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1 Introduction

In industrial settings production effectiveness and efficiency is paramount. Over the

last 50 years automation and robotics massively changed how goods are manufac-

tured. It is foreseen that over the next decade a further revolutionary shift to more

flexible production systems will happen, as outlined in the smart factory [35] and

Industry 4.0 [27] initiatives. However in most domains production is not fully auto-

mated and human workers still play an essential role. For example in the car industry,

human workers are cooperating with robots in complex assembly processes. With

individualized products many variants are produced in the same production line at

the same time. Also, as storage costs are increasing, ordered products are produced

on demand—just when they were ordered. This process is called lean manufacturing.

However, in such flexible production environments where many different variants

of a product are assembled, the task of the worker becomes more and more com-

plex. Humans are creative and have great skill for manipulating objects. However

dealing with large number of variants is cognitively demanding and typically high

level instructions are required (this screw should be attached to this part). Low level

instructions (e.g. how to hold the screw, how to insert it into a hole, how to hold

the screw driver, etc.) are not required as these motor-cognitive tasks are simple for

humans (in contrast to a robot) [48]. Workers have to understand which variant they

are creating and what steps are required. With small lot sizes and frequent changes,

classical training and teaching approaches do not scale. Neither learning all possible

variants upfront, nor getting a traditional training session each time the product on

the assembly line changes is a viable option. The method of choice is to provide the

information required for the production when the worker needs them.
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In traditional production with large lot sizes and a small number of variants it

was useful and cost-effective to create training and information material upfront.

Depending on the task and environment assembly manuals were created as paper-

based instructions or videos. More recently assembly instructions were also cre-

ated for in-situ systems, e.g. Pick-by-Light [21] or Augmented Reality (AR) systems

[3, 8, 42]. The cost for creating instructions can be divided by the number of products

created based on this instruction. Consider the following example of assembling a

refurbished starter for a car (similar to the one used in the study). The average assem-

bly time for the product by a worker is about 3 min. If we assume the creation of a

traditional tutorial video, this will take 120 min, creating written instructions takes

60 min, and for a set of instruction based on demonstration we estimate 6 min. For a

lot size of 10.000 the cost of creating the instruction is less of an issue as the assem-

bly time will be the major cost factor. However for a lot size of 20 it is clear that the

creation of instructions becomes a major issue. Skill acquisition for individuals and

skill transfer within the workforce becomes more important and a major factor for

competitiveness in flexible production environments. In our research, we envision

that skills of workers can be captured with little or no effort and can be transferred

to others to pick them up with little effort. Continuing the example from above, we

assume that for the starter with the lot size of 20 a skilled worker would do one

assembly to remind herself of the best way of doing it, then she would assemble a

second one where the system is used to record the assembly, and then the remaining

18 starters could be assembled by untrained workers. In this chapter, we empiri-

cally compare two approaches for recording and using of the instructional material:

videos and interactive assembly instructions, which are semantically rich and where

the information is embedded and presented step by step.

Extending our previous system [16, 17], we have developed a functional system

that automatically generates these interactive assembly instructions using the Pro-

gramming by Demonstration (PbD) approach (Fig. 1). While the user demonstrates

Fig. 1 The system provides

visual instructions for

supporting workers during

the assembly of an engine

starter. It highlights the

position where a part should

be assembled and checks if it

is assembled correctly.

Instructions were created

using a simple programming

by demonstration approach
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an assembly task by assembling the parts step by step, our system detects the cur-

rently obtained part and the position where it is assembled. Using this information,

the system automatically creates an assembly instruction, where the semantics of

each step is retained. With this PbD approach, interactive in-situ instructions can be

created almost as fast as recording a video of assembling the product but still retain

all features of interactive instructions. Our approach enables the instructor to phys-

ically show a new workflow to the system, same as it would be shown in front of a

camera or to a new worker. Further, the system can use the recorded information to

provide step-wise instructions using in-situ projection. It highlights the bin where a

part should be picked from and the position where it should be assembled in each

step. Therefore, our system provides a new means for process engineers for creating

interactive instructions and a new way for workers to use assembly instructions. We

believe that this work adds to the area of assistive augmentation by introducing a

stationary assistive system that provides cognitive assistance during assembly tasks.

The contribution of this chapter is threefold: first, we present a system that auto-

matically detects work steps and creates a semantically rich assembly instruction

while an assembly is performed using a depth camera. The system also uses in-

situ projection to provide the steps for assembling a product. Second, we com-

pare video based instructions and Augmented Reality-based step-by-step in-situ

projection. With 32 participants using reproducible tasks of different complexity,

we compare the impact of the different representations for the quality and perfor-

mance of the assembly. The study shows that, especially for more complex assem-

blies, the error rate (ER) decreases, the assembly is faster, and the mental demand is

reduced using in-situ instructions. Third, we investigate the effort required for creat-

ing instructions in a realistic work environment with industrial workers. We present

the findings of a user study with expert users comparing three approaches for creat-

ing assembly instructions: traditional video recording, using a graphical editor, and

automated extraction of instruction using the described systems. The results show

that using our system, assembly instructions can be created faster with less perceived

cognitive load in comparison to using a graphical editor while the effort is compara-

ble to traditional video recording. We validate the created instructions in an industrial

setting with 51 workers in a car production plant.

The chapter is structured as follows: after reviewing the prior work, we present

an interactive assembly system that creates semantically rich assembly instructions

from a demonstration. We describe a laboratory study in which we compare video

based instruction and the in-situ projection. Then two studies in an industrial setting,

one for creating instructions and one for using instructions, are reported. The partic-

ipants in the studies are skilled workers for creating the instructions and unskilled

workers for using the created instructions. As a task, we use the assembly of a refur-

bished car starter. Finally, we finish the chapter with discussing implications.
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2 Related Work

Creating and providing assembly instructions using interactive systems has been the

subject of various research. In the following, we provide an overview in relevant

research areas for creating and presenting interactive assembly instructions, namely,

Programming by Demonstration, projected surfaces, and Augmented Reality.

2.1 Programming by Demonstration

PbD (also referred to as programming by example) was initially proposed to enable

users to record macros without knowing any programming language or writing

code. This approach has been adopted by many application domains which comprise

desktop applications like MS Excel, computer-aided design, and text editing [33].

Thereby, a user’s actions are translated into a textual procedure, which later can

be played back and altered. For example, the Peridot system [37] enables interface

designers to demonstrate how a UI should look like rather than having to program

it. Recently, Kubitza and Schmidt [31] introduced a framework that enables non-

programmers to use PbD to program for smart environments.

The PbD approach is also used to teach new motion sequences to humanoid robots

by recording movements of a human worker. Aleotti et al. [1] reproduce and optimize

measured trajectories of a human worker. The trajectories can then be used to infer

high level actions [6]. After defining actions, the sequence of the actions can be

played back and altered. Instead of programming physical robots, Marinos et al. [36]

use a PbD approach to rapidly create animations for a virtual robot inside a blue or

green box of a virtual studio.

Overall, previous work shows that even non-programmers can use a PbD approach

for creating digital content, programming physical robots, and defining procedures.

This rapid creation of digital content does not need special training as the actions that

are performed by the users are natural actions that users would also do without using

a computer. In our system, combining the PbD approach with interactive surfaces

and AR, we enable users to create interactive projected instructions for humans.

2.2 In-Situ Projection and Interactive Surfaces

Projecting information directly into the interaction space or onto objects has been

used to augment real world objects with digital information or to display infor-

mation in-situ. Pinhanez [38] uses a rotating mirror to create displays out of arbi-

trary surfaces and to augment objects with information. Combining this technology

with a camera, projected surfaces become interactive. In the Touchlight system [44],

Wilson uses two RGB-cameras and computer vision techniques to detect touch input
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on a projected surface. The LuminAR [34] system integrates such a camera-projector

system into an anglepoise lamp. The lamp can project information next to a recog-

nized object on a desk. Furthermore, it can detect performed gestures. On the other

hand, other projects applied in-situ projection to different areas, e.g. the kitchen [32]

or sterile training areas [39].

With the proliferation of depth cameras, sensing interaction on projected surfaces

has become easier. Wilson [45] suggests an algorithm that enables sensing of multi-

touch without using an RGB image. This algorithm was improved and provided as

a framework in the Ubi Displays toolkit [24]. With this toolkit a user can define

multiple touch-enabled areas that have their own projected content. The dSensingNI

project [28] combines Wilson’s algorithm with gestural user inputs in their tabletop

system. Furthermore, they support detecting the presence, volume and orientation

of cubical objects using a top-mounted Kinect. Although dSensingNI is capable of

detecting stacked objects, the system is not able to detect if a construction is correctly

assembled.

Overall, related work showed how to augment physical objects with digital infor-

mation using in-situ projection. Further, user interaction on these projected displays

can be detected using RGB or depth cameras. Our system also uses top projection to

provide in-situ information. Additionally, it can detect if a construction is assembled

correctly using a depth camera and computer vision.

2.3 Providing Assembly Instructions for Training Workers

Videotaping of a manual assembly process is a straightforward approach for creat-

ing assembly instructions, which is used to teach assembly procedures to untrained

workers. These so-called Utility Videos (e.g. Memex
1
) are produced by professional

companies for training unskilled or new workers in a new assembly task. On the

other hand, systems providing interactive AR instructions [11] have been suggested

to assist workers during assembly tasks. For example, Pick-by-Light systems visu-

ally show the worker, where the next part has to be picked from [3], or how a part has

to be assembled [4]. Also Head-Mounted Displays (HMDs) can show the worker the

next part and where the part has to be assembled [10, 23, 42]. More recently, assis-

tance technologies focused on projecting instructions directly into the workers field

of view (e.g. Light Guide Systems
2
). This in-situ projection reduces the complexity

of the given feedback, as it is projected directly into the work space, instead of giv-

ing feedback on an external monitor. Such projected instructions are usually created

using a graphical editor. However, with frequently changing variants of the same

product, creating and maintaining instructions is cumbersome. Instead of being able

to just alter the changed steps of the variant’s workflow, the instructor often needs to

change the whole workflow as even small changes effect succeeding work steps.

1
http://memex-academy.eu/ (last access 03-18-2016).

2
http://www.ops-solutions.com/ (last access 03-18-2016).

http://memex-academy.eu/
http://www.ops-solutions.com/
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2.4 Augmented Reality in Assembly

Industrial Augmented Reality (IAR) is now almost always present in a manufactured

product’s life-cycle. Experiencing a designed product can be done immediately [13],

industrial robots cooperating with human workers can be programmed using AR-

debugging approaches [12], order picking can be supported using HMDs [22] or

projector carts [21], and maintaining existing machines and products can be sup-

ported directly on site [46]. Workers can even be motivated during the work tasks by

using IAR for gamification [30].

Prior work has used AR to provide assembly instructions. An overview about this

topic is presented by Büttner et al. [9]. A strand of work has augmented parts of a

product with sensors. Antifakos et al. [2] use instrumented tools and assembly parts

to infer a user’s current action and suggest proactive instructions for assembling an

IKEA PAX wardrobe. Compared to a printed manual, their system can dynamically

react upon a user’s action as it is aware of all possible assembly orders rather than

printing one fixed order. However, integrated sensors may influence the design of

the product.

Instead of augmenting the assembly parts, other research proposed mobile sys-

tems for displaying interactive assembly instructions by augmenting the users with

sensors. For example, Ward et al. [43] equip the user with body worn microphones

and accelerometers to infer the user’s current activity in an assembly environment.

Even when combining multiple features [7] to recognize an activity more reliably, a

body worn system unfortunately cannot detect if a part is assembled correctly.

Using HMDs is another approach that has been explored to display assembly

instructions during work tasks [11]. It has been shown that it can reduce the task

completion time (TCT) and mental workload [42]. This concept has been adapted to

several domains. Through a user study, Henderson et al. [26] report that users have

less head movements using HMD-based AR instructions while repairing a vehicle.

Zauner et al. [47] use AR markers to provide assembly instructions on a HMD for

assembling furniture. Salonen et al. [40] are also using a marker approach while

experimenting control modalities. However, overall the feedback on these assembly

instruction systems has to be explicitly advanced to the next work step.

While the aforementioned approaches are for mobile settings, assisting systems

for stationary setups have been explored, too. For example, Bannat et al. [3] present

a framework using a top-mounted RGB camera to detect bins automatically based on

their color and shape. Once the position of the bins in known, their system uses the

RGB camera to detect the position of the worker’s hand. In their system assembly

instructions are shown on a monitor close to the work area. The system highlights

the next bins to pick from using a top-mounted projector. Korn et al. [29] extends

this approach by using a top-mounted depth camera instead of a RGB camera and a

top-mounted projector in production environments. The position of the bins and the

position of an assembled part have to be defined manually using a graphical editor.

Their system then highlights the bin to pick from. As their system cannot automat-

ically detect the correct assembly in each step, it uses projected buttons that the
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user can manually advance the projection to next step. Recently, Funk et al. [16, 17]

investigated the potentials of using in-situ projected instructions at the workplace to

support workers with cognitive impairments. They found that using in-situ projected

instructions workers with cognitive impairments can assemble more complex prod-

ucts without increasing the time or errors per work step. Further, they found that

using a simple contour-based highlighting as assembly instruction is perceived as

better than video, pictorial, and no instructions [19].

Overall, previous work suggests using a setup consisting of a top-mounted projec-

tor and a depth camera to display instructions using in-situ projection. In our system,

we also use that setup to detect picking from bins. We additionally use the depth

camera to detect if the assembly is performed correctly. In contrast to prior work,

our system automatically creates in-situ feedback based on a demonstrated assem-

bly and automatically highlights the bin to pick from. Overall, by using PbD, our

system requires no additional effort from the user when creating instructions except

assembling the product.

3 Instructions Creation Through Demonstration

We developed an interactive system for creating and providing semantically-rich

assembly instructions, which uses the concept of PbD to create instructions. Hereby,

the system is able to automatically create instructions for an assembly task while it

is being performed. It detects out of which bin a part is picked and where the part

is assembled. During the assembly, the system can project assembly instructions

directly into the work area. Accordingly, it highlights which bin to pick a part from,

and at which place it should be assembled on the workpiece carrier. In the follow-

ing, we give an overview about hardware and software of the system, which is an

extension of the software presented in [16].

3.1 Hardware Setup

We designed our system that it reflects an assembly workplace found in the industry.

Figure 2 shows the system and its components. It consists of a top-mounted projector,

a Kinect depth sensor, a number of bins, and a workpiece carrier. The bins in the back

of the system (Fig. 2c) contain the assembly parts. Tools needed for the assembly task

are placed at the side of the system (Fig. 2e). The steel plate in Fig. 2d is a workpiece

carrier that holds parts during the assembly. In an industry setup, workpiece carriers

are exchanged between work places using a skate wheel conveyor and then are fixed

from below using a pneumatic clasp. We firmly mounted the workpiece carrier on

the table to prevent it from moving while conducting work steps.
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Fig. 2 Our system consists

of four components: a
top-mounted LED-projector,

b kinect for windows, c bins

containing the assembly

parts, and d the workpiece

carrier holding the product.

The area in

e depicts the tool zone

To make our system transportable, we built an aluminum frame which holds the

Kinect, the projector, and the bins. The projector highlights the bin from which the

user should pick a part from, tools that should be used, and the position on the work-

piece carrier where the part has to be assembled. The Kinect detects if a part was

picked from a bin, if a part is assembled correctly, and if a tool is used. The number

of bins, the content of the bins, and the workpiece carrier change according to the

manufactured product and the steps that are performed at the work place. With our

current setup, the system can handle a maximum of eight bins (2 rows × 4 bins) due

to the limited angle of the Kinect which has to cover both work area and the bins.

Our system provides a predefined layout of the bins and a predefined area for putting

tools on the right side of the system. The layout of the bins and the area for putting

tools can be changed and customized using a graphical interface.

In our setup, we use an Acer K335 LED-projector with 1000 ANSI Lumen and

a Kinect for Windows running on a depth resolution of 320 × 240 pixels with 30

frames per second. Both Kinect and projector are mounted 120 cm above the surface

and are facing the table. They are calibrated using the 4-point calibration of the Ubi

Displays toolkit [24].

3.2 Work Step Detection

For detecting assembly steps and creating instructions, we define a high-level rep-

resentation of performed actions (c.f. [6]). We call this high-level representation a
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Fig. 3 Overview about the triggers used in our concept: a detecting a hand entering a bin,

b detect object placement based on depth data, c recognizing the presence and the absence of an

object compared to a previously taken reference image using computer vision

workflow, which consists of a finite number of work steps. Each work step has an

initial state and a trigger condition (trigger) for advancing to the next step. A trig-

ger is activated by one of the following three actions: (1) pick a part from a bin, (2)

assemble a part that was just picked, (3) use a tool on the product.

Using the trigger concept, actions in each step of the assembly can be detected.

Further it enables implicit interaction [41] with the system to trigger the next step

of the workflow. In our model, we define three triggers which notify the system that

one of the actions was performed (see Fig. 3).

3.2.1 Pick Detection

Our system uses the top-mounted Kinect to detect when a hand enters a bin. The

placement of the bins can be defined using a graphical interface where the user

can adjust the size and the position of the bin directly in the Kinect’s RGB image

(Fig. 3a). Once the position of the bins is defined, the system stores a depth map of

the bin’s area to continuously compare it to the most recent depth image. Using this

technique, we can define 3D cubes in the work area that layover the bins. When the

system registered a pick from a bin, the bin is briefly highlighted by the projector.

To be robust against depth sensor noise, we consider at least 4 mm changes in depth

value. Our algorithm compares each depth pixel inside the cube to the previously

stored state. If the participant picks a part from a bin, the percentage of changed

depth pixels becomes larger. If the percentage exceeds a threshold, the bin is trig-

gered. The threshold is dependent on the size of the worker’s hand, the size of the

bin, and the distance of the camera to the bins. In an informal test we found that a

threshold of 63% is a good value to reliably detect the hands of 5 different persons.

3.2.2 Assembly Detection

At the beginning of recording a work step, the system captures the initial depth data

as an initial state. Then, the worker can start assembling the product. To capture each

work step correctly while recording an instruction, the worker needs to step out of



58 M. Funk et al.

the work area after each assembly step. The system’s built-in movement detection

converts color frames into a gray-scale image and subtracts each 15th frame from the

previous one. If a difference between the images was found, the system knows that

the worker is still performing a task. If no movement was detected for the last 1.5 s,

the system assumes that the worker’s hands are out of the work area and captures

the current depth data. This data is compared to the previously captured initial state

by transforming both depth arrays into gray-scale images and subtracting them from

each other using EmguCV.
3

This algorithm enables the system to detect where a part

was assembled (see Fig. 3) and to distinguish between removing and adding parts.

If the area changed is larger than a threshold of 150 pixels in total, it is considered

to be a valid work step. The threshold of 150 pixels was chosen empirically and

provided a robust trade-off between filtering sensor noise and detecting assembly

steps. Afterwards, the latest depth data is stored with the work step as a desired state

and visual feedback is given to the user.

When playing back a workflow, the depth data from the desired state is continu-

ously compared to the depth data of the current frame by comparing each pixel. If

the current depth frame matches the desired state, the work step is considered to be

performed correctly and the system proceeds to the next work step.

3.2.3 Detection of Tool Usage

In our prototype, we predefined a tool zone at the right side of the system, which

can be changed and customized. Our system continuously scans the depth data of

the defined tool zone and checks the changes in the data. In case, the change in depth

data is over a threshold of 63%, our algorithm runs the SURF object recognition

algorithm [5] to compare the image of the defined zone to the previously recorded

reference image of the object (Fig. 3c). If the object cannot be recognized in the

picture, it is considered to be taken and the system assumes that the worker is using

it. When the user puts the object back at its place, the depth data changes and the

system runs the SURF algorithm again. If the object is recognized again, the system

triggers that the object was used and displays visual feedback.

3.2.4 Resulting Instructions

As the system is detecting the object that is picked, the assembly which was per-

formed, and the tool which was used, a semantic description of the performed step

is stored for each step. In particular the information about which part is picked and

which tool is used helps to add flexibility. Using the resulting instructions can be

transferred to another production table (or to multiple tables) where there may be

different arrangement for parts and tools. Changing the location of a bin with parts

(either automatically detected or manually entered into the system) can then be used

3
http://www.emgu.com/ (last access 03-18-2016).

http://www.emgu.com/
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to change an existing instruction. Assume a bin containing screws is moved from

left to right. As the semantic information is available the visual feedback showing

the worker where to pick can be moved to the new position accordingly. In contrast,

video-based instructions would need to be re-recorded.

3.3 In-Situ Projection for Visual Feedback

In our system, visual feedback for the next work step is created automatically from

the user’s actions. As the Kinect and the projector are calibrated, the system knows

which pixel in the Kinect’s image matches which pixel of the projector. For picking

objects out of a bin, the system highlights the correct bin with a green light. Once

the user picked a part from the bin, the system projects green light at the position

where the part has to be put on the workpiece carrier. Thereby, the highlighted posi-

tion is calculated automatically by comparing the depth data of the initial and the

desired state. As suggested by previous work [19], the system calculates a contour

visualization. When a part should be removed from the workpiece carrier, the system

highlights the contour of the part on the workpiece carrier with a red light. In case a

tool should be used, the system highlights the tool’s position with a yellow light in

the tool zone.

3.4 Playing Back Workflow Instructions

The triggers are also used for playing back a previously recorded workflow. The

system plays each step of a workflow in the order it was defined. If the current step is

a picking-task from a bin, the system only advances to the next step if the defined bin

is triggered. In case the current task is assembling a part, the system advances when

the depth data stored for the desired state matches with the current depth data to an

extend of at least 90% accuracy. When the current step is to use a tool, the system

checks if the tool is removed from its place. If the tool was absent for at least three

seconds and it is put back again, the system considers the object as used and triggers

the next step.

4 Study #1: Assembly with Different Complexities

To assess our system using assembly tasks with a different number of steps and com-

plexity, we conducted a user study in our laboratory. Inspired by previous work [15,

16, 18, 42], we decided to use Duplo
4

bricks for creating construction models with

4
http://www.lego.com/en-us/duplo (last access 03-18-2016).

http://www.lego.com/en-us/duplo
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Fig. 4 The constructions used in the lab study with four different complexity levels: a 8 bricks, b
16 bricks, c 24 bricks, and d 32 bricks

different numbers of bricks. As the system can monitor a maximum of eight bins,

we considered four models with four different numbers of bricks, i.e., 8, 16, 24, and

32. All the four models were created using 8 different types of bricks in five dif-

ferent colors. They all have one arch in the bottom level. Figure 4 shows the four

constructions.

4.1 Method

A mixed design was considered for carrying out this study. We used a between-

subject design with the type of instruction as the only independent variable with

two levels: the video-based approach and the in-situ projection approach. Within the

groups, we used a repeated measures design with the number of bricks as indepen-

dent variable (4 levels). As dependent variables in both groups, we measured the

ER, the TCT, and the NASA-Task Load Index (NASA-TLX) score. The order of

the repeated measures tasks was counterbalanced according to the Balanced Latin

Square.

We created two assembly instructions for each construction model: recording the

video, and using the PbD approach. For recording the video instructions, we used a

camcorder and videotaped the assembly instructions in HD resolution recorded from

over the shoulder of the worker. For recording the projected instructions, we used our

PbD system. In both cases one of the researchers performed the assembly task while

the instructions were recorded and created. For both conditions, the content of the

bins and the bins’ arrangement were identical. Each type of brick had a separate bin

resulting in 8 different bins.

For the video instruction, a monitor was placed next to the work area (see Fig. 5a).

The participant could play and pause the video using the space key on the keyboard

at any time during the assembly. For the in-situ projection, the participant sat in the

same place in front of the plate and for each step instructions were projected into the

work area by either highlighting a bin to pick from or the position a brick should be

placed (see Fig. 5b).

The procedure of the study was as follows: after welcoming the participant and

giving a brief introduction about assembling products, we collected the demographics.

Then, one of the instructions was assigned to the participant. When the participant
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Fig. 5 The setup of the two conditions used in the lab study. The video condition uses a monitor to

display the instructions (a). The PbD condition projects visual feedback onto the Duplo bricks (b)

was ready, the experimenter started the instruction and measured the TCT. The par-

ticipant was instructed to only use the predominant hand to pick and assemble the

bricks as assembling two parts at the same time is not supported by the system.

The whole experiment session including hands and the picking from the bins was

video recorded for each participant. After assembling each model, the participant

was asked to fill in the NASA-TLX questionnaire. The participant repeated this pro-

cedure for all four construction models. After the study, two researchers indepen-

dently watched the videos and counted the errors for each participant. They com-

pared the results and in case of inconsistency, the researchers reviewed the videos

together until they came to an agreement.

We recruited 32 participants, 8 female and 24 male with the average age of 25.1
years (SD = 3.9) using the University’s mailing list. All participants were students

in various majors. They had no prior knowledge in assembling the Duplo buildings

nor participated in the two previous studies. Furthermore, none of the participants

was colorblind. The study was conducted in our lab at the University of Stuttgart.

4.2 Results

We statistically compared the ER, the TCT, and the NASA-TLX score between the

four models and the two instruction methods conducting a two-way mixed ANOVA.

Mauchly’s test indicated that the assumption of sphericity had been violated for

ER (𝜒
2(5) = 17.60, p < 0.004) and TCT (𝜒

2(5) = 23.29, p < 0.001). Therefore, the

degrees of freedom were corrected using Greenhouse-Geisser estimated of spheric-

ity (𝜖 = 0.73 for ER and 𝜖 = 0.68 for TCT). The t-test with Bonferroni correction

was considered as post hoc test for all cases.

The analysis revealed that the difference in the ER between the four models was

not significant (F(2.18, 65.36) = 1.94, p > 0.05). The model with the 24 steps had

the largest ER (M = 0.66, SD 1.61) followed by the 32-step model (M = 0.59, SD
= 1.38) and 16-step model (M = 0.47, SD = 1.04). Whereas, the effect on the ER
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between the two feedback approaches was statistically significant (F(1, 30) = 11.20,

p < 0.002, r = 0.39). The effect size estimated shows a medium and hence substan-

tial effect. The post hoc test showed that the video-based instruction had a signif-

icantly larger ER than the in-situ projection instruction (M = 0.86, SD = 1.36 vs.

M = 0.05, SD = 1.36, p < 0.002).

Analyzing the TCT between the constructions showed that it statistically signifi-

cantly differed (F(2.05, 61.5) = 217.88, p < 0.001). Post hoc tests revealed a signif-

icant difference between all constructions. The 32-step model had the longest TCT

(M = 2.31 min, SD = 0.69) followed by 24-step (M = 1.83 min, SD = 0.70) and 16-

step (M = 1.10 min, SD = 0.31). Such differences were already expected due to the

variation in the number of bricks. On the other hand, feedback approaches had sta-

tistically significant effect on the TCT (F(1, 30) = 63.82, p < 0.001, r = 0.80). The

effect size indicates a large and substantial effect. Surprisingly, the TCT using the

video method took 1.5 times longer than the PbD method (M = 1.73 min, SD= 0.45
vs. M = 1.08 min, SD = 0.45).

Furthermore, there was a statistical significant difference in the NASA-TLX score

between the constructions (F(3, 90) = 3.63, p < 0.01). The post hoc tests showed

that the difference was only significant between the 8-step and 32-step models

(M = 22.34, SD= 16.20 vs. M = 27.87, SD= 17, p < 0.1). The score between other

constructions was not significant (all p > 0.05). The average score for the 16-step

model was 25.03 (SD = 17.47) and for the 24-step construction the score was 26.38
(SD= 16.93). The comparison between the methods revealed a statistical significant

effect on the mental load (F(1, 30) = 19.73, p < 0.001, r = 0.54). The effect size

indicates the effect is large and substantial. The mental load for the in-situ instruc-

tion approach was 60% smaller than the video-based instruction (M = 15.62, SD
= 25.96 vs. M = 35.19, SD = 25.96, respectively).

4.2.1 Impacts of Number of Steps in Assembly

We further assessed the differences between the two feedback approaches for dif-

ferent complexities, i.e. having a different number of assembly steps. To achieve

this, for each construction model, we conducted the t-test between the video and

in-situ instructions and pair-wise compared the ER, TCT, and NASA-TLX score.

The Levene’s test conducted in all cases to test the equality of variances. In case the

assumption was violated the degrees of freedom were adjusted.

The comparison of ER showed the in-situ instruction had the fewer errors than

the video instruction in all levels of complexity (see Fig. 6a). The difference was not

significant in the 8-step (t(15) = 1.86, p > 0.05, r = 0.43) and 16-step constructions

(t(16.84) = 1.94, p > 0.05, r = 0.42). But, the difference was statistically significant

in the 24-step construction (t(15) = 2.48, p < 0.05, r = 0.53) and the 32-step con-

struction (t(15) = 2.31, p < 0.05, r = 0.50). The effect size estimate indicates that

the effect on ER for all four models using the provided instructions is large.

The comparison of TCTs revealed that the difference between both approaches

was significant for all steps except for the 8-step construction (t(30) = 1.11, p > 0.05,
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Fig. 6 The results of the lab study for constructions with different number of steps: a error rate

(ER), b task completion time (TCT), and c NASA-Task Load Index (NASA-TLX) score

r = 0.20). Figure 6b shows the average TCT for the four constructions using the two

instruction methods. In all cases the TCT was significantly faster using the in-situ

approach (for the 16-step montage: t(30) = 4.69, p < 0.001, r = 0.65; for 24-step

montage: t(30) = 5.67, p < 0.001, r = 0.71; for 32-step montage: t(30) = 7.92, p <

0.001, r = 0.68). The effect sizes show that effect of the provided instructions on the

TCT of the assembly tasks is substantial except for the 8-step assembly task.

Further, the NASA-TLX scores statistically significantly differ in all four con-

structions (see Fig. 6c). In all cases the score for the in-situ instruction was signifi-

cantly lower than the video approach: for the 8-step montage, t(19.37) = 4.30, p <

0.001, r = 0.70; for 16-step montage, t(20.52) = 4.58, p < 0.001, r = 0.71; for 24-

step montage, t(30) = 2.90, p < 0.007, r = 0.47; for 32-step montage: t(30) = 4.37,

p < 0.001, r = 0.62. The effect size estimate indicates that the effect on the perceived

cognitive load using the two instruction approaches is large, and therefore substantial

for all models.

4.3 Discussion

The results of the analysis reveal that there are significant differences between the

video instruction and the in-situ projection approach in the ER, the TCT, and the

perceived cognitive load during the assembly tasks. Using the in-situ system, the ER

decreases up to 17%, the TCT is up to 1.5 times faster, and the perceived cognitive

load is reduced up to 60% in comparison to the video-based instruction.

Further, the comparison of the in-situ and video-based instructions in different

levels of complexity unveil that the in-situ instruction outperforms the video-based

approach independent of the number of steps. In all levels the ER is lower and the

TCT is faster. These differences are significant when the number of steps in the

assembly task increase. On the other hand, the perceived cognitive load is signif-

icantly lower for the in-situ instruction independent from the number of steps in the

assembly task.
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5 Study #2: Creating Assembly Instructions

To evaluate our system for creating assembly instructions in a real world scenario, we

conducted a user study using a real assembly task (a refurbished car’s engine starter)

with industrial workers. We made this conscious choice to increase the validity of the

results, even if it is harder to reproduce the results. Using students and a lab-based

study is in our view not appropriate in to address this questions.

5.1 Method

We used a repeated measures design with three conditions for creating an instruction:

by demonstration using our system, using the editor, and video recording. The only

independent variable was the creating-method. As dependent variables, we measured

the task completion time (TCT) for creating instructions and the NASA-TLX score

[25]. The order of the conditions was counterbalanced.

For the editor condition, we re-implemented the system presented by Korn

et al. [29]. In contrast to our system, the user should use a graphical user interface

(GUI) to manually highlight the bins, the workpiece carrier, or tools that have to be

used for the assembly task using different geometric shapes (see Fig. 7a). Further, the

GUI is used to define actions in each step of the assembly and create an instruction.

For the video condition, we recorded a video of the assembly from the worker’s point

of view. A camcorder was installed behind the user in such a way that the worker’s

point of view could be simulated. The participant had to inform the experimenter

when the video recording should be started and stopped.

As the assembly task, we chose the assembly of a car’s engine starter (see Fig. 1).

The task consisted of five steps and in each step one part should be assembled. When

all five parts were put together on the workpiece carrier, the worker should fix two

screws on top of the starter using a screwdriver.

We carried out the study in a car manufacturing company in Germany. After wel-

coming the participant and explaining the course of the study, we collected the demo-

graphics. Next, we introduced the participant to the workpiece carrier and let them

get familiar with it. We allowed the participant to assemble the engine starter twice

to get themselves familiar before starting the study. Afterwards, the study was started

and participants had to create instructions using the three approaches. End of each

condition, the experimenter measured the TCT. Afterwards, the participant com-

pleted the NASA-TLX questionnaire. At the end, we collected qualitative feedback

through semi-structured interviews.

We recruited 10 workers from the company (2 female, 8 male), who were familiar

with the engine starter. The participants were aged between 17 and 53 years (M =
32.1, SD = 13.9). All participants had experience in assembling the engine starter

for at least one year and could be considered as experts.
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Fig. 7 a The graphical editor allows changing the properties of projected elements. b The worker

can adjust the projection directly on the workpiece carrier

5.2 Results

We statistically compared the TCT between the methods. Mauchly’s test indicated

that the assumption of sphericity had been violated (𝜒
2(2) = 18.04, p < 0.0001).

Therefore, the degree of freedom was corrected using Greenhouse-Geisser estimates

of sphericity (𝜖 = 0.52). A repeated measures ANOVA showed that there is a statis-

tically significant difference in TCT between the methods (F(1.05, 9.49) = 256.04,

p < 0.0001, r = 0.97). The effect size estimate reveals a large and therefore substan-

tial effect. Post hoc tests using Bonforroni correction revealed a significant difference

between all three methods (all p < 0.05). The video method had the shortest TCT

(M = 0.58 min, SD = 0.08) followed by the PbD (M = 1.52 min, SD = 0.63) and

the editor (M = 16.16 min, SD = 3.07). The results are also depicted in Fig. 8a.

Further, we statistically compared the NASA-TLX scores between the methods

(see Fig. 8b). The sphericity assumption was not violated (p > 0.05). A repeated

measures ANOVA determined that the methods used had a statistically significant

effect on the NASA-TLX score (F(2, 18) = 19.83, p < 0.0001, r = 0.81). The effect

size estimate shows a large and substantial effect. Post hoc tests using the Bonferroni

correction revealed that the editor had a statistically significantly higher perceived

cognitive load (M = 23.10, SD= 7.79, p < 0.007) than PbD (M = 11.80, SD= 5.22)

and the video (M = 10.40, SD = 7.07, p < 0.001). However, the difference between

PbD and video was not statistically significant (p > 0.05).
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Fig. 8 The results of the user study for creating assembly instructions a The task completion time

across the different approaches. b The perceived cognitive load across the approaches using the

NASA-TLX. The error bars depict the standard error

The qualitative feedback showed that the participants found the editor hard to use.

Although they were experts in assembling an engine starter, they didn’t have enough

experience in using a computer (e.g., P6, P1). Further, a participant stated “using
the editor is too time-consuming” (P3). One participant had also privacy concerns

when recording a video as co-workers could identify him based on his hands and his

wristwatch (P4).

5.3 Discussion

The results of the study reveal that the editor approach requires significantly higher

perceived cognitive load compared to the PbD and video approaches. Whereas, there

is no significant difference in perceived cognitive load required for creating assembly

instructions using the PbD and video approaches. Hence, the additional perceived

cognitive load added due to the use of our interactive system is not significant.

On the other hand, the results show that recording the video is the fastest way

for creating an assembly instruction followed by PbD and the editor approach. One

reason is that no additional time is required to capture the depth information after

each assembly step. In contrast, the PbD approach requires that the users shortly

remove their arms and head from the work area to capture the depth data of the

product.

Although the PbD-based and video-based approaches are faster and require less

cognitive effort than the editor-based approach in creating instructions, the

approaches might differ when assembling the engine starter. Therefore, we con-

ducted a followup study to evaluate the instructions while assembling the engine

starter with novice users.



Teach Me How! Interactive Assembly Instructions Using Demonstration . . . 67

6 Study #3: Evaluation of Assembly Instructions

In the previous study we assessed different approaches for creating assembly instruc-

tions. In order to evaluate the practicality of the approaches in assembling a product,

we conducted a followup study assembling the same engine starter we used in the

previous study using the previously created instructions.

6.1 Method

For providing assembly instructions we used the instructions created in the previous

study. We randomly chose one instruction created using each approach resulting in

three instructions: (1) the video-based assembly instruction, (2) the in-situ projec-

tion instruction created using the editor, (3) the in-situ projection instruction created

using PbD. For the in-situ projection instruction using the editor, the user explicitly

created the instruction using a graphical editor. In contrast, our system automatically

generated the other instruction. We chose a between subject design with three groups

to prevent a learning effect between the different instructions. The only independent

variable that differed between the groups was the type of instruction. As dependent

variables we measured the number of errors (ER), the task completion time (TCT),

and the NASA-TLX score.

We conducted the study in the same company as in the previous study. After wel-

coming the participant and explaining the course of the study, we collected the demo-

graphics and ensured that the participant never assembled an engine starter before.

Then, the participant was accompanied to our prototype and one of the instructions

was assigned and explained. As the participants did not differ in skills, the condi-

tion was randomly assigned. The participant was told to assemble an engine starter

based on the instructions provided. When the participant was ready, the experi-

menter started the instruction and counted the ER. The TCT was measured by the

system automatically. During the assembly the experimenter did not provide any

help. After the assembly was done, the participant was asked to fill in a NASA-TLX

questionnaire. Finally, qualitative feedback was collected through a semi-structured

interview.

We recruited 51 participants (12 female, 39 male) aged between 23 and 60 years

(M = 47.8, SD = 9.3). We divided the participants equally between the conditions,

resulting in 17 participants per condition. All participants were employees of the

company and were unfamiliar with the assembly task and the product, i.e., assem-

bling an engine starter. Hence, they can be considered novice users. None of the

recruited participants took part in the previous study.
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6.2 Results and Discussion

We statistically compared the ER, the TCT and NASA-TLX between the groups. The

assumption of homogeneity of variance had not been violated (p > 0.05). A one-way

ANOVA test revealed no significant effect on ER between the groups (F(2, 48) =
0.89, p > 0.05). The group using the instruction created by our system had the lowest

ER (M = 1.12, SD = 0.86) followed by the group using the instruction created by

the editor (M = 1.24, SD = 0.90) and the group using the video-based instruction

(M = 1.53, SD = 1.01). Results are also depicted in Fig. 9b

The statistical analysis also revealed no significant difference in the TCT between

the groups (F(2, 48) = 0.32, p > 0.05). According to Fig. 9a, the group using the

instruction created by our system had the shortest TCT (M = 2.21 min, SD = 1.05)

and the group using the instruction created with the editor had the longest TCT (M =
2.52 min, SD = 1.39). The group using the video instruction took on average 2.22
min (SD = 1.31) to assemble the product.

The analysis showed no significant effect on the NASA-TLX score between the

groups (F(2, 48) = 1.38, p > 0.05). The group using the video-based instruction had

the lowest perceived cognitive load (M = 20.59, SD = 13.90) followed by the group

using the instruction created using our system (M = 27.53, SD = 13.87) and using

the editor (M = 28, SD = 15.84). A graphical representation is depicted in Fig. 9c.

The qualitative feedback indicated that the projected instructions were generally

well perceived. They particularly found the step by step feedback of the projected

instructions very helpful (P42, P33). Additionally they mentioned that directly pro-

jected feedback onto the workplace was very useful (P30, P12). One participant

stated that “I don’t have to think anymore while working” (P24). Another participant

mentioned that “I would rather work autonomous in the daily life, but for training

I would use it” (P45). Participants using the video instruction mentioned that the

video was helpful for learning the task instead of having an instructor (P22, P51) but

they didn’t want a video playing all day (P37, P25).

The analysis shows that the ER is reduced and the TCT is faster in the assembly

task using our system compared to the other two approaches. However, the change is

not significant. The results indicate that the instruction automatically created using

Fig. 9 The results of the user study for evaluating the previously created assembly instructions

a the task completion time across the different approaches. b The error rate for the different

approaches. c The perceived cognitive load across the approaches using the NASA-TLX. The error
bars depict the standard error
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our system slightly performs better than the explicitly created instruction using the

editor. On the other hand, the results suggest that the in-situ projection increases

the perceived cognitive load required during the assembly, but the difference is not

significant. The qualitative feedback indicates that the step by step instructions pro-

vided directly in the work area through the in-situ projection is more accepted than

a video-based instruction.

As the assembly instruction only consisted of five steps, no big differences were

expected. Based on the results from study 1 it can be expected that with more steps

the differences between these instructions would increase and a clearer advantage

for the in-situ instructions would be expected to show.

7 Implications

The aforementioned user studies revealed implications on both creating assembly

instructions and performing an assembly task based on previously created instruc-

tions. In the following we discuss the insights gained through these studies.

7.1 Creating Assembly Instructions

The results of the study indicate that creating instructions using the editor approach

is more time-consuming and demands more cognitive load compared to the PbD

approach and the video-based approach.

Using the PbD approach, the time required to create an instruction is higher

than the video recording approach as our system requires the user to wait 1.5 s

between each step for detecting that a step was performed. The time is even higher

when using the editor approach as the user has to manually specify each step. How-

ever, editing steps in both PbD approach and editor approach is easier than editing

video-based instructions since each step can be modified separately. In contrast,

video-based instructions need to be post-processed and manually edited. Editing

videos can be complex and may result in re-recording the video even if only a sin-

gle step needs to be altered. Another advantage of both in-situ approaches is that it

records the depth information of each step. Using the depth information the system

can monitor if the correct part is picked and if it is assembled correctly.

While the video approach has the lowest perceived cognitive load when creat-

ing instructions, the results further show that using the PbD approach does not sig-

nificantly increase the mental load. However, the editor approach induces a higher

perceived cognitive load by interacting with GUIs.

A further advantage of including semantic information into the instructions is

that the instructions can be targeted to a specific work place automatically. One

could even imagine a skilled worker in one company (or one country) can create
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the instructions and these instructions can then be downloaded to an assembly table

in another company (or country) (cf. [17]).

7.2 Assembly Performance

When it comes to assembling a product, the results suggest that the in-situ projection

approach reduces the mental load of the worker, the TCT, and the ER. Specially,

these effects are significant when the number of assembly steps increase. As the in-

situ assembly instructions are provided directly in the work area, the distraction is

minimized compared to showing the videos on a monitor close to the work area.

This reduces the cognitive effort that is required for following instructions and also

reduces the TCT for assembling a product. Furthermore, our system’s step by step

error control can monitor if the correct part is picked and if it is assembled correctly

using depth information. This leads to fewer errors even when the number of steps

increases.

7.3 Limitations

It should be mentioned that the proposed PbD system has certain limitations. The

current version of the system tracks only one assembly part per work step. This

process is favored by the industry as it is less error prone than assembling multi-

ple parts in a single step. However, the system can be easily extended to track more

than just a single item per step. Furthermore, all assembled parts on the workpiece

carrier should be visible to the top-mounted Kinect to monitor the assembly task.

Therefore, the workpiece carrier has to be designed to support this setup.

8 Conclusion

In this chapter, we presented a system that leverages the concept of PbD to cre-

ate semantically-rich assembly instruction for enabling assistive augmentation at the

workplace. The proposed system enables process engineers who are creating assem-

bly instructions to create instructions faster than using a graphical editor for creating

assembly instructions. In contrast to just recording video, which is slightly faster, our

proposed system retains all features of interactive instructions and does not add any

significant perceived cognitive load to the worker using the instructions for learn-

ing assembly steps in comparison to watching video instructions. The system was

evaluated with experts in a production environment using a real product.

The system provides instructions using in-situ projection directly in the work area.

It highlights a bin where a part should be picked from and shows the position where
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the part should be assembled. In a large laboratory study, we could show that in-situ

instructions outperform the video-based instruction in assembly tasks with differ-

ent numbers of steps. It decreases the error rate, the task completion time, and the

perceived cognitive load. This was also validated in a real assembly environment.

Creating such interactive instructions based on demonstration is not only limited

to the assembly work place. It could be easily ported to other application domains.

We currently explore further domains, in particular the home environment, where we

assess if such a system could teach persons with learning disabilities to learn basic

skills for independent living, such as cooking [14, 32] and cleaning their home.
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