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Abstract. Influence maximization is one fundamental and important problem
to identify a set of most influential individuals to develop effective viral mar-
keting strategies in social network. Most existing studies mainly focus on
designing efficient algorithms or heuristics to find Top-K influential individuals
for static network. However, when the network is evolving over time, the static
algorithms have to be re-executed which will incur tremendous execution time.
In this paper, an incremental algorithm DIM is proposed which can efficiently
identify the Top-K influential individuals in dynamic social network based on
the previous information instead of calculating from scratch. DIM is designed
for Linear Threshold Model and it consists of two phases: initial seeding and
seeds updating. In order to further reduce the running time, two pruning
strategies are designed for the seeds updating phase. We carried out extensive
experiments on real dynamic social network and the experimental results
demonstrate that our algorithms could achieve good performance in terms of
influence spread and significantly outperform those traditional static algorithms
with respect to running time.

Keywords: Influence maximization � Dynamic social network � Linear
threshold model � Pruning strategy

1 Introduction

In recent years, large social networks have sprung up not only as an fundamental
medium for people to exchange information, make friends, but also as an important
business platform allowing businessmen to display and sell merchandise. In order to
reach the largest scope of products advertisement, businessmen usually choose a small
part of influential people in social networks and provide them with free products to
make them recommend products to their friends. For example, some business men
provide free commodities for some stars, because they usually have a lot of fans in the
social network, their recommendations will enhance the product reputation among fans
who may be interested in these products and buy them.

Although many existing researches have proposed a number of efficient algorithms
for influence maximization, but most of them are based on static social networks. As a
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matter of fact, real-world social networks keep evolving over time, new accounts are
created and some users will establish or lose contacts, the quantity of users and rela-
tionships are constantly changing. What’s more, no measure can accurately predict the
dynamic evolve of social networks because of two reasons: first, the relationships
between users are randomly established; second, those relationships may change.
Previous static algorithms can’t capture and deal with these topology changes.

Although one could possibly run any of the static influence maximization algo-
rithms to find the new Top-K influential nodes when the social network changes, the
running time of the static algorithms on large scale social network will be extremely
long and whenever the network topology changes, we need to recalculate the influence
spreads for all nodes which will lead to quite high cost.

To address the challenges posed by the rapidly and unpredictable changing
topology for dynamic social network, we proposed an efficient incremental influence
maximization algorithm especially for dynamic social networks called Dynamic
Influence Maximization (DIM) in this paper. DIM algorithm includes two stages: initial
seeding (Init_Seeding) and incrementally seed updating (Inc_SeedUpdate). At time
t = 0, we run Init_Seeding algorithm to get the initial seeds set for the static social
network. Init_Seeding first gets simple paths by travelling network graph and then
calculates the influence spread for each node, finally it outputs the initial seeds and
derives the necessary conditions for the second phase. At the subsequent time t, we run
Inc_SeedUpdate algorithm continuously to update the seeds. Inc_SeedUpdate calcu-
lates the influence spread change of nodes caused by the network change efficiently and
quickly finds the new Top-K influential nodes in the evolution based on previously
known information. In order to narrow the search space into nodes only experiencing
major spread change, we put forward two pruning strategies: influence value increment
pruning strategy and degree pruning strategy. The experimental results show that DIM
algorithm can achieve as much as 30 speedup in execution time comparing to the static
influence maximization algorithm while maintaining good performance in terms of
influence spread.

To summary, the main contributions of this paper are as follows:

– We design an incremental influence maximization algorithm under Linear
Threshold Model called DIM for dynamic social network.

– We propose two pruning strategies: influence value increment pruning strategy and
degree pruning strategy to narrow the search space and improve the time efficiency
of DIM algorithm.

– We conduct extensive experiments on NetHEPT, Facebook, Flixster and Flickr
social network and the experimental results show that our algorithms can achieve 30
speedup in execution time while providing matching influence spread compared
with the state-of-the-art static algorithms.

The rest of this paper is organized as follows. Section 2 reviews related work,
Sect. 3 gives some preliminaries and the problem statement. We introduce the dynamic
influence maximization algorithm DIM in Sect. 4. The experimental results as well as
the analysis are given in Sect. 5. We make conclusions and outline future works in
Sect. 6.
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2 Related Work

Influence maximization on static networks has attracted a lot of attentions. Viral
marking, first introduced to by Richardson and Domingos [1] is a significant marking
strategy that promotes commodity by giving free or discount products to a small subset
of influential users. Kempe [2] proved that the influence maximization problem is
NP-Hard and proposed hill-climbing greedy algorithm with a provable approximation
ratio (1−1/e−e). Leskovec [3] proposed CELF algorithm which is 700 times faster than
the greedy algorithm. Chen [4] proposed heuristic algorithm MIA to enhance the
scalability of the algorithm using maximum influence path of each pair of nodes. Kim
et al. [5] proposed a scalable and parallelizable influence approximation algorithm
based on independent paths. Yang et al. [6] extended the influence maximization
problem and proposed a coordinate descent method to solve the transmission cost
problem. All the above algorithms are designed for static networks, without consid-
ering the dynamic changes of the network.

There are a few influence maximization algorithms designed for dynamic networks.
Chen [7] proposed a dynamic social network model which keeps involving during the
influence propagation. Zhuang et al. [8] argued that the changes of the network can be
obtained by traversing some probing nodes whose topological changes can approxi-
mately reflect the evolution of the whole network. You et al. [9] found that under
certain incentives, constructing new relationships in social network are helpful for the
influence diffusion process. Tong et al. [10] modeled the influence diffusion in social
network as the probability event, both the activation of node and the probability on
edges obey a certain distribution, influence spread is the expected number of the
probability event. Liu et al. [11] proposed an incremental approach to identify the
top-K influential individuals based on maximum influence path MIA.

All the above static or dynamic influence maximization algorithms are under the
Independent Cascade Model. Goyal et al. [12] used the simple path between neighbor
nodes to estimate the influence propagation spread. Lu et al. [13] presented an
approximation algorithm to estimate the influence spread, an exact algorithm to
compute the influence spread of node within four step.

3 Preliminaries and Problem Statement

3.1 Linear Thread Model

In this paper, a social network is represented as a weighted directed graphG = (V, E,W),
here V is node set, each node represents an individual in social network. E�V � V is
edge set, each edge represents relationships between individuals. For example, a
directed edge ðvi; vjÞ will be established from node vi to vj if vi is followed by vj which
represents that vj may be influenced by vi. W: E ! [0, 1] represents the influence
probability on edges, each edge ðei; ejÞ 2 E is associated with an influence probability
wðei; ejÞ,

P
u2V wðu; vÞ� 1. Nodes in network have two states: active or inactive. Once a

node is activated, it will try to activate its inactive neighbors, if the activation succeeds,
its neighbors will become active. Influence diffusion model is the operational model for
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the spread of an idea or innovation through a social network, which is the basis of
influence maximization research. Currently, there are two diffusion models IC (Inde-
pendent Cascade Model) and LT (Linear Threshold Model). In this paper, we study the
influence maximization problem under LT model.

LT model is based on the use of node-specific threshold. Because the active
neighbors co-decide whether other nodes will become active, the activation of nodes
are independent and satisfy

P
u2preðvÞ wðu; vÞ� 1, here pre(v) represent precursor node

set of node v, w(u, v) is the probability that u successfully active v.
Each node v chooses a threshold hv, hv 2 0; 1½ �, that intuitively represents the

different latent tendency of nodes to adopt the innovation when their neighbors do. If hv
is big then activation of node v is difficulty, on the contrary, activation is easy. At step
t = 0, only nodes in S � V is active. If x become active at step t−1, x may activate its
inactive out-neighbor v. Vertex v is activated at step t only if the weighted number of its
activated in-neighbor reaches its threshold, i.e.

P
x wðx; vÞ� hv, here x represents the

active nodes in pre(v). This process stops when no more node can be activated. We use
r(S) to denote the influence spread of the initial seed set S, r(S) can be approximated
by the expected number of active nodes in S.

Kempe et al. [2] proposed live-edge model: given an influence graph G = (V, E,W),
for every vertex v, select at most one of its incoming edges at random, such that edge
(u, v) is selected with probability w(u, v), and no edge is selected with probability
1�P

u wðu; vÞ. The selected edges is called live edge and all other edges are called
blocked edge. GL denotes the spanning subgraph which includes all vertices in V and all
live edges selected. If vertex u can reach vertex v in GL, there exists live path from u to
v which consists of all live edges. Kempe et al. [3] proved that, given a seed set S, Linear
Threshold Model and live-edge model can achieve the same influence spread.

rðSÞ ¼
X

GL
pro½GL� � rGLðSÞ ð1Þ

Here pro[GL] represents the probability of live-edge graph GL appeared, rGLðSÞ
denotes the expected number of active nodes starting from S in GL.

3.2 Influence Maximization

Given an influence graph G = (V, E, W) and integer k, influence maximization problem
is to find a set of top-k influential nodes in social network so that their aggregated
influence is maximized as shown in this formula:

S	 ¼ argmax
S�V ; Sj j¼k

rðSÞ ð2Þ

Kempe et al. [2] proved the influencemaximization problem is NP-Hard under Linear
Threshold Model and proposed a greedy algorithm to solve it. The marginal influence
(MI) of any node v 2 V given seed set S is defined asMI vjSð Þ ¼ rðS[ vf gÞ � rðSÞ. They
used Monte-Carlo simulation to estimate the influence spread. The monotonicity and
submodularity of r(S) guarantee that the greedy algorithm has approximation ratio
(1� 1

e � e), that is, it returns a seed set Sg such that rðSgÞ� ð1� 1
e � eÞrðS	Þ, for any

small e > 0, where e accommodates the inaccuracy in Monte-Carlo estimation.
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3.3 Influence Maximization for Dynamic Network

Real-world social networks are not static and keep evolving over time. Rapid changes
in social networks have brought many new challenges to influence maximization
problem, one of the most interesting and urgent problem is that how to quickly identify
the most influential users in dynamic social network. So this paper focus on studying
the influence maximization in dynamic network.

Dynamic Influence Maximization (DIM): We define an evolving network GS = {G1,
G2, G3,…, Gt} as a sequence of network snapshots evolving over time, where Gt = (Vt,
Et, Wt) is an influence graph snapshot at step t, ΔGt = (ΔVt, ΔEt, ΔWt) represents the
topological change of network graph Gt, obviously, Gt+1 = Gt [ ΔGt. Given an
influence graph Gt at step t, the topological change ΔGt of network graph Gt,the top-K
influential nodes St in Gt, then we identify the influential nodes Stþ 1 
 Vtþ 1 of size K
in Gt+1 at time t + 1.

When network changes, using traditional static influence maximization algorithm to
find the seed set will lead to large computational overhead. This paper proposes an
incremental algorithm DIM, which identifies the most influential nodes set for dynamic
networks by incremental method.

4 Dynamic Influence Maximization Algorithm DIM

The DIM algorithm proposed in this paper is divided into two stages. The first stage is
to obtain the initial seed set in static network and the second stage is to incrementally
update the initial seed set after the network evolved. In order to further reduce the
computational overhead, two optimization strategies are proposed in Sect. 4.3.

4.1 Init_Seeding Algorithm

Social networks keep evolving over time. But if we observe the changes of social
network from discrete time step perspectives, in each time t, the social network
topology is a static graph. At time t = 0, social network is an unchanged initial graph,
according to formula (2), the influence spread of seed set S in influence graph G is
rðSÞ ¼ P

GL
pro½GL� � rGLðSÞ, here:

rGLðSÞ ¼
X

v2V IGLðS; vÞ ð3Þ

IGLðS; vÞ represents whether there exists live path from S to v in GL. If live path is
existed then IGLðS; vÞ ¼ 1, otherwise 0. Therefore,

rðSÞ ¼
X

v2V
X

GL
pro½GL� � IGLðS; vÞ ¼

X
v2V rðS; vÞ ð4Þ

r(S, v) is the activation probability of vertex v after S is selected as seed set, that is, the
influence of set S on node v. Nodes in S may active node v through the path in live-edge
model. Let P ¼ \vu; v1; . . . vm [ denote a path, ðvi; vjÞ 2 P indicates edge (vi; vj)
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belongs to path P. The simple path is a path whose nodes are all different. The
probability of a path P being live path is defined as follows:

pro½P� ¼
Y

ðvi;vjÞ2P wðvi; vjÞ ð5Þ

The influence of vertex u on v is:

rðu; vÞ ¼
X

P2Pathu;v
pro½P� ð6Þ

Here Pathu;v is the path set from node u to node v. Therefore, the influence spread
of node u can be represented as follows:

rðuÞ ¼
X

v2V
rðu; vÞ ð7Þ

As an example, we consider the influence graph shown in Fig. 1. Assume that the
probability of each edge is 0.2, then the influence of node1 on node 4 is: r(v1, v4) =
pro[P = <1, 2, 3, 4>] + pro[P = <1, 2, 3, 5, 4>] = 0.008 + 0.0016 = 0.0096, and the
influence spread of node1 is:

rðv1Þ ¼ rðv1; v1Þþrðv1; v2Þþrðv1; v3Þþrðv1; v4Þþrðv1; v5Þþrðv1; v6Þþrðv1; v7Þ
¼ 1þ 0:2þ 0:04þ 0:0096þ 0:008þ 0:0016þ 0:0016 ¼ 1:2608:

The influence spread of set S is the sum of the spread of each node u in S.

rðSÞ ¼
X

u2S
rV�Sþ uðuÞ ð8Þ

The marginal influence MI(v) of node v under seed set S, MIðvjSÞ ¼
rðS[ vf gÞ � rðSÞ. To compute rðS[ vf gÞ, we need to compute rV�S�vþ xðS[ vf gÞ for
each x 2 S[ vf g on subgraph induced by V – S – v + x according formula (4–6). Each
node in S except node x, when adding new node to S, needs recalculation using formula

Fig. 1. Example of influence graph
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(4–6) even the basic subgraph has slight difference. Goyal et al. [18] proposed that the
expected number of influence node will not be affected too much for slightly changed
subgraph. The calculation formula of rðS[ vf gÞ is derived as follows:

rðS [fvgÞ ¼
X

x2S[fvg
rV�S�vþ xðxÞ¼rV�SðvÞþ

X

x2S
rV�S�vþ xðxÞ

¼rV�SðvÞþ
X

x2S
rV�S�vþ xðxÞ¼rV�SðvÞþ rV�vðSÞ

ð9Þ

For example, as shown in Fig. 1, if seed set S ¼ fv5g, then rðSÞ ¼ rðv5Þ ¼ 1:848.
After node v3 is incorporated into S, rðS[fv3gÞ ¼ rV�v5ðv3Þþ rV�v3ðv5Þ ¼
1:2þ 1:8 ¼ 3:0.

At time t = 0, the social network is an unchanged initial graph, we call algorithm
GetAllPath to determine the simple path set and compute the influence spread for each
node. The problem of enumerating all simple paths in graph is #P-Hard [5]. In social
network, the probability of a path being live decreases rapidly as the length of the path
increases. Thus, the majority of the influence can be captured by exploring the paths
within a small neighborhood, where the size of the neighborhood can be controlled by the
error tolerated. Parameter η represents a tradeoff between efficiency and accuracy.Given a
probability threshold η, we can filter out those paths whose probabilities are lower than η.
In this way, we can efficiently control the size of path set and reduce the computation cost.

GetAllPath algorithm is based on classical backtrack idea to enumerate all simple
paths in graph. It starts from node u and traverses u’s out-neighbors in depth-first
fashion. If the probability of current path P = <u, … x, v> belows η, the algorithm will
backtrack to node x, if node x has other out-neighbors, it will continue to traverse
follow those out-neighbors, otherwise it will backtrack. In the process, the influence of
node u can be estimated by accumulating those probabilities of paths. If it backtracks to
starting node u, then the algorithm stops.

Since the probability of path decreases rapidly with increasing length, intuitively,
for each change in the graph, the nodes affected by the topology change must be in a
small neighborhood. In order to accurately and quickly determine which nodes are
affected by topology change, we compute IN[v] for each v 2 V which represents the
predecessors of node v. Nodes in IN[v] may influence v within the control threshold η.
At the beginning, IN[v] is null for each node, the idea of UpdateIN(v) algorithm that
update IN set of node is described as follows:for each node v 2 V, when the path set of
v changed, each path in Path[v] will be traversed. If the path contains node u, which
means that v can reach u by the path, then add node v to IN[u] set. If IN[u] already
contains node v, it is no need to add v. In such a way, we get all the nodes arriving at
node u through the path. When the network is evolving, we can quickly confirm those
influenced nodes that need to re-estimate influence spread using IN, we don’t have to
traverse the entire network and save a lot of running time.

Algorithm Init_Seeding calculates the influence spread of each node at the
beginning by calling algorithm GetAllPath, and updates IN set according Path set. In
each iteration, according to the greedy idea, the node with the largest marginal influ-
ence are added to the seed set until a given size is reached.
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The pseudo code of Init_Seeding is described as follows:

Init_Seeding (G, η, k)
Input: graph G, path length threshold η, size k
Output: seed set S

1) for each u∈V do
2) calculate σ(u) by calling GetAllPath algorithm;
3) UpdateIN(u);
4) add u to CELF queue;
5) S←Ø; spd←0; 
6) While |S| < k
7) u←top node in CELF queue;
8) for s∈S //compute σV-u(S)
9) for each P∈Path[s] and u∈ P
10) σV-u(s) =pro[P];
11) spd =σV-u(s);
12) for each P∈Path[u] and P S≠Ø //compute σV-S(u) 
13) σV-S(u) =pro[P];
14) compute σ(S+u) by using formula(4-7);
15) MI(u)=σ(S+u)-spd;
16) if MI(u) σ(u)
17) S←S u; remove u from CELF queue; 
18) else
19) re-insert u in CELF queue;

return  S

In line 1–4, we calculate the influence spread of each node in graph G by calling
GetAllPath algorithm, update IN set for each node and add them into CELF queue. We
initialize seed set S and influence spread spd in line 5 and get the top node in CELF
queue in line 7. In line 8–11, as the path set of each node has been obtained, we
calculate the influence spread of seed node in the subgraphs induced by V − u equates
to making the path contains u starting from the seed node invalid, then we calculate rV

−u(s) by subtracting the influence probability of invalid path from the original influence,
and compute spd according to the formula (4–6). We compute the influence of node
u in subgraphs induced by V − S in line 12–13 and estimate the marginal influence in
line 14–15. In line 16–19, if MI(u) of node u is larger than the top node in queue, we
directly add this node to seed set, otherwise add it into CELF queue again.

4.2 Inc_SeedUpdate Algorithm

In Social network, new users might join while old users might withdraw, and people
will make new friends with each other, thus the topology of network keep evolving.
We define an evolving network as GS = {G1, G2, G3, …, Gt} from the perspective of
discrete time, where Gt−1 = (Vt−1, Et−1, wt−1) is the influence graph at step t − 1, ΔGt

−1 = (ΔVt−1, ΔEt−1, Δwt−1) is the topological change of network graph Gt−1, thus
Gt = Gt−1 [ ΔGt−1. So the influence graph in step t is new relating to the last time
t − 1 for any t > 0. Liu et al. [16] propose six types of topology change as AddEdge,
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DelEdge, AddVertex, DelVertex, IncWeight, DecWeight. AddEdge(u, v, w) is to
establish a link with weight w from user u to v. DelEdge(u, v, w) is to delete a edge
from user u to v whose weight is w. AddVertex and DelVertex correspond to add or
delete nodes respectively. IncWeight(u, v, w) is to increase the weight of edge(u, v) to
w, and DecWeight(u, v, w) is to decrease the weight to w. For those six changes of the
social network, we only explain AddEdge and DelEdge operation in this paper because
the other operations are similar.

The pseudo code of AddEdge(u, v, w) is as follows:

AddEdge (u, v, w)
Input: new edge (u, v, w)
Output: the influence spread change σ∆(x), x∈C

1) for each x∈C do

2) σ∆(x)=0;

3) for Px,u∈Path[x] do

4) if pro[Px,u]·w(u, v)>η and Px,v is a simple path

5) add Px,v into temp;

6) if Px,v S=Ø 

7) σ∆(x)+=pro[Px,v];

8) if temp≠Ø

9) for Px,v∈ temp do

10) for Pv∈Path[v] do

11) if pro[Px,v]·pro[Pv]>η, (u, v)∈Px

12) add Px into temp;

13) if Px S=Ø
14) σ∆(u)+=pro[Px];

15) copy P∈ temp into Path[x];

16) UpdateIN(x);

return σ∆(x) 

In AddEdge algorithm, we use parameter w to represent the probability of the new
edge (u, v), set C consists of nodes affected by network change, temp is used to
temporarily store the new path, rΔ(u) is the influence spread change of node u, Px,u

represents the path from the node x to node u, and Pv represents the path whose source
node is v. We compute influence spread change rΔ(u) for each u 2 C and update IN set
according to the latest Path collection. In line 3–7, we find one path from node x to
node u and expand the path by adding new edge (u, v). If the probability of the new
path from x to v is greater than threshold η and it is a simple path, then we add this path
to temp. In line 8–14, if temp is null, that means the probability of those paths are too
small or there exits ring among those paths, then the computation will end. Otherwise,
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we try to connect the path Px,v with Pv, and perform the same operation. We store those
new paths into Path[x] set in line 15, and update IN[x] set based on new Path[x] set of
node x in line 16.

Now we analyze the time complexity of AddEdge algorithm. Assume that the
maximum number of paths in the path set is Pmax, the number of temporary path is up
to O(Pmax) in temp, that is, original paths all can be extended. Then the time complexity
of circulate in line 3–7 is O(Pmax), the time complexity of dual-layer cycle in line 8–15
is O(Pmax � Pmax), the time complexity of updating IN in line 16 is O(Pmax), so the time
complexity is Oð Cj j � P2

maxÞ.
The pseudo code of DelEdge is as follows:

DelEdge (u, v, w)
Input: an edge (u, v)
Output: the influence spread change σ∆(x), x∈C

1) for x∈C do
2) σ∆(x)=0;
3) for Px∈Path[x] and (u,v)∈Px
4) σ∆(x) =pro[Px]; delete Px; 
5) UpdateIN(x);

return σ∆(x)

In DelEdge algorithm, we confirm all invalid paths of node x that is influenced by
the change, and compute influence spread change rΔ(x) of node x and delete all invalid
paths. We update IN set based on new Path set of node x in line 5. The time complexity
is O(Pmax) for line 3–5. The time complexity of DelEdge is Oð2 � Cj j � PmaxÞ.

The pseudo code of seed set update algorithm Inc_SeedUpdate is as follows:

Inc_SeedUpdate (S t-1, Gt-1, Gt, k)
Input: seed set St-1,graph Gt-1and Gt in time t -1and t, size k
Output: seed set Stin time t

1) St←Ø;
2) While |St|<k
3) for each change c from Gt-1 to Gt do
4) obtain influenced node set C
5) for each u∈C do
6) compute σ∆(u) ;
7) SC←SC u; 
8) for each u∈ SC do 
9) MI(u)=σ(St {v})-σ(St); 
10) St=St MI(u);

return St

In Inc_SeedUpdate algorithm, SC is the candidate set, St is the seed set at step t. We
select seed only from SC, which can narrow the search space and reduce calculation
cost. In line 3–7, according to the six types of topology change, we call the
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corresponding algorithms to compute influence spread change of the node, and filter
candidate node. In line 8–10, we select the seed node with the largest MI.

4.3 Pruning Strategies

Real social networks like Facebook and Flickr usually have a huge number of users,
however the size of seeds set is relatively small for financial reason. Each iteration to
compute influence spread of all nodes might cause enormous cost. Although DIM
algorithm only re-evaluate the influence spread of nodes affected by network change,
those nodes who has small influence spread change still has little chance to be seed
nodes. In order to further narrow the search space of influential nodes, we put forward
two pruning strategies for DIM algorithm.

Least Influence Increment Pruning Strategy (LIIP): In the ith iteration, the influ-
ence spread change of seed set St−1 in graph Gt−1 is positive, if the influence spread
change of node v is greater than any seed node in St−1 set, node v is reserved as the
candidate node, otherwise it will be filtered out. In most cases, the most influential
nodes in graph Gt−1 attract large number of nodes and create new connections. Thus the
influence spread increase and the influence spread change are positive. If the influence
spread and influence spread change of node v are lower than that of any seed node in St
−1 at time t − 1, then node v must be lower than any seed node in St−1 at time t, that
means node v will never become seed node and should be filtered out. Liu et al. [16]
find that social network is based on the preferential attachment principle, so the least
influence increment pruning strategy can filter out a large number of nodes.

Degree Pruning Strategy (DP): According to the preferential attachment principle,
the new-coming edges prefer to attach to nodes with higher degree [16], thus nodes
with large degree are more easily influenced by the topology change than nodes with
small degree. If the influence spread change of St−1 is negative, it means that the
influence spread of St−1 is decreased. In addition to the first optimization measure, the
reservation node should also meet one of the following two conditions: First, Degree of
nodes is among the top 5% of all nodes in Gt. Second, Degree increase ratio of nodes is
among the top 5% of all nodes in Gt. The degree increase ratio of node v is defined as
degreet(v)/degreet−1(v), where degreet(v) represents the degree of node v in Gt.

We can extend the Inc_SeedUpdate algorithm by adding LIIP or DP pruning
strategy before line 7. We only choose the valid candidate nodes to join SC. The
pruning strategies can further narrow the candidate nodes and improve the efficiency of
the algorithm while guaranteeing relatively high accuracy. We call the extended DIM
algorithm with pruning strategy Opt-DIM algorithm.

5 Experiments

5.1 Experimental Setup

In this section, we compare our algorithm with the static algorithms in terms of effi-
ciency and effectiveness. We examine two metrics, influence spread and running time.
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Influence spread is the final expected number of influenced nodes activated by seed
nodes, representing the accuracy of different algorithm; running time is the time to
identify the most influential k nodes, reflecting efficiency of algorithm.

We choose four datasets to test the performance of different algorithms, Tables 1
and 2. summarize the statistical information of the four datasets, the growth rate of
nodes and edges can intuitively reflect that the real-world social network are rapidly
change with time.

In this paper, we compare our algorithm with two static influence maximization
algorithm LDAG and SIMPATH. LDAG algorithm estimate the influence spread of
node based on local directed acyclic graph [17]. SIMPATH algorithm finds the Top-K
influential nodes based on simple path [18].

The active threshold of node v is generated uniformly at random in range (0, 1). We
set the weight of every incoming edge of v to be 1

dv
.

5.2 Experimental Results and Analysis

The first group experiments evaluate the running time to identify 50 most influential
nodes of different algorithms. DIM and Opt-DIM call Init_Seeding only on the first
snapshot, and call Inc_SeedUpdate in the following seven network snapshots. As
illustrated in Figs. 2 3, 4 and 5, the running time of DIM and Opt-DIM on the first
snapshot are longer than on the other snapshots, and much shorter than the other two
algorithms on the four datasets. Among the four compared algorithms, LDAG algo-
rithm has the largest time cost. While the running time of DIM algorithm and Opt-DIM

Table 1. Table of node information

Datasets Nodes
Initial number Final number Growth

NetHEPT 15,634 18,557 18.7%
Facebook 59,736 83,983 40.3%
Flixster 99,825 147,328 48.5%
Flickr 771,738 1,037,995 34.5%

Table 2. Table of edge information

Datasets Edges
Initial number Final number Growth

NetHEPT 62,836 89,415 42.3%
Facebook 576,653 994,149 72.4%
Flixster 978,265 1,811,249 85.2%
Flickr 4,938,687 7,106,122 43.8%
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algorithm are relatively stable. Compared with the static algorithm LDAG and SIM-
PATH, when the dynamic network changes, dynamic algorithm DIM and Opt-DIM are
6.3 times, 13.6 times, 17.4 times and 31 times faster on average than static algorithm on
the four datasets.

Although the time costs of DIM and Opt-DIM algorithm are also increased in large
scale networks, but the running time still have obvious advantages in large-scale
dynamic network. And the perform of Opt-DIM algorithm is better than DIM algorithm
on four datasets. On Facebook dataset, Opt-DIM algorithm is 1 time faster than DIM
algorithm, while achieving double speedup on Flixster and Flickr datasets on average,
that means the pruning strategies are effective.

We use influence spread to measure the accuracy of different algorithms. The
influence spread is the number of nodes influenced by the top-50 influential nodes.
Figures 6 7, 8 and 9 show the results of the experiments. As shown in Figs. 6 and 7,
DIM and Opt-DIM are basically consistent with the static algorithms on NetHEPT and
Facebook datasets. However, in Figs. 8 and 9, the influence spread of static algorithm
LDAG and SIMPATH have a slight advantage over dynamic algorithms on larger
datasets, Flixster and Flickr. This is because LDAG algorithm and SIMPATH algo-
rithm have to estimate the influence spread of all nodes in network in each iteration.
This also explains that DIM and Opt-DIM can lift the execution speed ratio at the cost
of a little accuracy decrease. The influence spread of SIMPATH algorithm outperforms

Fig. 2. Running time on NetHEPT dataset Fig. 3. Running time on Facebook dataset

Fig. 4. Running time on Flixster dataset Fig. 5. Running time on Flickr dataset

Incremental Influence Maximization for Dynamic Social Networks 25



that of LDAG algorithm on Flixster and Flickr datasets as shown in Figs. 8 and 9. On
the Flixster and Flickr datasets, the advantage of DIM algorithm is more obvious
because the pruning strategy based on influence spread change can narrow the search
space of influential nodes.

The influence spread of DIM algorithm and Opt-DIM algorithm are smaller than
algorithm SIMPATH 4.1%, 5.2% and 5.9% on the Facebook, Flixster and Flickr
datasets, respectively. Although the accuracy of the dynamic influence maximization
algorithm DIM and Opt-DIM is lower than the static algorithms, according to the
operation time showed from Figs. 2, 3, 4 and 5, the dynamic DIM algorithm is more
suitable for solving influence maximization problem in large social network.

6 Conclusions and Future Work

In this paper, we propose a dynamic influence maximization algorithm DIM, including
two parts, Init_Seeding and Inc_SeedUpdate. Init_Seeding algorithm obtains the path set
of all nodes by traversing the network graph, and computes the marginal influence of
nodes according to the path set. Inc_SeedUpdate algorithm determines the influence
spread change to incrementally update the seeds set when network changed. We also
present two pruning strategies to further narrow the search space of influential nodes. The
effectiveness and efficiency of DIM and Opt-DIM algorithm are verified by experiments.

Fig. 6. Influence spread of NetHEPT Fig. 7. Influence spread of Facebook

Fig. 8. Influence spread of Flixster dataset Fig. 9. Influence spread of Flickr dataset
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In the future, we will study the probability distribution of edges and consider the
influence maximization algorithm based on the probability distribution variation of
edges.
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