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Abstract. Date sets with missing feature values are prevalent in cluster-
ing analysis. Most existing clustering methods for incomplete data rely on
imputations of missing feature values. However, accurate imputations are
usually hard to obtain especially for small-size or highly corrupted data
sets. To address this issue, this paper proposes a robust fuzzy c-means
(RFCM) clustering algorithm, which does not require imputations. The
proposed RFCM represents the missing feature values by intervals, which
can be easily constructed using the K-nearest neighbors method, and
adopts a min-max optimization model to reduce the impact of noises on
clustering performance. We give an equivalent tractable reformulation
of the min-max optimization problem and propose an efficient solution
method based on smoothing and gradient projection techniques. Experi-
ments on UCI data sets validate the effectiveness of the proposed RFCM
algorithm by comparison with existing clustering methods for incomplete
data.
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1 Introduction

Clustering analysis is a common technique in machine learning and data mining
and has wide applications. Traditional clustering methods only tackle “complete”
data sets, where no missing feature values exist. However, missing data are com-
mon occurrences in practice due to various reasons, such as missing replies in
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questionnaire, high cost to acquire some feature values and improper collection
procedure of data.

To address incomplete data clustering problems, a direct method is to use the
two-step approach, which first estimates the missing feature values by imputa-
tion [16] and then applies the traditional clustering methods for complete data.
Besides the imputation-based approaches, four strategies are proposed by [3] to
tailor the FCM algorithm to handle incomplete data, including the whole data
strategy (WDS), the partial distance strategy (PDS), the optimal completion
strategy (OCS) and the nearest prototype strategy (NPS). In addition to these
strategies, principal component analysis (PCA) [9] and local PCA [4] have also
been used to capture incomplete data structure.

The limitations of these direct and iterative imputation methods are two-fold.
First, these methods require an accurate estimation of the missing feature values,
which is difficult to obtain in practice. To address this issue, interval data struc-
tures have been developed to represent the missing feature values in [6,7,12,17].
Specifically, [6] define new distance function for interval data and extend the
classical FCM to handle missing data. [7] also express missing values by interval
data, but use the genetic algorithm to search for proper imputations of miss-
ing feature values. [12] estimate interval data by an enhanced back-propagation
neural network. [17] design an improved interval construction approach using
pre-classified cluster results and search for the optimal cluster by particle swarm
optimization. Another limitation of existing clustering methods for missing data
is that the cluster results are usually sensitive to the estimation of the missing
feature values specifically for small-size and highly corrupted data sets [8].

The aim of this paper is to present a robust FCM clustering algorithm for
incomplete data based on interval data representation. To guarantee the clus-
tering performance, we introduce the concept of robust cluster objective func-
tion, which is the maximum of the traditional cluster objective function when
the missing feature values vary in the considered intervals. Different from the
existing algorithms based on interval distance function or optimal imputation
[6,7,17], we formulate the clustering problem as a min-max optimization prob-
lem based on the idea of robust optimization, which has been successfully used
in the field of operations research [18,19], and machine learning, including the
minimax probability machine [5,10,13], robust support vector machines [11,15]
and robust quadratic regression [14].

To solve the proposed min-max optimization problem, we design an effi-
cient iterative solution method. We first give an equivalent reformulation of our
robust optimization problem and analyze its relationship with the classical FCM.
Then, we show how to update the cluster prototype and membership matrices
separately by solving convex optimization problems. Since both problems are
non-smooth, we propose a smoothing method to speed up solution process. To
tackle the constrained optimization problem in the process of updating the mem-
bership matrix, we present an improved gradient projection method. Numerical
experiments on UCI data sets validate the effectiveness of the proposed RFCM
algorithm by comparison with other algorithms.
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The remainder of this paper is organized as follows. Section 2 presents our
RFCM model. In Sects. 3, we give an equivalent reformulation and give the
solution method. In Sect. 4, numerical experiments are implemented and dis-
cussed. Finally, we conclude this research in Sect. 5.

2 RFCM Clustering Algorithm

Consider a set of n objects I = {1, · · · , n} and each object has m features {xij :
j ∈ J}, where xij describes the j-th feature of the i-th object quantitatively.
Let xi = (xi1, · · · , xim)T be the feature vector of the i-th object and X =
(x1, · · · , xn) be the feature matrix or data set. The task of clustering problems
is to assign these objects to K clusters.

In practice, due to various reasons, the data set X may contain missing
components. A data set X is referred to as an incomplete data set if it contains
at least one missing feature value for some objects, that is, there exists at least
one i ∈ I and j ∈ J , such that xij =?. For an incomplete data set X, we further
partition the feature set of the i-th object into two subsets: J0

i = {j : xij =
?,∀j ∈ J} and J1

i = J \ J0
i .

Since it is usually difficult to obtain accurate estimation of missing feature
values. This paper represents missing feature values by intervals. Specifically, for
any i ∈ I, we use an interval [x−

ij , x
+
ij ] to represent unknown missing feature value

where j ∈ J0
i , and use x̄ij to represent known feature value where j ∈ J1

i . To

simply notations, in the following, let x̄ij =
x−

ij+x+
ij

2 , δij =
x+

ij−x−
ij

2 for any j ∈ J0
i ,

and δij = 0 for any j ∈ J1
i . For details on how to construct these intervals for

missing feature values, see [6,17].
To reduce the impact of inaccurate estimation of the missing feature values,

this paper considers the following robust cluster objective function:

min max

{
K∑

k=1

∑
i∈I

up
ik‖x̄i + yi − vk‖2 : yi ∈ [−δi, δi],∀i ∈ I

}

s.t.
K∑

k=1

uik = 1, uik ∈ [0, 1], ∀ i ∈ I, k = 1, · · · ,K,

(1)

The Eq. (1) is a difficult nonlinear optimization problem, and it is hard to
solve (1) directly. However, by exploiting the structural properties of (1), we will
design an efficient algorithm in next section.

3 Solution Method

3.1 Equivalent Reformulation of (1)

The following Proposition 1 simplifies the two-level min-max optimization prob-
lem (1) into a single level minimization problem, and provides the basis of design-
ing effective solution methods for (1).
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Proposition 1. Problem (1) is equivalent to the following problem:

min
U,V

∑
i∈I

∑
j∈J

{
K∑

k=1

up
ik(x̄ij − vkj)2 + 2δij

∣∣∣∣∣
K∑

k=1

up
ik(x̄ij − vkj)

∣∣∣∣∣ +
K∑

k=1

up
ikδ2ij

}

s.t.
K∑

k=1

uik = 1, uik ∈ [0, 1], ∀ i ∈ I, k = 1, · · · ,K.

(2)

Proof. We simplify the robust cluster objective function for given U and V as
follows:

JR(U, V ) =
∑
i∈I

∑
j∈J

max
yij∈[−δij ,δij ]

K∑
k=1

up
ik(x̄ij + yij − vkj)2

=
∑
i∈I

∑
j∈J

max

{
K∑

k=1

up
ik(x̄ij + δij − vkj)2,

K∑
k=1

up
ik(x̄ij − δij − vkj)2

}

where the last equation uses the fact that f(yij) = (x̄ij + yij − vkj)2 is a convex
function and attains its maximum over [−δij , δij ] at the endpoints. For given
i ∈ I and j ∈ J , we have

max

{
K∑

k=1

up
ik(x̄ij + δij − vkj)2,

K∑
k=1

up
ik(x̄ij − δij − vkj)2

}

=
K∑

k=1

up
ik(x̄ij − vkj)2 + 2δij

∣∣∣∣∣
K∑

k=1

up
ik(x̄ij − vkj)

∣∣∣∣∣ +
K∑

k=1

up
ikδ2ij ,

which completes the proof.

Proposition 1 also shows that when δij = 0 for any i ∈ I and j ∈ J , our
RFCM reduces to the classical FCM.

Let h(U, V ) be the objective function of (2). The following proposition ana-
lyzes properties of h(U, V ).

Proposition 2. For any given U ≥ 0, h(U, V ) is convex in V and for any given
V , h(U, V ) is convex in U .

Proof. First, for any U ≥ 0, it is easy to see that the first term of h(U, V ) is
convex in V . Note that the absolute function is convex; thus, the second term of
h(U, V ) is also convex in V . Since the last term of h(U, V ) is constant for given
value of U , we have that h(U, V ) is convex in V .

Second, from the proof of Proposition 1, we have that

h(U, V ) =
∑
i∈I

∑
j∈J

max

{
K∑

k=1

up
ik(x̄ij + δij − vkj)2,

K∑
k=1

up
ik(x̄ij − δij − vkj)2

}
.
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Since f(x) = axp is convex in x when a ≥ 0 and p ≥ 1, we have both∑K
k=1 up

ik(x̄ij +δij −vkj)2 and
∑K

k=1 up
ik(x̄ij −δij −vkj)2 are convex in U for any

given V . Note that the maximum of two convex function is still convex; thus,
we complete the proof.

Proposition 2 shows that although (2) is a complex non-convex minimization
problem, when either the value of U or that of V is fixed, we only need to solve
convex minimization subproblems. The next two subsection focuses on designing
efficient solution methods to these two subproblems.

3.2 Optimizing V for a Fixed Value of U

For a fixed value of U , we need to solve the following convex piecewise quadratic
problem:

min
V

∑
j∈J

∑
i∈I

{
K∑

k=1

up
ik(x̄ij − vkj)2 + 2δij

∣∣∣∣∣
K∑

k=1

up
ik(x̄ij − vkj)

∣∣∣∣∣
}

. (3)

Note that (3) is decomposable in index j. Let vj = {v1j , · · · , vKj}. Therefore,
it is sufficient to solve the following subproblem separately for each j ∈ J :

min
vj

∑
i∈I

K∑
k=1

up
ik(x̄ij − vkj)2 + 2

∑
i∈I

δij

∣∣∣∣∣
K∑

k=1

up
ik(x̄ij − vkj)

∣∣∣∣∣ . (4)

Due to the non-differentiability of the absolute function g(x) = |x|, (4) is a
non-smooth convex minimization problem. Although the sub-gradient method
can be used to solve such non-smooth optimization problems, its search direction
may oscillate around non-smooth points. To improve computation efficiency, we
introduce the following smoothing upper bound estimation (SUBE) function of g:

gε(x) =

⎧⎨
⎩

x, if x ≥ ε,
x2

2ε + ε
2 , if |x| < ε,

−x, if x ≤ −ε,

where ε > 0. It is easy to see that for any ε > 0 , gε(x) is a smooth function and
0 ≤ gε(x) − g(x) ≤ ε/2, and

g′
ε(x) =

⎧⎨
⎩

1, if x ≥ ε,
x
ε + ε

2 , if |x| < ε,
−1, if x ≤ −ε.

By introducing the SUBE function gε(x), instead of directly solving the non-
smooth optimization problem (4), we only need to consider the following smooth
optimization problem:

min
vj

φ(vj) =
∑
i∈I

K∑
k=1

up
ik(x̄ij − vkj)2 + 2

∑
i∈I

δijgε

(
K∑

k=1

up
ik(x̄ij − vkj)

)
(5)
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The gradient of the objective function φ is given as follows:

∂φ(vj)
∂vkj

= 2
∑
i∈I

up
ik(vkj − x̄ij) − 2

∑
i∈I

δijg
′
ε

(
K∑

k=1

up
ik(x̄ij − vkj)

)
.

Therefore, for a fixed value of U , we design the following smoothing gradient
descent method to solve (5).

Algorithm 1. Smoothing Gradient Descent Algorithm (SGDA)
0 Input U , j ∈ J , the maximum iteration number Nmax and error bound Err > 0.

1 Initialization: v0
kj =

∑
i∈I u

p
ik

x̄ij
∑

i∈I

∑
i∈I u

p
ik

for k = 1, · · · , K. Let n = 1.

2 Update: set ε = Err
n

, vn
kj = vn−1

kj − sn
∂φ(vn−1

j )

∂vkj
for k = 1, · · · , K and n = n + 1 .

3 Stop criteria: if n ≥ Nmax or |φ(vn
j ) − φ(vn−1

j )| ≤ Err, goto step 4; else goto step 2.
4 Output solution v∗

j = vn
j .

During the solution process, SGDA decreases the approximation error ε
repeatedly. In the SGDA, the step size can be either set as sn = a/(b + n)
with a, b > 0 or selected by the Armijo rule [1].

3.3 Optimizing U for a Fixed Value of V

For a fixed value of V , we need to solve the following constrained convex mini-
mization problem:

min
U

∑
i∈I

∑
j∈J

{
K∑

k=1

up
ik

(
(x̄ij − vkj)2 + δ2ij

)
+ 2δij

∣∣∣∣∣
K∑

k=1

up
ik(x̄ij − vkj)

∣∣∣∣∣
}

s.t.
K∑

k=1

uik = 1, uik ∈ [0, 1], ∀ i ∈ I, k = 1, · · · ,K.

(6)

Note that (6) is decomposable in index i. Let ui = {ui1, · · · , uiK}. Using
the SUBE function as in the last subsection, we consider the following smooth
subproblem separately for each i ∈ I.

min
ui

ψ(ui) =
∑
j∈J

{
K∑

k=1

up
ik

(
(x̄ij − vkj)2 + δ2ij

)
+ 2δijgε

(
K∑

k=1

up
ik(x̄ij − vkj)

)}

s.t.
K∑

k=1

uik = 1, uik ∈ [0, 1], ∀ k = 1, · · · ,K.

(7)
The gradient of the objective function ψ is given as follows:

∂ψ(ui)

∂uki

= 2p
∑

j∈J

u
p−1
ik

(
(x̄ij − vkj)

2
+ δ

2
ij

)
+ 2
∑

j∈J

δijpu
p−1
ik (x̄ij − vkj)g

′
ε

(
K∑

k=1

u
p
ik(x̄ij − vkj)

)

.
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To solve (7), we design the following smoothing gradient projection descent
algorithm.

Algorithm 2. Smoothing Gradient Projection Descent Algorithm (SGPDA)
0 Input V , i ∈ I, the maximum iteration number Nmax and error bound Err > 0.

1 Initialization: u0
ik =

(∑K
t=1

(
‖x̄i−vk‖2

‖x̄i−vt‖2

) 1
m−1
)−1

for k = 1, · · · , K. Let n = 1.

2 Update: set ε = Err
n

, ūn
ik = un−1

ik −sn
∂ψ(un−1

i )

∂uik
for k = 1, · · · , K and un

i = ProjΔ (ūn
i ).

Let n = n + 1 .
3 Stop criteria: if n ≥ Nmax or |ψ(un

i ) − ψ(un−1
i )| ≤ Err, goto step 4; else goto step 2.

4 Output solution u∗
i = un

i .

In SGPDA, the projection operator ProjΔ denotes the projection onto the
simplex Δ = {x ∈ RK :

∑K
k=1 xk = 1, xk ≥ 0, ∀k = 1, · · · ,K}. [2] has shown

that ProjΔ can be computed in O(K log K) time.
Based on the solution methods for subproblems (P̃

j

U ) and (P̃
i

V ), our RFCM
algorithm can be summarized as follows.

Algorithm 3. RFCM Algorithm
0 Input data: estimated data X̄, interval size data δ, the number of clustering K,
the maximum iteration numbers Nfcm and Nsub, and the error bounds Errfcm and
Errsub.
1 Initialization: Initialize the clustering centers V 0 by randomly choose K samples,
and set k = 1.
2 Update U when V is fixed as V = V k−1:

For i ∈ I
Sovle (P̃

i
V ) by SGPDA with the input: V = V k−1, i, Nsub and Errsub.

End
Set Uk = {u∗

i : i ∈ I}.
3 Update V when U is fixed as U = Uk:

For j ∈ J

Sovle (P̃
j
U ) by GPDA with the input: U = Uk, j, Nsub and Errsub.

End
Set V k = {v∗

j : j ∈ J}.
4 Calculate objective function value hk = h(Uk, V k).
5 Stop criteria: if k ≥ Nfcm or |hk −hk−1| ≤ Errfcm, then return (U∗, V ∗) = (Uk, V k);
otherwise, let k = k + 1 and goto step 2.
6 Output U∗ and V ∗.
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4 Numerical Experiments

4.1 Data Sets

We conduct experiments on two data sets of the UCI database: Wine and Seeds.
All these data sets are complete data sets. To generate the incomplete data
sets, we adopt the method used in [3,6]. Specifically, we use the missing com-
pletely at random (MCAR) mechanism to generate the missing feature values.
We randomly select a specified percentage of components and designate them as
missing. We further make sure the following constraints are satisfied:

1. Each object retains at least one feature;
2. Each feature has at least one value present in the incomplete data set.

4.2 Experimental Results and Discussion

We compare the proposed RFCM algorithm with the classical FCM using the
WDS, PDS and NPS strategies on Wine and Seeds data sets. The missing rates of
these data sets vary from 0% to 20%. We report the number of misclassification
and misclassification rate of these algorithms on test data sets.

We generate 100 incomplete data instances of Wine and Seeds data sets
and report the averaged performance of different algorithms in Tables 1 and 2,
respectively. Results given by the proposed RFCM, the classical FCM using the
WDS, PDS and NPS strategies are labeled as “RFCM”, “WDS”, “PDS”, and
“NPS”, respectively.

Table 1. Performance of different FCM algorithms on the incomplete Wine data set

% Number of misclassification Misclassification rate

WDS PDS NPS RFCM WDS PDS NPS RFCM

0 16.2 16.2 16.2 16.2 9.1 9.1 9.1 9.1

5 18.0 21.0 18.8 17.4 10.13 11.82 10.56 9.77

10 19.7 24.1 21.7 18.5 11.05 13.54 12.18 10.37

15 22.4 27.0 23.7 19.6 12.61 15.17 13.29 11.02

20 25.4 32.6 25.1 22.4 14.28 18.33 14.12 12.58

From Tables 1 and 2, we have the following observations.

(1) For all the test data sets, the proposed RFCM algorithm provides the best
clustering performance in terms of misclassification rate. For example, when
the missing rate of the Wine data set is 20%, the misclassification rate of
RFCM is only 12.58% while the misclassification rate of WDS, PDS and
NPS are 14.28%, 18.33% and 14.12%, respectively.
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Table 2. Performance of different FCM algorithms on the incomplete Seeds data set

% Number of misclassification Misclassification rate

WDS PDS NPS RFCM WDS PDS NPS RFCM

0 22.3 22.3 22.3 22.3 10.62 10.62 10.62 10.62

5 22.2 25.4 23.5 19.3 10.58 12.13 11.18 9.17

10 23.6 45.8 31.4 23.1 11.24 21.81 14.95 11.01

15 25.3 42.8 32.2 24.2 12.04 20.40 15.34 11.53

20 33.7 61.4 30.3 27.1 16.07 29.23 14.44 12.94

(2) When the missing rate is small, missing data have little adverse effect on the
performance of the proposed RFCM and missing data even help RFCM to
give better performance.

(3) The cluster prototypes given by RFCM also have smaller cluster prototype
errors compared with cluster prototypes given by WDS, PDS and NPS.

5 Conclusion

This paper proposes a robust FCM algorithm to cluster data sets with miss-
ing feature values. The RFCM algorithm represents the missing feature values
by intervals. Different existing interval-based clustering algorithms, which only
replace the traditional Euclidean distance with a modified distance function
for interval data, the RFCM algorithm adopts the idea of robust optimization
and aims to find an optimal cluster with the minimum wort-case cluster objec-
tive function value. Therefore, it can guarantee the worst-case performance of
the resulted cluster output and minimizes the adverse effect of missing feature
values. This paper formulates the robust clustering problem as a two-level min-
max optimization problem and provides an equivalent reformulation. An efficient
solution method is further designed based on smoothing and gradient projection
techniques. Experiments on UCI data sets also validate the effectiveness and
robustness of the RFCM algorithm by comparison with existing clustering algo-
rithms.
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