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Abstract. In this paper, the state estimation problem is investigated for
discrete-time output coupled complex networks with Markovian packet losses.
Unlike the majority of emerging research on state estimation with Bernoulli
packet dropout, the Markov chain is used to describe the random packet losses.
In use of the Lyapunov functional theory and stochastic analysis method, the
explicit description of the estimator gains is presented in the form of the solution
to certain linear matrix inequalities (LMIs). At last, simulations are exploited to
illustrate the proposed estimator design scheme is applicable.
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1 Introduction

Recently, the increasing interests have been attracted to the complexity of networks due
to the successful research results in some practical fields such as biological, physical
sciences, social and engineering [1]. With the presentation of small-world and
scale-free characters of complex networks [2, 3], amount of efforts have been devoted
to investigating the dynamical behaviours of complex networks in several different
domains, mainly involving synchronization, state estimation, fault diagnosis and
topology identification.

With the emergence of the large scale networks, it is common that merely partial
information of nodes is accessible in the network outputs [4, 5]. It is imperative to
estimate the unknown states of nodes via an effective state estimator. Lots of research
achievements have been obtained for state estimation of complex networks [6–9]. For
instance, state estimation of complex neural network with time delays was discussed in
[6]. Moreover, state estimation of complex networks concerning the transmission
channel with noise was studied in [8]. Also, state estimation for complex networks with
random occurring delays was investigated in [9].
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In reality, transmission congestion probably lead to packet dropout in network
linking, which has an influence on the performance of complex networks. There exists
some research concerning Bernoulli packet dropout for complex networks [10–12].

The robust filtering for complex networks with Bernoulli packet dropout was
studied in [10]. Similarly, the synchronization of complex networks with Bernoulli
packet losses was investigated in [11]. In addition, state estimation for complex net-
works with stochastic packet dropout that described as a Bernoulli random variable was
studied in [12].

In practical networked systems, especially in wireless communication networks, the
random packet dropout is often regarded as a time-relevant Markov process. That is to
say, the Markovian packet losses model would sufficiently utilize the temporal rele-
vance of channel conditions in the process of transmission. As a result, some research
achievements have been existed on Markovian packet dropout for the networked
systems [13–16]. Minimum data rate stability in the mean square with Markovian
packet losses was studied in [15]. Also, stabilization of uncertain systems with random
packet losses which described as a Markov chain was investigated in [16]. However,
the research considering Markovian packet losses for state estimation of complex
dynamical networks is relatively scarce.

In the paper, we focus on the state estimation for discrete-time complex networks
with Markovian packet losses, where the transition probability is known. The network
is output coupled that could economize on the channel resource. An effective state
estimator is established to ensure such the stability of the state error. By employing the
Lyapunov stability approach plus stochastic analysis theory, we derive the criteria
sufficiently in the form of LMIs.

The rest of this paper is arranged as follows. In Sect. 2, an output coupled complex
network with Markovian packet losses and the corresponding state estimator are pre-
sented. In Sect. 3, a sufficient criteria is exploited in terms of LMIs and the desired
estimator gain matrix is obtained. In Sect. 4, illustrative simulations are provided to
testify the applicability of the results derived. In the end, conclusions are drawn in
Sect. 5.

2 Problem Formulation

We consider the following discrete-time complex network consisting of N coupled
nonlinear nodes:

xiðkþ 1Þ ¼ AixiðkÞþ f ðxiðkÞÞþ
PN
j¼1

wijCyjðkÞ
yiðkÞ ¼ CixiðkÞ ði ¼ 1; 2; . . .;NÞ

8<
: ð1Þ

where xiðkÞ ¼ ðxi1ðkÞ; xi2ðkÞ; . . .; xinðkÞÞT 2 Rn denote the state vector of the ith node,
yiðkÞ 2 Rm is the output vector of the ith node, Ai 2 Rn�n denotes a constant matrix,
f ð�Þ : Rn � Rn represents a nonlinear function with f ð0Þ � 0, W ¼ ðwijÞN�N is the
coupling configuration matrix which describes the topological structure of the network.
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If there is a connection from node i to node jðj 6¼ iÞ, then wij ¼ 1; otherwise wij ¼ 0. As

usual, matrix W satisfies wii ¼ � PN
j¼1;j6¼i

wij, C 2 Rn�n is the inner coupling matrix,

Ci 2 Rm�n stands for the output matrix.
In fact, it is quite tough to access the states of some complex networks completely.

In order to obtain the state variables of network (1), the output yiðkÞ is transmitted to
the observer network. Actually, losing data such as packet dropout may occur in the
process of transmission. So it is of great value to take the advantage of accessible state
information to approximate the unknown information of nodes in network (1),
regardless of packet losses.

In this paper, the network measurements from the transmission channel are of the
following form:

�yiðkÞ ¼ riðkÞyiðkÞ ði ¼ 1; 2; . . .;NÞ ð2Þ

where �yiðkÞ 2 Rm is the actual measured output. The random variable riðkÞ 2 f0; 1g
indicates the state of the packet at time k. If riðkÞ ¼ 0 then the packet is lost; else it
would succeed. The process of packet in the transmission channel is regarded as a
Markov chain with two states: reception and loss. Furthermore, the transition proba-
bility matrix of the Markov chain is defined by

Ki ¼ Probðriðkþ 1Þ ¼ c j riðkÞ ¼ bÞb;c2f ¼
1� q q
p 1� p

� �
ð3Þ

where f ¼ f0; 1g is the state space of the Markov chain, p is the failure probability
when the previous packet succeed, and q is the recovery probability from the loss state.
To make the process friðkÞg ergodic, we believe that p; q 2 ð0; 1Þ. Without loss of
generality, the transmitted signal in the initial state is assumed received successfully,
that is, rið0Þ ¼ 1.

For the purpose of estimating the states of network (1), we construct a state esti-
mator as follows:

x̂iðkþ 1Þ ¼ Aix̂iðkÞþ f ðx̂iðkÞÞþ
PN
j¼1

wijCŷjðkÞþKið�yiðkÞ � ŷiðkÞÞ
ŷiðkÞ ¼ Cix̂iðkÞ ði ¼ 1; 2; . . .;NÞ

8<
: ð4Þ

where x̂iðkÞ ¼ ðx̂i1ðkÞ; x̂i2ðkÞ; . . .; x̂inðkÞÞT 2 Rn represents the estimation states of the
nodes in network (1). ŷiðkÞ 2 Rm denotes the output of the nodes in network (4),
Ki 2 Rn�m stands for the observer gain to be determined.

By applying the Kronecker product, networks (1), (2) and (4) can be expressed as
the following concise form:

xðkþ 1Þ ¼ AxðkÞþ f ðxðkÞÞþ ðW � CÞyðkÞ
yðkÞ ¼ CxðkÞ

�
ð5Þ
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�yðkÞ ¼ rðkÞCxðkÞ ð6Þ

x̂ðkþ 1Þ ¼ Ax̂ðkÞþ f ðx̂ðkÞÞþ ðW � CÞŷðkÞþK½�yðkÞ � ŷðkÞ�
ŷðkÞ ¼ Cx̂ðkÞ

�
ð7Þ

where

xðkÞ ¼ ðxT1 ðkÞ; xT2 ðkÞ; . . .; xTNðkÞÞT , x̂ðkÞ ¼ ðx̂T1 ðkÞ; x̂T2 ðkÞ; . . .; x̂TNðkÞÞT ,
yðkÞ ¼ ðyT1 ðkÞ; yT2 ðkÞ; . . .; yTNðkÞÞT , ŷiðkÞ ¼ ðŷT1 ðkÞ; ŷT2 ðkÞ; . . .; ŷTNðkÞÞT ,
�yiðkÞ ¼ ð�yT1 ðkÞ;�yT2 ðkÞ; . . .;�yTNðkÞÞT ,
f ðxðkÞÞ ¼ ðf Tðx1ðkÞÞ; f Tðx2ðkÞÞ; . . .; f TðxNðkÞÞÞT ,
f ðx̂ðkÞÞ ¼ ðf Tðx̂1ðkÞÞ; f Tðx̂2ðkÞÞ; . . .; f Tðx̂NðkÞÞÞT , A ¼ diagfA1;A2; . . .;ANg,
C ¼ diagfC1;C2; . . .;CNg, K ¼ diagfK1;K2; . . .;KNg,
rðkÞ ¼ ðdiagfr1ðkÞ; r2ðkÞ; . . .; rNðkÞgÞ � In, In is the identical matrix of n
dimensions.

Letting the state error be

~xðkþ 1Þ ¼ xðkþ 1Þ � x̂ðkþ 1Þ ð8Þ

It follows from (5)–(7) that

~xðkþ 1Þ ¼ A½xðkÞ � x̂ðkÞ� þ ½f ðxðkÞÞ � f ðx̂ðkÞÞ� þ ðW � CÞC½xðkÞ � x̂ðkÞ�
� K½rðkÞCxðkÞ � Cx̂ðkÞ�

¼ A~xðkÞþ~f ðxðkÞÞþ ðW � CÞC~xðkÞ � K½rðkÞCxðkÞ � Cx̂ðkÞ�
¼ A~xðkÞþ~f ðxðkÞÞþ ðW � CÞC~xðkÞ � KC~xðkÞþKðINn � rðkÞÞCxðkÞ
¼ ~f ðxðkÞÞþ ½ðA� KCÞþ ðW � CÞC�~xðkÞþKðINn � rðkÞÞCxðkÞ

where ~xðkÞ ¼ xðkÞ � x̂ðkÞ, ~f ðxðkÞÞ ¼ f ðxðkÞÞ � f ðx̂ðkÞÞ. For the sake of concise
expression, we could assume that H ¼ INn � rðkÞ and 0\H\ INn, then

~xðkþ 1Þ ¼ ½ðA� KCÞþ ðW � CÞC�~xðkÞþ~f ðxðkÞÞþKHCxðkÞ ð9Þ

Since that xðkÞ and ~xðkÞ both exist in (9) at the same time, we take the augmented
state vector to be

eðkÞ ¼ xðkÞ
~xðkÞ

� �
ð10Þ

It follows from (5) and (9) that
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eðkþ 1Þ ¼ xðkþ 1Þ
~xðkþ 1Þ

� �

¼ AxðkÞþ f ðxðkÞÞþ ðW � CÞCxðkÞ
½ðA� KCÞþ ðW � CÞC�~xðkÞþ~f ðxðkÞÞþKHCxðkÞ

� �

¼ f ðxðkÞÞ
~f ðxðkÞÞ

� �
þ AþðW � CÞC 0

KHC ðA� KCÞþ ðW � CÞC
� �

xðkÞ
~xðkÞ

� �

¼ f ðxðkÞÞ
~f ðxðkÞÞ

� �
þ AþðW � CÞC 0

0 ðA� KCÞþ ðW � CÞC
� �

xðkÞ
~xðkÞ

� �
þ 0 0

KHC 0

� �
xðkÞ
~xðkÞ

� �

¼ f ðxðkÞÞ
~f ðxðkÞÞ

� �
þ AþðW � CÞC 0

0 ðA� KCÞþ ðW � CÞC
� �

xðkÞ
~xðkÞ

� �
þ 0 0

0 K

� �
0 0

HC 0

� �
xðkÞ
~xðkÞ

� �

suppose

B ¼ AþðW � CÞC 0
0 ðA� KCÞþ ðW � CÞC

� �
, D1 ¼ 0 0

0 K

� �
, D2 ¼ 0 0

HC 0

� �
,

hðxðkÞ; x̂ðkÞÞ ¼ f ðxðkÞÞ
~f ðxðkÞÞ

� �
,

then

eðkþ 1Þ ¼ BeðkÞþD1D2eðkÞþ hðxðkÞ; x̂ðkÞÞ ð11Þ

Before deriving the main results, an available assumption and a useful lemma are
given as follows throughout this paper.

Assumption 1: Suppose that f ð0Þ ¼ 0 and there exists a positive constant a such that

jjf ðuÞ � f ðvÞjj � ajju� vjj; 8u; v 2 Rn:

Lemma 1 (Schur Complement): For a given real symmetric matrix P ¼ P11 P21

P12 P22

� �
,

where P11 ¼ PT
11, P12 ¼ PT

21, P22 ¼ PT
22, the condition P\0 is equivalent to

P22\0
P11 �P12P�1

22 P
T
12\0

�
:

3 Main Results

In the section, the LMIs approach is applied to deal with the issue on state estimation of
network (1), which was put forward previously.

Theorem 1: Under Assumption 1, network (4) becomes an effective state estimator of
network (1) if there exist such matrixes P ¼ PrðkÞ [ 0, �P ¼ Prðkþ 1Þ ¼ ðK� InÞ
PrðkÞ [ 0, that P ¼ PT ¼ P1 0

0 P2

� �
, �P ¼ �PT ¼ �P1 0

0 �P2

� �
and K ¼ diag

ðK1;K2; . . .;KNÞ, matrix K, scalar a[ 0 such that the LMI u\0 in (12) hold.
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u ¼

p1 p2 AT �P1 þCTðW � CÞT �P1 CTHTKT �P2 CTHTKT �P2 0

	 p3 � CTKT �P2KC 0 p4 �CTKT �P2 CTKT �P2

	 	 �P1 � aI 0 0 0

	 	 	 �P2 � aI 0 0

	 	 	 	 ��P2 0

	 	 	 	 	 ��P2

2
666666664

3
777777775

ð12Þ

where

p1 ¼ AT �P1AþAT �P1ðW � CÞCþCTðW � CÞT �P1AþCTðW � CÞT �P1ðW � CÞC � P1 þ aa2I

p2 ¼ CTHTKT �P2AþCTHTKT �P2ðW � CÞC
p3 ¼ AT �P2A� CTKT �P2A� AT �P2KCþAT �P2ðW � CÞC � CTKT �P2ðW � CÞC

þCTðW � CÞT �P2A� CTðW � CÞT �P2KCþCTðW � CÞT �P2ðW � CÞC � P2 þ aa2I

p4 ¼ AT �P2 � CTKT �P2 þCTðW � CÞT �P2:

Moreover, the state estimator gain can be determined by

K ¼ �P�1
2 Y ð13Þ

Proof: Construct a Lyapunov functional candidate as follows:

Vðk; rðkÞÞ ¼ eTðkÞPrðkÞeðkÞ ð14Þ

For calculating the difference of Vðk; rðkÞÞ along the trajectories of (11) and getting
the mathematical expectation, one can obtain that

EfDVðk; rðkÞÞg ¼ EfVðkþ 1; rðkþ 1ÞÞ � Vðk; rðkÞÞg
¼ EfeTðkþ 1ÞPrðkþ 1Þeðkþ 1Þ � eTðkÞPrðkÞeðkÞg
¼ Ef½BeðkÞþD1D2eðkÞþ hðxðkÞ; x̂ðkÞÞ�T �P
½BeðkÞþD1D2eðkÞþ hðxðkÞ; x̂ðkÞÞ� � eTðkÞPeðkÞg

¼ EfeTðkÞBT �PBeðkÞþ eTðkÞBT �PD1D2eðkÞ
þ eTðkÞBT �PhðxðkÞ; x̂ðkÞÞþ eTðkÞDT

2D
T
1
�PBeðkÞ

þ eTðkÞDT
2D

T
1
�PD1D2eðkÞþ eTðkÞDT

2D
T
1
�PhðxðkÞ; x̂ðkÞÞ

þ hTðxðkÞ; x̂ðkÞÞ�PBeðkÞþ hTðxðkÞ; x̂ðkÞÞ�PD1D2eðkÞ
þ hTðxðkÞ; x̂ðkÞÞ�PhðxðkÞ; x̂ðkÞÞ � eTðkÞPeðkÞg

¼ EfvTu1vg

ð15Þ

where

v ¼ eðkÞ
hðxðkÞ; x̂ðkÞÞ

� �
, P ¼ PrðkÞ [ 0, �P ¼ Prðkþ 1Þ ¼ ðK� InÞPrðkÞ [ 0;
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u1 ¼ BT �PBþBT �PD1D2 þDT
2D

T
1
�PBþDT

2D
T
1
�PD1D2 � P BT �PþDT

2D
T
1
�P

�PBþ �PD1D2 �P

� �
:

From Assumption 1, it is easy to show that

ahTðxðkÞ; x̂ðkÞÞhðxðkÞ; x̂ðkÞÞ� aa2eTðkÞeðkÞ: ð16Þ

From (15) and (16), we obtain that

EfDVðk; rðkÞÞg�EfvTu1vþ ½aa2eTðkÞeðkÞ � ahTðxðkÞ; x̂ðkÞÞhðxðkÞ; x̂ðkÞÞ�g
¼ EfvTu2vg

u2 ¼
BT �PBþBT �PD1D2 þDT

2D
T
1
�PBþDT

2D
T
1
�PD1D2 � Pþ aa2I BT �PþDT

2D
T
1
�P

�PBþ �PD1D2 �P� aI

� �

¼
p1 þCTHTKT �P2KHC p2 � CTHTKT �P2KC AT �P1 þCTðW � CÞT �P1 CTHTKT �P2

	 p3 þCTKT �P2KC 0 p4
	 	 �P1 � aI 	
	 	 	 �P2 � aI

2
6664

3
7775

By Lemma 1, we can obtain that u2\0 is equivalent to the inequality u\0. It can
be derived that the estimation error network is asymptotically stable in the mean square
by applying the Lyapunov functional approach. It means that network (4) is an effective
state estimator of network (1).

4 Simulations

In the section, an example is given to justify the criteria proposed in the previous
section. Considering an output coupled discrete-time complex network with 3 nodes.
Following are the parameters for the network:

f ðxiðkÞÞ ¼ ð�1:4xi1ðkÞþ 2:4 tanhðxi1ðkÞÞ;�1:4xi2ðkÞþ 2:4 tanh xi2ðkÞÞ;
�1:4xi3ðkÞþ 2:4 tanh xi3ðkÞÞÞT

ði ¼ 1; 2; 3Þ

Ai ¼
0:47 0 0

0 0:4 0

0 0 0:25

2
64

3
75; A ¼ diagðA1;A2;A3Þ; Ci ¼

0:8 0 0

0 0:8 0

0 0 1

2
64

3
75; C ¼ diagðC1;C2;C3Þ;

W ¼
�2 1 1

1 �1 0

1 1 �2

2
64

3
75; C ¼

0:3 �0:1 0:2

0 �0:3 0:2

�0:1 �0:1 �0:2

2
64

3
75; Ki ¼

0:1 0:9

0:2 0:8

� �
; K ¼ diagðK1;K2;K3Þ;

rðkÞ ¼ ½bi1; bi2; bi3�T ðbi1; bi2; bi3 2 f0; 1g ði ¼ 1; 2; 3ÞÞH ¼ I9 � diagðrðkÞ; rðkÞ; rðkÞÞ;

then select a ¼ 0:4 in (16). Applying the MATLAB LMI Toolbox, we obtain the
equations including the gain matrix in Theorem 1 as follows:
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�P1 ¼ diagðM;M;MÞ M ¼
1:0021 �0:0151 0:0079
�0:0151 0:9576 �0:0002
0:0079 �0:0002 1:0246

2
4

3
5;

�P2 ¼ diagðN;N;NÞ N ¼
1:0117 �0:0088 0:0061
�0:0088 0:9834 0:0012
0:0038 0:0012 1:0255

2
4

3
5;

K ¼ diagðK0;K0;K0Þ K0 ¼
0:1166 0:0458 0:0080
0:0384 0:1340 0:0150
�0:0095 0:0007 0:0681

2
4

3
5;

meanwhile, a ¼ 1:9009 is obtained in (16).
We choose the third state of each node to show the state trajectories of nodes, the

simulations are presented in Fig. 1. Meanwhile, the simulations for all states of error
system are shown in Fig. 2. From these simulations, we can conclude that the estimator
(4) could effectively estimate the state of nodes in network (1), which exists Markovian
packet losses. The proof is then verified.
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Fig. 1. The states and estimation states of xi3ði ¼ 1; 2; 3Þ
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5 Conclusions

In the paper, we have dealt with the problem of state estimation for discrete-time
directed complex networks with coupled outputs. It often occurs the packet losses in
practical transmission channel. We describe it as a Markovian packet dropout and the
transition probability is known. By employing the Lyapunov functional theory and
stochastic analysis method, a state observer has been constructed to witness the esti-
mation error to be asymptotically stable in the mean square. The criteria has been
established to guarantee the existence of the desired estimator gain matrix. The sim-
ulations have been shown to illustrate the applicability of the criteria obtained.
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