ (B0)
N+1; [ f ]α < +∞}, where

[ f ]α := inf

{
M ≥ 0; ‖ fk‖ρ ≤ Mtk

r0 − ρ − tk/α
for 0 ≤ k ≤ N , 0 < ρ < r0 − tk/α

}
.

The following propositions hold:

• f0 = 0 for all f = ( f0, . . . , fN ) ∈ Yα;
• Yα is a Banach space with respect to the norm [ · ]α;
• If c ≤ β ≤ α, then [ f ]β ≤ [ f ]α for all f ∈ Yα and therefore Yα ⊂ Yβ ⊂ Yc;
• If c ≤ β < α, 0 ≤ k ≤ N , and 0 < ρ ≤ r0 − tk/β, then

fk ∈ Bρ and ‖ fk‖ρ ≤ [ f ]α
1/β − 1/α

for all f ∈ Yα. (19)

We want to define a sequence e(m) = (
0, e(m)

1 , . . . , e(m)
N

)
, m = 0, 1, 2, . . . , in Yc

by the following rule. Let e(0) := (0, 0, . . . , 0). If e(m) is defined for some m ≥ 0,
the next term e(m+1) has the components

e(m+1)
k := Δt

k−1∑

j=0

{
F

(
t j , u(t j ) + e(m)

j

) − F(t j , u(t j )) − wj

}
, 0 ≤ k ≤ N . (20)

The goal is to show that the above rule defines a convergent sequence in Yc and that
the limit is a solution to (17).

(Step 1) Fix k and ρ with 1 ≤ k ≤ N and 0 < ρ < r0 − tk/a. By (16), we have

‖v j‖ρ ≤ V

(ρ0 − ρ − t j+1/a)2
≤ V

(ρ0 − r0)(r0 − ρ − tk/a)
, 0 ≤ j ≤ k − 1.

Since wj = v jΔt , we get

‖e(1)
k ‖ρ ≤ Δt

k−1∑

j=0

‖wj‖ρ ≤ (V ′Δt)tk
r0 − ρ − tk/a

with V ′ = V/(ρ0 − r0). This shows that e(1) ∈ Ba and [e(1)]a ≤ V ′Δt .

(Step 2) Take b0 and c0 with c < c0 < b0 < min{a, 1/4C} and put δ := 1 − c0/b0.
Then b0 = c0/(1 − δ) and 0 < δ < 1. Take θ with 0 < θ < 1 and 4Cb0 < θ2 and
put bm := c0/(1 − δθm). Note that
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c < c0 < · · · < b2 < b1 < b0 < a,

[ · ]c ≤ [ · ]c0 ≤ · · · ≤ [ · ]b2 ≤ [ · ]b1 ≤ [ · ]b0 ≤ [ · ]a,
Ya ⊂ Yb0 ⊂ Yb1 ⊂ Yb2 ⊂ · · · ⊂ Yc0 ⊂ Yc.

It follows from Step 1 that e(1) ∈ Yb0 and [e(1)]b0 ≤ V ′Δt . By (19), if 0 ≤ k ≤ N and
0 < ρ ≤ r0 − tk/b1, we have

e(1)
k ∈ Bρ, ‖e(1)

k ‖ρ ≤ b0c0V ′

(b0 − c0)(1 − θ)
Δt. (21)

(Step 3) Let S := b0c0V ′/(b0 − c0)(1 − θ)2, and suppose that SΔt < R/2. The aim
here is to show that the following assertions hold for all integers m ≥ 0:

(1)m e(0), . . . , e(m+1) are defined by (20) and belong to Ybm ;
(2)m [e(m+1) − e(m)]bm ≤ θ2mV ′Δt;
(3)m ‖e(m+1)

k ‖ρ ≤ (1 − θm+1)SΔt for 0 ≤ k ≤ N , 0 < ρ ≤ r0 − tk/bm+1.

They are valid form = 0 by Step 2. Next, suppose (1)m , (2)m , (3)m for somem ≥ 0.
The inductive step consists of three parts (A)–(C) below.

(A)We put λk := r0 − tk/bm+1 for 1 ≤ k ≤ N . The purpose is to show that

e(m+2)
k := Δt

k−1∑

j=0

{
F

(
t j , u(t j ) + e(m+1)

j

) − F(t j , u(t j )) − wj

}
∈ Bλk

On the right side, the sum of the terms −wjΔt equals e(1)
k , which belongs to Bλk by

(21). If j < k, we obtain ‖u(t j ) + e(m+1)
j ‖λ j < R from (3)m and Remark 1. Since

λk < λ j , assumption (8) implies F
(
t j , u(t j ) + e(m+1)

j

) ∈ Bλk and F(t j , u(t j )) ∈ Bλk .

Hence e(m+2)
k ∈ Bλk .

(B) Let e(m+2) := (
0, e(m+2)

1 , . . . , e(m+2)
N

)
. Suppose that k and ρ satisfy 1 ≤ k ≤ N

and 0 < ρ < r0 − tk/bm+1, and put ρ ′
j := (ρ + r0 − t j/bm+1)/2 for 0 ≤ j ≤ k − 1.

Then we can estimate the difference e(m+2)
k − e(m+1)

k as follows:

∥∥∥e(m+2)
k − e(m+1)

k

∥∥∥
ρ

≤ Δt
k−1∑

j=0

∥∥∥F
(
t j , u(t j ) + e(m+1)

j

) − F
(
t j , u(t j ) + e(m)

j

)∥∥∥
ρ

≤ Δt
k−1∑

j=0

C

ρ′
j − ρ

∥∥∥e(m+1)
j − e(m)

j

∥∥∥
ρ′
j

≤ Δt
k−1∑

j=0

C

ρ′
j − ρ

[e(m+1) − e(m)]bm+1 t j
r0 − ρ′

j − t j/bm+1

≤ 4Cbm+1[e(m+1) − e(m)]bm+1 tk
r0 − ρ − tk/bm+1

≤ θ2[e(m+1) − e(m)]bm tk
r0 − ρ − tk/bm+1

.
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Thus we find

e(m+2) − e(m+1) ∈ Ybm+1 , (22)

[e(m+2) − e(m+1)]bm+1 ≤ θ2[e(m+1) − e(m)]bm , (23)

so (1)m+1 follows from (22) and (1)m , and (2)m+1 follows from (23) and (2)m .

(C) If 0 ≤ k ≤ N and 0 < ρ ≤ r0 − tk/bm+2, we use (19) and (2)m+1 to get

∥∥∥e(m+2)
k − e(m+1)

k

∥∥∥
ρ

≤ θm+1(1 − θ)SΔt.

Combining this with (3)m , we obtain (3)m+1. Thus we finish the inductive step, and
assertions (1)m , (2)m , (3)m hold for all m ≥ 0.

(Step 4) By Step 3, the sequence {e(m)}m≥0 is Cauchy in the Banach space Yc0 .
Let e = (e0, . . . , eN ) denote the limit. Then, for k and ρ satisfying 0 ≤ k ≤ N and
0 < ρ ≤ r0 − tk/c, we find that ‖e(m)

k − ek‖ρ → 0 (m → ∞). Finally, we take the
limit of (20) and (3)m to obtain (17) and (18).

5 Numerical Example

Finally, we illustrate Theorem 2 by numerical solution of the Cauchy problem

ut (t, x) + {u(t, x) + g(x)}{ux(t, x) + g′(x)} = 0, t > 0, x ∈ R, (24)

u(0, x) = 0, x ∈ R,

where g(x) = sin(πx).We remark that by putting v(t, x) = u(t, x) + g(x) the prob-
lem above is equivalent to the Cauchy problem for the inviscid Burgers equation

vt (t, x) + v(t, x)vx (t, x) = 0, t > 0, x ∈ R, (25)

v(0, x) = g(x), x ∈ R . (26)

To apply Theorem 2, we consider Eq. (24) for t > 0, x ∈ C. We take Bρ as the
space of bounded holomorphic functions in Dρ := {x ∈ C; |x | < ρ} with sup norm,
and put F(u) := −(u + g)(u′ + g′), which is a nonlinear differential operator acting
on u = u(x). Then the family {Bρ}0<ρ≤ρ0 satisfies (2), and Eq. (24) can be written
in the form (3). For each ρ > 0, the normed space Bρ is a Banach space since the
uniform limit of holomorphic functions is holomorphic (for a proof, see [1, p.176,
Theorem 1]). To verify (9), we note the estimate for the first derivative:

‖u′‖ρ ′ ≤ ‖u‖ρ/(ρ − ρ ′), u ∈ Bρ ′ , 0 < ρ ′ < ρ. (27)
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Indeed, if x0 ∈ Dρ ′ , then the open disk Δ := {ζ ∈ C; |ζ − x0| < ρ − ρ ′} lies in Dρ

along with the boundary ∂Δ. Cauchy’s integral formula states that

u(x) = 1

2π i

∫

∂Δ

u(ζ )

ζ − x
dζ, x ∈ Δ,

and differentiation with respect to x gives

u′(x) = 1

2π i

∫

∂Δ

u(ζ )

(ζ − x)2
dζ, x ∈ Δ.

By putting x = x0 we obtain

∣∣u′(x0)
∣∣ ≤ 1

2π

∫

∂Δ

|u(ζ )|
|ζ − x0|2

|dζ | ≤ ‖u‖ρ

ρ − ρ ′ .

Since x0 is arbitrary in Dρ ′ , the estimate (27) follows. Now suppose that u ∈ Bρ ,
‖u‖ρ < R, and 0 < ρ ′ < ρ ≤ ρ0. For every h ∈ Bρ we have

F(u + h) − F(u) = Tuh + hh′,

where Tu is the linear operator given by Tuh := −(u + g)h′ − h(u′ + g′). Then it
follows from (27) that

‖F(u + h) − F(u) − Tuh‖ρ ′ = o(‖h‖ρ),

‖Tuh‖ρ ′ ≤ C‖h‖ρ/(ρ − ρ ′), h ∈ Bρ,

where C is a positive number depending on R and ‖g‖ρ0 . Thus we see that the
mapping F : Bρ → Bρ ′ is Fréchet differentiable at u, and that the Fréchet derivative
Tu satisfies ‖Tu‖ρ→ρ ′ ≤ C/(ρ − ρ ′), hence (9) holds. The remaining hypotheses of
Theorem 2 can be verified similarly. Hence the convergence of the semi-discrete
scheme

uk+1(x) − uk(x)

Δt
+ {uk(x) + g(x)}{(uk)′(x) + g′(x)} = 0, k ≥ 0, x ∈ R,

u0(x) = 0, x ∈ R .

in the sup norm follows.
In our numerical computation, we discretize Eq. (24) by the forward difference

in the t direction and also in the x direction. For positive numbers Δt and Δx , our
finite difference scheme is
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uk+1(x) − uk(x)

Δt
+ {uk(x) + g(x)}

(
uk(x + Δx) − uk(x)

Δx
+ g′(x)

)
= 0, (28)

k ≥ 0, x ∈ R,

u0(x) = 0, x ∈ R .

Since g(x) takes both signs, there are points (t, x) whose domain of dependence
for the scheme (28) does not contain the characteristic line for Eq. (24), and thus
the convergence of the scheme cannot be proved in the framework of continuous
functions on the real line.

Figures1a, b show the results of numerical computation with double precision
arithmetic and 100 decimal digits arithmetic on exflib [3], respectively, where the
discretization parameters are Δt = Δx = 0.005. The result by double precision in
Fig. 1a shows oscillation around t = 0.2 and x = 0.5, while the result by 100 decimal
digits in Fig. 1b does not. This indicates that the oscillation comes from instability
of the scheme and rounding errors.

Figure2 shows convergence of the scheme. The horizontal axis is h = Δt = Δx
and the vertical axis is the maximum error
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sup
0<tk<0.1, x∈R

∣∣uk(x) − u(tk, x)
∣∣ .

The values u(tk, x) of the exact solution are given by u(tk, x) = v(tk, x) − g(x),
where v is the solution to the Cauchy problem (25)–(26). The solution v is constant on
the characteristic lines for Eq. (25). Hencewe can find the value v(tk, x) = v(0, x0) =
g(x0) if (tk, x) lies on the characteristic line x = x0 + g(x0)t through (0, x0). We
solved the equation x = x0 + g(x0)tk for x0 by Newton’s method. The line in Fig. 2
suggests that the maximum error is of order O(h0.98) for h between 0.0001 and 0.01,
which is almost consistent with the main result.
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Operator Theoretic Phenomena of the
Markov Operators which are Induced by
Stochastic Difference Equations

Takashi Honda and Yukiko Iwata

Abstract Weshow the relation between the Jacobs-deLeeuw–Glicksberg decompo-
sition of semigroups and the spectral decomposition of the Markov operators which
are induced by stochastic difference equations by using our new results.

Keywords Stochastic difference equations · Spectral theory · Markov semigroups

1 Introduction

Density functions of a Markov process under some conditions are represented by a
Markov operator. For example, a stochastic process {Xn}n≥0 defined by

Xn+1 = S(Xn) + Yn

is a Markov process, where S : R → R is a dynamical system, Y0,Y1, · · · are inde-
pendent random variables with values in R each having the same density g, and X0

and {Yn}n≥0 are independent. Let fn be the density function of Xn for each n ≥ 0,
and hence we have

fn+1(x) =
∫
R

fn(y)g(x − S(y))µ(dy),

where µ is the Lebesgue measure on R. This equation means that every density
function fn is represented by a Markov operator T : L1(R) → L1(R) defined by
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T f (x) =
∫
R

f (y)g(x − S(y))µ(dy)

as fn = T n f0.
In this paper, we are interested in asymptotic behavior of Markov operators on

Banach spaces. Especially, we mainly interest some relation between the Jacobs-de
Leeuw–Glicksberg decomposition of semigroups and the existence of a constric-
tor which attracts densities of the Markov operators on a Banach space, which are
induced by stochastic difference equations. Jacobs [7] first obtained this splitting
theorem under the reflexivity assumption. De Leeuw and Glicksberg [2] showed
Theorem 1 in Sect. 2 and they also showed the similar splitting theorem for a non-
abelian semigroup of linear contractions in a strictly convex Banach space with the
strictly convex dual space.

The Jacobs-de Leeuw–Glicksberg decomposition holds for a cmplex Banach
space. First, we shall show some relations the existence of a constrictor of a linear
contractive operator between (continuous or discrete) semigroups of linear contrac-
tive operators in a cmplex Banach space by using recent results [5].

Second, we will consider a Markov operator T on a real L1(Ω,Σ,µ) space,
wherer (Ω,Σ,µ) is a probability measure space. In general, Sine prove that if a
Markov operator T on a real L1 space is constrictive (see Definition 1 in Sect. 2),
then the Jacobs-de Leeuw–Glicksberg decomposition and the spectral decomposi-
tion holds for the discrete semigroup (T n)∞n=1([12]). Moreover, the author gave a
necessary and sufficient condition for a constrictive Markov operator T defined on a
real L1 space when a Markov operator T is an integral operator T with a stochastic
kernel and satisfies some conditions (Iwata, [6]). One of our main results is Theorem
8 in which we gave another sufficient condition for a constrictive Markov operator
T defined on a real L p space (1 ≤ p < ∞).

2 Preliminares

We denote by N, R and C the sets of all positive integers, all real numbers and
all complex numbers, respectively. For any scalar α, α and Re (α) are the complex
conjugate and the real part of α. Let (E, ‖ · ‖) be a real or complex Banach spacewith
the dual space (E∗, ‖ · ‖). We denote by 〈x, x∗〉 the dual pair of x ∈ E and x∗ ∈ E∗,
i.e., 〈x, x∗〉 = x∗(x). For any scalar α, we have 〈αx, x∗〉 = 〈x, αx∗〉 = α〈x, x∗〉. For
a subset A ⊂ E , w-clA is the closure of A in the weak topology.

A Banach space E is said to be strictly convex if ‖x + y‖ < 2 for x, y ∈ E with
‖x‖ = 1, ‖y‖ = 1 and x �= y.

With each x ∈ E , we associate the set

J x = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
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Themultivalued operator J : E → E∗ is called the normalized dualitymapping of E .
From the Hahn–Banach theorem, for every x ∈ E \ {0}, there is x∗ ∈ E∗, ‖x∗‖ = 1
such that 〈x, x∗〉 = ‖x‖. Then, J x �= ∅ for each x ∈ E . If the dual space E∗ is
strictly convex, J is single-valued. Indeed, if x∗

1 , x
∗
2 ∈ J (x), then ‖x‖‖ x∗

1+x∗
2

2 ‖ ≥
〈x, x∗

1+x∗
2

2 〉 = ‖x∗
1‖2 = ‖x∗

2‖2 = ‖x‖2. Since E∗ is strictly convex, x∗
1 = x∗

2 . If E is
reflexive, then J is a mapping of E onto E∗. Suppose E is reflexive, from the Hahn–
Banach theorem, for every x∗ ∈ E∗ \ {0}, there is x ∈ E, ‖x‖ = 1 such that 〈x, x∗〉 =
‖x∗‖. Then, x∗ must be an element of J (‖x∗‖x). When E is a reflexive and strictly
convex space with the strictly convex dual space, J is a single-valued, one-to-one
and onto mapping. Then, we can define the single-valued mapping J−1 : E∗ → E
and we have J−1 = J∗, where J∗ is the normalized duality mapping of E∗. When
J is single-valued, we have J (αx) = α J x for any scalar α. Indeed, 〈αx, α J x〉 =
αα〈x, J x〉 = ‖αx‖2 = ‖α J x‖2. See [1, 13] for more details.

Let A be a nonempty subset of a Banach space E and let A∗ be a nonempty subset
of the dual space E∗. We denote by spnA and spnA the linear span and the closed
linear span of A respectively. We define the annihilator A∗

⊥ of Y ∗ and the annihilator
A⊥ of Y as follows:

A∗
⊥ = {x ∈ E : 〈x, x∗〉 = 0 for all x∗ ∈ A∗}

and

A⊥ = {x∗ ∈ E∗ : 〈x, x∗〉 = 0 for all x ∈ A}.

Both subsets are closed linear subspaces of E and E∗, respectively. In a reflexive
Banach space E , A⊥ = A⊥ for A ⊂ E = E∗∗. If A ⊂ B ⊂ E and A∗ ⊂ B∗ ⊂ E∗,
then B⊥ ⊂ A⊥ and B∗

⊥ ⊂ A∗
⊥.

A mapping T : E → E in a Banach space E is called nonexpansive if it satisfies

‖T x − T y‖ ≤ ‖x − y‖

for any x, y ∈ E . We call a linear nonexpansive mapping a linear contaractive oper-
ator and it is a bounded linear operator T : E → E such that ‖T ‖ ≤ 1. For a bounded
linear operator T : E → E , thedualoperator of T is the operator T ∗ : E∗ → E∗ with
〈T x, x∗〉 = 〈x, T ∗x∗〉 for x ∈ E , x∗ ∈ E∗.Weknow that for anybounded linear oper-
ators S, T in E and scalar α, ‖T ‖ = ‖T ∗‖, (S + T )∗ = S∗ + T ∗ and (αT )∗ = αT ∗.
For any mapping T in E , we denote the set of all fixed points of T by F(T ). A linear
operator P : E → E is called (linear) projection if P = P2. For a projection P of
E onto M ⊂ E , we have F(P) = M . Indeed, if x ∈ M , there exists y ∈ E such that
x = Py. Then, Px = P2y = Py = x and x ∈ F(P). Let I be the identity operator
of E . If a linear operator Q : E → E satisfies that Q−1(0) = (I − Q) E , then Q is a
projection. Indeed, for any x ∈ E we have Qx = Q (Qx + (I − Q)x) = Q2x . See
[11] for more details.

A nonempty setS of mappings in E is called a semigroup if
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T, S ∈ S ⇒ T ◦ S ∈ S

for all T, S ∈ S . A semigroup S is called abelian if T ◦ S = S ◦ T for all T,

S ∈ S . A sub-semigroup J ⊂ S is called ideal if J ◦ S ⊂ J and S ◦ J ⊂
J . The intersection of all ideals of S is called the kernel of S and denoted by
K ; see [2]. In this case when S is a semigroup of bounded linear operators in
E , we denote the set which consists of all of the dual operators T ∗ of T ∈ S by
S ∗. The set S ∗ is a semigroup and we call it the dual semigroup of S . Indeed,
T ∗ ◦ S∗ = (S ◦ T )∗ for any bounded linear operators T, S. A net {Tα} of bounded
linear operators in E converges to T in the weak operator topology if and only if
Tαx ⇀ T x weakly for all x ∈ E . A semigroupS of bounded linear operators in E is
calledweakly almost periodic if for any x ∈ E the orbitS x = {T x ∈ E : T ∈ S } is
conditionally weakly compact. If E is reflexive, any semigroup of linear contractive
operator in E is weakly almost periodic. See [8] for more details.

Especially, we call operator semigroups indexed by non-negative integers or non-
negative reals one-parameter semigroup. It is easy to see that any one-parameter
semigroup is abelian. If a semigroup indexed by positive real numbersR+, we always
assume that it is strongly continuous, that is

lim
t→0

‖Ts+t x − Tsx‖ = 0 ∀s ≥ 0, x ∈ E .

We shall use the notation (Tt )t≥0 for a one-parameter semigroup in the continu-
ous parameter case, and (T n)∞n=1 for the discrete semigroup, generated by a single
operator T . In this paper, we also use the notation T = (Tt )t∈J , where J = R

+ or
J = N ∪ {0} for any one-parameter semigroup.

Let E be a real or complex Banach space and T be a weakly almost periodic
semigroup of bounded operators on E . If E can be decomposed into the direct sum

E = E f l(T ) ⊕ Erev(T )

with respect to T , where

E f l(T ) := {x ∈ E : 0 ∈ w-cl{T x}T∈T }, and

Erev(T ) := {x ∈ E : y ∈ w-cl{T x}T∈T ⇒ x ∈ w-cl{T y}T∈T },

then we call this decomposition the Jacobs-deLeeuw–Glicksberg decomposition.
This decomposition plays a very important role in our paper.

de Leeuw and Glicksberg proved the following decomposition theorem in 1961.

Theorem 1 Let T be an abelian weakly almost periodic semigroup of bounded
operators on a complex Banach space E and let Q be the unit in the kernel K of
the closure of T in the weak operator topology. Then Erev(T ) = Euds(T ) = QE
and E f l(T ) = Q−1(0) = (I − Q)E. In particular, E is the direct sum of the closed
invariant subspaces Erev(T ) and E f l(T ), i.e. E = E f l(T ) ⊕ Erev(T ).
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See [3, 8] for more details.
If T is a one-parameter bounded semigroup of bounded operators on a complex

Banach space E , Sine proved the following result (See Theorem 1.3.3, [3]).

Theorem 2 (Sine[12]) Given a (continuous or descrete) one-parameter bounded
semigroup T of bounded operators on a complex Banach space E, the following
assertions are equivalent:

1. there is a compact subset A ⊂ E such that

lim
t→∞ inf

y∈A
‖Tt x − y‖ = 0 for each x ∈ B(E),

where B(E) is the closed unit ball of E.
2. there exists a T -reducing decomposition E = E f l(T ) ⊕ Erev(T ) with

• E f l(T ) = {x ∈ E : limt→∞ ‖Tt x‖ = 0}
• Erev(T ) = Euds(T ), dim(Erev(T )) < ∞

Furthermore, Sine proved the following theorem for a linear contraction T on a
real L1 space (See Theorem 2, [12]).

Theorem 3 Suppose T is a linear contraction on a real L1 space. If there is a
compact subset A ⊂ E such that

lim
n→∞ inf

y∈A
‖T nx − y‖ = 0 for each x ∈ B(E),

then T is periodic on Erev and is asymptotic periodic in the sense of that

lim
n→∞ ‖T nx − T nπx‖ = 0,

where π is the projection onto Erev.

From Theorems 2 and 3, we define a constrictive Markov operator.

Definition 1 We call a linear contraction T on a Banach space (E, ‖ · ‖) constrictive
if there is a compact subset A ⊂ E such that

lim
n→∞ inf

y∈A
‖T nx − y‖ = 0 for each x ∈ B(E),

where B(E) is the closed unit ball of E . We call A a constrictor for T .
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3 Main Results

An element x ∈ E is called an eigenvector for S , if there is a map λ : S → C

with T x = λ(T )x, T ∈ S . Moreover, x is called an eigenvector with unimodular
eigenvalues if |λ(T )| = 1holds for all T ∈ S . Let Euds be the closure of the subspace
of E spanned by all eigenvectors with unimodular eigenvalues. In [5], we defined
the following subset of a complex Banach space.

Definition 2 Let E be a complex Banach space with the strictly convex dual space
and let T be a nonexpansive semigroup in E . Then, we define that

U =
⋂
T∈T

⋃
0≤θ≤2π

{m ∈ E : 〈x − eiθT x, Jm〉 = 0 for all x ∈ E}.

By using this set, we showed the following theorems.

Theorem 4 (Honda[5]) Let E be a strictly convex and reflexive complex Banach
space with the strictly convex dual space E∗ and let T be an abelian semigroup of
linear contractive operators in E. Then, we have

E f l(T ) = (JU )⊥ and

Erev(T ) = Euds(T ) = spnU

Theorem 5 (Honda[5]) Let E be a strictly convex and reflexive complex Banach
space with the strictly convex dual E∗ and let T be an abelian semigroup of linear
contractive operators in E. Then, x ∈ E f l(T ) if and only if 〈x, h∗〉 = 0 holds for
all eigenvectors h∗ of T ∗ having unimodular eigenvalues.

From Theorem 2 of Sect. 2, we can obtain the following result of discrete and
continuous semigoups, immediately.

Theorem 6 Let E be a strictly convex and reflexive complex Banach space with
the strictly convex dual space E∗. Given a one-parameter semigroup T of linear
contractive operators on a complex Banach space E, the following assertions are
equivalent:

1. there is a compact subset A ⊂ E such that

lim
t→∞ inf

y∈A
‖Tt x − y‖ = 0 for each x ∈ B(E),

where B(E) is the closed unit ball of E.
2. x ∈ E f l(T ) = {x ∈ X : limt→∞ ‖Tt x‖ = 0} if and only if 〈x, h∗〉 = 0 holds for

all eigenvectors h∗ of T ∗ having unimodular eigenvalues.

In descrete semigroups, we obtain more precise result.
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Theorem 7 Let E be a strictly convex and reflexive complex Banach space with the
strictly convex dual space E∗. Given a linear contractive operator T on a complex
Banach space E, the following assertions are equivalent:

1. T is constrictive.
2. x ∈ E f l(T ) = {x ∈ X : limn→∞ ‖T nx‖ = 0} if and only if 〈x, h∗〉 = 0 holds

for all eigenvectors h∗ of T ∗ having unimodular eigenvalues

In the following, we will focus on an integral operator T with stochastic kernel
and consider a situation in which T is constrictive Markov operator on a real L1

space.
Let (Ω,Σ,µ) be a finite measure space onR. We consider the real L1(Ω) instead

of a Banach space E of Sect. 2. We define an integral operator T : L1(Ω) → L1(Ω)

by

T x(ω) =
∫

Ω

K (ω, η)x(η)µ(dη) for x ∈ L1(Ω), (1)

where K : Ω × Ω → R is a measurable function which satisfies

K (ω, η) ≥ 0 and
∫

Ω

K (ω, η)µ(dω) = 1. (2)

Any function K satisfying (2) is called a stochastic kernel. Clearly, the operator T
satisfies the following properties:

P1 : T x ≥ 0 for all positive functions x ∈ L1(Ω),
P2 : ‖T x‖ = ‖x‖ for all positive functions x ∈ L1(Ω),
P3 : T 1Ω(ω) = 1Ω(ω) for a.e. ω ∈ Ω.

where ‖ · ‖ denotes the L1-norm and 1Ω is the indicator function of Ω , defined by
1Ω(ω) = 1 if ω ∈ Ω and 1Ω(ω) = 0 if ω /∈ Ω .

Any linear operator T : L1 → L1 satisfying P1 and P2 is calledMarkov operator.
If an integral operator T on L1(Ω) with stochastic kernel K (ω, η) satisfies P3, then
the adjoint operator U of T is conservative, i.e.,

if Uy ≤ y for 0 ≤ y ≤ 1 then Uy = y.

(see Theorem 2.7 of Foguel [4]). Moreover, T k1Ω = 1Ω for each k ∈ N and T k :
L1 → L1 is also an integral Markov operator with a stochastic kernel Kk(ω, η),
where Kk(ω, η)is the compositions of K (ω, η) (see p.113 of Lasota and Macky
[10]).

Lasota and Komorník proved that if a Markov operator is constrictive, then a
spectral decomposition theorem holds on a “real” L1 space, for which Sine prove in
the general case(see [9], [3], [12]). This implies that constrictive Markov operators
satisfy the Jacobs-de Leeuw–Glicksberg decomposition theorem. Moreover, Iwata
give a necessary and sufficient condition for a constrictive Markov operator with a
stochastic kernel defined on a real L1 space([6]).
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In the following theorem, we will give a sufficient condition of a constrictive
Markov operator on a real L p(1 ≤ p < ∞) space.

Theorem 8 Let (Ω,Σ,µ) be a finite measure space and T be an integral operator
with a stochastic kernel K which satisfies that P1–P3 on real L1(Ω) and ‖T x‖p ≤
‖x‖p for some 1 ≤ p < ∞, where ‖ · ‖p denotes the L p-norm. If the sub σ -algebra

Σ0(T ) = {A ∈ Σ : T n1A = characteristic function ∀n ≥ 0}

has at most finitely many atoms and for each atom W ∈ Σ0(T ),

lim
n→∞µ(A \ supp(T dn1B)) = 0 ∀A, B ⊂ W of positive measure, (3)

where d is the least common multiple of orders of atoms in Σ0(T ), then T is con-
strictive on L p(Ω) and

L p(Ω) = Erev(T ) ⊕ E f l(T ),

Erev(T ) = spn{1W : W ∈ Σ0(T ) is atom }, and
E f l(T ) = {x ∈ L p(Ω) : lim

n→∞ ‖T nx‖p = 0}.

Proof The author proved that if T is an integral operator with stochastic kernel
K which satisfies that P1–P3 on L1(Ω), then sub σ -algebra Σ0(T ) is atomic with
respect to µ and all atoms inΣ0(T ) are disjoint and cyclic (see Lemma 1, Iwata [6]).
Thus we let {W1,W2, · · · ,Wm} be the set of all atoms of Σ0(T ). Since Σ0(T ) has
at most finitely many atoms, there exists the least common multiple d of orders of
Wi , that is,

T d1Wi = 1Wi for all i = 1, · · · ,m.

Let RWi be the restriction of T
d to L1(Wi ). We start by showing

Σ0(RWi ) := {A ∈ Σ : Rn
Wi
1A = characteristic function ∀n ≥ 0}

= {φ,Wi }. (4)

Suppose that there exists A ∈ Σ0(RWi ) such that 0 < µ(A) < µ(Wi ), so that there
exist Bn ∈ Σ0(RWi ) such that Rn

Wi
1A = 1Bn . Thus we have

Rn
Wi
1Wi∩Ac = 1Wi − Rn

Wi
1A = 1Wi∩Bc

n
.

This implies that supp(Rn
Wi
1Wi∩Ac) = Wi \ (supp(Rn

Wi
1A)). By (3), we have

0 = lim
n→∞µ(Wi \ supp(Rn

Wi
1A)) = lim

n→∞µ(supp(Rn
Wi
1Wi∩Ac)).
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Similarly, we have supp(Rn
Wi
1A) = Wi \ (supp(Rn

Wi
1Wi∩Ac)), then

0 = lim
n→∞µ(Wi \ supp(Rn

Wi
1Wi∩Ac)) = lim

n→∞µ(supp(Rn
Wi
1A)).

Therefore

0 = µ(Wi ) = lim
n→∞µ(supp(Rn

Wi
1A)) + lim

n→∞µ(supp(Rn
Wi
1Wi∩Ac)).

This contradicts µ(Wi ) > 0. Thus Σ0(RWi ) = {φ,Wi }.
Define a new measure µ̄ on X by dµ̄ = 1Wi

µ(Wi )
dµ. Since µ̄(Wi ) = 1, RWi :

L1(Wi , µ̄) → L1(Wi , µ̄) is a Harris operator by 3 of Lemma2 of Iwata [6]. Applying
(v) of Proposition1 of Iwata [6] to RWi , we have

lim
n→∞ Rn

Wi
x(ω) =

∫
Wi

x(ω)µ̄(dω)

µ̄(Wi )
1Wi (ω) for µ̄-a.e.ω ∈ Ω

for all x ∈ L p(Wi ). Moreover, since ‖T x‖p ≤ ‖x‖p, we have

∣∣∣∣∣Rn
Wi
x −

∫
Wi

f (x)µ̄(dx)

µ̄(Wi )
1Wi (x)

∣∣∣∣∣ =
∣∣∣∣∣Rn

Wi

(
x(ω) −

∫
Wi

x(ω)µ̄(dω)

µ̄(Wi )
1Wi (ω)

)∣∣∣∣∣
≤ Rn

Wi

∣∣∣∣∣x(ω) −
∫
Wi

x(ω)µ̄(dω)

µ̄(Wi )
1Wi (ω)

∣∣∣∣∣
≤

∥∥∥∥∥x −
∫
Wi

x(ω)µ̄(dω)

µ̄(Wi )
1Wi

∥∥∥∥∥
L p(Wi ,µ̄)

for µ̄-a.e.ω ∈ Ω and ∀n ∈ N.

Note that supp

(
Rn
Wi
x −

∫
Wi

x(ω)µ(dω)

µ(Wi )
1Wi (ω)

)
⊂ Wi . Thus, by the L p Dominated

Convergence Theorem, we obtain

0 = lim
n→∞

∥∥∥∥∥Rn
Wi
x −

∫
Wi

x(ω)µ̄(dω)

µ̄(Wi )
1Wi (ω)

∥∥∥∥∥
p

L p(Wi ,µ̄)

= lim
n→∞

∫
Ω

∣∣∣∣∣Rn
Wi
x −

∫
Wi

x(ω)µ(dω)

µ(Wi )
1Wi (x)

∣∣∣∣∣
p

1Wi

µ(Wi )
dµ

= lim
n→∞

1

µ(Wi )

∥∥∥∥∥Rn
Wi
x −

∫
Wi

x(ω)µ(dω)

µ(Wi )
1Wi (ω)

∥∥∥∥∥
p

p

for all x ∈ L p(Wi ). This implies that limn→∞ ‖Rn
Wi
x − 〈x,1Ω 〉

µ(Wi )
1Wi ‖p = 0 for all x ∈

L p(Wi ). Then we have
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L p(Wi ) = Erev(RWi ) ⊕ L0(RWi ),

where

Erev(RWi ) = {x ∈ L p(Wi ) : RWi x = x} and,

E f l(RWi ) = {x ∈ L p(Wi ) : lim
n→∞ ‖Rn

Wi
x‖p = 0}.

Clearly, Erev(RWi ) is the closed linear span generated by 1Wi . Besides, x ∈ E f l(RWi )

for any x ∈ E f l(T ) = {x ∈ L p(Ω) : limn→∞ ‖T nx‖p = 0}with supp(x) ⊂ Wi . On
the other hand, fix x ∈ E f l(RWi ) arbitrarily. Note that the sequence {‖T nx‖p}n≥0 is
decreasing and bounded because T is a Markov operator, and hence converges.
Now 0 = limn→∞ ‖Rn

Wi
x‖p = limn→∞ ‖T dnx‖p, then the sequence {‖T nx‖p}n≥0

converges to 0. This implies that x ∈ E f l(T ). Therefore we get

L p(Wi ) = Erev(RWi ) ⊕ E f l(TWi ), (5)

where E f l(TWi ) = { f ∈ L1(Wi ) : limn→∞ ‖T n f ‖p = 0}. Therefore we obtain

L p(Ω) = Erev(T ) ⊕ E f l(T ),

where Erev(T ) = spn{1W : W ∈ Σ0(T ) is atom } and E f l(T ) = {x ∈ L1(Ω) :
limn→∞ ‖T nx‖p = 0}. This implies that T is constrictive on L p(Ω) by Theorem
1.3.3 of Emel’yanov [3].
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On the Behavior of the Error in Numerical
Iterative Method for PDE

Toshiyuki Kohno

Abstract The purpose of paper is to analyze the behavior of the error in the iterative
method. Especially, we are interested in the classical iterative method such as SOR
method and its preconditioning techniques to solve the linear system Au = q. In
order to accelerate convergence, many researchers proposed several preconditioners
[4–8]. There is also preconditioner available for both classical iterative and Krylov
subspace methods. We focus on the behavior of error to find a good preconditioner.
We treat difference equation derived frompartial differential equation(PDE), because
the coefficient matrix given by using difference approximation is easy to investigate.
By examining the behavior of the error, we choose an effective preconditioner, and
show the numerical results.

Keywords Preconditioner · Iterative method · PDE

1 Differential and Difference Equations

Many phenomena in sciences and engineering depend onmore than one independent
variable. The differential equation for the unknown function then involves partial
derivatives of the function with respect to these independent variables. We consider
the following partial differential equation(PDE),

∂2u

∂x2
+ ∂2u

∂y2
= f (x, y), x, y ∈ Ω (1)

This equation is called the Poisson equation. Let Ω be a planar domain, and denote
its boundary by ∂Ω . To treat as the boundary value problem(BVP), we set
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u = g(x, y), x, y ∈ ∂Ω.

We assume Ω is a square Ω = (0, 1) × (0, 1). Then the boundary ∂Ω consists of
four segments, witch are the four sides of the square. We divide the x interval [0, 1]
into n equal parts and denote h = 1

n the x step size. Similarly, we divide the y. Then
the grid points are (xi , yi ), 1 ≤ i, j ≤ n + 1, where xi = (i − 1)h, yi = ( j − 1)h.
For the differential equation at an interior grid point (xi , yi ), we use the the three-
points central difference to approximate the second derivative. Let fi j = f (xi , yi )
and denote ui j the finite difference approximation of u(xi , yi ). Then we have the
following equation,

ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 2ui, j = h2 fi j , 2 ≤ i, j ≤ n. (2)

It can be shown that the accuracy of the solution is of second order,

max |u(xi , yi ) − ui j | = O(h2) (3)

In the analysis of numerical methods for solving boundary value problems, the trun-
cation error is defined to the discrepancy between the difference equation and the
differential equation. However, Eq. (2) represents a matrix equation with a simple
five-diagonal matrix, is a manageable problem. In this paper, we consider about such
a five-diagonal symmetric matrix.

2 Basic Iterative Method and Krylov Subspace Method

From the above Eq. (2), we have the following linear system,

Au = q. (4)

We consider the splitting of A as following,

A = M − N , (5)

where M is nonsingular. Hence we can construct a splitting-based iterative method
as follows:

u(k+1) = M−1Nu (k) + M−1q. (6)

If the spectral radius of the iterative matrix M−1N is less than one, the sequence
{u(k)} will converge to the solution of the linear system. We can express the matrix
A as the matrix sum

A = D − E − F (7)
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where D = diag{a11, a22, . . . , ann}, and E and F are strictly lower and strictly upper
triangular n × n matrices, respectively. When setting M = D, we have the point
Jacobi iterativemethod. And ifM = D − E , then theGauss–Seidel iterativemethod.
Moreover, we have the SOR iterative method by using M = 1

ω
(D − ωE).

Next, we explain the Krylov subspace method. These techniques are based on
projection processes onto Krylov subspaces which are subspaces spanned by vectors
of the form p(A)v where p is a polynomial. The general projection method for
solving the linear system (4) is a method which seeks an approximate solution um
from an affine subspace u0 + Km of dimension m by imposing the Petrov–Galerkin
condition

q − Aum ⊥ Lm, (8)

whereLm is another subspace of dimensionm. Here, u0 represents an arbitrary initial
guess to the solution. A Krylov subspace method is a method for which the subspace
Km is the Krylov subspace

Km(A, r0) = span{r0, Ar0, A2r0, · · · , Am−1r0}, (9)

where r0 = q − Au0. The different version of Krylov subspace methods arise from
different choices of the subspace Lm . There are methods such as the conjugate Gra-
dient(CG), BiCG, conjugate gradient squared(CGS), and so on. The numerical com-
parison of these iterative methods is done only by graphically illustrating the norm of
the residual vector r(k) = q − Au(k). We examine the behavior of the norm of resid-
ual vector of each iterative methods for the above BVP. Figure1 shows the norm of
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Fig. 1 the norm of residual vector of BiCG, CGS, CG, and SOR methods for the BVP
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Fig. 2 the norm of residual vector for BiCG, CGS, CG, and SOR methods for a five-diagonal
matrix

residual vector vs. the number of matrix-vector product for the Bi-CG, CGS, CG and
SOR methods. The Horizontal axis shows the number of the product of matrix and
vector, its number entered after the name of each method. The vertical axis is the
logarithm of the norm of the residual vector. The SOR method does not converge,
and other methods converge with less computation. The order of coefficient matrix
is 400, this problem is symmetric, with small problem.

Next, we show the another five-diagonal symmetric problem derived from finite
element method in Fig. 2. The order of a coefficient matrix is 176.

We find the twice big bouncing locations of CGS method in Fig. 2. And the
behavior of the norm of the Bi-CG method is vibrating in the last steps. The SOR
method (ω = 1) indicates smooth convergence. This problem is convenient for the
SOR method. We will try to examine the behavior of error more detail to find a good
preconditioner.

3 Vector Visualisation

We will try to display the residual vectors in due to learn more about these results.
We show the plots of residual vector for CGS method in Fig. 3, at first. Since the
range of the logarithm value of the norm of the residual vector is 0 to−8, we showed
the error with shading. In the graph, the shading is indicated by multiplying by −1.
When the value is 0, the error is the largest and expressed in dark color. We put a
color bar in Fig. 3.
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Fig. 3 the residual vector plot of CGS method
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Fig. 4 CG method

Vertical axis is the number of matrix - vector product, horizontal axis is the index
of residual vector, andwe display themagnitude of the residual vector with gradation.
At the beginning of the iterative process, the error is large, so it is expressed in dark
color. After 30 iterations, it turns out that the proportion occupying the bright color
increases. A phenomenon appears in which the clear error becomes large around
130 and 140 calculations. We found that the errors are large in each element of the
residual vector. Also, we found that the error from the 120th to end of residual vector
is large.
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Fig. 5 Bi-CG method
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Fig. 6 SOR method

The results of the CG and BiCG method are shown in Figs. 4 and 5. Although the
problem is a symmetric matrix, we see the error remains in the calculation process.
In Fig. 6, we found that the SOR method has an unusual convergence situation. The
number of calculations of the SOR method is a little, but the parts with the small
error draw some oblique lines. We think that some oblique lines may indicate the
features of the successive calculation of the SOR method. From this error behavior,
we may be able to propose appropriate preconditioner.
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4 Preconditioner and Comparison Theorem

Many preconditioners are proposed to accelerate its convergence for the basic itera-
tive and Krylov subspace methods. For the classical iterative method, by using the
some nonsingular matrix P , we have the preconditioned linear system

PAu = Pq. (10)

In 1994, Kohno et al. citekohno proposed the preconditioner P = I + S(α)Ȧnd
many researchers study the some preconditioners [4, 6–8].We obtained the improved
results in the convergence by some preconditioners, and we proved the comparison
theorems.

We review some known results.
We write A ≤ B if ai j ≤ bi j holds for all elements of A = (ai j ) and B = (bi j ) ∈

Rn×n , calling A nonnegative if A ≥ O . This definition carries immediately over to
vectors by identifying them with n × 1 matrices. In particular, we call the vector
v ∈ Rn positive (writing v > 0) if all its elements are positive. Let Zn×n denote
that set of all real n × n matrices which have non-positive off-diagonal elements. A
nonsingular matrix A ∈ Zn×n is called an M-matrix if A−1 ≥ O .

Definition 1 Let A be a real matrix. The representation A = M − N is called a
splitting of A if M is a nonsingular matrix. In addition, the splitting is

(i) convergent if ρ(M−1N ) < 1,
(ii) regular if M−1 ≥ O and N ≥ O ,
(iii) weak regular if M−1 ≥ O and M−1N ≥ O ,
(iv) M-splitting if M is an M-matrix and N ≥ O ,

Definition 2 We call A = M − N = (D − E) − F the Gauss–Seidel regular split-
ting of A if (D − E)−1 ≥ 0 and F ≥ 0, where D is the diagonal matrix and E and
F are strictly lower and strictly upper triangular matrices of A, respectively.

Theorem 1 [3] Let A = M − N be a splitting.

(i) If the splitting is regular or weak regular, then ρ(M−1N ) < 1 if and only if
A−1 ≥ O.

(ii) If the splitting is an M-splitting, then ρ(M−1N ) < 1 if and only if A is an
M-matrix.

Theorem 2 [2] Let A ∈ Zn×n be irreducible. Then each of the following conditions
is equivalent to the statement:“A is a nonsingular M-matrix”.

(i) A−1 > O.
(ii) Av ≥ 0 for some v > 0.
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Lemma 1 [3] Let T ≥ O. If there exist v > 0 and α > 0 such that T v ≤ αv, then
ρ(T ) ≤ α. Moreover, if T v < αv, then ρ(T ) < α.

Theorem 3 [11] Let A = M − N be a regular splitting of the matrix A. Then, A is
nonsingular with A−1 ≥ O, if and only if ρ(M−1N ) < 1, where

ρ(M−1N ) = ρ(A−1N )

1 + ρ(A−1N )
< 1.

Theorem 4 [1] Let A = M1 − N1 = M2 − N2 be two convergent splitting of A.
Then the followings hold:

(i) If N2 ≥ N1 ≥ O and Ni , i = 1, 2 are monotone(i.e., the splittings are regular),
then M−1

1 ≥ M−1
2 .

(ii) If M−1
1 ≥ M−1

2 and N1x ≥ 0, then (M−1
1 − M−1

2 )N1x ≥ 0, where x is the Per-
ron vector of G1 = A−1N.

(iii) If (M−1
1 − M−1

2 )N1x ≥ 0, where x is the Perron vector of G1, and if A =
Mi − Ni , i = 1, 2 are weak regular splittings, then ρ(M−1

1 N1) ≤ ρ(M−1
2 N2).

By using above lemmas and Theorem4, we derive comparison theorem for the gen-
eral preconditioner P.

Theorem 5 Let A ∈ Zn×n be an irreducibly diagonally dominant matrix and A =
M − N be Gauss–Seidel regular splitting. The Gauss–Seidel iterative matrix T =
M−1N. Put the preconditioner P such that P A = MP − NP isGauss–Seidel regular
splitting and

M−1
p P − M−1 ≥ 0. (11)

Then,

ρ(M−1
p Np) ≤ ρ(T ) < 1. (12)

Proof Clearly, A−1 ≥ O , thus from Theorem3, ρ(T ) < 1 holds. So by putting A =
P−1(Mp − Np), we have

A = M − N = P−1(Mp − Np).

As A = M − N is Gauss–Seidel regular splitting, there exists a positive vector v
satisfied the following equation

ρ(T )v = T v.
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Then,

v = 1

ρ(T )
M−1Nv ≥ 0.

Hence,

Mv = 1

ρ(T )
Nv ≥ 0,

and,

Av = (M − N )v = M(I − T )v

= 1 − ρ(T )

ρ(T )
Nv ≥ O.

From the condition, we have

{(P−1Mp)
−1 − M−1}Av = (M−1

p P − M−1)Av

= M−1
p P{P−1(Mp − Np)}v − (I − M−1N )v (13)

= (I − M−1
p Np)v − (I − T )v

= T x − M−1
p Npv = ρ(T )v − M−1

p Npv ≥ 0,
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Fig. 7 Preconditioned SOR method with preconditioner I + βU
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and by Lemma1 implies

ρ(M−1
p Np) ≤ ρ(T ) < 1.

��
From the phenomenon that the parts with the small error draw some oblique

lines, we consider that the convergence will be improved by using later elements
of coefficient matrix A. The preconditioners using the behind element has been
proposed [9, 10]. By using the preconditioner P = (I + βU ) where U is the upper
codiagonal part of A, we obtained the good result in Fig. 7.We decided the parameter
β = 0.3 from several numerical experiments.

5 Conclusion

We used the liner system obtained by discretization the PDE as a model problem.We
think that it was impossible to select an appropriate preconditioner from the graph
denoting the history of norm of the residual vector. By visualising the vector, we
was able to choose a good preconditioner. For future work, we will experiment with
another five-diagonal matrix.
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Property B of the Four-Dimensional Neutral
Difference System

Jana Krejčová

Abstract We deal with a four-dimensional nonlinear difference system with
deviating arguments in the paper. The first equation of the system is of a neutral
type. We study oscillatory and nonoscillatory solutions of neutral difference systems
and their asymptotic properties. We establish sufficient conditions for the system to
have strongly monotone solutions or Kneser solutions and then sufficient conditions
for the system to have property B.

Keywords Property B · Strongly monotone solution · Kneser solution ·
Oscillatory solution · Nonoscillatory solution · Quickly oscillatory solution

1 Introduction

In this paper, we study asymptotic behavior of solutions of a four-dimensional system

Δ(xn + pnxn−σ ) = An f1 (yn)

Δyn = Bn f2 (zn)

Δzn = Cn f3 (wn)

Δwn = Dn f4
(
xγn

)
,

(S)

where n ∈ N0 = {n0, n0 + 1, ...}, n0 is a positive integer, σ is a nonnegative integer,
{An} , {Bn} , {Cn} , {Dn} are positive real sequences defined for n ∈ N0. Δ is the
forward difference operator given by Δxn = xn+1 − xn .

The sequence γ : N → N satisfies

lim
n→∞ γn = ∞. (H1)

The most common form of this sequence is γ = n ± τ, where τ ∈ N.
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The sequence {pn} is a sequence of the real numbers and it satisfies

lim
n→∞ pn = P , where |P| < 1. (H2)

Functions fi : R → R for i = 1, .., 4 are invertible and satisfy

fi (u)

u
≥ 1, u ∈ R\0. (H3)

Nonlinear difference systems or difference equations are often studiedwhen either

∞∑

n=n0

An = ∞,

∞∑

n=n0

Cn = ∞, (H4)

or

∞∑

n=n0

An = ∞,

∞∑

n=n0

Bn = ∞,

∞∑

n=n0

Cn = ∞. (H5)

hold. If the condition (H5) holds, thenwe said that the system (S) is in the canonical
form. In this article we study (S) with these conditions as well as without these
conditions.

By a solution of the system (S)wemean a vector sequence (x, y, z,w)which satis-
fies the system (S) for n ∈ N0.We investigate oscillatory or nonoscillatory solutions.
Therefore, the first important thing is to divide solutions into these groups.

Definition 1 The component x is said to be nonoscillatory if there exists n1 ≥ n0
such that xn ≥ 0 (respectively xn ≤ 0) for all n ≥ n1. A solution of (S) is said to be
nonoscillatory if all of its components x, y, z,w are nonoscillatory.

Definition 2 The component x is said to be oscillatory if for any n1 ≥ n0 there
exists n ≥ n1 such that xn+1xn < 0. If the component x satisfies xn+1xn < 0 for all
n ≥ n1 then the component is said to be quickly oscillatory. A solution of (S) is said
to be oscillatory (respectively quickly oscillatory) if all of its components x, y, z,w
are oscillatory (respectively quickly oscillatory).

Definition 3 The system (S) has weak property B if every nonoscillatory solution
of (S) satisfies

xnzn > 0 and ynwn > 0 for large n. (1)

Definition 4 The system (S) has property B if any of its solutions either is oscilla-
tory or satisfies either

lim
n→∞ |xn| = lim

n→∞ |yn| = lim
n→∞ |zn| = lim

n→∞ |wn| = ∞, (2)
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or
lim
n→∞ xn = lim

n→∞ yn = lim
n→∞ zn = lim

n→∞wn = 0. (3)

Solutions satisfying (1) and xn yn > 0 are called strongly monotone solutions,
while solutions satisfying (1) and xn yn < 0 are called Kneser solutions. Property B
is defined in accordance with those for the higher-order differential equations or for
the system of differential equations, see [8] and references therein. The system (S)
is a prototype of even-order neutral systems and can be easily rewritten as a fourth-
order nonlinear neutral difference equation. Equations with quasi-differences have
been widely studied in the literature; see, for example, [2, 6, 9, 10]. In [6], oscilla-
tory properties of solutions of the fourth-order difference equations are investigated.
Their approach is based on studying the considered equation as a four-dimensional
difference system,where {Dn} is a negative real sequence. In [9], they studied asymp-
totic properties of neutral type difference equations. The problem of boundedness
of solutions of the system (S) with γn = n − τ has been investigated in the recent
paper [1].

The aim of this paper is to extend our results about asymptotic behavior of
nonoscillatory solutions of (S). We are motivated by the paper [2], where asymptotic
properties of (S) with {pn} = {0} have been investigated. We give sufficient condi-
tions that (S) has weak property B and property B for the case when (S) is in the
canonical form as well as without these assumptions. This completes the results from
[6], where they study property A. We extend results from [1, 2, 7]. We continue in
our previous research and we extend the results from our article [7], where we study
system (S) in the canonical form with positive sequence {pn}.

2 Oscillatory Solutions

Property B means that (S) has oscillatory or nonoscillatory solutions satisfying the
asymptotic properties. We start with oscillatory solutions. Prototypes of oscillatory
solutions of (S) are quickly oscillatory solutions, i.e. solutions of the form

xn = (−1)nqn, qn > 0 for n ∈ N0.

The following result can be seen as a necessary condition for their existence.

Theorem 1 If

γn mod 2 �= n mod 2

and either

pn ≥ 0, σ is even, (4)
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or

pn ≤ 0, σ is odd, (5)

then the system (S) has no quickly oscillatory solutions.

Proof Let xn = (−1)nqn be a quickly oscillatory solution of (S). Then

Δ(xn + pnxn−σ ) = (−1)n+1
(
qn+1 + (−1)−σ pn+1qn+1−σ + qn + (−1)−σ pnqn−σ

)
.

Denote Sn = qn+1 + (−1)−σ pn+1qn+1−σ + qn + (−1)−σ pnqn−σ . If (4) or (5) holds,
then Sn > 0. From the first equation of (S) we have

yn = f −1
1

(
Δ(xn + pnxn−σ )

An

)
= (−1)n+1 f −1

1

(
Sn
An

)
.

Therefore

Δyn = (−1)nYn,

where Yn = f −1
1

(
Sn+1

An+1

)
+ f −1

1

(
Sn
An

)
> 0. From the second equation of (S) we

obtain

zn = f −1
2

(
Δyn
Bn

)
, Δzn = (−1)n+1Zn,

where Zn = f −1
2

(
Yn+1

Bn+1

)
+ f −1

2

(
Yn
Bn

)
> 0. Repeating argument, we get from the

third equation of (S)

wn = f −1
3

(
Δzn
Cn

)
, Δwn = (−1)nWn,

where Wn = f −1
3

(
Zn+1

Cn+1

)
+ f −1

3

(
Zn
Cn

)
> 0. From here and from the fourth equation

we have

(−1)n Wn = Dn f4
(
(−1)γn qγn

)
. (6)

The signs of both sides of (6) are the same if and only if n and γn have the same
remainder of division by two. �	

By the method used in the proof of the previous theorem we can easily construct
an example.

Example 1 Consider the equation
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Δ

(
xn − 1

2
xn−1

)
= yn

Δyn = zn
Δzn = wn

Δwn = 405 xn−τ ,

(E1)

We have pn = − 1
2 , σ = 1. Therefore, if τ is odd, (E1) has no quickly oscillatory

solutions. If τ is even, the system can have a quickly oscillatory solution. Indeed, for
τ = 2 the system has the quickly oscillatory solution xn = (−1)n2n .

Example 2 Consider the equation

Δ

(
xn + 1

2
xn−2

)
= yn

Δyn = zn
Δzn = wn

Δwn = 729

2
xn−τ ,

(E2)

We have pn = 1
2 , σ = 2. Therefore, if τ is odd, (E2) has no quickly oscillatory

solutions. If τ is even, the system can have a quickly oscillatory solution. Indeed, for
τ = 2 the system has the quickly oscillatory solution xn = (−1)n2n .

3 Nonoscillatory Solutions and Their Asymptotic
Properties

If the system (S) has a solution (x, y, z,w), then it has the solution (−x,−y,−z,−w)

as well. Thus, throughout the paper, we can focus on solutions whose first component
is eventually positive for large n.

We use the notation

sn = xn + pnxn−σ , (7)

where n ∈ N0.
First, we point out some basic properties of (S) which we use to prove the main

results of the paper. The first case of the following theorem was proved in [2, Lemma
1] and the proof of the second part can be prooved in the same way.

Lemma 1 If {pn} = {0}, then the solution (x, y, z,w) of (S) is nonoscillatory if
and only if any of its components x, y, z,w is either positive or negative for large
n. If {pn} �= {0} and x is nonoscillatory, then components y, z,w and s are also
nonoscillatory for large n.
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The following Lemma was proved in [7, Lemma 1] for the sequence {pn}, where
0 ≤ pn < 1. Now, we extend it for sequence {pn} satisfying (H2).
Lemma 2 Let {xn} be eventually positive sequence and {pn} satisfies (H2), n ∈ N0.
Let {sn} be the sequence defined by (7). Then {xn} is bounded if and only if {sn} is
bounded. Moreover, if {sn} is positive and increasing for large n, then

xn ≥ sn−σ (1 − pn) for large n. (8)

Proof By (H2) and (7), the boundedness of x implies the boundedness of s. The
opposite implication was proved in [6, Lemma 2] for |P| < 1. Therefore, we have
to prove the assertion (8).

Assume 0 ≤ P < 1. We proved the estimation (8) in [7, Lemma 1].
Assume−1 < P < 0. If {sn} is positive and increasing, then sn−σ ≤ sn . From the

negativity of P we have xn ≥ sn and we get

xn = sn − pnxn−σ ≥ sn − pnsn−σ ≥ sn−σ − pnsn−σ .

�	
The following lemma describes the possible types of nonoscillatory solutions.

Lemma 3 Assume (H4). Then any nonoscillatory solution (x, y, z,w) of (S) with
eventually positive x is one of the following types:

type (a) xn > 0 yn > 0 zn > 0 wn > 0 for large n,
type (b) xn > 0 yn > 0 zn > 0 wn < 0 for large n,
type (c) xn > 0 yn < 0 zn > 0 wn < 0 for large n,
type (d) xn > 0 yn < 0 zn < 0 wn < 0 for large n,
type (e) xn > 0 yn > 0 zn < 0 wn < 0 for large n
type (f) xn > 0 yn < 0 zn > 0 wn > 0 for large n

Proof Let (x, y, z,w) be a nonoscillatory solution of (S) such that xn > 0 for large
n. There are eight possible types of these solutions. We prove that solutions of the
following types do not exist.

type (i) xn > 0 yn > 0 zn < 0 wn > 0 for large n,
type (ii) xn > 0 yn < 0 zn < 0 wn > 0 for large n

Assume that there exist n1 ∈ N0 and a solution such that zn < 0, wn > 0 for
n ≥ n1 ≥ n0. From the fourth equation of (S) we haveΔwn > 0 and this implies that
there exists k > 0 such thatwn ≥ k for largen. Using (H3)wehave f3(wn) ≥ wn ≥ k.
By the summation of the third equation of (S) we have

zn − zn0 =
n−1∑

i=n0

Ci f3 (wi ) ≥ k
n−1∑

i=n0

Ci .

Passing n → ∞, we get a contradiction with the fact that zn < 0. This excludes
solutions of types (i) and (ii). �	
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Lemma 4 Assume (H5).

(i) If 0 ≤ P < 1, then any nonoscillatory solution (x, y, z,w) of (S) with eventually
positive x is of type (a), (b) or (c).

(ii) If −1 < P < 0, then any nonoscillatory solution (x, y, z,w) of (S) with even-
tually positive x is of type (a), (b), (c) or (d).

Proof Assume that there exists a solution of type (e). Therefore, we have zn < 0 and
z is decreasing for all large n. This implies that there exists l < 0 such that zn ≤ l
for large n. From (H3) we get f2(zn) ≤ zn ≤ l. By the summation of the second
equation of (S) and passing n → ∞ we get a contradiction with the positivity of y.

Assume that there exists a solution of type (f). Therefore, we have zn > 0 and
z is increasing for all large n. This implies that there exists g > 0 such that zn ≥ g
for large n. From (H3) we get f2(zn) ≥ zn ≥ g. Using the summation of the second
equation of (S) we get a contradiction with negativity of y. Thus, solutions of type
(f) cannot exist.

The nonexistence of solutions of type (d) for 0 ≤ P < 1 was proved in our article
[7]. �	

ByDefinition 3, the system (S) has weak property B if there exist only nonoscilla-
tory solutions of type (a) and (c). Solutions of type (a) are called strongly monotone
and solutions of type (c) are called Kneser solutions. We have to determine some
asymptotic properties of nonoscillatory solutions for the purpose of investigation
property B. These properties are summarized in the following lemmas. Properties
of strongly monotone solutions and Kneser solutions were proved in [7, Lemma 4,
Lemma 5]. Therefore, there are presented without proofs.

Lemma 5 Assume (H4). Then any solution of type (a) satisfies

lim
n→∞ xn = ∞, lim

n→∞ zn = ∞. (9)

In addition, if (H5) holds, then

lim
n→∞ yn = ∞. (10)

Lemma 6 Assume (H4). Then any solution of type (b) satisfies

lim
n→∞ xn = ∞, lim

n→∞wn = 0. (11)

Proof Let (x, y, z,w) be a solution of type (b). Because y is positive and increasing,
there exists k > 0 such that yn ≥ k for large n. By the summation of the first equation
of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1 (yi ) ≥
n−1∑

i=n0

Ai yi ≥ k
n−1∑

i=n0

Ai .
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Passing n → ∞ we get sn → ∞. Lemma 2 implies that s is unbounded if and only
if x is unbounded. Therefore limn→∞ xn = ∞. Since w is negative and increasing,
there exists limn→∞ wn = h, h ≤ 0. Suppose h < 0, then from the summation of the
third equation of (S) we get zn → −∞ as n → ∞, which is a contradiction with the
boundedness of z. Therefore limn→∞ wn = 0. �	
Lemma 7 Assume (H4). Then any solution of type (c) satisfies

lim
n→∞wn = 0. (12)

In addition, if (H5) holds, then

lim
n→∞ zn = 0. (13)

Lemma 8 Assume (H4). Then any solution of type (d) satisfies

lim
n→∞ xn = ∞. (14)

In addition, if (H5) holds, then

lim
n→∞ yn = −∞. (15)

Proof Let (x, y, z,w) be a solution of type (d). Because y is negative and decreasing,
there exists k < 0 such that yn ≤ k for large n. By the summation of the first equation
of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1 (yi ) ≤
n−1∑

i=n0

Ai yi ≤ k
n−1∑

i=n0

Ai .

Passing n → ∞we get sn → −∞. Lemma 2 implies that s is unbounded if and only
if x is unbounded. Therefore limn→∞ xn = ∞.

Since z is negative and decreasing, then using the same argument and the sum-
mation of the second equation of (S) we get yn → −∞. �	

We can continue to state sufficient conditions for the system (S) to have weak
property B and property B.

4 Weak Property B and Property B

The first theorem gives the simple criterion that the system (S) has property B.

Theorem 2 Assume (H5). If
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∞∑

n=n0

Dn = ∞ (16)

holds, then the system (S) has property B.

Proof Assume that (x, y, z,w) is a nonoscillatory solution of the system (S) of type
(b) or (d). Since x is positive and, by Lemmas 6 and 8, limn→∞ xn = ∞, then there
exists a real constant k > 0 such that xn ≥ k for large n. By the summation of the
fourth equation of (S) we get

wn − wn0 =
n−1∑

i=n0

Di f4
(
xγi

) ≥
n−1∑

i=n0

Di xγi ≥ k
n−1∑

i=n0

Di . (17)

Passing n → ∞ we get the contradiction with the negativity of w. Thus, the system
(S) does not have solutions of types (b) or (d).

If (x, y, z,w) is a solution of type (a), then using the same argument as in the
previous and by (17) we get wn → ∞ for n → ∞. From this fact and Lemma 5, we
get that all solutions of type (a) satisfy (2).

If (x, y, z,w) is a solution of type (c), then there exists limn→∞ xn = h, h ≥
0. Suppose h > 0, then by the summation of the fourth equation of (S) we get
a contradiction with the negativity of w. Therefore, limn→∞ xn = 0. Becuse y is
negative and increasing, then there exists limn→∞ yn = l ≤ 0. Suppose l < 0. Using
the summation of the first equation we get that sn → −∞ for n → ∞ which gives a
contradiction with the boundedness of x . Therefore, limn→∞ yn = 0. From that fact
and Lemma 7 we get that all solutions of type (c) satisfy (3). Thus, system (S) has
property B. �	

By Theorem 2, the systems from Examples 1 and 2 have property B.

Remark 1 In view of Theorem 2, in the sequel, we assume
∑∞

n=n0
Dn < ∞.

We want to find conditions for (S) to have property B without satisfying (H4) and
(H5). To ensure that we have to exclude solutions of types (b), (d), (e) and (f).

Theorem 3 Let (H1)–(H3) hold. The system (S) has no solution of type (b) if any of
the following conditions hold:

(i)
∞∑

i=n0

Di

⎛

⎝
γi−σ−1∑

j=n0

A j

⎞

⎠ = ∞, (18)

(ii)
∞∑

i=n0

Di

⎛

⎝
i−1∑

j=n0

C j

⎞

⎠ = ∞. (19)
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Proof Assume that (x, y, z,w) is a type (b) solution.

(i) Since y is positive and increasing, there exists k > 0 such that yn ≥ k for large
n. By the summation of the first equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1 (yi ) ≥
n−1∑

i=n0

Ai yi ≥ k
n−1∑

i=n0

Ai .

Taking into account lim(1 − pn) = 1 − P > 0, there exists p > 0 such that
1 − pn ≥ p, for large n. Using the summation of the fourth equation of (S) and
(8) we have

wn − wn0 =
n−1∑

i=n0

Di f4
(
xγi

) ≥
n−1∑

i=n0

Di xγi ≥
n−1∑

i=n0

Disγi−σ (1 − pγi ) ≥ (20)

≥ p
n−1∑

i=n0

Disγi−σ ≥ kp
n−1∑

i=n0

Di

⎛

⎝
γi−σ−1∑

j=n0

A j

⎞

⎠ .

Passing n → ∞weget the contradictionwith the negativity ofw. Thus, solutions
of type (b) do not exist.

(ii) Since limn→∞ xn = ∞, there exists k > 0 such that xn ≥ k for large n. By the
summation of the fourth equation of (S) and using Lemma 6 we get

w∞ − wn =
∞∑

i=n

Di f4
(
xγi

) ≥
∞∑

i=n

Di xγi ≥ k
∞∑

i=n

Di ,

Using the summation of the third equation of (S) we have

zn − zn0 =
n−1∑

i=n0

Ci f3 (wi ) ≤
n−1∑

i=n0

Ciwi ,

−zn + zn0 ≥
n−1∑

i=n0

Ci (−wi ) ≥ k
n−1∑

i=n0

Ci

⎛

⎝
∞∑

j=i

D j

⎞

⎠ .

Passing n → ∞ and using the change of summation

∞∑

i=n0

Ci

⎛

⎝
∞∑

j=i

D j

⎞

⎠ =
∞∑

i=n0

Di

⎛

⎝
i−1∑

j=n0

C j

⎞

⎠ = ∞,
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we get the contradiction with the boundedness of z. Thus, solutions of type (b)
do not exist.

�	
Theorem 4 Let (H1)–(H3) hold. If

∞∑

i=n0

Di

⎛

⎝
γi+σ−1∑

j=n0

A j

⎞

⎠ = ∞ (21)

holds, then (S) has no solution of type (d).

Proof Assume that (x, y, z,w) is a type (d) solution. Since y is negative and decreas-
ing, there exists k < 0 such that yn ≤ k for large n. By the summation of the first
equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1 (yi ) ≤
n−1∑

i=n0

Ai yi ≤ k
n−1∑

i=n0

Ai . (22)

Using the summation of the fourth equation of (S) we have

wn − wn0 =
n−1∑

i=n0

Di f4
(
xγi

) ≥
n−1∑

i=n0

Di xγi (23)

From (H2) and (7) we have sn ≥ xn − xn−σ ≥ −xn−σ for large n. Thus

xn ≥ −sn+σ . (24)

Using this and (23) and (22) we get

wn − wn0 ≥
n−1∑

i=n0

Di
(−sγi+σ

) ≥ −k
n−1∑

i=n0

Di

⎛

⎝
γi+σ−1∑

j=n0

A j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the negativity of w. �	
Theorem 5 Let (H1)–(H3) hold. If

∞∑

i=n0

Di

⎛

⎝
γi−σ−1∑

j=n0

A j

⎛

⎝
∞∑

k= j

Bk

⎞

⎠

⎞

⎠ = ∞ (25)

holds, then (S) has no solution of type (e).
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Proof Assume that (x, y, z,w) is a type (e) solution. Since z is negative and decreas-
ing, there exists h < 0 such that zn ≤ h for large n. By the summation of the second
equation of (S) we get

y∞ − yn =
∞∑

i=n

Bi f2 (zi ) ≤
∞∑

i=n

Bi zi ≤ h
∞∑

i=n

Bi .

Using the summation of the first equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1 (yi ) ≥
n−1∑

i=n0

Ai yi ≥ −h
n−1∑

i=n0

Ai

⎛

⎝
∞∑

j=i

B j

⎞

⎠ . (26)

In case pn ≤ 0, we get sn ≤ xn from (7). Using this fact, the summation of the fourth
equation of (S) and the estimation (26) we obtain

wn − wn0 =
n−1∑

i=n0

Di f4
(
xγi

) ≥
n−1∑

i=n0

Di xγi ≥
n−1∑

i=n0

Disγi ,

wn − wn0 ≥ −h
n−1∑

i=n0

Di

⎛

⎝
γi−1∑

j=n0

A j

⎛

⎝
∞∑

k= j

Bk

⎞

⎠

⎞

⎠ . (27)

In case pn > 0 we use (8) and we get

wn − wn0 ≥
n−1∑

i=n0

Di xγi ≥
n−1∑

i=n0

Disγi−σ (1 − pγi ),

wn − wn0 ≥ −h(1 − P)

n−1∑

i=n0

Di

⎛

⎝
γi−σ−1∑

j=n0

A j

⎛

⎝
∞∑

k= j

Bk

⎞

⎠

⎞

⎠ . (28)

Passing n → ∞ we get the contradiction with the negativity of w in both cases (27),
(28). �	
Theorem 6 Let (H1)–(H3) hold. If

∞∑

i=n0

Bi

⎛

⎝
i−1∑

j=n0

C j

⎞

⎠ = ∞ (29)

holds, then (S) has no solution of type (f).
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Proof Assume that (x, y, z,w) is a type (f) solution. Since w is positive and increas-
ing, there exists k > 0 such that wn ≥ k for large n. By the summation of the third
equation of (S) we get

zn − zn0 =
n−1∑

i=n0

Ci f3 (wi ) ≥
n−1∑

i=n0

Ciwi ≥ k
n−1∑

i=n0

Ci .

Using the summation of the second equation of (S) we have

yn − yn0 =
n−1∑

i=n0

Bi f2 (zi ) ≥
n−1∑

i=n0

Bi zi ≥ k
n−1∑

i=n0

Bi

⎛

⎝
i−1∑

j=n0

C j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the negativity of y. �	
If we observe conditions for the nonexistence of solutions of type (b), (d) and (e),

then from the fact σ is a nonnegative integer and using the limit comparison criterion
for series we get the following conclusion.

Remark 2 If the condition (18) holds, then conditions (21) and (25) hold too.

If we combine the conditions from previous theorems we get the sufficient con-
ditions for system (S) to have weak property B.

Theorem 7 Let (H5) hold. The system (S) has weak property B if one of these
conditions hold

(i) 0 ≤ P < 1 and (18),
(ii) 0 ≤ P < 1 and (19),
(iii) −1 < P < 0, (18) and (21),
(iv) −1 < P < 0, (19) and (21).

If we assume system (S) without conditions (H4) and (H5) we can use the fol-
lowing theorem.

Theorem 8 Let (18), and (29) hold. In addition, if

∞∑

i=n0

Bi

⎛

⎝
∞∑

j=i

C j

⎞

⎠ = ∞ (30)

and

∞∑

i=n0

Ci

⎛

⎝
i−1∑

j=n0

Dj

⎞

⎠ = ∞ (31)

hold, then the system (S) has weak property B.
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Proof By Theorems 3, 4, 5 and 6 the system (S) does not have solutions of type (b),
(d), (e) and (f). We prove that solutions of the following types do not exist.
type (i) xn > 0 yn > 0 zn < 0 wn > 0 for large n,
type (ii) xn > 0 yn < 0 zn < 0 wn > 0 for large n
Let (x, y, z,w) be a solution of type (i). Thus, w is positive increasing and there
exists a constant t > 0 such that wn ≥ t for large n. From the third equation of (S)
we get

z∞ − zn ≥
∞∑

i=n

Ci f3(wi ) ≥
∞∑

i=n

Ciwi ≥ t
∞∑

i=n

Ci .

Substituting this into the second equation of (S) we obtain

yn − yn0 =
n−1∑

i=n0

Bi f2(zi ) ≤
n−1∑

i=n0

Bi zi ≤ −t
n−1∑

i=n0

Bi

⎛

⎝
∞∑

j=i

C j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the positivity of y.
Let (x, y, z,w) be a solution of type (ii). Thus, y is negative and decreasing and

there exists a constant k < 0 such that yn ≤ k for large n. From the summation of
the first equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1(yi ) ≤
n−1∑

i=n0

Ai yi ≤ k
n−1∑

i=n0

Ai .

Using the summation of the fourth equation of (S) and the estimation (24) we get

wn − wn0 ≥
n−1∑

i=n0

Di xγi ≥
n−1∑

i=n0

Di (−sγi+σ ) ≥ −k
n−1∑

i=n0

Di

⎛

⎝
i−1∑

j=n0

A j

⎞

⎠ .

Substituting this into the summation of the third equation of (S) we have

zn − zn0 =
n−1∑

i=n0

Ci f3(wi ) ≥
n−1∑

i=n0

Ciwi ≥ −k
n−1∑

i=n0

Ci

⎛

⎝
i−1∑

j=n0

Dj

(
j−1∑

l=n0

Al

)⎞

⎠ .

Passing n → ∞ we get the contradiction with the negativity of z.
Therefore, the system (S) has only solutions of type (a) and (c). �	

The following theorem gives us the conditions for system (S) to have property B
when the system is not in the canonical form.
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Theorem 9 Let (18), (29), (30) and (31) hold. In addition, if

∞∑

i=n0

Ai

⎛

⎝
i−1∑

j=n0

Bj

⎞

⎠ = ∞ (32)

and
∞∑

i=n0

Ai

⎛

⎝
∞∑

j=i

B j

⎞

⎠ = ∞ (33)

hold, then the system (S) has property B.

Proof By Theorem 8, the system (S) has only solutions of type (a) and (c). First,
assume that (x, y, z,w) is a solution of type (a). Thus, w is positive increasing and
there exists a constant k1 > 0 such that wn ≥ k1 for large n. From the third equation
of (S) we get

zn − zn0 =
n−1∑

i=n0

Ci f3(wi ) ≥
n−1∑

i=n0

Ciwi ≥ k1

n−1∑

i=n0

Ci .

Substituting this into the second equation of (S) we obtain

yn − yn0 =
n−1∑

i=n0

Bi f2(zi ) ≥
n−1∑

i=n0

Bi zi ≥ k1

n−1∑

i=n0

Bi

⎛

⎝
i−1∑

j=n0

C j

⎞

⎠ .

Passing n → ∞ we have yn → ∞.
Using the same argument, there exists a constant k2 > 0 such that zn ≥ k2 for

large n. From the summation of the first and the second equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1(yi ) ≥ k2

n−1∑

i=n0

Ai

⎛

⎝
i−1∑

j=n0

Bj

⎞

⎠ .

Passing n → ∞ we have sn → ∞. By Lemma 2, xn → ∞ too.
There exists a constant k3 > 0 such that xn ≥ k3 for large n. From the summation

of the third and the fourth equation of (S) we obtain

zn − zn0 =
n−1∑

i=n0

Ci f3(wi ) ≥ k3

n−1∑

i=n0

Ci

⎛

⎝
i−1∑

j=n0

Dj

⎞

⎠ .

Passing n → ∞ we have zn → ∞.
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Since y is positive and increasing, there exists k > 0 such that yn ≥ k for large n.
From (20) we get wn → ∞ passing n → ∞.

Now, assume that (x, y, z,w) is a solution of type (c). Because w is negative
and increasing, there exists limwn = t1 ≤ 0. First, assume that t1 < 0. Using the
summation of the second and third equation of (S) we get

yn − yn0 =
n−1∑

i=n0

Bi f2(zi ) ≥ −t1

n−1∑

i=n0

Bi

⎛

⎝
∞∑

j=i

C j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the boundedness of y, therefore
limn→∞ wn = 0.

Now, assume that lim xn = t2 ≥ 0. First, assume that t2 > 0. Using the summation
of the third and the fourth equation of (S) we have

zn − zn0 =
n−1∑

i=n0

Ci f3(wi ) ≤ −t2

n−1∑

i=n0

Ci

⎛

⎝
∞∑

j=i

D j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the boundedness of z, therefore
limn→∞ xn = 0.

Now, assume that lim yn = t3 ≤ 0. First, assume that t3 < 0. Using the summation
of the first and the fourth equation of (S) we obtain

wn − wn0 =
n−1∑

i=n0

Di f4(xγi ) ≥
n−1∑

i=n0

Di xγi ≥
n−1∑

i=n0

Di (−sγi+σ ) ≥ −t3

n−1∑

i=n0

Di

⎛

⎝
γi+σ−1∑

j=n0

A j

⎞

⎠ .

Passing n → ∞ we get the contradiction with the boundedness of w, therefore
limn→∞ yn = 0.

Finally, assume that lim zn = t4 ≥ 0. First, assume that t4 > 0. Using the summa-
tion of the first and the second equation of (S) we get

sn − sn0 =
n−1∑

i=n0

Ai f1(yi ) ≤ −t4

n−1∑

i=n0

Ai

⎛

⎝
∞∑

j=i

B j

⎞

⎠ .

Because x is bounded, then s is bounded as well. Passing n → ∞ we get the con-
tradiction with the boundedness of s, therefore limn→∞ zn = 0.

Now, we get the assertion by Definition 4. �	
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5 Concluding Remarks

We extend our results from [7] for the system (S) which is not in the canonical form
and for the system with negative sequence pn . Now, results of this paper may be
extended with some simplification of conditions for (S) to have property B.
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5. Došlá, Z., Krejčová, J., Marini, M.: Minimal and maximal solutions of the fourth-order non-
linear difference equations. Differ. Equ. Appl. 20(12), 1–14 (2014)

6. Jankowski, R., Schmeidel, E., Zonenberg, J.: Oscillatory properties of solutions of the fourth
order difference equations with quasidifferences. Opusc. Math. 34(4), (2014)
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On the Structure of Polyhedral Positive
Invariant Sets with Respect to Delay
Difference Equations
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Abstract This chapter is dedicated to the study of the positive invariance of poly-
hedral sets with respect to dynamical systems described by discrete-time delay dif-
ference equations (DDEs). Set invariance in the original state-space, also referred to
asD-invariance, leads to conservative definitions due to its delay independent prop-
erty. This limitation makes the D-invariant sets only applicable to a limited class
of systems. However, there exists a degree of freedom in the state-space transfor-
mations which can enable the positive invariant set-characterizations. In this work
we revisit the set factorizations and extend their use in order to establish flexible
set-theoretic analysis tools. With linear algebra structural results, it is shown that
similarity transformations are a key element in the characterization of low complex-
ity invariant sets within the class of convex polyhedral candidates. In short, it is
shown that we can construct, in a low dimensional state-space, an invariant set for
a dynamical system governed by a delay difference equation. The basic idea which
enables the construction is a simple change of coordinates for the DDE. The obtained
D-invariant set exists in the new coordinates even if its existence necessary condi-
tions are not fulfilled in the original state-space. This proves that the D-invariance
notion is dependent on the state-space representation of the dynamics. It is worth to
recall as a term of comparison that the positive invariance for delay-free dynamics
is independent of the state-space realization.
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1 Introduction

Positive invariance is an essential conceptwith awide range of applications in dynam-
ical systems and control theory [1–3]. It serves as a basic tool inmany control schemes
such as model predictive control [4], fault tolerant control [5] and reference governor
design [6].

Two popular constructions of positive invariant sets for delay difference equations
exist. The first approach, referred to as Krasovskii approach, makes use of the fact
that, in discrete-time framework, a finite dimensional extended state-spacemodel can
be constructed. The study is then simplified in the case of linear discrete time systems
as long as the difficulties related to the infinite dimensionality of the state-space are
avoided. A higher dimensional linear time invariant (LTI) system is obtained, its
dimension is finite but is in direct relation with the delay value. The equivalent linear
time invariant model provides an invariant set for the delay difference equation [7].
However, this approach suffers from an increased computational complexity with
the delay’s size and becomes impracticable when delays are relatively large. Hence,
an alternative approach for the construction of invariant sets for DDEs referred to
as Razumikhin approach and denoted asD-invariance has been considered [8]. This
approach has been formulated to obtain an invariant set for the DDE in the original
state-space, which is independent from the delay value. Iterative procedures for the
construction of D-invariant sets as well as the relationship between time-varying
DDE stability and D-invariance were presented in [9–11]. However, the concept of
D-invariance is often conservative as long as the existence conditions are restrictive.

Recently, it has been recognized that D-invariance can be seen from the geomet-
rical point of view as a factorization of invariant set in the extended state-space [12].
It has been established that the invariance in the extended state-space corresponds
to a minimal factorization whileD-invariance, under the constraints imposed by the
dimension of the DDE, represents the maximal regular ordered factorization. This
interesting result opens the way for factorizations which are in between the two
representations by exploiting non-minimal state-space equations.

In this chapter, the link between the Razumikhin approach and the Krasovskii
approach will be revisited using set factorization. The proposed framework yields
a fitting trade-off between the conceptual generality of the extended state-space
approach and the computational convenience of theD-invariance approach.We show
that D-invariance, which can be seen as set factorization of an invariant set in the
extended state-space, represents a particular realization of a broader family of invari-
ant structures. The relationship between these families of invariant sets is established
via set factorization and conjugacy.

After establishing the general result, a numerical example will be detailed for
illustration. Therein, a dynamical system with a maximum delay equal to 2 and a
state-space representation of dimension 2 will be studied. For this delay difference
equation, the necessary conditions for the existence of D-invariant sets proposed in
[13] are not fulfilled. However, we propose a simple similarity transformation, which
leads to a regular ordered factorization of the extended-state invariant set, and thus,
allows the construction of a D-invariant set in the novel basis.
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The chapter is organized as follows. Section2 presents some preliminary defini-
tions and the existing results of [12] are recalled. In Sect. 3, the problem of existence
and uniqueness of similarity transformations for the construction of D-invariant
sets is addressed. The shape of the similarity transformation which allows a regular
ordered factorization is established in Sect. 3.1. In Sect. 4, a numerical example is
given to illustrate the previous results and finally Sect. 5 draws concluding remarks.

2 Preliminary Definitions and Existing Results

Let us consider the following delay difference equation:

x(k) =
d∑

i=1

Ai x(k − i) (1)

where x(k) ∈ R
n is the state vector at the time k ∈ Z+. Matrices Ai ∈ R

n×n for
i = 1, · · · , d. For every interval Π of R+ we define RΠ := R ∩ Π . The initial
conditions are considered to be given by x(−i) ∈ R

n , for i ∈ Z[1,d]. Given two sets
X ,Y ⊂ R

m , X ⊕ Y and X × Y denote the Minkowski sum and the Cartesian
product of these two sets, respectively:

X ⊕ Y := {z| ∃(x, y) ∈ (X ,Y ) such that z = x + y} ,

X × Y := {(x, y)| x ∈ X and y ∈ Y } .

An extended state-space representation can be constructed for any given (finite) delay
realization. Using an augmented state vector

z(k) = [x(k)T · · · x(k − d + 1)T
]T

equation (1) can be rewritten as:

z(k) = Aez(k − 1) =

⎡

⎢⎢⎢⎣

A1 . . . Ad−1 Ad

I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤

⎥⎥⎥⎦ z(k − 1), (2)

Definition 1 A set P ⊆ R
n is called D-invariant for the system (1) with initial

conditions x(−i) ∈ P for all i ∈ Z[1,d] if the state trajectory satisfies x(k) ∈
P,∀k ∈ Z+. �

As already mentioned in the introduction, two main approaches exist in the litera-
ture dealing with positive invariant sets for discrete-time delay difference equations;
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the invariant set in an extended state-space (2) on one side and the invariant set in the
original state-space (1) (also called D-invariant set) on the other side. The concept
of cyclic invariance [14] proposes instead of a rigid set in R

nd or Rn a family of
invariant sets and offers a certain degree of flexibility.

Definition 2 A family of (d tuples of) sets {Ω1, . . . ,Ωd} is called cyclicD-invariant
with respect to (1) if:

A1Ω1 ⊕ A2Ω2 ⊕ · · · ⊕ AdΩd ⊆ Ωd;
A1Ωdm ⊕ A2Ω1 ⊕ · · · ⊕ AdΩd−1 ⊆ Ωd−1;

...

A1Ω2 ⊕ A2Ω3 ⊕ · · · ⊕ AdΩ1 ⊆ Ω1.

(3)

A generalization of the cyclic invariance notion to invariant family of sets was pro-
posed by [15].

Definition 3 A family of (d tuples of) sets F ⊂ R
nd is an invariant family with

respect to (1) if for any tuple {Ω1,Ω2, . . . , Ωd} ∈ F there exists a set Ω0 ⊂ R
n

such that {Ω0,Ω1 . . . ,Ωd−1} ∈ F and

A1Ω1 ⊕ A2Ω2 ⊕ · · · ⊕ AdΩd ⊆ Ω0

The link between the two main representations for discrete-time delay difference
equations and their invariant sets has received recently a unifying characterization
via set factorization [12]. The reader interested in a more thorough introduction to
set factorization may consult [16, 17]. Next, the basic notions in this respect are
recalled.

Definition 4 A partition of a set of indices P ⊂ Z[1,m] is the family of ′l ′ subsets Pk
of P , which verify the following conditions:

• ∅ /∈ {Pk}lk=1,

• The subsets {Pk}lk=1 are said to cover P i.e. P =
l⋃

i=1
Pi ,

• The elements of {Pk}lk=1 are pairwise disjoint (Pi ∩ Pj = ∅ for i �= j).

Given a subset Pi ⊂ Z[1,m] and a set Ω ∈ R
m , Ω↓Pi denotes the projection of the

set Ω on the subset of Rn with indices of Cartesian coordinates in Pi .

Definition 5 Let Ω ∈ R
m and

l⋃
i=1

Pi be the partition of Z[1,m]

1. The set Ω is factorized according to the partition
l⋃

i=1
Pi = Z[1,m] if:

Ω = Ω↓P1 × · · · × Ω↓Pl (4)
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2. A set factorization (4) is said to be balanced if:

card {P1} = · · · = card {Pl}

3. A factorization is said to be ordered if it is defined by an ordered partition P =
l⋃

k=1
Pk satisfying:

max {Pi } < min
{
Pj
}
, ∀i < j ∈ Z[1,m], (5)

4. A factorization is regular if is characterized by the equivalence of the factors

Ω↓P1 = · · · = Ω↓Pl = S, (6)

and

Ω = S × S × · · · × S︸ ︷︷ ︸
l times

. (7)

Most of the factorization properties are related to the Cartesian product operation. It
is clear that the set factorization is non-commutative. The exception is represented
by the regular factorization which is commutative inside the given partition. Addi-
tionally, the regular factorizations are balanced but not necessarily ordered. From
the structural point of view, the geometry of the factors is related to the geometry
of the initial set. Convexity, for example, of a given set Ω implies the convexity of
the factors. It is worth to be mentioned that the Cartesian product of several polyhe-
dra is a polyhedron of higher dimension. It becomes clear that the polyhedral sets
represent an interesting class of sets which can be used for the development in rela-
tionship with set factorization. In comparison, even if the projection of ellipsoidal
sets is ellipsoidal, the Cartesian product of ellipsoids is not an ellipsoid rendering
the ellipsoidal class of sets impracticable for set factorization despite the fact that
they represent usual candidates for positive invariance with respect to linear time-
invariant dynamics. The property of polyhedral factorization is recalled in the next
proposition:

Proposition 1 There exists a regular ordered factorization for a polyhedral set:

Ω = {x ∈ R
n : Fx ≤ w

}
(8)

described by its minimal half space representation, if there exists a block diagonal-
ization of the matrix F via a column permutation. �

The relationship betweenD-invariance and invariance in the extended state-space is
formally stated in the next theorem without proof for brevity.
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Theorem 1 The system (1) admits a convexD-invariant set if and only if there exists
an invariant set for the system:

z(k) =

⎡

⎢⎢⎢⎣

A1 . . . Ad−1 Ad

I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤

⎥⎥⎥⎦ z(k − 1), (9)

which admits a regular ordered factorization. �

Proposition 2 Let
Ω = {x ∈ R

nd |Fx ≤ w
}

(10)

be an invariant set with respect to the system (2). A regular ordered factorization
with dimension-n factors exists if there exists a transformation matrix T ∈ R

(nd)×(nd)

such that:

FT−1 =

⎡

⎢⎢⎢⎢⎣

F1 0 . . . 0

0 F2
. . . 0

...
. . .

. . .
...

0 . . . 0 Fd

⎤

⎥⎥⎥⎥⎦
(11)

�

Corollary 1 Let a delay difference equation be described by (1). There exists a D-
invariant set for this dynamical system in Rn if the following conditions are fulfiled:

• There exists a similarity transformation matrix T such that

⎡

⎢⎢⎢⎣

B1 . . . Bd−1 Bd

I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤

⎥⎥⎥⎦ = T

⎡

⎢⎢⎢⎣

A1 . . . Ad−1 Ad

I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤

⎥⎥⎥⎦ T−1 (12)

• There exists an invariant set with respect to the system

z̃(k) =

⎡

⎢⎢⎢⎣

B1 . . . Bd−1 Bd

I . . . 0 0
...

. . .
...

...

0 . . . I 0

⎤

⎥⎥⎥⎦ z̃(k − 1) (13)

which admits a regular ordered factorization. �
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3 Existence and Uniqueness of Similarity Transformations
in the Construction of D-invariant Sets

We introduce in this section similarity transformations in the construction of D-
invariant sets all by preserving the dynamical model in the form of a delay difference
equation in R

n . Sylvester equations play a central role in many areas of applied
mathematics and in particular in systems and control theory. Before introducing
formally these equations, we need to introduce first Schur’s lemma.

Lemma 1 If A is a square n × n matrix, then A can be expressed as A = QUQ∗.
Where Q∗ is the trans-conjugate of the unitary matrix Q (Q−1 = Q∗); U is an upper
triangular matrix (Schur form), containing the eigenvalues of A on its diagonal. �

Let us consider the equation AX+XB = C where A ∈ Mn , B ∈ Mm andC ∈ Mn×m ,
whereMn denotes the set of square n×nmatrices, andMn×m denotes the set of n×m
matrices. The Sylvester equation can be written in the form (Im ⊗ A + BT ⊗ In) ∗
Vect (X) = Vect (C), where Vect (X) is the vertical concatenation of the columns
of the matrix X , I(.) is the identity matrix. ⊗ denotes the Kronecker product of two
matrices. The spectrum of amatrix A ∈ Mn is the set of the eigenvalues of A, denoted
by λ(A), while the spectral radius is defined as ρ(A) := max

ξ∈λ(A)
(|ξ |). It is clear that

Im ⊗ A and BT ⊗ In are two matrices belonging to Mmn .

Theorem 2 If η ∈ λ(A) and v ∈ C
n is the corresponding eigenvector of A, and if

μ ∈ λ(BT ) and w ∈ C
m is the corresponding eigenvector of BT , then η + μ is an

eigenvalue of Im ⊗ A + BT ⊗ In with w ⊗ v its corresponding eigenvector.
Furthermore, if λ(A) = {η1, η2, ..., ηn} and λ(BT ) = {μ1, μ2, ..., μm}, then:

λ(Im ⊗ A + BT ⊗ In) = {ηi + μ j ; i ∈ {1, · · · , n} , j ∈ {1, · · · ,m}} .

Proof A and BT are two square matrices of dimensions n and m respectively, their
Schur decomposition is:

A = QAUAQ
∗
A, BT = QBTUBT Q∗

BT , (14)

where:
Q∗

AQA = In, Q∗
BT QBT = Im . (15)

It follows from (14) and (15) that:

{
UA = Q∗

A AQA

UBT = Q∗
BT BT QBT

(16)

UA and UBT in equation (16) are two upper triangular matrices. Let us now assume
that W is the Kronecker product W = QBT ⊗ QA ∈ Mmn , then:
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W ∗W = (QBT ⊗ QA)
∗(QBT ⊗ QA) = (Q∗

BT ⊗ Q∗
A)(QBT ⊗ QA)

= (Q∗
BT QBT ) ⊗ (Q∗

AQA) = Imn.

It holds also:

W ∗(Im ⊗ A)W = (Q∗
BT ⊗ Q∗

A)(Im ⊗ QAUAQ∗
A)(QBT ⊗ QA)

= (Q∗
BT ⊗UAQ∗

A)(QBT ⊗ QA) = (Im ⊗UA).
(17)

and

W ∗(BT ⊗ In)W = (Q∗
BT ⊗ Q∗

A)(QBTUBT Q∗
BT ⊗ In)(QBT ⊗ QA)

= (UBT Q∗
BT ⊗ Q∗

A)(QBT ⊗ QA) = (UBT ⊗ In).
(18)

From the elements provided above, it becomes clear that:

W ∗(Im ⊗ A + BT ⊗ In)W = Im ⊗UA +UBT ⊗ In

=

⎛

⎜⎜⎜⎝

UA 0 0 0
0 UA 0 0

0 0
. . . 0

0 0 0 UA

⎞

⎟⎟⎟⎠+

⎛

⎜⎜⎜⎝

μ1 In ∗ ∗ ∗
0 μ2 In ∗ ∗
0 0

. . . ∗
0 0 0 μm In

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

μ1 In +UA ∗ ∗ ∗
0 μ2 In +UA ∗ ∗
0 0

. . . ∗
0 0 0 μm In +UA

⎞

⎟⎟⎟⎠

One can see that the diagonal elements of the resultant upper triangularmatrix contain
all sum pairs of eigenvalues of UA,UBT which completes the proof. �
Remark 1 If for some i and j , ηi +μ j = 0, then rank of (Im⊗A+BT ⊗ In) is strictly
less than nm, then the solution for the system (Im ⊗ A + BT ⊗ In)Vect (X) = C is
not unique.

Theorem 3 The equation AX + XB = C has a unique solution X ∈ Mn×m if and
only if λ(A) ∩ λ(−B) = ∅
Proof Follows directly from Theorem2. �
In this work, we are interested in the similarity transformation as an auxiliary tool
for the construction ofD-invariant sets while preserving the dynamical model in the
form of a delay difference equation in Rn , i.e. starting from an extended state-space
model of a given dynamical system, we obtain another extended state-space model,
which has the same dimension as the first one, via a simple change of coordinates.
Such a similarity transformation represents a parametrization of the conditions for
the existence of a regular ordered factorization.

In addition, one can see that solving the problem of determination of a matrix T in
Eq. (12) is equivalent to the existence of an invertible matrix T which verifies a par-
ticular (homogeneous) Sylvester equation. In Theorem2 it is shown that the Eq. (12)
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can be rewritten as a linear (in our case homogeneous) equation of size (nd)2×(nd)2.
This equation has non-trivial solutions if it is singular which is equivalent to matrices
A and B having at least one common eigenvalue. It is clear that Eq. (12) represents
a similarity transformation and that matrices A and B share the same set of eigen-
values. Subsequently, applying Theorem3 guarantees that the transformation exists
and more than that, it is not unique. In fact, the solution, in vectorial form, is the full
null space of the matrix (Ind ⊗ B − AT ⊗ Ind).

The similarity transformation corresponds to a transformation of the state z̃ = T z,
where z̃ and z are the state vectors of the extended state-space realization. This results
in several possible canonical forms. Different properties stand out more clearly in
different realizations, and some forms may have advantages in some applications
(recall for example the controllable and observable canonical forms in classical con-
trol theory). It is worth mentioning that most of dynamical properties of an LTI
system, such as input-output properties and the impulse response and so on, are not
changed by similarity transformations.

Remark 2 In general, algebraic equivalence1 does not preserve stability properties
of a dynamical system [19, 20], and for this a necessary and sufficient condition will
be the topological equivalence, which is the algebraic condition plus the condition
on the Euclidean norm of the matrix T [18].

In our case and since we are working in a time-invariant setting, it follows from
[18] that two LTI systems are strictly equivalent whenever their phase vectors are
related for all time t as (t, z̃) = (t, T z), where T is a nonsingular constant matrix,
and obviously, strict equivalence implies topological equivalence.

When dealing with scalar systems (one state only), with simple linear algebra
manipulations, it can be shown that the constraint imposed on the similarity trans-
formation is very restrictive and allow only scaling type of change of coordinates
on the original delay difference equation, without an impact on the regular ordered
factorization.

Example 1 For illustration, let us consider dynamical matrix

A =

⎡

⎢⎢⎢⎣

a1 . . . ad−1 ad
1 . . . 0 0
...

. . .
...

...

0 . . . 1 0

⎤

⎥⎥⎥⎦ ; (19)

there exists an infinite number of combinations of similarity transformations T,which
satisfy equality (12). All matrices T are generated from the null space of the matrix
(Id ⊗ A − BT ⊗ Id). This null space is the same as the one of (Id ⊗ A − AT ⊗ Id)
since we consider here only scalar systems. For d = 2, the null space is generated
by the two matrices:

1See [18] for a formal definition of algebraic equivalence.
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{[
1 0
0 1

]
,

[
a0/a1 1
1/a1 0

]}
, (20)

while for d = 3, the null space is generated by the three matrices:

⎧
⎨

⎩

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

⎡

⎣
a0/a2 a1/a2 1
1/a2 0 0
0 1/a2 0

⎤

⎦ ,

⎡

⎣
a1/a2 1 0
0 a1/a2 0

1/a2 −a0/a2 0

⎤

⎦

⎫
⎬

⎭ . (21)

Next we make a step forward towards the study of the structure of all matrices
T which allow transformations by maintaining the dynamical model in the class of
a DDE in R

n . Specifically, we will be interested in the present work in the case of
systems with two states n = 2 and a maximum delay d = 2 in (1).

Let us consider the extended dynamical system (2) in this case:

z(k) =
[
A1 A2

I 0

]
z(k − 1) ⇔ x(k) = A1x(k − 1) + A2x(k − 2) (22)

After the change of coordinates, in the novel basis:

z̃(k) =
[
B1 B2

I 0

]
z̃k = T

[
A1 A2

I 0

]
T−1 z̃(k − 1) (23)

The relationship between the augmented state in the two basis of coordinates is:

z̃(k) = T z(k) (24)

[
x̃(k)

x̃(k − 1)

]
=
[
T11 T12
T21 T22

] [
x(k)

x(k − 1)

]
(25)

z̃(k) =
[
B1 B2

I 0

]
z̃(k − 1) ⇔ x̃(k) = B1 x̃(k − 1) + B2 x̃(k − 2) (26)

It follows from (25) that:

T21x(k) + T22x(k − 1) = T11x(k − 1) + T12x(k − 2) (27)

or equivalently:

T21x(k) = (T11 − T22)x(k − 1) + T12x(k − 2)
x(k) = A1x(k − 1) + A2x(k − 2)

(28)

From Eq. (28), we can easily derive the matrix T :
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• If T21 = O → T11 = T22 = T∗ and T12 = O

T =
[
T∗ O
O T∗

]
(29)

• If T21 = I2×2 → T12 = A2 and T11 = A1 + T22

T =
[
A1 + T22 A2

I2×2 T22

]
(30)

• If T21 �= I2×2 and is invertible

{
A1 = T−1

21 (T11 − T22)
A2 = T−1

21 T12
⇔
{
T11 = T22 + T21A1

T12 = T21A2

T =
[
T22 + T21A1 T21A2

T21 T22

]

Remark 3 Note that the first case when T21 = O, and the second one T21 = I2×2

represent particular structures of a broader family of matrices T presented in the
third case by relaxing the invertibility assumption for T21. Just by setting T21 = O
then T21 = I2×2, Eq. (3) takes the form of Eq. (29) then (30) respectively.

All transition matrices for (28) are thus generated by the two matrices:

{[
I 0
0 I

]
,

[
A1 A2

I 0

]}
, (31)

Based on the above particular forms, matrix T can be written, using the Kronecker
product, in a compact form.

T = (I2×2 ⊗ T22) + (I2×2 ⊗ T21)A (32)

It is worth noting that square matrices T21 and T22 can be chosen arbitrarily as long
as they lead to an invertible matrix T .

3.1 Transformation Allowing Regular Ordered Factorization

Let us consider the change of coordinates z̃ = T z applied to the dynamical system
(22). For sake of simplicity, we examine in this section transformation of the form:
z = T−1 z̃ = Γ z̃, then Γ can be written as:

Γ =
[
γ22 + γ21B1 γ21B2

γ21 γ22

]
(33)
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which is equivalent to :

Γ = [(I2×2 ⊗ γ22) + (I2×2 ⊗ γ21)B
]

(34)

Let Ω = {
z ∈ R

4|Fz ≤ w
}
be an invariant set in the extended state-space with

respect to the dynamical system (22), then Ω̃ = {
x̃ ∈ R

4|FΓ z̃ ≤ w
}
will be the

corresponding invariant set for the extended state realization (26).

FΓ = F
[
(I2×2 ⊗ γ22) + (I2×2 ⊗ γ21)B

]

= F(I2×2 ⊗ γ22) + F(I2×2 ⊗ γ21)B
(35)

Ω̃ = {x̃ ∈ R
4| [F(I2×2 ⊗ γ22) + F(I2×2 ⊗ γ21)B

]
x̃ ≤ w

}
(36)

FΓ =
[
F

[
γ22 02×2

02×2 γ22

]
+ F

[
γ21 02×2

02×2 γ21

]
B

]
(37)

Let F be:

F =
[
F1 F2

F3 F4

]
then FΓ =

[
F1(γ22 + γ21B1) + F2γ21 F2γ22 + F1γ21B2

F3(γ22 + γ21B1) + F4γ21 F4γ22 + F3γ21B2

]
. (38)

The necessary and sufficient condition for the existence of a factorization for the
invariant set is that the matrix FΓ has a lower triangular structure:

FΓ =
(∗ 0

∗ ∗
)

(39)

which means that there exists γ22 and γ21 verifying the equality:

F2γ22 + F1γ21B2 = 0 (40)

Remark 4 It is worth mentioning that the existence of a D-invariant set in the new
coordinates provides a region in the state-space which is invariant in the sens that all
the state trajectories starting in this set remain inside it in the future. Furthermore,
the existence of a D-invariant set in general only implies that the system is stable
independently from the delay value. If such a region does not exist for some linear
delay difference equation, one can’t conclude about the stability of the system (the
existence of aD-invariant set is a necessary (not sufficient) condition for the stability
of DDEs).
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3.2 Implications of the Results in Terms of Control System
Concepts

It is well known that the existence of a Lyapunov Function is equivalent to the
existence of aλ-contractive set.On the other hand, itwas established that the existence
of aLyapunov-Razumikhin FunctionLRF is equivalent to the existence of a particular
type of contractive sets, known as λ-D-contractive sets, for the non-extended model
(sub-level sets of a LRF being λ-D-contractive sets). D-invariance is a limit case of
λ-D-contractiveness (it would amount to choosing λ = 1).

Proposition 3 ([7]) The existence of aD-invariant set is equivalent to the existence
of a Lyapunov-Razumikhin Function.

The implication of the result in this work is stated in the following corollary:

Corollary 2 The existence of a Lyapunov-Razumikhin Function depends on the
DDE’s state space representation.

Proof If there exists a DDE for which the necessary condition for the existence
of D-invariant sets is not satisfied, then a LRF does not exist for the same DDE
in virtue of Proposition 3. However, considering now a state space transformation
which leads to the existence of a D-invariant set, then the existence of a Lyapunov-
Razumikhin Function is guaranteed in the novel representation of the DDE, and thus
the dependence on the DDE’s state realization is proved. �

3.3 Polytopic State Constraints

Weshow that the proposed transformation is able to handle polytopic state limitations
and guarantee constraints satisfaction. Suppose that the system states are subject to
polytopic constraints x(k) ∈ X ,∀k ∈ Z+ where X is a compact and convex set
which contains the origin as an interior point:

X = {x ∈ R
n| Fx ≤ f

}
(41)

It follows that the extended state space vector in (2) is subject to the constraint:
z(k) ∈ Xcst ,∀k ∈ Z+ where:

Xcst = X × · · · × X

Xcst =

⎧
⎪⎨

⎪⎩
z ∈ R

nd |
⎡

⎢⎣
F 0 0

0
. . . 0

0 0 F

⎤

⎥⎦ z ≤
⎡

⎢⎣
f
...

f

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
(42)

Suppose now that there exists a similarity transformation of the form (12) allowing
regular ordered factorization. Since z̃ = T z, the image of the setXcst is obtained as:
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X̃cst =

⎧
⎪⎨

⎪⎩
z̃ ∈ R

nd |
⎡

⎢⎣
F 0 0

0
. . . 0

0 0 F

⎤

⎥⎦ T−1 z̃ ≤
⎡

⎢⎣
f
...

f

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
(43)

However, there exits an invariant set ΩBe wrt to the DDE in the new coordinates
which admits a regular ordered factorization ΩBe = Ω × · · · × Ω . Exploiting the
scaling property of invariant sets, the maximal scaling factor ensuring constraints
satisfaction in the original state space representation is obtained by solving the fol-
lowing optimization problem:

max
λ

λ (44a)

subject to
λ > 0 (44b)

λΩBe ⊆ X̃cst (44c)

A numerical example is given in the following to show the effectiveness of the above
results.

4 Illustrative Example

Let us consider the following dynamical system:

x(k) = A1x(k − 1) + A2x(k − 2), (45)

A1 =
[−0.5026 1.3088
0.5201 0.9026

]
(46)

A2 =
[ −0.059 0.4517
−0.0935 −0.7510

]
(47)

The necessary condition for the existence of a D-contractive set proposed in [13] is
not fulfilled. One can verify that the spectral radius of A1 is not subunitary, ρ(A1) =
1.2837 > 1. More than that, the necessary condition proposed in [21] is not verified.
We can easily verify that the spectral radius of the sum ρ(A1 + A2) = 1.1422 > 1,
and the set of generalized eigenvalues possesses four elements on the unit circle:

γ (U, V ) = 0.4611 ± 0.8873i , 0.6392 ± 0.7690i,

0.144,−0.096,−10.410, 6.943.

The delay difference equation (45) does not admit a D-invariant set. Note that the
extended state-space representation has a strictly stable transition matrix, which
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allows the construction of invariant set ΩAe ⊂ R
4.

z(k) =

⎡

⎢⎢⎣

−0.5026 1.3088 −0.059 0.4517
0.5201 0.9026 −0.0935 −0.7510

1 0 0 0
0 1 0 0

⎤

⎥⎥⎦ z(k − 1). (48)

Let ΩAe = {
z ∈ R

4|Fz ≤ w
}
be the extended invariant set with respect to (48).

With linear algebra manipulations, we can find a similarity transformation T such
that (z̃ = T z), which allows formulation the system z(k) = Az(k − 1) in the
equivalent form z̃(k) = Bz̃(k − 1), and there exists an invariant set with respect to
this last dynamical system which admits a regular ordered factorization in R

2. Let
us take the transition matrix T = (I2×2 ⊗ T22) + (I2×2 ⊗ T21)A,

T21 =
[−28.729 3.932
30.667 −3.549

]
(49)

T22 =
[−3.161 34.342
4.831 −37.413

]
. (50)

and

T =

⎡

⎢⎢⎣

13.322 0.289 1.326 −15.930
−12.427 −0.479 −1.476 16.517
−28.729 3.932 −3.161 34.342
30.667 −3.549 4.831 −37.413

⎤

⎥⎥⎦ (51)

The dynamical system in the new basis:

z̃(k) = Bz̃(k − 1) = T AT−1 z̃(k − 1), (52)

with

B =

⎡

⎢⎢⎣

0.20 −0.34 0.24 −0.17
0.34 0.20 0.17 0.24
1 0 0 0
0 1 0 0

⎤

⎥⎥⎦ (53)

has a strictly stable transition matrix, which has the same set of eigenvalues as the
system (48).

λ(A) = λ(B) = 0.6108 ± 0.3697i,−0.4108 ± 0.0297i .

This allows the construction of an invariant setΩBe ⊂ R
4 which is factorizable, then

the delay difference equation x̃(k) = B1 x̃(k−1)+ B2 x̃(k−2) admits aD-invariant
set Ω ⊂ R

2 in this novel basis. It can be shown that this particular choice of T21 and
T22 verifies (40).
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Fig. 1 Set Ω in cyan and the set iteration B1Ω ⊕ B2Ω in yellow

Fig. 2 State trajectories starting from the same initial state and the corresponding D-invariant set
(left) and the projection of ΩAe (right)

Ω =

⎧
⎪⎪⎨

⎪⎪⎩
x̃ ∈ R

2|

⎡

⎢⎢⎣

√
2 −√

2
−√

2
√
2√

2
√
2

−√
2 −√

2

⎤

⎥⎥⎦ x̃ ≤

⎡

⎢⎢⎣

2
2
2
2

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭
(54)
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ΩBe =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̃ ∈ R
4|

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 −√

2 0 0
−√

2
√
2 0 0√

2
√
2 0 0

−√
2 −√

2 0 0
0 0

√
2 −√

2
0 0 −√

2
√
2

0 0
√
2

√
2

0 0 −√
2 −√

2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z̃ ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
2
2
2
2
2
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(55)

Figure1 presents theD-invariant set obtained. Dashed black line represents the state
trajectory starting from the initial states x(−1) = [0,−√

2]′ and x(−2) = [0, 0]′
with respect to the DDE x̃(k) = B1 x̃(k−1)+ B2 x̃(k−2). However, dashed red line
represents the state trajectory starting from the same initial states with respect to the
DDE (45).

We can see that the state trajectory in the original basis does not remain inside the
blue set. It follows that this set is not D-invariant with respect to the dynamics (45).
However, in the new basis, the trajectory is converging to the origin and remains
inside the blue set for all k ∈ Z+ which is aD-invariant with respect to the dynamic
x̃(k) = B1 x̃(k−1)+B2 x̃(k−2). Dashed lines in Fig. 2 represent the state trajectories
starting from the same initial state in different basis.

5 Conclusion

A unifying characterization of the link between invariance in the extended state-
space and D-invariance, via set factorization, was studied for discrete-time DDEs.
Low complexity invariant sets were recalled and it was shown that set factorization
combinedwith similarity transformations allow aflexible description of invariant sets
in state-spaces of same dimension. Thus, a relaxation of the conservativeness of the
existing D-invariance constructions was delivered for a more flexible D-invariance
characterization. Since set invariance concept is at the basis of many control schemes
related to constrained control analysis/design, it is shown how the transformation can
be adapted in order to handle polytopic state constraints.
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On the Exponential Stability
of Two-Dimensional Nonautonomous
Difference Systems Which Have a Weighted
Homogeneity of the Solution

Masakazu Onitsuka

Abstract The present paper is considered a two-dimensional difference system:

Δx(n) = a(n)x(n) + b(n)φp∗(y(n)), Δy(n) = c(n)φp(x(n)) + d(n)y(n),

where all coefficients are real-valued sequences; p and p∗ are positive numbers
satisfying 1/p + 1/p∗ = 1; and φp(x) = |x |p−2x for x �= 0, and φp(0) = 0.
The aim of this paper is to clarify that uniform asymptotic stability and exponential
stability are equivalent for the above system. To illustrate the obtained results, an
example is given. In addition, a figure of a solution orbitwhich is drawnby a computer
is also attached for a deeper understanding.

Keywords Exponential stability · Uniform asymptotic stability · Difference
system · Weighted homogeneity

1 Introduction

Let N be the set of all natural numbers, and let N0 = N ∪ {0}. We consider the
two-dimensional nonlinear nonautonomous difference system of the form

Δx(n) = a(n)x(n) + b(n)φp∗(y(n)),

Δy(n) = c(n)φp(x(n)) + d(n)y(n)
(1)

for n ∈ N0, where Δ is the forward difference operator Δx(n) = x(n + 1) − x(n);
and a(n), b(n), c(n) and d(n) are real-valued sequences for n ∈ N0; the positive
numbers p and p∗satisfy 1/p+ 1/p∗ = 1; the real-valued function φq(x) is defined
by
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φq(x) =
{

|x |q−2x if x �= 0,

0 if x = 0,
x ∈ R

for q > 1. Note that φp∗ is the inverse function of φp, and the numbers p and p∗ are
naturally greater than 1. Since φp(0) = 0 = φp∗(0), system (1) has the zero solution
(x(n), y(n)) ≡ (0, 0).

When a(n) ≡ 0 and b(n) ≡ 1, (1) is reduced to the equation

Δ
(
φp(Δx(n))

) − d(n)φp(Δx(n)) − c(n)φp(x(n)) = 0.

This equation is often called “half-linear equation” because the solution space is
homogeneous, but not additive; that is, if x1(n) and x2(n) are solutions of half-linear
equation, then cx1(n) is also a solution for any c ∈ R, but x1(n) + x2(n) is not
always a solution when p �= 2. Half-linear equation is originated from the study of
ordinary differential equations. For example, the reader is referred to [1, 3, 4]. For
difference equations, we can find in [2, 7–10, 16, 20, 21]. It is known that half-linear
differential equations is a special case of the nonlinear differential system

x ′ = a(t)x + b(t)φp∗(y),

y′ = c(t)φp(x) + d(t)y,

where a(t), b(t), c(t) and d(t) are continuous functions. For example, see [6, 12–15,
17–19]. Certainly, system (1) is a natural generalization of the half-linear difference
equation. Note here that system (1) has a weighted homogeneous (homogeneous-
like) property on the solution space, which will be proved in Sect. 2. In this paper,
we will deal with the stability of the all solutions of (1) in the neighborhood of the
zero solution.

Let Ω be an open connected set and that 0 ∈ Ω . We now consider the nonlinear
nonautonomous difference system

Δx(n) = f(n, x(n)), f(n, 0) = 0 (2)

for n ∈ N0, where x(n) ∈ Ω ⊂ R
k and k ∈ N; f : N0 × Ω → Ω is continuous

on Ω . If an initial condition x(n0) = x0 is given, then for n ∈ N0 there is a unique
solution x(n) ≡ x(n; n0, x0) of (2) such that x(n0; n0, x0) = x0. It is clear that (2)
has the zero solution x(n) ≡ 0. Now we give some definitions of the stability of
the zero solution of (2). Let ‖x‖ be the Euclidean norm of x. The zero solution is
said to be uniformly attractive if there exists a δ0 > 0 and, for any ε > 0, there
exists an N (ε) ∈ N such that n0 ∈ N0 and ‖x0‖ < δ0 imply ‖x(n; n0, x0)‖ < ε

for all n ≥ n0 + N (ε) and n ∈ N0. The zero solution is said to be uniformly stable
if for any ε > 0, there exists a δ(ε) > 0 such that n0 ∈ N0 and ‖x0‖ < δ(ε)

imply ‖x(n; n0, x0)‖ < ε for all n ≥ n0 and n ∈ N0. The zero solution is uniformly
asymptotically stable if it is uniformly attractive and is uniformly stable. The zero
solution is said to be exponentially stable (or exponentially asymptotically stable);
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if there exists a λ > 0 and, given any ε > 0, there exists a δ(ε) > 0 such that
n0 ∈ N0 and ‖x0‖ < δ(ε) imply ‖x(n; n0, x0)‖ ≤ εe−λ(n−n0) for all n ≥ n0 and
n ∈ N0. For example, we can refer to the books [5, 11]. For ordinary differential
equations, see [13, 14, 22, 23]. From the definitions, exponential stability implies
uniform asymptotic stability. However, uniform asymptotic stability does not imply
exponential stability. For instance, the zero solution of the nonlinear scalar equation

Δx(n) =
(

1√
1 + x2(n)

− 1

)
x(n) (3)

is uniformly asymptotically stable, but it is not exponentially stable. It is clear that
(3) has the zero solution x(n; n0, 0) ≡ 0. The unique solution of (3) is given by

x(n; n0, x0) = x0√
1 + x20 (n − n0)

.

Now we will show that the zero solution of (3) is uniformly asymptotically stable.
Let δ0 = 1. For any 0 < ε < 1, we set N (ε) = min{n ∈ N| ε−2 − 1 ≤ n}. We
consider the solution of (3) with |x0| < δ0 = 1. We may assume without loss of
generality that |x0| �= 0. Then we have

|x(n; n0, x0)| = 1√|x0|−2 + n − n0
<

1√
1 + N

≤ ε

for n ≥ n0 + N . That is, the zero solution of (3) is uniformly attractive. For any
ε > 0, we choose δ(ε) = ε. We consider the solution of (3) with |x0| < δ. Then we
have

|x(n; n0, x0)| <
δ√

1 + x20 (n − n0)
≤ δ = ε

for n ≥ n0. Namely, the zero solution of (3) is uniformly stable, and therefore, it is
uniformly asymptotically stable. On the other hand, the zero solution of (3) is not
exponentially stable since

|x(n; n0, x0)|eΛ(n−n0) = x0eΛ(n−n0)√
1 + x20 (n − n0)

→ ∞ as n → ∞

for any Λ > 0 and |x0| �= 0. Hence, uniform asymptotic stability does not always
imply exponential stability.

In the special case that p = 2, (1) is reduced to the linear difference system

Δx(n) = a(n)x(n) + b(n)y(n),

Δx(n) = c(n)x(n) + d(n)y(n).
(4)
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It is well-known that the linear system has some good properties as follows. The
solution space of (4) is homogeneous and additive, and (4) has a fundamental matrix
Φ(n); that is, each column ofΦ(n) satisfies (4) such that detΦ(n) �= 0. Furthermore,
if an initial data (n0, (x0, y0)) ∈ N0 × R

2 is given, then we can find the formula of
the solution (

x(n)

y(n)

)
= Φ(n)Φ−1(n0)

(
x0
y0

)
.

Using this information, we can find a relationship of uniform asymptotic stability
and exponential stability (see [5, p.186] and [11, p.287]).

Theorem A If the zero solution of (4) is uniformly asymptotically stable, then it is
exponentially stable.

This theorem means that uniform asymptotic stability and exponential stability
are equivalent for linear system (4). Now, the natural question arises. Will uniform
asymptotic stability guarantee exponential stability, even if system (1) is nonlinear?
The purpose of this paper is to answer the question. Note here that under the assump-
tion p �= 2, system (1) is nonlinear, and the right-hand side of (1) is not continuously
differentiable at the origin since the function φq satisfies

lim
x→0

d

dx
φq(x) = lim

x→0
(q − 1)|x |q−2 = ∞,

if 1 < q < 2; that is, we cannot linearize (1) around the origin. Despite these
difficulties, we can obtain the answer to the above question as follows.

Theorem 1 If the zero solution of (1) is uniformly asymptotically stable, then it is
exponentially stable.

The obtained result means that uniform asymptotic stability and exponential sta-
bility are equivalent for system (1).

In the next section, we prepare some lemmas and a proposition which is the core
of the proof of Theorem 1. In Sect. 3, we present the proof of Theorem 1. To illustrate
the obtained results, we give an example in Sect. 4.

2 Uniform Attractivity, Uniform Stability and Exponential
Stability

In this section, firstwewill present some conditionswhich are equivalent to uniformly
attractive, uniformly stable and exponentially stable, respectively. Let ‖(x, y)‖p =
p
√|x |p + |y|p for (x, y) ∈ R

2.

Lemma 1 The zero solution of (1) is uniformly attractive if and only if there exists
a γ0 > 0 and, for any ρ > 0, there exists an M(ρ) ∈ N such that n0 ∈ N0 and
‖(x0, φp∗(y0))‖p < γ0 imply
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‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ

for all n ≥ n0 + M(ρ) and n ∈ N0.

Proof If the zero solution of (1) is uniformly attractive, then there exists a δ0 > 0
and, for any ε > 0, there exists an N (ε) ∈ N such that n0 ∈ N0 and ‖(x0, y0)‖ < δ0
imply ‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ < ε for all n ≥ n0 + N and n ∈ N0. We
define the following constants

p = max{p, p∗} and γ0 = min

{
1,

(
δ0√
2

)p
p

}
.

For every 0 < ρ < 1, we choose M(ρ) = N (ρ p/2).
Now we consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈

N0 and ‖(x0, φp∗(y0))‖p < γ0. Since

p
√|x0|p + |y0|p∗ = ‖(x0, φp∗(y0))‖p < γ0

holds, we have
|x0| < γ0 and |y0| < γ0

p
p∗ .

Using 0 < γ0 ≤ 1 ≤ p/p, p/p∗ ≥ 1 and the above inequalities, we obtain

‖(x0, y0)‖ =
√
x02 + y02 <

√
γ02 + γ0

2p
p∗

=
√√√√min

{
1,

(
δ0√
2

)2p
p

}
+ min

{
1,

(
δ0√
2

)2p
p∗

}

≤
√√√√2min

{
1,

(
δ0√
2

)2
}

≤ δ0, (5)

which implies

‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ <
ρ p

2

for n ≥ n0 + M and n ∈ N0. Note here that we used ε = ρ p/2. Therefore, we see
that

|x(n; n0, x0, y0)| <
ρ p

2
and |y(n; n0, x0, y0)| <

ρ p

2

for n ≥ n0 + M and n ∈ N0. Since 0 < ρ p/2 < 1 < p and p∗ > 1 hold, we have

(
ρ p

2

)p

<
ρ p

2
and

(
ρ p

2

)p∗

<
ρ p

2
.
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Consequently, we conclude that

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p <
p

√
ρ p

2
+ ρ p

2
= ρ

for n ≥ n0 + M and n ∈ N0. Thus, the necessity is true.
Conversely, we assume that there exists a γ0 > 0 and, for any ρ > 0, there exists

an M(ρ) ∈ N such that n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ0 imply

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ

for all n ≥ n0 + M and n ∈ N0. Define

δ0 = min

{
1,

γ0
p

2

}
.

For every 0 < ε < 1, we choose N (ε) = M

((
ε/

√
2
)p/p

)
.

We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈ N0

and ‖(x0, y0)‖ < δ0. Since |x0| < δ0, |y0| < δ0, 0 < δ0 ≤ 1 < p and p∗ > 1, we
have

‖(x0, φp∗(y0))‖p <
p
√

δ0
p + δ0

p∗ = p

√√√√min

{
1,

(
γ0 p

2

)p}
+ min

{
1,

(
γ0 p

2

)p∗}

≤ p

√
2min

{
1,

γ0 p

2

}
≤ γ0, (6)

and therefore,

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p <

(
ε√
2

)p
p

for n ≥ n0 + N and n ∈ N0. Note here that we used ρ =
(
ε/

√
2
)p/p

. From this

inequality and 0 < ε2/2 < 1 ≤ p/p and p/p∗ ≥ 1, it follows that

x2(n; n0, x0, y0) <

(
ε2

2

)p
p

≤ ε2

2
and y2(n; n0, x0, y0) <

(
ε2

2

) p
p∗

≤ ε2

2

for n ≥ n0 + N and n ∈ N0. Consequently, we conclude that

‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ < ε
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for n ≥ n0 + N and n ∈ N0. This completes the proof of Lemma 1. �

Lemma 2 The zero solution of (1) is uniformly stable if and only if for any ρ > 0,
there exists a γ (ρ) > 0 such that n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ (ρ) imply

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ

for all n ≥ n0 and n ∈ N0.

Proof If the zero solution of (1) is uniformly stable, then for any ε > 0, there exists
a δ(ε) > 0 such that n0 ∈ N0 and ‖(x0, y0)‖ < δ(ε) imply

‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ < ε

for all n ≥ n0 and n ∈ N0. Let p = max{p, p∗}. For every 0 < ρ < 1, we choose

γ (ρ) = min

{
1,

(
1√
2
δ

(
ρ p

2

))p
p

}
.

Now we consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈
N0 and ‖(x0, φp∗(y0))‖p < γ . By the same estimate as in (5), we get ‖(x0, y0)‖ < δ.
Therefore, we see that

‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ <
ρ p

2

for n ≥ n0 and n ∈ N0. Using the same argument as in the proof of Lemma 1,
we conclude that ‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ for n ≥ n0 and
n ∈ N0.

Conversely, we assume that for any ρ > 0, there exists a γ (ρ) > 0 such that
n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ (ρ) imply

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ

for all n ≥ n0 and n ∈ N0. For every 0 < ε < 1, we choose

δ(ε) = min

{
1,

1

2
γ p

((
ε√
2

)p
p

)}
.

We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈ N0

and ‖(x0, y0)‖ < δ. By the same estimate as in (6), we obtain ‖(x0, φp∗(y0))‖p < γ ,
and therefore,

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p <

(
ε√
2

)p
p
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for n ≥ n0 and n ∈ N0. Hence, we conclude that ‖(x(n; n0, x0, y0), y(n; n0,
x0, y0))‖ < ε for n ≥ n0 and n ∈ N0 by using the same argument as in the proof of
Lemma 1. This completes the proof of Lemma 2. �

Lemma 3 The zero solution of (1) is exponentially stable if and only if there exists
a μ > 0 and, given any ρ > 0, there exists a γ (ρ) > 0 such that n0 ∈ N0 and
‖(x0, φp∗(y0))‖p < γ (ρ) imply

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p ≤ ρe−μ(n−n0)

for all n ≥ n0 and n ∈ N0.

Proof If the zero solution of (1) is exponentially stable, then there exists a λ > 0 and,
given any ε > 0, there exists a δ(ε) > 0 such that n0 ∈ N0 and ‖(x0, y0)‖ < δ(ε)

imply ‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ ≤ εe−λ(n−n0) for all n ≥ n0 and n ∈ N0.
Let μ = λ/p and p = max{p, p∗}. For every 0 < ρ < 1, we determine

γ (ρ) = min

{
1,

(
1√
2
δ

(
ρ p

2

))p
p

}
.

We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈ N0

and ‖(x0, φp∗(y0))‖p < γ . By the same estimate as in (5), we get ‖(x0, y0)‖ < δ.
Thus, we obtain

‖(x(n; n0, x0, y0), y(n; n0, x0, y0))‖ ≤ ρ p

2
e−pμ(n−n0)

for n ≥ n0 and n ∈ N0. Using

0 <
ρ p

2
e−pμ(n−n0) ≤ ρ p

2
< 1 < p, 1 < p∗

and the above inequality, we have

|x(n; n0, x0, y0)|p ≤
(

ρ p

2
e−pμ(n−n0)

)p

<
ρ p

2
e−pμ(n−n0)

and

|y(n; n0, x0, y0)|p∗ ≤
(

ρ p

2
e−pμ(n−n0)

)p∗

<
ρ p

2
e−pμ(n−n0)

for n ≥ n0 and n ∈ N0. Consequently, we conclude that

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρe−μ(n−n0)

for n ≥ n0 and n ∈ N0.
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Conversely, we suppose that there exists a μ > 0 and, given any ρ > 0, there
exists a γ (ρ) > 0 such that n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ (ρ) imply

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p ≤ ρe−μ(n−n0)

for all n ≥ n0 and n ∈ N0. Let λ = μp/p. For every 0 < ε < 1, we choose

δ(ε) = min

{
1,

1

2
γ p

((
ε√
2

)p
p

)}
.

We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈ N0

and ‖(x0, y0)‖ < δ. By the same estimate as in (6), we obtain ‖(x0, φp∗(y0))‖p < γ ,
and therefore,

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p ≤
(

ε√
2

)p
p

e− pλ
p (n−n0)

for n ≥ n0 and n ∈ N0. Using

0 <
ε√
2
e−λ(n−n0) ≤ ε√

2
< 1 ≤ p

p
and 1 ≤ p

p∗

and the above inequality, we have

|x(n; n0, x0, y0)| ≤
(

ε√
2
e−λ(n−n0)

)p
p

≤ ε√
2
e−λ(n−n0)

and

|y(n; n0, x0, y0)| ≤
(

ε√
2
e−λ(n−n0)

) p
p∗

≤ ε√
2
e−λ(n−n0)

for n ≥ n0 and n ∈ N0. Consequently, we see that ‖(x(n; n0, x0, y0), y(n; n0,
x0, y0))‖ ≤ εe−λ(n−n0) for n ≥ n0 and n ∈ N0. This completes the proof of
Lemma 3. �

The following lemma means that system (1) has a weighted homogeneous prop-
erty on the solution space.

Lemma 4 If (x(n), y(n)) is a solution of (1) passing through a point (x0, y0) ∈ R
2

at n = n0 ∈ N0, then (αx(n), φp(α)y(n)) is also a solution of (1) passing through
a point (αx0, φp(α)y0) ∈ R

2 at n = n0 for any α ∈ R.

Proof Let (x(n), y(n)) be a solution of (1) passing through a point (x0, y0) at n = n0.
Define x̃(n) = αx(n) and ỹ(n) = φp(α)y(n) with α ∈ R. Then (x̃(n0), ỹ(n0)) =
(αx0, φp(α)y0) holds. Since φp∗ is the inverse function of φp, we obtain
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Δx̃(n) = αΔx(n) = a(n)αx(n)+b(n)φp∗(φp(α)y(n)) = a(n)x̃(n)+b(n)φp∗(ỹ(n))

and

Δỹ(n) = φp(α)Δy(n) = c(n)φp(αx(n)) + d(n)φp(α)y(n) = c(n)φp(x̃(n)) + d(n)ỹ(n).

Thus, we see that (αx(n), φp(α)y(n)) is a solution of (1) passing through a point
(αx0, φp(α)y0) at n = n0. �

The following result is the most important property for the proof of Theorem 1.

Proposition 5 If the zero solution of (1) is uniformly attractive, then there exists
a γ0 > 0 and, for every ν > 1, there exists an N (ν) ∈ N such that n0 ∈ N0 and
‖(x0, φp∗(y0))‖p < γ0ν

−(k−1) imply

‖(x(n; n0 + (k−1)N (ν), x0, y0), φp∗(y(n; n0 + (k−1)N (ν), x0, y0)))‖p < γ0ν
−k

for all n ≥ n0 + kN (ν), n ∈ N0 and k ∈ N.

Proof Lemma 1 implies that there exists a γ0 > 0 and, for every ν > 1, there exists
an M(γ0/ν) ∈ N such that τ ∈ N0 and ‖(ξ, φp∗(η))‖p < γ0 imply

‖(x(n; τ, ξ, η), φp∗(y(n; τ, ξ, η)))‖p <
γ0

ν

for all n ≥ τ + M and n ∈ N0. Let N (ν) = M(γ0/ν).
Let k be a natural number. Now we consider the solution

(x(n; n0 + (k − 1)N , x0, y0), y(n; n0 + (k − 1)N , x0, y0))

of (1) with n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ0ν
−(k−1) for n ≥ n0 + (k − 1)N and

n ∈ N0. Lemma 4 implies that

(
νk−1x(n; n0 + (k − 1)N , x0, y0), φp

(
νk−1) y(n; n0 + (k − 1)N , x0, y0)

)
is also a solution of (1) passing through a point

(
νk−1x0, φp

(
νk−1

)
y0

)
at n = n0 +

(k − 1)N . Since

∥∥(
νk−1x0, φp∗

(
φp

(
νk−1

)
y0

))∥∥
p = νk−1‖(x0, φp∗(y0))‖p < γ0

holds, we obtain

γ0

ν
>

∥∥∥(
νk−1x(n; n0+(k − 1)N, x0, y0), φp∗

(
φp

(
νk−1

)
y(n; n0+(k − 1)N , x0, y0)

))∥∥∥
p

= ‖(νk−1x(n; n0+(k − 1)N , x0, y0), ν
k−1φp∗(y(n; n0+(k − 1)N , x0, y0)))‖p

= νk−1‖(x(n; n0+(k − 1)N , x0, y0), φp∗(y(n; n0+(k − 1)N , x0, y0)))‖p
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for all n ≥ n0 + (k − 1)N + N = n0 + kN . Consequently, we see that

‖(x(n; n0+(k − 1)N , x0, y0), φp∗(y(n; n0+(k − 1)N , x0, y0)))‖p < γ0ν
−k

for all n ≥ n0 + kN , n ∈ N0 and k ∈ N. �

3 Proof of the Main Theorem

Now we present a proof of the main theorem.

Proof (Proof of Theorem 1) From uniform attractivity of (1) and Proposition 5, there
exist a γ0 > 0 and an N (e) ∈ N such that n0 ∈ N0 and ‖(ξ, φp∗(η))‖p < γ0e−(k−1)

imply

‖(x(n; n0 + (k − 1)N , ξ, η), φp∗(y(n; n0 + (k − 1)N , ξ, η)))‖p < γ0e
−k (7)

for all n ≥ n0 + kN , n ∈ N0 and k ∈ N.
From uniform stability of (1) and Lemma 2, there exists a γ (γ0) > 0 such that

n0 ∈ N0 and ‖(ξ, φp∗(η))‖p < γ imply

‖(x(n; n0, ξ, η), φp∗(y(n; n0, ξ, η)))‖p < γ0 (8)

for all n ≥ n0 and n ∈ N0. We set λ = 1/N . For every ε > 0, we choose

δ(ε) = γ ε

γ0e
> 0.

Now we consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (1) with n0 ∈
N0 and ‖(x0, φp∗(y0))‖p < δ. For the sake of convenience, let

(x(n), y(n)) = (x(n; n0, x0, y0), y(n; n0, x0, y0)).

Lemma 4 implies that (γ0e

ε
x(n), φp

(γ0e

ε

)
y(n)

)

is a solution of (1) passing through a point ((γ0e/ε)x0, φp(γ0e/ε)y0) at n = n0.
Using δ = γ ε/(γ0e) and ‖(x0, φp∗(y0))‖p < δ, we have

∥∥∥(γ0e

ε
x0, φp∗

(
φp

(γ0e

ε

)
y0

))∥∥∥
p

=
∥∥∥(γ0e

ε
x0,

γ0e

ε
φp∗(y0)

)∥∥∥
p

= γ0e

ε
‖(x0, φp∗(y0))‖p < γ

at n = n0. From this inequality and (8) with



194 M. Onitsuka

(ξ, η) =
(γ0e

ε
x0, φp

(γ0e

ε

)
y0

)
,

we obtain

γ0e

ε
‖(x(n), φp∗(y(n)))‖p =

∥∥∥(γ0e

ε
x(n), φp∗

(
φp

(γ0e

ε

)
y(n)

))∥∥∥
p

< γ0 (9)

for n ≥ n0 and n ∈ N0. Consequently, we see that

‖(x(n), φp∗(y(n)))‖p <
ε

e

for n0 ≤ n ≤ n0 + N and n ∈ N0.
We note that ∥∥∥(γ0e

ε
x0, φp∗

(
φp

(γ0e

ε

)
y0

))∥∥∥
p

< γ0

holds at n = n0 from (9). Then, from this inequality and (7) with

(ξ, η) =
(γ0e

ε
x0, φp

(γ0e

ε

)
y0

)
, k = 1,

we see that

γ0e

ε
‖(x(n), φp∗(y(n)))‖p =

∥∥∥(γ0e

ε
x(n), φp∗

(
φp

(γ0e

ε

)
y(n)

))∥∥∥
p

<
γ0

e
(10)

for n ≥ n0 + N and n ∈ N0. Consequently, we get

‖(x(n), φp∗(y(n)))‖p <
ε

e2

for n0 + N ≤ n ≤ n0 + 2N and n ∈ N0.
Moreover, we note that∥∥∥(γ0e

ε
x(n0 + N ), φp∗

(
φp

(γ0e

ε

)
y(n0 + N )

))∥∥∥
p

<
γ0

e

holds at n = n0 + N from (10). Using this inequality and (7) with

(ξ, η)=
(γ0e

ε
x(n0 + N ), φp

(γ0e

ε

)
y(n0 + N )

)
, k = 2,

we see that

γ0e

ε
‖(x(n), φp∗(y(n)))‖p =

∥∥∥(γ0e

ε
x(n), φp∗

(
φp

(γ0e

ε

)
y(n)

))∥∥∥
p

<
γ0

e2

for n ≥ n0 + 2N and n ∈ N0. Consequently, we have
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‖(x(n), φp∗(y(n)))‖p <
ε

e3

for n0 + 2N ≤ n ≤ n0 + 3N and n ∈ N0.
By the same process as in the above mentioned estimates, we conclude that

‖(x(n), φp∗(y(n)))‖p < εe−k

for n0 + (k − 1)N ≤ n ≤ n0 + kN , n ∈ N0 and k ∈ N. Since

−k ≤ − 1

N
(n − n0) = −λ(n − n0)

holds, we have ‖(x(n), φp∗(y(n)))‖p < εe−k ≤ εe−λ(n−n0) for n0 + (k−1)N ≤ n ≤
n0 + kN , n ∈ N0 and k ∈ N. Since we can divide the interval [n0, n0 + kN ] as

[n0, n0 + kN ] =
k⋃

i=1

[n0 + (i − 1)N , n0 + i N ]

for k ∈ N, we conclude that

‖(x(n), φp∗(y(n)))‖p ≤ εe−λ(n−n0)

for n ≥ n0 and n ∈ N0. Therefore, Lemma 3 implies that the zero solution of (1) is
exponentially stable. This completes the proof of Theorem 1. �

4 Example and Simulation

In this section, we give an example. We consider the system of difference equations

Δx(n) = −x(n) + f (n)φp∗(y(n)),

Δy(n) = −φp( f (n))φp(x(n)) − y(n),
(11)

where f (n) = (n + 1)−{1+(−1)n}/2 for n ∈ N0. Then the zero solution of (11) is
uniformly asymptotically stable. Moreover, by Theorem 1, it is exponentially stable.

We will check this fact. Define the nonnegative function

V (n) = |x(n)|p + |y(n)|p∗
,

where (x(n), y(n)) is a solution of (11) for n ≥ n0 and n ∈ N0. Then we have
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ΔV (n) = |x(n + 1)|p + |y(n + 1)|p∗ − V (n)

= | f (n)φp∗(y(n))|p + |φp( f (n))φp(x(n))|p∗ − V (n)

= | f (n)|p|y(n)|p∗ + | f (n)|p|x(n)|p − V (n)

= (| f (n)|p − 1)V (n) (12)

for n ≥ n0 and n ∈ N0. From this and f (n) = (n + 1)−{1+(−1)n}/2, we obtain

ΔV (n) =
⎧⎨
⎩−

(
1 − 1

(n + 1)p

)
V (n) if n = 2k,

0 if n = 2k − 1,
k ∈ N0

for n ≥ n0 and n ∈ N0. If we regard V as a Lyapunov function, we can conclude that
the derivative of V along any solution of (11) is nonpositive. Note here that if n is odd
then ΔV (n) = 0. This means that we cannot use well-known Lyapunov theorems
for the (uniform) asymptotic stability, because these require that ΔV (n) < 0 for all
n ∈ N0 (see [11]). For this reason, we will prove directly that the zero solution is
uniformly asymptotically stable by using function V (n).

From (12) and
| f (n)| = (n + 1)−{1+(−1)n}/2 ≤ 1,

we can easily check that

V (n) = | f (n0)|p| f (n0 + 1)|p| f (n0 + 2)|p · · · | f (n − 2)|p| f (n − 1)|pV (n0)

≤ | f (n − 2)|p| f (n − 1)|pV (n0) ≤ V (n0)

(n − 1)p
(13)

for n ≥ n0 + 2, and
V (n) ≤ V (n0) (14)

for n ≥ n0.
First, we prove uniform attractivity by using Lemma 1. Let γ0 = 1. For every

0 < ρ ≤ 1, we choose

M(ρ) = min

{
n ∈ N

∣∣∣ 1
ρ

+ 1 ≤ n

}
≥ 2.

We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (11) with n0 ∈ N0

and ‖(x0, φp∗(y0))‖p < γ0 = 1. From (13) and ‖(x0, φp∗(y0))‖p = V 1/p(n0), we
have

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p <
1

n − 1
≤ 1

n0 + M(ρ) − 1
≤ ρ
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Fig. 1 A solution orbit of
system (11) with p = 3/2
and an initial data
(n0, (x0, y0)) =
(0, (1, 0.8)).

for all n ≥ n0 + M(ρ) and n ∈ N0. Thus, Lemma 1 implies that the zero solution of
(11) is uniformly attractive.

Next, we prove uniform stability by using Lemma 2. For every ρ > 0, we choose
γ (ρ) = ρ. We consider the solution (x(n; n0, x0, y0), y(n; n0, x0, y0)) of (11) with
n0 ∈ N0 and ‖(x0, φp∗(y0))‖p < γ (ρ) = ρ. From (14) and ‖(x0, φp∗(y0))‖p =
V 1/p(n0), we have

‖(x(n; n0, x0, y0), φp∗(y(n; n0, x0, y0)))‖p < ρ

for all n ≥ n0 and n ∈ N0. Thus, Lemma 2 implies that the zero solution of (11)
is uniformly stable, and therefore, the zero solution of (11) is uniformly asymptot-
ically stable. Using Theorem 1, we can conclude that the zero solution of (11) is
exponentially stable.

Finally, to illustrate our example, we present a simulation. In Fig. 1, we draw a
solution orbit of (11) with p = 3/2 starting from the point (0, (1, 0.8)) ∈ N0 × R

2.
This solution tends to the zero solution exponentially.
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A Corollary of a Theorem on Positive
Solutions of Poincaré Difference Equations

Mihály Pituk

Abstract It is known that the exponential growth rate of every positive solution of
a Poincaré difference equation is a nonnegative eigenvalue of the limiting equation
with a positive eigenvector. In this note we show how this discrete result implies its
continuous counterpart.

Keywords Poincaré difference equation · Growth rate · Cone positivity · Ordinary
differential equation · Lyapunov exponent

1 Introduction and Main Result

Let Z, Z+, R and R
+ denote the set of integers, the set of nonnegative integers, the

set of real numbers and the set of nonnegative real numbers, respectively. Given a
positive integer k, Rk denotes the k-dimensional space of real column vectors with
any norm ‖ · ‖. As usual, the symbol Rk×k denotes the space of k × k matrices with
real entries. The induced norm of a matrix A ∈ R

k×k is defined by

‖A‖ = sup
0 �=x∈Rk

‖Ax‖
‖x‖ .

A set K is said to be a cone in Rk if all three conditions below hold.

(i) K is a nonempty, convex and closed subset of Rk ,
(ii) t K ⊂ K for all t ≥ 0, where t K = {t x | x ∈ K },
(iii) K ∩ (−K ) = {0}, where −K = {−x | x ∈ K }.
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Each cone K induces a partial ordering≤K inRk by x ≤K y if and only if y − x ∈ K .
A vector x ∈ R

k is called K-nonnegative if 0 ≤K x .We say that x ∈ R
k is K-positive

if 0 ≤K x and x �= 0. Thus, x ∈ R
k is K -positive if and only if x ∈ K \ {0}.

Consider the Poincaré difference equation

x(n + 1) = (A + B(n))x(n), n ∈ Z
+, (1)

where A ∈ R
k×k and B : Z+ → R

k×k satisfies

B(n) → 0, n → ∞. (2)

A solution x : Z+ → R
k of (1) is called nonvanishing if x(n) �= 0 for all n ∈ Z

+.
According to a Perron type theorem [9], if (2) holds and x is a nonvanishing solution
of (1), then the limit

ρ(x) = lim
n→∞

n
√‖x(n)‖ (3)

exists and is equal to one of the modulus of eigenvalues of A. The quantity ρ(x) is
called the exponential growth rate of the solution x . Its logarithm is the Lyapunov
exponent. For further related results, see [4, 7].

Let K be a cone in R
k . A solution x : Z+ → R

k of (1) is called K -positive if
x(n) is K -positive for all n ∈ Z

+. In [8] we have shown the following improvement
of the Perron type theorem for the K -positive solutions of (1).

Theorem 1 Suppose (2) holds and let K be a cone inRk . If x is a K -positive solution
of (1), then its exponential growth rate ρ(x) is a nonnegative eigenvalue of A with
a K -positive eigenvector.

The aim of the present note is to show how Theorem 1 can be used to prove its
counterpart for the ordinary differential equation

y′ = (C + D(t))y, t ∈ R
+, (4)

where C ∈ R
k×k and D : R+ → R

k×k is a continuous matrix function satisfying

D(t) → 0, t → ∞, (5)

or, more generally, ∫ t+1

t
‖D(s)‖ ds → 0, t → ∞. (6)

It is known that if (6) holds and y is a nontrivial solution of (4), then the limit

λ(y) = lim
t→∞

log ‖y(t)‖
t

(7)
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exists and is equal to the real part of one of the eigenvalues of C (see Theorem 5 in
Chapter IV of [2]). The quantity λ(y) is called the strict Lyapunov exponent of y.
For further related results, see [6, 10].

Let K be a cone inRk . A solution y : R+ → R
k of (4) is called K -positive if y(t)

is K -positive for all t ∈ R
+. Our main result is the following analogue of Theorem 1

for the K -positive solutions of (4).

Theorem 2 Suppose (6) holds and let K be a cone in R
k . If y is a K -positive

solution of (4), then its strict Lyapunov exponent λ(y) is a real eigenvalue of C with
a K -positive eigenvector.

In the special case when K is the nonnegative orthant in R
k , the conclusion of

Theorem 2 was proved in [11]. For general results on positive linear systems,
see [1, 5].

2 Proof

The proof of Theorem 2 will be based on the following corollary of Theorem 1 for
the nonhomogeneous difference equation

x(n + 1) = Ax(n) + f (n), n ∈ Z
+, (8)

where A ∈ R
k×k and f : Z+ → R

k .

Proposition 1 Let K be a cone in Rk . If x is a K -positive solution of (8) such that

f (n)

‖x(n)‖ → 0, n → ∞, (9)

then its exponential growth rate ρ(x) is a nonnegative eigenvalue of A with a K -
positive eigenvector.

Proof Since conditions (3) and (9) are independent of the norm used we may (and
do) consider the Euclidean norm. It is easily seen that under the hypotheses of the
proposition x is a K -positive solution of (1) with

B(n) = f (n)[x(n)]T
‖x(n)‖2 , n ∈ Z

+,

where T denotes the transpose. It is easily shown that

‖B(n)‖ = ‖ f (n)‖
‖x(n)‖ , n ∈ Z

+.

Therefore (9) implies (2) and the conclusion follows from Theorem 1. �
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We will also need the following corollary of the Dunford functional calculus
for bounded linear operators [3]. As usual, if M ∈ R

k×k , then σ(M) denotes the
spectrum, the set of eigenvalues, of M .

Proposition 2 For every M ∈ R
k×k and t ∈ R, we have the spectral mapping for-

mula
σ(etM) = etσ(M) = {etλ | λ ∈ σ(M)}. (10)

Now we are in a position to give a proof of Theorem 2.

Proof Let h ∈ (0, 1) be fixed. By the variation of constants formula, we obtain for
n ∈ Z

+ and s ≥ nh,

y(s) = eC(s−nh)y(nh) +
∫ s

nh
eC(s−u)D(u)y(u) du (11)

and hence

‖y(s)‖ ≤ e‖C‖(s−nh)‖y(nh)‖ +
∫ s

nh
e‖C‖(s−u)‖D(u)‖‖y(u)‖ du.

From this, we find for n ∈ Z
+ and s ≥ nh,

e−‖C‖s‖y(s)‖ ≤ e−‖C‖nh‖y(nh)‖ +
∫ s

nh
‖D(u)‖e−‖C‖u‖y(u)‖ du.

By Gronwall’s lemma, we obtain for n ∈ Z
+ and s ≥ nh,

e−‖C‖s‖y(s)‖ ≤ e−‖C‖nh‖y(nh)‖ exp
(∫ s

nh
‖D(u)‖ du

)

and hence

‖y(s)‖ ≤ e‖C‖(s−nh)‖y(nh)‖ exp
(∫ s

nh
‖D(u)‖ du

)
.

From this and (6), we obtain

‖y(s)‖ ≤ L‖y(nh)‖ whenever n ∈ Z
+ and s ∈ [nh, (n + 1)h], (12)

where

L = e‖C‖h exp
(
sup
t≥0

∫ t+1

t
‖D(u)‖ du

)
< ∞.

Writing s = (n + 1)h in (11), we obtain for n ∈ Z
+,

y((n + 1)h) = eCh y(nh) + g(nh), (13)
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where

g(t) =
∫ t+h

t
eC(t+h−u)D(u)y(u) du, t ∈ R

+.

From (12), we find for n ∈ Z
+,

‖g(nh)‖ ≤
∫ (n+1)h

nh
e‖C‖((n+1)h−u)‖D(u)‖‖y(u)‖ du

≤ e‖C‖h L
∫ (n+1)h

nh
‖D(u)‖‖y(nh)‖ du.

This, together with (6), implies

‖g(nh)‖
‖y(nh)‖ ≤ e‖C‖h L

∫ (n+1)h

nh
‖D(u)‖ du → 0, n → ∞. (14)

If we let
x(n) = y(nh), n ∈ Z

+,

and
f (n) = g(nh), n ∈ Z

+,

then (13) implies that x is a K -positive solution of (8) with A = eCh . Since (14)
implies (9), we can apply Proposition 1. Therefore the limit

ρ(h) = lim
n→∞

n
√‖y(nh)‖ (15)

is an eigenvalue of A = eCh with a K -positive eigenvector v(h). In view of the cone
property (ii), we may (and do) assume that ‖v(h)‖ = 1. By Proposition 2, we have

ρ(h) = ehλ(h) for some λ(h) ∈ σ(C). (16)

Hence
eChv(h) = ehλ(h)v(h). (17)

Take a sequence h j ∈ (0, 1) such that h j → 0 as j → ∞. Since the sequences
{λ(h j )} and {v(h j )} are bounded, there exists a subsequence {h ji } of {h j } such that
the limits

λ = lim
i→∞ λ(h ji ) (18)

and
v = lim

i→∞ v(h ji ) (19)
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exist and are finite. Since K is a closed set, the limit vector v belongs to K . From this
and the fact that ‖v‖ = 1, it follows that v is K -positive. Since σ(C) is a finite set,
(18) implies that λ(h ji ) = λ for all large i . This, together with (16) and (17), implies
for all large i ,

ρ(h ji ) = eλh ji (20)

and
eCh ji v(h ji ) = eλh ji v(h ji ) (21)

and hence
eCh ji − I

h ji

v(h ji ) = eλh ji − 1

h ji

v(h ji ).

From this, letting i → ∞ and taking into account that h ji → 0 as i → ∞, we find
that

Cv = λv.

Thus, λ is a real eigenvalue of C . Choose h ji such that (20) holds. From (15) and
(20), we find that

λ(y) = lim
t→∞

log ‖y(t)‖
t

= lim
n→∞

log ‖y(nh ji )‖
nh ji

= 1

h ji

lim
n→∞ log n

√‖y(nh ji )‖

= 1

h ji

log lim
n→∞

n
√‖y(nh ji )‖ = 1

h ji

log ρ(h ji ) = 1

h ji

log eλh ji = λ.

Thus, λ(y) is a real eigenvalue of C and v is a corresponding K -positive
eigenvector. �
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The Case for Large Contraction
in Functional Difference Equations

Youssef N. Raffoul

Abstract In this notewe review someof the latest researchon the qualitative analysis
of solutions of difference equations using fixed point theory and Lyapunov function-
als. It turns out that the use of fixed point theory alleviates some of the difficulties that
arise from the use of Lyapunov functionals. Using fixed point theory requires us to
find amapping from suitable spaces that is a solution of the given difference equation.
Once the suitable mapping is constructed there will be many fixed pint theorems to
use, depending on the given equation, that yield a fixed point of that mapping and
satisfies our initial value problem. In some cases a regular contraction argument will
not be suitable and hence we replace it with what we call Large Contraction.

Keywords Large Contraction · Fixed point theory · Lyapunov functionals

1 Introduction

Most of real life applications are modeled by nonlinear systems for which implicit
solutions can not be explicitly stated. This necessitates the qualitative analysis of such
systems and in particular the study of how solutions behave with time. Biologists are
interested in solutions remaining bounded and the exhibition of periodic behavior of
solutions. For example, in [13] it is shown that there is a direct connection between
boundedness of solutions and for solutions to exhibit a periodic behavior. In the paper
[5] the authors considered a dynamical system and proved ultimate boundedness
implied periodicity provided given functions are periodic. In addition, in the papers
[10]–[12], the author used the notions of Lyapunov functionals and fixed point theory
and obtained necessary conditions for the boundedness and ultimate boundedness
and the existence of periodic solutions of functional difference equations of the form

x(n + 1) = G(n, x(s); 0 ≤ s ≤ n)
def= G(n, x(·)) (1)
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whereG : Z+ × R
k → R

k is continuous in x .During our analysis of (1), we encoun-
tered endless difficulties due to the pair of inequalities

W1(|x(n)|) ≤ V (n, x(·)) ≤ W2(|x(n)|) (2)

and

�V (n, x(·)) ≤ −ρW3(|x(n)|) + K (3)

for some constants ρ and K ≥ 0.
In the past hundred and fifty years, Lyapunov functions/functionals have been

exclusively and successfully used in the study of stability and existence of peri-
odic and bounded solutions. This author has extensively used Lyapunov func-
tions/functionals for the purpose of analyzing solutions of functional equations and
each time the suitable Lyapunov functional presented us with unique difficulties that
could only overcome by the imposition of severe conditions on the given coefficients.
In practice, Lyspunov direct method requires pointwise conditions, while as so many
real-life problems call for averages. Moreover, it is rare that we encounter a problem
for which a suitable Lyapunov functional can be easily constructed. It is common
knowledge among researchers that stability and boundedness results go hand in hand
with the type of the Lyapunov functional that was used. To illustrate our concern, we
consider the delay difference equation

x(t + 1) = b(t)x(t) + a(t)x(t − τ) + p(t), t ∈ Z, (4)

where a, b, p : Z → R, τ is a positive integer, and assume the strong condition

|b(t)| < 1, for all t ∈ Z. (5)

For more on recent results regarding stability in difference equations we refer the
reader to [2–4, 6, 8, 9, 14–16]. For the sake of completeness, we assume that there
is a δ > 0 such that

|b(t)| + δ < 1, (6)

and

|a(t)| ≤ δ, and |p(t)| ≤ K , for some positive constant K . (7)

Then all solutions of (4) are bounded. To see this we consider the Lyapunov function

V (t, x(·)) = |x(t)| + δ

t−1∑

s=t−τ

|x(s)|.
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Then along solutions of (4) we have

�V = |x(t + 1)| − |x(t)| + δ

t∑

s=t+1−τ

|x(s)| − δ

t−1∑

s=t−τ

|x(s)|

≤ |b(t)||x(t)| − |x(t)| + |a(t)||x(t − τ)| + δ

t∑

s=t+1−τ

|x(s)| − δ

t−1∑

s=t−τ

|x(s)| + |p(t)|

= (|b(t)| + δ − 1
)|x(t)| + (|a(t)| − δ

)|x(t − τ)| + |p(t)|
≤ (|b(t)| + δ − 1

)|x(t)| + |p(t)|
≤ −γ |x(t)| + |p(t)|, for some positive constant γ.

It follows from the above pairs of inequalities in (2), (3) and of [12] that all solutions
of (4) are bounded. It is evident conditions (5) and (6) are somewhat strong.

In this paper we use fixed point theory that will requires us to find a mapping from
suitable spaces that is a solution of the given difference equation. Once the suitable
mapping is constructed there will be many fixed pint theorems to use (depending
on conditions) that yield a fixed point of that mapping and satisfies our initial value
problem. As we shall see later, in some cases a regular contraction argument will not
be suitable and hence we replace it with what we call Large Contraction. However,
a general care must be taken when formulating the required mapping. For example,
we consider the initial value problem

�x(t) = g(t, x(t)), x(t0) = x0, (8)

where g : Z × R
k → R

k is continuous in x . The question is, how can we show
solutions of (8) are bounded. One would pick the set S as follows: for a given
(t0, x0) ∈ Z × R

k , let S be the set of functions φ : Z → R
k, which are bounded and

satisfy φ(t0) = x0. Next, we must select an appropriate mapping. If we try to write

(
Pφ

)
(t) = x0 +

t−1∑

s=t0

g(s, φ(s)),

then we instantly have difficulties. Suppose φ ∈ S, then there is no way of arriving
at

(
Pφ

)
is bounded. That mapping will map a given bounded function φ right out of

the set and there is no way of proving that there is a fixed point.
Let g(t, x) = Ax + f (t, x), where A is a k × k real constant matrix with all its

eigenvalues residing inside the unit circle and f : Z × R
k → R

k is continuous in x
and bounded for bounded x . Now we assume the function f satisfies a Lipschitz
condition. That is, there exists a positive constant L such that

| f (t, x) − f (t, y)| ≤ L|x − y| (9)
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for t ∈ Z and x, y ∈ R
k .For a given (t0, x0) ∈ Z × R

k , by the variation of parameters,
we have that for t ≥ t0

x(t) = At−t0x0 +
t−1∑

s=t0

At−s−1 f (s, x(s)). (10)

Then x(t) given by (10) is a solution of

x(t + 1) = Ax(t) + f (t, x(t)), x(t0) = x0,

see [3] or [15].
Let (S, ‖ · ‖) be a complete metric space of bounded sequences φ : Z → R

k with
the maximum metric and satisfying φ(t0) = x0. By the assumption on A we can
find positive constants l and η ∈ (0, 1) such that |At | ≤ lηt , for t ≥ 0. Define the
mapping P using (10). As f (t, x) is bounded for bounded x , it is easy to show that
P : S → S. Moreover, for φ1, φ2 ∈ S we have that

|(Pφ1)(t) − (Pφ2)(t)| ≤
t−1∑

s=t0

Llηt−s−1|φ1(s) − φ2(s)| ≤ l L

1 − η
‖φ1 − φ2‖,

a contraction provided l L/(1 − η) < 1. Hence, we have a unique fixed point φ,
bounded and solution of our problem.

The reader should have been suspicious about the fact that we may easily create
a linear term in g(t, x) as the next example shows that this maybe a naive approach
and may not work for all functions g(t, x). Asking that g(t, x) = Ax + f (t, x) is
not much of an assumption since we can write

x(t + 1) = Ax(t) + g(t, x(t)) − Ax(t).

As we have seen, we had to ask for f (t, x) to satisfy (at least a local) contraction
condition. Now, suppose our equation is scalar and that

x(t + 1) = −x(t)3 + h(t, x(t)),

where h(t, x) satisfies a bound condition for bounded x . We put our equation in the
form

x(t + 1) = −x(t) + (x(t) − x(t)3) + h(t, x(t)),

and by the variations of parameters formula we arrive at

x(t) = (−1)t x0 +
t−1∑

s=t0

(−1)t−s−1{x(s) − x(s)3 + h(s, x(s))}. (11)
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In showing (11) define a contraction mapping, we encounter that for x2 + y2 ≤ 1/2,

|x − x3 − y + y3| ≤ |x − y|
(
1 − x2 + y2

2

)

and the contraction constant tends to one as x2 + y2 → 0.
As a consequence, the regular contraction mapping principle failed to produce

any results. In the next section, we define a new concept on contraction, called Large
Contraction and prove a parallel result to the Contraction Mapping Principle. Then
based on the notion of Large Contraction, we introduce two theorems, in which Large
Contraction is used in place of regular contraction.

2 Large Contraction; Boundedness

We begin this section by introducing the concept of Large Contraction.

Definition 1 Let (M , d) be a metric space and B : M → M . The map B is said
to be large contraction if φ, ϕ ∈ M , with φ �= ϕ then d(Bφ, Bϕ) ≤ d(φ, ϕ) and if
for all ε > 0, there exists a δ ∈ (0, 1) such that

[φ, ϕ ∈ M , d(φ, ϕ) ≥ ε] ⇒ d(Bφ, Bϕ) ≤ δd(φ, ϕ).

The next theorems are alternative to the regular Contraction Mapping Principle,
and, Krasnoselskii fixed point theorem in which we substitute Large Contraction for
regular contraction. The proofs of the two theorems and the statement of Definition
1 can be found in [1].

Theorem 1 Let (M , ρ) be a complete metric space and B be a large contraction.
Suppose there are an x ∈ M and an L > 0 such that ρ(x, Bnx) ≤ L for all n ≥ 1.
Then B has a unique fixed point inM .

Theorem 2 Let M be a bounded convex nonempty subset of a Banach space
(B, ‖ · ‖). Suppose that A and B map M into B such that

i. x, y ∈ M implies Ax + By ∈ M ;
ii. A is compact and continuous;
iii. B is a large contraction mapping.

Then there exists z ∈ M with z = Az + Bz.

Next, we consider the completely nonlinear difference equation

x(t + 1) = a(t)x(t)5 + p(t), (12)
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where a, p : Z → R. To invert our equation, we create a linear term by letting

H(x) = −x + x5. (13)

It would become clearer later on that Hx is not a contraction and as a consequence
the Contraction Mapping Principle can not be used. Instead, we will show that H is
a Large Contraction and hence our mapping, to be constructed, will define a Large
Contraction. Then we use Theorem 1 and show that solutions of (12) are bounded.
This allows us to rewrite (12) in the form

x(t + 1) − a(t)x(t) = a(t)H(x(t)) + p(t). (14)

Let x(0) = x0, then by the variation of parameters formula, one can easily show that
for t ≥ 0, x(t) is a solution of (14) if and only if

x(t) = x0

t−1∏

s=0

a(s) +
t−1∑

s=0

(
a(s)H(x(s))

t−1∏

u=s+1

a(u)
)

+
t−1∑

s=0

(
p(s)

t−1∏

u=s+1

a(u)
)
.

(15)
We begin with the following lemma.

Lemma 1 Let ‖ · ‖ denote the maximum norm. If

M = {
φ : Z → R | φ(0) = φ0, and ‖φ‖ ≤ 5−1/4

}
,

then the mapping H defined by (13) is a large contraction on the set M.

Proof For any reals a and b we have the following inequalities

0 ≤ (a + b)4 = a4 + b4 + ab(4a2 + 6ab + 4b2),

and

−ab(a2 + ab + b2) ≤ a4 + b4

4
+ a2b2

2
≤ a4 + b4

2
.

If x, y ∈ M with x �= y, then x(t)4 + y(t)4 < 1. Hence, we arrive at

|H(u) − H(v)| ≤ |u − v|
∣∣∣∣1 −

(
u5 − v5

u − v

)∣∣∣∣

= |u − v| {1 − u4 − v4 − uv(u2 + uv + v2)
}

≤ |u − v|
{
1 −

(
u4 + v4

)

2

}
≤ |u − v|, (16)
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where we use the notations u = x(t) and v = y(t) for brevity. Now, we are ready to
show that H is a large contraction on M. For a given ε ∈ (0, 1), suppose x, y ∈ M

with ‖x − y‖ ≥ ε. There are two cases:

a.
ε

2
≤ |x(t) − y(t)| for some t ∈ Z,

or
b.

|x(t) − y(t)| ≤ ε

2
for some t ∈ Z.

If ε/2 ≤ |x(t) − y(t)| for some t ∈ Z, then

(ε/2)4 ≤ |x(t) − y(t)|4 ≤ 8(x(t)4 + y(t)4),

or

x(t)4 + y(t)4 ≥ ε4

27
.

For all such t , we get by (16) that

|H(x(t)) − H(y(t))| ≤ |x(t) − y(t)|
(
1 − ε4

27

)
.

On the other hand, if |x(t) − y(t)| ≤ ε/2 for some t ∈ Z, then along with (16) we
find

|H(x(t)) − H(y(t))| ≤ |x(t) − y(t)| ≤ 1

2
‖x − y‖.

Hence, in both cases we have

|H(x(t)) − H(y(t))| ≤ min

{
1 − ε4

27
,
1

2

}
‖x − y‖.

Thus, H is a large contraction on the set M with δ = min
{
1 − ε4/27, 1/2

}
. The

proof is complete. 	

Remark 1 It is clear from inequality (16) that (u4 + v4)/2 → 0, the contraction
constant approaches one. Hence, Hx does not define a contraction mapping as we
have claimed before.

For ψ ∈ M, we define the map B : M → M by

(Bψ)(t) = ψ0

t−1∏

s=0

a(s) +
t−1∑

s=0

(
a(s)H(ψ(s))

t−1∏

u=s+1

a(u)
)

+
t−1∑

s=0

(
p(s)

t−1∏

u=s+1

a(u)
)
.

(17)
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Lemma 2 Assume for all t ∈ Z

|ψ0|
∣∣∣
t−1∏

s=0

a(s)
∣∣∣ + 4(5−5/4)

t−1∑

s=0

∣∣∣
t−1∏

u=s

a(u)

∣∣∣ +
t−1∑

s=0

(∣∣∣p(s)
t−1∏

u=s+1

a(u)

∣∣∣
)

≤ 5−1/4.

(18)

If H is a large contraction onM, then so is the mapping B.

Proof It is easy to see that

|H(x(t))| = |x(t) − x(t)5| ≤ 4(5−5/4) for all x ∈ M.

By Lemma 1 H is a large contraction on M. Hence, for x, y ∈ M with x �= y, we
have ‖Hx − Hy‖ ≤ ‖x − y‖. Hence,

|Bx(t) − By(t)| ≤
t−1∑

s=0

|H(x(s)) − H(y(s))|
∣∣∣
t−1∏

u=s

a(u)

∣∣∣

≤ 4(5−5/4)

t−1∑

s=0

∣∣∣
t−1∏

u=s

a(u)

∣∣∣‖x − y‖

= ‖x − y‖.

Takingmaximumnormover the set [0,∞), we get that‖Bx − By‖ ≤ ‖x − y‖. Now,
from the proof of Lemma 1, for a given ε ∈ (0, 1), suppose x, y ∈ Mwith ‖x − y‖ ≥
ε. Then δ = min

{
1 − ε4/27, 1/2

}
,which implies that 0 < δ < 1.Hence, for all such

ε > 0 we know that

[x, y ∈ M, ‖x − y‖ ≥ ε] ⇒ ‖Hx − Hy‖ ≤ δ‖x − y‖.

Therefore, using (18), one easily verify that

‖Bx − By‖ ≤ δ‖x − y‖.

The proof is complete. 	

We arrive at the following theorem in which we prove boundedness.

Theorem 3 Assume (18). Then (14) has a unique solution in M which is bounded.

Proof (M, ‖ · ‖) is a complete metric space of bounded sequences. For ψ ∈ M we
must show that (Bψ)(t) ∈ M. From (17) and the fact that

|H(x(t))| = |x(t) − x(t)5| ≤ 4(5−5/4) for all x ∈ M,



The Case for Large Contraction in Functional Difference Equations 215

we have

|(Bψ)(t)| ≤ |ψ0|
∣∣∣
t−1∏

s=0

a(s)
∣∣∣ + 4(5−5/4)

t−1∑

s=0

∣∣∣
t−1∏

u=s

a(u)

∣∣∣ +
t−1∑

s=0

(∣∣∣p(s)
t−1∏

u=s+1

a(u)

∣∣∣
)

≤ 5−1/4.

This shows that (Bψ)(t) ∈ M. Lemma 2 implies the map B is a large contraction
and hence by Theorem 1, the map B has a unique fixed point inMwhich is a solution
of (14). This completes the proof. 	


3 Large Contraction; Periodicity

In this section, we use Theorem2 and prove the existence of a periodic solution of
the nonlinear delay difference equation

x(t + 1) = a(t)x(t)5 + G(t, x(t − r)) + p(t), t ∈ Z, (19)

where r is a positive integer and

a(t + T ) = a(t), p(t + T ) = p(t), and G(t + T, ·) = G(t, ·) (20)

and T is the least positive integer for which these hold. As before, for the sake of
inversion, we rewrite (19) as

x(t + 1) − a(t)x(t) = a(t)H(x(t)) + G(t, x(t − r)) + p(t), (21)

where
H(x) = −x + x5. (22)

For more on periodic solutions in difference equations, we refer the reader to [10],
[11], and [14] and the references therein. We begin with the following Lemma which
we omit its proof.

Lemma 3 Suppose that 1 − ∏t−1
s=t−T a(s) �= 0 for all t ∈ Z. Then x(t) is a solution

of (21) if and only if

x(t) =
(
1 −

t−1∏

s=t−T

a(s)
)−1 t−1∑

u=t−T

(
a(u)H(x(u)) + G(t, x(u − r)) + p(u)

) t−1∏

s=u+1

a(s).

Let PT be the set of all sequences x(t), periodic in t of period T . Then (PT , ‖ · ‖)
is a Banach space when it is endowed with the maximum norm



216 Y.N. Raffoul

‖x‖ = max
t∈Z

|x(t)| = max
t∈[0,T−1] |x(t)|.

Set
M = {ϕ ∈ PT : ‖ϕ‖ ≤ 5−1/4}. (23)

Obviously, M is bounded and convex subset of the Banach space PT . Let the map
A : M → PT be defined by

(Aϕ)(t) =
(
1 −

t−1∏

s=t−T

a(s)
)−1 t−1∑

u=t−T

(G(t, ϕ(u − r)) + p(u))

t−1∏

s=u+1

a(s), t ∈ Z.

(24)
In a similar way, we set the map B : M → PT by

(Bψ)(t) =
(
1 −

t−1∏

s=t−T

a(s)
)−1 t−1∑

u=t−T

(
a(u)H(ψ(u))

) t−1∏

s=u+1

a(s), t ∈ Z. (25)

It is clear from (24) and (25) that Aϕ and Bψ are T -periodic in t .
For simplicity we let

η :=
∣∣∣
(
1 −

t−1∏

s=t−T

a(s)
)−1∣∣∣.

Let

G(u, ψ(u − r)) = b(u)ψ(u − r)5. (26)

For x ∈ M, we have
|x(t)|5 ≤ 5−5/4,

and therefore,

G(u, x(u − r)) + p(u) = b(u)x(u − r)5 + p(u)

≤ 5−5/4|b(u)| + |p(u)| (27)

and

|H(x(t))| = |x(t) − x(t)5| ≤ 4(5−5/4) for all x ∈ M.

We have the following theorem.
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Theorem 4 Suppose G(u, ψ(u − r)) is given by (26). Assume for all t ∈ Z

η

t−1∑

u=t−T

(
5−5/4|b(u)| + |p(u)| + 4(5−5/4)|a(u)|

)∣∣∣
t−1∏

u=s+1

a(u)

∣∣∣ ≤ 5−1/4. (28)

Then (19) has a periodic solution.

Proof Using condition (28) and by a similar argument as in Lemma 2, one can easily
show that B is a large contraction since H is a large contraction. Also, the map A
is continuous and maps bounded sets into compact sets and hence it is compact.
Moreover, for ϕ,ψ ∈ M, we have by (28) that

Aϕ + Bψ : M → M.

Hence an application of Theorem 2 implies the existence of a periodic solution in
M. This completes the proof. 	
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Reaching Consensus via Polynomial
Stochastic Operators: A General Study

Mansoor Saburov and Khikmat Saburov

Abstract In this paper, we consider a nonlinear protocol for a structured time-
varying synchronous multi-agent system in which an opinion sharing dynamics is
presented by non-autonomous polynomial stochastic operators associated with high-
order stochastic hyper-matrices. We show that the proposed nonlinear protocol gen-
erates the Krause mean process. We provide a criterion to establish a consensus in
the multi-agent system under the proposed nonlinear protocol.

Keywords Krause mean process · Markov chain with memory · Stochastic
hyper-matrices · Polynomial stochastic operators · Consensus

1 Introduction

In the classical case, an opinion sharing dynamics of a structured time-varying syn-
chronous multi-agent system is presented by the backward product of square sto-
chastic matrices meanwhile a non-homogeneous Markov chain is presented by the
forward product of square stochastic matrices. Therefore, the consensus in the multi-
agent system and the ergodicity of theMarkov chain are dual problems to each other.
A more general model of the opinion sharing dynamics is the Krause mean process
whereas the Markov chain with memory (or the nonlinear Markov chain) is a gen-
eral model of the Markov chain. In this paper, we study a correlation between the
Markov chains with memory (the nonlinear Markov chains) and the Krause mean
processes. The reader may refer to the monographs [11, 12] for the great exposition
of the Krause mean processes and the nonlinear Markov chains. A polynomial sto-

M. Saburov (B)
Faculty of Science, International Islamic University Malaysia,
25200 Kuantan, Pahang, Malaysia
e-mail: msaburov@gmail.com

K. Saburov
Mathematical Modeling Lab, MIMOS BERHAD, Technology Park Malaysia,
57000 Kuala Lumpur, Malaysia
e-mail: khikmat.saburov@mimos.my

© Springer Nature Singapore Pte Ltd. 2017
S. Elaydi et al. (eds.), Advances in Difference Equations and Discrete
Dynamical Systems, Springer Proceedings in Mathematics & Statistics 212,
DOI 10.1007/978-981-10-6409-8_14

219



220 M. Saburov and K. Saburov

chastic operator is the simplest nonlinear Markov operator. Unlike linear stochastic
operators, the structure of a set of all fixed points (stationary distributions) of poly-
nomial stochastic operators (the Markov chains with memory) might be as complex
as possible (see [16, 21]). In general, the analogy of the classical Perron–Frobenius
theorem does not hold for polynomial stochastic operators associated with positive
high-order stochastic hyper-matrix (see [16, 21]). However, under some extra condi-
tions, the ergodicity of nonlinear Markov operators (polynomial stochastic operators
associated with stochastic hyper-matrices) acting on the finite dimensional space has
been studied in the paper [16]. In this paper, by exploring the same techniques, we
are aiming to establish a consensus in the multi-agent system in which an opinion
sharing dynamics is presented by non-autonomous polynomial stochastic operators
associated with high-order stochastic hyper-matrices. We also show that the pro-
posed nonlinear protocol generates the Krause mean process. It is worth mentioning
that, in general, the Krause mean process eventually reaches to a consensus if and
only if it eventually shrinks at some point (see [8–11]). In this paper, we improve
Krause’s result (see [8, 9]) in the special case where the mean process generates by
non-autonomous polynomial stochastic operators associated with triply stochastic
hyper-matrices. This is the novelty of the paper.

It is also worth mentioning that there are a lot of very recent researches on this
topic done in time scale calculus, fractional calculus (see [14]).

2 A General Model of Opinion Dynamics

Opinion dynamics is the formation of opinions in a group of interacting individuals
(decision units) so-called agents. Opinions could be assessments made by the agents
of certain magnitudes as, for example, prices of goods or probabilities of events, in
which they can be represented by nonnegative real numbers. In more complex cases
opinions might be better modeled by vectors or more general mathematical objects
(see [11]). The main problem is to find some conditions in which the opinions of
all the agents converge to a common value. This is called a consensus among the
agents. The quest for consensus depends very much on the structure of interaction
among the agents. We first review a general model of opinion sharing dynamics of
the multi-agent system presented in [5] which encompasses all classical models of
opinion sharing dynamics [2–4].

Consider a group of m individuals [m] = {1, 2, · · · ,m} acting together as a team
or committee, each of whom can specify his/her own subjective distribution for some
given task. It is assumed that if the individual i is informed of the distributions of
each of the other members of the group then he/she might wish to revise his/her
subjective distribution to accommodate the information.

Let x(t) = (x1(t), · · · , xm(t))T be the subjective distributions of the multi-agent
system at the time t . Let pi j (t, x(t)) denote the weight that the individual i assigns
to x j (t) when he/she makes the revision at the time t + 1. It was assumed that
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pi j (t, x(t)) ≥ 0 and
m∑

j=1
pi j (t, x(t)) = 1. After being informed of the subjective dis-

tributions of the other members of the group, the individual i revises his/her own

subjective distribution from xi (t) to xi (t + 1) =
m∑

j=1
pi j (t, x(t))x j (t).

Let P (t, x(t)) denote an m × m row-stochastic matrix whose (i j) element is
pi j (t, x(t)). A general model of the structured time-varying synchronous system is
defined as follows

x(t + 1) = P (t, x(t)) x(t). (1)

We may then obtain all classical models [2–5] by choosing suitable row-stochastic
matrices P (t, x(t)).

We say that a consensus is reached in the structured time-varying synchronous
multi-agent system (1) if x(t) converges to c = (c, · · · , c)T as t → ∞. It is worth
mentioning that the consensus c = c(x(0)) might depend on an initial opinion x(0).

A more general model of an opinion sharing dynamics in which opinions are
presented by vectors is called a mean process. The reader may refer to an excellent
monograph written by Krause [11] for a detailed exposition of mean processes.

Let S be a non-empty convex subset of Rd and Sm be the m−fold Cartesian
product of S. A sequence {x(t)}∞t=0 ⊂ Sm, x(t) = (x1(t), · · · , xm(t))T is called the
Krause mean process on Sm if xi (t + 1) ∈ conv{x1(t), · · · , xm(t)} for all 1 ≤ i ≤ m
and for all t = 0, 1, · · · . In other words, a sequence {x(t)}∞t=0 ⊂ Sm is the Krause
mean process if conv{x1(t + 1), · · · , xm(t + 1)} ⊂ conv{x1(t), · · · , xm(t)} for all
t = 0, 1, · · · where conv{A} is a convex hull of a set A. A mapping T : Sm → Sm is
called the Krause mean operator if its trajectory {x(t)}∞t=0, x(t) = T t (x(0)) starting
from any initial point x(0) ∈ Sm generates the Krause mean process on Sm .

It is worth mentioning that the nonlinear model of opinion sharing dynamics
given by (1) is the Krause mean process due to the fact that the action of a stochastic
matrix P = (pi j )mi, j=1 on a vector x = (x1, · · · , xm)T can be viewed as formation of

arithmetic means (Px)i =
m∑

j=1
pi j x j with weights pi j . The various kinds of nonlinear

models of mean processes have been studied in the series of papers [5–10].

3 A Markov Chain with Memory

We know that the mean process and the Markov chain are dual processes to each
other. We now recall some definitions in the theory of Markov chains [22].

Recall that a discrete-timeMarkov chain (or a Markov chain with memory 1) is a
stochastic process with a sequence of random variables {Xt , t = 0, 1, 2 . . .} , which
takes on values in a discrete finite state space [m] = {1, . . . ,m} for a positive integer
m such that
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pi1 j = Pr (Xt+1 = j |Xt = i1, Xt−1 = i2, . . . , X1 = it , X0 = it+1)

= Pr (Xt+1 = j |Xt = i1)

where i1, · · · , ik, · · · , it+1, j ∈ [m] and
m∑

j=1
pi1 j = 1, pi1 j ≥ 0, 1 ≤ i1, j ≤ m.

In other words, the probability of moving to the next state depends only on the
present state and not on the previous states. A stochastic matrix P = (

pi1 j
)m
i1, j=1 is

called one-step transition matrix of the Markov chain.
Let x j (t) = Pr{Xt = j} be the distribution of the state j at time t.The distribution

of the Markov chain at time t is a stochastic vector x(t) = (x1(t), · · · , xm(t))T , i.e.,
m∑

j=1
x j (t) = 1 and x j (t) ≥ 0 for any 1 ≤ j ≤ m. The transition of the distributions

from x(t) to x(t + 1) is then governed by the rule

x j (t + 1) =
m∑

i1=1

pi1 j xi1(t), 1 ≤ j ≤ m.

Let Δm−1 =
{

x ∈ R
m :

m∑

k=1
xk = 1, xk ≥ 0, 1 ≤ k ≤ m

}

be an (m − 1)−
dimensional simplex. A linear operator L : Δm−1 → Δm−1 associated with the sto-
chastic matrix P = (

pi1 j
)m
i1, j=1 as L(x) = xTP, i.e.,

(L(x)) j =
m∑

i1=1

pi1 j xi1 , 1 ≤ j ≤ m (2)

is called a linear Markov operator.
A discrete-time Markov chain with memory k (a k−order Markov chain, see [1,

15]) is a stochastic processwith a sequence of randomvariables {Xt , t = 0, 1, 2 . . .} ,

which takes on values in a discrete finite state space [m] = {1, . . . ,m} for a positive
integer m such that

pi1···ik j = Pr (Xt+1 = j |Xt = i1, Xt−1 = i2, . . . , X1 = it , X0 = it+1)

= Pr (Xt+1 = j |Xt = i1, · · · , Xt−k+1 = ik)

where i1, · · · , ik, · · · , it+1, j ∈ [m] and
m∑

j=1

pi1···ik j = 1, pi1···ik j ≥ 0, 1 ≤ i1, · · · , ik, j ≤ m.

In other words, the probability of moving to the next state depends only on the
past k states (see [1, 15]). If k = 1 then we obtain the classical Markov chain. An



Reaching Consensus via Polynomial Stochastic Operators: A General Study 223

(k + 1)−order m−dimensional stochastic hyper-matrix P = (pi1···ik j )
m,··· ,m,m
i1,··· ,ik , j=1 is

called the one-step transition hyper-matrix of the Markov chain with memory k.
Let x j (t) = Pr{Xt = j} be the distribution of the state j at time t. The dis-

tribution of the Markov chain with memory k at time t is a stochastic vector

x(t) = (x1(t), · · · , xm(t))T , i.e.,
m∑

j=1
x j (t) = 1 and x j (t) ≥ 0 for any 1 ≤ j ≤ m.

The transition of the distributions from x(t) to x(t + 1) is then governed by the rule

x j (t + 1) =
∑

1≤i1i2···ik≤m

pi1i2···ik j xi1(t)xi2(t − 1) · · · xik (t − k + 1), 1 ≤ j ≤ m.

A polynomial stochastic operator P : Δm−1 → Δm−1 associated with the (k +
1)−order m−dimensional stochastic hyper-matrix P = (pi1···ik j )

m,··· ,m,m
i1,··· ,ik , j=1

(P(x)) j =
∑

1≤i1···ik≤m

pi1···ik j xi1 · · · xik , 1 ≤ j ≤ m (3)

is called a nonlinearMarkov operator (see [12]). In the case k = 1, we obtain a linear
Markov operator meanwhile in the case k = 2, we obtain a quadratic stochastic
operator which has an incredible application in population genetics (see [13]).

4 Mean Processes Vs Markov Chains with Memory

In this section, we establish some correlation with the Krause mean processes and
Markov chains with memory k. We first introduce some notions and notations.

Definition 1 A (k + 1)−order m−dimensional hyper-matrix P =
(pi1···ik j )

m,··· ,m,m
i1,··· ,ik , j=1 is called stochastic if one has that

m∑

j=1

pi1···ik j = 1, pi1···ik j ≥ 0, 1 ≤ i1, · · · , ik, j ≤ m.

Definition 2 A (k + 1)−order m−dimensional hyper-matrix P =
(pi1···ik j )

m,··· ,m,m
i1,··· ,ik , j=1 is called doubly stochastic if one has that

m∑

ik=1

pi1···ik j =
m∑

j=1

pi1···ik j = 1, pi1···ik j ≥ 0, 1 ≤ i1, · · · , ik, j ≤ m.

Let P = (pi1···ik j )
m,··· ,m,m
i1,··· ,ik j=1 be the (k + 1)−order m−dimensional doubly sto-

chastic hyper-matrix and Pl = (pi1···ik l)
m,··· ,m
i1,··· ,ik=1 be its k−order m−dimensional lth

subhyper-matrix for fixed l. It is clear that Pl = (pi1···ik l)
m,··· ,m
i1,··· ,ik=1 is also stochastic
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hyper-matrix. In the sequel, wewriteP = (P1|P2| · · · |Pm) for the (k + 1)−order
m−dimensional doubly stochastic hyper-matrix.

We define a polynomial stochastic operator P : Δm−1 → Δm−1 associated with
(k + 1)−orderm−dimensional doubly stochastic hyper-matrixP = (P1| · · · |Pm)

as follows

(P(x))l =
m∑

i1=1

· · ·
m∑

ik=1

pi1···ik l xi1 · · · xik , 1 ≤ l ≤ m. (4)

We also define a polynomial stochastic operator Pl : Δm−1 → Δm−1 associated
with the k−orderm−dimensional stochastic hyper-matrixPl = (pi1···ik l)

m,··· ,m
i1,··· ,ik=1 as

(Pl(x)) j =
m∑

i1=1

· · ·
m∑

ik−1=1

pi1···ik−1 jl xi1 · · · xik−1 , 1 ≤ j ≤ m (5)

for all l ∈ [m]. It follows from (4) and (5) that

(P(x))l =
m∑

j=1

(Pl(x)) j x j = (
Pl(x), x

)
, 1 ≤ l ≤ m

where (·, ·) stands for the standard inner product of two vectors.
Therefore, the polynomial stochastic operator P : Δm−1 → Δm−1 given by (4)

can be written as follows

P(x) =
((
P1(x), x

)
, · · · ,

(
Pm(x), x

))T
(6)

where Pl : Δm−1 → Δm−1 is defined by (5) for all l ∈ [m].
We now define an m × m matrix as follows

P(x) =

⎛

⎜
⎜
⎜
⎝

(
P1(x)

)
1

(
P1(x)

)
2 · · · (

P1(x)
)
m(

P2(x)
)
1

(
P2(x)

)
2 · · · (

P2(x)
)
m

...
...

. . .
...(

Pm(x)
)
1

(
Pm(x)

)
2 · · · (

Pm(x)
)
m

⎞

⎟
⎟
⎟
⎠

. (7)

We show that P(x) is doubly stochastic matrix for every x ∈ Δm−1. In fact we
know that P(x) = (

pi j (x)
)m
i, j=1 where

pi j (x) = (
Pi (x)

)
j =

m∑

i1=1

· · ·
m∑

ik−1=1

pi1···ik−1 j i xi1 · · · xik−1 . (8)
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Therefore, we have that

m∑

i=1

pi j (x) =
m∑

i1=1

· · ·
m∑

ik−1=1

(
m∑

i=1

pi1···ik−1 j i

)

xi1 · · · xik−1

=
m∑

i1=1

· · ·
m∑

ik−1=1

xi1 · · · xik−1 = (x1 + · · · + xm)k−1 = 1,

m∑

j=1

pi j (x) =
m∑

i1=1

· · ·
m∑

ik−1=1

⎛

⎝
m∑

j=1

pi1···ik−1 j i

⎞

⎠ xi1 · · · xik−1

=
m∑

i1=1

· · ·
m∑

ik−1=1

xi1 · · · xik−1 = (x1 + · · · + xm)k−1 = 1.

Hence, it follows from (6) and (7) that

P(x) = P(x)x (9)

and we call it a matrix form of the polynomial stochastic operator (4) associated with
the (k + 1)−order m−dimensional doubly stochastic hyper-matrix.

Consequently, we prove the following result.

Proposition 1 A polynomial stochastic operator P : Δm−1 → Δm−1 associated
with (k + 1)−orderm−dimensional doubly stochastic hyper-matrixP = (P1| · · · |
Pm) generates the Krause mean process.

5 Nonlinear Consensus via Polynomial Stochastic
Operators

In this section, we provide a nonlinear protocol of multi-agent systems.

Definition 3 A (k + 1)−order m−dimensional hyper-matrix P =
(pi1···ik j )

m,··· ,m,m
i1,··· ,ik , j=1 is called triply stochastic if one has that

m∑

ik−1=1

pi1···ik−1ik j =
m∑

ik=1

pi1···ik−1ik j =
m∑

j=1

pi1···ik−1ik j = 1, pi1···ik j ≥ 0, i1, · · · , ik , j ∈ [m].

Protocol A. Let {k(n)}∞n=1 be a sequence of natural numbers such that k(n) ≥ 2
for all n ∈ N and {Pn}∞n=1, Pn = (

p(n)
i1···ik(n) j

)m,··· ,m,m

i1,··· ,ik(n), j=1 be a sequence of
(k(n) + 1)−order m−dimensional triply stochastic hyper-matrices. Let {Pn}∞n=1,
Pn : Δm−1 → Δm−1 be a sequence of polynomial stochastic operators associated
with (k(n) + 1)−order m−dimensional triply stochastic hyper-matrices {Pn}∞n=1.
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Suppose that an opinion sharing dynamics of the multi-agent system is generated by
non-autonomous polynomial stochastic operators as follows

x(n+1) = Pn+1
(
x(n)

)
, x(0) ∈ Δm−1 (10)

where x(n) =
(
x (n)
1 , · · · , x (n)

m

)T
is the subjective distribution after n revisions.

Remark 1 Some special cases of Protocol A have been considered in the previous
studies: the case k(n) = 2 for all n ∈ N and {Pn}∞n=1 = {P} in [17, 18]; the case
k(n) = 2 for all n ∈ Nwith any sequence {Pn}∞n=1 in [20]; the case k(n) = k ≥ 2 for
all n ∈ N and {Pn}∞n=1 = {P} in [19]. In this paper, we unify, extend, and generalize
all previous results presented in the papers [17–20].

Definition 4 We say that the multi-agent system presented by Protocol A even-
tually reaches to a consensus if {x(n)}∞n=0 converges to the center c = ( 1

m , · · · , 1
m )T

of the simplex Δm−1 for any x(0) ∈ Δm−1.

We now introduce some notations.
We say that x ≥ 0 (resp. x > 0) if xi ≥ 0 (resp. xi > 0) for all i ∈ [m]. Let

intΔm−1 := {x ∈ Δm−1 : x > 0} be an interior of the simplex Δm−1. Let M(x) =
max
i∈[m] xi , m(x) = min

i∈[m] xi and d(x) = M(x) − m(x) for any x ∈ Δm−1. It is clear that

the functions M(·),m(·), d(·) : Δm−1 → R are continuous and d(x) = 0 if and only
if x = c = ( 1

m , · · · , 1
m )T .

We need the following simple but crucial lemma.

Lemma 1 ([18–20]) A sequence {x(n)}∞n=0 ⊂ Δm−1 converges to the center c =
( 1
m , · · · , 1

m )T of the simplex Δm−1 if and only if lim
n→∞ d

(
x(n)

) = 0.

Let e1, · · · , em be vertices of the simplex Δm−1 and e(n+1)
i = Pn+1

(
e(n)
i

)
with

e(0)
i := ei for all i ∈ [m].
Theorem 1 Suppose that an opinion sharing dynamics of the multi-agent system is
described byProtocol A. Themulti-agent systemeventually reaches to a consensus
if and only if for every i ∈ [m] there exists n(i) ∈ N such that e(n(i))

i > 0.

Proof Only if part: Suppose that the multi-agent system eventually reaches to a
consensus. It particularly means that for every i ∈ [m] the sequence {e(n)

i }∞n=0 con-
verges to the center c = ( 1

m , · · · , 1
m )T of the simplexΔm−1. Since c ∈ intΔm−1, there

exists n(i) ∈ N such that e(n(i))
i > 0 for every i ∈ [m].

If part: Suppose that for every i ∈ [m] there exists n(i) ∈ N such that e(n(i))
i > 0.

We want to show that the sequence {x(n)}∞n=0 defined by (10) starting from any initial
point x(0) ∈ Δm−1 converges to the center c = ( 1

m , · · · , 1
m )T of the simplex Δm−1.

In order to prove it, due to Lemma 1, it is enough to show lim
n→∞ d

(
x(n)

) = 0.
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We shall accomplish it in a few steps.

Step 1: If x(n0) > 0 for some n0 ∈ N then x(n) > 0 for any n > n0.
Indeed, due to Proposition 1, the sequence {x(n)}∞n=0 generates a mean
process. It means that m(x(n0)) ≤ m(x(n)) ≤ M(x(n)) ≤ M(x(n0)) for any
n > n0.Sincem(x(n0)) > 0,we then obtain thatm(x(n)) > 0 for any n > n0.
Therefore, we have that x(n) > 0 for any n > n0.

Step 2: One has that e(n)
i > 0 for any n > n0 and i ∈ [m] where n0 = max

i∈[m] n(i).

Indeed, due to Step 1 and e(n(i))
i > 0 for every i ∈ [m],we have that e(n)

i > 0
for any n > n0 and for any i ∈ [m] where n0 = max

i∈[m] n(i).

Step 3: One has that x(n) > 0 for any n > n0 and x(0) ∈ Δm−1 where n0 = max
i∈[m] n(i).

In order to show it we first prove the following inequality for any x(0) ∈
Δm−1

x(n) ≥ xK(n)1 e(n)
1 + xK(n)2 e(n)

2 + · · · + xK(n)m e(n)
m , n ∈ N (11)

where K(n) = k(1) · k(2) · . . . · k(n) for n ∈ N. Let us first introduce some
necessary notations.
Let MPn : (Rm)×k(n) → R

m be a multi-linear operator associated with
(k(n) + 1)−order m−dimensional stochastic hyper-matrix Pn =(
p(n)
i1···ik(n) j

)m,··· ,m,m

i1,··· ,ik(n), j=1 as follows

MPn

(
y(1), y(2), · · · , y(k(n))

) =
m∑

i1=1

· · ·
m∑

ik(n)=1

y(1)
i1

y(2)
i2

· · · y(k(n))
ik(n)

pi1···ik(n)•

where pi1···ik(n)• = (pi1···ik(n)1, · · · , pi1···ik(n)m) ∈ Δm−1 for any i1, · · · , ik(n) ∈
[m]. It is clear that Pn(x) = MPn (x, x, · · · , x) for any x ∈ Δm−1. More-
over, if x = λ1v1 + · · · + λqvq ∈ Δm−1 with v1, · · · , vq ∈ Δm−1, λ1 +
· · · + λq = 1, and λ1, · · · , λq ≥ 0 then

Pn(x) =
q∑

i1=1

· · ·
q∑

ik(n)=1

λi1 · · · λik(n)
MPn

(
vi1 , · · · , vik(n)

)

= λ
k(n)
1 Pn(v1) + · · · + λk(n)

q Pn(vq) +
+

∑

at least for two
iμ,iν : iμ �=iν

λi1 · · · λik(n)
MPn

(
vi1 , · · · , vik(n)

)
(12)
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Hence, it follows form (12) that

x(1) = P1(x(0)) = xK(1)1 e(1)
1 + xK(1)2 e(1)

2 + · · · + xK(1)m e(1)
m + remaining parts,

x(2) = P2(x(1)) = xK(2)1 e(2)
1 + xK(2)2 e(2)

2 + · · · + xK(2)m e(2)
m + remaining parts,

...

x(n) = Pn(x(n−1)) = xK(n)1 e(n)
1 + xK(n)2 e(n)

2 + · · · + xK(n)m e(n)
m + remaining parts.

Consequently, the last equality yields the inequality (11).
Moreover, it follows from the inequality (11) and e(n)

i > 0 for any n >

n0, i ∈ [m] (see Step 2) that x(n) > 0 for any n > n0 and for any x(0) ∈
Δm−1.

Step 4: One has that lim
n→∞ x(n) = c for any x(0) ∈ Δm−1.

As we already showed that (see Step 3)

0 < m(x(n0)) ≤ m(x(n)) ≤ M(x(n)) ≤ M(x(n0)) < 1 (13)

for any n > n0 and for any x(0) ∈ Δm−1.

We know that

x(n+1) = Pn+1(x(n))x(n)

where Pn+1(x(n)) =
(
p(n+1)
i j (x(n))

)m

i, j=1
with

p(n+1)
i j (x(n)) =

m∑

i1=1

· · ·
m∑

ik(n+1)−1=1

p(n+1)
i1···ik(n+1)−1 j i

x (n)
i1

· · · x (n)
ik(n+1)−1

.

Since
m∑

ik(n+1)−1=1
p(n+1)
i1···ik(n+1)−1 j i

= 1 for any n ∈ N, it follows from (13) that

0 < m
(
x(n0)

) ≤ p(n+1)
i j

(
x(n)

) ≤ M
(
x(n0)

)
< 1

for any i, j ∈ [m] and for any n > n0.
We then obtain from the last inequality that

x (n+1)
i =

m∑

j=1

p(n+1)
i j

(
x(n)

) (
x (n)
j − M

(
x(n)

)) + M
(
x(n)

)

≤ m
(
x(n0)

) (
m

(
x(n)

) − M
(
x(n)

)) + M
(
x(n)

)

= (
1 − m

(
x(n0)

))
M

(
x(n)

) + m
(
x(n0)

)
m

(
x(n)

)
, (14)
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x (n+1)
i =

m∑

j=1

p(n+1)
i j

(
x(n)

) (
x (n)
j − m

(
x(n)

)) + m
(
x(n)

)

≥ m
(
x(n0)

) (
M

(
x(n)

) − m
(
x(n)

)) + m
(
x(n)

)

= m
(
x(n0)

)
M

(
x(n)

) + (
1 − m

(
x(n0)

))
m

(
x(n)

)
(15)

for any i ∈ [m]. Hence, we obtain from (14) and (15) that

d
(
x(n+1)) = M

(
x(n+1)) − m

(
x(n+1))

≤ (
1 − 2m

(
x(n0)

)) (
M

(
x(n)

) − m
(
x(n)

))

= (
1 − 2m

(
x(n0)

))
d

(
x(n)

)
(16)

for any n > n0. Then, it follows from (16) that

d
(
x(n)

) ≤ (
1 − 2m

(
x(n0)

))n−n0 d
(
x(n0)

)
.

Since m
(
x(n0)

)
> 0 and 1 − 2m

(
x(n0)

)
< 1, we get that lim

n→∞ d
(
x(n)

) = 0.

This completes the proof.

Remark 2 LetD : Δm−1 → Δm−1, D(x) = Dx be a linear doubly stochastic oper-
ator associated with a doubly stochastic matrix D. It is well known in the ergodic
theory of Markov chains that a trajectory {x(n)}∞n=0, x(n+1) = D(x(n)) of the linear
doubly stochastic operator starting from any initial point x(0) ∈ Δm−1 converges to
the center c = ( 1

m , · · · , 1
m )T of the simplexΔm−1 if and only if for each i ∈ [m] there

exists n(i) such that e(n(i))
i > 0 where e(n+1)

i = D(e(n)
i ) with e(0)

i := ei . In the similar
spirit, Theorem 1 is an analogy of this result for the nonlinear doubly stochastic
operator associated with the triply stochastic hyper-matrix.

Corollary 1 Suppose that an opinion sharing dynamics of the multi-agent system
is described by Protocol A. If Pn0 > 0 for some n0, i.e., p

(n0)
i1···ik(n0) j

> 0 for any
i1, · · · , ik(n0), j ∈ [m] then themulti-agent system eventually reaches to a consensus.

We provide an example to support our theoretical result.

Example 1 Let m ≥ 3, e = (1, · · · , 1), and {an}∞n=1 ⊂ Δm−1 be a sequence of sto-
chastic vectors. We define a sequence of operators Pn : Δm−1 → Δm−1 as

Pn(x) = an
m∑

i=1

x3i + 3
e − an
m − 1

∑

i< j

(x2i x j + xi x
2
j ) + 6

(m − 3)e + 2an
(m − 1)(m − 2)

∑

i< j<k

xi x j xk .

Obviously, we have that Pn(ei ) = an for any 1 ≤ i ≤ m and Pn(x) ∈ intΔm−1 for
any x /∈ {e1, · · · , em}. Due to Theorem 1, the consensus is established in the system
if and only if there exists n0 ∈ N such that an0 /∈ {e1, · · · , em}. Consequently, if (and
only if) at least one element of the sequence {an}∞n=1 is not the vertex of the simplex
Δm−1 then the consensus is established in the system.
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On the Stability of an SIR Epidemic Discrete
Model

Kaori Saito

Abstract Amathematical epidemic discrete equation, which appears as a model for
the spread of disease-causing, is treated. In this paper, we consider the asymptotic
stability of a discrete SIR epidemic model by using the classical linearizationmethod
and some Liapunov functions.

Keywords SIR epidemic discrete model · Positive equilibrium points ·
Asymptotic stability

1 Introduction and Motivation

Over the last decade a great deal of articles have been devoted to the study of the
dynamics of discrete epidemic models; see, e.g., [1, 2, 4, 7, 10, 11] and references
therein. In this paper, imitating a discrete SIS epidemic model proposed in Jang and
Elaydi’s parer [7] by use of the nonstandard discretization technique of Mickens [8],
we shall consider the following discrete SIR epidemic model

Sn+1 − Sn = b − βSn+1 In − μ1Sn+1,

In+1 − In = βSn In − (μ2 + λ)In+1, (1)

Rn+1 − Rn = λIn − μ3Rn+1, n ≥ 0.

The initial condition of (1) is given by

S0 ≥ 0, I0 ≥ 0 and R0 ≥ 0. (2)

For equation (1), Sn denotes the number of the population susceptible to the disease,
In denotes the number of infectious individual and Rn denotes the number who has
been removed from the possibility of infection through full immunity. It is assumed

K. Saito (B)
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that all newborns are susceptible. μ1, μ2 and μ3 are positive constants. μ1 is the
death rate of the susceptible, μ2 is the death rate of the infective and μ3 is the death
rate of the recovered. It is biologically natural to assume that

μ1 ≤ min{μ2, μ3}. (3)

In addition, the positive constants b and λ represent the birth and death rates of the
population and recovery rate of infectives, respectively. The positive constant β is
the average number of contacts per infective per day. We can show the existence of
a unique positive solution (Sn, In, Rn) of equation (1) with the initial condition (2).

In 1979, for ordinary differential equations, Anderson and May [2] have studied
the asymptotic stability of the following epidemic differential equation

dS(t)

dt
= −βS(s)I (t) − μS(t) + μ,

d I (t)

dt
= βS(t)I (t) − μI (t) − λI (t), (4)

dR(t)

dt
= λI (t) − μR(t), t ≥ 0,

where β, μ and λ are positive constants, and S(t) + I (t) + R(t) = N (t) denotes
the total number of a population at the time t . In [1], it is assumed that N (t) is a
constant, that is N (t) = 1 for all t ≥ 0, and that the birth and death rates of population
are the same values. Recently, Hamaya and Saito [5] have studied the property of
permanence of the solution (S(t, x), I (t, x), R(t, x)) of partial differential equations
with diffusion.

The purpose of this paper is to investigate the property of permanence and global
asymptotic stability of solutions of equation (1). Notice that for our equation (1), the
total number Nn(= Sn + In + Rn) of population at discrete time n is not a solution
of linear equation (inequality) compare with the equation treated in [4], which is a
solution of linear equation (inequality). This point is a motivation of interest in the
area.

2 Preliminary and Local Stability of Equilibrium Points

If In is known, then Rn can be obtained by equation (1). Therefore, we can rewrite
to replace equation (1) with the following equation

Sn+1 − Sn = b − βSn+1 In − μ1Sn+1, (5)

In+1 − In = βSn In − (μ2 + λ)In+1, n ≥ 0.
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For any parameters β, b, λ andμi (i = 1, 2, 3), it is easy to check that the equilibrium
solution of (1) with the initial condition (2) exists as follows:

(i) Ifb > 0, then equation (1) alwayshas adisease free equilibrium ES∗
0

= (S∗
0 , 0, 0),

where

S∗
0 = b

μ1
.

(ii) Furthermore, if

S∗
0 > S∗ ≡ μ2 + λ

β
, (6)

then equation (1) also has a unique positive endemic equilibrium E+ =
(S∗, I ∗, R∗), where

S∗ = μ2 + λ

β
, I ∗ = bβ − μ1(μ2 + λ)

β(μ2 + λ)
, R∗ = λ

μ3
I ∗.

We discuss the behavior of solutions of equation (5).

Definition 1 Equation (1) is said to be permanent if there are positive constants νi
and Mi (i = 1, 2, 3) such that

ν1 ≤ lim inf
n→∞ Sn ≤ lim sup

n→∞
Sn ≤ M1,

ν2 ≤ lim inf
n→∞ In ≤ lim sup

n→∞
In ≤ M2,

ν3 ≤ lim inf
n→∞ Rn ≤ lim sup

n→∞
Rn ≤ M3

hold for any solution of (1) with the initial condition (2). Here νi and Mi (i = 1, 2, 3)
are independent of (2).

Now, we have the following theorems.

Theorem 1 If S∗
0 < S∗, then the disease free equilibrium ES∗

0
of (1) is locally

asymptotically stable. And if S∗
0 > S∗, then ES∗

0
is unstable.

Proof It is sufficient to show the statement of Theorem 1 for equation (5). From (5),
we obtain

Sn+1 = Sn + b

1 + β In + μ1
, In+1 = (1 + βSn)In

1 + μ2 + λ
.

For variables S and I , we can calculate the Jacobian matrix of

J (S, I ) =
⎛
⎜⎝

1
1+β I+μ1

− (b+S)β

(1+β I+μ1)2

β I
1+μ2+λ

βS+1
1+μ2+λ

⎞
⎟⎠ .
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In the case of the disease free equilibrium ES∗
0

= (S∗
0 , 0) of (5), Jacobian matrix is

given by

J (E∗
0 ) =

⎛
⎜⎝

1
1+μ1

− (b+S∗
0 )β

(1+μ1)2

0 βS∗
0+1

1+μ2+λ

⎞
⎟⎠ . (7)

Since J (E∗
0 ) is an upper triangular matrix, eigenvalues are diagonal elements itself

of

ξ1 = 1

1 + μ1
and ξ2 = βS∗

0 + 1

1 + μ2 + λ
.

If S∗
0 < S∗,wehave0 < ξ1 < 1 and0 < ξ2 < 1, and thus E∗

0 is locally asymptotically
stable. And if S∗

0 > S∗, we have ξ2 > 1, and hence ES∗
0
is unstable. For equation (1),

we obtain

Rn+1 = Rn + λIn
1 + μ3

.

Jacobian matrix is similar given by

J (E∗
0 = (S∗

0 , 0, 0)) =

⎛
⎜⎜⎜⎜⎜⎝

1
1+μ1

− (b+S∗
0 )β

(1+μ1)2
0

0 βS∗
0+1

1+μ2+λ
0

0 λ
1+μ3

1
1+μ3

⎞
⎟⎟⎟⎟⎟⎠

.

Thus, the third eigenvalue is ξ3 = 1
1+μ3

with 0 < ξ3 < 1. Therefore, E∗
0 = (S∗

0 , 0, 0)
of (1) is locally asymptotically stable if S∗

0 < S∗. This proof is completed. �	
Theorem 2 If S∗

0 > S∗, then the endemic equilibrium E+ of 1 is locally asymptoti-
cally stable.

Proof As the same reason in the proof of Theorem 1, we consider the endemic
equilibrium E+ = (S∗, I ∗) of (5), where

S∗ = μ2 + λ

β
and I ∗ = βb − μ1(μ2 + λ)

β(μ2 + λ)
. (8)

From (7) and (8), Jacobian matrix is
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J (E+) =
⎛
⎜⎝

1
1+β I ∗+μ1

− (b+S∗)β
(1+β I ∗+μ1)2

β I ∗
1+μ2+λ

βS∗+1
1+μ2+λ

⎞
⎟⎠

=
⎛
⎜⎝

μ2+λ

βb+μ2+λ
− (μ2+λ)2

(βb+μ2+λ)

βb−μ1(μ2+λ)

(μ2+λ)(1+μ2+λ)
1

⎞
⎟⎠ .

The equilibrium point E+ is local asymptotically stable if the condition

| tr J (E+)| < 1 + det J (E+) < 2 (9)

yields (cf. p.188 in [3]). To do this, we first show that | tr J (E+)| < 1 + det J (E+).

By S∗
0 > S∗ and βb − μ1(μ2 + λ) > 0, we have

| tr J (E+)| = μ2 + λ

βb + μ2 + λ
+ 1

< 1 + μ2 + λ

βb + μ2 + λ
+ βb − μ1(μ2 + λ)

(μ2 + λ)(1 + μ2 + λ)
× (μ2 + λ)2

βb + μ2 + λ

= 1 + det J (E+).

Next, we can show that det J (E+) < 1. We set

R0 = βb

μ1(μ2 + λ)
. (10)

Then R0 > 1 by the assumption S∗
0 > S∗. It is clear that

1 − μ1(μ2 + λ)

βb
< 1 + 1

μ2 + λ

and we obtain

0 < (μ2 + λ)(βb − μ1(μ2 + λ)) < βb(1 + μ2 + λ).

Thus, we have

det J (E+) = (μ2 + λ)(1 + μ2 + λ) + (μ2 + λ)(βb − μ1(μ2 + λ))

(βb + μ2 + λ)(1 + μ2 + λ)

<
(μ2 + λ)(1 + μ2 + λ) + βb(1 + μ2 + λ)

(βb + μ2 + λ)(1 + μ2 + λ)
= 1.
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Therefore, we have (9). For equation (1), we obtain the characteristic equation of

| J (E+ = (S∗, I∗, R∗)) − t E3×3| =

∣∣∣∣∣∣∣∣∣∣∣∣

μ2+λ
βb+μ2+λ

− t − (μ2+λ)2

(βb+μ2+λ)
0

βb−μ1(μ2+λ)
(μ2+λ)(1+μ2+λ)

1 − t 0

0 λ
1+μ3

1
1+μ3

− t

∣∣∣∣∣∣∣∣∣∣∣∣

= | J (E+ = (S∗, I∗)) − t E2×2| ×
(

1

1 + μ3
− t

)
= 0,

where E j× j is the j × j ( j = 2, 3) unit matrix. Thus, we have solutions t1 and t2
of | J (E+ = (S∗, I ∗)) − t I2×2| = 0, and t3 = 1

1+μ3
. Then, by (9) and Schur-Cohn

criterion (cf. [3]), we have | t1| < 1, | t2| < 1 and | t3| < 1. Therefore, the endemic
equilibrium E+ = (S∗, I ∗, R∗) of (1) is locally asymptotically stable if S∗

0 > S∗.
This completes the proof of Theorem 2. �	
Remark 1 By using [7, Theorem 2.4], we can also prove that if S∗

0 > S∗, then the
endemic equilibrium E+ = (S∗, I ∗) of (5) is locally asymptotically stable.

Remark 2 It is known that R0 given by (10) is the basic production number of
equation (1). Notice thatR0 < 1 is equivalent to S∗

0 < S∗ in Theorem 1 andR0 > 1
is equivalent to S∗

0 > S∗ in Theorem 2; see [6, 9].

3 Global Attractor and Permanence

In this section, we discuss the global attractivity of equilibrium points of (1) by using
some Liapunov functions. However, in this time, we will omit the detail of proofs
of the following Theorems 3 and 4 (cf. [5, 11]). Especially, Theorem 3 is proved by
modifying the proof of Theorem 2.3 in [7]. In the proof of Theorem 4, we define the
following Liapunov function of equation (5);

Vn = Vn(Sn, In)

= Sn − S∗ + S∗ log
Sn
S∗ + In − I ∗ + I ∗ log

In
I ∗ . (11)

Then, it is clear that Vn > 0 for (Sn, In) 
= (S∗, I ∗) and Vn = 0 for (Sn, In) =
(S∗, I ∗).Moreover,wehaveΔVn(= Vn+1 − Vn) ≤ 0 for sufficient largen > 0.Thus,
using LaSalle’s invariance principle, we obtain (Sn, In) tends to (S∗, I ∗) as n → ∞.

Theorem 3 If S∗
0 < S∗, then every solution (Sn, In, Rn) of equation (1) with (2)

satisfies
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lim
n→∞ In = 0, lim

n→∞ Rn = 0 and lim
n→∞ Sn = b

μ1
.

Theorem 4 If S∗
0 > S∗ and I0 
= 0, then every solution (Sn, In, Rn) of equation (1)

with (2) satisfies

lim
n→∞ Sn = S∗, lim

n→∞ In = I ∗ and lim
n→∞ Rn = R∗.

Remark 3 Theorems 1 and 3 show that if S∗
0 < S∗, then the disease free equilibrium

ES∗
0
of (1) is globally asymptotically stable. Also, Theorems 2 and 4 show that if

S∗
0 > S∗ and I0 
= 0, then the unique endemic equilibrium E+ of (1) is globally

asymptotically stable.

In [11], we have proved that equation (1) has the property of permanence Fig1.

Theorem 5 If S∗
0 > S∗, then equation (1) is permanent.

Finally, we give an example of Theorems 2 and 4.

Example 1 For simplicity, we demonstrate equation (5), where β = 0.02, μ1 =
0.15, b = 5.0, and μ2 + λ = 0.3. Then equation (5) becomes

Sn+1 − Sn = 5.0 − 0.02Sn+1 In − 0.1Sn+1, (12)

In+1 − In = 0.02Sn In − 0.3In+1, n ≥ 0,

where

S∗
0 = b

μ1
= 5.0

0.15
= 33.3̇, S∗ = μ2 + λ

β
= 0.3

0.02
= 15.0, then S∗

0 > S∗,

E+ = (S∗, I ∗) = (15.0, 9.16̇), and ES∗
0

= (S∗
0 , 0) = (33.3̇, 0),

I ∗ = bβ − μ1(μ2 + λ)

β(μ2 + λ)
= 5.0 × 0.02 − 0.15 × 0.3

0.02 × 0.3
= 9.16̇ > 0.

The initial condition is

S0 = 150.0 > 0, I0 = 3.0 > 0.

The following figures illustrate our theorem and suggest that the endemic equi-
librium E+ of equation (1) is globally asymptotically stable if the assumptions in
Theorem 4 hold. In the figures, the horizontal axis shows n of a discrete time, and the
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Fig. 1 The behavior of Sn with S0 = 150.0

Fig. 2 The behavior of In with I0 = 3.0
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vertical axis shows the behavior of Sn or In , in the graph of trajectory of equation (12).
That is, if S∗

0 > S∗, each of Sn and In is closer to S∗ and I ∗ respectively as n → ∞
Fig. 2.
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Nonoscillation of Second-Order Linear
Equations Involving a Generalized Difference
Operator

Jitsuro Sugie and Masahiko Tanaka

Abstract Our purpose here is to establish nonoscillation criteria for the second-
order linear difference equations of the form

�a(rn−1�axn−1) + pnxn = 0.

Here, {rn} and {pn} are sequences of real numbers and �a is the weighted difference
operator defined by �axn = xn+1 − axn with any positive constant a. A certain
sequence determined from the constant a and two sequences {rn} and {pn} plays
an important role in the results obtained. To be a little more precise, what should
be paid attention to is a weighted sum of two adjacent terms of the sequence. The
main tools for the proof of our results are Sturm’s separation theorem and the Riccati
transformation method. Our results are compared with several previous works by
using some specific examples.

Keywords Linear difference equations · Nonoscillation · Riccati transformation ·
Sturm’s separation theorem

1 Introduction

We consider the self-adjoint difference equation

�a(rn−1�axn−1) + pnxn = 0, n = 1, 2, . . . , (1.1)
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where {rn} and {pn} are sequences satisfying

rn > 0 for n ∈ N ∪ {0} (1.2)

and
pn < a(rn + rn−1) for n ∈ N, (1.3)

and �a is the forward weighted difference operator defined by

�axn = xn+1 − axn

with a > 0. It is not necessary to assume that pn is positive for n ∈ N.
The null sequence {0} is a solution of (1.1). This solution is called a trivial solution.

Nontrivial solutions of (1.1) are classified into two groups by asymptotic behavior.
Those belonging to one group are called oscillatory solutions and those belonging to
the other group are called nonoscillatory solutions. An oscillatory solution {xn} has
a subsequence {xni } such that ni ∈ N tends to ∞ as i → ∞ and xni xni+1 ≤ 0 for all
i ∈ N. A nonoscillatory solution {xn} has an N ∈ N such that xn > 0 for n ≥ N or
xn < 0 for n ≥ N . If {xn} is a solution of (1.1), then {−xn} is also a solution of (1.1).
Hence, we may assume without loss of generality that a nonoscillatory solution of
(1.1) are eventually positive.

The purpose of this paper is to give sufficient conditions which guarantee that
all nontrivial solutions of (1.1) are nonoscillatory. Our conditions will be expressed
with the relation between the positive constant a and two sequences {rn} and {pn}.

Suppose that there is a subsequence {nk} of N tending to ∞ as k → ∞ such that

pnk ≥ a(rnk + rnk−1).

If all nontrivial solutions of (1.1) are nonoscillatory, then by (1.2), we have

�a(rnk−1�axnk−1) + pnk xnk

= rnk xnk+1 + {
pnk − a(rnk + rnk−1)

}
xnk + a2rnk−1xnk−1 > 0

for all sufficiently large k. This is a contradiction. Hence, the inequality (1.3) is a
necessary condition for all nontrivial solutions of (1.1) to be nonoscillatory, and
therefore, it is natural to assume the inequality (1.3).

Several articles have reported oscillation and nonoscillation of solutions of dif-
ference equations which are expressed by using the forward weighted difference
operator �a and its generalized forms (for example, see [10, 15, 16, 18–20, 22]).
This operator is a simple generalization of the usually forward difference operator�.
Many studies have been made on oscillation problem of difference equations using
the operator �. In those researches, we often notice a similarity between results of

�(rn−1�xn−1) + pnxn = 0 (1.4)
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and its continuous counter part

(
r(t)x ′)′ + p(t)x = 0, (1.5)

where r , p : (0,∞) → R are continuous functions, r(t) > 0 for t > 0. For example,
Hooker [7] consideredEq. (1.4) and gave a discrete analogue of thewell-knownHille-
Wintner comparison theorem for second-order linear differential equations. About
the classical Hille-Wintner comparison theorem, see [5, 21, 23].

A critical value that divides oscillation and nonoscillation of solutions of ordinary
differential equations such as (1.5) is called an oscillation constant (refer to [5, 12,
17, 21]). The oscillation constant often becomes 1/4 for linear differential equations.
For example, as knownwell, all nontrivial solutions of the Euler differential equation

x ′′ + γ

t2
x = 0

are nonoscillatory if and only if γ ≤ 1/4. Analogues of this result for Eq. (1.4)
were shown in a series of papers of Hooker et al. [7, 9, 13] (see also the books [2,
Chap. 6], [4, Chap. 7], [11, Chap. 6]). Their results can be easily extended to those
that are applicable to Eq. (1.1). To present those results, we define

qn = r2n{
a(rn + rn−1) − pn

}{
a(rn+1 + rn) − pn+1

} (1.6)

for n ∈ N. From assumptions (1.2) and (1.3), we see that {qn} is a positive sequence.
Theorem A If a2qn ≥ 1/(4 − ε) for some ε > 0 and for all sufficiently large n, then
all nontrivial solutions of (1.1) are oscillatory.

Theorem B If a2qn ≤ 1/4 for all sufficiently large n, then all nontrivial solutions
of (1.1) are nonoscillatory.

Theorem C If a2qnk ≥ 1 for a sequence {nk} tending to ∞, then all nontrivial
solutions of (1.1) are oscillatory.

TheoremsA and B are called “oscillation theorem” and “nonoscillation theorem”,
respectively. From these results, we see that the oscillation constant is 1/4. In such
a sense, Theorems A and B have a good balance. However, to apply Theorem B
(respectively, Theorem A), the amount a2qn must be less than or equals to (respec-
tively, greater than) 1/4 for all sufficiently large n. These restrictions seem to be too
strong.

In this paper, we pay our attention to a weighted sum of two adjacent terms of
the sequence {qn}. If the weighted sum is not greater than 1, then our result can
be applied even if there is a subsequence {qnk } ⊂ {qn} such that nk tends to ∞ as
k → ∞ and a2qnk is greater than 1/4 for k ∈ N.
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Theorem 1 Assume (1.2) and (1.3). Suppose that there exists a sequence {αk} with
αk > 1 and either

a2αk

αk − 1
q2k−1 + a2αk+1q2k ≤ 1 (1.7)

or
a2αk

αk − 1
q2k + a2αk+1q2k+1 ≤ 1 (1.8)

for all sufficiently large k ∈ N. Then all nontrivial solutions of (1.1) are nonoscilla-
tory.

2 Transformation to the Riccati Difference Equation

Sturm’s separation theorem and the Riccati transformation method are very famous
and useful in oscillation theory. For Sturm’s separation theorem on difference equa-
tions, see [4, pp. 321–322] for example. Sturm’s separation theorem ensures that
oscillatory solutions and nonoscillatory solutions do not coexist in the same linear
difference equation. Hence, if we find a nonoscillatory solution of (1.1), then all
nontrivial solutions of (1.1) are nonoscillatory.

Let {xn} be a nonoscillatory solution of (1.1). Then, by (1.2), we can define

zn = a(rn+1 + rn) − pn+1

rn

xn+1

xn

for all sufficiently large n ∈ N. This conversion from {xn} to {zn} is called a Riccati-
type transformation. The sequence {zn} satisfies the first-order non-linear difference
equation

qnzn + a2

zn−1
= 1 (2.1)

for all sufficiently large n, where {qn} is the sequence defined in (1.6). Conversely,
if Eq. (2.1) has a solution that is eventually positive, then there is a nonoscillatory
solution of (1.1). Hence, from Sturm’s separation theorem, we see that all non-trivial
solutions of (1.1) are nonoscillatory.We therefore need only to find a positive solution
of (2.1) in order to prove Theorem 1.

Proof of Theorem 1 Consider only the case that (1.7) holds, because the proof of the
case that (1.8) holds is the same as that of the case that (1.7) holds.

We can find an N ∈ N so that αk > 1 and

a2αk+1 ≤ 1

q2k

(
1 − a2αk

αk − 1
q2k−1

)



Nonoscillation of Second-Order Linear Equations … 245

for all k ≥ N . Let {zn} be a solution of (2.1) satisfying z2N−2 ≥ a2αN > a2. Then
we obtain

z2N−1 = 1

q2N−1

(
1 − a2

z2N−2

)
≥ 1

q2N−1

(
1 − a2

a2αN

)
= αN − 1

αNq2N−1
> 0.

Hence, by (1.7) we have

z2N = 1

q2N

(
1 − a2

z2N−1

)
≥ 1

q2N

(
1 − a2αN

αN − 1
q2N−1

)
≥ a2αN+1 > a2.

Similarly, we can estimate that

zn ≥

⎧
⎪⎨

⎪⎩

αk − 1

αkq2k−1
if n = 2k − 1,

a2αk+1 if n = 2k

for all k ≥ N . Hence, the sequence {zn} is an eventually positive solution of (2.1).
We therefore conclude that all nontrivial solutions of (1.1) are nonoscillatory. 
�

We can choose a constant sequence that is greater than 1 as the sequence {αk} in
Theorem 1. If αk ≡ 2, then αk/(αk − 1) ≡ 2. Hence, we have the following corollary
of Theorem 1.

Corollary 1 Assume (1.2) and (1.3). Suppose that either

a2(q2k−1 + q2k) ≤ 1

2
(2.2)

or

a2(q2k + q2k+1) ≤ 1

2
(2.3)

holds for all sufficiently large k ∈ N. Then all nontrivial solutions of (1.1) are non-
oscillatory.

Remark 1 If qn ≤ 1/4a2 for all sufficiently large n, both inequalities (2.2) and (2.3)
are naturally satisfied. Hence, Corollary 1 fully includes Theorem B.

Remark 2 Since the arithmetic mean of two positive numbers is not less than their
geometric mean, condition (2.2) implies that

a2
√
q2k−1q2k ≤ 1

4
(2.4)

is satisfied for all sufficiently large k ∈ N. Note that we cannot weaken (2.2) to (2.4)
in Corollary 1. For example, consider Eq. (1.1) with
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arn =
{
1/4 if n = 2k − 1,

1 if n = 2k

for k ∈ N and pn ≡ 1/4. Then we have

a2qn = a2r2n{
a(rn + rn−1) − pn

}{
a(rn+1 + rn) − pn+1

} =
{
1/16 if n = 2k − 1,

1 if n = 2k.

Hence, the inequality (2.4) is satisfied. However, since {qn} has a subsequence that
is identically 1/a2, Theorem C concludes that all nontrivial solutions are oscillatory.

In Theorem 1, the sequence {αk} or its subsequence does not necessarily have to
be constant. If q2k−1 < 1/a2 for all sufficiently large k ∈ N, then we can choose

αk = 1

1 − a
√
q2k−1

> 1.

Since αk/(αk − 1) = 1/(a
√
q2k−1) and αk+1 = 1/(1 − a

√
q2k+1), condition (1.7)

becomes

a
√
q2k−1 + a2q2k

1 − a
√
q2k+1

≤ 1.

Similarly, we can check that condition (1.8) coincides with

a
√
q2k + a2q2k+1

1 − a
√
q2k+2

≤ 1

by setting 1/(1 − a
√
q2k) on αk if q2k < 1/a2 for all sufficiently large k ∈ N. We

therefore get the following corollary of Theorem 1.

Corollary 2 Assume (1.2) and (1.3). Suppose that either

a2q2k−1 < 1 and a2q2k ≤ (1 − a
√
q2k−1)(1 − a

√
q2k+1) (2.5)

or

a2q2k < 1 and a2q2k+1 ≤ (1 − a
√
q2k)(1 − a

√
q2k+2) (2.6)

holds for all sufficiently large k ∈ N. Then all nontrivial solutions of (1.1) are non-
oscillatory.
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3 Comparison with Previous Studies

To compare our results given in Sects. 1 and 2 with previous works, we give some
examples. First, we introduce several previous works that are related.

From various viewpoints, Hinton and Lewis [6] discussed the difference equation

cnxn+1 + cn−1xn−1 = bnxn, (3.1)

which is equivalent to Eq. (1.4). They presented the following result on nonoscilla-
tion.

Theorem D Suppose that all cn = 1,

∞∑

n=1

|bn − 2| < ∞ and lim sup
k→∞

k
∞∑

n=k

|bn − 2| <
1

4
.

Then all nontrivial solutions of (3.1) are nonoscillatory.

Since pn = cn + cn−1 − bn , we can rewrite conditions in Theorem D as

∞∑

n=1

|pn| < ∞ and lim sup
k→∞

k
∞∑

n=k

|pn| <
1

4
. (3.2)

TheoremD is a discrete analogue ofHille’s nonoscillation result in [5].Unfortunately,
we can use this result to no periodic difference equations except for Eq. (1.4) with
rn ≡ 1 and pn ≡ 0 (or Eq. (3.1) with bn ≡ 2 and cn ≡ 0).

Chen and Erbe [3] obtained oscillation and nonoscillation criteria for Eq. (1.4)
using Riccati techniques. The Riccati difference equation that they used is different
from that of this paper. Their main assumptions were

lim sup
n→∞

1

n

n∑

k=1

k∑

j=1

p j > −∞ (3.3)

and others (see Theorem 2.3 in [3]). Consider the case that {pn} is a periodic sequence
with period m. Let

� = n −
[ n
m

]
m,

where [d] means the greatest integer that is less than or equal to a real number d.
Then, � is an integer satisfying 0 ≤ � ≤ m − 1. We can estimate that
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n∑

k=1

k∑

j=1

p j = m

2

[ n
m

](
1 +

[ n
m

]) m∑

j=1

p j −
[ n
m

] m∑

j=1

( j − 1)p j

+
[ n
m

] m∑

j=1

p j +
�∑

j=1

p j

= m

2

[ n
m

](
1 +

[ n
m

]) m∑

j=1

p j +
[ n
m

] m∑

j=1

(2 − j)p j +
�∑

j=1

p j .

Here, we regard
∑0

j=1 p j as 0. Since n/m − 1 < [n/m] ≤ n/m, we see that

1

n

n∑

k=1

k∑

j=1

p j = 1

2

m

n

[ n
m

](
1 +

[ n
m

]) m∑

j=1

p j + 1

n

[ n
m

] m∑

j=1

(2 − j)p j + 1

n

�∑

j=1

p j

<
1

2

m

n

[ n
m

](
1 +

[ n
m

]) m∑

j=1

p j + 1

m

∣
∣
∣
∣
∣
∣

m∑

j=1

(2 − j)p j

∣
∣
∣
∣
∣
∣
+ 1

n

∣
∣
∣
∣
∣
∣

�∑

j=1

p j

∣
∣
∣
∣
∣
∣
.

If
∑m

j=1 p j < 0, then

1

n

n∑

k=1

k∑

j=1

p j <
1

2

(
1 − m

n

)(
1 +

[ n
m

]) m∑

j=1

p j + 1

m

∣
∣
∣
∣
∣
∣

m∑

j=1

(2 − j)p j

∣
∣
∣
∣
∣
∣
+ 1

n

∣
∣
∣
∣
∣
∣

�∑

j=1

p j

∣
∣
∣
∣
∣
∣
.

Since
∑m

j=1(2 − j)p j and
∑�

j=1 p j are finite, we see that

lim
n→∞

1

n

n∑

k=1

k∑

j=1

p j = −∞.

This contradicts (3.3). Thus, the above result of Chen and Erbe cannot use when∑m
j=1 p j < 0.
Using Eq. (2.1) with a = 1 and a comparison theorem proved by Kwong [13,

Theorem 2], Abu-Risha [1, Theorem 2.1] gave a necessary and sufficient condition
for nonoscillation of solutions of (1.4). Although this result is simple, it does not
give any concrete condition about the sequence {qn}. To this end, Abu-Risha also
presented an explicit condition between qn−1, qn and qn+1 for n ∈ N. We can extend
his result as follows.

Theorem E All nontrivial solutions of (1.1) are nonoscillatory if there is an N ∈ N

such that
a2

(√
qn+1 + √

qn
)(√

qn + √
qn−1

) ≤ 1 (3.4)

holds for n ≥ N .
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Parhi [18, Theorem 2.1] showed that if pn ≤ 0 for all sufficiently large n ∈ N,
then all nontrivial solutions of (1.1) are nonoscillatory. Ma [14, Lemma 2.3] already
pointed out that the same result holds for Eq. (1.4).

Now, we give an example of Corollary 1.

Example 1 For any a > 0, let r0 = 3.4,

rn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4.4 if n = 4k − 3,

3.5 if n = 4k − 2,

5.8 if n = 4k − 1,

3.4 if n = 4k

and pn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3.8a if n = 4k − 3,

−8.1a if n = 4k − 2,

5.3a if n = 4k − 1,

−15.8a if n = 4k

with k ∈ N. Then all nontrivial solutions of (1.1) are nonoscillatory.

It is clear that conditions (1.2) and (1.3) hold. Since

a2qn = a2r2n{
a(rn + rn−1) − pn

}{
a(rn+1 + rn) − pn+1

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.3025 if n = 4k − 3,

0.19140625 if n = 4k − 2,

0.3364 if n = 4k − 1,

0.1156 if n = 4k,

(3.5)

we obtain
a2(q4k−3 + q4k−2) = 0.49390625 < 0.5

and
a2(q4k−1 + q4k) = 0.452 < 0.5

with k ∈ N. Hence, the inequality (2.2) holds. Thus, by Corollary 1, all nontrivial
solutions of (1.1) are nonoscillatory.

Here, we simulate a solution of (1.1) with the sequences {rn} and {pn} that were
given in Example 1 (see Fig. 1). To make the behavior of the solution more apparent,
we connect the dots xn−1 and xn with a line segment and draw a line graph.

From Fig. 1, we see that the polygonal line tends to rise while repeating a vertical
motion. Since the polygonal line does not cross the horizontal n-axis, this solu-
tion {xn} is nonoscillatory. Sturm’s separation theorem guarantees that all nontrivial
solutions are nonoscillatory.

We also simulate a solution {zn} of (2.1) (see Fig. 2). This solution corresponds
to the solution of (1.1) drawn in Fig. 1.

Remark 3 The inequality (2.3) does not hold in Example 1. In fact,

a2(q4k−2 + q4k−1) = 0.52780625 > 0.5
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Fig. 1 This polygonal line displays the motion of a solution {xn} of (1.1) given in Example 1 with
a = 4/5. The initial condition of the solution is (x0, x1) = (1, 5).

Fig. 2 Riccati’s equation (2.1) has a positive solution {zn} when the sequence {qn} satisfies (3.5)
with a = 4/5. The initial condition of the solution is z0 = 80/17.

for any k ∈ N.

Condition (3.2) is not satisfied, because
∑∞

n=1 |pn| is infinity. Hence, Theorem
D is useless to verify Example 1. Since

p1 + p2 + p3 + p4 = −14.8a < 0

and pn is not always negative, the results of Chen and Erbe [3] and Parhi [18]
mentioned above are also useless for Example 1. From (3.5) it is clear that Theorem
B cannot be applied to Example 1. Using (3.5), we can compute

a(
√
qn+1 + √

qn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.9875 if n = 4k − 3,

1.0175 if n = 4k − 2,

0.92 if n = 4k − 1,

0.89 if n = 4k

with k ∈ N. Hence, we have

a2(
√
qn+1 + √

qn)(
√
qn + √

qn−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.00478125 if n = 4k − 2,

0.9361 if n = 4k − 1,

0.8188 if n = 4k,

0.878875 if n = 4k + 1

with k ∈ N. There is no N ∈ N where the inequality (3.4) is satisfied for all n ≥ N .
Hence, Theorem E is also not available in Example 1.

Next, we give an example of Corollary 2.
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Example 2 For any a > 0, let r0 = 4,

rn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

10 if n = 4k − 3,

2 if n = 4k − 2,

1.5 if n = 4k − 1,

4 if n = 4k

and pn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−6a if n = 4k − 3,

−13a if n = 4k − 2,

2.5a if n = 4k − 1,

0.5a if n = 4k

with k ∈ N. Then all nontrivial solutions of (1.1) are nonoscillatory.

Conditions (1.2) and (1.3) are satisfied obviously. It is easy to check that

a2qn = a2r2n{
a(rn + rn−1) − pn

}{
a(rn+1 + rn) − pn+1

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.2 if n = 4k − 3,

0.16 if n = 4k − 2,

0.45 if n = 4k − 1,

0.16 if n = 4k.

(3.6)

Hence, the inequality (2.5) holds. In fact, a2q4k−3 = 0.2 < 1, a2q4k−1 = 0.45 < 1,

a2q4k−2 = 0.16 < (1 − √
0.2)(1 − √

0.45) = (1 − a
√
q4k−3)(1 − a

√
q4k−1),

a2q4k = 0.16 < (1 − √
0.45)(1 − √

0.2) = (1 − a
√
q4k−1)(1 − a

√
q4k+1)

for all k ∈ N. Thus, by Corollary 2, all nontrivial solutions of (1.1) are nonoscillatory.
To illustrate Example 2, we give two figures. One is the polygonal line described a

solution {xn}of (1.1) (seeFig. 3). This polygonal line seems like a series ofmountains.
The polygonal line does not intersect the horizontal n-axis. Hence, this solution is
nonoscillatory. From Sturm’s separation theorem, we see that all nontrivial solutions
are nonoscillatory. The other is the polygonal line displayed the behavior of a solution
of {zn} of (2.1) (see Fig. 4). This solution corresponds to the solution of (1.1) drawn
in Fig. 3.

30

Fig. 3 This polygonal line displays the motion of a solution {xn} of (1.1) given in Example 2 with
a = 3/4. The initial condition of the solution is (x0, x1) = (1, 3).
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Fig. 4 Riccati’s equation (2.1) has a positive solution {zn} when the sequence {qn} satisfies (3.6)
with a = 3/4. The initial condition of the solution is z0 = 45/4.

Remark 4 The inequality (2.6) does not hold in Example 2, because

a2q4k−1 = 0.45 > 0.36 = (1 − √
0.16)2 = (1 − a

√
q4k−2)(1 − a

√
q4k)

with k ∈ N.

Remark 5 We cannot apply Corollary 1 to Example 2, because both inequalities
(2.2) and (2.3) are not satisfied. In fact, from (3.6) it follows that

a2(q4k−1 + q4k) = 0.61 > 0.5,

a2(q4k−2 + q4k−1) = 0.61 > 0.5

for all k ∈ N.

From (3.6), we see that a2q4k−1 > 1/4 for k ∈ N. Hence, Theorem B is useless
for Example 2. Since rn �≡ 1 and

∑∞
n=1 |pn| is infinity, Theorem D is inapplicable

to Example 2. The results of Chen and Erbe [3] and Parhi [18] mentioned above are
also useless for Example 2, because

p1 + p2 + p3 + p4 = −16a < 0

and pn is not always negative. It turns out from (3.6) that

a(
√
qn+1 + √

qn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2 + √
5)/5 if n = 4k − 3,

(3
√
5 + 4)/10 if n = 4k − 2,

(4 + 3
√
5)/10 if n = 4k − 1,

(
√
5 + 2)/5 if n = 4k

with k ∈ N. Hence, we have

a2
(√

qn+1 + √
qn

)(√
qn + √

qn−1
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.9072135954999581 · · · if n = 4k − 2,

1.14665631459995 · · · if n = 4k − 1,

0.9072135954999581 · · · if n = 4k,

0.7177708763999665 · · · if n = 4k + 1



Nonoscillation of Second-Order Linear Equations … 253

with k ∈ N. There is no N ∈ N where the inequality (3.4) is satisfied for all n ≥ N .
Hence, Theorem E is also inapplicable to Example 2.

4 Further Nonoscillation Criteria

In Sect. 3, we have focused on a weighted sum of two adjacent terms q2k−1 and q2k
or two adjacent terms q2k and q2k+1. The most simple case of the weighted sum of
two adjacent terms is the arithmetic mean between two terms q2k−1 and q2k or two
terms q2k and q2k+1 (see Corollary 1). The weight does not have to be a constant and
it is allowed to change depending on the value of qn (see Corollary 2). In this section,
by taking account of several sets of two adjacent terms, we extend Theorem 1 as
follows.

Theorem 2 Assume (1.2) and (1.3). Suppose that there exists an N ∈ N such that
for any k ≥ N there are two sequences {αk} and {βk} with αk > 1 and βk > 1. If

a2αk

αk − 1
q4k−3 + a2βk q4k−2 ≤ 1 (4.1)

and

a2βk

βk − 1
q4k−1 + a2αk+1q4k ≤ 1, (4.2)

then all nontrivial solutions of (1.1) are nonoscillatory.

Proof From (4.1) and (4.2) it follows that

a2βk ≤ 1

q4k−2

(
1 − a2αk

αk − 1
q4k−3

)

and

a2αk+1 ≤ 1

q4k

(
1 − a2βk

βk − 1
q4k−1

)

for all k ≥ N . Consider a solution {zn} of (2.1) satisfying z4N−4 ≥ a2αN > a2. Then
we can check that

z4N−3 = 1

q4N−3

(
1 − a2

z4N−4

)
≥ 1

q4N−3

(
1 − a2

a2αN

)
= αN − 1

αNq4N−3
> 0,

z4N−2 = 1

q4N−2

(
1 − a2

z4N−3

)
≥ 1

q4N−2

(
1 − a2αN

αN − 1
q4N−3

)
≥ a2βN > a2,
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z4N−1 = 1

q4N−1

(
1 − a2

z4N−2

)
≥ 1

q4N−1

(
1 − a2

a2βN

)
= βN − 1

βNq4N−1
> 0,

z4N = 1

q4N

(
1 − a2

z4N−1

)
≥ 1

q4N

(
1 − a2βN

βN − 1
q4N−1

)
≥ a2αN+1 > a2.

We inductively obtain

zn ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk − 1

αkq4k−3
if n = 4k − 3,

a2βk if n = 4k − 2,
βk − 1

βkq4k−1
if n = 4k − 1,

a2αk+1 if n = 4k

with k ≥ N . Hence, the sequence {zn} is a positive solution of (2.1). We therefore
conclude that all nontrivial solutions of (1.1) are nonoscillatory. 
�

By the same way, we have the following result (we omit the proof).

Theorem 3 Assume (1.2) and (1.3). Suppose that there exists an N ∈ N such that
for any k ≥ N there are two sequences {αk} and {βk} with αk > 1 and βk > 1. If

a2αk

αk − 1
q4k−2 + a2βk q4k−1 ≤ 1 (4.3)

and
a2βk

βk − 1
q4k + a2αk+1q4k+1 ≤ 1, (4.4)

then all nontrivial solutions of (1.1) are nonoscillatory.

Remark 6 If the inequalities (4.1) and (4.2) are satisfied for k ∈ N sufficiently large,
then the inequality (1.7) also holds. In fact, let

γk =
{

α� if k = 2� − 1,

β� if k = 2�

with l ∈ N. Then, by (4.1) and (4.2) we obtain

γk

γk − 1
a2q2k−1 + γk+1a

2q2k ≤ 1;

namely, the inequality (1.7). Similarly, if the inequalities (4.3) and (4.4) are satisfied
for k ∈ N sufficiently large, then the inequality (1.8) also holds. Hence, Theorems 2
and 3 also extend Theorem 1.
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Let p be a real number that is larger than 1 and let p∗ be the conjugate number of
p; namely,

1

p
+ 1

p∗ = 1.

Then p∗ is also greater than 1. We choose constants α > 1 and β > 1 as the two
sequences {αk} and {βk} in Theorems 2 and 3, respectively. Then the inequalities
(4.1)–(4.4) become

a2(α∗q4k−3 + βq4k−2) ≤ 1, (4.5)

a2(β∗q4k−1 + αq4k) ≤ 1, (4.6)

a2(α∗q4k−2 + βq4k−1) ≤ 1, (4.7)

a2(β∗q4k + αq4k+1) ≤ 1, (4.8)

respectively. Hence, we have the following corollaries of Theorems 2 and 3.

Corollary 3 Assume (1.2) and (1.3). Suppose that there exists an N ∈ N such that
both (4.5) and (4.6) hold for k ≥ N . Then all nontrivial solutions of (1.1) are
nonoscillatory.

Corollary 4 Assume (1.2) and (1.3). Suppose that there exists an N ∈ N such that
both (4.7) and (4.8) hold for k ≥ N . Then all nontrivial solutions of (1.1) are
nonoscillatory.

We here give an example of Corollary 3.

Example 3 For any a > 0, let r0 = 2.4,

rn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3.1 if n = 4k − 3,

1 if n = 4k − 2,

2 if n = 4k − 1,

2.4 if n = 4k

and pn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−3.5a if n = 4k − 3,

1.1a if n = 4k − 2,

−6a if n = 4k − 1,

2.4a if n = 4k

with k ∈ N. Then all nontrivial solutions of (1.1) are nonoscillatory.

Clearly, conditions (1.2) and (1.3) hold. The sequence {qn} satisfies

a2qn = a2r2n{
a(rn + rn−1) − pn

}{
a(rn+1 + rn) − pn+1

}

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

961/2700 if n = 4k − 3,

1/27 if n = 4k − 2,

2/9 if n = 4k − 1,

8/25 if n = 4k.

(4.9)
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Fig. 5 This polygonal line displays the motion of a solution {xn} of (1.1) given in Example 3 with
a = 7/10. The initial condition of the solution is (x0, x1) = (1, 2).

Fig. 6 Riccati’s equation (2.1) has a positive solution {zn} when the sequence {qn} satisfies (4.9)
with a = 7/10. The initial condition of the solution is z0 = 21/4.

Let α = 2 and β = 3. Then we obtain

α∗a2q4k−3 + βa2q4k−2 = 2 × 961

2700
+ 3 × 1

27
= 1111

1350
< 1

and

β∗a2q4k−1 + αa2q4k = 3

2
× 2

9
+ 2 × 8

25
= 73

75
< 1;

namely, the inequalities (4.5) and (4.6) are satisfied for all k ∈ N. Hence, by Corol-
lary3, all nontrivial solutions of (1.1) are nonoscillatory.

We confirm Example 3 by using two simulations. Figure5 shows the behavoir of
a solution {xn} of (1.1) given in Example 3. As in Figs. 1 and 3, the behavior of this
solution is represented by a polygonal line. This polygonal line tends to rise slowly
while moving up and down. Since the polygonal line does not meet the horizontal
n-axis, this solution is nonoscillatory. Hence, by Sturm’s separation theorem, all
nontrivial solutions are nonoscillatory. Recall that each nonoscillatory solution of
(1.1) corresponds to a positive solution of (2.1). Figure6 displays the motion of the
solution of (2.1) corresponding to the solution of (1.1) drawn in Fig. 5.

Remark 7 We cannot apply Corollary 1 to Example 3, because both inequalities
(2.2) and (2.3) are not satisfied. In fact, from (4.9), we see that

a2(q4k−1 + q4k) = 2

9
+ 8

25
= 122

225
>

1

2
;

a2(q4k + q4k+1) = 8

25
+ 961

2700
= 73

108
>

1

2

for all k ∈ N.
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Remark 8 For any k ∈ N,

a2q4k = 8

25
= 0.32 > 0.213237912254794 · · ·

=
(

1 −
√
2

9

) (

1 −
√

961

2700

)

= (1 − a
√
q4k−1)(1 − a

√
q4k+1)

and

a2q4k+1 = 961

2700
= 0.3559259259259259 · · · > 0.3507306961112502 · · ·

=
(

1 −
√

8

25

) (

1 −
√

1

27

)

= (1 − a
√
q4k)(1 − a

√
q4k+2).

Hence, both inequalities (2.5) and (2.6) are not satisfied, and therefore, Corollary 2
cannot be applied to Example 3.

We can easily check that Theorems B and D are not applied to Example 2. It is
also clear that the results of Chen and Erbe [3] and Parhi [18] mentioned in Sect. 3
cannot be applied to Example 2. From (4.9) it follows that

a(
√
qn+1 + √

qn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

41
√
3/90 if n = 4k − 3,

(3
√
2 + √

3)/9 if n = 4k − 2,

11
√
2/15 if n = 4k − 1,

(31
√
3 + 36

√
2)/90 if n = 4k

with k ∈ N. Hence, we have

a2
(√

qn+1 + √
qn

)(√
qn + √

qn−1
) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.5238114053855937 · · · if n = 4k − 2,

0.6884769420045553 · · · if n = 4k − 1,

1.205389631325233 · · · if n = 4k,

0.9170922049812309 · · · if n = 4k + 1

with k ∈ N. There is no N ∈ N where the inequality (3.4) is satisfied for all n ≥ N .
Hence, Theorem E is also inapplicable to Example 3.
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An Evolutionary Game Model of Families’
Voluntary Provision of Public Goods

Aiko Tanaka and Jun-ichi Itaya

Abstract We consider a two-stage voluntary provision model where individuals
in a family contribute to a pure public good and/or a household public good, and
an altruistic parent makes a non-negative income transfer to his or her child. The
subgame perfect equilibrium derived in themodel is analyzed using two evolutionary
dynamics games (i.e., replicator dynamics and best response dynamics). As a result,
the equilibria with ex-post transfers and pre-committed transfers coexist, and are
unstable in the settings of replicator dynamics as well as best response dynamics,
whereas the monomorphic states (i.e., all families undertake either ex-post or pre-
committed transfers) are stable. An income redistribution policy does not alter the
real allocations in the settings of both evolutionary dynamics games, because the
resulting real allocations depend on only the total income of society and not on the
distribution of individual income.

Keywords Voluntary provision · Subgame perfect equilibrium · Evolutionary
game

1 Introduction

In this chapter, we study the private provision of public goods using a framework
of evolutionary game theory. When an income transfer is made from a parent to a
child, we can consider two cases: first, the case that the child acts after observing
that the parent makes an income transfer to the child, and second, when the parent
makes an income transfer after observing the child’s action. Focusing our analysis
on the timing when the parent makes an income transfer to the child, we call the
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former “ex-post” and the latter “pre-committed” in this chapter. For simplification,
these income transfers are termed “bequests” and “gifts,” respectively. We assume
that a gift tax and inheritance tax do not exist.

In our model, we consider a family consisting of one selfish child who is not
concernedwith his parent’s utility and one altruistic parent who is concernedwith her
child’s utility. We assume that the parent and the child make voluntary contributions
to public goods and that the parent makes a non-negative income transfer to the child.
There exist a finite number of families, and they take an ex-post or pre-committed
strategy about parent’s transfer to the child. Further, it is assumed that two families
are randomly paired from such a population and they play a two-stage game.

We study two types of evolutionary game dynamics.1 The first is replicator dynam-
ics, where the share of a strategy changes through time depending on the difference
between a strategy’s expected payoff and the group’s average expected payoff. The
child imitates the parent’s strategy. The next generation’s strategy share increases if
the expected payoff using this strategy is larger than the average group payoff, and it
is weeded out if the expected payoff by the strategy is smaller than the group average.
The second is best-response dynamics, where the share of a strategy changes through
time depending on the difference between the expected payoff of the strategy and
the other. Families are able to monitor the strategy distribution precisely at a proba-
bility in a period, and after monitoring, they choose a strategy to maximize their own
payoff.

We derive the subgame perfect equilibrium for the drawn two families, and check
whether subgame perfect equilibrium is stable or not in replicator dynamics and
best-response dynamics. Cornes, Itaya, and Tanaka [1] constructed a one-shot, two-
stage voluntary provision model and we basically conform to it. In order to construct
replicator dynamics, we need to know the parent’s expected utility for ex-post and
pre-committed, and group’s average expected utility. We think that it is difficult
to rank a parent’s expected utility or group average utility for a subgame perfect
equilibrium or to conclude which is the best strategy for the family. To overcome the
difficulty of ranking the parent’s expected utility for ex-post and pre-committed, and
group’s average expected utility for preference parameters, we will find a sufficient
condition which endure that the Nash equilibrium is stable.

The rest of the chapter is organized as follows. We present the details of the
model in Sect. 2. Section3 shows the two-stage game subgame perfect equilibrium
when two families are matched. We analyze the replicator dynamics in Sect. 4, the
best-response dynamics in Sect. 5. We summarize with a conclusion in Sect. 5.

2 Model

Weconsider a populationwith a size normalized to 1 (when consideringbest-response
dynamics, we assume a finite number of families, say, N ). Two families are randomly

1See Samuelson [3] and Fudenberg and Levine [2] for details of the evolutionary dynamics.
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paired from the population, and they play a randommatching game. Each family con-
sists of two agents, an altruistic parent and an egoistic child, and they act sequentially.
For one of the families in the pair, call family i , whose members are identified by
superscript i , the utility function of the parent who is altruistic towards her child and
that of the child who is egoistic are given using Cobb–Douglas utilities as follows:

Ui
p = uip + αUi

k = ln(cip)
r (G)1−r + α ln(cik)

s(G)1−s, i = 1, 2, (1)

Ui
k = ln(cik)

s(G)1−s, i = 1, 2. (2)

where cip and cik are the parent’s and child’s consumptions of the private good,
respectively, G is an interfamily public good, and α is the parameter that measures
the strength of the parent’s altruism towards her child and is assumed to be common
among families for simplification. Note also that under the Cobb-Douglas utility
functions specified by (1) and (2), cip (and cik) and G are normal goods. We assume
that α ∈ [0, 1], which implies that the parent neither cares about her child more than
she cares about herself nor hates her child.

Public good G is an interfamily public good whose benefits spill over to members
of the other family. Moreover, the public good is entirely supplied by voluntary
contributionsmade by the parent and child, gip and g

i
k , respectively, of family i = 1, 2.

The public good is thus produced according to the following summation technology:

G =
2∑

i=1

(
gip + gik

)
. (3)

Because a parent is altruistic to her child, shemakes an non-negative income trans-
fer to him. The familiy’s strategy for income transfer are ex-post or pre-committed.
For the ex-post strategy, at Stage 1, the child of family i chooses his own consump-
tion cik and contributes to the public good gik . At Stage 2, after having observed the
contributions made by the children of both families (g1k , g

2
k ), the parent of family i

chooses cip and gip (or equivalently, π
i and gip) to maximize her utility function (1)

subject to

cip + π i + gip = yip, i = 1, 2, (4)

cik + gik = yik + π i , i = 1, 2, (5)

where π i ≥ 0 represents the transfer from the parent of family i to her child, and yip
and yik are the fixed incomes of the parent and child of family i , respectively.

On the other hand, a pre-committed act is as follows: the parent pre-commits
to a fixed transfer before the child chooses his public good contribution. Given the
pre-committed transfer π i , the child chooses his contribution at Stage 2 to maximize
the utility function.
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There exist ex-post-type families at the rate 0 ≤ x(t) ≤ 1, while there exist
pre-committed-type families at the rate 1 − x(t). Subscript t denote the time,
t = 0, 1, . . . , T and the population state at time t is denoted by (x(t), 1 − x(t)).

The transfer timing strategy of the family is decided by the parent of the family,
so we assume that the family utility is equal to the parent’s utility, Ui

p(c
i
p,G; cik)

i = 1, 2. If both families are of the ex-post type, both families gain utility a. If one
family is ex-post and the other is pre-committed, the ex-post family gains utility b,
and the pre-committed family gains utility c. If both families are pre-committed, both
families gain utility d. The payoffs a, b, c, and d in the following payoff matrix are
the outcome of the subgame perfect equilibrium we derive in the next section. The
payoff matrix is summarized as follows:

family 2
ex-post pre-committed

family 1 ex-post a, a b, c
pre-committed c, b d, d

(6)

In this study, we analyze the conditions that improve the timing of the families’ strate-
gies. To see the change of population status dynamically, we analyze two dynamics:
replicator dynamics and best-response dynamics, which are used in the analysis of
the evolutionary game. For simplicity, the payoffs in (6) which is obtained from the
subgame perfect equilibrium of two-stage game are used to analyze the evolutionary
game dynamics, replicator dynamics and best-response dynamics.

3 Subgame Perfect Equilibrium

We obtain a subgame perfect equilibrium for three types of two-stage games which
we describe in the previous section and calculate the values of the payoffs a, b, c,
and d in the payoff matrix (6) in the following subsections.

3.1 Both Families are Ex-post

If two ex-post families are randomly drawn from the population, both gain utility a in
the payoff matrix (6). We compute the value of a in this subsection. Using backward
induction, parents maximize their utility (1) subject to (4) and (5) at the second stage.
Assuming interior solutions, the first-order conditions are
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∂Ui
p

∂gip
= −r

yip − π i − gip
+ 1 − r + α(1 − s)

G
= 0, i = 1, 2, (7)

∂Ui
p

∂π i
= −r

yip − π i − gip
+ αs

yik + π i − gik
= 0, i = 1, 2. (8)

Solving (7) and (8) for gip and π i , using (3) yields

gip = (1 + α)(yip + yik) − (r + αs)(y j
p + y j

k )

1 + α(1 + s) + r
− gik, i = 1, 2, (9)

π i = αs(yip + y j
p + y j

k ) − (1 + α + r)yik
1 + α(1 + s) + r

+ gik, i = 1, 2. (10)

At the first stage, the children maximize their utility (2) subject to (5) and taking into
accounts parents’ reactions (9) and (10). Assuming interior solutions, the first order
conditions are 2

∂Ui
k

∂gik
= s

yik + π i (gik) − gik

(
dπ i (gik)

dgik
− 1

)

+ 1 − s

gik + gip(g
i
k) + g j

p + g j
k

(
dgip(g

i
k)

dgik
+ 1

)
= 0, i = 1, 2. (11)

Substituting (9) into (3), we obtain

G = 1 + α − r − αs

1 + α + r + αs
Y,

where Y = ∑
i = 12

(
yip + yik

)
.cip is obtained by substituting (9) and (10) into (4):

cip = r

1 + α + r + αs
Y, i = 1, 2.

cik is obtained by substituting (10) into (5):

cik = αs

1 + α + r + αs
Y, i = 1, 2.

Using (1), finally, a in the payoff matrix (6) is:

2Equation (11) are constantly ∂Ui
k/∂g

i
k = 0 because dπ i (gik)/dg

i
k = 1 and dgip(g

i
k)/dg

i
k = −1 for

i = 1, 2, by (9) and (10). Then, (11) holds for any value gik > 0. Then indeterminacy occurs for
transfers and contributions to public goods.
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a = Ui
p = ln

(
r

1 + α + r + αs
Y

)r (
1 + α − r − αs

1 + α + r + αs
Y

)1−r

+ α ln

(
αs

1 + α + r + αs
Y

)s (
1 + α − r − αs

1 + α + r + αs
Y

)1−s

. (12)

3.2 Both Families are Pre-committed

If two pre-committed type families are drawn from the population, they both have
utility d in the payoff matrix (6). We compute the value of d as previous subsection:

d = ln

(
r

1 + α + r
Y

)r (
(1 + α − r)(1 − s)

(1 + α + r)(1 + s)
Y

)1−r

+ α ln

(
(1 + α − r)s

(1 + α + r)(1 + s)
Y

)s (
(1 + α − r)(1 − s)

(1 + α + r)(1 + s)
Y

)1−s

. (13)

3.3 One Ex-post Family and One Pre-committed Family

If one ex-post family and one pre-committed family are drawn from the population,
the ex-post family gains utility b and the pre-committed type family gains utility c in
the payoff matrix (6). We compute the values of b and c in this subsection. Without
loss of generality, we consider that family 1 as the ex-post type family and family 2
as the pre-committed type family. Using backward induction, the parent of family 1
and the child of family 2maximize their utility at the second stage. Assuming interior
solutions, the first-order conditions are the same as (7) and (8) for i = 1 and (11) for
i = 2. Solving these for g1p, π

1 and g2k , we obtain

g1p = (1 − s)(r + αs)(g2p + π2 + y2k ) − (1 + α − r − αs)(y1p + y1k )

−1 − α + rs + αs2
− g1k , (14)

π1 = −αs(1 − s)(g2p + π2 + y1p + y2k ) + (1 + α − rs − αs)y1k
−1 − α + rs + αs2

+ g1k , (15)

g2k = −(1 + α)(1 − s)(π2 + y2k ) + s(1 + α − r − αs)(g2p + y1p + y1k )

−1 − α + rs + αs2
. (16)

At the first stage, given (14)–(16), the child of family 1 and the parent of family 2
maximize their utility. Assuming interior solutions, the first-order conditions are
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∂U 1
k

∂g1k
= s

y1k + π1(g1k , g
2
p, π

2) − g1k

(
∂π1(g1k , g

2
p, π

2)

∂g1k
− 1

)

+ 1 − s

g1k + g1p(g
1
k , g

2
p, π

2) + g2p + g2k (g
1
k , g

2
p, π

2)

×
(

∂g1p(g
1
k , g

2
p, π

2)

∂g1k
+ ∂g2k (g

1
k , g

2
p, π

2)

∂g1k
+ 1

)
= 0, (17)

∂U 2
p

∂g2p
= −r

y2p − π2 − g2p
+ αs

y2k + π2 − g2k

(
−∂g2k (g

1
k , g

2
p, π

2)

∂g2p

)

+ α(1 − s) + 1 − r

g1k + g1p(g
1
k , g

2
p, π

2) + g2p + g2k (g
1
k , g

2
p, π

2)

×
(
1 + ∂g1p(g

1
k , g

2
p, π

2)

∂g2p
+ ∂g2k (g

1
k , g

2
p, π

2)

∂g2p

)
= 0, (18)

∂U 2
p

∂π2
= −r

y2p − π2 − g2p
+ αs

y2k + π2 − g2k

(
1 − ∂g2k (g

1
k , g

2
p, π

2)

∂π2

)

+ α(1 − s) + 1 − r

g1k + g1p(g
1
k , g

2
p, π

2) + g2p + g2k (g
1
k , g

2
p, π

2)

×
(

∂g1p(g
1
k , g

2
p, π

2)

∂π2
+ ∂g2k (g

1
k , g

2
p, π

2)

∂π2

)
= 0. (19)

For (17), ∂Ui
k/∂g

i
k = 0 holds. For (18) and (19),

−∂g2k (g
1
k , g

2
p, π

2)

∂g2p
= 1 − ∂g2k (g

1
k , g

2
p, π

2)

∂π2
= s(1 + α − r − αs)

1 + α − rs − αs2

and

1 + ∂g1p(g
1
k , g

2
p, π

2)

∂g2p
+ ∂g2k (g

1
k , g

2
p, π

2)

∂g2p

= ∂g1p(g
1
k , g

2
p, π

2)

∂π2
+ ∂g2k (g

1
k , g

2
p, π

2)

∂π2
= − 1 − s

1 + α − r − αs

hold, such that, (18) and (19) can be combined to produce a single equation as follows:
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−r

y2p − π2 − g2p
+ αs2(1 + α − r − αs)

(y2k + π2 − g2k )(1 + α − rs − αs2)

− 1 + α − rs − αs2

(g2p + π2 + y2k + y1p + y1k )(1 + α − r − αs)
= 0. (20)

Substituting (16) into (20) and solving for π2 + g2p,

g2p + π2 = −r(y2k + y1p + y1k ) + (1 + α − r)y2p
1 + α

, (21)

Substituting (14), (16) and (21) into (3) provides,

G = (1 + α − r)(1 + α − r − αs)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y.

We can solve this as follows:

c1p = r(1 + α − r)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y,

c2p = r

1 + α
Y.

Therefore, the payoffs b and c in the payoff matrix (6) are respectively given by,

b = ln

(
r(1 + α − r)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)r

×
(

(1 + α − r)(1 + α − r − αs)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)1−r

+ α ln

(
αs(1 + α − r)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)s

×
(

(1 + α − r)(1 + α − r − αs)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)1−s

, (22)

c = ln

(
r

1 + α
Y

)r (
(1 + α − r)(1 + α − r − αs)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)1−r

+ α ln

(
s(1 + α − r)(1 + α − r − αs)

(1 + α)(1 + α − rs − αs2)
Y

)s

×
(

(1 + α − r)(1 + α − r − αs)(1 − s)

(1 + α)(1 + α − rs − αs2)
Y

)1−s

. (23)
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4 Replicator Dynamics

In this section, we analyze for replicator dynamics which is well known as the
basic evolutionary dynamics literature. For replicator dynamics, the change in the
population share of playerswho take a certain strategy is determined by the difference
between the average payoff by the strategy and the average payoff of the population.
If the average expected payoff of the strategy is larger (smaller) than that of the
population, then the share of the strategy of the next generation will be increasing
(decreasing). For time period t = 1, 2, . . . , replicator dynamics is

x(t + 1) = x(t)
ax(t) + b(1 − x(t))

x(t){ax(t) + b(1 − x(t))} + (1 − x(t)){cx(t) + d(1 − x(t))} .
(24)

Therefore, the stationary points of this dynamics are in the case of −a + b + c −
d �= 0,

x∗ = 0, 1,
b − d

−a + b + c − d
.

If 0 < (b − d)/(−a + b + c − d) < 1, then this dynamics has an interior stationary
point. This interior stationary point means that mixed state of both ex-post type
families and pre-committed type families are coexisting.We show the conditions that
the replicator dynamics (24) has an interior unstable stationary point. For stability,
we define some stability notions according to Samuelson [3] as follows.

StabilityThe state x∗ ∈ X is a stationary state of difference equation x(t + �t) −
x(t) = f (x) defined on X ⊂ R

n if f (x∗) = 0. x∗ is stable if it is a stationary point
with the property that for every neighborhood V of x∗, there exists a neighborhood
U ⊂ V with the property that if an initial state x0 ∈ U , then the solution of (24)
x(x0, t) ∈ V for all t > 0. And x∗ is asymptotically stable if it is stable and there
exists a neighborhood W of x∗ such that x0 ∈ W implies limt→∞ x(x0, t) = x∗.

First,we illustrate combinations (r, s)which satisfiesb − d < 0 and c − a < 0 for
α = 0.1, 0.2, . . . , 0.9 graphically. In the following nine figures, the horizontal axis
indicates r and the vertical axis indicates s. The blue region is plotted for b − d > 0
and the red region is set for c − a > 0, so the white region indicates b − d < 0 and
c − a < 0. (24) has an interior unstable stationary point x∗ = (b − d)/(−a + b +
c − d) for (r, s) in the whiteregion. As shown, there is almost no area where b − d >

0 and c − a > 0 are overlapping. This implies that the interior stationary point of (24)
is almost unstable. Although we can not provide a mathematically rigorous proof,
we concentrate on the condition which the interior unstable stationary point exists,
b − d < 0 and c − a < 0. Furthermore, by (24), x∗ = 0, 1 are asymptotically stable.
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Fig. 1 The region (r, s) for replicator dynamics

These figures show a trend for this dynamics. The region (r, s) satisfying
b − d < 0 expands, and the region (r, s) satisfying c − a < 0 shrinks asα increases.3

The payoff b is the payoff of ex-post and the payoff d is the payoff of pre-committed
if the opponent family takes pre-committed, as we see the payoff matrix (6), and
b − d is the payoff difference. b − d < 0 implies that if the opponent family takes
pre-committed, then pre-committed is better than ex-post. Since the region (r, s) sat-

3Wecalculate the area forb − d < 0 and c − a < 0, thewhite region inFig. 1.By simple calculation,
we find the tendency that the blue region b − d > 0 shrinks and the red region c − a > 0 as α

increases.
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isfying b − d < 0 expands as α increases, this tendency implies that if the parent is
more altruistic toward her own child, the region (r, s) satisfying that pre-committed
tends to be better than ex-post expands if the opponent is pre-committed. The pay-
off ais the payoff of ex-post and the payoff c is the payoff of pre-committed if the
opponent family takes ex-post, as we see the payoffmatrix (6), and c − a is the payoff
difference. c − a < 0 implies that if the opponent family takes ex-post, then ex-post
is better than pre-committed. Since the region (r, s) satisfying c − a < 0 shrinks
as α increases, this tendency implies that if the parent is more altruistic toward her
own child, the region (r, s) satisfying that pre-committed tends to be better than ex-
post expands if the opponent is pre-committed. That is, if the parent is more altruistic
toward her own child, the region (r, s)satisfying that pre-committed tends to be better
than ex-post expands.

Second, we give the conditions for (r, s) that analytically satisfies b − d < 0 and
c − a < 0, respectively.

Lemma 1 If 1−s
2s < r < 1 and s0 < s < 1√

3
where s0 ∈ (0, 1) is one real solution

for s30 + s20 + s0 − 1 = 0, then b − d < 0.

Proof From (13) and (22), we can compute b − d as follows:

b − d = αs ln α − (1 + α) ln(1 + α) + r ln(1 + α − r) + (1 + α) ln(1 + α + r)

+(r + αs) ln(1 − s) + (1 + α − r) ln(1 + s)

+(1 + α − r − αs) ln(1 + α − r − αs)

−(1 + α) ln(1 + α − rs − αs2), (25)

If the parameter representing the strength of preference for private goods in the util-
ity function of the child, s = 0, b − d = (1 + α)(−2 ln(1 + α) + ln(1 + α − r) +
ln(1 + α + r)) < 0. Differentiating (25) by s yields

∂(b − d)

∂s
= − α + 1 + α − r

1 + s
− r + αs

1 − s
+ (1 + α)(r + 2αs)

1 + α − rs − αs2

+ α ln α + α ln(1 − s) − α ln(1 + α − r − αs)

= 1 + α − r − αr − s − αs − rs + 2r2s − αs2 + 3αrs2 − αs3

(1 − s)(1 + s)(1 + α − rs − αs2)

+ α ln
α(1 − s)

1 + α − r − αs
.

Because ln α(1−s)
1+α−r−αs < 0, the sufficient condition for ∂(b − d)/∂s to be negative is

as follows:

1 + α − r − αr − s − αs − rs + 2r2s − αs2 + 3αrs2 − αs3 < 0. (26)

From (26), we obtain
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1 + α − r − αr − s − αs − rs + 2r2s − αs2 + 3αrs2 − αs3

= α(r(3s2 − 1) − (s3 + s2 + s − 1)) + (1 − r)(1 − s − 2rs).

This is negative if

3s2 − 1 < 0, s3 + s2 + s − 1 > 0and 1 − s(2r + 1) < 0.

Let

f (s) = s3 + s2 + s − 1.
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f (s) = 0 has one real solution s0 ∈ (0, 1) satisfying f (s0) = 0:

s0 = 1

3

(
− 1 − 2

(17 + 3
√
33)

1
3

+ (17 + 3
√
33)

1
3

)
≈ 0.5437.

f (s) > 0 for s0 < s. Furthermore, 3s2 − 1 < 0 for 0 < s < 1√
3
and 1 − s − 2rs < 0

for 1−s
2s < r . That is,

s0 < s <
1√
3

and
1 − s

2s
< r < 1. (27)

is the sufficient condition for b − d < 0. �
Lemma1 shows the sufficient condition for b − d < 0. If b − d < 0,the replica-

tor dynamic (24) has no interior stable stationary point regardless of c − a. As we
see the figures in Fig. 1, there is almost no area where b − d > 0 and c − a > 0 are
overlapping, and the interior stationary point of (24) is almost unstable. Although
we can not provide a mathematically rigorous proof, we provide the sufficient con-
dition which the interior unstable stationary point exists, b − d < 0 and c − a < 0.
Lemma 2 shows the sufficient condition for c − a < 0. Here, similarly, the replicator
dynamic has no interior stable stationary point.

Lemma 2 If r < s and r < r0(s) where r = r0(s) as the value of r that satisfies
limα→0(c − a) = 0, then c − a < 0 for sufficiently small α > 0.

Proof From (12) and (23), we can derive the following:

c − a = −αs ln α − (1 + α) ln(1 + α) + (1 + α − r) ln(1 + α − r)

+ (1 + α − r − αs) ln(1 − s) + αs ln(1 + α − r − αs)

+ (1 + α) ln(1 + α + r + αs)

− (1 + α − r) ln(1 + α − rs − αs2). (28)

Differentiating (28) by r yields

∂(c − a)

∂r
= Ω−1K + ln

(1 + α − rs − αs2)

(1 + α − r)(1 − s)
.

where
Ω = (1 + α − r − αs)(1 + α + r + αs)(1 + α − rs − αs2),

and

K = − r − 2αr − α2r + r2 + αr2 + s + αs − α2s − α3s

− rs − αrs + αrs2 + α2rs2 + α2s3 + α3s3.
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Consider the case where α is sufficiently close to 0. Then,

lim
α→0

(c − a) = (1 − r) ln(1 − r) + ln(1 + r) + (1 − r) ln(1 − s) − (1 − r) ln(1 − rs),

lim
r→0

( lim
α→0

(c − a)) = ln(1 − s) < 0, lim
r→1

( lim
α→0

(c − a)) = ln 2 > 0,

and

lim
α→0

∂(c − a)

∂r
= −1 + 1

1 + r
+ (1 − r)s

1 − rs
− ln(1 − r) − ln(1 − s) + ln(1 − rs)

= s − r

(1 + r)(1 − rs)
+ ln

1 − rs

(1 − r)(1 − s)
.

Here, limα→0
∂(c−a)

∂r > 0 if r < s. Hence, if r < s and α is sufficiently close to 0, then
there exists r = r0(s) as the value of r that satisfies limα→0(c − a) = 0. If r < r0(s),
limα→0(c − a) < 0. For r , the sufficient condition of c − a < 0 with α = 0 is

r < s and r < r0(s). (29)

Thus, there exists ᾱ > 0such that c − a < 0 under (29) for 0 < α < ᾱ. �
Theorem 1 Assume that 1−s

2s < r < s, r < r0(s) and s0 < s < 1√
3
. There exists suf-

ficiently small ᾱ > 0 such that for 0 < α < ᾱ, the replicator dynamic (24) has an
interior unstable stationary point.

Proof Because 1−s
2s < s for s satisfying (27), by Lemmas1 and 2, the sufficient

condition satisfying (27) and (29) is

s0 < s <
1√
3

and
1 − s

2s
< r < min{s, r0(s)}.

If 0 < (b − d)/(−a + b + c − d) < 1, this dynamic has an interior stationary point.
If−a + b + c − d < 0, b − d < 0 and c − a < 0 are the conditions for this dynamic
to have an interior unstable stationary point:

x∗ = b − d

−a + b + c − d
,

where b − d is (25) and c − a is (28) for sufficiently small α > 0. �
Remark 1 We present an example with parameter values that satisfy the hypothesis
of Theorem 1. Let s = 0.55, r = 0.5, α = 0.01. Then, b − d ≈ −0.1660, c − a ≈
−0.1557, 1−s

2s ≈ 0.4091, r0(s) ≈ 0.6434. For these values, the replicator dynamic
(24) has the interior unstable stationary point x∗ ≈ 0.5160.
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Fig. 2 The best-response
dynamics

5 Best-Response Dynamics

In this section, we analyze the best-response dynamics. For best-response dynamics,
the change in the population share of playerswho take a certain strategy is determined
by the difference between the average payoff by the strategy and the average payoff
of the other strategy’s average payoff. If the average expected payoff of the strategy
is larger (smaller) than that of the antagonistic strategy, then the share of the strategy
of the next generation will be increasing (decreasing). For time period t = 1, 2, ...,
best-response dynamics is

x(t + 1) = 1

t + 1
BR(x(t), 1 − x(t)) + t

t + 1
x(t). (30)

Therefore, the stationary points of this dynamics are in the case of −a + b + c −
d �= 0,

x∗ = 0, 1,
b − d

−a + b + c − d
.

We apply the argument in the previous section to the existence condition of an
interior unstable stationary point. As shown in the previous section, this dynamic
has an interior unstable stationary point if b − d < 0 and c − a < 0. The following
figure shows this dynamics. According to the figure, x = 0, 1 are asymptotically
stable stationary points (Fig. 2).

The best-response dynamics in this section contains a instantaneous learning
process. Fudenberg and Levine [2] denote “fictitious play” to suppose that players
choose their actions to maximize the period’s expected payoff given their prediction
or assessment of the distribution of the opponent’s actions in that period. In our
model, the monitoring process corresponds to this notion. If a family obtains the cor-
rect information for the strategy distribution of the society, the family can change its
strategy to the best-response one instantaneously. Although the replicator dynamics
in the previous section does not have such a instantaneous learning process, it has
inertia, i.e., partially weak rationality through the comparison to the group’s average
payoff.

Conclusion

This paper has shown two evolutionary dynamics of a subgame perfect solution for a
two-stage gamewhere two families privately contribute to public goods. Each family
contains an altruistic parent and a selfish child, and the parent makes a non-negative
income transfer to her own child; moreover, they act sequentially. In our model,
replicator and best-response dynamics show that in the society, the coexistence of an
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ex-post transfer-type family and a pre-committed transfer-type family is not stable,
whereas a monomorphic state (i.e., all families are ex-post or all families are pre-
committed) is stable.4 If altruism is sufficiently weak, income redistribution does not
change the results of both evolutionary game approaches, because they depend on
total income Y and not individual income distribution (y1p, y

1
k , y

2
p, y

2
k ). This means

that any income redistribution policies may not affect the results. We believe it is
important to analyze policies incorporating the gift tax and the inheritance tax into
the model in future research. And it is an open question whether it can be applied in
a more or slightly general utility function.
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On the Periodic Behavior of a System
of Piecewise Linear Difference Equations

W. Tikjha and E. Lapierre

Abstract In this article we consider the following system of piecewise linear dif-
ference equations: xn+1 = |xn| − yn − 1 and yn+1 = xn + |yn| − 1 where the initial
condition (x0, y0) is an element of {(x, 0) : x > 3

2 } and x0 is not in a sequence of

intervals Bn = {x : 22n+1−1
22n < x ≤ 22n+2−1

22n+1 } for any integer n. We show that the solu-
tion to the system is eventually one of two particular prime period 4 solutions.

Keywords Difference equation · Periodic solution · Piecewise linear system

1 Introduction

For the convenience of the reader we are including the following definitions [3]. A
system of difference equations of the first order is a system of the form

⎧
⎨

⎩

xn+1 = f (xn, yn)
, n = 0, 1, ...

yn+1 = g(xn, yn)
(1)

where f and g are continuous functions which map R2 into R.
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A solution of the system of difference equations (1) is a sequence {(xn, yn)}∞n=0
which satisfies the system for all n ≥ 0. If we prescribe an initial condition

(x0, y0) ∈ R2

then
{
x1 = f (x0, y0)
y1 = g(x0, y0)

{
x2 = f (x1, y1)
y2 = g(x1, y1)

...

and so the solution {(xn, yn)}∞n=0 of the system of difference equations (1) exists for
all n ≥ 0 and is uniquely determined by the initial condition (x0, y0).

A solution of the system of difference equations (1) which is constant for all n ≥ 0
is called an equilibrium solution. If

(xn, yn) = (x̄, ȳ) for all n ≥ 0

is an equilibrium solution of the system of difference equations (1), then (x̄, ȳ) is
called an equilibrium point, or simply an equilibrium of the system of difference
equations (1).

A solution {(xn, yn)}∞n=0 of the systemof difference equations (1) is called periodic
with period-p (or a period-p solution) if there exists an integer p ≥ 1 such that

(xn+p, yn+p) = (xn, yn) for all n ≥ 0. (2)

We say that the solution is periodic with prime period-p if p is the smallest positive
integer for which (2) holds. In this case, a p-tuple

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xn+1, yn+1

xn+2, yn+2

xn+3, yn+3
...

xn+p, yn+p

⎞

⎟
⎟
⎟
⎟
⎟
⎠

of any p consecutive values of the solution is called a p-cycle of the system of
difference equations (1).

A solution {(xn, yn)}∞n=0 of the system of difference equations (1) is called even-
tually periodic with period-p if there exists an integer N ≥ 0 such that {(xn, yn)}∞n=N
is periodic with period-p; that is,
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(xn+p, yn+p) = (xn, yn) for all n ≥ N . (3)

Known methods to determine the local asymptotic stability and global stability
are not easily applied to piecewise systems. This is why two of the most famous
and enigmatic systems of difference equations are piecewise: the Lozi Map and the
Gingerbread Man Map. See Ref. [1–3, 5, 6].

In 2008, Gerry Ladas andEdGrove constructed the following family of systems of
piecewise linear difference equations to gain a better understanding of such enigmatic
systems ⎧

⎨

⎩

xn+1 = |xn| + ayn + b
, n = 0, 1, . . .

yn+1 = xn + c|yn| + d
(4)

where the initial condition (x0, y0) ∈ R2 and the parameters a, b, c, and d ∈ {−1,
0, 1}. We believe these 81 systems are prototypes that will help us understand the
global behavior of more complicated systems. See Ref. [3, 4, 7].

After discovering the global behavior of most of the systems, we noticed a few
trends. Over half of the systems have exactly one equilibrium point, while some
have two or three, and the remaining systems either have none or have infinitely
many (which usually reside on a line). About a third have periodic solutions. The
periodiciticies are 2, 3, 4, 5, 6, 9, and no other.

We were able to generalize a few systems. That is, we know the global behavior
of some systems when one or more parameters are elements ofR+, not just elements
of {−1, 0, 1} such as in the article [8].

In this paper, we consider a special case of the system above, specifically

⎧
⎨

⎩

xn+1 = |xn| − yn − 1
, n = 0, 1, . . .

yn+1 = xn + |yn| − 1
(5)

where the initial condition (x0, y0) is any element of {(x, 0) : x > 3
2 } and x0 /∈ Bn =

{x : 22n+1−1
22n < x ≤ 22n+2−1

22n+1 } for any integer n. We show that every solution of System
(5) is eventually one of the prime period 4 solutions below:

P4.1 =

⎛

⎜
⎜
⎝

−1, −1
1, −1
1, 1

−1, 1

⎞

⎟
⎟
⎠ or P4.2 =

⎛

⎜
⎜
⎝

1, −3
3, 3

−1, 5
−5, 3

⎞

⎟
⎟
⎠ .
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2 Main Results

Theorem 1 Let {(xn, yn)}∞n=0 be a solution of System (5). Let l = {(x, 0) : x > 3
2 }

and Bn = {x : 22n+1−1
22n < x ≤ 22n+2−1

22n+1 }. If (x0, y0) ∈ l and x0 /∈ Bn for any integer n,
then {(xn, yn)}∞n=0 is eventually the prime period 4 solution P4.1 or P4.2.

The proof of this theorem requires the following two remarks.

Remark 1 Let {(xn, yn)}∞n=0 be a solution of System (5). If there is a positive integer
N such that yN = −xN − 2 ≥ 0, then {(xn, yn)}∞n=N+1 is the prime period 4 solution
P4.2.

Proof Suppose that (xN , yN ) satisfies the hypothesis then

xN+1 = |xN | − yN − 1 = −xN + xN + 2 − 1 = 1
yN+1 = xN + |yN | − 1 = xN − xN − 2 − 1 = −3,

as required. ��
Remark 2 Let {(xn, yn)}∞n=0 be a solution of System (5). If there is a positive integer
N such that yN = −xN ≥ 0, then {(xn, yn)}∞n=N+1 is the prime period 4 solution P4.1.

Proof Suppose that (xN , yN ) satisfies the hypothesis then

xN+1 = |xN | − yN − 1 = −xN + xN − 1 = −1
yN+1 = xN + |yN | − 1 = xN − xN − 1 = −1,

as required. ��
We will now begin the proof of the theorem.

Proof Suppose that (x0, y0) ∈ l and x0 /∈ Bn for any integer n. Then

x0 > 3
2

y0 = 0

x1 = |x0| − y0 − 1 = x0 − 1 > 0
y1 = x0 + |y0| − 1 = x0 − 1 > 0

x2 = |x1| − y1 − 1 = −1
y2 = x1 + |y1| − 1 = 2x0 − 3 > 0

x3 = |x2| − y2 − 1 = −2x0 + 3 < 0
y3 = x2 + |y2| − 1 = 2x0 − 5.
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If x0 ∈ [
5
2 ,∞

)
then y3 = 2x0 − 5 ≥ 0. We now apply Remark 1 and we have

(x4, y4) = (1,−3) ∈ P4.2.

If x0 ∈ (
3
2 ,

5
2

)
then we will show that the solution is eventually prime period 4 by

mathematical induction.
For each integer n ≥ 1, let

ln = 22n − 1

22n−1
, un = 22n + 1

22n−1
, mn = 22n+1 − 1

22n
, δn = 22n+1 − 1,

and let P(n) be the following statement:
For x0 ∈ (ln, un),

x4n = 1
y4n = −22nx0 + δn.

If x0 ∈ (ln,mn] then y4n ≥ 0 and so (x4n+2, y4n+2) ∈ P4.1.
If x0 ∈ (mn, un) then y4n < 0 and so

x4n+1 = 22nx0 − δn > 0
y4n+1 = 22nx0 − δn > 0

x4n+2 = −1
y4n+2 = 22n+1x0 − 2δn − 1.

If x0 ∈ (mn, ln+1
]
then x0 ∈ Bn .

If x0 ∈ (ln+1, un) then y4n+2 > 0 and so

x4n+3 = −22n+1x0 + 2δn + 1 < 0
y4n+3 = 22n+1x0 − 2δn − 3.

If x0 ∈ [
un+1, un) then y4n+3 ≥ 0 and so (x4n+4, y4n+4) ∈ P4.2.

If x0 ∈ (ln+1, un+1) then y4n+3 < 0.

We shall first show that P(1) is true.
For x0 ∈ (l1, u1) = (

3
2 ,

5
2

)
and x3 = −2x0 + 3 < 0, y3 = 2x0 − 5 < 0, we have

x4(1) = x4 = |x3| − y3 − 1 = 1
y4(1) = y4 = x3 + |y3| − 1 = −4x0 + 7 = −22(1)x0 + δ1.
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If x0 ∈ (l1,m1] = (
3
2 ,

7
4

]
then y4(1) = −4x0 + 7 ≥ 0 and

x4(1)+1 = x5 = |x4| − y4 − 1 = 4x0 − 7 ≤ 0
y4(1)+1 = y5 = x4 + |y4| − 1 = −4x0 + 7 ≥ 0.

We apply Remark 2, and see that (x6, y6) = (−1,−1) ∈ P4.1.

If x0 ∈ (m1, u1) = (
7
4 ,

5
2

)
then y4(1) = −4x0 + 7 < 0 and so

x4(1)+1 = x5 = |x4| − y4 − 1 = 4x0 − 7 = 22(1)x0 − δ1 > 0
y4(1)+1 = y5 = x4 + |y4| − 1 = 4x0 − 7 = 22(1)x0 − δ1 > 0

x4(1)+2 = x6 = |x5| − y5 − 1 = −1
y4(1)+2 = y6 = x5 + |y5| − 1 = 8x0 − 15 = 22(1)+1x0 − 2δ1 − 1.

If x0 ∈ (m1, l1+1
] = (

7
4 ,

15
8

]
then x0 ∈ B1.

If x0 ∈ (l1+1, u1) = (
15
8 , 5

2

)
then y4(1)+2 = 8x0 − 15 > 0 and so

x4(1)+3 = x7 = |x6| − y6 − 1 = −8x0 + 15 = −22(1)+1x0 + 2δ1 + 1 < 0
y4(1)+3 = y7 = x6 + |y6| − 1 = 8x0 − 17 = 22(1)+1x0 − 2δ1 − 3.

If x0 ∈ [
u1+1, u1) = [

17
8 , 5

2

)
then y4(1)+3 = 8x0 − 17 ≥ 0. We apply Remark 1

and see that (x4(1)+4, y4(1)+4) = (1,−3) ∈ P4.2.
If x0 ∈ (l1+1, u1+1) = (

15
8 , 17

8

)
then y4(1)+3 = 8x0 − 17 < 0.

Therefore P(1) is true, as required.

Suppose P(k) is true for any positive integer k. If x0 ∈ (lk+1, uk+1) =(
22k+2−1
22k+1 , 22k+2+1

22k+1

)
then

x4k+3 = −22k+1x0 + 2δk + 1 < 0
y4k+3 = 22k+1x0 − 2δk − 3 < 0.

So we have

x4(k+1) = x4k+4 = |x4k+3| − y4k+3 − 1 = 1
y4(k+1) = y4k+4 = x4k+3 + |y4k+3| − 1 = −22k+2x0 + 4δk + 3 = −22(k+1)x0 + δk+1.

If x0 ∈ (lk+1,mk+1
] =

(
22k+2−1
22k+1 , 22k+3−1

22k+2

]
then y4(k+1) = −22(k+1)x0 + δk+1 ≥ 0,

and so

x4(k+1)+1 = x4k+5 = |x4k+4| − y4k+4 − 1 = 22(k+1)x0 − δk+1 ≤ 0
y4(k+1)+1 = y4k+5 = x4k+4 + |y4k+4| − 1 = −22(k+1)x0 + δk+1 ≥ 0.

We apply Remark 2, and see that (x4k+6, y4k+6) = (−1,−1) ∈ P4.1.
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If x0 ∈ (mk+1, uk+1) =
(
22k+3−1
22k+2 , 22k+2+1

22k+1

)
then y4(k+1) = −22(k+1)x0 + δk+1 < 0,

and so

x4(k+1)+1 = x4k+5 = |x4k+4| − y4k+4 − 1 = 22(k+1)x0 − δk+1 > 0
y4(k+1)+1 = y4k+5 = x4k+4 + |y4k+4| − 1 = 22(k+1)x0 − δk+1 > 0

x4(k+1)+2 = x4k+6 = |x4k+5| − y4k+5 − 1 = −1
y4(k+1)+2 = y4k+6 = x4k+5 + |y4k+5| − 1 = 22(k+1)+1x0 − 2δk+1 − 1.

If x0 ∈ (mk+1, lk+2
] =

(
22k+3−1
22k+2 , 22k+4−1

22k+3

]
then x0 ∈ Bk+1.

If x0 ∈ (lk+2, uk+1) =
(
22k+4−1
22k+3 , 22k+2+1

22k+1

)
then

y4(k+1)+2 = 22(k+1)+1x0 − 2δk+1 − 1 > 0, and so

x4(k+1)+3 = x4k+7 = |x4k+6| − y4k+6 − 1 = −22(k+1)+1x0 + 2δk+1 + 1 < 0
y4(k+1)+3 = y4k+7 = x4k+6 + |y4k+6| − 1 = 22(k+1)+1x0 − 2δk+1 − 3.

If x0 ∈ [
uk+2, uk+1) =

[
22k+4+1
22k+3 , 22k+2+1

22k+1

)
then

y4(k+1)+3 = 22(k+1)+1x0 − 2δk+1 − 3 ≥ 0. We apply Remark 1, and see that
(x4(k+1)+4, y4(k+1)+4) = (1,−3) ∈ P4.2.

If x0 ∈ (lk+2, uk+2) =
(
22k+4−1
22k+3 , 22k+4+1

22k+3

)
then

y4(k+1)+3 = 22(k+1)+1x0 − 2δk+1 − 3 < 0.

Therefore P(k + 1) is true. By mathematical induction P(n) is true for any pos-
itive integer n.

We note that
lim
n→∞ ln = lim

n→∞ un = lim
n→∞mn = 2.

When (x0, y0) = (2, 0) we have (x1, y1) = (1, 1) ∈ P4.1. Hence we can conclude
that the solution to System (5) is eventually one of the two prime period 4 solutions
P4.1 or P4.2 for every initial condition (x0, y0) such that (x0, y0) ∈ {(x, 0) : x > 3

2 }
and x0 /∈ Bn . ��

3 Discussion and Conclusion

In this paper we showed that for any initial condition on a specific region of the
positive x-axis the solution of System (2) will be one of two specific prime period
4 solutions. We would like to share our conjecture for the global behavior of this
system.
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Set

P3.1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1

3
, −1

1

3
, −1

3

−1

3
, −1

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, P3.2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3

5
,

1

5

−3

5
, −1

5

−1

5
, −7

5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

P4.1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1, −1

1, −1

1, 1

−1, 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, and P4.2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1, −3

3, 3

−1, 5

−5, 3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Conjecture Let {(xn, yn)}∞n=0 be a solution of System (2) with (x0, y0) ∈ R2. Then
{(xn, yn)}∞n=0 is the unique equilibrium

(− 1
5 ,− 3

5

)
, or eventually the prime period 3

solution P3.1 or P3.2, or the prime period 4 solution P4.1 or P4.2.
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