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Abstract. In this paper, the stability analysis of event-triggered networked
control systems is investigated. First, a more advanced event-triggered algorithm
is introduced. Second, the nonperiodic sampled-data system is modeled as a
state delay system. Third, a stability result is derived based on Lyapunov-
Krasovskii functional approach. Finally, some simulation results are given to
verify the effectiveness of the proposed method.
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1 Introduction

In recent years, sampled-data systems have attracted the attention of many researchers
[1, 2] due to the high-speed development of the digital control systems and networked
control systems. Most results about sampled-data systems use a periodic triggered
control method [3], periodic sampling method is easy for system modeling and analysis
[4], but considering the resource utilization, this way has its limitations. When the
system is running smoothly, periodical transmission will result in a waste of resources
and bandwidth. At the same time, we should have noticed another fact, with the
growing of the systems scale [5, 6], the amount of data transmitted by the network is
great, thus, it is necessary to save resources and bandwidth. From the two aspects, the
event-triggering mechanism shows its unique advantages [7]. Recently, the research of
networked control system based on event-driven mechanism gets an increasing
attention, and so far, many research results have been achieved [8–10]. Therefore, it is
necessary to analyze and design the networked control system based on the
event-driven mechanism.

In the event-triggered mechanism, the transmission of data mainly depends on the
predefined trigger algorithm [11]. Therefore, the advantage of an event-triggered
mechanism depends on the choice of trigger algorithm and the corresponding param-
eters settings. At the same time, the stability analysis based on the event-triggered
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mechanism is dependent on the selection of the Lyapunov-Krasovskii equation, an
appropriate Lyapunov-Krasovskii equation and the treatment of the corresponding
integral term will reduce the conservativeness of the system to a certain extent.
A smaller degree of conservatism will make the proposed solution more valuable.

Inspired by literature [12, 13], compared to other aperiodic sampling methods, we
take nonperiodic sampled-data system into account and model it as a state delay
system, then we proposed a more advanced event-triggered algorithm based on non-
periodic sampling, this algorithm has its own unique advantage. Simultaneously, after
changing the corresponding parameters, the different set of the element in H can reduce
the amount of transmitted sampled data. In the selection of the Lyapunov-Krasovskii
equation, we choose a discrete Lyapunov-Krasovskii equation to reduce the conser-
vative. At the same time, in the processing of some integral items, we choose the
improved Jason inequality [14] and some results in literature [15] to further reduce the
conservative.

2 Problem Formulation

Consider a class of linear systems:

_xðtÞ ¼ AxðtÞþBuðtÞ ð1Þ

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the control input, A 2 Rn�n, B 2 Rn�m

are known constant matrices with appropriate dimensions.
Similar to [13], this paper considers an event-triggered mechanism, the last released

instant rk; k ¼ 1; 2; . . . the next released instant rkþ 1 ¼ rk þ
Plk
s¼0

Dts

1� lk\1; lk 2 N, then we divide the time interval ½rk; rkþ 1Þ into the following
subintervals:

½rk; rkþ 1Þ ¼ Ulk�1
d¼�1I

k
d ð2Þ

where Ikd ¼ ½rk þ
Pd
s¼0

Dts; rk þ
Pdþ 1

s¼0
DtsÞ; d 2 ½0; lk � 1�, and the trigger instants rk sat-

isfying 0 ¼ r0\r1\. . .\rk\. . . and 0� r� rkþ 1 � rk ��r; for 8k 2 N.
The triggered algorithm proposed in this paper is:

e2eTðrk þ
Xd
s¼0

DtsÞX1eðrk þ
Xd
s¼0

DtsÞ� xTðrkÞHX2HxðrkÞ

where

eðrk þ
Pd
s¼0

DtsÞ ¼ xðrk þ
Pd
s¼0

DtsÞ � xðrkÞ;H ¼ diagf ffiffiffiffiffi
r1

p
;

ffiffiffiffiffi
r2

p
; . . .;

ffiffiffiffiffi
rn

p g with ri

[ 0ði ¼ 1; 2; . . .; nÞ;X1 [ 0, and X2 [ 0 are two weighting matrices.
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Remark 1. Notice that, compared with traditional event-triggered algorithm, this
algorithm introduces a diagonal matrix H, this matrix contains different weighting
factor ri which corresponds to each component xi of the latest transmitted sampled
state x, the different set of the element in H can reduce the amount of transmitted
sampled data, in this way, the communication and computation resources will be saved
deeply. Another point, we can see: if taking H ¼ diagf ffiffiffi

r
p

;
ffiffiffi
r

p
; . . .;

ffiffiffi
r

p g, e ¼ 1, this
event-triggered algorithm turns into a traditional algorithm. Therefor, this
event-triggered algorithm is more general than some existing ones.

Similar to [13], define a time-varying delay sðtÞ as:

sðtÞ ¼
t � rk; t 2 ½rk; rk þDt0Þ
t � rk �

Pd
s¼0

Dts; t 2 ½rk þ
Pd
s¼0

Dts; rk þ
Pdþ 1

s¼0
DtsÞ

8<
:

where d 2 ½0; lk � 1�.
Then we have

eðrk þ
Pd
s¼0

DtsÞ ¼ eðt � sðtÞÞ ¼ esðtÞ;

xðrkÞ ¼ x t � s tð Þð Þ � eðrk þ
Pd
s¼0

DtsÞ ¼ xsðtÞ � esðtÞ

The event-triggered algorithm can be written as:

e2eTs ðtÞX1esðtÞ� ½xsðtÞ � esðtÞ�THX2H½xsðtÞ � esðtÞ�

Considering the event-triggered mechanism, we can design the controller as follow:

uðtÞ ¼ KxðrkÞ; t 2 ½rk; rkþ 1Þ ð3Þ

where uðtÞ 2 Rm is the control input satisfying uðtÞ ¼ uðrkÞ:

xðrkÞ ¼ xsðtÞ � esðtÞ ð4Þ

Substituting (3) into (1) yields.

_xðtÞ ¼ AxðtÞþBKxðrkÞ ð5Þ

Then substituting (4) into (5) yields, the original model can be converted into:

_xðtÞ ¼ AxðtÞþA1ðxsðtÞ � esðtÞÞ; t 2 ½rk; rkþ 1Þ ð6Þ

where A1 ¼ BK.

Lemma 1 [14]. For a given matrix R 2 Snþ , any differentiable function x in
½a; b� ! Rn, the inequality holds:
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Z b

a
_xTðuÞR _xðuÞdu� 1

b� a
XTdiagðR; 3RÞX

where

X ¼ xðbÞ � xðaÞ
xðbÞþ xðaÞ � 2

b�a

R b
a xðuÞdu

� �

3 Stability Analysis

Theorem 1. For given positive r and �r, 1� n matrix K, if there exist symmetric matrix
P[ 0; Q[ 0; X[ 0;Q1 [ 0;Q2 2 Rn�nM1;M2 2 Rn�n and N1j;N2j; N3j 2 Rn�nðj ¼
1; 2; 3; 4Þ, the following inequalities hold.

P11 � � � � �
P21 P22 � � � �
P31 P32 P33 � � �
P41 P42 P43 P44 � �
rNT

11 rNT
12 rNT

13 rNT
14 �rQ �

3rNT
21 3rNT

22 3rNT
23 3rNT

24 0 �3rQ

2
6666664

3
7777775
\0

X11 � � � �
X21 X22 � � �
X31 X32 X33 � �
X41 X42 X43 X44 �
rAQ rA1Q �rA1Q 0 �rQ

2
66664

3
77775\0

where

P11 ¼ ATPþPA� N11 � NT
11 � N31 � NT

31 � 3N21 � 3NT
21 � 2M1

P21 ¼ AT
1P� N12 þNT

11 � N32 þNT
31 � 3N22 � 3NT

21 �M2 þM1 þ rAT
1N

T
31

P22 ¼ N12 þNT
12 þN32 þNT

32 � 3N22 � 3NT
22 þ 2M2 þ rN32A1 þ rAT

1N
T
32

� rQ2 þHXH

P31 ¼ AT
1P� N13 � NT

11 � N33 � NT
31 � 3N23 þ 3NT

21 þM2 �M1 � rAT
1N

T
31

P32 ¼ N13 � NT
12 þN33 � NT

32 � 3N23 þ 3NT
22 � 2M2 þ rN33A1 � rAT

1N
T
32

þ rQ2 �HXH

P33 ¼ �N13 � NT
13 � N33 � NT

33 þ 3N23 þ 3NT
23 þ 2M2 � rN33A1 � rAT

1N
T
33

� rQ2 � e2XþHXH
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P41 ¼ �N14 � N34 � 3N24 þ 6NT
21 þ rATNT

31

P42 ¼ N14 þN34 � 3N24 þ 6NT
22 þ rN34A1 þ rATNT

32

P43 ¼ �N14 � N34 þ 3N24 þ 6NT
23 � rN34A1 þ rATNT

33

P44 ¼ 6N24 þ 6NT
24 þ rN34Aþ rATNT

34 � rQ1

X11 ¼ ATPþPA� N11 � NT
11 � N31 � NT

31 � 3N21 � 3NT
21 � 2M1 þ rATM1

þ 2rM1Aþ rATM1 þ rQ1

X21 ¼ AT
1P� N12 þNT

11 � N32 þNT
31 � 3N22 � 3NT

21 �M2 þM1 þ rAT
1M1

þ rM2Aþ rAT
1M1 � rM1A

X22 ¼ N12 þNT
12 þN32 þNT

32 � 3N22 � 3NT
22 þ 2M2 � rAT

1M1 þ rM2A1

� rM1A1 þ rAT
1M2 þ rQ2

X31 ¼ AT
1P� N13 � NT

11 � N33 � NT
31 � 3N23 þ 3NT

21 þM2 �M1 � rAT
1M1

� rM2A� rAT
1M1 þ rM1A

X32 ¼ N13 � NT
12 þN33 � NT

32 � 3N23 þ 3NT
22 � 2M2 þ rAT

1M1 � rM2A1

þ rM1A1 � rAT
1M2 � rQ2

X33 ¼ �N13 � NT
13 � N33 � NT

33 þ 3N23 þ 3NT
23 þ 2M2 � rAT

1M1 þ rM2A1

� rM1A1 þ rAT
1M2 þ rQ2

X41 ¼ �N14 � N34 � 3N24 þ 6NT
21

X42 ¼ N14 þN34 � 3N24 þ 6NT
22

X43 ¼ �N14 � N34 þ 3N24 þ 6NT
23

Then the system (6) is asymptotically stable.

Proof. Similar to [12], select a Lyapunov-like functional:

VðxðtÞ; tÞ ¼ V1ðxðtÞÞþV2ðxðtÞ; tÞþV3ðxðtÞ; tÞ

where

V1ðxðtÞÞ ¼ xTðtÞPxðtÞ

V2ðxðtÞ; tÞ ¼ 2ðrkþ 1 � tÞðxTðtÞM1 þ xTðrkÞM2ÞðxðtÞ � xðrkÞÞþ ðrkþ 1 � tÞ
Z t

rk

_xðsÞQ _xðsÞds

V3ðxðtÞ; tÞ ¼ ðrkþ 1 � tÞ
Z t

rk

xTðsÞQ1xðsÞdsþðrkþ 1 � tÞðt � rkÞxTðrkÞQ2xðrkÞ

Then define nðtÞ ¼ xTðtÞ xTs ðtÞ eTs ðtÞ mTðtÞ� �T
where mðtÞ ¼ 1

t�rk

R t
rk
xðsÞds:

Taking the derivative of VðxðtÞ; tÞ along the trajectory of system (6).
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_VðxðtÞ; tÞ ¼ _V1ðxðtÞÞþ _V2ðxðtÞ; tÞþ _V3ðxðtÞ; tÞ
_V1ðxðtÞÞ ¼ xTðtÞðATPþPAÞxðtÞþ 2xTðtÞPA1xsðtÞ � 2xTðtÞPA1esðtÞ
_V2ðxðtÞ; tÞ ¼ 2nTðtÞZ1nðtÞþ ðrkþ 1 � tÞnTðtÞðHeðZ2ÞþZ3ÞnðtÞ �

Z t

rk

_xTðsÞQ _xðsÞds

_V3ðxðtÞ; tÞ ¼ ðrkþ 1 � tÞnTðtÞC1nðtÞþ ðrkþ 1 � tÞnTðtÞC2nðtÞ � ðt � rkÞnTðtÞC2nðtÞ �
Z t

rk

xTðsÞQ1xðsÞds

where

Z1 ¼
�M1 M1 �M1 0
�M2 M2 �M2 0
M2 �M2 M2 0
0 0 0 0

2
664

3
775

Z2 ¼
ATM1 þM1A M1A1 � ATM1 �M1A1 þATM1 0
AT
1M1 þM2A �AT

1M1 þM2A1 AT
1M1 �M2A1 0

�AT
1M1 �M2A AT

1M1 �M2A1 �AT
1M1 þM2A1 0

0 0 0 0

2
664

3
775

Z3 ¼
ATQA � � �
AT
1QA AT

1QA1 � �
�AT

1QA �AT
1QA1 AT

1QA1 �
0 0 0 0

2
664

3
775

C1 ¼
Q1 � � �
0 0 � �
0 0 0 �
0 0 0 0

2
664

3
775 C2 ¼

0 � � �
0 Q2 � �
0 �Q2 Q2 �
0 0 0 0

2
664

3
775

Integrating both sides of system (5) 0n ½rk; tÞ, we have

xðtÞ � xðrkÞ ¼ A
Z t

rk

xðsÞdsþðt � rkÞA1xðrkÞ ð7Þ

According to (7), there exists N3 2 R4n�n such that

�2nTðtÞN3ðe1 � e2 þ e3ÞnðtÞþ 2ðt � rkÞnTðtÞN3Ae4nðtÞ
þ 2ðt � rkÞnTðtÞN3A1ðe2 � e3ÞnðtÞ ¼ 0

ð8Þ

By Lemma 1, we have
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�
Z t

rk

_xTðsÞQ _xðsÞds� � 1
t � rk

nTðtÞðe1 � e2 þ e3ÞTQðe1 � e2 þ e3ÞnðtÞ

� 3
t � rk

nTðtÞðe1 þ e2 � e3 � 2e4ÞTQðe1 þ e2 � e3 � 2e4ÞnðtÞ

In addition, there exist N1;N2 2 R4n�n satisfies the following inequalities.

�
Z t

rk

_xTðsÞQ _xðsÞds�ðt � rkÞN1Q
�1NT

1 � N1ðe1 � e2 þ e3Þ � NT
1 ðe1 � e2 þ e3ÞT

þ 3ðt � rkÞN2Q
�1NT

2 � 3N2ðe1 þ e2 � e3 � 2e4Þ � 3NT
2 ðe1 þ e2 � e3 � 2e4ÞT

ð9Þ

where
e1 ¼ I 0 0 0½ �; e2 ¼ 0 I 0 0½ �; e3 ¼ 0 0 I 0½ �; e4 ¼ 0 0 0 I½ �

According to Jensen inequality, we have the following inequality.

�
Z t

rk

xTðsÞQ1xðsÞds� � ðt � rkÞmTðtÞQ1mðtÞ ð10Þ

From (8)–(10), by Schur complement lemma, Theorem 1 can be derived for
r 2 fr;�rg.

4 Numerical Examples

In this section, a numerical simulation is given to verify the results proposed in the
previous section.

Example 1. Consider the system in [12] with the parameter matrices.

A ¼ 0 1
0 �0:1

� �
; A1 ¼ 0 0

�0:375 �1:15

� �

When r ¼ 0, the admissible upper bound �r can be calculated by Matlab LMI
toolbox according to Theorem 1.

(1) Case 1: Set event-trigger parameters

e ¼ 1;H ¼ diagf0:59; 0:47g

The admissible upper bound �r and some results in [12, 16, 17] are shown in Table 1.
From Table 1, it can be seen clearly that Theorem 1 has a less conservatism than the

results in [12, 16, 17].

Table 1. Admissible upper bound �r under different schemes

Schemes [12] [16] [17] Theorem 1

�r 1.729 1.69 1.7216 2.44
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So as to further verify the effectiveness of the event-triggered algorithm, we make
the following experiments.

(2) Case 2: we set different e to do several simulations.

e1 ¼ 10; e2 ¼ 15; e3 ¼ 30

The admissible upper bounds corresponding to different e are shown in Table 2.
From Table 2, we can see clearly that different e can reduce the conservatism to

different degrees.

Example 2. Consider the system in [12].

A ¼
0:05 0:6 0:1
�3 �2 0:1
0:1 0 �2

2
4

3
5; A1 ¼

0:05 0:05 0:4
�1 1 0:05
0:5 0:05 �0:9

2
4

3
5

(1) Case 1: Set event-trigger parameters

e ¼ 15; H ¼ diagf0:59; 0:47; 0:51g

The admissible upper bound and some results in [14, 17] are shown in Table 3.
For the different simulation model, the Table 3 shows that Theorem 1 has a less

conservatism than the results in [14, 17].

(1) Case 2: Now we set H ¼ diagf0:59; 0:47; 0:51g and choose different e to do
several simulations.

e1 ¼ 20; e2 ¼ 25; e3 ¼ 30

The admissible upper bounds �r corresponding to different e are shown in Table 4.

Table 2. Admissible upper bound �r with different e

Different e e1 e2 e3
�r 2.51 2.54 2.59

Table 3. Admissible upper bound �r under different schemes

Schemes [14] [17] Theorem 1

�r 2.33 2.00 2.51
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From Table 4, we can see clearly that different e can reduce the conservatism to
different degrees.

From Tables 1 and 3, it is seen clearly that Theorem 1 is less conservative than the
results in literature [16, 17]. From Tables 2 and 4, we can see clearly that the
event-triggering algorithm has a certain effect in reducing conservatism.

5 Conclusion

In this paper, based on the sampling-dependent stability for sampled-data systems, a
more general event-triggering mechanism is taken into account. In terms of reducing
conservatism, we utilize a Lyapunov-like functional including the integral of the state.
Simultaneously, we use the improved Jensen inequality for the derivative of the
Lyapunov-like functional. At last, a sampling-dependent stability theorem is derived.
The validity of this theorem is verified by several simulation experiments.
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