Stability Analysis of Event-Triggered Networked Control Systems with Time-Varying Sampling

Huaibin $Xie^{1(\boxtimes)}$ and Songlin Hu^2

 ¹ College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210000, China 1012579727@qq.com
 ² Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, CTGU, Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing 210000, China

Abstract. In this paper, the stability analysis of event-triggered networked control systems is investigated. First, a more advanced event-triggered algorithm is introduced. Second, the nonperiodic sampled-data system is modeled as a state delay system. Third, a stability result is derived based on Lyapunov-Krasovskii functional approach. Finally, some simulation results are given to verify the effectiveness of the proposed method.

Keywords: Sampled-data systems \cdot Event-triggering scheme \cdot Linear matrix inequalities

1 Introduction

In recent years, sampled-data systems have attracted the attention of many researchers [1, 2] due to the high-speed development of the digital control systems and networked control systems. Most results about sampled-data systems use a periodic triggered control method [3], periodic sampling method is easy for system modeling and analysis [4], but considering the resource utilization, this way has its limitations. When the system is running smoothly, periodical transmission will result in a waste of resources and bandwidth. At the same time, we should have noticed another fact, with the growing of the systems scale [5, 6], the amount of data transmitted by the network is great, thus, it is necessary to save resources and bandwidth. From the two aspects, the event-triggering mechanism shows its unique advantages [7]. Recently, the research of networked control system based on event-driven mechanism gets an increasing attention, and so far, many research results have been achieved [8–10]. Therefore, it is necessary to analyze and design the networked control system based on the event-driven mechanism.

In the event-triggered mechanism, the transmission of data mainly depends on the predefined trigger algorithm [11]. Therefore, the advantage of an event-triggered mechanism depends on the choice of trigger algorithm and the corresponding parameters settings. At the same time, the stability analysis based on the event-triggered

mechanism is dependent on the selection of the Lyapunov-Krasovskii equation, an appropriate Lyapunov-Krasovskii equation and the treatment of the corresponding integral term will reduce the conservativeness of the system to a certain extent. A smaller degree of conservatism will make the proposed solution more valuable.

Inspired by literature [12, 13], compared to other aperiodic sampling methods, we take nonperiodic sampled-data system into account and model it as a state delay system, then we proposed a more advanced event-triggered algorithm based on nonperiodic sampling, this algorithm has its own unique advantage. Simultaneously, after changing the corresponding parameters, the different set of the element in Θ can reduce the amount of transmitted sampled data. In the selection of the Lyapunov-Krasovskii equation, we choose a discrete Lyapunov-Krasovskii equation to reduce the conservative. At the same time, in the processing of some integral items, we choose the improved Jason inequality [14] and some results in literature [15] to further reduce the conservative.

2 **Problem Formulation**

Consider a class of linear systems:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

where $x(t) \in \mathbb{R}^n$ is the state vector, $u(t) \in \mathbb{R}^m$ is the control input, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ are known constant matrices with appropriate dimensions.

Similar to [13], this paper considers an event-triggered mechanism, the last released instant $r_k, k = 1, 2, ...$ the next released instant $r_{k+1} = r_k + \sum_{s=0}^{l_k} \Delta t_s$ $1 \le l_k < \infty, \ l_k \in N$, then we divide the time interval $[r_k, r_{k+1}]$ into the following subintervals:

$$[r_k, r_{k+1}) = U_{d=-1}^{l_k - 1} I_d^k$$
(2)

where $I_d^k = [r_k + \sum_{s=0}^d \Delta t_s, r_k + \sum_{s=0}^{d+1} \Delta t_s), d \in [0, l_k - 1]$, and the trigger instants r_k satisfying $0 = r_0 < r_1 < \ldots < r_k < \ldots$ and $0 \le \underline{r} \le r_{k+1} - r_k \le \overline{r}$, for $\forall k \in N$.

The triggered algorithm proposed in this paper is:

$$\varepsilon^2 e^T (r_k + \sum_{s=0}^d \Delta t_s) \Omega_1 e(r_k + \sum_{s=0}^d \Delta t_s) \leq x^T (r_k) \Theta \Omega_2 \Theta x(r_k)$$

where

$$e(r_k + \sum_{s=0}^{d} \Delta t_s) = x(r_k + \sum_{s=0}^{d} \Delta t_s) - x(r_k), \Theta = diag\{\sqrt{\sigma_1}, \sqrt{\sigma_2}, \dots, \sqrt{\sigma_n}\} \text{ with } \sigma_i > 0 \\ (i = 1, 2, \dots, n), \Omega_1 > 0, \text{ and } \Omega_2 > 0 \text{ are two weighting matrices.}$$

Remark 1. Notice that, compared with traditional event-triggered algorithm, this algorithm introduces a diagonal matrix Θ , this matrix contains different weighting factor σ_i which corresponds to each component x_i of the latest transmitted sampled state x, the different set of the element in Θ can reduce the amount of transmitted sampled data, in this way, the communication and computation resources will be saved deeply. Another point, we can see: if taking $\Theta = diag\{\sqrt{\sigma}, \sqrt{\sigma}, \dots, \sqrt{\sigma}\}, \varepsilon = 1$, this event-triggered algorithm turns into a traditional algorithm. Therefor, this event-triggered algorithm is more general than some existing ones.

Similar to [13], define a time-varying delay $\tau(t)$ as:

$$\tau(t) = \begin{cases} t - r_k, t \in [r_k, r_k + \Delta t_0) \\ t - r_k - \sum_{s=0}^d \Delta t_s, t \in [r_k + \sum_{s=0}^d \Delta t_s, r_k + \sum_{s=0}^{d+1} \Delta t_s) \end{cases}$$

where $d \in [0, l_k - 1]$.

Then we have

$$e(r_k + \sum_{s=0}^{d} \Delta t_s) = e(t - \tau(t)) = e_{\tau}(t),$$

 $x(r_k) = x(t - \tau(t)) - e(r_k + \sum_{s=0}^{d} \Delta t_s) = x_{\tau}(t) - e_{\tau}(t)$

The event-triggered algorithm can be written as:

$$\varepsilon^2 e_{\tau}^T(t) \Omega_1 e_{\tau}(t) \leq \left[x_{\tau}(t) - e_{\tau}(t) \right]^T \Theta \Omega_2 \Theta \left[x_{\tau}(t) - e_{\tau}(t) \right]$$

Considering the event-triggered mechanism, we can design the controller as follow:

$$u(t) = Kx(r_k), t \in [r_k, r_{k+1})$$
(3)

where $u(t) \in \mathbb{R}^m$ is the control input satisfying $u(t) = u(r_k)$.

$$x(r_k) = x_\tau(t) - e_\tau(t) \tag{4}$$

Substituting (3) into (1) yields.

$$\dot{x}(t) = Ax(t) + BKx(r_k) \tag{5}$$

Then substituting (4) into (5) yields, the original model can be converted into:

$$\dot{x}(t) = Ax(t) + A_1(x_{\tau}(t) - e_{\tau}(t)), t \in [r_k, r_{k+1})$$
(6)

where $A_1 = BK$.

Lemma 1 [14]. For a given matrix $R \in S^n_+$, any differentiable function x in $[a,b] \to R^n$, the inequality holds:

$$\int_{a}^{b} \dot{x}^{T}(u) R \dot{x}(u) du \geq \frac{1}{b-a} \Omega^{T} diag(R, 3R) \Omega$$

where

$$\Omega = \begin{bmatrix} x(b) - x(a) \\ x(b) + x(a) - \frac{2}{b-a} \int_a^b x(u) du \end{bmatrix}$$

3 Stability Analysis

Theorem 1. For given positive <u>*r*</u> and \bar{r} , $1 \times n$ matrix *K*, if there exist symmetric matrix P > 0, Q > 0, $\Omega > 0$, $Q_1 > 0$, $Q_2 \in \mathbb{R}^{n \times n} M_1$, $M_2 \in \mathbb{R}^{n \times n}$ and N_{1j}, N_{2j} , $N_{3j} \in \mathbb{R}^{n \times n}$ (j = 1, 2, 3, 4), the following inequalities hold.

$$\begin{bmatrix} \Pi_{11} & * & * & * & * & * & * \\ \Pi_{21} & \Pi_{22} & * & * & * & * & * \\ \Pi_{31} & \Pi_{32} & \Pi_{33} & * & * & * & * \\ \Pi_{41} & \Pi_{42} & \Pi_{43} & \Pi_{44} & * & * & * \\ TN_{11}^T & rN_{12}^T & rN_{13}^T & rN_{14}^T & -rQ & * \\ 3rN_{21}^T & 3rN_{22}^T & 3rN_{23}^T & 3rN_{24}^T & 0 & -3rQ \end{bmatrix} < 0$$

$$\begin{bmatrix} X_{11} & * & * & * & * \\ X_{21} & X_{22} & * & * & * \\ X_{31} & X_{32} & X_{33} & * & * \\ X_{41} & X_{42} & X_{43} & X_{44} & * \\ rAQ & rA_1Q & -rA_1Q & 0 & -rQ \end{bmatrix} < 0$$

where

$$\begin{split} \Pi_{11} &= A^T P + P A - N_{11} - N_{11}^T - N_{31} - N_{31}^T - 3N_{21} - 3N_{21}^T - 2M_1 \\ \Pi_{21} &= A_1^T P - N_{12} + N_{11}^T - N_{32} + N_{31}^T - 3N_{22} - 3N_{21}^T - M_2 + M_1 + rA_1^T N_{31}^T \\ \Pi_{22} &= N_{12} + N_{12}^T + N_{32} + N_{32}^T - 3N_{22} - 3N_{22}^T + 2M_2 + rN_{32}A_1 + rA_1^T N_{32}^T \\ &- rQ_2 + \Theta \Omega \Theta \\ \Pi_{31} &= A_1^T P - N_{13} - N_{11}^T - N_{33} - N_{31}^T - 3N_{23} + 3N_{21}^T + M_2 - M_1 - rA_1^T N_{31}^T \\ \Pi_{32} &= N_{13} - N_{12}^T + N_{33} - N_{32}^T - 3N_{23} + 3N_{22}^T - 2M_2 + rN_{33}A_1 - rA_1^T N_{32}^T \\ &+ rQ_2 - \Theta \Omega \Theta \\ \Pi_{33} &= -N_{13} - N_{13}^T - N_{33} - N_{33}^T + 3N_{23} + 3N_{23}^T + 2M_2 - rN_{33}A_1 - rA_1^T N_{33}^T \\ &- rQ_2 - \varepsilon^2 \Omega + \Theta \Omega \Theta \end{split}$$

$$\begin{split} \Pi_{41} &= -N_{14} - N_{34} - 3N_{24} + 6N_{21}^T + rA^T N_{31}^T \\ \Pi_{42} &= N_{14} + N_{34} - 3N_{24} + 6N_{22}^T + rN_{34}A_1 + rA^T N_{32}^T \\ \Pi_{43} &= -N_{14} - N_{34} + 3N_{24} + 6N_{23}^T - rN_{34}A_1 + rA^T N_{33}^T \\ \Pi_{44} &= 6N_{24} + 6N_{24}^T + rN_{34}A + rA^T N_{34}^T - rQ_1 \\ X_{11} &= A^T P + PA - N_{11} - N_{11}^T - N_{31} - N_{31}^T - 3N_{21} - 3N_{21}^T - 2M_1 + rA^T M_1 \\ &+ 2rM_1A + rA^T M_1 + rQ_1 \\ X_{21} &= A_1^T P - N_{12} + N_{11}^T - N_{32} + N_{31}^T - 3N_{22} - 3N_{21}^T - M_2 + M_1 + rA_1^T M_1 \\ &+ rM_2A + rA_1^T M_1 - rM_1A \\ X_{22} &= N_{12} + N_{12}^T + N_{32} + N_{32}^T - 3N_{22} - 3N_{22}^T + 2M_2 - rA_1^T M_1 + rM_2A_1 \\ &- rM_1A_1 + rA_1^T M_2 + rQ_2 \\ X_{31} &= A_1^T P - N_{13} - N_{11}^T - N_{33} - N_{31}^T - 3N_{23} + 3N_{21}^T + M_2 - M_1 - rA_1^T M_1 \\ &- rM_2A - rA_1^T M_1 + rM_1A \\ X_{32} &= N_{13} - N_{12}^T + N_{33} - N_{32}^T - 3N_{23} + 3N_{23}^T + 2M_2 - rA_1^T M_1 + rM_2A_1 \\ &- rM_1A_1 - rA_1^T M_2 - rQ_2 \\ X_{33} &= -N_{13} - N_{13}^T - N_{33} - N_{33}^T + 3N_{23} + 3N_{23}^T + 2M_2 - rA_1^T M_1 + rM_2A_1 \\ &- rM_1A_1 + rA_1^T M_2 + rQ_2 \\ X_{41} &= -N_{14} - N_{34} - 3N_{24} + 6N_{21}^T \\ X_{42} &= N_{14} + N_{34} - 3N_{24} + 6N_{22}^T \\ X_{43} &= -N_{14} - N_{34} + 3N_{24} + 6N_{23}^T \\ \end{split}$$

Then the system (6) is asymptotically stable.

Proof. Similar to [12], select a Lyapunov-like functional:

$$V(x(t), t) = V_1(x(t)) + V_2(x(t), t) + V_3(x(t), t)$$

where

$$V_{1}(x(t)) = x^{T}(t)Px(t)$$

$$V_{2}(x(t),t) = 2(r_{k+1}-t)(x^{T}(t)M_{1}+x^{T}(r_{k})M_{2})(x(t)-x(r_{k})) + (r_{k+1}-t)\int_{r_{k}}^{t} \dot{x}(s)Q\dot{x}(s)ds$$

$$V_{3}(x(t),t) = (r_{k+1}-t)\int_{r_{k}}^{t} x^{T}(s)Q_{1}x(s)ds + (r_{k+1}-t)(t-r_{k})x^{T}(r_{k})Q_{2}x(r_{k})$$

Then define $\xi(t) = \begin{bmatrix} x^T(t) & x^T_{\tau}(t) & e^T_{\tau}(t) & v^T(t) \end{bmatrix}^T$ where $v(t) = \frac{1}{t-r_k} \int_{r_k}^t x(s) ds$. Taking the derivative of V(x(t), t) along the trajectory of system (6).

$$\begin{aligned} \dot{V}(x(t),t) &= \dot{V}_1(x(t)) + \dot{V}_2(x(t),t) + \dot{V}_3(x(t),t) \\ \dot{V}_1(x(t)) &= x^T(t)(A^T P + PA)x(t) + 2x^T(t)PA_1x_{\tau}(t) - 2x^T(t)PA_1e_{\tau}(t) \\ \dot{V}_2(x(t),t) &= 2\xi^T(t)Z_1\xi(t) + (r_{k+1} - t)\xi^T(t)(He(Z_2) + Z_3)\xi(t) - \int_{r_k}^t \dot{x}^T(s)Q\dot{x}(s)ds \\ \dot{V}_3(x(t),t) &= (r_{k+1} - t)\xi^T(t)\Gamma_1\xi(t) + (r_{k+1} - t)\xi^T(t)\Gamma_2\xi(t) - (t - r_k)\xi^T(t)\Gamma_2\xi(t) - \int_{r_k}^t x^T(s)Q_1x(s)ds \end{aligned}$$

where

$$Z_{1} = \begin{bmatrix} -M_{1} & M_{1} & -M_{1} & 0\\ -M_{2} & M_{2} & -M_{2} & 0\\ M_{2} & -M_{2} & M_{2} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Z_{2} = \begin{bmatrix} A^{T}M_{1} + M_{1}A & M_{1}A_{1} - A^{T}M_{1} & -M_{1}A_{1} + A^{T}M_{1} & 0\\ A_{1}^{T}M_{1} + M_{2}A & -A_{1}^{T}M_{1} + M_{2}A_{1} & A_{1}^{T}M_{1} - M_{2}A_{1} & 0\\ -A_{1}^{T}M_{1} - M_{2}A & A_{1}^{T}M_{1} - M_{2}A_{1} & -A_{1}^{T}M_{1} + M_{2}A_{1} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Z_{3} = \begin{bmatrix} A^{T}QA & * & * & *\\ A_{1}^{T}QA & A_{1}^{T}QA_{1} & * & *\\ -A_{1}^{T}QA & -A_{1}^{T}QA_{1} & A_{1}^{T}QA_{1} & *\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Gamma_{1} = \begin{bmatrix} Q_{1} & * & * & *\\ 0 & 0 & * & *\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\Gamma_{2} = \begin{bmatrix} 0 & * & * & *\\ 0 & Q_{2} & * & *\\ 0 & -Q_{2} & Q_{2} & *\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Integrating both sides of system (5) $On[r_k, t]$, we have

$$x(t) - x(r_k) = A \int_{r_k}^t x(s) ds + (t - r_k) A_1 x(r_k)$$
(7)

According to (7), there exists $N_3 \in \mathbb{R}^{4n \times n}$ such that

$$-2\xi^{T}(t)N_{3}(e_{1}-e_{2}+e_{3})\xi(t)+2(t-r_{k})\xi^{T}(t)N_{3}Ae_{4}\xi(t) +2(t-r_{k})\xi^{T}(t)N_{3}A_{1}(e_{2}-e_{3})\xi(t)=0$$
(8)

By Lemma 1, we have

$$-\int_{r_{k}}^{t} \dot{x}^{T}(s)Q\dot{x}(s)ds \leq -\frac{1}{t-r_{k}}\xi^{T}(t)(e_{1}-e_{2}+e_{3})^{T}Q(e_{1}-e_{2}+e_{3})\xi(t)$$
$$-\frac{3}{t-r_{k}}\xi^{T}(t)(e_{1}+e_{2}-e_{3}-2e_{4})^{T}Q(e_{1}+e_{2}-e_{3}-2e_{4})\xi(t)$$

In addition, there exist $N_1, N_2 \in \mathbb{R}^{4n \times n}$ satisfies the following inequalities.

$$-\int_{r_{k}}^{t} \dot{x}^{T}(s)Q\dot{x}(s)ds \leq (t-r_{k})N_{1}Q^{-1}N_{1}^{T} - N_{1}(e_{1}-e_{2}+e_{3}) - N_{1}^{T}(e_{1}-e_{2}+e_{3})^{T} + 3(t-r_{k})N_{2}Q^{-1}N_{2}^{T} - 3N_{2}(e_{1}+e_{2}-e_{3}-2e_{4}) - 3N_{2}^{T}(e_{1}+e_{2}-e_{3}-2e_{4})^{T}$$
(9)

where

 $e_1 = [I \ 0 \ 0 \ 0], e_2 = [0 \ I \ 0 \ 0], e_3 = [0 \ 0 \ I \ 0], e_4 = [0 \ 0 \ 0 \ I]$ According to Jensen inequality, we have the following inequality.

$$-\int_{r_k}^t x^T(s)Q_1x(s)ds \le -(t-r_k)v^T(t)Q_1v(t)$$
(10)

From (8)–(10), by Schur complement lemma, Theorem 1 can be derived for $r \in \{\underline{r}, \overline{r}\}$.

4 Numerical Examples

In this section, a numerical simulation is given to verify the results proposed in the previous section.

Example 1. Consider the system in [12] with the parameter matrices.

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \end{bmatrix}, \quad A_1 = \begin{bmatrix} 0 & 0 \\ -0.375 & -1.15 \end{bmatrix}$$

When $\underline{r} = 0$, the admissible upper bound \overline{r} can be calculated by Matlab LMI toolbox according to Theorem 1.

(1) Case 1: Set event-trigger parameters

$$\varepsilon = 1, \Theta = diag\{0.59, 0.47\}$$

The admissible upper bound \bar{r} and some results in [12, 16, 17] are shown in Table 1. From Table 1, it can be seen clearly that Theorem 1 has a less conservatism than the results in [12, 16, 17].

Table 1. Admissible upper bound \bar{r} under different schemes

Schemes	[12]	[<mark>16</mark>]	[17]	Theorem 1
r	1.729	1.69	1.7216	2.44

So as to further verify the effectiveness of the event-triggered algorithm, we make the following experiments.

(2) Case 2: we set different ε to do several simulations.

$$\varepsilon_1 = 10, \varepsilon_2 = 15, \varepsilon_3 = 30$$

The admissible upper bounds corresponding to different ε are shown in Table 2.

From Table 2, we can see clearly that different ε can reduce the conservatism to different degrees.

Table 2. Admissible upper bound \bar{r} with different ε

Different ε	ε1	£2	£3
\overline{r}	2.51	2.54	2.59

Example 2. Consider the system in [12].

	0.05	0.6	0.1			0.05	0.05	0.4]
A =	-3	-2	0.1	,	$A_1 =$	-1	1	0.05
	0.1	0	-2			0.5	0.05	-0.9

(1) Case 1: Set event-trigger parameters

$$\varepsilon = 15, \quad \Theta = diag\{0.59, 0.47, 0.51\}$$

The admissible upper bound and some results in [14, 17] are shown in Table 3. For the different simulation model, the Table 3 shows that Theorem 1 has a less conservatism than the results in [14, 17].

Table 3. Admissible upper bound \bar{r} under different schemes

Schemes	[14]	[17]	Theorem 1
r	2.33	2.00	2.51

(1) Case 2: Now we set $\Theta = diag\{0.59, 0.47, 0.51\}$ and choose different ε to do several simulations.

$$\epsilon_1 = 20, \epsilon_2 = 25, \epsilon_3 = 30$$

The admissible upper bounds \bar{r} corresponding to different ε are shown in Table 4.

From Table 4, we can see clearly that different ε can reduce the conservatism to different degrees.

From Tables 1 and 3, it is seen clearly that Theorem 1 is less conservative than the results in literature [16, 17]. From Tables 2 and 4, we can see clearly that the event-triggering algorithm has a certain effect in reducing conservatism.

Table 4. Admissible upper bound \bar{r} with different ε

Different ε	ε ₁	£2	83
r	2.66	2.77	2.84

5 Conclusion

In this paper, based on the sampling-dependent stability for sampled-data systems, a more general event-triggering mechanism is taken into account. In terms of reducing conservatism, we utilize a Lyapunov-like functional including the integral of the state. Simultaneously, we use the improved Jensen inequality for the derivative of the Lyapunov-like functional. At last, a sampling-dependent stability theorem is derived. The validity of this theorem is verified by several simulation experiments.

References

- 1. Fujioka, H.: A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Trans. Autom. Control **54**(10), 2440–2445 (2009)
- Ghantasala, S., El-Farra, N.H.: Active fault-tolerant control of sampled-data nonlinear distributed parameter systems. Int. J. Robust Nonlinear Control 22(1), 24–42 (2012)
- 3. Chen, T., Francis, B.A.: Optimal sampled-data control systems. Proc. IEEE 86(6), 1293–1294 (1998)
- Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Syst. 21(1), 84–99 (2001)
- Zhou, Y., Yang, X., Guo, X., et al.: A design of greenhouse monitoring and control system based on ZigBee wireless sensor network. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing, pp. 2563–2567. IEEE (2007)
- Ulusoy, A., Gurbuz, O., Onat, A.: Wireless model-based predictive networked control system over cooperative wireless network. IEEE Trans. Industr. Inf. 7(1), 41–51 (2011)
- Rabi, M., Johansson, K.H.: Event-triggered strategies for industrial control over wireless networks. In: Proceedings of the 4th Annual International Conference on Wireless Internet. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p. 34 (2008)
- Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46 (1), 211–215 (2010)
- Peng, C., Han, Q.L.: A novel event-triggered transmission scheme and control co-design for sampled-data control systems. IEEE Trans. Autom. Control 58(10), 2620–2626 (2013)

- Aranda-Escolástico, E., Guinaldo, M., Dormido, S.: A novel approach for periodic event-triggering based on general quadratic functions. In: 2015 International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP), pp. 1–6. IEEE (2015)
- Wang, X., Lemmon, M.D.: Event-triggering in distributed networked control systems. IEEE Trans. Autom. Control 56(3), 586–601 (2011)
- Zhao, J., Shao, H., Zhang, D.: A new approach to sampling-dependent stability for sampled-data systems under aperiodic samplings. In: 2016 Chinese Control and Decision Conference (CCDC), pp. 5732–5737. IEEE (2016)
- 13. Hu, S., Yue, D., Xie, X., et al.: Stabilization of neural-network-based control systems via event-triggered control with nonperiodic sampled data. In: IEEE Transactions on Neural Networks and Learning Systems (2016)
- 14. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica **49**(9), 2860–2866 (2013)
- 15. Gu, K.: An integral inequality in the stability problem of time-delay systems. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, pp. 2805–2810. IEEE (2000)
- 16. Fridman, E.: A refined input delay approach to sampled-data control. Automatica **46**(2), 421–427 (2010)
- 17. Seuret, A.: A novel stability analysis of linear systems under asynchronous samplings. Automatica **48**(1), 177–182 (2012)